
251

Modular Verification of Safe Memory Reclamation in
Concurrent Separation Logic

JAEHWANG JUNG, KAIST, Republic of Korea

JANGGUN LEE, KAIST, Republic of Korea

JAEMIN CHOI, KAIST, Republic of Korea

JAEWOO KIM, KAIST, Republic of Korea

SUNHO PARK, KAIST, Republic of Korea

JEEHOON KANG, KAIST, Republic of Korea

Formal verification is an effective method to address the challenge of designing correct and efficient con-

current data structures. But verification efforts often ignore memory reclamation, which involves nontrivial

synchronization between concurrent accesses and reclamation. When incorrectly implemented, it may lead to

critical safety errors such as use-after-free and the ABA problem. Semi-automatic safe memory reclamation

schemes such as hazard pointers and RCU encapsulate the complexity of manual memory management in

modular interfaces. However, this modularity has not been carried over to formal verification.

We proposemodular specifications of hazard pointers and RCU, and formally verify realistic implementations

of them in concurrent separation logic. Specifically, we design abstract predicates for hazard pointers that

capture the meaning of validating the protection of nodes, and those for RCU that support optimistic traversal

to possibly retired nodes. We demonstrate that the specifications indeed facilitate modular verification in

three criteria: compositional verification, general applicability, and easy integration. In doing so, we present

the first formal verification of Harris’s list, the Harris-Michael list, the Chase-Lev deque, and RDCSS with

reclamation. We report the Coq mechanization of all our results in the Iris separation logic framework.

CCS Concepts: • Theory of computation → Separation logic; Program verification; Concurrent
algorithms.

Additional Key Words and Phrases: safe memory reclamation, separation logic, Iris

ACM Reference Format:
Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang. 2023. Modular

Verification of Safe Memory Reclamation in Concurrent Separation Logic. Proc. ACM Program. Lang. 7,

OOPSLA2, Article 251 (October 2023), 36 pages. https://doi.org/10.1145/3622827

1 INTRODUCTION
It is challenging to design correct and efficient concurrent data structures. An effective method

to address the challenge is formal verification, which not only increases our confidence in the

correctness of the algorithm but also help us improve it. As such, various concurrent data structures

have been formally verified.

Authors’ addresses: Jaehwang Jung, jaehwang.jung@kaist.ac.kr, KAIST, Daejeon, Republic of Korea; Janggun Lee, janggun.

lee@kaist.ac.kr, KAIST, Daejeon, Republic of Korea; Jaemin Choi, jaemin.choi98@kaist.ac.kr, KAIST, Daejeon, Republic

of Korea; Jaewoo Kim, jaewoo.kim@kaist.ac.kr, KAIST, Daejeon, Republic of Korea; Sunho Park, sunho.park@kaist.ac.kr,

KAIST, Daejeon, Republic of Korea; Jeehoon Kang, jeehoon.kang@kaist.ac.kr, KAIST, Daejeon, Republic of Korea.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART251

https://doi.org/10.1145/3622827

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

HTTPS://ORCID.ORG/0000-0001-6099-2644
HTTPS://ORCID.ORG/0009-0002-0047-7717
HTTPS://ORCID.ORG/0000-0003-2023-6267
HTTPS://ORCID.ORG/0009-0003-3800-9879
HTTPS://ORCID.ORG/0009-0000-5380-1969
HTTPS://ORCID.ORG/0000-0002-2115-0871
https://doi.org/10.1145/3622827
https://orcid.org/0000-0001-6099-2644
https://orcid.org/0009-0002-0047-7717
https://orcid.org/0000-0003-2023-6267
https://orcid.org/0009-0003-3800-9879
https://orcid.org/0009-0000-5380-1969
https://orcid.org/0000-0002-2115-0871
https://doi.org/10.1145/3622827

251:2 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

C1 fun pop(st):

C2 R rcu_lock(tid)

C3 loop:

C4 N h := (*st).head

C4 H h := protect(tid, &(*st).head)

C4 R h := (*st).head

C5 if h == NULL:

C6 H unprotect(tid)

C6 R rcu_unlock(tid)

C7 return None

C8 x := (*h).data; n := (*h).next

C9 if CAS(&(*st).head, h, n):

C10 N // free(h) incurs errors

C10 H retire(h); unprotect(tid)

C10 R retire(h); rcu_unlock(tid)

C11 return Some(x)

(a) pop() code without reclamation (red lines with N),
with hazard pointers (green lines with H), and with

RCU (blue lines with R).

ℓhead

10

ℓ1

20

ℓ2(1) (2)

(3) CAS(ℓhead, ℓ1, ℓ2)

(4) free(ℓ1)
𝑇2: use-after-free

(b) 𝑇2 accesses ℓ1 already reclaimed by 𝑇1.

ℓhead

11

ℓ1 (recycled)

20

ℓ2

𝑇3: ABA CAS(ℓhead, ℓ1, ℓ2)

(c) 𝑇3 uses stale values for CAS.

Fig. 1. Problems of immediately reclaiming detached block illustrated in Treiber’s stack [Treiber 1986].

However, the existing verifications of concurrent data structures often ignorememory reclamation,

which involves nontrivial synchronization between concurrent accesses and reclamation of the

same memory block. For instance, consider Treiber’s concurrent stack [Treiber 1986] presented in

Fig. 1a. (For now, ignore those lines marked with H or R.) A Treiber’s stack is essentially a linked list

of elements with its head being the stack top. Fig. 1b illustrates the procedure of the pop() method.

When a thread invokes pop() of a stack at address st, it (1) reads the pointer to the first block ℓ1
from st’s head field (line C4); (2) if ℓ1 is NULL, returns None (C5-7); (3) otherwise, reads ℓ1’s data
and the pointer to its next block ℓ2 (line C8); and (4) detaches ℓ1 by performing compare-and-swap

(CAS) on head that atomically replaces ℓ1 with ℓ2 (line C9). If successful, pop() returns ℓ1’s data
(line C11), and otherwise, it retries from the beginning (line C3). (5) To avoid memory leaks, it

should eventually reclaim the detached block ℓ1. What if pop() immediately reclaims ℓ1 at line

C10? Then the following critical errors would occur:

• Use-After-Free (Fig. 1b): Suppose threads𝑇1 and𝑇2 concurrently invoke pop() to take ℓ1. Then
a use-after-free error would occur in the following scenario:𝑇2 loads the pointer ℓ1 (line C4);𝑇1
detaches and reclaims ℓ1 (line C10); and 𝑇2 accesses ℓ1 (line C8) that is already reclaimed by 𝑇1.

• ABA Problem (Fig. 1c): Suppose another thread𝑇3 concurrently invokes pop() to take ℓ1. Then
its result would not be stack-like (i.e., not linearizable [Herlihy andWing 1990]) in the following

scenario: 𝑇3 accesses ℓ1 and the node’s value 10 (line C4-8); 𝑇1 invokes pop() twice, each of

which detaches and reclaims ℓ1 (resp. ℓ2) and returns 10 (resp. 20); 𝑇1 invokes push(11), which
allocates a block that happens to be the recycled ℓ1, and inserts ℓ1 with the new value 11 at

the top; 𝑇3 successfully performs a CAS(ℓhead, ℓ1, ℓ2) (line C9), and returns 10. This behavior

is invalid for a stack because 𝑇3’s pop() returns 10 which is already popped by 𝑇1. At the

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:3

high level, this error occurs because 𝑇3 cannot distinguish ℓ1 between the older and the newer

allocations.

To prevent such errors, pop() should defer the deallocation of ℓ1 until all the other threads have

finished referencing it, so that each thread’s accesses are safe and the logical identities of pointers

do not change within an operation. The simplest solution is to use tracing garbage collectors (GC)

that automatically reclaim memory blocks when it is safe to do so. While programmers do not need

to care about reclamation when using GC, it is usually unavailable for low-level systems, and even

if available, it may not be the best option due to its performance overhead. However, it is difficult

to design a correct and efficient manual memory management method for each case.

1.1 Modular Implementation of Memory Reclamation
To alleviate the difficulty of manual memory management, various semi-automatic safe memory

reclamation schemes (SMR schemes from now on) have been proposed, e.g., hazard pointers [Michael

et al. 2023; Michael 2004], RCU [Fraser 2004; Harris 2001; Hart et al. 2007; McKenney and Slingwine

1998; McKenney et al. 2023], and their hybrids [Alistarh et al. 2017, 2018; Brown 2015; Kang and

Jung 2020; Nikolaev and Ravindran 2020, 2021; Sheffi et al. 2021; Singh et al. 2021; Wen et al. 2018].

SMR schemes modularize memory management by separating concerns between data structure

operation and reclamation. They provide an abstraction layer consisting of (1) a function to protect

pointers to prevent their deallocation; and (2) a function to retire pointers so that they can later be

reclaimed when no threads are protecting them. Concurrent data structures only need to use these

functions (without understanding their implementation) to protect pointers before accessing and to

retire pointers after detaching. Then the synchronization between the protection and reclamation

is automatically undertaken by the SMR scheme.

Hazard Pointers. For instance, hazard pointers ensures safe memory reclamation in Treiber’s

stack as follows (green lines marked with H in Fig. 1a). (1) At line C4, we replace the load instruction
(*st).head of the head pointer with a function call protect(tid, &(*st).head) that loads a

protected pointer h to the head block for the current thread tid.1 This ensures that the thread can

safely dereference h at line C8. (2) At lines C6 H and C10 H, before returning from the function, we

invoke unprotect(tid) to revoke the protection of the pointer h. (3) At line C10 H, after detaching
h from the stack, we invoke retire(h) to schedule the reclamation of h. The protect() function

achieves its goal by publishing the pointer value to the thread’s protected pointer slot, and the

reclaimer frees a retired pointer only if it is not written in any of those slots.

RCU. For another example, RCU provides a coarse-grained protection for all pointers accessible

inside a critical section delimited by rcu_lock(tid) and rcu_unlock(tid). RCU ensures safe

memory reclamation in pop() as follows (blue lines marked with R in Fig. 1a). (1) We first enter a

critical section with rcu_lock(tid) (line C2 R). (2) All pointers obtained inside the critical section,
e.g., h at line C4 are protected in the critical section. Therefore, the accesses to h at line C8 are safe

without any further action. (3) After detaching h from the stack (line C10 R), we call retire(h).
(4) Finally, before returning from pop() (lines C6 R and C10 R), we call rcu_unlock(tid) to exit

the critical section and thus revoke the protection. RCU implements protection by deferring the

reclamation of each retired pointer until all threads end their critical section in which the pointer

may be accessed.

1
For concise presentation, we use a simple version of hazard pointers in which each thread can protect a single pointer. In

our formalized verification, we use the generalized version that allows each thread to protect an unbounded number of

pointers. In that version, protection is identified by slot ID instead of thread ID.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:4 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

1.2 Problem: Non-Modular Verification of Memory Reclamation
However, the modularity of the SMR schemes has not been carried over to formal verification of

concurrent data structures with reclamation. Specifically, each of the state-of-the-art verification

efforts [Gotsman et al. 2013; Tassarotti et al. 2015; Wolff 2021] lacks at least one of the following

desired properties. (1) Compositional verification: Concurrent data structures and SMR schemes

should be individually verified and then composed without understanding each other’s implemen-

tation. (2) General applicability: The verification method should be powerful enough to verify a

variety of concurrent data structures with SMR schemes. (3) Easy integration: The verification of

concurrent data structures with SMR schemes should be easily adapted from the verification of the

version without reclamation. With these criteria, we briefly discuss the existing verification efforts

in the following (see §8 for more detail).

Gotsman et al. [2013] verified data structures integrated with hazard pointers and RCU using

a temporal separation logic. They use temporal invariants enforcing that the pointers which

“have been protected since they were reachable” are still allocated. However, their approach is not

compositional as it tightly couples the implementation details of SMR schemes and data structures.

Specifically, the two sub-propositions “protected” and “reachable” are about implementation details

of SMR scheme and data structure, respectively. While this method seems to be generally applicable

in principle, it is not demonstrated for a wide range of examples.

Tassarotti et al. [2015] verified a single-writer multi-reader linked list integrated with quiescent-

state-based RCU [Desnoyers et al. 2012; Hart et al. 2007]. Their method models manual memory

management purely in terms of ownership transfer, without relying on temporal logic. In addition,

their verification assumes a more realistic relaxed memory model [Batty et al. 2011; Kang et al.

2017; Lahav et al. 2017] in which memory accesses can be reordered due to hardware and com-

piler optimizations, whereas most of the prior work assumes the sequentially consistent memory

model [Lamport 1979]. However, their approach is not compositional, because they did not use a

general specification of RCU to verify the linked list. Instead, they monolithically verified a linked

list integrated with an RCU implementation using an invariant that tightly couples the operation

history of the linked list and RCU internals and assumes the uniqueness of the writer thread. In

addition, while the core idea of their method is generally applicable, it is not applied to other SMR

schemes and data structures.

Meyer and Wolff [2019a,b]; Wolff [2021] developed an automatic linearizability checker for

concurrent data structures with SMR schemes. Their verification is compositional as it is parametric

over the specifications for each SMR scheme. Their method is easy to integrate as their verifier

automatically checks whether a given linearizable concurrent data structure without reclamation

can be adapted to that with reclamation. However, their method is not generally applicable because

it relies on a linearizability checker that does not scale to sophisticated non-blocking data structures

such as Harris’s list [Harris 2001].

1.3 Contributions: Modular Verification of Memory Reclamation
We propose modular specifications of hazard pointers and RCU, formally verify realistic implemen-

tations of them, and demonstrate that the specifications indeed facilitate modular verification of

memory reclamation. Specifically, we make the following contributions.

• In §2, we describe the challenges in designing and verifying modular specifications of hazard

pointers and RCU, which include the subtleties in validating protection of nodes in hazard

pointers, and RCU’s support for optimistic traversal to possibly retired nodes. In doing so, we

review the necessary technical background on hazard pointers, RCU, and separation logic-based

verification of concurrent data structures.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:5

C11 fun protect(tid, src):

C12 p := *src

C13 loop:

C14 protected[tid] := p

C15 p’ := *src

C16 if p’ == p:

C17 return p’

C18 p := p’

C21 fun unprotect(tid):

C22 protected[tid] := NULL

C31 fun retire(p):

C32 retired.push(p)

C33 if /* some condition */:

C34 do_reclamation()

C41 fun do_reclamation():

C42 for r in retired.pop_all():

C43 if r in protected:

C44 retired.push(r)

C45 else:

C46 free(r)

Fig. 2. A simplified implementation of hazard pointers.

