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Abstract
Fine-grained concurrent programs are difficult to get right,

yet play an important role in modern-day computers. We

want to prove strong specifications of such programs, with

minimal user effort, in a trustworthy way. In this paper, we

present Diaframe—an automated and foundational verifica-
tion tool for fine-grained concurrent programs.

Diaframe is built on top of the Iris framework for higher-

order concurrent separation logic in Coq, which already

has a foundational soundness proof and the ability to give

strong specifications, but lacks automation. Diaframe equips

Iris with strong automation using a novel, extendable, goal-

directed proof search strategy, using ideas from linear logic

programming and bi-abduction. A benchmark of 24 examples

from the literature shows that the proof burden of Diaframe

is competitive with existing non-foundational tools, while

its expressivity and soundness guarantees are stronger.

CCS Concepts: • Theory of computation→ Separation
logic; Automated reasoning; Program verification.

Keywords: Separation logic, fine-grained concurrency, proof
automation, Iris, Coq
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1 Introduction
Fine-grained concurrent programs, such as locks, reference

counters, barriers, and queues, play a critical role in modern

day programs and operating systems. Based on 15 years of
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research on concurrent separation logic [12, 13, 25, 29, 30, 32–

35, 48, 67, 68, 74, 80, 81, 85–89], it has become possible to

verify increasingly complicated versions of such programs.

Yet, while several tools for verification of fine-grained con-

current programs based on these logics exist, none of them

are both automated (the majority of the proof work is carried

out by the tool) and foundational (a closed proof w.r.t. the

operational semantics is produced in a proof assistant).

Tools with good automation like Caper [31], Starling [90]

and Voila [91], generally use SMT [27] or separation-logic

solvers [65, 73] as trusted oracles. They are capable of prov-

ing programs correct with relatively little help from the

user, allowing quick experimentation when designing algo-

rithms. However, they have a large trusted computing base—
one needs to trust their implementation, the used solvers, the

translation of the required side conditions to the used solvers,

and sometimes also the soundness of the underpinned logic.

In particular, the results of such tools do not come with

closed proofs that can be checked independently.

Foundational tools like Iris [45, 46, 48, 52], FCSL [77] and

VST [3, 17] are embedded in a proof assistant. Hence, one

only needs to trust the implementation of the proof assistant

and the operational semantics of the programming language,

but not the solvers or underpinned logic. Foundational tools

typically provide tactics [2, 6, 17, 51, 53, 60] to hide low-level

proofs, but the bulk of the proof work needs to be spelled

out. There are two reasons for this status quo. First, founda-

tional tools cannot rely on trusted oracles, unless proofs are

reconstructed so that the proof assistant can verify them in-

dependently. Second, foundational tools usually have a rich

logic that can prove strong specifications, e.g., using impred-

icative invariants [80], for which automation has received

little attention, even in a non-foundational setting.

In this paper, we present Diaframe—a foundational tool
for automatic verification of fine-grained concurrent pro-

grams. Diaframe extends Iris [45, 46, 48, 52]—a framework

for interactive proofs in higher-order impredicative concur-

rent separation logic in Coq—with powerful tactics to per-

form the bulk of the proof work automatically. This means

we get the best of both worlds: closed proofs to underpin our

results, while needing relatively little help from the user.

An overview of the architecture of Diaframe is displayed

in Figure 1. Diaframe takes two inputs from the user (marked
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Figure 1. Overview of the architecture of Diaframe. User input is marked in blue.

in blue)—a program with a Hoare-style specification, and

optionally a set of user-provided hints. The program and

specification are turned into an Iris entailment that we prove

using an extendable, goal-directed proof search strategy. In-

spired by seminal work on linear logic programming [43]

and recent work on separation logic programming [76], our

strategy interprets logical connectives as proof search in-

structions. These instructions simplify and solve (a part of)

this entailment, possibly generating remaining proof obli-

gations in the process. To make progress on the remaining

obligations, our strategy looks for applicable hints.

Identifying good hints is one of the main challenges that

we face. The proof rules of expressive logics like Iris (in par-

ticular, rules for invariants and ghost state) are not syntax di-

rected and therefore hard to apply automatically. We identify

a suitable hint and entailment format that makes it possible

to mechanically find and instantiate the appropriate hints.

Iris’s rules for symbolic execution, reasoning with invariants,

and ghost state are translated into syntax-directed variants

that match the hint format. An important feature of our en-

tailment and hint format is that it supports a sufficiently

large set of Iris’s proof rules, while at the same time allowing

for an efficient implementation with little backtracking. We

achieve this by taking inspiration from bi-abduction [15],

but adding novel ideas to support Iris’s modalities and to

postpone instantiation of existentials, which are both needed

to support Iris’s invariant and ghost state mechanism.

Due to Iris’s expressive logic, which includes higher-order

quantification, impredicative invariants, and the entirety

of Coq’s logic, our proof strategy is inherently incomplete.

Nonetheless, it is able to completely solve many verification

goals that appear in Iris proofs in practice. We achieve this by

letting our proof strategy (and entailment and hint format)

focus on a subset of expressible Iris goals that often appear

in formal verification. The proof strategy makes good partial

progress on remaining goals, where it allows the user to help

out with an interactive proof or custom proof hints.

Contributions. We present Diaframe—a Coq library for

Iris to automate the verification of fine-grained concurrent

programs. Concretely, we make the following contributions:

• An entailment (§ 3) and hint format (§ 4) to capture

goals and rules in Iris.

• A goal-directed proof search strategy for Iris that can

be implemented with little backtracking in Coq (§5).

• A benchmark with proofs of correctness of 24 pro-

grams using fine-grained concurrency, and a compari-

son of proof-burden to Starling, Caper, and Voila (§6).

We start with two example verifications using Diaframe

(§2). After covering our contributions (§ 3 to 6), we discuss

related work (§7), and limitations and future work (§8).

2 Diaframe by Example
In this section we showcase Diaframe by verifying a spin

lock (§2.1) and an Atomic Reference Counter (ARC) (§2.2).

For both examples we will give Hoare-style specifications

{𝑃} 𝑒 {Φ} in Iris, where 𝑃 : iProp is a separation logic as-

sertion and Φ :Val→ iProp a separation logic predicate on

values. The triple {𝑃} 𝑒 {Φ} means that for each thread that

owns resources satisfying 𝑃 , executing 𝑒 is safe, and if the ex-

ecution terminates with value𝑤 , the thread will end up own-

ing resources satisfying Φ𝑤 . The dependency on𝑤 allows

us to give expected return values in specifications. Note that

Iris uses partial, not total correctness. We use the notation

SPEC {𝑃} 𝑒 {®𝑦, RET 𝑣 ; 𝑄} for {𝑃} 𝑒 {𝑤. ∃®𝑦. ⌜𝑣 = 𝑤⌝ ∗𝑄} to
more succinctly specify return values. We are explicit about

the embedding ⌜𝜙⌝ of pure Coq proposition 𝜙 into Iris.

2.1 Verification of a Spinlock
Lines 1–8 in Figure 2 give the implementation of a spin

lock in Iris’s default ML-like language HeapLang [45]. The

newlock method creates a new lock in the unlocked state

by allocating a new location with value false. The acquire
method uses Compare And Set (CAS) to atomically compare
the stored value of l to false, and only if these are equal, set
it to true. It returns a Boolean to indicate if the equality test

was successful. If the CAS succeeds, we have acquired the

lock. If it fails, we spin by recursively calling the acquire
method. To release the lock, the release method puts the

lock back to the unlocked state (false).
Let us now consider the specification of the lock methods,

given in lines 15–26 in Figure 2. These specifications use the

representation predicates is lock 𝛾 lk 𝑅 and locked 𝛾 for

locks [41, 80]. Here, is lock 𝛾 lk 𝑅 expresses that the lock

at location lk protects assertions 𝑅, and locked 𝛾 expresses

that the lock is in locked state. The ghost identifier 𝛾 is used

to tie these two representation predicates together.

Given an arbitrary assertion 𝑅, the newlock method re-

turns a value lk, for which is lock 𝛾 lk 𝑅 holds. The asser-

tion is lock 𝛾 lk 𝑅 is duplicable, meaning it can be shared
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Definition newlock : val :=1

𝜆: <>, ref #false.2

Definition acquire : val :=3

rec: "acquire" "l" :=4

if: CAS "l" #false #true then #()5

else "acquire" "l".6

Definition release : val :=7

𝜆: "l", "l" ← #false.8

Definition lock inv 𝛾 l R : iProp :=9

∃ b : bool, l ↦→ #b ∗ (10

⌜b = true⌝11

∨ ⌜b = false⌝ ∗ locked 𝛾 ∗ R).12

Definition is lock 𝛾 (lk : val) R : iProp :=13

∃ l : loc, ⌜lk = #l⌝ ∗ inv N (lock inv 𝛾 l R).14

Global Program Instance newlock spec R :15

SPEC {{ R }}16

newlock #()17

{{ (lk : val) 𝛾, RET lk; is lock 𝛾 lk R }}.18

Global Program Instance acquire spec 𝛾 (lk : val) R:19

SPEC {{ is lock 𝛾 lk R }}20

acquire lk21

{{ RET #(); locked 𝛾 ∗ R }}.22

Global Program Instance release spec 𝛾 (lk : val) R:23

SPEC {{ is lock 𝛾 lk R ∗ locked 𝛾 ∗ R }}24

release lk25

{{ RET #(); True }}.26

Figure 2. Verification of a spinlock in Diaframe.

freely with multiple threads, and thus allows for multiple

threads to call acquire in parallel. Calling acquire on a lock
will result in evidence locked 𝛾 that the lock is locked, and

access to assertion 𝑅. Contrary to is lock 𝛾 lk 𝑅, the asser-
tion locked 𝛾 is not duplicable, because at most one thread

can hold the lock. To call release, we need to relinquish

both locked 𝛾 and 𝑅, and get nothing in return.

