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ABSTRACT. Iris is an expressive higher-order separation logic designed for the verification
of concurrent, imperative programs. As a demonstration of this, we present a formalization
of a common concurrent data-structure: a stack. The implementation is lock-free and uses
helping to avoid contention. All of the examples are formalized in Coq and demonstrate
how Iris can be used to give expressive, higher-order specifications of advanced concurrent
data-structures.

1. INTRODUCTION

Iris is a general, base logic suitable for constructing a variety of program logics. It has
been used extensively to verify properties of various programs, in particular those making
use of fine-grained concurrency. In this case study we will verify a larger example of such a
concurrent program which uses atomic operations to implement a lock-free data-structure.

Despite how it is normally used, the Iris logic itself is designed quite independently of
any particular programming language or indeed the notion of a program logic at all. It is a
standard higher-order logic supplemented with several modalities. An introduction to it may
be found in Jung et al. [2017] or Jung et al. [2015]. In this paper we will assume familiarity
with Iris as well as one of the main languages it has been used to study: a concurrent
ML supplemented with general, mutable reference and a CAS operation. We will focus on
showing how to use the logic provided by Iris to examine a real, substantive concurrent
data-structure: a concurrent stack with helping. We hope that this case study will give a
flavor for how verification of such data-structures normally proceeds in Iris. In order to do
this we will give several different specifications for the stack. Each specification will be more
precise and correspondingly complex than the previous one. Inevitably, the specifications
will force us to choose between the modularity of the proof and the precision with which our
specification describes the data-structure. The first specification, which ignores the stack
ordering of the data-structure and merely treats it as a bag, allows for a simple and direct
verification that follows the abstractions set up in the code itself. The final specification
which captures far more of the behavior of the stack forces us to ignore such abstractions.

To begin with, we will start by reviewing the code and informally arguing towards its
correctness. We will then specify it as a bag and provide a fully worked out proof that
the code satisfies the specification. We will then prove a more precise specification making
use of atomic updates to an abstract stack for our data structure with and without helping.
Finally, we will conclude with the same precise specification applied to the full data-structure
supplemented with helping.
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2. A CONCURRENT STACK WITH HELPING

The abstract data type that we’re implementing is that of a stack. Therefore, it will have
two operations, push and pop. The main complication of our data structure is that push
and pop must be thread-safe.

In order to handle this in the implementation, we will make use of the fact that we have
an atomic compare-and-swap operation on reference cells in our language. By storing our
stack in such a cell, we can retrieve it, modify it as necessary, and attempt to atomically
replace the old stack with our new stack. As is usual with fine-grained concurrency, it is
entirely possible that halfway through our operation another thread might modify the stack.
In this case, the attempt to replace the old stack with the new stack using a CAS instruction
will fail. The typical way to handle this is to loop and attempt the operation from the
beginning, though in high contention situations this can be a major delay and cause long
running operations to live-lock.

In order to partially mitigate this, it would be ideal if some of our concurrent operations
could avoid dealing with the main cell holding the stack entirely. For example, if one thread
is attempting a push at the same time another is attempting a pop, they will fight each other
for ownership of the cell even though it would be perfectly valid for one thread to simply
hand the other the value. In a high contention situation with many threads pushing and
popping at once, this can be quite a common problem. We handle this by introducing a
side-channel for threads to communicate along. That is, before a thread attempts to work
with the main stack it will, for instance, check whether or not someone is offering a value
along the side-channel that it could just take instead. Similarly a thread which is pushing
a value onto the stack will offer its value on the side-channel temporarily in an attempt to
avoid having to compete for the main stack. This scheme reduces contention on the main
atomic cell and thus improves performance.

2.1. Mailboxes for Offers. In order to do this, before designing a stack we first implement
a small API for side-channels. A side-channel has the following operations

(1) An offer can be created with an initial value.

(2) An offer can be accepted, marking the offer as taken and returning the underlying
value.

(3) Once created, an offer can be revoked which will prevent anyone from accepting the
offer and return the underlying value to the thread.

Of course, all of these operations have to be thread-safe! That is, it must be safe for an offer
to be attempted to be accepted by multiple threads at once, an offer needs to be able to be
revoked while it’s being accepted, and so on. We choose to represent an offer as a tuple of
the actual value the offer contains and a reference to an int. The underlying integer may
take one of 3 values, either 0, 1 or 2. Therefore, an offer of the form (v, ¢) with ¢ — 0 is the
initial state of an offer, no one has attempted to take it nor has it been revoked. Someone
may attempt to take the offer in which case they will use a CAS to switch ¢ from 0 to 1,
leading to the accepted state of an offer which is (v, ¢) so that £ — 1. Revoking is almost
identical but instead of switching from 0 to 1 instead we switch to 2. Since both revoking and
accepting an offer demand the offer to be in the initial state it is impossible anything other
than exactly one accept or one revoke to succeed. The actual code for this is in Figure 1

and the transition graph sketched above is illustrated in Figure 2. The pattern of offering
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mk_offer = fun v — (v, ref 0)
revoke_offer =
fun v —
if cas (snd v) 0 2
then Some (fst v)
else None
accept_offer =
fun v —
if cas (snd v) 0 1
then Some (fst v)
else None

F1GURE 1. The implementation of offers used to construct side-channels.

accept

revoke

FIGURE 2. The states an offer may be in.

something, immediately revoking it, and returning the value if the revoke was successful is
sufficiently common that we can encapsulate it in an abstraction called a mailbox. The idea
is that a mailbox is built around an underlying cell containing an offer and that it provides
two functions which, respectively, briefly put a new offer out and check for such an offer. The
code for this may be found in Figure 3. One small technical detail is that we have designed
this as a constructor which returns two closures which manipulate the same reference cell.
This simplifies the process of using a mailbox for stacks where we only have one mailbox at
a time. It is not, however, fundamentally different than an implementation more in the style
of the offers above.