• In §3, we propose a specification of hazard pointers. The key idea lies in designing abstract

predicates to precisely capture the meaning of validating protection. For presentation purposes,

we make a simplifying assumption that a memory block’s contents are immutable in this

section and lift the assumption in §5.

• In §4, we discuss the key ideas for verifying the above specification.

• In §5, we generalize the above specification to mutable memory blocks.

• In §6, we propose a specification of RCU. The key idea lies in designing abstract predicates to

precisely capture the guarantees provided by a critical section and to encapsulate the reasoning

about the link structure for optimistic traversal.

• In §7, we evaluate themodularity of our specifications of hazard pointers and RCUwith the three

criteria discussed in §1.2. Specifically, we have compositionally verified realistic implementations

of hazard pointers and RCU (based on Meta’s Folly library [Meta 2023] and the non-blocking

epoch-based algorithm by Parkinson et al. [2017], respectively) and the functional correctness

of 9 non-blocking data structures with reclamation (general applicability). We observe that,

compared to their counterparts without reclamation, the verification overhead is roughly

proportional to the implementation overhead (easy integration).

In §8 and 9, we conclude with related and future work. In the supplementary material [Jung et al.

2023], we report the Coq mechanization of all our results in the Iris separation logic framework [Iris

Team 2023b; Jung et al. 2018, 2015; Krebbers et al. 2017].

2 BACKGROUND AND CHALLENGES
2.1 Hazard Pointers
Fig. 2 shows a simplified implementation of hazard pointers. To ensure safe use of protected pointers,

it defers the reclamation of retired pointers until they are no longer protected by any threads.

On the one hand, retire(p) adds p to the retired pointer list (retired, line C32). When some

implementation-specific conditions are met—e.g., the number of retired pointers exceeds a certain

threshold (line C33), retire() calls do_reclamation() to reclaim those retired pointers that are

not currently protected (line C34). The do_reclamation() function first atomically removes all

pointers from the retired pointer list (line C42). Then it checks if each pointer is in the protected

pointer list (protected, line C43). If so, the pointer is added back to the retired pointer list (line

C44). Otherwise, the pointer is reclaimed (line C46).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:6 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

ℓhead

10

ℓ1

𝑇1: Is traversing ℓ1 → ℓ2 safe?

20

ℓ2

30

ℓ3

𝑇2: Detaching and retiring ℓ1 and ℓ2

Fig. 3. Traversing possibly retired nodes.

On the other hand, protect(tid, src) loads a pointer, say p, from src (line C12), and stores p
in the thread tid’s slot of the protected pointer list (line C14). However, it is not yet safe to use p
because it could have already been retired and then freed by other threads. Therefore, one should

validate that the pointer is not retired. This is usually done by checking that the memory block is

still reachable from the data structure, assuming that only detached (i.e., unreachable) blocks are

retired. For example, protect() validates the protection by checking whether src still points to p
(line C15-16).

2
If validation fails, protect() retries from the beginning (line C13-18).

Verification Challenges. Validation makes hazard pointers more difficult to apply (and verify)

than it seems in two aspects.

(1) The requirement for validation is fundamentally incompatible with optimistic traversal to

possibly retired nodes, a common optimization pattern in concurrent data structure design.

For instance, in Fig. 3 where 𝑇2 detaches and retires ℓ1 and ℓ2, is it safe for 𝑇1 to traverse from

ℓ1 to ℓ2? This is unsafe when using hazard pointers because ℓ2 could have been retired and

reclaimed before 𝑇2 tried protecting it. Then the only reasonable option for 𝑇2 is to restart the

traversal from ℓhead, possibly incurring performance degradation. Therefore, when applying

hazard pointers, the data structure must be modified to handle such scenarios. For example,

the Harris-Michael list [Michael 2002] is an adaptation of Harris’s lock-free list [Harris 2001]

that forgoes optimistic traversal for compatibility with hazard pointers.

(2) But still, how can 𝑇1 detect that ℓ2 may have been retired? In general, protect()’s validation
does not work: protect((*ℓ1).next) would return ℓ2 despite that it might have been already

retired. Therefore, sophisticated data structures resort to custom validation strategies that

exploit the data structures’ complex invariant. For example, the Harris-Michael list requires

collaboration from the deleting thread: before 𝑇2 detaches ℓ1, it first marks the link ℓ1 → ℓ2
by setting the least significant bit (LSB) of the pointer value. Then, if 𝑇1 sees that ℓ1 → ℓ2 is

marked, the validation of ℓ2 fails conservatively.
3
This is because if ℓ2 is detached and yet ℓ1

still links to ℓ2, then ℓ1 must have been detached too, by the definition of “detaching”.

These subtleties are sometimes misunderstood even by experienced programmers and lead to

critical bugs [Anderson et al. 2021]. In §3 and §5, we will capture such subtleties within a powerful

yet modular specification of hazard pointers.

2
The comparison of pointers at this point may involve an invalid (dangling) pointer, which is an undefined behavior in

C/C++’s provenance-based pointer semantics. Since the comparison of invalid pointers is unavoidable in SMR schemes and

many other low-level concurrent algorithms, there is a proposal to introduce a special pointer type that is exempted from

this strict semantics [McKenney et al. 2021]. We assume the proposed lenient semantics.

3
The marking process, called logical deletion, is required even when hazard pointer is not used. This is a common technique in

concurrent data structure design for synchronizing concurrent updates in linked data structures. Hazard pointers piggyback

on this mechanism for validation.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:7

2.2 RCU
RCU is more straightforward to use than hazard pointers thanks to critical section-based protection:

a pointer is protected throughout a critical section if it were not retired before the beginning of

the critical section [McKenney et al. 2023]. Specifically, in Fig. 3, it is safe to perform optimistic

traversal from ℓ1 to ℓ2 because RCU’s protection condition implies that all memory blocks reachable

by traversing the data structure—including just retired ℓ2—are protected. Therefore, users can

seamlessly integrate RCU into existing data structures such as Harris’s list without worrying about

validation and restarting.

Verification Challenges. However, the formal verification of the safety of optimistic traversal

using RCU is challenging. To guarantee the protection of reachable blocks, one should deduce that

they were not retired before the beginning of the critical section by reasoning about the history of

updates of links among memory blocks and their retirement. This has been tackled by Tassarotti

et al. [2015] for a fixed data structure with the simplifying assumption that updates are done by a

single writer thread.
4
In §6, we will generalize their approach and encapsulate this reasoning in a

modular specification for RCU.

2.3 Verification of Treiber’s Stack without Reclamation
We review a separation logic-based verification of Treiber’s stack without reclamation. We will

adapt this proof to the version with hazard pointers (§3) and RCU (§6).

Separation Logic Primer. First, we briefly overview the fragment of the Iris separation logic we

will be using. Some concepts not explained here will be gradually introduced along the way. We

refer the reader to Jung et al. [2018, §2] for a more detailed overview.

𝑃,𝑄 ∈ iProp ::= 𝜙 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | ∃𝑥 . 𝑃 | ∀𝑥 . 𝑃 | . . . higher-order logic

ℓ
𝑞↦−→ 𝑣 | 𝛾 𝑞

Z==⇒ 𝑣 | 𝑃 | . . . separation logic resources

𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | 𝑃 𝑄 | 2 𝑃 | . . . separation logic connectives

{𝑃 } 𝑒 {𝑣 .𝑄 (𝑣)} | ⟨𝑥 . 𝑃 (𝑥)⟩ 𝑒 ⟨𝑣 .𝑄 (𝑥, 𝑣)⟩ | . . . program logic

iProp is the type of Iris’s separation logic proposition. Based on higher-order logics, iProp includes

usual propositions and connectives. But more importantly, an iProp asserts ownership of resources.

For example, the points-to assertion ℓ ↦→ 𝑣 (shorthand for ℓ
1↦−→ 𝑣 , explained later), represents the

exclusive ownership of a memory block at location ℓ that contains a value 𝑣 . Such resources can be

combined with the separating conjunction (∗). For instance, the stack illustrated in Fig. 1b before

pop() owns the following resource (where {.field = 𝑣, . . .} is a struct value):
ℓhead ↦→ {.head = ℓ1} ∗ ℓ1 ↦→ {.data = 10, .next = ℓ2} ∗ ℓ2 ↦→ {.data = 20, .next = NULL} .
A Hoare triple of the form {𝑃 } 𝑒 {𝑣 .𝑄 (𝑣)} asserts that given resources satisfying the precondition

𝑃 , program 𝑒 evaluates to 𝑣 without errors such as null pointer dereferences, and returns the

resource satisfying the postcondition 𝑄 (𝑣). For example, the owner of ℓ ↦→ 𝑣 can read from, write

to, and reclaim ℓ :

(PointsTo-Read)

{ℓ ↦→ 𝑣} *ℓ {𝑣 . ℓ ↦→ 𝑣}
(PointsTo-CAS-Success)

{ℓ ↦→ 𝑣} CAS(ℓ,𝑣,𝑤) {true. ℓ ↦→ 𝑤 }
(PointsTo-Free)

{ℓ ↦→ _} free(ℓ) {True} .

However, in the stack example, threads do not exclusively own the resources, but share them. Iris

provides the invariant assertion of the form 𝐼 to describe a shared resource 𝐼 that can be accessed

4
Though note that Tassarotti et al. [2015] assume a more realistic relaxed memory model while we focus on the SC model.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:8 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

by multiple threads. In particular, invariants provide the access rule:

(Inv-Acc)

{𝐼 ∗ 𝑃 } 𝑒 {𝐼 ∗𝑄} 𝑒 is physically atomic

𝐼 ⊢ {𝑃 } 𝑒 {𝑄}

The rule says that, if 𝐼 holds, then during the duration of an atomic instruction 𝑒 that evaluates in

a single step, the program can temporarily open the invariant to use the content 𝐼 , and it should

close the invariant by reestablishing 𝐼 after the execution.5 Invariant assertions are duplicable, i.e.,

𝐼 ⊣⊢ 𝐼 ∗ 𝐼 (entailment in both directions), so they can be freely shared.
6
In the stack example,

threads share the invariant containing the stack nodes.

Specification. In this paper, we focus on proving the following simple safety specification of

pop(), where IsStack(𝑠𝑡) is an invariant that describes the shared resources in a Treiber’s stack

located at 𝑠𝑡 (defined below).

IsStack(𝑠𝑡) ⊢ {True} pop(𝑠𝑡) {𝑣 . True} .

In our Coq development, we prove a much stronger specification based on logically atomic Hoare

triples [da Rocha Pinto et al. 2014; Jacobs and Piessens 2011; Jung 2019; Jung et al. 2015; Svendsen

and Birkedal 2014]:

⟨𝑥𝑠. Stack(𝑠𝑡, 𝑥𝑠)⟩ pop(𝑠𝑡) ⟨𝑣 . ∃𝑥𝑠′ . Stack(𝑠𝑡, 𝑥𝑠′) ∗∨ 
𝑣 = None ∧ 𝑥𝑠 = 𝑥𝑠′ = []

∃𝑥 . 𝑣 = Some(𝑥) ∧ 𝑥𝑠 = 𝑥 :: 𝑥𝑠′ ⟩ .
A logically atomic triple of the form ⟨𝑥 . 𝑃 (𝑥)⟩ 𝑒 ⟨𝑣 .𝑄 (𝑥, 𝑣)⟩ is a special Hoare triple (indicated by

⟨angle brackets⟩) that says 𝑒 behaves as if it were an atomic instruction. Specifically, it reads: at

𝑒’s commit point (an atomic instruction inside 𝑒), 𝑒 takes 𝑃 (𝑥) as precondition, evaluates to 𝑣 , and
returns postcondition 𝑄 (𝑥, 𝑣). Logically atomic triples encode linearizability [Herlihy and Wing

1990] in program logic. For example, the above specification implies that pop() is a linearizable
implementation of stack’s pop method: at the commit point, i.e., the linearization point, pop()
atomically transforms the stack’s state from 𝑥𝑠 to 𝑥𝑠′, and the result is either None if 𝑥𝑠 was empty

(the first disjunct) or Some(𝑥) where 𝑥 is the head of 𝑥𝑠 (the second disjunct).

Logically atomic triples can be used with the following rules.

(LAT-Hoare)

⟨𝑃⟩ 𝑒 ⟨𝑄⟩
{𝑃 } 𝑒 {𝑄}

(LAT-Inv-Acc)

⟨𝐼 ∗ 𝑃⟩ 𝑒 ⟨𝐼 ∗𝑄⟩
𝐼 ⊢ ⟨𝑃⟩ 𝑒 ⟨𝑄⟩

Clearly, a logically atomic triple implies the ordinary counterpart (LAT-Hoare). More importantly,

logical atomicity of 𝑒 means that 𝑒 can access invariants as if it were an atomic instruction (LAT-Inv-

Acc). Therefore, specifications with logically atomic triples allow clients to atomically access the

current state of the object under question, enabling them to build sophisticated protocols around

them. We take advantage of this for specifying SMR schemes in §3 and 6. However, proving logically

atomic triples involves many technicalities orthogonal to this work. So, for a concise presentation,

we discuss the details in the appendix [Jung et al. 2023].

5
For a concise presentation, we omit Iris’s mechanisms for preventing opening the same invariant twice.

6
More precisely, invariants are persistent. Persistent propositions represent some knowledge that holds forever, rather than

asserting ownership of resources.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:9

Fractional and Leaking Points-To Predicates. We now formally define IsStack using a predicate

describing the valid states of Treiber’s stack.