Specifications of concurrent data structures based on rep-

resentation predicates [30] allow for easy verification of

clients by abstracting away from the implementation. The

is lock 𝛾 lk 𝑅 representation predicate is particularly flexi-

ble, since it is impredicative [80]—meaning that the resources

protected by the lock are described by an arbitrary separa-

tion logic predicate 𝑅 that can contain other locks, Hoare

triples, etc. To define impredicative representation predicates,

we use Iris’s invariant and ghost state mechanism.

Programs using fine-grained concurrency have multiple

threads reading and mutating shared state. In the example,

the location backing the spinlock needs to be shared so that

multiple threads can attempt to acquire the lock in paral-

lel. Since the points-to assertion ℓ ↦→ 𝑣 of separation logic

expresses exclusive ownership of the location ℓ with value 𝑣 ,

we cannot just share it between multiple threads.

To reason about shared mutable state, we use Iris’s in-
variant assertion 𝐿

N
, which says that there is a (shared)

invariant with name N governing the resources satisfying

Iris assertion 𝐿. Invariants 𝐿
N
are duplicable, which means

that the assertion 𝐿 inside the invariant is accessible by all

threads. To do this soundly, access to 𝐿 is restricted. Only

during atomic operations (like an assignment or CAS), in-
variants may be ‘opened’, which gives one temporary access

to the assertion 𝐿 in the verification of a thread. After the

atomic operation, the invariant must be ‘closed’, meaning

one must show the assertion 𝐿 still holds.

Lines 9–14 contain the definition of is lock 𝛾 lk 𝑅. It says
that a value lk is a lock if it is equal to some location l, whose
stored value is governed by an invariant lock inv. Note that

in Coq, we write inv N L for 𝐿
N
. The invariant lock inv

states that l should point to a Boolean. If this Boolean is

true, the lock is locked, and we know nothing else since

the resources satisfying 𝑅 are currently owned by a thread

which acquired the lock. If this Boolean is false, the lock
is unlocked, and the resources satisfying 𝑅 as well as the

locked 𝛾 assertion are owned by the invariant.

The key ingredient for the verification of the spinlock is

the ghost assertion locked 𝛾 , whose rules are:1

locked-allocate

⊢ ¤|⇛∃𝛾 . locked 𝛾
locked-uniqe

locked 𝛾 ∗ locked 𝛾 ⊢ False

The first rule is used in the proof of newlock. It allows for
the allocation of locked 𝛾 with a fresh ghost name 𝛾 . This

assertion is needed to establish the invariant by proving the

right disjunct of lock inv. (The update modality ¤|⇛ signifies

a logical update to the ghost state. It will be explained in §3.2,

but for now, it is enough to know that after each program

statement, we can perform a logical update in the proof.)

The second rule states that locked𝛾 is a singleton—no two
threads/resources can simultaneously satisfy this assertion.

This means that the locked 𝛾 assertion gives us information

about the global state. In the proof of release, just before
executing the store, the right disjunct of lock inv is con-

tradictory because locked 𝛾 is in the precondition. Hence,

the left disjunct must hold—the location l must point to the

value true, i.e., the lock is in locked state.

The general structure of verification in Diaframe is sim-

ilar for other examples: we give the implementation and

specification, and an invariant using appropriate ghost as-

sertions, after which the verification will go mostly automat-

ically. Other concurrent programs may use different ghost

assertions, but all of these assertions have three types of

rules: (a) allocation/creation rules, like locked-allocate,

(b) compatibility/interaction rules, like locked-uniqe, and

(c) mutation/update rules, of the form 𝑃 ∗𝑄 ⊢ ¤|⇛𝑅 ∗ 𝑆 . We

will see some update rules in the next example.

1
For readers familiar with Iris, we simply define locked 𝛾 ≜ Excl ( ) 𝛾

.
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Context (P : Qp → iProp) {HP : Fractional P}.1

Definition mk arc : val :=2

𝜆: <>, ref #1.3

Definition count : val :=4

𝜆: "a", ! "a".5

Definition clone : val :=6

𝜆: "a", FAA "a" #1 ;; #().7

Definition drop : val :=8

𝜆: "a", (FAA "a" #-1) = #1.9

Definition unwrap : val :=10

rec: "unwrap" "a" :=11

if: CAS "a" #1 #0 then #()12

else "unwrap" "a".13

Definition arc inv 𝛾 l : iProp :=14

∃ (z : Z), l ↦→ #z ∗ (15

⌜0 < z⌝%Z ∗ counter P 𝛾 (Z.to pos z)16

∨ ⌜z = 0⌝ ∗ no tokens P 𝛾).17

Definition is arc 𝛾 (v : val) : iProp :=18

∃ (l : loc), ⌜v = #l⌝ ∗ inv N (arc inv 𝛾 l).19

Global Program Instance mk arc spec :20

SPEC {{ P 1 }}21

mk arc #()22

{{ (v : val) 𝛾, RET v; is arc 𝛾 v ∗ token P 𝛾 }}.23

Global Program Instance count spec 𝛾 (v : val) :24

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}25

count v26

{{ (p : Z), RET #p; ⌜0 < p⌝%Z ∗ token P 𝛾 }}.27

Global Program Instance clone spec 𝛾 (v : val) :28

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}29

clone v30

{{ RET #(); token P 𝛾 ∗ token P 𝛾 }}.31

Global Program Instance drop spec 𝛾 (v : val) :32

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}33

drop v34

{{ (b : bool), RET #b; ⌜b = false⌝ ∨35

⌜b = true⌝ ∗ P 1 ∗ no tokens P 𝛾 }}.36

Next Obligation.37

destruct (decide (x2 = 1)); iStepsS.38

Qed.39

Global Program Instance unwrap spec 𝛾 (v : val) :40

SPEC {{ is arc 𝛾 v ∗ token P 𝛾 }}41

unwrap v42

{{ RET #(); P 1 ∗ no tokens P 𝛾 }}.43

Figure 3. Verification of an ARC in Diaframe.

2.2 Verification of an ARC
Wewill now verify a version of an Atomic Reference Counter

(ARC), similar to the one verified by Starling [90] and the

one used in the Rust standard library [54]. An ARC can be

used to safely give multiple threads read-access to a resource,

while being able to recover write-access once all read-access

references have been dropped. Lines 2–13 in Figure 3 give the

implementation. Values of ARC are locations that store an

integer containing the number of read-access references. The

mk arcmethod allocates a location with value 1, i.e., an ARC

with one read-access reference. The count method gives

the number of read-access references. The clone method

increments the reference count with 1, using the atomic

Fetch And Add (FAA) instruction, while drop decrements

the reference count with 1. The unwrap method is like drop
in that it will decrement the reference count—but by using

a CAS operation to set the reference count from 1 to 0, it

ensures that it destroys the last reference, and spins as long

as other references have not been dropped.

To give a specification of the methods of ARC, we make

use of shareable assertions, which are typically modeled with

fractional permissions [11]. In Iris, shareable assertions are

modeled as Iris predicates 𝑃 : Q𝑝 → iProp, where iProp is the
type of Iris assertions, and Q𝑝 ≜ {𝑞 ∈ Q | 𝑞 > 0}. Predicates
𝑃 of this type must satisfy 𝑃 𝑞1 ∗ 𝑃 𝑞2 ⊣⊢ 𝑃 (𝑞1 + 𝑞2) to be

called shareable (or Fractional in Coq). An example of

a shareable assertion is the fractional mapsto connective

ℓ ↦→𝑞 𝑣 . If 𝑞 = 1, it denotes full ownership of (or write-

access to) heap-location ℓ . If 0 < 𝑞 < 1, it denotes fractional

ownership of (or read-access to) heap-location ℓ .

As shown on line 1 in Figure 3, the whole verification is

abstracted over a shareable assertion 𝑃 that describes the

resources that are being protected by the ARC. The specifica-

tion of the methods can be found in lines 20–43. Like for the

spinlock, we use several representation predicates. The dupli-

cable assertion is arc 𝛾 𝑣 says that a value 𝑣 is an ARC. The

non-duplicable assertion token 𝑃 𝛾 indicates a read-access

reference to 𝑃 . The non-duplicable assertion no tokens 𝑃 𝛾
indicates that write-access has been recovered, i.e., that no
read-access tokens token 𝑃 𝛾 exist.

With these predicates at hand, the specification of mk arc
requires 𝑃 1 (write-access) and returns a value that is arc
guarding 𝑃 , alongwith a single read-access token. The count
method is essentially a no-op, but shows that if we have a

single-read access token, the reference count must be posi-

tive. The method clone duplicates a read-access token—it
requires one of them, and returns two. The method drop de-

stroys a token, and either returns nothing, or, if this was the
last token, write-access 𝑃 1, along with the knowledge that

no tokens exist. The unwrap method, when it terminates,

guarantees retrieving write-access 𝑃 1 and no tokens.
Let us look at the definition of is arc in lines 14–19 in

Figure 3. Similar to locked𝛾 , we treat token and no tokens
abstractly (these are defined via Iris’s extensible ghost state

mechanism, see our appendix [64] for the definition), and

show only the allocation, interaction and update rules in

Figure 4. As witnessed by token-access, these ghost-state

assertions are used to convert fractional permissions into

counting permissions [9], which are more natural for ARC.