2.2. The Implementation of the Stack. With an implementation of offers, it is easy
to code up the concurrent stack. The idea for implementing a side-channel is to have a
designated cell for threads to put pending offers in. This way, when a thread comes along
to push a value onto the stack it will first create an offer using the above API and put it
into the given cell. It will then immediately revoke it to see if another thread has accepted
the offer in the meantime and if none has, it will proceed with the pushing algorithm. The
dual process suffices for a thread seeking to pop. The code for the stack is in Figure 4.
Notice that this too is written in a similar style to that of mailboxes, a make function which
returns two closures for the operations rather than having them separately accept a stack as

an argument.
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mailbox = fun () —
let r ref None in
(rec put v —
let off = mk_offer v in
r := Some off;
revoke_offer off,

rec get n —
let offopt = !r in
match offopt with
None — None
| Some x — accept_offer x
end)

F1GURE 3. The implementation of mailboxes which provide a convenient
wrapper over offers.

3. A FIRST FORMALIZATION: A BAG SPECIFICATION

The first specification of the concurrent stack really only specifies the stack’s behavior as
a bag. Nowhere in the specification is the order of insertion reflected. In a concurrent setting
this is less damning than it might appear because from the perspective of a single thread
it is indeed the case that there is little connection between the order in which things are
inserted and when they will be removed. This is a direct result of the fact that a thread
must be agnostic to the interference and actions of other threads operating on the same stack
concurrently.

With this in mind, the specification for the stack will be parameterized by some arbitrary
predicate on values, P : Val — iProp. Every element of the stack will satisfy P and thus our
specifications are roughly

P(v) =xwpg push(v) {True}
wpg pop()  {v.v = None V Fv'. v = Some(v') x P(v')}

Of course the actual specifications must specify stack, a function which returns a tuple a
push and pop. This necessitates the use of a higher order specification, a weakest precon-
ditions whose post condition contains other weakest preconditions. This is possible because
Iris weakest preconditions are not encoded as a separate sort of logical proposition but rather
as ordinary +Props. Furthermore, to make using the specification easier, a common trick with
weakest preconditions is employed. Instead of directly stating something along the lines of
wpg e {®}, instead we introduce a “cut”, VW. (Vv. ®(v) — ¥(v)) = wpg e {¥}. This makes
chaining together multiple weakest preconditions considerably simpler and avoids gratuitous

uses of the rule of consequence. With all of this said, the first specification for concurrent
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stack = fun () —
let mailbox = mailbox () in
let put = fst mailbox in
let get = snd mailbox in
let r = ref None in
(rec pop n —
match get () with
None —
(match 'r with
None — None
| Some hd =>
if cas r (Some hd) (snd hd)
then Some (fst hd)
else pop n
end)
| Some x — Some x
end,
rec push n —
match put n with
None — ()
| Some n —
let r’ = !r in
let r’’ = Some (n, r’) in
if cas r r’> r’’
then ()
else push n
end)

FI1GURE 4. The implementation of the concurrent stack.

stacks is!

Vo.
(Vf1f2- Owp f1() {v.v = None V F'. v = Some(v') * P(v')}
—Vu. O(P(v) = wp fo(v) {True})

=D (f1, f2))
— wp stack() {®}

IThe (J-modalities ensures that the specifications for f; and f, are persistent. Without these the specifi-
cation would be quite weak, as one would only be allowed to call push and pop once each.
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Rather than directly verifying this specification, the proof depends on several helpful lemmas
verifying the behavior of offers and mailboxes. By proving these simple sublemmas the veri-
fication of concurrent stacks can respect the abstraction boundaries constructed by isolating
mailboxes as we have done.

3.1. Verifying Offers. The heart of verifying offers is accurately encoding the transition
system described in the previous section. Roughly, an offer can transition from initial to
accepted or from initial to revoked but no other transitions are to be allowed. Encoding
this requires a simple but interesting application of ghost state. It is possible to encode
an arbitrary state transition system in Iris but in this case a more specialized approach is
simpler.

Specifically, offers will be governed by a proposition stages which encodes what state of the
three an offer is in. Ghost state is needed to ensure that certain transitions are only possible
for threads with ownership of the offer. To do this, the exclusive monoid on unit will act as
a token giving the owner the right to transition to the original state to the revoked state.

resource to transition from the initial state to the revoked state. The proposition encoding
the transition system is

Having defined this, the proposition is offer is now within reach.

is_offer (v) £ Fv', L.v = (v, £) * HL.ML

Notice that is_ offer is clearly persistent, reflecting the fact that it ought to be shared between
multiple threads. This implies that knowing is_offer (v) does not assert ownership of any
kind, rather, it asserts that for an atomic step of computation the owner may assume that the
offer is in one of the three states. This sharing provides the motivation for using invariants
to capture stages. Without wrapping it in an invariant it would not be possible to share
it between multiple threads. Notice that both of these propositions are parameterized by a
ghost name, 7. Each v should uniquely correspond to an offer and represents the ownership
the creator of an offer has over it, namely the right to revoke it. This is expressed in the
specification of mk_offer.

it will only successfully return once.
Vv, v.is_offer (v) - wp accept_offer(v) {v. v = None V Jv'. v = Some(v) * P(v')}

As an illustrative example, we will go through the the derivation of the specification for
mk_offer and leave the derivations of the other two specifications as an exercise to the

reader.
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that ¢ — 0. We now need to show that wp (v, /) {v. Fy.lex(() ! * is_offerw(v)}. Now we
merely need to show that

(v,0) € Val A e 3y. ex(() 17 * is_offer_((v,£))

The left-hand side of this conjunction is trivial. For the right-hand side, we note that since