IsStack(𝑠𝑡 : Loc) := ∃ℎ : Loc, 𝑥𝑠 : List(Val). 𝑠𝑡 ↦→ {.head = ℎ} ∗ LinkedList(ℎ, 𝑥𝑠)

LinkedList(ℎ, 𝑥𝑠) :=
∨ 

ℎ = NULL ∧ 𝑥𝑠 = []
∃𝑥, 𝑥𝑠′, 𝑛. 𝑥𝑠 = 𝑥 :: 𝑥𝑠′

∗ ℎ ↦→? {.data = 𝑥, .next = 𝑛} ∗ LinkedList(𝑛, 𝑥𝑠′)

As expected, the content of IsStack is a generalization of the stack resource discussed above. In

particular, LinkedList(ℎ, 𝑥𝑠) consists of the points-to assertions of every memory block in the linked

list of elements 𝑥𝑠 starting from the head node ℎ.

However, notice that LinkedList uses a variant of points-to assertion ℓ ↦→? 𝑣 which we call

leaking points-to. ℓ ↦→? 𝑣 represents a read-only permission to an immutable location ℓ that never

gets reclaimed. The notation ℓ ↦→? 𝑣 is a shorthand for ∃𝑞. ℓ 𝑞↦−→ 𝑣 , the fractional points-to [Bornat

et al. 2005; Boyland 2003] with some unknown fraction 𝑞. Fractional points-to allows splitting

ownership into fractional parts that allow read accesses only and can be combined back to the full

ownership ℓ
1↦−→ 𝑣 to recover the right to write and reclaim:

(FPointsTo-Fractional)

ℓ
𝑞1+𝑞2↦−−−−→ 𝑣 ⊣⊢ ℓ 𝑞1↦−→ 𝑣 ∗ ℓ 𝑞2↦−→ 𝑣

(FPointsTo-Agree)

ℓ
𝑞1↦−→ 𝑣1 ∗ ℓ

𝑞2↦−→ 𝑣2 ⊢ 𝑣1 = 𝑣2

(FPointsTo-Read)

{ℓ 𝑞↦−→ 𝑣} *ℓ {𝑣 . ℓ 𝑞↦−→ 𝑣}

However, if the fraction is unknown, the full ownership cannot be recovered, leading to permanent

loss of write and reclamation permission (hence “leaking” the memory). Despite such a big disad-

vantage, leaking points-to has been widely used [Iris Team 2023a] for its duplicability in addition

to immutability and read permission:

(LPointsTo-Duplicable)

ℓ ↦→? 𝑣 ⊣⊢ ℓ ↦→? 𝑣 ∗ ℓ ↦→? 𝑣

(LPointsTo-Agree)

ℓ ↦→? 𝑣 ∗ ℓ ↦→? 𝑣 ′ ⊢ 𝑣 = 𝑣 ′
(LPointsTo-Read)

{ℓ ↦→? 𝑣} *ℓ {𝑣 . ℓ ↦→? 𝑣}
As we will see shortly, duplicability is crucial for reasoning about safe dereference in pop().

Verification. We prove the safety of pop() as illustrated in Fig. 4. In particular, we prove the safety

of its memory accesses at C4,8,9 as follows.

• C4: We open the invariant IsStack to get its contents. On the first conjunct 𝑠𝑡 ↦→ {.head = ℎ1},
we use PointsTo-Read to dereference 𝑠𝑡 .head and get the pointer value ℎ1. Furthermore, if ℎ1 is

not NULL, we use LPointsTo-Duplicable to obtain a copy of ℎ1 ↦→? {.data = 𝑥1, .next = 𝑛1}
from LinkedList for some 𝑥1 and 𝑛1. This is necessary for proving the safety of dereferencing

ℎ1 at C8, because there is no guarantee that ℎ1 will still be present in the stack (and thus in the

invariant) at that point. Finally, we close the invariant IsStack.

• C8: Since ℎ1 is not NULL, we can use the copied ℎ1 ↦→? {.data = 𝑥1, .next = 𝑛1} to ensure that
it is safe to dereference ℎ1 (LPointsTo-Read).

• C9: We open the invariant and obtain ∃ℎ2. 𝑠𝑡 ↦→ {.head = ℎ2}. Consider the case where ℎ1 = ℎ2
holds. We use PointsTo-CAS-Success to update the head pointer to the next node, and reestablish

the invariant with the head node detached.

For pop() to satisfy the logical atomicity specification, its successful CAS should be free of the

ABA problem (Fig. 1c). This is indeed the case because locations are not recycled for new nodes if

memory is not reclaimed, and the nodes added to the stack are immutable. Formally, this argument

corresponds to the use of LPointsTo-Agree at lines V9.1-9.2: the two ℎ1 ↦→? . . . assertions (obtained

from C4 and C9) contain the same value.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:10 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

V0 {IsStack(𝑠𝑡) }

C1 fun pop(𝑠𝑡):

C3 loop:

V3.1 {IsStack(𝑠𝑡) }

V3.2

∃ℎ1, 𝑥𝑠1 . 𝑠𝑡 ↦→ {.head = ℎ1 } ∗
∨ 

ℎ1 = NULL ∗ 𝑥𝑠1 = []
∃𝑥1, 𝑥𝑠′1, 𝑛1 . 𝑥𝑠1 = 𝑥1 :: 𝑥𝑠

′
1

∗ ℎ1 ↦→? {.data = 𝑥1, .next = 𝑛1 } ∗ LinkedList(𝑛1, 𝑥𝑠
′
1
)


V3.3

∃ℎ1, 𝑥𝑠1 . 𝑠𝑡 ↦→ {.head = ℎ1 } ∗
∨ 

ℎ1 = NULL ∗ 𝑥𝑠1 = []
∃𝑥1, 𝑥𝑠′1, 𝑛1 . 𝑥𝑠1 = 𝑥1 :: 𝑥𝑠

′
1

∗ ℎ1 ↦→? { . . .} ∗ ℎ1 ↦→? { . . .} ∗ LinkedList(𝑛1, 𝑥𝑠
′
1
)


C4 ℎ1 := (*𝑠𝑡).head

V4.1

IsStack(𝑠𝑡) ∗
∨ 

ℎ1 = NULL

∃𝑥1, 𝑛1 . ℎ1 ↦→? {.data = 𝑥1, .next = 𝑛1 }


C5 if ℎ1 == NULL:

C7 return None

V7.1

{
IsStack(𝑠𝑡) ∗ ∃𝑥1, 𝑛1 . ℎ1 ↦→? {.data = 𝑥1, .next = 𝑛1 }

}
C8 𝑥1 := (*ℎ1).data; 𝑛1 := (*ℎ1).next

V8.1

{
IsStack(𝑠𝑡) ∗ ℎ1 ↦→? {.data = 𝑥1, .next = 𝑛1 }

}
V8.2

ℎ1 ↦→? { . . .} ∗ ∃ℎ2, 𝑥𝑠2 . 𝑠𝑡 ↦→ {.head = ℎ2 } ∗
∨ 

ℎ2 = NULL ∗ 𝑥𝑠1 = []
∃𝑥2, 𝑥𝑠′2, 𝑛2 . 𝑥𝑠2 = 𝑥2 :: 𝑥𝑠

′
2

∗ ℎ2 ↦→? {.data = 𝑥2, .next = 𝑛2 } ∗ LinkedList(𝑛2, 𝑥𝑠
′
2
)


C9 if CAS(&(*𝑠𝑡).head, ℎ1, 𝑛1):

V9.1

{
ℎ1 ↦→? { . . .} ∗ 𝑠𝑡 ↦→ {.head = ℎ1 } ∗ ℎ1 ↦→? {.data = 𝑥2, .next = 𝑛2 } ∗ LinkedList(𝑛2, 𝑥𝑠

′
2
)
}

V9.2 {𝑥1 = 𝑥2 ∧ 𝑛1 = 𝑛2 ∧ . . .}

V9.3

{
ℎ1 ↦→? {.data = 𝑥1, .next = 𝑛1 } ∗ IsStack(𝑠𝑡)

}
C11 return Some(𝑥1)

Fig. 4. Verification of Treiber’s stack without reclamation.

Verification Challenges for Memory Reclamation. The above proof is fundamentally limited

to concurrent data structures without reclamation due to its reliance on leaking points-to. To use

LPointsTo-Duplicable at C4, the proof exploits the fact that the stack’s memory blocks are never

reclaimed. However, verification of concurrent data structures with reclamation requires an ability

to grant access permission to protected pointers like LPointsTo-Duplicable, but only temporarily

so that retired pointers can later be reclaimed. In §3 and §4, we will characterize such temporary

grant of access permission with new abstract predicates representing partial ownership of pointers.

3 SPECIFICATION OF HAZARD POINTERS
We first introduce two predicates,Managed and Protected, that replace leaking points-to assertions.

Fig. 5 presents their signatures and associated proof rules. For presentation purposes, we assume

that the contents of memory blocks are immutable and lift this assumption in §5.

Managed Pointer. The managed pointer predicate of the form Managed(ℓ, 𝑣) represents the
ownership of the pointer ℓ managed by hazard pointers.

Like the ordinary points-to predicates, the managed pointer assertion implies that ℓ is a valid

pointer to a memory block containing the value 𝑣 . Managed pointer assertions replace the leaking

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:11

Predicates
Managed(ℓ : Loc, 𝑣 : Val) : iProp Protected(𝑡𝑖𝑑 : ThreadId, ℓ : Loc, 𝑣 : Val) : iProp

HPSlot(𝑡𝑖𝑑 : ThreadId, ℓ : Loc) : iProp HPSlot(𝑡𝑖𝑑) := HPSlot(𝑡𝑖𝑑, NULL)
Basic rules
(Managed-New)

ℓ ↦→ 𝑣 Managed(ℓ, 𝑣)
(Managed-Access)

{Managed(ℓ, 𝑣)} *ℓ {𝑣 .Managed(ℓ, 𝑣)}
(HP-Retire)

{Managed(ℓ, _)} retire(ℓ) {True}

(Protect)

⟨ℓ, 𝑣 . 𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣)
∗ HPSlot(𝑡𝑖𝑑) ⟩ protect(𝑡𝑖𝑑,𝑠𝑟𝑐) ⟨ℓ . 𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣)

∗ Protected(𝑡𝑖𝑑, ℓ, 𝑣) ⟩
(Protected-Access)

{Protected(𝑡𝑖𝑑, ℓ, 𝑣)} *ℓ {𝑣 . Protected(𝑡𝑖𝑑, ℓ, 𝑣)}
(Unprotect)

{Protected(𝑡𝑖𝑑, _, _)} unprotect(𝑡𝑖𝑑) {HPSlot(𝑡𝑖𝑑)}
Low-level rules
(HPSlot-Set)

{HPSlot(𝑡𝑖𝑑, _)} protected[𝑡𝑖𝑑] := ℓ {HPSlot(𝑡𝑖𝑑, ℓ)}
(Protected-Managed-Agree)

Protected(_, ℓ, 𝑣) ∗Managed(ℓ, 𝑣 ′) ⊢ 𝑣 = 𝑣 ′

(HPSlot-Validate)

Managed(ℓ, 𝑣) ∗ HPSlot(𝑡𝑖𝑑, ℓ) Managed(ℓ, 𝑣) ∗ Protected(𝑡𝑖𝑑, ℓ, 𝑣)

Fig. 5. A specification of hazard pointers.

points-to assertions in data structure invariants. For instance, in the invariant of Treiber’s stack,

the LinkedList predicate is changed as follows:

LinkedList(ℎ, 𝑥𝑠) :=
∨ 

ℎ = NULL ∧ 𝑥𝑠 = []

∃𝑥, 𝑥𝑠′, 𝑛.Managed(ℎ, {.data = 𝑥, .next = 𝑛}) ∗ LinkedList(𝑛, 𝑥𝑠′) .

Here, Managed(ℎ, {.data = 𝑥, .next = 𝑛}) replaces ℎ ↦→? {.data = 𝑥, .next = 𝑛} in §2.3.

Similarly to leaking points-to, managed pointer predicates permit read access via Managed-Access.

A managed pointer assertion is introduced from a full points-to via Managed-New. Here, a view

shift assertion 𝑃 𝑄 says that 𝑃 can be transformed into 𝑄 while proving a Hoare triple:

(Hoare-VS)

𝑃 𝑃 ′ {𝑃 ′} 𝑒 {𝑄 ′} 𝑄 ′ 𝑄

{𝑃 } 𝑒 {𝑄}

For example, the proof of stack push()method (not shown here) converts the points-to of the newly

pushed node into a managed pointer assertion with Managed-New and prepends it to LinkedList.

Unlike leaking points-to, the managed pointer assertion represents the unique permission to

retire a pointer. To show the safety of retiring a pointer, one should provide its Managed to HP-

Retire as a precondition. This precondition reflects the requirement that the retirer must first

detach the memory block from the data structure. By detaching the block, one can takeManaged

out of the data structure invariant, obtaining the exclusive right to retire it. For instance, in Fig. 6,

Managed(ℎ1, _) is detached from the stack’s invariant by the CAS at C9, which is then used for

retire(h) at C10. Note that retirement consumesManaged, so multiple retirement of the same

pointer is prevented (thus preventing double-free in do_reclamation()).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:12 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

C1 fun pop(𝑠𝑡):

C3 loop:

V3.1 {HPSlot(𝑡𝑖𝑑) ∗ IsStack(𝑠𝑡) }

V3.2

HPSlot(𝑡𝑖𝑑) ∗ ∃ℎ1, 𝑥𝑠1 . 𝑠𝑡 ↦→ {.head = ℎ1 } ∗
∨ 

ℎ1 = NULL ∗ 𝑥𝑠1 = []
∃𝑥1,𝑥𝑠′1, 𝑛1 . 𝑥𝑠1 = 𝑥1 :: 𝑥𝑠

′
1

∗Managed(ℎ1, { . . .}) ∗ . . .


C4 ℎ1 := protect(𝑡𝑖𝑑, &(*𝑠𝑡).head)

V4.1

∃ℎ1, 𝑥𝑠1 . 𝑠𝑡 ↦→ {.head = ℎ1 } ∗
∨ 

ℎ1 = NULL ∗ 𝑥𝑠1 = [] ∗ HPSlot(𝑡𝑖𝑑)
∃𝑥1,𝑥𝑠′1, 𝑛1 . 𝑥𝑠1 = 𝑥1 :: 𝑥𝑠

′
1

∗Managed(ℎ1, { . . .}) ∗ Protected(𝑡𝑖𝑑,ℎ1, { . . .}) ∗ . . .