Similar to the spinlock, we define a value to be is arc if it
is a location whose stored value is governed by an invariant.

4
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token-allocate

𝑃 1 ⊢ ¤|⇛∃𝛾 . counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾

token-interact

no tokens 𝑃 𝛾 ∗ token 𝑃 𝛾 ⊢ False

token-mutate-incr

counter 𝑃 𝛾 𝑝 ⊢ ¤|⇛ (counter 𝑃 𝛾 (𝑝 + 1) ∗ token 𝑃 𝛾)

token-mutate-decr

𝑝 > 1

counter 𝑃 𝛾 𝑝 ∗ token 𝑃 𝛾 ⊢ ¤|⇛counter 𝑃 𝛾 (𝑝 − 1)

token-mutate-delete-last

counter 𝑃 𝛾 1 ∗ token 𝑃 𝛾 ⊢
¤|⇛ (no tokens 𝑃 𝛾 ∗ no tokens 𝑃 𝛾 ∗ 𝑃 1)

token-access

token 𝑃 𝛾 ⊢ ∃𝑞. 𝑃 𝑞 ∗ (𝑃 𝑞 −∗ token 𝑃 𝛾)

Figure 4. Rules for the counter ghost assertions.

This invariant arc inv tells us that the location points to

some integer 𝑧, which satisfies: (1) 𝑧 = 0, and we know that

no tokens currently exist, or (2) 𝑧 > 0, and we own resources

satisfying counter 𝑃 𝛾 𝑧. The counter 𝑃 𝛾 𝑝 assertion states

the knowledge that precisely 𝑝 > 0 tokens currently exist—

which matches what we want ℓ ↦→ 𝑝 to mean.

To prove the specification of the count method, we use

token-allocate, which allows us to establish the left dis-

junct of arc inv. For proving the specification of count,
we rely on token-interact to prove that the right disjunct

of arc inv is contradictory. For the specification of clone,
we again need token-interact. When closing the invari-

ant, we need to apply token-mutate-incr at the right mo-

ment to change the obtained counter 𝑃 𝛾 𝑝 to the required

counter 𝑃 𝛾 (𝑝 + 1). This also gives us the extra token that

we need in the postcondition.

Integration with interactive proofs. In the verification

of drop, Diaframe encounters a goal it cannot solve auto-

matically, and gets stuck. The user is presented with the

following (slightly simplified) proof state in the Iris Proof

Mode [51, 53], where they can use Coq or Iris tactics to help:

H : 0 < x2
--------------------------------------------------------------------------------
"H1" : inv N (arc inv 𝛾 l)
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –□
"H2" : token P 𝛾

"H5" : counter P 𝛾 (Z.to pos x2)
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ∗

 (

|⇛⊤\↑𝑁 ⊤\↑𝑁
) 



⌜0 < x2 + -1⌝ ∗ counter 𝑃 𝛾 (Z.to pos (x2 + -1))

∨ ⌜x2 + -1 = 0⌝ ∗ no tokens 𝑃 𝛾

(∗) |⇛⊤ ⊤ WP #x2 = #1 {{ v, . . . }}

The statement below – – –∗ indicates our current goal, and
contains a disjunction. Both sides of the disjunction contain a

pure statement ⌜𝜙⌝, but neither of these follow from the rele-

vant hypothesis H. On inspection, we need to distinguish two

cases: x2 = 1 and x2 > 1. In the first case, our token was the

last one, and we need to use token-mutate-delete-last

to finish the proof. In the second case, other tokens remain,

and we need to use token-mutate-decr.

In Figure 3, the manual step consists precisely of the case

distinction between x2 = 1 and x2 > 1, after which Dia-

frame’s iStepsS can finish the proof. Even though Diaframe

could not figure out the required case distinction automati-

cally, it makes good partial progress here. This is because the

automation only performs limited backtracking, and simply

stops when it encounters a goal it cannot make progress on.

Generality. The ghost assertions token, no token and

counter are not connected to a memory location and are

thus not specific for the verification of ARC. We also use

them in the verification of e.g., reader-writer locks. The only
connection between these assertions and the ARC lies in the

definition of the invariant arc inv, which ties the physical

state of the ARC to an appropriate ghost-state. The rules

for the assertions in Figure 4 are available to the Diaframe

proof search strategy, and applying them requires no extra

annotations, except for the manual case distinction for drop.

3 Diaframe’s Entailment Format
In this section we explain some of the challenges one faces

when automating proofs of fine-grained concurrent pro-

grams in Iris. We start with some background on verifying

weakest preconditions of sequential programs using sym-

bolic execution (§3.1), as commonly done in interactive and

automatic tools in proof assistants [20, 53, 76]. We then ex-

tend this approach with support for Iris’s invariant mecha-

nism to verify fine-grained concurrent programs (§3.2). We

conclude with an overview of the Diaframe entailment for-

mat and proof strategy (§ 3.3), which serves as a starting

point for the description of our hint format (§4).

3.1 Goal-Directed Reasoning with WP
Hoare triples are not a primitive of Iris, they are defined in

terms of weakest preconditions:

{𝑃} 𝑒 {Φ} ≜ 𝑃 ⊢ wp 𝑒 {Φ}.

To get some intuition for the semantics of wp 𝑒 {Φ}, assume

for a moment that 𝑃 and𝑄 are predicates on heaps (ignoring

Iris’s ghost state and step-indexing), and Φ is a predicate on

values and heaps. Entailment 𝑃 ⊢ 𝑄 means that for every

heap ℎ, if 𝑃 ℎ holds, then 𝑄 ℎ holds. The assertion wp 𝑒 {Φ}
describes the heaps for which execution of 𝑒 is safe (cannot

get stuck), and if 𝑒 terminates with value 𝑣 and heap ℎ′, then
Φ 𝑣 ℎ′ holds. Defining {𝑃} 𝑒 {Φ} as above then indeed gives

the Hoare triple its intended and intuitive semantics.

Weakest preconditions make it possible to decouple the

precondition from the Hoare triple, and view it as a regular

5
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wp-value

Φ 𝑣 ⊢ wp 𝑣 {Φ}

wp-bind

wp 𝑒
{
𝑤. wp 𝐾 [𝑤] {Φ}

}
⊢ wp 𝐾 [𝑒] {Φ}

wp-frame

𝑅 ∗ wp 𝑒 {Φ} ⊢ wp 𝑒 {𝑣 . 𝑅 ∗ Φ 𝑣}

wp-mono

∀𝑣 . Ψ 𝑣 ⊢ Φ 𝑣
wp 𝑒 {Ψ} ⊢ wp 𝑒 {Φ}

wp-faa

ℓ ↦→ 𝑧1 ⊢ wp (FAA ℓ 𝑧2) {𝑤. ⌜𝑤 = 𝑧1⌝ ∗ ℓ ↦→ (𝑧1 + 𝑧2)}

Figure 5. Some of Iris’s rules for weakest preconditions.

separation logic entailment. In particular, they give us access

to Iris’s existing infrastructure [51, 53] for proving entail-

ments. However, Iris’s primitive rules for weakest precondi-

tions in Figure 5 are not syntax directed and can thus not be

directly applied in an interactive or automatic proof search

strategy. Throughout this section, we focus on transforming

the rule wp-faa into a syntax-directed version. Recall that

FAA is used in the clone and drop methods of ARC (§2.2).

Suppose we are proving the following entailment:

Δ ⊢ wp (FAA ℓ 𝑧) {Φ}.
(From now on, we will often put an environment Δ before the

turnstile. The environment Δ is a list of assertions 𝑃1, . . . , 𝑃𝑛 ,

for which Δ ⊢ 𝑄 iff 𝑃1 ∗ · · · ∗ 𝑃𝑛 ⊢ 𝑄 .)
We want to prove this entailment by applying wp-faa,

but we are not yet in shape to do so. That is because Δ will

typically not be just ℓ ↦→ 𝑧1, and Φ will typically not be

the precise postcondition of wp-faa. Hence, to apply ‘small

footprint’ specifications likewp-faawe need to find a ‘frame’

𝑅 and a value 𝑧1, such that Δ ⊢ 𝑅 ∗ ℓ ↦→ 𝑧1. We can then

use a combination of wp-faa, wp-frame and wp-mono, to

transform our entailment into 𝑅 ∗ ℓ ↦→ (𝑧1 + 𝑧2) ⊢ Φ 𝑧1.
Instead of having to determine the frame 𝑅 in advance, one

can construct an alternative rule for goal-directed reasoning,

which will be easier to apply automatically:

wp-faa-ramify

Δ ⊢ 𝑙 ↦→?𝑧1 ∗
(
∀𝑣 . (⌜𝑣 = ?𝑧1⌝ ∗ ℓ ↦→ (?𝑧1 + 𝑧2)) −∗ Φ 𝑣

)
Δ ⊢ wp (FAA ℓ 𝑧2) {Φ}

In this shape, the rule is an instance of the ramified frame
rule [20, 42]. Note that we have put a question mark in front

of 𝑧1 to signify that 𝑧1 will be an existential variable (evar)

at rule application—we should be able to find a 𝑧1 for which

this is provable, but do not yet know which one it will be.

When we find an hypothesis of shape ℓ ↦→ 𝑧 in Δ, we can
unify 𝑧1 with 𝑧 and continue.