E¢is_offer ((v,¢)) holds for some . For this, we first note that is_offer_ ((v,¢)) is of course

equal to F', 0. (v, 0) = (v, €') % 3. ‘ stages. (v, ¢') ‘L So we start by introducing the existential
quantifier with v and ¢ giving us the goal

B¢ (v,0) = (v,£) * 0. stages, (v, () '
The equality is obviously true so we merely need to show that B 3.. stages (v,/) ‘. For

this, we will use the invariant allocation rule, so we need to show that >stages_(v,f) holds
and we're done. For this, we prove stages (v, ) for which it suffices to show P(v) * £ — 0
which we have in our assumptions. 0

3.2. Verifying Mailboxes. Having verified that offers work as intended, the next step
is to verify that the mailbox abstraction built on top of them also satisfies the intended
specification. In order to properly specify mailboxes, it is necessary to use a similar trick to
that of the specification of stacks. That is, a specification that involves higher order weakest
preconditions and bakes in a cut.

(1) VP,
(Vf1f2- (Vo. O(P(v) = wp f1(v) {v.v = None V Fv'.v = Some(v') x P(v")}))
—«[Jwp fao() {v.v = None V Fv'.v = Some(v') x P(v')}
=D (f1, f2))
— wp mailbox() {®}

In a small victory for compositional verification, the proof of this specification is made with
no reference to the underlying implementation of offers, only to the specification previously
proven. Throughout the proof an invariant is maintained governing the shared mutable cell
that contains potential offers. This invariant enforces that when this cell is full, it contains
an offer. It looks like this

is_mailbox(v) = 3¢.v = £ % £+ None V 3v'y. 1 — Some(v') xis_offer_(v')
This captures the informal notion described above.

Theorem 3.2. Proposition (1) holds.



Proof. For this, we start by applying the g-rule. This means that in addition to our assump-
tion that
Vfifo. (Vo. O(P(v) = wp f1(v) {v.v = None V 3v'. v = Some(v') * P(v')}))
—«Jwp f2() {v.v = None V Fv'.v = Some(v') x P(v")}
_*(I)(fla f2)

our goal is

wplet r = ref None in (..., ...){®}

We then apply the rule for allocation, so we suppose that we have some ¢ such that we also
have ¢ — None. Our goal after applying another § rule is then of the form

wp (..., ...) {P}

We now need to show that - ®(...,...) holds so we take this time to allocate the mailbox
invariant as discussed above. We will allocate ‘ is_mailbox (/) ‘L, for some ¢, so we must prove
that >is_mailbox(¢) holds. We first instantiate the existential quantifier with ¢ leaving us
with the goal

{ = (%€~ NoneV Jv',7.1 — Some(v') xis_offer_(v')

Obviously the equality holds and the left side of the disjunct holds by our assumption that
¢ — None so we're done. We now apply our original hypothesis leaving us to prove

Vo. O(P(v) —wp f1(v) {v.v = None V Fv'.v = Some(v') x P(v")})
Owp fa() {v.v = None V Fv'.v = Some(v') x P(v')}

where we have defined f; and f; as

fl1 = rec put v — f2 = rec get n —
let off = mk_offer v in let offopt = !r in
r := Some off; match offopt with
revoke_offer off, None — None
| Some x —
accept_offer x
end

We shall verify the specification for f; and leave the specification of f; as an exercise.
To eliminate the [J-modality, we have to throw away all non-persistent resources. As our
context is just a single invariant, hence persistent, we can proceed without any losses. Let
us now assume that we have P(v) for some v. We then apply the specification for mk_offer
to conclude that it suffices to show

wp (r := Some off; revoke_offer off){v.v = NoneV Jv'.v = Some(v') * P(v')}
8



for the single atomic reduction of r := Some off. We must then show the following
>is_mailbox(r) —

is_mailbox(r)x*
wp (r := Some off) < v.

v = None
wp (v; revoke_offer off) {U- V 3. v = Some (') * P(v') }

Notice that we have only >is mailbox(r) because opening an invariant gives only > of the
stored proposition. This will suffice in our case because the rule for loading a location does not
require ¢ — v, only >/ — v because ¢ — v is a timeless proposition. Weakest preconditions
are designed in such a way that it is always possible to remove >s from timeless propositions.

Let us then assume that we have >is_mailbox(r). We know then that there is a location ¢
so that r = ¢ and >/ ~ None V Jv'y. >(I — Some(v') * is_offer_ (v")). We then case analyze
this disjunction.

In the first case, we have ¢/ — None so we can apply the rule for stores leaving us with
the goal

0" —Some(off) —

is_mailbox(¢") x wp (v; revoke_offer off) {v.v = None V Jv'.v = Some(v') x P(¢v')}
First, we prove is_mailbox(¢') with our assumptions that ¢’ — Some(off) and is_offer_(off).
This is quite straightforward. We prove this existential for ¢'. For this we must show that

¢ ={"%{ NoneV Jv'y.l — Some(v') xis_offer_(v')
but the right disjunct is precisely the assumptions we have. We then must show the rest of
the goal
wp (O ; revoke_offer off) {v.v = NoneV F'.v = Some(v') * P(v')}
For this we apply the 8 and notice that
wp revoke_offer (off) {v.v = None V Fv'.v = Some(v') * P(v')}

is precisely the specification we proved earlier for revoke_offer and we conveniently have

'ex(()) " and is_offer(off) (remember that it’s persistent) so we’re done.