V4.2

IsStack(𝑠𝑡) ∗
∨ 

ℎ1 = NULL ∗ HPSlot(𝑡𝑖𝑑)

∃𝑥1, 𝑛1 . Protected(𝑡𝑖𝑑,ℎ1, {.data = 𝑥1, .next = 𝑛1 })


· · · · · ·
V7.1 {IsStack(𝑠𝑡) ∗ ∃𝑥1, 𝑛1 . Protected(𝑡𝑖𝑑,ℎ1, {.data = 𝑥1, .next = 𝑛1 }) }

C8 𝑥1 := (*ℎ1).data; 𝑛1 := (*ℎ1).next

V8.1

Protected(ℎ1, { . . .}) ∗ ∃ℎ2, 𝑥𝑠2 . 𝑠𝑡 ↦→ {.head = ℎ2 } ∗
∨ 

ℎ2 = NULL ∗ 𝑥𝑠1 = []
∃𝑥2, 𝑥𝑠′2, 𝑛2 . 𝑥𝑠2 = 𝑥2 :: 𝑥𝑠

′
2

∗Managed(ℎ2, {.data = 𝑥2, .next = 𝑛2 }) ∗ . . .


C9 if CAS(&(*𝑠𝑡).head, ℎ1, 𝑛1):

V9.1

{
Protected(ℎ1, { . . .}) ∗ 𝑠𝑡 ↦→ {.head = ℎ1 } ∗Managed(ℎ1, { . . .}) ∗ LinkedList(𝑛2, 𝑥𝑠

′
2
)
}

V9.2 {Protected(ℎ1, {.data = 𝑥1, .next = 𝑛1 }) ∗Managed(ℎ1, {.data = 𝑥1, .next = 𝑛1 }) ∗ IsStack(𝑠𝑡) }

C10 retire(ℎ1); unprotect(𝑡𝑖𝑑)

V10.1 {HPSlot(𝑡𝑖𝑑) ∗ IsStack(𝑠𝑡) }

Fig. 6. Verification of Treiber’s stack with hazard pointers.

Protected Pointer. When a thread 𝑡𝑖𝑑 successfully protects a pointer ℓ , it obtains the protected

pointer predicate of the form Protected(𝑡𝑖𝑑, ℓ, 𝑣), which represents the temporary permission for

𝑡𝑖𝑑 to access ℓ . Similarly to managed pointer predicate, Protected(𝑡𝑖𝑑, ℓ, 𝑣) implies that ℓ is a valid

pointer to a memory block with value 𝑣 .

Protected(𝑡𝑖𝑑, ℓ, 𝑣) can be introduced by calling the protect() function (Protect). It returns a

protected pointer assertion for ℓ loaded from 𝑠𝑟𝑐 when Managed(ℓ, _) is available. In other words,

protection is established only when the user shows that the pointer is not retired. Protect is formu-

lated as a logically atomic triple so that the user can access the data structure invariant (LAT-Inv-Acc)

to provide 𝑠𝑟𝑐 ↦→ ℓ andManaged(ℓ, _) as the precondition. It additionally takes HPSlot(𝑡𝑖𝑑), the
permission for 𝑡𝑖𝑑 to protect a pointer, which is created when the 𝑡𝑖𝑑 is spawned. The unprotect()
function eliminates the protected pointer and returns back the protection permission (Unprotect).

The protected pointer assertion replaces the leaking points-to assertion used by each thread to

reason about the safety of using the pointer. In Fig. 6, the thread obtains Protected(𝑡𝑖𝑑, ℎ1, _) at C4
via Protect and uses it to show the safety of dereference at C8 via Protected-Access (analogous to

LPointsTo-Read). To show that the protection prevents the ABA problem in the successful CAS at

C9, we use Protected-Managed-Agree (analogous to LPointsTo-Agree) to conclude that the node

protected at C4 has not changed (V9.1-9.2).

For sophisticated data structures with custom validation strategies, low-level rules for writing to

the protected pointer list slot and validation are needed. As shown in HPSlot-Set, HPSlot(𝑡𝑖𝑑, ℓ)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:13

Fig. 7. The life cycle of pointer ownership in hazard pointers.

records the value written in the thread’s protected pointer list slot (HPSlot(𝑡𝑖𝑑) is abbrevia-

tion of HPSlot(𝑡𝑖𝑑, NULL)). After ℓ is written to the slot, HPSlot-Validate transforms HPSlot to

Protected(𝑡𝑖𝑑, ℓ, 𝑣) givenManaged(ℓ, 𝑣). This rule is applied after running a validation check that

confirms that ℓ is not retired. For example, Protect is proved by applying HPSlot-Set at C14 (Fig. 2)

and HPSlot-Validate at C16 when the condition evaluates to true (see appendix [Jung et al. 2023]).

We discuss its application to the validation strategy of the Harris-Michael list in §5.

4 VERIFICATION OF HAZARD POINTERS
We verify the specification of hazard pointers (§3) in concurrent separation logic. Essentially,

hazard pointers is a mechanism to distribute and recollect the partial ownerships of pointers in

the form of managed pointer assertion and the protected pointer assertions for each thread. Fig. 7

overviews the life cycle of a points-to assertion (ℓ ↦→ 𝑣) transferred and shared among the memory

allocator, the data structure, the protecting threads, and the reclaiming thread. In cyan area ,

Managed-New splits ℓ ↦→ 𝑣 into a Managed assertion and Protected assertions for each thread.

Then, Protected assertions are transferred to the protected pointer list of the invariant HPInv of

hazard pointers (see below for details). In purple area , Protect passes the Protected assertion

from the protected pointer list to the protecting thread in the presence of theManaged assertion,

and in pink area , Unprotect returns the Protected assertion back. In yellow area , HP-Retire

transfers the Managed assertion detached from the data structure’s invariant to the retired pointer

list. After all the protected pointer assertions for a retired block are returned from the threads, in

green area , do_reclamation() reconstructs the points-to assertion from them and reclaims it.

4.1 Fractional Ownership of Pointer
To model the per-thread ownership of a pointer, we use a variant of fractional points-to assertion

equipped with a permission algebra [Vafeiadis 2011]. Given a set, say 𝑋 , the fractional points-to

assertion of its powerset algebra with disjoint union, ℘(𝑋)⊎, satisfies the following proof rules:

ℓ ↦→ 𝑣 ⊣⊢ ℓ 𝑋↦−→ 𝑣 ℓ
𝑠1⊎𝑠2↦−−−−→ 𝑣 ⊣⊢ ℓ 𝑠1↦−→ 𝑣 ∗ ℓ 𝑠2↦−→ 𝑣

For hazard pointers, we use the permission algebra ℘(ThreadId∪{★})⊎, where each 𝑡𝑖𝑑 ∈ ThreadId
represents the thread 𝑡𝑖𝑑’s protected pointer and ★ represent the managed pointer:

Protected(𝑡𝑖𝑑, ℓ, 𝑣) := ℓ
{𝑡𝑖𝑑 }↦−−−−→ 𝑣 ∗ . . . Managed(ℓ, 𝑣) := ℓ

{★}↦−−−→ 𝑣 ∗

The rules Managed-Access, Protected-Access, and Protected-Managed-Agree immediately follow

from the analogous rules for fractional points-to.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:14 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

Invariant:
∃𝑃, 𝐷,𝑉 , 𝑅. 𝑝

1/2↦−−→ 𝑃 ∗ 𝑑 1/2↦−−→ 𝐷 ∗ 𝛾v
1/2
Z===⇒ 𝑉 ∗ 𝛾r

1/2
Z===⇒ 𝑅 ∗

¬(𝑉 ∧ 𝑅) ∗ (¬(𝑉 ∨ 𝑅) ⇒ (𝑟 ↦→ false)) ∗ (𝑉 ⇒ 𝑃) ∗ (𝑅 ⇒ 𝐷)

𝑇1 𝑇2

V10

{
𝑝

1/2↦−−→ false ∗ 𝛾v
1/2
Z===⇒ false

}
C11 *𝑝 := true

V11

{
𝑝

1/2↦−−→ true ∗ 𝛾v
1/2
Z===⇒ false

}
C12 if !*𝑑 :

V12

{
𝑝

1/2↦−−→ true ∗ 𝛾v
1/2
Z===⇒ true ∗ 𝑟 ↦→ false

}
C13 assert (!*𝑟)

V13 { . . .}

C14 *𝑝 := false

V14

{
𝑝

1/2↦−−→ false ∗ 𝛾v
1/2
Z===⇒ false

}

V20

{
𝑑

1/2↦−−→ false ∗ 𝛾r
1/2
Z===⇒ false

}
C21 *𝑑 := true

V21

{
𝑑

1/2↦−−→ true ∗ 𝛾r
1/2
Z===⇒ false

}
C22 if !*𝑝 :

V22

{
𝑑

1/2↦−−→ true ∗ 𝛾r
1/2
Z===⇒ true ∗ 𝑟 ↦→ false

}
C23 *𝑟 := true

V23

{
𝑑

1/2↦−−→ true ∗ 𝛾r
1/2
Z===⇒ true ∗ 𝑟 ↦→ true

}

Fig. 8. The essence of the synchronization between protection and reclamation

4.2 The Essence of Synchronization between Protection and Reclamation
Fig. 7 shows that there is a contention for protected pointer predicates owned by the protected

pointer list between the protection of threads (Protect) and the reclamation (the do_reclamation()
function). We reason about the synchronization between protection and reclamation as follows.

The program in Fig. 8 schematically illustrates the essence of the synchronization between the

protecting thread and the reclaiming thread contending for a single memory block. (For now, please

ignore the invariant and the proof lines.) The program consists of three locations 𝑑 , 𝑝 , and 𝑟 that

record the status of the block: (1) 𝑑 for whether the block is detached from the data structure; (2) 𝑝
for whether the block is protected; and (3) 𝑟 for whether the block is reclaimed. The left thread (𝑇1)

represents a thread that protects and accesses a memory block. It protects the block and validates

if the block is not detached yet (Protect, corresponding to C11-12). If validated, it accesses the

block (Protected-Access, corresponding to succesful assert at C13), and finally, terminates the

protection (Unprotect, corresponding to C14). The right thread (𝑇2) represents a thread that retires

and reclaims the memory block. It detaches the block (HP-Retire, corresponding to C21), checks if

the block is not protected, and in that case, reclaims the block (the do_reclamation() function,
corresponding to C22-23).

We can informally reason about the above program’s safety by case analysis. (1) IfC11 is executed
before C21, 𝑝 is set before C22, so𝑇2 does not reach C23 and set 𝑟 ; and (2) if C21 is executed before

C11, 𝑑 is set before C12, so 𝑇1 does not reach C13 and assert that 𝑟 is not set. In either case, the

access to the block (C13) must happen before the reclamation (C23), thereby proving the assertion.

We formalize this informal reasoning by adoptingMével et al. [2020, §5.4]’s approach for verifying

Peterson’s mutual exclusion algorithm to the context of safe memory reclamation. The key idea is

to introduce ghost locations 𝛾v and 𝛾r that record whether protection of the block is validated and

whether the block is reclaimed, and relate them to physical locations 𝑝 and 𝑟 , respectively. To this

end, we maintain the following invariant which we call mutual exclusion protocol:

• Introduce four variables: 𝑃 and 𝐷 for the value stored in physical locations 𝑝 and 𝑑 ; and 𝑉 and

𝑅 for the values recorded in 𝛾v and 𝛾r. 𝑉 and 𝑅 are tracked using the ghost variable assertions

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:15

HPInv := ∃𝑝𝑠. protected 1/2↦−−−→ 𝑝𝑠 ∗ (Managed and resource of retired pointers) ∗

∗
𝑝

(
∃𝐷.𝛾

d
(ℓ) 1/2

Z===⇒ 𝐷 ∗∗
𝑡𝑖𝑑

(
∃𝑉 , 𝑅.𝛾v (ℓ, 𝑡𝑖𝑑)

1/2
Z===⇒ 𝑉 ∗

𝛾r (ℓ, 𝑡𝑖𝑑)
1/2
Z===⇒ 𝑅 ∗ . . .

))
∗ . . .

HPSlot(𝑡𝑖𝑑, ℓ) := protected[𝑡𝑖𝑑] 1/2↦−−−→ ℓ ∗∗
𝑝

𝛾v (ℓ, 𝑡𝑖𝑑)
1/2
Z===⇒ false

Protected(𝑡𝑖𝑑, ℓ, 𝑣) := ℓ
{𝑡𝑖𝑑 }↦−−−−−→ 𝑣 ∗ protected[𝑡𝑖𝑑] 1/2↦−−−→ ℓ ∗ 𝛾v (ℓ, 𝑡𝑖𝑑)

1/2
Z===⇒ true ∗∗

ℓ ′≠ℓ
𝛾v (ℓ, 𝑡𝑖𝑑)

1/2
Z===⇒ false

Managed(ℓ, 𝑣) := ℓ
{★}↦−−−→ 𝑣 ∗ 𝛾

d
(ℓ) 1/2

Z===⇒ false ∗ ∗
𝑡𝑖𝑑∈N

𝛾r (ℓ, 𝑡𝑖𝑑)
1/2
Z===⇒ false

Fig. 9. Definition of the predicates and invariant of hazard pointers.

which behave like (fractional) points-to assertions for ghost locations:

(Ghost-Var-Agree)

𝛾
𝑓
Z==⇒ 𝑥 ∗ 𝛾 𝑓 ′

Z==⇒ 𝑥 ′ ⊢ 𝑥 = 𝑥 ′
(Ghost-Var-Fract)

𝛾
𝑓
Z==⇒ 𝑥 ∗ 𝛾 𝑓 ′

Z==⇒ 𝑥 ⊣⊢ 𝛾 𝑓 +𝑓 ′
Z====⇒ 𝑥

(Ghost-Var-Update)

𝛾
1

Z==⇒ 𝑥 𝛾
1

Z==⇒ 𝑦

• Distribute the ownership of 𝑝 , 𝑑 , 𝛾v, and 𝛾r to the invariant and threads. 𝑇1 can write to 𝑝 and

𝛾v and read from the other two by opening the invariant, and the other way around for 𝑇2.