We can generalize the rule wp-faa-ramify to any Hoare-

style specification of an expression 𝑒:

sym-ex

{𝑃} 𝑒 {Ψ} Δ ⊢ 𝑃 ∗ (∀𝑣 . Ψ 𝑣 −∗ wp 𝐾 [𝑣] {Φ})
Δ ⊢ wp 𝐾 [𝑒] {Φ}

This rule additionally incorporates Iris’s rulewp-bind, which

allows the expression 𝑒 to appear inside a call-by-value eval-

uation context 𝐾 , instead of at the top-level.

Supposing we can prove separating conjunctions, sym-ex

gives rise to a symbolic-execution based proof search strat-

egy for straight-line sequential code. Suppose our goal is

Δ ⊢ wp 𝑒 {Φ}. If 𝑒 is a value 𝑣 , apply wp-value and prove

Δ ⊢ Φ 𝑣 . Else, find an evaluation context 𝐾 and subexpres-

sion 𝑒′ with 𝑒 = 𝐾 [𝑒′], and a specification {𝑃} 𝑒′ {Ψ} . Apply
sym-ex, prove the separating conjunction, introduce vari-

ables, introduce the left-side of the magic wand, and repeat.

3.2 Goal-Directed Reasoning with Invariants
We will now extend the naive proof search strategy from

§3.1 with support for Iris’s invariant mechanism to handle

programs with fine-grained concurrency. Concretely, we will

present a rule that extends sym-ex, which can also be used

in case the precondition 𝑃 is inside an invariant (as is the

case for all examples in §2). We will first recapitulate Iris’s

original proof rule for accessing invariants:

inv-open-wp

Δ, 𝐿
N
, ⊲ 𝐿 ⊢ wpE\N 𝑒 {𝑣 . ⊲ 𝐿 ∗ Φ 𝑣} atomic 𝑒 N ⊆ E

Δ, 𝐿
N ⊢ wpE 𝑒 {Φ}

This rule is quite a mouthful, so let us go over it step by step.

First, to deal with invariants, weakest preconditions in Iris

wpE 𝑒 {Φ} have a mask annotation E, signifying the set of
names of invariants that can be opened. This is necessary

to ensure invariants are not opened more than once (i.e., to
avoid reentrancy, which is unsound). Omitted masks are ⊤,
meaning all invariants can still be opened.

Suppose that we have an invariant 𝐿
N
, and are verifying

an atomic expression 𝑒 . Rule inv-open-wp states that we are

allowed to look inside the invariant and obtain 𝐿 in the proof

context, but then must show that 𝐿 still holds in the postcon-

dition of the WP. After we have opened the invariant with

nameN , the mask changes to E \N so that we cannot open

the invariant twice. The later modality (⊲) [4, 66] is needed

for technical reasons caused by the fact that invariants are

impredicative [46, 80], i.e., the resource 𝐿 in an invariant can

be any resource, including invariants and weakest precon-

ditions. Handling later modalities involves some additional

bookkeeping, which Diaframe performs automatically, but

we gloss over in this paper.

We now show why our sym-ex rule for symbolic execu-

tion from §3.1 needs to be extended for programs involving

fine-grained concurrency. Consider the FAA operation in the

clone method of the ARC (§2.2). The challenge of verifying

this method is that the ℓ ↦→ we need as part of the precon-

dition for FAA is not in the proof context, but in an invariant

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N . When we apply sym-ex eagerly, we

lose the ability to open invariants using inv-open-wp.
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One approach is to try to make progress with sym-ex—if

this is possible, we are alright. If not, we backtrack, and open

an invariant with inv-open-wp, and retry. This is similar

to the approach employed by Caper [31]. We do not take

a backtracking approach in Diaframe since it does not mix

nicely with interactive proofs.

We therefore present an extended symbolic execution rule,

sym-ex, which allows us to open invariants lazily:

sym-ex-fupd-exist

∀®𝑥 . {𝑃} 𝑒 {Ψ} atomic 𝑒 ∨ E1 =?E2
Δ ⊢ |⇛E1 ?E2 ∃®𝑥 . 𝑃 ∗

(
∀𝑤. Ψ𝑤 −∗ |⇛?E2 E1wpE1 𝐾 [𝑤] {Φ}

)
Δ ⊢ wpE1 𝐾 [𝑒] {Φ}

This rule contains Iris’s fancy update modality |⇛E1 E2
, and a

quantified Hoare triple ∀®𝑥 . {𝑃} 𝑒 {Ψ} .
The fancy update modality |⇛E1 E2

is used in Iris’s defi-

nition of weakest preconditions, and is the component that

makes opening invariants possible. Semantically, |⇛E1 E2 𝑃
means: assuming all invariants with names in E1 hold, then
𝑃 holds and additionally all invariants with names in E2 hold.
To work with the fancy update, Iris has the following rules:

inv-open-fupd

N ⊆ E

𝐿
N ⊢ |⇛E E\N

(
⊲ 𝐿 ∗

(
⊲ 𝐿 −∗ |⇛E\N E True

) ) bupd-intro

𝑃 ⊢ ¤|⇛𝑃

bupd-fupd

¤|⇛𝑃 ⊢ |⇛E E 𝑃

fupd-elim

𝑃 ⊢ |⇛E1 E2𝑄 Δ, 𝑄 ⊢ |⇛E2 E3𝑅

Δ, 𝑃 ⊢ |⇛E1 E3𝑅

The inv-open-fupd rule makes the semantics of invariants

precise: by removing N from the mask, we get access to 𝐿,

and if we wish to restore the mask, we must hand back 𝐿 via

the closing update (⊲ 𝐿 −∗ |⇛E\N E True). The rule fupd-elim
allows us to compose fancy updates, and by combining

bupd-fupd and bupd-intro we can introduce the last fancy

update when done. Note that bupd-fupd and fupd-elim en-

able us to perform logical updates (like those in Figure 4)

when the goal contains a fancy update after the turnstile.

The quantified Hoare triple ∀®𝑥 . {𝑃} 𝑒 {Ψ} states that the
Hoare triple {𝑃} 𝑒 {Ψ} holds for all instantiations of the
auxiliary variables in ®𝑥 . Here, 𝑃 should and Ψ may refer to

the variables in ®𝑥 . For FAA, we have:

∀𝑧1. {ℓ ↦→ 𝑧1} FAA ℓ 𝑧2 {𝑤. ⌜𝑤 = 𝑧1⌝ ∗ ℓ ↦→ (𝑧1 + 𝑧2)} .

The essential feature of sym-ex-fupd-exist is that once

we apply the rule, we retain the ability to open (any number

of) invariants through a combination of the rules fupd-elim

and inv-open-fupd. Our new rule is strictly stronger than

the rule sym-ex from §3.1—the update modalities can simply

be introduced using bupd-fupd and bupd-intro, and the

existentials can be instantiated with evars.

We now show why the existential quantification in the

new rule is necessary. Let us try to use sym-ex-fupd-exist

wrongly by instantiating existentials eagerly in a goal that

arises during the verification of an FAA in ARC (§2.2):

ℓ ↦→ 𝑧, ⊲ 𝐽 𝑧, . . . ⊢ |⇛⊤\N ?E ℓ ↦→?𝑧1 ∗ . . .
⊲(∃(𝑧 : Z) . ℓ ↦→ 𝑧 ∗ 𝐽 𝑧), . . . ⊢ |⇛⊤\N ?E ℓ ↦→?𝑧1 ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N ⊢ |⇛⊤ ?E ℓ ↦→?𝑧1 ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N ⊢ |⇛⊤ ?E ∃𝑧′ . ℓ ↦→ 𝑧′ ∗ . . .

∃(𝑧 : Z). ℓ ↦→ 𝑧 ∗ 𝐽 𝑧 N ⊢ wp 𝐾 [FAA ℓ 1] {Φ}
One should read this proof derivation from bottom to top.

When encountering an FAA, we apply sym-ex-fupd-exist,

but (wrongly) perform an eager instantiation of the existen-

tial 𝑧′ with an evar ?𝑧1. Then we use inv-open-fupd and

fupd-elim to open the invariant. The final step uses some

properties of the later modality to eliminate the existential

and the later around ℓ ↦→ 𝑧. One might think we are now

done: just unify ?𝑧1 with 𝑧 and ?E with ⊤ \ N , and con-

tinue! However, this is not sound—the evar ?𝑧1 cannot be

unified with 𝑧, since 𝑧 was introduced after 𝑧1. Stated in other

words, we could not have chosen 𝑧1 to be equal to 𝑧, since at

that point 𝑧 was not in our context. To correctly deal with

existentials, the Diaframe proof search strategy delays the

instantiation of existentials.

3.3 Overview of the Diaframe Strategy
To automatically prove program specifications∀®𝑥 . {𝑃} 𝑒 {Φ} ,
Diaframe’s proof strategy repeatedly performs the following

actions (a formal presentation is given in §5):

1. If the goal is Δ ⊢ ∀𝑥 . 𝐺 or Δ ⊢ 𝑈 −∗ 𝐺 , introduce
the ∀ or −∗. Then “clean” the hypothesis 𝑈 by (a)

eliminating separating conjunctions, disjunctions, and

existentials, (b) moving pure assertions ⌜𝜙⌝ into the

Coq context, (c) merging assertions (e.g., ℓ ↦→𝑞 𝑤 and

ℓ ↦→𝑝 𝑣 become ℓ ↦→𝑝+𝑞 𝑣 and 𝑣 = 𝑤 ), (d) deriving

contradictions (e.g., using locked-uniqe).