The reasoning for the other disjunct is identical so we elide it here. 0

3.3. Verifying Stacks. We now turn to the verification of stacks themselves. The specifi-
cation for these has already been discussed:

(2) V.
(Vf1f2- Owp f1() {v.v = None vV Fv'. v = Some(v) x P(v)}
—Vv. O(P(v) = wp fa(v) {True})
=®(f1, f2))
— wp stack() {®}

Having verified mailboxes already only a small amount of additional preparation is needed
before actually verifying this proposition. Specifically, an invariant representing that a mem-

ory cell contains a stack is needed. This is necessary because this cell will be shared between
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multiple threads concurrently reading and writing to it and without an invariant there is no
way to reason about this. The predicate is_stack(v) used to form the invariant is defined as
follows by guarded recursion

is_stack(v) = yu R.v = None V 3h,t.v = Some(h,t) * P(h) > R(t)
Having defined this, it is straightforward to define an invariant enforcing that a location
points to a stack.
stack_inv(v) = 30,0 . v =€ x £+ v xis_stack(v)
We turn now to verifying the proposition.

Theorem 3.3. Proposition (2) holds.

Proof. For this, we assume first that we have
Vf1fo. Owp f1() {v.v = None vV Fv'.v = Some(v) * P(v)}
- O(Yv. P(v) = wp fa(v) {True})
~+®(f1, f2))

Now we apply the S rule to conclude that we must show that
wp (let mailbox = mailbox () in E){P}
We can then apply the bind rule to see that it suffices to prove instead
wpmailbox() {v.wp let mailbox = v in E{d}}

This is in the form that we can apply our specification for mailbox. Our goal is now to show
that

Vf1f2-Yu. O(P(v) = wp f1(v) {v.v = None V 3v'. v = Some(v') * P(v')})
—«Jwp fa() {v.v = None V Fv'. v = Some(v') * P(v')}
—wp let mailbox = (f1, f2) in E{d}

This is the advantage provided by specifying our lemmas with a cut built in. The mailbox
lemma is immediately applicable without further manipulation. Let us assume that we have
such an f; and f5 and furthermore that the above two specifications holds for f; and f;. We
now attempt to prove that wp let mailbox = (f1, £2) in E{®}. We next apply the 3
rule for let to transform our goal into

wp let get = f1 in let put = f2 in let r = ref None in (P1, P2) {d}
Now again we can apply our (8 rules to conclude that we need to show that the following
holds
wplet r = ref None in ([f1/get]lP1l, [f2/put]P2) {P}
We now apply the allocation rule, so suppose that we have some ¢, we must then show that
if ¢ — None then wp ([f1/get]P1, [£2/put]P2) {®} holds. Before attempting to prove

this though, we allocate then invariant stack inv(¢). This is easy to do because allocating
this invariant requires showing that

>3V =00 — v xis_stack(v)
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Let us prove this by proving that 3¢'v'. £ = ¢/« ¢’ — v'xis_stack(v') directly and instantiating
the existential with ¢ and None. Our remaining obligation is just to show that

pR.v = None V 3h,t.v = Some(h,t) x P(h) x> R(t)

But the left disjunct is just reflexivity. We may then assume mb. Now our goal is
simply of the form

wp ([f1/get]P1, [f2/putlP2) {®}
We, however, have an assumption that
Vf1fa. Owp f1() {v.v = None V 3v'. v = Some(v') x P(v')}
—«Vv. O P(v) = wp fa(v) {True}
=D (f1, f2))

Now we apply this to our current goal leaving us to show that
Owp [£1/get]P1() {v.v = None V Fv'.v = Some(v") x P(v")}
Vo. O(P(v) =wp [£1/get]1P2(v) {True})
We will prove both of these separately now.

(1) Owp [£1/get]P1() {v.v = None V F'.v = Some(v') x P(v')}
We can remove the [J-modality as our context is persistent. Let us now apply Lob
induction to get the assumption

>wp [£1/get]P1() {v.v = None V Fv'.v = Some(v') * P(v")}

We will make use of this assumption in the case where we are forced to loop due to
contention on the main stack. We next apply the bind rule to change our goal to

wpfl () {v.wp (match v with ...){v.v = None V Fv'.v = Some(v') x P(v')}}

We can now apply the assumption that we have for f;, namely we now must prove
the entailment.

Vo. (v = None V F'. v = Some(v') * P(v"))
— wp (match v with ...){v.v = None V Iv'.v = Some(v') x P(v')}

Let us assume that we have some v and that v = None V Jv'.v = Some(v') x P(v')
holds. We now case on this disjunction.

Let us first consider the case where 3v". v = Some(v') * P(v’) holds. We now need
to show can then destruct this existential telling us that there is some v' so that
v = Some(v') and P(v') holds. Rewriting by v = Some(v’) we can then apply the (
rule for matches to transform our goal into

wp (Some (v?)) {v.v = None V Fv'. v = Some(v') * P(v')}
However since this is a value it suffices to prove that
Fv”. Some(v”) = Some(v') * P(v")

however our assumptions give this immediately.
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Now consider the case where v = None. In this case we can rewrite again by this
equality and apply the S rule for match to conclude our goal is

wpmatch !'r with ... {v.v = NoneV Jv'.v = Some(v') x P(v")}
We now again apply our binding rule to rewrite our conclusion to the form
wp ('r) {v.wpmatch v with ... {v.v = NoneV Fv'.v = Some(v') x P(v')}}

Now that we have an atomic operation, we can apply our invariant rule to open the
invariant that we have about r. Let us assume that we have >stack inv(r). We can
then rewrite this to

A0 >(v =100+ v xis_stack(v'))
which is of course equivalent to
30,0 pv=~Lx>l— v x>is_stack(v')

For this, we then conclude that there exists some v’ and ¢ so that these conditions
hold. We then can step our goal to

wp (v?) {v.wpmatch v with ... {v.v = NoneV Fv'.v = Some(v') x P(v')}}

and remove the s from our assumptions so that we have v = ¢x> ¢ +— v'xis_stack(v').
Next we unfold is_stack(v') to conclude that either v = None or there is a h,t so
that v = Some(h,t) where P(h) and >is_stack(t) holds.