• Require the condition ¬(𝑉 ∧ 𝑅), i.e., mutual exclusion of validation and reclamation. When

neither is true, the invariant keeps ownership of 𝑟 with the condition ¬(𝑉 ∨𝑅) ⇒ (𝑟 ↦→ false).
When 𝑇1 validates the protection, it knows that the block is not reclaimed thanks to mutual

exclusion, hence the ownership of 𝑟 will move to 𝑇1, and vice versa for reclamation in 𝑇2.

• Require (𝑉 ⇒ 𝑃): to validate the protection, 𝑇1 should have announced the protection already;

and (𝑅 ⇒ 𝐷): to reclaim the block, 𝑇2 should ensure that the block has been detached already.

Using the invariant, proof of 𝑇1’s safety proceeds as follows (proof for 𝑇2 is similar).

• V11: We open the invariant to get the half ownership of 𝑝 , combine it with the other half owned

by 𝑇1, and write true to it. Then, we split it in half to close the invariant.

• V12: We consider the case where the block is not detached yet and thus the validation succeeds.

We open the invariant to get the full ownership of 𝛾v. Since 𝐷 = false, we derive 𝑅 = false
from (𝑅 ⇒ 𝐷). We take 𝑟 ↦→ false out of the invariant by setting 𝛾v Z⇒ true (via Ghost-Var-

Update), so that it does not have to be returned to the invariant. Since 𝑝
1/2↦−−→ true, (𝑉 ⇒ 𝑃) is

maintained, and we can close the invariant.

• V12-13: We read from 𝑟 using 𝑟 ↦→ false. The assertion succeeds.

• V14: We open the invariant to get the full ownership of 𝑝 and 𝛾v; write to 𝑝; set 𝛾v Z⇒ false
and return 𝑟 ↦→ false back if necessary; and close the invariant.

4.3 Generalization to Multiple Pointers and Threads
Fig. 9 presents the definition of the predicates and invariant of hazard pointers supporting multiple

pointers and threads. The invariant HPInv of hazard pointers is assumed in every proof rule

presented in Fig. 5. The invariant generalizes that in Fig. 8 by collecting mutual exclusion protocols

that govern ownership transfer of ℓ
{𝑡𝑖𝑑 }↦−−−−→ _ for each pointer ℓ and thread 𝑡𝑖𝑑 . More specifically,

each slot protected[𝑡𝑖𝑑] corresponds to 𝑝 (in Fig. 8), the per-pointer per-thread ghost locations

𝛾v (ℓ, 𝑡𝑖𝑑) and 𝛾r (ℓ, 𝑡𝑖𝑑) to 𝛾v and 𝛾r, and the per-pointer ghost location 𝛾d (ℓ) to 𝑑 , respectively.

HPSlot(𝑡𝑖𝑑, _) carries 𝑡𝑖𝑑’s 𝛾v flags for all possible pointers, andManaged(ℓ, _) asserts that 𝛾d (ℓ)
flag is false. The verification of the specification proceeds as follows.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:16 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

Types and predicates
BlockRes := Loc→ Val→ BlockId→ iProp Managed(ℓ : Loc, 𝑖 : BlockId, 𝑃 : BlockRes) : iProp

Protected(𝑡𝑖𝑑 : ThreadId, ℓ : Loc, 𝑖 : BlockId, 𝑃 : BlockRes) : iProp
Rules

(Managed-New-Full)

ℓ ↦→ 𝑣 ∗ (∀𝑖 . 𝑖 fresh 𝑃 (ℓ, 𝑣, 𝑖)) ∃𝑖 . 𝑖 fresh ∗Managed(ℓ, 𝑖, 𝑃)

(HPSlot-Validate-Full)

Managed(ℓ, 𝑖, 𝑃) ∗ HPSlot(𝑡𝑖𝑑, ℓ) Managed(ℓ, 𝑖, 𝑃) ∗ Protected(𝑡𝑖𝑑, ℓ, 𝑖, 𝑃)

(Protected-Access-Full)

{∃𝑣 . ℓ ↦→ 𝑣 ∗ 𝑃 (ℓ, 𝑣, 𝑖)} 𝑒 {ℓ ↦→ 𝑣 ′ ∗ 𝑃 (ℓ, 𝑣 ′, 𝑖)} 𝑒 physically atomic

{Protected(𝑡𝑖𝑑, ℓ, 𝑖, 𝑃)} 𝑒 {Protected(𝑡𝑖𝑑, ℓ, 𝑖, 𝑃)}

(Protected-Managed-Agree-Full)

Protected(𝑡𝑖𝑑, ℓ, 𝑖, 𝑃) ∗Managed(ℓ, 𝑖′, 𝑃) ⊢ 𝑖 = 𝑖′

Fig. 10. Excerpt from the full specification of hazard pointers.

• HPSlot-Validate: When 𝑡𝑖𝑑 validates protection of ℓ , 𝛾v (ℓ, 𝑡𝑖𝑑) is set and the partial ownership

of ℓ is granted to Protected(𝑡𝑖𝑑, ℓ, _).
• HP-Retire: 𝛾d (ℓ) flag is set, and its resources are temporarily stored in HPInv.

• Safety of do_reclamation(): It picks up the resources of retired pointers and collects each

thread’s ownership by scanning the protected pointer list. If a retired pointer is not in the

protected pointer list, it is guaranteed that do_reclamation() has collected the full ownership
of the pointer, thus it is safe to reclaim it.

5 REASONING ABOUT MUTABLE MEMORY BLOCKS
The specifications from §3 are only applicable to simple data structures like Treiber’s stack in which

the contents of memory blocks do not change. In this section, we generalize the specification to

enable verification of sophisticated data structures with mutable memory blocks. The key idea is

replacing read-only fractional points-to assertions in the Managed and Protected predicates with

a per-block invariant that governs the evolution of the contents of each block. Fig. 10 shows the

updated signatures of each predicate and the new proof rules.

Block Resource and ID. To represent per-block invariants, we introduce block resource predicate

and parameterizeManaged and Protected predicates with it, replacing the fixed value parameter. A

block resource predicate of the form 𝑃 (ℓ, 𝑣, 𝑖) depends not only on the block’s address ℓ and contents
𝑣 , but also on its block ID 𝑖 . Block IDs are abstract values that uniquely identify different allocations

of blocks. That is, if a memory block is reclaimed and reallocated, it is assigned a different block

ID. Managed and Protected are also parameterized by the current block ID in order to relate each

block’s resource and data structure’s global invariant. In verification ignoring reclamation, such

relation typically is expressed only with physical pointer values, exploiting the fact that the pointer

values are unique since they are not reused.

Proof Rules. When registering a managed pointer with block resource predicate 𝑃 (Managed-

New-Full), the user should additionally show that 𝑃 (ℓ, 𝑣, 𝑖) can be created given a globally fresh

𝑖 . During validation (HPSlot-Validate-Full), the knowledge about the block ID and resource are

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:17

transferred from managed pointer to the new protected pointer predicate. Once validated, the user

can temporarily access the memory block’s full points-to assertion (on the current value) as well

as its block resource via Protected-Access-Full while executing an atomic instruction, in a style

similar to the usual invariant access rule Inv-Acc.
7
Finally, Protected-Managed-Agree-Full says

that managed and protected pointer assertions of the same pointer agree on their block ID, hence

protected pointers are free from the ABA problem. Intuitively, the rule holds because the presence

of a protected pointer guarantees that the pointer cannot be reclaimed and reallocated, and the

block ID of a block does not change as long as they are not reallocated.

Application to the Harris-Michael List. Using the above specification, we have formally verified

the Harris-Michael list with manual reclamation for the first time. Here, we sketch the verification

of its validation method discussed in §2.1. We use the following block resource and global invariant:

HMLBlock(ℓ, 𝑣, 𝑖) := . . . ∗
∨ 

𝑖
1/2
Z===⇒ (𝑣 .next,Unmarked) ∗ LSB(𝑣 .next) = 0

𝑖 Z⇒? (𝑣 .next,Marked) ∗ LSB(𝑣 .next) = 1

IsHML := ∃𝐴, 𝐿. ©­« ∗𝑖 ↦→(ℓ,𝑣) ∈𝐴∨ 
𝑖

1/2
Z===⇒ (𝑣 .next,Unmarked) ∗ (𝑖, ℓ) ∈ 𝐿 ∗ (_, 𝑣.next) ∈ 𝐿 ∗ · · ·

𝑖 Z⇒? (𝑣 .next,Marked) ∗ · · ·
ª®¬ ∗(∗

(𝑖,ℓ) ∈𝐿
Managed(ℓ, 𝑖,HMLBlock)

)
∗ . . .

In HMLBlock, we use the block ID 𝑖 as the name for a ghost variable
8
recording the state of the

next field. The next field is either not marked yet or marked permanently. The invariant IsHML

holds the state of all nodes that have been added to the list (𝐴), and Managed of blocks that are

not detached (𝐿). Specifically, IsHML maintains that the target block of an unmarked link is not

detached ((_, 𝑣.next) ∈ 𝐿).
In the validation stage of the Harris-Michael list, we use Protected-Access-Full to access the

block resource of the current node; if its next field is unmarked, open IsHML to learn that the

next node is not detached; and find its Managed to validate the protection of next node with

HPSlot-Validate-Full.

Verification of the Specification. To accommodate per-block invariants, we replace fractional

points-to assertions with fractionally owned ghost mapping from address to block ID, and put the

full points-to into a per-pointer cancellable invariant [Jung et al. 2018], which is also fractionally

ownable. If one collects full ownership of a cancellable invariant, one can deactivate it and reclaim

its content. We change HPInv accordingly to govern the ownership transfer of ghost mapping and

cancellable invariants.

6 SPECIFICATION OF RCU
We present two modular specifications of RCU: a general specification that captures the protection

of critical sections (§6.1), and a refined specification tailored towards optimistic traversal (§6.2).

Using these specifications, we have formally verified Harris’s list with RCU for the first time. We

discuss the implementation and verification of RCU in the appendix [Jung et al. 2023].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:18 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

Types and predicates

Guard(𝑡𝑖𝑑 : ThreadId, 𝑅 : ℘(BlockId)) : iProp RCUState(𝐼 : BlockId fin−−⇀ Loc × BlockStatus) : iProp

BlockStatus := Active | Retired | . . . BlockInfo(𝑖 : BlockId, ℓ : Loc, 𝑃 : BlockRes) : iProp
Rules
(RCU-Lock)

⟨𝐼 . RCUState(𝐼) ∗ RCUSlot(𝑡𝑖𝑑)⟩ rcu_lock(𝑡𝑖𝑑) ⟨RCUState(𝐼) ∗ Guard(𝑡𝑖𝑑, {𝑖 ∈ BlockId | 𝐼 [𝑖] = Retired}⟩

(RCU-Unlock)

{Guard(𝑡𝑖𝑑, _)} rcu_unlock(𝑡𝑖𝑑) {RCUSlot(𝑡𝑖𝑑)}
(Managed-Protected)

Guard(_, 𝑅) ∗Managed(ℓ, 𝑖, 𝑃) ⊢ 𝑖 ∉ 𝑅

(RCU-Retire)

⟨𝐼 . RCUState(𝐼) ∗Managed(ℓ, 𝑖, _)⟩ retire(ℓ) ⟨RCUState(𝐼 [𝑖 ↦→(ℓ,Retired)])⟩

(Managed-BlockInfo)

Managed(ℓ, 𝑖, 𝑃) ⊢ 2BlockInfo(𝑖, ℓ, 𝑃)

(Guard-Managed-Agree)

𝑖 ∉ 𝑅

BlockInfo(𝑖, ℓ, 𝑃) ∗ Guard(_, 𝑅) ∗Managed(ℓ, 𝑖′, 𝑃) ⊢ 𝑖 = 𝑖′

(Guard-Access)

{∃𝑣 . ℓ ↦→ 𝑣 ∗ 𝑃 (ℓ, 𝑣, 𝑖)} 𝑒 {ℓ ↦→ 𝑣 ′ ∗ 𝑃 (ℓ, 𝑣 ′, 𝑖)} 𝑖 ∉ 𝑅 𝑒 physically atomic

BlockInfo(𝑖, ℓ, 𝑃) ⊢ {Guard(𝑡𝑖𝑑, 𝑅)} 𝑒 {Guard(𝑡𝑖𝑑, 𝑅)}

Fig. 11. RCU base specification.

6.1 General Specification Characterizing Critical Sections
RCU differs from hazard pointers in that it protects all accesses inside a critical section. More

precisely, access to a pointer is protected throughout a critical section if its retirement does not

happen before the beginning of the critical section [McKenney et al. 2023]. We encode such critical

section-based protection in the guard predicate of the form Guard(𝑡𝑖𝑑, 𝑅) presented in Fig. 11.

The guard predicate first represents the fact that thread 𝑡𝑖𝑑 is in a critical section: it is introduced

by RCU-Lock and eliminated by RCU-Unlock. In doing so, it is exchanged with RCUSlot(𝑡𝑖𝑑), which
is the 𝑡𝑖𝑑’s permission to enter a critical section. When verifying Treiber’s stack with RCU (omitted),

pop() would own Guard(𝑡𝑖𝑑, _) from C2 to C6 or C10 in Fig. 1a.

The guard predicate also records the set, 𝑅, of pointers that had been already retired when the

critical section began. For example, Managed-Protected says that if a block has not been retired

yet (shown by Managed that serves the same purposes as for hazard pointers), then it was not

retired also when the critical section began. In our stack verification, if pop() loads a non-null head
pointer h at C4 in Fig. 1a, we use Managed(h, . . .) from the invariant to show that h is not in 𝑅.

To more precisely track 𝑅, we introduce the RCU state predicate of the form RCUState(𝐼). The
parameter 𝐼 in RCUState(𝐼) describes the current status of all memory block that has been managed

by RCU. For example, RCU-Retire marks the block as retired in 𝐼 (other states are omitted). When a

guard is created by RCU-Lock for thread 𝑡𝑖𝑑 from RCUState(𝐼), it records the set of retired pointers
as the parameter 𝑅. The RCU-Lock and RCU-Retire rules are formulated as logically atomic triples

so that the user can build a sophisticated invariant that involves the RCU’s state. In §6.2, we will

sketch such an invariant to reason about optimistic traversal (§2.2).