2. If the goal is Δ ⊢ wp 𝑣 {Φ}, with 𝑣 a value, continue
with Δ ⊢ |⇛⊤ ⊤Φ 𝑣 .

3. If the goal is Δ ⊢ wp 𝐾 [𝑒] {Φ}, use our new symbolic

execution rule sym-ex-fupd-exist. Our new goal has

the shape Δ ⊢ |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺 .
4. If the goal is Δ ⊢ |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺 , use associativity of

separating conjunction to rewrite it into |⇛E1 E2 ∃®𝑥 . 𝐴∗
𝐺 ′ where 𝐴 is an atom. Pure conditions ⌜𝜙⌝ that ap-
pear in the process are solved with Coq tactics like

lia. We make progress on 𝐴 by finding a hint.

For this strategy to be effective, finding hints (in the last

step) is crucial. These hints need to make sure that the result-

ing goal is again of one of the above entailment formats so

the strategy can make repeated progress. When operating on

entailments of format Δ ⊢ |⇛E1 E2 ∃®𝑥 . 𝐿∗𝐺 , it is essential that
modalities and existentials are only introduced/instantiated

when the right invariants have been opened and the neces-

sary ghost updates have been performed—not earlier.

7
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The Diaframe proof strategy is inspired by the idea of in-

terpreting logical connectives as instructions to control the

proof search, as done in the seminal work on linear logic pro-

gramming [19, 43] and recent work on the separation logic

programming language Lithium [76]. Other recent work by

Chlipala [21, 22] has also shown that using the syntax of the

goal to guide proof search works well for automatic founda-

tional verification. The inspiration by Lithium can be seen

most clearly in the reversible actions described in Items (a)

and (b)—these are the same as those performed by Lithium.

The key difference is that we do not operate on top-level

connectives, but on connectives that appear below a modal-

ity and a number of existentials, to support Iris’s invariants

and ghost state.

4 Diaframe’s Hint Format
In this section, we describe the process of finding hints. We

consider the following kinds of base hints: (a) hints for ghost

state such as those corresponding to the rules in Figure 4,

(b) hints for language-specific connectives such as the ↦→
connective, and (c) user-defined hints to guide the proof of a

specific program in case the automation falls short.

There are two ways how hints can be selected. First, goal-
and-hypothesis directed hints use the shape of the goal and
the shape of a hypothesis as keys. Examples are hints for

mutating ghost state. Second, last-resort goal-directed hints
are used if no hints that key on a hypothesis can be found.

Examples are invariant allocation and ghost state allocation.

Hints are specified using a hint format (§4.1) that is in-
spired by the technique of bi-abduction [15]. Aside from

the base hints (§4.2), Diaframe provides recursive hints to
close the base hints under connectives like invariants, magic

wands, and separating conjunctions (§4.3).

4.1 Bi-Abduction Hints
The hint format of Diaframe is as follows:

𝐻 ∗ [®𝑦;𝐿] �
[
|⇛E1 E2 ] ®𝑥 ;𝐴 ∗ [𝑈 ] ≜
∀®𝑦.

(
𝐻 ∗ 𝐿 ⊢ |⇛E1 E2 (∃®𝑥 . 𝐴 ∗𝑈 )

)
Hints use a hypothesis 𝐻 and goal 𝐴 as key/input. Outputs

are denoted between [ ] syntax: 𝐿 is a (possibly existentially

quantified) side condition, while 𝑈 is the residue we obtain

after using the hint. The hypothesis 𝐻 is 𝜀1 for a last-resort

hint. The assertion 𝜀1 is an opaque marker whose semantics

is True, but is treated differently by the proof search strategy.

It is instructive to check the scope of the existentials. The

premise𝐻 is a given hypothesis, so ®𝑥 and ®𝑦 do not occur in𝐻 .

The conclusion𝐴 is a given existential goal, so ®𝑥 occurs in𝐴,

but ®𝑦 does not. The side condition 𝐿 is existentially quantified
with ®𝑦. The residue𝑈 is allowed to contain both ®𝑥 and ®𝑦 so

it can be related to the side condition 𝐿 and the goal 𝐴.

We also call Diaframe’s hints “bi-abduction hints” because

in essence, they are bi-abduction [15] behind a modality and

existentials. The bi-abduction problem in separation logic

asks to find, given an hypothesis 𝐻 and goal 𝐴, a ‘frame’

and ‘antiframe’ such that 𝐻 ∗ ?antiframe ⊢ 𝐴 ∗ ?frame. Our
hints’ shape is also similar to the residuation judgment from

Cervesato et al. [19], but has an additional frame.

We can apply a Diaframe bi-abduction hint as follows:

biabd-hint-apply

𝐻 ∗ [®𝑦;𝐿] �
[
|⇛E3 E2 ] ®𝑥 ;𝐴 ∗ [𝑈 ]

Δ ⊢ |⇛E1 E3 ∃®𝑦. 𝐿 ∗ (∀®𝑥 . 𝑈 −∗ 𝐺)
Δ, 𝐻 ⊢ |⇛E1 E2 ∃®𝑥 . 𝐴 ∗𝐺

The Diaframe implementation will go over the hypotheses

𝐻 in the context Δ from left to right (with 𝜀1 last) until it

finds a hint 𝐻 ∗ [®𝑦;𝐿] �
[
|⇛E3 E2 ] ®𝑥 ;𝐴 ∗ [𝑈 ] in the hint

database. This involves some backtracking, but only locally—
whenever a hint (and thus a side condition 𝐿 and residue

𝑈 ) has been found for a hypothesis 𝐻 , we use that hint and

will never backtrack to consider a different choice. Note that

after applying the rule, the resulting entailment has the same

format, allowing for repeated applications of hints.

4.2 Base Hints
Example 1: Ghost state mutation. We transform the

rule token-mutate-decr (which is used to verify the drop
method of ARC in §2.2) into the following hint:

counter 𝑃 𝛾 𝑝 ∗ [ ; token 𝑃 𝛾 ∗ ⌜𝑝 > 1⌝] �[
|⇛E E ]

; counter 𝑃 𝛾 (𝑝 − 1) ∗ [True]

If we use biabd-hint-apply with this hint, we get:

Δ ⊢ |⇛E E token 𝑃 𝛾 ∗ ⌜𝑝 > 1⌝ ∗ (True −∗ 𝐺)
Δ, counter 𝑃 𝛾 𝑝 ⊢ |⇛E E counter 𝑃 𝛾 (𝑝 − 1) ∗𝐺

Here we see that to decrement the counter, we need to solve

the side condition token 𝑃 𝛾 , before we can continue with𝐺 .

Example 2: Invariant allocation. In Iris, invariants are

allocated using the rule ⊲ 𝐿 ⊢ |⇛E E 𝐿
N
, whichwe transform

into the following hint:

𝜀1 ∗ [ ; ⊲ 𝐿] �
[
|⇛E E ]

; 𝐿
N ∗

[
𝐿
N ]
.

Due to the 𝜀1, this is a last-resort goal-directed hint. We do

not make it hypothesis directed, because ⊲ 𝐿 will usually not

be precisely in the context. Since invariants are duplicable

we give back 𝐿
N
in the residue, so that it can be used again.

Example 3: Ghost state allocation. We transform the

rule locked-allocate (which is used to verify the newlock
method in §2.1) into the following hint:

𝜀1 ∗ [ ; True] �
[
|⇛E E ] 𝛾 ; locked 𝛾 ∗ [True] .

Due to the 𝜀1, this is again a last-resort goal-directed hint.

That is simply because the rule has no premise.
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Example 4: Points-to assertion. We have specific hints

for HeapLang’s fractional points-to assertion ℓ ↦→𝑞 𝑣 :

ℓ ↦→𝑞 𝑣1 ∗ [ ; ⌜𝑣1 = 𝑣2⌝] �
[
|⇛E E ]

; ℓ ↦→𝑞 𝑣2 ∗ [True] .
This hint says that if we have a points-to for ℓ , but need one

with another value, we should prove that both values are

equal. The following hint handles different fractions:

𝑞1 < 𝑞2

ℓ ↦→𝑞1 𝑣1 ∗
[
𝑣3; ⌜𝑣1 = 𝑣2⌝ ∗ ℓ ↦→(𝑞2−𝑞1 ) 𝑣3

]
�[

|⇛E E ]
; ℓ ↦→𝑞2 𝑣2 ∗ [⌜𝑣1 = 𝑣3⌝]

This hint applies if the fraction 𝑞2 in the goal is bigger than

the fraction 𝑞1 in the hypothesis, and hence has the side con-

dition ℓ ↦→(𝑞2−𝑞1 ) 𝑣3. Note that 𝑣3 is existentially quantified,

meaning that the side condition can be established for any

value. This is sound by the agreement property of ↦→. This

generality is used in the verification of e.g., the CLH-lock.
There is a dual hint for the case 𝑞1 > 𝑞2.