In the first case, we rewrite our goal to

wp (None) {v.wpmatch v with ... {v.v = None V Fv'.v = Some(v') x P(v')}}

Finally, we can easily reestablish our invariant as required since we have not consumed
any resources, that is, we can prove >stack inv(r) using our assumptions that v’ =
None with » = £ and ¢ — ¢'. Finally we now apply the S rule for match transforming
our goal into

wp None {v.v = None V Jv'. v = Some(v') x P(v')}

which is immediately established because None = None obviously holds.

Let us consider the second case. We again rewrite by this equality and reestab-
lish our invariant. We can reestablish our invariant because, again, we have just
destructed it without consuming any of the resources it provided. Our goal is then

wpmatch Some(h, t) with ... {v.v = None V Fv'.v = Some(v') x P(v')}

Notice that because we packed up all of our knowledge of h, ¢t back into our invariant,
we have no information currently recorded about h or t. Next we apply the 3 rule
for match as well as a few simple 8 reductions for projections to get

if cas r (Some v’) t
wp then Some h {v.v = None V Fv'.v = Some(v') x P(v")}
else pop n

We then again apply our bind rule to change our goal to

wpcas r (Some v’) t{v.wp(...){v.v =NoneV Fv'. v =Some(v') x P(v')}}
12



We again open our invariant L. This gives us that >stack inv(r). Un-

folding all of this, we get that there is some ¢ and some v”
r={0 x>l — 0" x>is_stack(v”)
Let us then case on whether or not v = v”.
In the first case we can successfully compute our CAS so our goal is
wp (if true then ... else ...){v.v =NoneV F'.v = Some(v') x P(v')}

where now r = ¢/ and ¢’ — t. Since we have taken a step, we may strip the s off
of our assumption. We now turn to reestablishing our invariant which is nontrivial
since we have changed what r points to. We must show that

>3 v.r =Lxl— vx>is_stack(v)

For this, we instantiate it with ¢/ = ¢/ and v = t. We then have the first two goals by
assumption so we merely need to show that >is_stack(t) holds. For this, we unfold
our assumption that is_stack(v”) holds. Since v” = Some(h,t) we must have that

A, ¢ 0" = (W, ') P(W) x>is_stack(t')

Unfolding this, we use injectivity to conclude that ' = h and t' = t so we have
P(h') x>is_stack(t'). The latter gives us immediately what we need to reestablish
the invariant. We also hold on to the assumption that P(h) holds and return to our
goal that

if true
wp then Some(h) {v.v =NoneV 3. v = Some(v') * P(v')}
else pop(n)

so we step this to conclude that we must show
Some(h) = None V 3v'. Some(h) = Some(v') * P(v)

however the right disjunct of this holds by assumption so we’re done with this case.
Finally, we consider the case that v" # v”. In this case our CAS fails so we can
step our goal to

if false
wp then Some(h) {v.v =NoneV 3. v = Some(v') * P(v')}
else pop(n)

it is trivial to reestablish our invariant since we know that stack _inv(v"”) still holds
as we have not consumed any of the resources. Finally we apply the 3 rule for if to
turn out goal into

wp pop (n) {v.v = None V Jv'. v = Some(v') x P(v")}

but now we apply our IH that we created earlier using Lob induction and we’re done.

(2) Yv. P(v) = wp [£1/get]P2(v) {True}
This is left as an exercise to the reader as it is strictly simpler than the above proof.

U
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The Coq formalization of all of this can be found in concurrent_stack2.v.

4. A SECOND FORMALIZATION: VIEW-SHIFTS WITHOUT HELPING

The specification proven above has a major defect, it doesn’t express any sort of ordering on
the underlying collection of objects. Informally, it is quite clear that something popped out
of the stack must have been pushed in at some point. This can be argued by a parametricity-
type argument about P. Nothing stops us, however, from ascribing this specification to a
concurrent queue or even something that permutes its elements randomly!

In a concurrent setting this may seem like the best possible specification though. After
all, suppose we have the following code.

push(1);

push(2);

let x = pop () in
let y = pop () in
(x, )

It is perfectly possible for this code to evaluate to either (1,2) or (2,1) or even (6,7). This
is because another thread could come along between the time when the pushs have been
executed, perform an arbitrary combination of pushs and pops on the stack before the
original thread can execute its two pops. There is a far more serious flaw in the specification
though: it is satisfied by operations which always return None and discard the input!

What is needed is a specification that reflects the fact that there is an underlying stack
that may be accessed atomically and the behavior of the function is determined by the state
of this stack at some particular point. This is related to the standard concurrency idea of
linearization where a complicated operation can be reduced to a single atomic interaction.
This means that several complex, overlapping concurrent operations on a data structure can
be logically linearly ordered.

To begin experimenting with this new form of specification, we will start by verifying
a concurrent stack without helping. This simplifies the verification considerably. Since,
furthermore, helping is an invisible optimization any good specification for a stack with
helping is an equally good specification for a stack without helping.

In order to do define the specification we shift from parameterizing our specifications from
properties of elements to properties of the abstract stack that our data structure represents.
This abstract stack can be represented with a simple list at the level of the logic. It will then
be assumed that Iris is supplemented with lists of values, a basic elimination operation on
them (called foldr), and the basic rules of equality for it.

Turning now to the question of what specifications ought to be concretely, they will have
to make use of view-shifts. This is a feature of the Iris base logic which generalizes simple
implication, —, to allow for the updating of ghost state and the usage of invariants. These
view-shifts are useful in defining the specification because these precisely capture the idea

of a linearization point. If we supply an operation with a viewshift VL. P(L) =k P(L) * Q
14



and that operation is equipped with the specification?