7
The logically atomic access rule corresponding to LAT-Inv-Acc is omitted.

8
This is possible because block IDs are globally unique.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:19

The guard predicate protects all blocks but the ones in 𝑅. To give a logical meaning to pro-

tection, we introduce the block information predicate of the form BlockInfo(𝑖, ℓ, 𝑃). Intuitively,
BlockInfo(𝑖, ℓ, 𝑃) is the knowledge extracted fromManaged(ℓ, 𝑖, 𝑃) (Managed-BlockInfo) that 𝑖 is as-

sociated with the physical address ℓ and governed by the block resource 𝑃 .9 Given BlockInfo(𝑖, ℓ, 𝑅)
and the fact that 𝑖 is protected by the guard (i.e., it already has access permission for 𝑖), Guard-Access

grants temporary access to the block’s points-to assertion and block resource.
10
In addition, a pointer

value associated with a protected block ID is free from the ABA problem (Guard-Managed-Agree).

To justify the above proof rules, the guard predicate takes the 𝑡𝑖𝑑’s fractional access permissions

of all blocks but the ones in 𝑅 from RCU’s internal invariant (omitted). In our stack verification,

BlockInfo is extracted fromManaged atC4 and used to dereference h atC8 to show that a successful

pop() of h is linearizable.

6.2 Traversal-Friendly Specification
Motivation. We are now able to show the safety of optimistic traversal in Fig. 3. The crux of the

proof lies in showing that ℓ2 was not retired before the beginning of the critical section. At the

high level, we prove this by maintaining the traversal loop invariant: for all ℓfrom and ℓto, if ℓfrom
currently points to ℓto and ℓfrom was not detached before the beginning of a critical section, then ℓto
also was not detached before the beginning of the critical section. This invariant implies that ℓ2
was not retired before that point, since its premise is true when the traversal starts from the root

to the first block, and blocks are detached before retirement. The loop invariant follows from the

following three properties about the links among memory blocks: (L1) by definition, non-detached

blocks can only point to non-detached blocks; (L2) data structures maintain invariants that a block

is detached only once; and (L3) a newly created link does not point to detached blocks (even from

already detached blocks).

However, such a proof quickly becomes complex for realistic concurrent data structures with

optimistic traversal. The proof requires a user-level invariant that encodes link properties and

relates the link topology with RCUState(𝐼) (i.e., only detached blocks are retired). In addition, we

need to maintain the history of the link topology with which we assert that, when Guard(_, 𝑅) was
created, all non-detached pointers at that moment in history must not be in 𝑅. Such an invariant is

quite sophisticated, e.g., for Harris’s list [Harris 2001] where links are concurrently updated and a

chain of nodes can be detached at once. Even worse, we would have to repeat this kind of reasoning

for each data structure to apply RCU.

Design. To streamline such proofs, we encapsulate the above complexities in a refined and yet

general specification presented in Fig. 12. The specification is built on top of our base specification

(§6.1) to directly capture the traversal loop invariant as follows.

We first strengthen the meaning of the guard predicate: Guard(_, 𝐷) now records the set 𝐷 of

pointers that are known to have not been detached before the guard was created.

We then introduce the block points-to predicate of the form BlockPointsTo(ℓ, 𝑖, 𝑡) to represent the
ownership of the fragment of the link topology. BlockPointsTo(ℓ, 𝑖, 𝑡) says that the block 𝑖 currently
points to another block (if any) and records its information as 𝑡 .11 The new rule Guard-Protect-

BlockPointsTo reflects the intuition that it is safe to traverse the data structure by following the

links. Specifically, if 𝑖1 is protected by the guard, then its current next node 𝑖2 is also protected. A

9
BlockInfo(𝑖, ℓ, 𝑃) is persistent (indicated by the persistence modality 2), because 𝑖 is not reused for another location.

Therefore, the extraction does not consumeManaged.

10
The rule for logically atomic 𝑒 is omitted.

11
For concise presentation, the version presented here only supports singly-linked data structures. Our formalized develop-

ment lifts this assumption by having BlockPointsTo for each field of the memory block.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:20 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

Predicates
BlockPointsTo(ℓ : Loc, 𝑖 : BlockId, 𝑡 : Option(Loc × BlockId × BlockRes)) : iProp

Managed(ℓ : Loc, 𝑖 : BlockId, 𝑃 : BlockRes, 𝐵 : ℘+ (BlockId)) : iProp

Detached(ℓ : Loc, 𝑖 : BlockId, 𝑃 : BlockRes) : iProp
Rules

(Guard-Protect-BlockPointsTo)

𝑖1 ∉ 𝐷

BlockPointsTo(ℓ1, 𝑖1, Some(ℓ2, 𝑖2, 𝑃2)) ∗ Guard(𝑡𝑖𝑑, 𝐷) ⊢ 𝑖2 ∉ 𝐷

(BlockPointsTo-Update)

BlockPointsTo(ℓ1, 𝑖1, Some(ℓ2, 𝑖2, 𝑃2)) ∗Managed(ℓ2, 𝑖2, 𝑃2, 𝐵2) ∗Managed(ℓ3, 𝑖3, 𝑃3, 𝐵3)
BlockPointsTo(ℓ1, 𝑖1, Some(ℓ3, 𝑖3, 𝑃3)) ∗Managed(ℓ2, 𝑖2, 𝑃2, 𝐵2 \ {𝑖1}) ∗Managed(ℓ3, 𝑖3, 𝑃3, 𝐵3 ⊎ {𝑖1})

(Managed-Detach)

Managed(ℓ, 𝑖, 𝑃, ∅) Detached(ℓ, 𝑖, 𝑃)
(Detached-Retire)

{Detached(ℓ, _, _)} retire(ℓ) {True}

Fig. 12. RCU traversal specification.

block points-to assertion is introduced when registering a managed pointer (rule omitted) and put

into the block resource to associate the logical link structure with physical points-to assertions. For

example, the block resource for Harris’s list is defined as follows:

HLBlock(ℓ, 𝑣, 𝑖) := ∃𝑡 .BlockPointsTo(ℓ, 𝑖, 𝑡) ∗
∨ 𝑣.next = NULL ∗ 𝑡 = None ∗ . . .

∃𝑖′ . 𝑡 = Some(𝑣.next, 𝑖′,HListBlock) ∗ . . .
.

Roughly speaking, if the node’s next pointer value 𝑣.next is non-null, the block resource asserts

that it is possible to traverse to its next node, which is also governed by the same block resource.

To encapsulate the reasoning about link structure properties (L1-3), we add a new param-

eter 𝐵 to Managed and introduce the detached pointer predicate of the form Detached(ℓ, 𝑖, 𝑃).
Managed(_, 𝑖, _, 𝐵) means the block 𝑖 is currently pointed by the blocks in the multiset 𝐵 [Madiot

and Pottier 2022], and Detached(ℓ, 𝑖, 𝑃) is a variant of Managed that has been marked detached.

To maintain (L1), Managed-Detach can mark a block detached only when no other blocks point to

it.
12
To maintain (L2), Managed-Detach is irreversible. To maintain (L3), BlockPointsTo-Update

updates the target of block points-to assertion only if the new target is not yet detached. Finally, to

ensure that only detached nodes can be retired, RCU-Retire is replaced with Detached-Retire.

7 EVALUATION
We demonstrate that our specifications of hazard pointers and RCU indeed facilitate modular

verification of safe memory reclamation in the three aspects discussed in §1.2.

Compositional Verification. We verified implementations of hazard pointers based on that

of Meta’s Folly [Meta 2023] and epoch-based RCU based on the algorithm by Parkinson et al.

[2017] w.r.t. their specifications (§5 and §6) that everyone can use (without understanding their

implementation) to verify concurrent data structures with reclamation.

12
This rule is not applicable to cycles. Cycles can be retired despite that each node pointed by another node, as long as the

cycle as a whole is detached. This can be supported by adapting the “cloud” assertion by Madiot and Pottier [2022].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:21

Data Structure NR Code HP Code RCU Code NR Proof HP Proof RCU Proof

Counter 23 30 (+30.4%) 30 (+30.4%) 140 175 (+25.0%) 168 (+20.0%)

Treiber’s Stack

[Treiber 1986]

38 52 (+36.8%) 51 (+34.2%) 199 248 (+24.6%) 233 (+17.1%)

Elimination Stack

[Hendler et al. 2004]

54 71 (+31.5%) 70 (+29.6%) 297 404 (+36.0%) 384 (+29.3%)

Michael-Scott Queue

[Michael and Scott 1996]

55 76 (+38.2%) 68 (+23.6%) 464 620 (+33.6%) 578 (+24.6%)

DGLM Queue

[Doherty et al. 2004]

55 76 (+38.2%) 68 (+23.6%) 463 775 (+67.4%) 731 (+57.9%)

Harris’s List

[Harris 2001]

113 N/A 144 (+27.4%) 1,389 N/A 1,805 (+29.9%)

Harris-Michael List

[Michael 2002]

96 146 (+52.1%) 119 (+24.0%) 1,171 1,278 (+ 9.1%) 1,473 (+25.8%)

Chase-Lev Deque

[Chase and Lev 2005]

82 90 (+ 9.8%) 89 (+ 8.5%) 1,113 1,293 (+16.2%) 1,284 (+15.4%)

RDCSS

[Harris et al. 2002]

52 75 (+44.2%) 68 (+30.8%) 400 530 (+32.5%) 467 (+16.8%)

Total 455/568 616 (+35.4%) 707 (+24.5%) 4,247/5,636 5,323 (+25.3%) 7,123 (+26.4%)

Table 1. Quantitative analysis of the overhead of adding reclamation to the code and proof. “NR”, “HP”,

“RCU”: versions without reclamation, with hazard pointers, and with RCU, respectively. “N/A”: Harris’s list is

not supported by hazard pointers. Lines of code and proof with reclamation are annotated with the percentage

of overhead over those without reclamation in parentheses. “Total” for “NR”: excluding and including Harris’s

list for comparison with HP and RCU, respectively.

General Applicability. We verified 9 concurrent data structures, listed in table 1, using our

specifications of hazard pointers and RCU. To the best of our knowledge, we are the first to formally

verify strong specifications of Harris’s list, the Harris-Michael list, the Chase-Lev deque, and

RDCSS with manual memory reclamation. This selection of data structures showcases the wide

applicability of our specifications to the following tricky features: (1) mutable memory blocks (§5):

all except counter and Treiber’s stack; (2) multiple block resources: elimination stack (value and

offer); (3) complex validation in hazard pointers (§2.1): Michael-Scott queue, Harris-Michael list,

RDCSS; (4) complex invariant for safe retirement (see below): Michael-Scott queue and DGLM

queue; (5) prophecy variable [Jung et al. 2019]: Harris’s list, Harris-Michael list, RDCSS; (6) optimistic

traversal (§2.2): Harris’s list; and (7) dynamically-sized blocks: Chase-Lev deque.

Easy Integration. We argue that our specifications streamline the additional reasoning for intro-

ducing memory reclamation to existing concurrent data structures without reclamation. To this

end, we compare the lines of Coq code for implementation and proof for logical atomicity (§2.3)

of concurrent data structures with and without reclamation. The result is summarized in table 1.

The total code overhead of applying hazard pointers and RCU is 35.4% and 24.5%, respectively.

Hazard pointers generally incurs higher overhead than RCU because it requires additional code for

protection, especially for data structures with complex validation such as the Harris-Michael list.

The total proof overhead of applying hazard pointers and RCU is 25.3% and 26.4%, respectively.

The total proof overhead for hazard pointers is smaller because of the outlier, Harris-Michael list.

Overall, the proof overhead is on par with the code overhead across the 9 concurrent data

structures. Some data structures exhibit moderately higher proof overhead than code overhead for

the following reasons. (1) Elimination stack with reclamation requires more precise tracking of

ownership than that without reclamation. When ignoring reclamation, the invariant needs to track

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:22 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

only the most recent offer. On the other hand, with reclamation, the invariant needs to track all

previous offers to prove the safety of retiring an offer, which may have been overridden by others.

(2)Michael-Scott queue and DGLM queue with reclamation require capturing additional invariants

on their head and tail indexes for safe retirement of nodes. For the former, the head index should

not “overtake” the tail index to ensure every unlinked node is unreachable from the tail; and the

latter features an optimization that requires more complex invariant on indexes.

It is worth noting that the additional proofs for hazard pointers and RCU resemble each other:

switching the pointer predicates and proof rules between them almost works. The only exception is

the validation in hazard pointers, which requires completely new proofs. Interestingly, the Harris-

Michael list with hazard pointers exhibits significantly smaller proof overhead because validation

simplifies the reasoning related to prophecy variables.

8 RELATEDWORK
Program Logic for SMR Schemes. Various program logic-based approaches have been proposed

to verify concurrent data structures with manual memory management. However, none of them

support all the three criteria of modular verification discussed in §1.2 at the same time.

Parkinson et al. [2007] verified the safety of Treiber’s stack with hazard pointers in concurrent

separation logic using ghost variables for the status of protection and reclamation. Their verification

is not generally applicable because it makes a simplifying assumption that the stack’s memory

blocks are never reclaimed. Therefore, their verification result only applies to specialized use cases

such as using the stack as a component in the memory allocator.

Tofan et al. [2011] verified linearizability and lock freedom of Treiber’s stack and Michael-Scott

queue with hazard pointers in temporal logic. Their verification is not compositional because it

crucially relies on a relational invariant over the states of concurrent data structures and SMR

schemes. For instance, their key invariant, ishazard, depends on the implementation of both the

pop() function of Treiber’s stack and the scan() function of hazard pointers.

Fu et al. [2010] verified the safety of Treiber’s stack with hazard pointers in temporal separation

logic supporting rely-guarantee reasoning. They construct an invariant on the history of execution

traces using temporal logic connectives. Their method is not compositional because their invariants

and rely-guarantee conditions tightly couple the implementation details of stack and hazard pointers.

In addition, their method is not generally applicable because they target a blocking implementation

of retire() and exploit this fact in their proof to simplify the invariants.