4.3 Recursive Hints
It is often the case that a base hint almost—but not precisely—

matches. The premise might appear under a magic wand or

in an invariant, or the goal might provide a specific witness

while looking for an existential. Diaframe therefore includes

a number of recursive hints to close the base hints under the

connectives of higher-order separation logic. For example:

𝑈 ∗ [®𝑧;𝐿2] �
[
|⇛E1 E2 ] ®𝑦;𝐴 ∗ [𝑈 ]

(𝐿1 −∗ 𝑈 ) ∗ [®𝑧;𝐿2 ∗ 𝐿1] �
[
|⇛E1 E2 ] ®𝑦;𝐴 ∗ [𝑈 ]

This rule states that if there is a hint from the conclusion 𝑈

of the wand to the goal𝐴, then there is a hint from the wand

𝐿1 −∗ 𝑈 itself, where the premise 𝐿1 of the wand is added to

the side condition 𝐿2. A more complicated recursive hint is

the rule for invariants:
2

⊲ 𝐿1 ∗ [®𝑧;𝐿2] �
[
|⇛E\N E\N

]
®𝑦;𝐴 ∗ [𝑈 ]

𝐿1
N ∗ [®𝑧;𝐿2 ∗ ⌜N ⊆ E⌝] �[

|⇛E E\N
]
®𝑦;𝐴 ∗

[
𝑈 ∗ (⊲ 𝐿1 −∗ |⇛E\N E 𝜒 )

]
This rule states that there is a hint from an invariant 𝐿1

N

to a goal 𝐴, if there is a hint from the contained assertion 𝐿1
to that atom. We get N ⊆ E as an additional side condition,

and receive the closing update (⊲ 𝐿1 −∗ |⇛E\N E 𝜒 ) as the
residue. Similar to 𝜀1, the assertion 𝜒 is an opaque marker

whose semantics is True, but is treated differently by the

proof search strategy to enforce closing invariants.

5 Formal Description of the Proof Strategy
In this section we will present an excerpt of the formal gram-

mar of Diaframe (§5.1), and a number of cases of the formal

proof search strategy (§5.2). We then present an extension

of Diaframe to handle disjunctions (§5.3).

2
In the implementation, this rule is a consequence of other recursive rules.

5.1 Grammar of Diaframe
We provide a representative subset of the grammar (a full

description can be found in the appendix [64]):

atoms 𝐴 ::= wp 𝑒 {𝑣 . 𝐿} | 𝜒 | 𝐿 N | . . .
left-goals 𝐿 ::= ⌜𝜙⌝ | 𝐴 | 𝐿 ∗ 𝐿 | ∃𝑥 . 𝐿

unstructureds 𝑈 ::= ⌜𝜙⌝ | 𝐴 | 𝑈 ∗𝑈 | ∃𝑥 . 𝐿

| ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |⇛E1 E2𝑈

extended 𝐻 ::= 𝜀1 | 𝑈

clean hypotheses 𝐻𝐶 ::= 𝐴 | ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |⇛E1 E2𝑈

environments (1) Γ ::= ∅ | Γ, 𝑥 | Γ, 𝜙
environments (2) Λ ::= ∅ | Λ, 𝐻𝐶 Δ ::= Λ, 𝜀1

goals 𝐺 ::= ∀𝑥 . 𝐺 | 𝑈 −∗ 𝐺 | wp 𝑒 {𝑣 . 𝐿}

| |⇛E1 E2 𝐿 | ∥ |⇛E1 E2∥ ∃®𝑥 . 𝐿 ∗𝐺

The entailments we wish to solve are of the form Γ;Δ ⊢ 𝐺 .
The atoms𝐴 by default only consist of weakest preconditions

wp 𝑒 {𝑣 . 𝐿}, the marker 𝜒 (§4.3) and invariants 𝐿
N
. The el-

lipsis (. . .) indicates that the set of atoms may be extended by

libraries, adding language-specific constructs like ℓ ↦→ 𝑣 or

ghost assertions like locked 𝛾 . The definition of Δ explicitly

sets the last-resort marker 𝜀1 as the last hypothesis. Defining

Δ in this way avoids having special cases in the description

of the strategy, and is close to the Coq implementation.

We have two syntactical categories related to hypotheses:

𝐻𝐶 and𝑈 . Essentially,𝑈 is the class of hypotheses for which

we are able to recursively find hints. At introduction into

the context Δ, we can decompose these into 𝐻𝐶 . The goal

∥ |⇛E1 E2 ∥ ∃®𝑥 . 𝐿 ∗ 𝑅 in 𝐺 is a ‘synthetic’ representation of

|⇛E1 E2 ∃®𝑥 . 𝐿∗𝑅 with the condition FV(𝐿) = ®𝑥 . This condition
ensures that during hint search we only consider the relevant

variables for 𝐿. To uphold this condition, our strategy first

transforms goals like |⇛E E ∃𝑣1 𝑣2. ℓ1 ↦→ 𝑣1 ∗ ℓ2 ↦→ 𝑣1 into

∥ |⇛E ?E′ ∥ ∃𝑣1 . ℓ1 ↦→ 𝑣1 ∗ |⇛?E′ E ∃𝑣2. ℓ2 ↦→ 𝑣1.

5.2 The Proof Search Strategy
If our goal is Γ;Δ ⊢ 𝐺 , we do a case analysis on 𝐺 :

1. 𝐺 = ∀𝑥 . 𝐺 ′: Continue with Γ, 𝑥 ;Δ ⊢ 𝐺 ′.
2. 𝐺 = 𝑈 −∗ 𝐺 ′: Case analysis on𝑈 :

a. 𝑈 = ⌜𝜙⌝: Continue with Γ, 𝜙 ;Δ ⊢ 𝐺 ′.
b. 𝑈 = (𝑈1 ∗𝑈2): Continue with Γ;Δ ⊢ 𝑈1 −∗ 𝑈2 −∗ 𝐺 ′.
c. 𝑈 = (∃𝑥 . 𝐿). Continue with Γ;Δ ⊢ ∀𝑥 . (𝐿 −∗ 𝐺 ′).
d. 𝑈 = 𝐻𝐶 . Continue with Γ;Δ, 𝐻𝐶 ⊢ 𝐺 ′.

3. 𝐺 = wp 𝑒 {𝑣 . 𝐿}:
a. If 𝑒 is a value𝑤 , continue with Γ;Δ ⊢ |⇛⊤ ⊤𝐿[𝑤/𝑣].
b. Else, find a 𝐾 and 𝑒′ with 𝑒 = 𝐾 [𝑒′], and quantified

specification ∀®𝑥 . {𝐿1} 𝑒′ {𝑤. 𝐿2} . Continue with Γ;Δ ⊢
∥ |⇛⊤ ?E ∥ ∃®𝑥 . 𝐿1 ∗

(
∀𝑤. 𝐿2 −∗ |⇛?E ⊤wp 𝐾 [𝑤] {𝑣 . 𝐿}

)
.

4. 𝐺 = |⇛E1 E2 𝐿: We consider the following cases:

9



PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ike Mulder, Robbert Krebbers, and Herman Geuvers

a. If the modality |⇛E1 E2
is not introducable, continue

with Γ;Δ ⊢ ∥ |⇛E1 ?E3 ∥ ∃ . 𝜒 ∗ |⇛?E3 E2 𝐿. The remain-

ing cases assume that |⇛E1 E2
is introducable.

b. 𝐿 = ⌜𝜙⌝: Prove the pure goal 𝜙 to finish.

c. 𝐿 = wp 𝑒 {𝑣 . 𝐿′}: Continue with Γ;Δ⊢wp 𝑒 {𝑣 . 𝐿′}.
d. Continue with Γ;Δ ⊢ ∥ |⇛E1 ?E3 ∥ ∃ . 𝐿 ∗ |⇛?E3 E2 True

in all other cases.

5. 𝐺 = ∥ |⇛E1 E2 ∥ ∃®𝑥 . 𝐿 ∗𝐺 ′: Case analysis on 𝐿:
a. 𝐿 = ⌜𝜙⌝: Check that |⇛E1 E2

is introducable, and try

to solve 𝜙 [®𝑦/®𝑥]. Continue with Γ;Δ ⊢ 𝐺 ′ [®𝑦/®𝑥].
b. 𝐿 = 𝐿1 ∗ 𝐿2: Set ®𝑦1 = FV(𝐿1) and ®𝑦2 = ®𝑥 \ ®𝑦1, continue

with Γ;Δ ⊢ ∥ |⇛E1 ?E3 ∥ ∃®𝑦1 . 𝐿1 ∗ ∥ |⇛?E3 E2 ∥ ∃®𝑦2. 𝐿2 ∗𝐺 .
c. 𝐿 = ∃𝑦. 𝐿′: Continue with Γ;Δ⊢ ∥ |⇛E1 E2 ∥ ∃𝑦, ®𝑥 . 𝐿′ ∗𝐺 .
d. 𝐿 = 𝐴: Find the first 𝐻 ∈ Δ with 𝐿′ and 𝑈 for which

𝐻 ∗ [®𝑦;𝐿′] �
[
|⇛E3 E2 ] ®𝑥 ;𝐴 ∗ [𝑈 ]. Then continue with

Γ;Δ \ 𝐻 ⊢ ∥ |⇛E1 E3 ∥ ∃®𝑦. 𝐿′ ∗ (∀®𝑥 . 𝑈 −∗ 𝐺).
In the above, we say that |⇛E1 E2

is introducable, if E2 can be

unified with E1. Note that Item 3b is sym-ex-fupd-exist (§3)

and Item 5d is biabd-hint-apply (§4). We have omitted steps

in the introduction of magic wands to merge hypotheses

and to detect incompatibilities. For example, if we introduce

locked 𝛾 and already have a locked 𝛾 in our context, we

obtain False by locked-uniqe. We have also omitted the

bookkeeping required to deal with Iris’s later modality (⊲).