P~ wp... {Q}

then at some point in the code, for an atomic operation the invariant will be opened and
the view-shift will be used. This must happen because it is the only way to produce a
() to complete this specification. This view-shift then isolates the reasoning that will be
done during that atomic step using the proposition held by the invariant. Furthermore,
affinity means that such reasoning can only be applied once. This interaction with the
proposition isolated by the invariant is precisely a linearization point; it’s the only time
which we manipulate the shared state guarded by the invariant. These specifications provide
a much more flexible way of interacting with concurrent functions because they, in effect,
capture any specification which contains the same critical element of

(1) A single abstract property of the stack represented by the data-structure.
(2) The post conditions are implied (with the possible manipulation of ghost state) by
the state of abstract data structure at the moment it is accessed.

The specification for a push operation might look like this
Vo. (Vus. P(vs) =Kkr\yt Q * P(v :: vs)) = wp push(v) {v.Q}

The \NT can be safely ignored for now.®> In other words, if given a means of atomically
switching from P(vs) to @ * P(v :: vs) we can produce a () in our post condition. If we
want to specialize this to what we had earlier, then @) = True and P(L) = Vx € L. P(x)
gives us the specification we used to have for push. The real advantage of this style of
specification is that we can express a lot more than this though. For an example of how
this might be done, see Svendsen et al. [2013]| which uses these specification to automatically
derive precise sequential specifications from the concurrent ones without undue effort! It is
of course a balance to create an expressive and yet general specification but the fact that
this specification can encapsulate both the sequential case as well as the highly concurrent
bag-like specification is evidence for its utility.

Turning now to the question of specifying the invariants and predicates we need to make
these specification work, we will need a new definition of is stack and stack inv. The idea is
that the stack invariant will contain that there is some stack in a mutable cell representing
an abstract stack vs so that P(vs) holds. That is,

is_stack([],v) £ v = None
is_stack(x :: L,v) = v = 3t.v = Some(z,t) *is_stack(L, )
stack_inv(v) = 30,0, L.v =% £+ v' % P(L) xis_stack(L,v)

Here we have parameterized our construction by the property we maintain about the abstract
stack, P. Let us further assume that we have some arbitrary @), 1, and )2 which will
parameterize our specification. They are specified up front simply to avoid the tedium of
writing quantifiers for them over and over again but no restrictions need to be imposed

2In this section and onwards we are going to use invariant namespaces instead of concrete invariant names.

The reason for this will become clear soon. It is defined as | P(L) Moz en PL)|".

3For the curious reader: it means that the view shift can open every invariant but invariants in the
upwards-closure of the namespace N.
15



on them. By varying P, along with @, (); and @5 it is possible to recover our original
specification as a concurrent bag amongst others.

Therefore, the specification implies that we take the P(L) contained in the invariant and
atomically update it to P(x :: L) before rebundling the whole thing back into the stack _inv.
The full specification for the stack data structure again makes use of the “cut” trick seen
earlier.

(3)

V.
(it

(O(((Vvs. P(v :: vs) =kr\vr Q1(v) * P(vs)) A (Yus. P([]) =K\t Q2 * P([])) —*
wp f1() {v.v = None x Q2 V Jv'. v = Some(v') * Q1(v')})
- O(Vv. (Vus. P(vs) =Kkm\ vt @ * P(v :: vs)) = wp fo(v) {v.Q})
- O(f1, f2))

= P([])

— wp stack() {®}

The code that will be verified is slightly modified from the previous version. It is shown
in Figure 5

Theorem 4.1. Proposition (3) holds.

Proof. As before, we start by stepping our program, leaving us with the goal
wplet r = ref None in ... {®}

with the assumption

Vfife
(O(((Vos. P(v = vs) =kr\wt Qu(v) * Pus)) A (Vos. P([]) =K Q2 % P([]))
wp f1() {v.v = None x Q2 V Fv'. v = Some(v') * Q1(v')})
= O(Vo. (Vus. P(vs) =Km\nt @ * P(v 2 vs)) = wp fo(v) {v.Q})
— D(f1, f2))

as well as P([]). We then apply the application rule giving us some ¢ so that £ — None. We

take this time to establish the stack invariant for r in the namespace N, that is m
In order to do this we must show that

>(3 v, L6 =0 %' — vx P(L)*is_stack(L,v))

4The reason for using namespaces is, when allocating invariants we can choose the namespace N in which
we allocate it. We can thus specify that the client provided view shifts may not depend on the invariant, by
saying that they are not allowed to open any invariants in NT. This is needed for the verification of pop.

Had we on the other hand used the invariant allocation rule for concrete invariant names, then the invariant
name we would get is existentially quantified. We would thus only be able to state, that there exists an
invariant that the client provided view shifts may not depend on. This would of course make it impossible
for the view shifts to depend on any invariants as the client does not know, which particular invariant he/she
can not open.

16



stack = fun () —
let r = ref None in
(rec pop n —
match !r with
None — None
| Some hd =>
if cas r (Some hd) (snd hd)
then Some (fst hd)
else pop n
end,
rec push n —
let r’ = !r in
let r’’ = Some (n, r’) in
if cas r r’ r’’
then ()
else push n)

FIGURE 5. Concurrent stack without helping.

holds according to the invariant allocation rule.
We will prove this for ¢, None, and [| respectively. We then merely must show that the
following holds.
P(]]) *is_stack([], None)

However the left-side of this conjunction is an assumption and the right-hand side is simply
true by reflexivity. We then, returning to our main goal, need to show that

wp (..., ...){®}

holds, and for this we apply our assumption. This leaves us with two goals, showing that
our specification holds for push and pop. We will consider only the case for push as an
illustrative example. That is, we want to show for an arbitrary that v

O(VL. P(L) =km\nt P(v:: L) * Q) —
wp ((rec push n -> let r’ = !r in let r”’ = Some (n, r’) in ...) v){Q}

We can easily get rid of the [J-modality, as our context is persistent. We then take a moment
to use Lob induction i.e. we may assume