Gotsman et al. [2013] presented a principled approach for applying temporal separation logic

to SMR schemes. As discussed in §1.2, while their approach is elegant, it is not compositional

because it exposes the implementation details of SMR schemes. For instance, their verification of

an RCU-based counter [Gotsman et al. 2013, §5] maintains the following invariant:

ΥRCU := ∀ℓ, 𝑡𝑖𝑑 .
(
𝑆 (𝑡𝑖𝑑, 1) since 𝐶 ↦→ ℓ ∗ ℓ ↦→ _

)
=⇒ ℓ ↦→e _ ,

where 𝑆 (𝑡𝑖𝑑, 1) means that 𝑡𝑖𝑑 is in an RCU critical section and 𝐶 ↦→ ℓ ∗ ℓ ↦→ _ means that the

memory block is reachable from the counter. In the verification of the RCU-based counter, one

has to show that ΥRCU is stable under RCU’s actions. This means that the RCU-based counter’s

proof must know the details of RCU’s action and the definition of the 𝑆 (𝑡𝑖𝑑, 1) predicate. The client
of the RCU-based counter has a similar issue. When the clients of the counter set up their own

rely-guarantee conditions, they should prove that each condition preserves ΥRCU, so the clients also
need to reason about the implementation details of both the counter and RCU. It is unclear how to

modularize the proofs conducted with their approach since this invariant inherently intertwines

concepts of SMR schemes (“protected”) and concurrent data structures (“reachable”). In contrast,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:23

our modular specification of SMR schemes decouples the two concepts with carefully designed

abstract predicates for protected pointers and others.

In addition, it is unclear whether their approach can be easily integrated, as it was evaluated only

for simple data structures without mutable memory blocks (§5 and §7).

Tassarotti et al. [2015] accounted for RCU’s synchronization purely in terms of ownership

transfer in a separation logic for relaxed memory [Turon et al. 2014]. A simplified version of their

verification is mechanized in the Iris separation logic framework [Iris Team 2023b; Jung et al. 2018,

2015] by Kaiser et al. [2017]. However, as discussed in §1.2, their approach is not compositional,

because they monolithically verified a linked list integrated with an implementation of RCU.

Essentially, our contributions are modularization and generalization of their verification. Our

base specification for RCU (§6.1) abstracts their reasoning about the transfer of partial ownership of

pointers for each thread, and the traversal-friendly specification (§6.2) encapsulates their reasoning

about the history of links among memory blocks and generalizes it to multiple writers.

Furthermore, we additionally take account of the following features of general-purpose RCU.

• Temporary Deactivation: Their RCU does not support temporary deactivation of critical section

and requires each thread to periodically refresh the critical section to guarantee the progress

of reclamation. This means that all pointers are protected at the start. Therefore, in their proof,

the ownership flows only from the readers to the writer. In contrast, verifying the general-

purpose RCU requires reasoning about bidirectional ownership transfer in rcu_lock() and
rcu_unlock(). To verify it, we use a variant of mutual exclusion protocol presented in §4.2.

• Non-blocking Reclamation: In their RCU, a designated reclaimer blocks until all retired pointers

become safe to reclaim. In contrast, the RCU we verified allows multiple threads to concurrently

and selectively reclaim safe-to-reclaim pointers without blocking. To verify it, we reason about

the reclaimability of each retired pointer individually.

These limitations are in part due to the complexity of relaxed memory models. Especially, deac-

tivation requires SC fence (e.g., atomic_thread_fence(memory_order_seq_cst) in C/C++) in

relaxed memory model, which is not supported by the logic [Turon et al. 2014] they used.

Automated Verification Tools for SMR Schemes. Meyer and Wolff [2019a,b]; Wolff [2021]

designed an automated linearizability checker, as discussed in §1.2. Given the result that a data

structure without reclamation is linearizable (checked by the Cave verifier [Vafeiadis 2010a,b]),

their verifier additionally checks the following, which as a whole implies linearizability of the

data structure integrated with an SMR scheme: (1) the SMR implementation satisfies the SMR

specification, which is an automaton that over-approximates the set of pointers that may be freed;

and (2) the data structure with SMR scheme does not suffer from the ABA problem. The task (2)
is further broken down into two verification tasks: (2-1) type-checking the data structure code

annotated with invariants and transformed by applying atomicity abstraction; and (2-2) checking
the invariant annotations using Cave.

While their approach is conceptually compositional and easily integrated, it is not generally

applicable in practice because of the complexity of the check (2-2). First, it suffers from the

unsoundness of the backend verifier Cave. This resulted in failed verification in the DGLM queue,

the Harris-Michael list, and Harris’s list [Wolff 2021, §8.8]. Second, considering that this check

takes much more time than the original verification task (linearizability under no reclamation)

for complex data structures, it is likely to time out even if they did not have any unsoundness

issues. Although this problem can be resolved by applying a stronger backend verifier such as

Plankton [Meyer et al. 2022], it is unclear whether it can handle complex reasoning required in

Harris’s list for optimistic traversal and retirement of a chain of detached nodes, which involve

complex shape invariants.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:24 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

In addition, it is worth noting that their tool is specialized for verification of linearizability. While

linearizability has been considered the de facto standard for concurrent data structure specification,

it is difficult for clients to use linearizability for modular program verification: linearizability is

defined outside program logics so that it is not able to express rely-guarantee conditions between

the library and client [da Rocha Pinto et al. 2014]; it does not support ownership transfer [Gotsman

and Yang 2012; Jacobs and Piessens 2011]; and it is not applicable to highly concurrent libraries

with weaker guarantees [Afek et al. 2010; Derrick et al. 2014; Haas et al. 2016; Henzinger et al.

2013; Jagadeesan and Riely 2014]. On the other hand, we verified logically atomic triples, which

can encode not only linearizability but also other correctness conditions [Dang et al. 2022].

Alglave et al. [2018] proposed a specification of RCU and proved the specification for an im-

plementation of RCU in the Linux kernel’s relaxed memory model. They also verify small client

programs using RCU by model checking. However, they do not verify concurrent data structures,

and it is unclear whether their model checking-based verification scales well to more complex

concurrent data structures and larger programs consisting of multiple data structures.

Kuru and Gordon [2019] proposed a specification of RCU that guarantees memory safety and

the absence of memory leaks. Their specification is formulated as a type system whose derivation

essentially envelopes a separation logic proof. However, their specification is not validated against

an implementation of RCU and is limited to single-writer and tree-shaped data structures.

Verification of Other Memory Management Methods. Dang et al. [2019]; Doko and Vafeiadis

[2017] verified an implementation of the atomic reference counter (ARC) under a relaxed memory

model. ARC is simpler than the other SMR schemes because synchronization is centralized to the

counter variables. In contrast, the synchronization of hazard pointers and epoch-based RCU is

decentralized, e.g., to the retired and protected pointer list.

Doherty et al. [2004]; Krishna et al. [2017] verified concurrent data structures that use free list,

which is a memory recycling mechanism that keeps retired memory blocks in a list instead of

returning the memory to the allocator. Since it is trivial to guarantee the safety of dereferencing

pointers managed by a free list, they essentially do not reason about the safety of reclamation.

Madiot and Pottier [2022] designed a separation logic for reasoning about memory usage in a

garbage collected language. Specifically, they reason about logically deallocated memory blocks, i.e.,

blocks that are unreachable and thus can be reclaimed by GC. To this end, the logic uses pointed-by

assertion of form ℓ ← [𝐿, which tracks the multiset 𝐿 of immediate predecessor blocks of block ℓ .

The design of our traversal-aware specification for RCU (§6.2) adapts this interface to reason about

detached blocks. The notable difference is that our logic tracks the history of links, while their logic

only tracks the current state of links. This is necessary to support Guard-Protect-BlockPointsTo,

which talks about the link status at some moment in the past when the critical section started.

9 FUTUREWORK
Application to Other SMR Schemes. We conjecture that our style of verification generalizes to

many state-of-the-art SMR schemes [Alistarh et al. 2017, 2018; Brown 2015; Kang and Jung 2020;

Nikolaev and Ravindran 2020, 2021; Sheffi et al. 2021; Singh et al. 2021; Wen et al. 2018], since they

are essentially hybrids of hazard pointer and RCU. As a preliminary evaluation, we have sketched

a specification that commonly characterizes DEBRA+, PEBR, and NBR in the appendix [Jung et al.

2023].

Proof Automation. We conjecture that the additional proof required for the usage of our SMR

scheme specifications can be largely automated using Diaframe [Mulder and Krebbers 2023; Mulder

et al. 2022], a proof automation framework for Iris. Since our specifications follow Iris’s convention,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:25

it would be straightforward to design automation hints. As a preliminary evaluation, we wrote

such hints for our hazard pointer and RCU specification and automatically proved Treiber’s stack.

Relaxed Memory Model. In this work, we have assumed the sequentially consistent memory

model. As future work, we will adapt our verification to the iRC11 [Dang et al. 2019], a separation

logic for C/C++’s relaxed memory model. We expect to encounter two technical challenges. First,

the specification should be based on partial orders among events. For example, our RCU base

specification (§6.1) should be modified to track memory blocks whose retirement does not happen-

before at each moment. To this end, we will make use of the specification of RCU by Alglave et al.

[2018] and the specification methodology by Dang et al. [2022]. Second, we need logic for SC

fences, which are necessary for the implementation of general-purpose SMR schemes (discussed

above). While an SC fence can be modeled as a combination of release/acquire fences and an atomic

read-modify-write to a ghost location, which are already supported by existing logics [Vafeiadis

2017], this approach has not been applied to a substantial case study.

ACKNOWLEDGMENTS
We thank the OOPSLA’23 reviewers for valuable feedback and suggestions for improvements. This

work was supported by Samsung Research Funding & Incubation Center of Samsung Electronics

under Project Number SRFC-IT2201-06.

REFERENCES
Yehuda Afek, Guy Korland, and Eitan Yanovsky. 2010. Quasi-Linearizability: Relaxed Consistency for Improved Concurrency.

In Principles of Distributed Systems - 14th International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010.

Proceedings (Lecture Notes in Computer Science, Vol. 6490). Springer, 395–410. https://doi.org/10.1007/978-3-642-17653-

1_29

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. 2018. Frightening Small Children and

Disconcerting Grown-Ups: Concurrency in the Linux Kernel. SIGPLAN Not. 53, 2 (March 2018), 405–418. https:

//doi.org/10.1145/3296957.3177156

Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2017. Forkscan: Conservative Memory Reclamation

for Modern Operating Systems. In Proceedings of the Twelfth European Conference on Computer Systems (Belgrade, Serbia)

(EuroSys ’17). Association for Computing Machinery, New York, NY, USA, 483–498. https://doi.org/10.1145/3064176.

3064214

Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2018. ThreadScan: Automatic and Scalable Memory

Reclamation. ACM Trans. Parallel Comput. 4, 4, Article 18 (may 2018), 18 pages. https://doi.org/10.1145/3201897

Daniel Anderson, Guy E. Blelloch, and Yuanhao Wei. 2021. Concurrent Deferred Reference Counting with Constant-Time

Overhead. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA, 526–541.

https://doi.org/10.1145/3453483.3454060

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber. 2011. Mathematizing C++Concurrency. In Proceedings

of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA)

(POPL ’11). Association for Computing Machinery, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. 2005. Permission Accounting in Separation

Logic. SIGPLAN Not. 40, 1 (jan 2005), 259–270. https://doi.org/10.1145/1047659.1040327

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis, Radhia Cousot (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 55–72.

Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Structures: There Has to Be a Better Way. In

Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (Donostia-San Sebastián, Spain) (PODC

’15). Association for Computing Machinery, New York, NY, USA, 261–270. https://doi.org/10.1145/2767386.2767436

David Chase and Yossi Lev. 2005. Dynamic Circular Work-Stealing Deque. In Proceedings of the Seventeenth Annual

ACM Symposium on Parallelism in Algorithms and Architectures (Las Vegas, Nevada, USA) (SPAA ’05). Association for

Computing Machinery, New York, NY, USA, 21–28. https://doi.org/10.1145/1073970.1073974

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.

In ECOOP 2014 – Object-Oriented Programming, Richard Jones (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,

207–231.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/3296957.3177156
https://doi.org/10.1145/3296957.3177156
https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/3064176.3064214
https://doi.org/10.1145/3201897
https://doi.org/10.1145/3453483.3454060
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1047659.1040327
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/1073970.1073974

251:26 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2019. RustBelt Meets Relaxed Memory. Proc.

ACM Program. Lang. 4, POPL, Article 34 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371102

Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer. 2022.

Compass: Strong and Compositional Library Specifications in RelaxedMemory Separation Logic. In Proceedings of the 43rd

ACM SIGPLAN International Conference on Programming Language Design and Implementation (San Diego, CA, USA) (PLDI

2022). Association for Computing Machinery, New York, NY, USA, 792–808. https://doi.org/10.1145/3519939.3523451

John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan, Oleg Travkin, and Heike Wehrheim. 2014. Quiescent

Consistency: Defining and Verifying Relaxed Linearizability. In FM 2014: Formal Methods - 19th International Symposium,

Singapore, May 12-16, 2014. Proceedings (Lecture Notes in Computer Science, Vol. 8442). Springer, 200–214. https://doi.org/

10.1007/978-3-319-06410-9_15

M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and J. Walpole. 2012. User-Level Implementations of Read-Copy

Update. IEEE Transactions on Parallel and Distributed Systems 23, 2 (2012), 375–382. https://doi.org/10.1109/TPDS.2011.159

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004. Formal Verification of a Practical Lock-Free Queue

Algorithm. In Formal Techniques for Networked and Distributed Systems – FORTE 2004, David de Frutos-Escrig and Manuel

Núñez (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 97–114. https://doi.org/10.1007/978-3-540-30232-2_7

Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In Programming Languages

and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 448–475.

Keir Fraser. 2004. Practical lock-freedom. Ph. D. Dissertation.

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic Concurrency Using a Program

Logic for History. In CONCUR 2010 - Concurrency Theory, Paul Gastin and François Laroussinie (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 388–402. https://doi.org/10.1007/978-3-642-15375-4_27

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concurrent Memory Reclamation Algorithms with

Grace. In Proceedings of the 22nd European Conference on Programming Languages and Systems (Rome, Italy) (ESOP’13).