5.3 Extending Diaframe with Disjunctions
The Diaframe grammar does not contain disjunctions. This

is intended, as proving disjunctions in linear logics is chal-

lenging. Consider 𝑃 ∗𝑄 ⊢ (𝑃 ∨𝑄) ∗ 𝑃 . It is crucial to prove

the disjunction using𝑄 , since otherwise we are left with the

unprovable goal𝑄 ⊢ 𝑃 . But if we look at just the disjunction,

there is no way to know this in advance.

To offer automation for some goals with disjunctions, we

provide an extension of Diaframe. When introducing a dis-

junction Δ ⊢ (𝑈1 ∨𝑈2) −∗ 𝐺 into the context, continue with

goals Δ ⊢ 𝑈1 −∗ 𝐺 and Δ ⊢ 𝑈2 −∗ 𝐺 by disjunction elimina-

tion.When proving Γ;Δ ⊢ ∥ |⇛E1 E2 ∥ ∃®𝑥 . (⌜𝜙⌝ ∗ 𝐿1 ∨ 𝐿2) ∗𝐺
(and symmetrically), check if we can prove ¬𝜙 , and if so, con-
tinue with the simpler goal Γ;Δ ⊢ ∥ |⇛E1 E2 ∥ ∃®𝑥 . 𝐿2 ∗𝐺 . This
makes the pure goal 𝜙 act as a “guard” on the disjunct.

When a disjunction cannot be handled this way, the proof

search strategy will simply stop. It is then up to the user to

choose a disjunct, and continue the proof (see the proof of

drop in §2.2 for an example). To automatically prove more

involved examples, Diaframe allow users to opt-in on the use

of backtracking to choose a disjunct.

6 Implementation and Evaluation
Diaframe is implemented as a library of ca. 15.000 lines of

Coq code, built on top of Iris. We use Coq’s type class mech-

anism [78] extensively to make the implementation para-

metric in (among others) the base proof hints. The recursive

hint search strategy (§4.3) and the core proof search strategy

(§5.2) are implemented as an Ltac [28] tactic called iStepsS.
This tactic can be used to prove specifications entirely, and

as part of interactive proofs in the Iris Proof Mode [51, 53].

Diaframe comes equipped with 5 ghost-state libraries with

bi-abduction hints, to help verify concurrent programs.

To evaluate Diaframe and its implementation, we have ver-

ified 24 examples with different levels of complexity. These

examples include all the examples used to evaluate Caper [31],

Starling [90] and Voila [91], and 5 additional, closely related

examples. Our examples do not always correspond line-for-

line to the examples from other tools, since the programming

languages are different, but the required concurrency reason-

ing is similar. These examples and their statistics are shown

in Figure 6. This table also includes statistics for manual Iris

proofs (if they are available in Iris’s Coq distribution).

From this benchmark, we conclude that the use of Dia-

frame significantly reduces the proof work when using Iris

to formally verify programs. Diaframe is competitive with

automatic non-foundational tools such as Starling, Voila and

Caper, while being foundational—generating closed proofs in
the Coq proof assistant. The following caveats apply: (a) Star-

lings constraint-based approach reduces the proof work for

some examples, e.g., Peterson’s algorithm. For most exam-

ples, Diaframe requires less proof work, and is more expres-

sive. (b) Caper outperforms Diaframe with respect to proof

work and number of annotations. However, verification with

Diaframe is modular, meaning it is easier to verify clients.

(c) Voila focuses on TaDA-style logically-atomic specifica-

tions [25], which are not supported by Diaframe. Because of

this focus, Voila requires more proof work than Diaframe,

also for the regular specifications used in this comparison.

We summarize some aggregated data from Figure 6. Dia-

frame can verify 7 of the examples without any help from

the user. Averaged over all examples, we require about 0.4

line of manual proof per line of implementation (321 lines

of proof for 823 lines of implementation). The highest proof

work is in the verification of the Michael-Scott queue [63],

requiring 46 lines of proof for an implementation of 37 lines.

All but two examples can be verified in under two minutes

on our 3960X Threadripper (averaged over 10 runs). The two

exceptions are slow mainly because their invariants contain

an 𝑛-fold disjunction, with 𝑛 relatively high (≥ 10).

Hints and proof search customization. Diaframe has

access to 30 bi-abduction hints, available in our 5 ghost-state

libraries. In Figure 6, user-provided hints and their required

lemmas count as proof search customization. 8 user-provided

bi-abduction hints were necessary to verify examples with

recursive definitions, as Diaframe does not have native sup-

port for such definitions as of yet. Other ways to customize

the proof search are: strengthening the pure solver, and in-

structing Diaframe to merge some hypotheses. Merging hy-

potheses may be necessary to find relevant equalities or

contradictions. The process of designing a user-provided
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name impl annot custom
hints

used

time total
iris manual

total

starling

total

caper

total

voila

total

arc [54] 18 28/4 3 5 0:10 62/7 72/16 70/1

bag stack [18] 29 45/2 34 7(3) 0:17 117/36 170/92 70/0 205/36

barrier 58 100/31 5 14 13:22 200/38 102/0

barrier client 58 98/38 6 6 0:50 175/44 189/0

bounded counter 20 41/7 4 0:11 73/7 50/2 79/9

cas counter 14 31 2 0:08 56/0 95/39 40/0 68/9

cas counter client 16 9 4 0:06 36/0 94/0 267/36

clh lock [58] 30 48 3 7 0:22 94/3 134/15

fork join 14 29 2 0:08 57/0 38/0 51/7

fork join client 13 9 0:04 30/0 70/0 124/20

inc dec 23 44 6 0:31 78/0 54/0 99/12

lclist [16, 87] 28 34/5 13 2(2) 0:27 86/18 197/134

lclist extra 119 53 2 3(2) 1:31 182/2

mcs lock [61] 54 73/7 4 9 1:11 147/11

msc queue [63] 37 56/5 41 13(3) 1:42 168/46

peterson [71] 46 102/28 7 7:51 166/28 94/5

queue 42 58/5 41 12(3) 1:17 170/46 99/0

rwlock duolock [24] 45 50/10 7 0:21 109/10

rwlock lockless faa 27 36/1 8 0:20 74/1 68/1

rwlock ticket bounded 40 68/10 2 13 0:54 124/12 109/14

rwlock ticket unbounded 38 62/5 8 0:21 116/5

spin lock 13 28 3 0:06 59/0 93/30 76/22 39/0 65/7

ticket lock 23 49/6 5 0:23 90/6 168/78 66/11 59/0 90/12

ticket lock client 18 11 1 0:06 39/0 79/0 87/11

total 823 1162/164 154 38(8) 32:30 2518/321 526/239 748/217 1121/4 1135/159

Figure 6. Data on verified examples. Rows correspond to files in the supplementary material [64]. Columns show number of

lines of implementation of the program, annotation (specifications + invariants) and proof search customization. The format

𝑛/𝑚 stands for 𝑛 lines in total, of which𝑚 lines consist of proof work. Proof search customization (i.e., user-provided hints) is

always counted as proof work. In the hints column, notation ℎ(𝑐) stands for ℎ distinct hints used for the proof, 𝑐 of which

were custom/user-provided. The time column displays the average verification time in minutes:seconds. The column total also
includes all remaining Coq boilerplate, like Import statements.

hint is generally as follows. First, run Diaframe until it gets

stuck. Inspect the available hypotheses and goal, looking for

a hypothesis that indicates a way to prove the left-most atom

in the goal. Create and prove this new hint, and repeat.

Performance for failing verifications. One rarely gets

the verification of these examples right in one go. It is there-

fore important to consider the performance of Diaframe

when verification fails. In our artifact [64] one can find sev-

eral examples that intentionally fail, obtained by changing

the code, postcondition or omitting induction hypotheses.

In all these cases, failing times were lower than the final

verification time in Figure 6.

Differences between the examples across tools. We ver-

ify bounded counter for a parametric bound, whereas Ca-

per and Voila fix the bound to 3. Starling verifies a static ver-

sion of Peterson’s algorithm and a bounded reader-writers

lock, whereas we verify a heap-allocated version.

Manual Iris proofs. When comparing with manual Iris

proofs, we see that Diaframe takes care of most, if not all,

of the proof work. Relatively easy examples like spin lock
and cas counter are verified without manual proof work.

For harder examples like ticket lock and bag stack, Dia-
frame saves more than 50 lines of proof work.

Starling. Starling [90] functions as a proof outline checker :
the user has to supply the intermediate program states after

each atomic step, and Starling will then verify whether this

transition is valid. Starling is a standalone tool written in

F#, and can use different backends as trusted oracles—the

Z3 SMT solver [27], or GRASShopper for heap-based rea-

soning [73]. Its logic is based on the Views framework [29],

which enables Starling to express various concurrent rea-

soning patterns into one core proof rule. This core proof

rule produces a finite set of verification conditions for each

atomic step, which can then be sent to the trusted oracle. This
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efficient mapping of atomic steps to verification conditions,

together with the ease of defining custom concurrent rea-

soning patterns, gives Starlings proof automation its power.

The downside of the relatively simple logic of Starling is

reduced expressivity—it cannot prove functional correctness

of e.g., the bag stack. There is also no support for verifying
method calls, preventing verification of clients.

Comparing our statistics to those of Starling, one can see

that we usually require fewer lines of proof work. This is

not surprising, as Starling is a proof outline checker, and

thus requires a pre- and postcondition for every atomic op-

eration. A notable exception to the smaller proof obligation

is Peterson’s algorithm. Stating and proving the invariant

for this algorithm in Iris turned out to be quite difficult, and

it seems Starling’s constraint-based approach is a better fit

here. In Figure 6, we counted postconditions of atomic oper-

ation that are not the last operation as proof work, as well

as non-comment lines in program-specific external files.