>(Vv, L. P(L) =Km\yt P(v:: L) x Q) —
wp ((rec push n -> let r’> = !r in let r”’ = Some (n, r’) in ...) v){Q}
We can now use the f-rule as well as the bind-rule, hence it suffices to show
wp !t {vwp(let r’ = v’ in let r’’ = Some (v, r’) in ...){Q}}

At this point we open the invariant |stack inv(r)| . This gives us that there is some ¢, v"

and L so that
>(r={x 0 v" % P(L)*is_stack(L,v"))
17



Using this, we can step our goal to
wp(let r’ = v’ in let r”’ = Some (v, r’) in ...){Q}

and re-establish our invariant trivially since we have not consumed any resources. In this
position we can step our goal to

wp (if cas r v’ (Some (v, v’’)) then () else push v){Q}
At this point we open up our invariant again, giving us

>(r =0 0" x P(L) *is_stack(L,v"))

for some v"”". We then case on whether or not v” = v".

First consider the case that this does hold. In this case, we can step our CAS successfully
giving us the new assumption that ¢ — Some(v,v”) and the obligation to reestablish our
invariant and show that () holds. For this we first apply

P(L) =kt P(v:: L) *Q

to our assumption that P(L) holds (we may strip of the later since we have taken a step of
computation). This gives us that B, P(v :: L) * Q holds. We then have that is_stack(v ::
L,Some(v,v")) holds because we have assumed that is_stack(L,v”) holds with v"” = v".
This, combined with our assumption that £ — Some(v,v") gives us that B, ysstack_inv(r)
holds so we may can re-establish our invariant with using ) which we then use to discharge
the remaining postcondition.

If instead v” # v then we can reduce our goal to
wp (if false then () else push v){Q}

and immediately re-establish our invariant because we have not changed anything. But then
stepping and applying our induction hypothesis immediately gives us the desired conclusion.
O

The Coq formalization of this specification and proof may be found in concurrent_stack3.v.

5. A THIRD FORMALIZATION: VIEW-SHIFTS WITH HELPING

It is a straightforward exercise to adapt the previous proof to work with helping using
the same setup as the previous proof. Indeed, since helping is an invisible optimization to a
concurrent data structure the same specification ought to apply. The only question is how to
modify the specifications we give to mailboxes in order to suitably handle these view-shifts.

The primary difference is in the definition of the invariants for offers and mailboxes. Rather
than having them pass around ownership of P(v) for some P where v is the value they contain,
they have to pass around the right to perform certain view-shifts. This unfortunately means
that the proofs for mailboxes and offers become entangled with that of stacks to a much
larger degree. This is why the Coq development does not isolate them into separate lemmas

any more.
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The new invariant for offers is now defined using

stages. ((,v) Z(€ — 0 (Vus. P(vs) =Km\nt P(v :: vs) * Q))
V(
V(C 1xex((0) )

(

doing so, it is obligated to take the view-shift Yvs. P(vs) =K\ nt P(v :: vs) * Q and
place the resulting ) back in the invariant.

¢ +— 0 to ¢ — 2. If it is successful then it can return the view-shift transitioning
Vus. P(vs) =Kyt P(v i vs) * Q or it fails, implying that some thread has already
successfully executed a take. If the latter is the case, the thread can return the @)
that must be stored in stages which must be in the disjunct £ +— 1% Q.

With this we can specify the invariant enforced on offers.

. A N.offerInv
is_offer_(v) = F'l.v = (v/,1) x stages, ()

The only difference worth noting is that the existentially quantified invariant name does now
belong to the namespace N.offerInv. This is purely an artifact of the particular approach the
proof of the specification has taken. At various points, it will be necessary to simultaneously
open the invariant containing knowledge of the stack as well as the invariant containing what
stage an offer is in. For instance, this is how take_offer will work so that it can actually
apply the view-shift to the current state of the stack. Opening two invariants at the same
time, however, is only possible if the invariants are in fact disjoint. Hence if we allocate
them in different namespaces, we know they are disjoint for free. The reason for using sub-
namespaces of N is, that we can easily specify that a client may not depend on any of the
invariants, by stating that he/she may not depend on any invariants in NT.

Rather than proceeding to formalize the specifications of mailboxes and offers, it is simpler
to proceed directly to formalizing the stack data structure itself. The invariant governing a
stack is unchanged from the previous section.

is_stack([],v) £ v = None
is_stack(z :: L,v) = v = 3t.v = Some(x,t) * is_stack(L,t)
stack_inv(v) = 3, v/, L.v =+ L+ v % P(L) xis_stack(L,v)

The final specification is again unchanged. For brevity, the proof (which is largely a combi-
nation of the two previously explained ones) is only sketched.
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Theorem 5.1. The following specification holds.
V.
(Vf1fa

(O(((Vos. P(v :: vs) K\t Qu(v) * P(vs)) A (Vos. P([]) =Kr\nr Q2+ P([])) —
wp f1() {v.v = Nonex Qz V Fv'. v = Some(v') * Q1(v')})
- O(Vv. (Vus. P(vs) 9|<T\N¢ Q x P(v::vs)) = wp fo(v) {v.Q})
= O(f1, f2))

- P([])

— wp stack() {®}

Proof. The beginning of the proof is a straightforward combination of the previous two

proofs, allocating an invariant for the mailbox and the mutable cell containing the stack:
N.stackInv ) ‘N‘mailboa:hw

stack inv(r) and |is_ mailbox(r’
Having done this, we apply the assumption that
Vfife.
(O(((Vos. P(v :: vs) Kt Qu(v) * P(vs)) A (Vos. P([]) =Kr\nvr Q2 * P([]) —
wp f1() {v.v = None x Q2 V Fv'. v = Some(v') * Q1(v')})

— O(Yv. (Vvs. P(vs) 9|<T\N¢ Q* P(v::vs)) = wp fo(v) {v.Q})
= O(f1, f2))

This leaves us with two separate verifications for push and pop. These are largely the same as
the previous proof. The only difference is each proof is proceeded by manual manipulations
of the mailboxes and offers which in turn are simply inlined versions of the proof from the
prior sections.

We will consider the case for push. The goal we must prove is then

O(Vov. (Yus. P(vs) =Kkm\nt Q * P(v :: vs)) — wppush(v) {v.Q})

As our context just consist of invariants and therefore is persistent, we may remove the
[-modality. Now, let us suppose that Vvs. P(vs) =Kyt @ * P(v :: vs) and that we have
some value v. It as at this point that we apply Lob induction to add an induction hypothesis
of >wp push(v) {v.Q} to our context. We then simplify our goal using £ and bind to

wpput v{v .wpmatch v’ with ...{Q}}

Since we have no specification yet formalized for push, we proceed to unfold it and begin to
work with the internal implementation of put.

wplet off = mk_offer v in ... {v.wpmatch v’ with ...{Q}}
We can simplify this again and apply bind
wp (v, ref 0) {v.wplet off = v’ in ... {v.wpmatch v’ with ...{Q}}}

We can then apply the rule for allocation, so suppose that we have some ¢ and ¢ — 0. We
then must show that

wpr’ := Some (v, 1); revoke_offer (v, 1) {vwpmatch v’ with ...{Q}}
20



N.mailboxInv .
)| and replace the previous value

) ‘ N.mazilboxInv

We may then open the invariant |is mailbox(r’

stored in v’ with (v, 1) and re-establish the invariant \is_mailbox(r’ . In order

to do this, we must use Vus. P(vs) =Kr\yr @ * P(v :: vs)® and allocate a new invariant
N.offerInv . oo

stages. (()

wp revoke_offer (v, 1) {v.wpmatch v’ with ...{Q}}
If we apply [ rules we then end up with
wp (if cas 1 0 2 then Some(v) else None){v'.wpmatch v’ with ... {Q}}

N. rl
Let us then open up the invariant |stages(() °Ter™ Phis tells us that

(€ = 0% (Yvs. P(vs) =Km\y+ P(v::vs) *Q))
V(= 1%Q)

Let us perform case analysis on these three possible results. We can immediately dismiss the
last two cases since we have assumed to own !ex(()) " which means that the lex(()) " coming

,,,,,, | L_ AN/

is then
wp (None) {v'.wpmatch v’ with ... {Q}}

and simplifying this gives us the obligation
wp None {@}

but this is trivial to discharge using our assumption of () that we got from the invariant.
This case is essentially the position we would be in if the side-channel is accepted.
In the first case, therefore, we must consider what happens if the side-channel is not used.

Clearly the CAS is successful and we can re-establish this invariant by providing 'ex(())!”

and choosing the last disjunct. In this case, we have the assumption Vvs. P(vs) =K\t
P(v :: vs) * Q and the goal
wp (Some (v) ) {v".wpmatch v’ with ... {Q}}
Therefore, we can apply S rules to reduce this to
wplet x = !r in let y = Some (v, x) in ...{Q}

. . . N.stackl _
In order to reduce this, we must open the invariant |stack inv(r) Stackin? hich tells us,

amongst other things, that r = ¢ for some ¢’ and that ¢’ — s for some value s. We can then
step our program and re-establish the invariant (stepping does not effect the context at all)
to

wplet x = s in let y = Some (v, x) in ... {Q}

SHere we use, that the view-shift does not open the mailbox invariant
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We can now repeatedly simplify our goal to

wpif cas r s (Some (v, s)) then () else push v{Q}

L . . . . . N.stackl
In order to simplify this, we must once again open up the invariant |stack inv(r) stackiny.

This tells us that for some s, L and ¢ that
r="0x{— s P(L)x*is_stack(L,s)

holds. Let us then case on whether or not s’ = s.

If it does, then the CAS succeeds, therefore we have ¢/ — Some(v, s). Simple logic gives us
thatis_stack(L, s’) implies that is_stack(v :: L,Some(v, s)) holds. In order to re-establish our
invariant we must show that = stack inv(r) holds. However, since we have the implication
P(L) =kr\n+ P(v:: L) it is sufficient to show that

r={ x{ +— Some(v,s) * P(L) xis_stack(v :: L, Some(v,s))

however we have precisely these assumptions so we’'re done. This leaves us with the goal
wp () {@} which is discharged immediately with our assumption of Q).

If these are not equal, then the CAS fails so it’s trivial to re-establish the invariant. Our
goal is then wp push v{Q} but for this we just apply our IH and we're done. O

The Coq formalization of this specification and proof may be found in concurrent_stack4.v.

6. CONCLUSION

In this case study we have examined several different incarnations of formalizations of con-
current stacks in Iris. This provides evidence for Iris being an expressive and flexible program
logic. Several of Iris’s features were necessary to even express the desired specifications.

e Impredicative invariants were needed in order to have the invariant contain P, the
arbitrary predicate all the specifications where parameterized by.

e Higher-order specifications in order to describe the closure-returning pattern that
mailboxes and stacks made use of.

e View-shifts in order to express linearization points.

Furthermore, the encoding of state transition systems as a simple proposition using ghost
state demonstrates how simple CMRAs are sufficient to encode complex logical structures
for expressing the structure of our program.

All of these specifications where heavily inspired by Clausen [2017] which provided a
similar verification of hash-tables in Iris. Future work in this direction would be to mimic
this work and drive towards more compositional verification of concurrent stacks. Ideally, the
proof could be decomposed in the same that the proof of the bag specification is: respecting
abstraction boundaries of APIs and relying purely on the specifications. More generally, there
is still a great deal of engineering as well as theoretical to work in specifying sophisticated
data-structures in a useful but still provable way.
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