Caper. Caper [31] is written in Haskell, and uses the Z3

SMT solver [27] as a trusted oracle. The target programs

are written in a custom language, and the proof system is

based on the CAP logic [30]. This logic contains shared re-

gions (similar to Iris’s invariants) and guard algebras (similar

to Iris’s ghost state/logical resources) to accommodate rea-

soning about fine-grained concurrency. The cornerstones of

Caper’s proof automation are backtracking and abduction.
These allow Caper to infer that regions should be opened

when verifying the execution of a statement in a program. A

failure to satisfy some precondition is used as an indication

to reattempt the proof with opened regions.

When comparing Diaframe to Caper, we can see that Ca-

per outperforms Diaframe in terms of proof work and an-

notation overhead. For one, their notations can give imple-

mentations and specifications of functions in one go. Caper’s

proof automation is also simply more powerful—notably, it

will ‘blindly’ open regions in the hope they help proving the

goal. Although this makes Caper’s automation more pow-

erful, it also makes it slow on failing examples as pointed

out by Wolf et al. [91]. In these cases, Diaframe’s automation

will simply stop at the point where it cannot make progress,

while Caper will backtrack through all possible options. In

the verification of clients, we outperform Caper because Dia-

frame’s verification is compositional—unlike Caper, we do

not need to restate and re-verify a library to verify a client.

For Caper, the lines of proof work in Figure 6 consist

of no-ops such as assert (cnt = 1 ? true : true), that
are used to force case-splits in Caper’s proof engine.

Voila. Voila [91] is a proof outline checker for the TaDA
logic [25]. Voila takes a user-provided proof outline, turns it

into a proof candidate, then verifies this with Viper [65]. Like

Caper, Voila uses regions and guard algebras for fine-grained

concurrent reasoning. Some program statements need addi-

tional annotations containing the relevant reasoning steps,

like opening regions. Voila’s automation is a combination of

applying syntax-driven rules whenever possible, asking the

user to provide key rules of the proof, and then using a set

of heuristics to fill in gaps for nearly applicable rules.

In the examples in our benchmark, Diaframe usually re-

quires fewer total lines, and fewer lines of user guidance than

Voila. Again, this is not surprising, since like Starling, Voila

is a proof outline checker. Voila also does not support all the

guard algebras that Caper does. This prevents verification of

e.g., the queue. However, Voila is capable of (and focused at)

verifying TaDA-style logically-atomic specifications. While

Iris supports these, Diaframe does not. For Voila, the lines of

proof work in Figure 6 consist of explicit calls to open/close

regions, and explicit uses of atomic specifications.

7 Related Work
There is a lot of work on non-automated verification [47, 50,

59] in foundational tools [3, 17, 39, 45, 67, 77]. We focus on

related work in automated verification. Starling [90], Caper

[31] and Voila [91] have been covered in §6.

Steel. Steel [36, 83] is a language for developing and veri-

fying concurrent programs in a concurrent separation logic

descendant of Iris [45], written in F* [82]. Similar to Diaframe,

Steel designed a format to automate the application of certain

rules. Their approach uses a notion of Hoare quintuples, and

relies on a combination of SMT solving and AC-matching.

Diaframe uses weakest preconditions, and avoids reasoning

up to commutativity: the order in preconditions and invari-

ants is relevant. Steel excels in automatically proving pure

side conditions, leveraging F*’s native use of the Z3 SMT

solver [27]. As listed in §8, our support for pure side condi-

tions is rather weak, and would benefit from stronger pure

automation. It is hard to compare Steel’s automation for fine-

grained concurrency to ours, since Fromherz et al. [36] only

covered a spinlock and a parallel increment.

Verification in a weak-memory setting. Summers and

Müller [79] presented a prototype tool which can automat-

ically verify fine-grained concurrent programs in a weak

memory model. It works by encoding parts of separation

logics for weak memory [33, 34, 88] into Viper [65], similar

to Voila’s approach [91]. It would be interesting to extend

Diaframe with support for weak memory using one of the

Iris-based logics for weak memory [26, 49, 62].

Bedrock. Bedrock [21, 22] is a mostly-automatic founda-

tional tool for verifying sequential programs in an assembly-

like language. Its separation-logic based automation employs

techniques that are somewhat similar to those of Diaframe.

It tries to syntactically match hypotheses and goals, ‘cross-

ing off’ hypotheses that appear directly in the goal. More

involved reasoning steps, like updating ghost-state, require

explicit annotations, and we expect that this would not give

the amount of automation that Diaframe provides.
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RefinedC. RefinedC [76] is a recent Iris-based tool for

automatic and foundational verification of C programs. One

of the main ingredients of RefinedC’s automation is the ‘sep-

aration logic programming language’ Lithium, which, like

Diaframe, is based on ideas from linear logic programming.

Lithium and Diaframe employ the same rules for introducing

variables and hypotheses, prove separating conjunctions in a

deterministic left-to-right fashion, and do not backtrack once

a hint has been used. Lithium’s grammar is more restricted

than Diaframe’s—it does not contain modalities, so it cannot

handle complicated ghost state or Iris’s invariants. It is also

targeted specifically at proving RefinedC’s typing judgments,

while we target general Iris weakest preconditions. By en-

capsulating some concurrency reasoning in typing rules,

RefinedC can support limited forms of fine-grained concur-

rency, like a spin-lock and a one-time barrier. RefinedC has

stronger automation and simplification procedures for pure

goals, focused at handling complicated sequential programs,

which might be valuable for Diaframe in the future too.

Other non-foundational verification tools. Other au-
tomated verification tools are Verifast [10, 44], SmallfootRG

[8, 16], and VerCors [69]. The automation of Verifast is very

fast and requires little help for sequential code, but many

annotations for fine-grained concurrent code compared to

other tools. SmallfootRG is targeted at memory safety, thus

cannot prove full functional correctness like Diaframe. Like

Diaframe, Verifast and Smallfoot use automation by symbolic

execution. An important difference is the use of a symbolic

heap, which facilitates permission and value queries. We do

not have this option in Iris, so instead of operating on the

entire heap at once, we operate on a single hypothesis at a

time. VerCors uses process-algebras in addition to separa-

tion logic to reason about fine-grained concurrent programs.

This approach does lead to reduced expressivity, but has

been shown to scale to interesting examples [70].

Logic programming languages for linear and sepa-
ration logic. There is much prior work on linear logic pro-

gramming [5, 19, 40, 43], from which our work has drawn

inspiration. Like Diaframe, these works use a goal-directed

proof-search procedure, and interpret connectives as proof-

search instructions. They are usually restricted to the (linear)

hereditary Harrop fragment of the logic, but enjoy complete-

ness results on this fragment. Diaframe poses less restrictions

on goals, but is necessarily incomplete. Inspired by focusing

[1, 57] Diaframe first performs invertible operations.

Separation logic solvers and bi-abduction. The litera-
ture abounds with solvers for (first-order) separation logic

[23, 55, 56, 72, 75, 84]. These usually focus on a specific set

of atoms (e.g., the symbolic heap fragment [7]), or intricate

recursive structures while enjoying completeness results.

Diaframe is parametric in the set of atoms, but not able

to handle recursive definitions without user-defined hints.

Calcagno et al. [15] and Brotherston et al. [14] also use bi-

abduction, but with a dual goal: shape-analysis, i.e., inferring
specifications for programs. They present recursive rules

and a decision procedure to solve the bi-abduction problem,

but in a more confined separation logic.

8 Limitations and Future Work
We have introduced Diaframe—the first automated and foun-
dational tool for verification of fine-grained concurrent pro-

grams. As the benchmarks in Figure 6 show, Diaframe is com-

petitive with automatic non-foundational tools, but there are

still plenty of directions for improvements.

A limitation of Diaframe is that it cannot handle goals that

do not fit the grammar. In particular, there is no support for

magic wands in invariants. Although these can be avoided in

most cases, some examples remain out of reach—for example,

the barrier verified by Jung et al. [45].

Some manual proof work is caused by the lack of support

for recursive definitions, for which we would like to generate

proof hints automatically. In this paper, we have focused on

automating the separation logic part of the verification, but

for larger examples we want to improve the automation and

simplification procedures for pure conditions.

When our automation gets stuck on a goal, it can some-

times be unclear why this goal remains, and what happened

before. This occurs most often in programs with multiple

branches and/or invariants with disjunctions. We leave im-

proving the user interaction in these cases for future work.

Since we use syntactic unification to drive automation,

support for (general) indexing in an array is poor. Verification

of data structures such as ring buffers seem like a challenge.

It would be useful to develop appropriate hints for arrays.

The verification time of Diaframe is relatively slow. Al-

though 18 out of 24 examples verify in under a minute, the

barrier example is our slowest, taking 14 minutes. We think

this can still be improved, and wish to investigate this.

Diaframe’s proof search strategy could, in principle, be

used whenever goals can be rewritten into Diaframe’s entail-

ment format. This can be done for logically-atomic specifica-

tions, and can also be done for ReLoC’s refinement judgment

[37, 38]. However, both these types of goals present addi-

tional challenges for automatic verification—one of which

is that there are multiple seemingly valid (and syntactically

similar) ways to proceed with a proof. In future work, we

wish to investigate whether this can be addressed.
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