Springer-Verlag, Berlin, Heidelberg, 249–269. https://doi.org/10.1007/978-3-642-37036-6_15

Alexey Gotsman and Hongseok Yang. 2012. Linearizability with Ownership Transfer. In CONCUR 2012 – Concurrency

Theory, Maciej Koutny and Irek Ulidowski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 256–271. https:

//doi.org/10.1007/978-3-642-32940-1_19

Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch, Michael Lippautz, Hannes Payer, Ali Sezgin,

Ana Sokolova, and Helmut Veith. 2016. Local Linearizability for Concurrent Container-Type Data Structures. In 27th

International Conference on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada (LIPIcs, Vol. 59).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 6:1–6:15. https://doi.org/10.4230/LIPIcs.CONCUR.2016.6

Timothy L. Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-Lists. In Proceedings of the 15th International

Conference on Distributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–314.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-Word Compare-and-Swap Operation. In Proceedings

of the 16th International Conference on Distributed Computing (DISC ’02). Springer-Verlag, Berlin, Heidelberg, 265–279.

Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and JonathanWalpole. 2007. Performance of Memory Reclamation

for Lockless Synchronization. J. Parallel Distrib. Comput. 67, 12 (dec 2007), 1270–1285. https://doi.org/10.1016/j.jpdc.

2007.04.010

Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A Scalable Lock-Free Stack Algorithm. In Proceedings of the Sixteenth

Annual ACM Symposium on Parallelism in Algorithms and Architectures (Barcelona, Spain) (SPAA ’04). Association for

Computing Machinery, New York, NY, USA, 206–215. https://doi.org/10.1145/1007912.1007944

Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova. 2013. Quantitative relaxation

of concurrent data structures. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. ACM, 317–328. https://doi.org/10.1145/2429069.2429109

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM

Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.78972

Iris Team. 2023a. Iris examples. https://gitlab.mpi-sws.org/iris/examples

Iris Team. 2023b. The Iris project website. https://iris-project.org/

Bart Jacobs and Frank Piessens. 2011. Expressive Modular Fine-Grained Concurrency Specification. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).

Association for Computing Machinery, New York, NY, USA, 271–282. https://doi.org/10.1145/1926385.1926417

Radha Jagadeesan and James Riely. 2014. Between Linearizability and Quiescent Consistency - Quantitative Quiescent

Consistency. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,

Denmark, July 8-11, 2014, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 8573). Springer, 220–231. https:

//doi.org/10.1007/978-3-662-43951-7_19

Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang. 2023. Modular Verification of Safe

Memory Reclamation in Concurrent Separation Logic (supplementary material). https://cp.kaist.ac.kr/gc

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1007/978-3-642-32940-1_19
https://doi.org/10.1007/978-3-642-32940-1_19
https://doi.org/10.4230/LIPIcs.CONCUR.2016.6
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1016/j.jpdc.2007.04.010
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/2429069.2429109
https://doi.org/10.1145/78969.78972
https://gitlab.mpi-sws.org/iris/examples
https://iris-project.org/
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1007/978-3-662-43951-7_19
https://doi.org/10.1007/978-3-662-43951-7_19
https://cp.kaist.ac.kr/gc

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:27

Ralf Jung. 2019. Logical Atomicity in Iris: the Good, the Bad, and the Ugly. Iris Workshop. https://people.mpi-sws.org/

~jung/iris/talk-iris2019.pdf

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2019.

The Future is Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL, Article 45 (dec 2019),

32 pages. https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.

ACM, 637–650. https://doi.org/10.1145/2676726.2676980

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:

Reasoning About Release-Acquire Consistency in Iris. In 31st European Conference on Object-Oriented Programming

(ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 17:1–17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

Memory Concurrency. SIGPLAN Not. 52, 1 (jan 2017), 175–189. https://doi.org/10.1145/3093333.3009850

Jeehoon Kang and Jaehwang Jung. 2020. A Marriage of Pointer- and Epoch-Based Reclamation. In Proceedings of the 41st

ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association

for Computing Machinery, New York, NY, USA, 314–328. https://doi.org/10.1145/3385412.3385978

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Concurrent Separation Logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17).

Association for Computing Machinery, New York, NY, USA, 205–217. https://doi.org/10.1145/3009837.3009855

Siddharth Krishna, Dennis Shasha, and Thomas Wies. 2017. Go with the Flow: Compositional Abstractions for Concurrent

Data Structures. Proc. ACM Program. Lang. 2, POPL, Article 37 (Dec. 2017), 31 pages. https://doi.org/10.1145/3158125

Ismail Kuru and Colin S. Gordon. 2019. Safe Deferred Memory Reclamation with Types. In Programming Languages and

Systems, Luís Caires (Ed.). Springer International Publishing, Cham, 88–116. https://doi.org/10.1007/978-3-030-17184-1_4

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA, 618–632. https://doi.org/10.

1145/3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE

Trans. Computers 28, 9 (1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Jean-Marie Madiot and François Pottier. 2022. A Separation Logic for Heap Space under Garbage Collection. Proc. ACM

Program. Lang. 6, POPL, Article 11 (jan 2022), 28 pages. https://doi.org/10.1145/3498672

Paul E. McKenney, Maged Michael, Jens Maurer, Peter Sewell, Martin Uecker, Hans Boehm, Hubert Tong, Niall Douglas,

Thomas Rodgers, Will Deacon, MichaelWong, David Goldblatt, Kostya Serebryany, and AnthonyWilliams. 2021. P2414R1:

Pointer lifetime-end zap proposed solutions. https://wg21.link/p2414r1.

P. E. McKenney and J. D. Slingwine. 1998. Read-copy update: Using execution history to solve concurrency problems. In

PDCS ’98.

Paul E. McKenney, Michael Wong, Maged M. Michael, Geoffrey Romer, Andrew Hunter, Arthur O’Dwyer, Daisy Hollman, JF

Bastien, Hans Boehm, David Goldblatt, Frank Birbacher, Erik Rigtorp, Tomasz Kamiński, and Jens Maurer. 2023. P2545R4:

Read-Copy Update (RCU). https://wg21.link/p2545r4.

Meta. 2023. Folly: Facebook Open-source Library. https://github.com/facebook/folly

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo: A Concurrent Separation Logic for Multicore OCaml.

Proc. ACM Program. Lang. 4, ICFP, Article 96 (aug 2020), 29 pages. https://doi.org/10.1145/3408978

Roland Meyer, Thomas Wies, and Sebastian Wolff. 2022. A Concurrent Program Logic with a Future and History. Proc. ACM

Program. Lang. 6, OOPSLA2, Article 174 (oct 2022), 30 pages. https://doi.org/10.1145/3563337

Roland Meyer and Sebastian Wolff. 2019a. Decoupling Lock-Free Data Structures from Memory Reclamation for Static

Analysis. Proc. ACM Program. Lang. 3, POPL, Article 58 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290371

Roland Meyer and Sebastian Wolff. 2019b. Pointer Life Cycle Types for Lock-Free Data Structures with Memory Reclamation.

Proc. ACM Program. Lang. 4, POPL, Article 68 (dec 2019), 36 pages. https://doi.org/10.1145/3371136

Maged Michael, Maged M. Michael, Michael Wong, Paul McKenney, Andrew Hunter, Daisy S. Hollman, JF Bastien, Hans

Boehm, David Goldblatt, Frank Birbacher, and Mathias Stearn. 2023. P2530R3: Hazard Pointers for C++26. https:

//wg21.link/p2530r3.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

https://people.mpi-sws.org/~jung/iris/talk-iris2019.pdf
https://people.mpi-sws.org/~jung/iris/talk-iris2019.pdf
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3093333.3009850
https://doi.org/10.1145/3385412.3385978
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3158125
https://doi.org/10.1007/978-3-030-17184-1_4
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3498672
https://wg21.link/p2414r1
https://wg21.link/p2545r4
https://github.com/facebook/folly
https://doi.org/10.1145/3408978
https://doi.org/10.1145/3563337
https://doi.org/10.1145/3290371
https://doi.org/10.1145/3371136
https://wg21.link/p2530r3
https://wg21.link/p2530r3

251:28 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

Maged M. Michael. 2002. High Performance Dynamic Lock-Free Hash Tables and List-Based Sets. In Proceedings of the

Fourteenth Annual ACM Symposium on Parallel Algorithms and Architectures (Winnipeg, Manitoba, Canada) (SPAA ’02).

Association for Computing Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/564870.564881

Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE Trans. Parallel Distrib.

Syst. 15, 6 (June 2004), 491–504. https://doi.org/10.1109/TPDS.2004.8

Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue

Algorithms. In PODC 1996.

Ike Mulder and Robbert Krebbers. 2023. Proof Automation for Linearizability in Separation Logic. Proc. ACM Program. Lang.

7, OOPSLA1, Article 91 (apr 2023), 30 pages. https://doi.org/10.1145/3586043

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: Automated Verification of Fine-Grained Concurrent

Programs in Iris. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 809–824.

https://doi.org/10.1145/3519939.3523432

Ruslan Nikolaev and Binoy Ravindran. 2020. UniversalWait-Free Memory Reclamation. Association for ComputingMachinery,

New York, NY, USA, 130–143. https://doi.org/10.1145/3332466.3374540

Ruslan Nikolaev and Binoy Ravindran. 2021. Brief Announcement: Crystalline: Fast and Memory Efficient Wait-Free

Reclamation. In 35th International Symposium on Distributed Computing (DISC 2021) (Leibniz International Proceedings in

Informatics (LIPIcs), Vol. 209), Seth Gilbert (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

60:1–60:4. https://doi.org/10.4230/LIPIcs.DISC.2021.60

Matthew Parkinson, Richard Bornat, and Peter O’Hearn. 2007. Modular Verification of a Non-Blocking Stack. In Proceedings

of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France) (POPL ’07).

Association for Computing Machinery, New York, NY, USA, 297–302. https://doi.org/10.1145/1190216.1190261

Matthew Parkinson, Kapil Vaswani, Dimitrios Vytiniotis, Manuel Costa, Pantazis Deligiannis, Aaron Blankstein, Dylan

McDermott, and Jonathan Balkind. 2017. Project Snowflake: Non-blocking safe manual memory management in .NET. Tech-

nical Report MSR-TR-2017-32. Microsoft. https://www.microsoft.com/en-us/research/publication/project-snowflake-

non-blocking-safe-manual-memory-management-net/

Gali Sheffi, Maurice Herlihy, and Erez Petrank. 2021. VBR: Version Based Reclamation. In Proceedings of the 33rd ACM

Symposium on Parallelism in Algorithms and Architectures (Virtual Event, USA) (SPAA ’21). Association for Computing

Machinery, New York, NY, USA, 443–445. https://doi.org/10.1145/3409964.3461817

Ajay Singh, Trevor Brown, and Ali Mashtizadeh. 2021. NBR: Neutralization Based Reclamation. In Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Virtual Event, Republic of Korea) (PPoPP

’21). Association for Computing Machinery, New York, NY, USA, 175–190. https://doi.org/10.1145/3437801.3441625

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In Programming Languages and

Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (Lecture Notes in Computer Science,

Vol. 8410). Springer, 149–168. https://doi.org/10.1007/978-3-642-54833-8_9

Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying Read-Copy-Update in a Logic for Weak Memory. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR,

USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 110–120. https://doi.org/10.1145/2737924.

2737992

Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif. 2011. Formal Verification of a Lock-Free Stack with Hazard

Pointers. In Theoretical Aspects of Computing – ICTAC 2011, Antonio Cerone and Pekka Pihlajasaari (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 239–255. https://doi.org/10.1007/978-3-642-23283-1_16

R. K. Treiber. 1986. Systems programming: coping with parallelism.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating Weak Memory with Ghosts, Protocols, and

Separation. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages &

Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA, 691–707.

https://doi.org/10.1145/2660193.2660243

Viktor Vafeiadis. 2010a. Automatically Proving Linearizability. In Computer Aided Verification, Tayssir Touili, Byron Cook,

and Paul Jackson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 450–464. https://doi.org/10.1007/978-3-642-

14295-6_40

Viktor Vafeiadis. 2010b. RGSep Action Inference. In Verification, Model Checking, and Abstract Interpretation, Gilles Barthe

and Manuel Hermenegildo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 345–361. https://doi.org/10.1007/978-

3-642-11319-2_25

Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. Electronic Notes in Theoretical Computer

Science 276 (2011), 335–351. https://doi.org/10.1016/j.entcs.2011.09.029 Twenty-seventh Conference on the Mathematical

Foundations of Programming Semantics (MFPS XXVII).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

https://doi.org/10.1145/564870.564881
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/3586043
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3332466.3374540
https://doi.org/10.4230/LIPIcs.DISC.2021.60
https://doi.org/10.1145/1190216.1190261
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://www.microsoft.com/en-us/research/publication/project-snowflake-non-blocking-safe-manual-memory-management-net/
https://doi.org/10.1145/3409964.3461817
https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/2737924.2737992
https://doi.org/10.1145/2737924.2737992
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-11319-2_25
https://doi.org/10.1007/978-3-642-11319-2_25
https://doi.org/10.1016/j.entcs.2011.09.029

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:29

Viktor Vafeiadis. 2017. Program Verification Under Weak Memory Consistency Using Separation Logic. In Computer Aided

Verification, Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham, 30–46.

HaosenWen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, andMichael L. Scott. 2018. Interval-Based Memory Reclamation.

SIGPLAN Not. 53, 1 (feb 2018), 1–13. https://doi.org/10.1145/3200691.3178488

Sebastian Wolff. 2021. Verifying Non-blocking Data Structures with Manual Memory Management. Ph. D. Dissertation.

https://doi.org/10.24355/dbbs.084-202108191157-0

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

https://doi.org/10.1145/3200691.3178488
https://doi.org/10.24355/dbbs.084-202108191157-0

251:30 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

A PROOF OF HAZARD POINTER PROTECT RULE
We discuss the proof of the logically atomic Protect rule.

Specification. We first need to fix the rule as follows:

(Protect-Fixed)

∀𝑠𝑟𝑐, 𝑡𝑖𝑑, ℓ0 .HPSlot(𝑡𝑖𝑑, ℓ0) −∗
⟨ℓ, 𝑣 . 𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣)⟩ protect(𝑡𝑖𝑑,𝑠𝑟𝑐) ⟨ℓ . 𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣) ∗ Protected(𝑡𝑖𝑑, ℓ, 𝑣)⟩

There are three modifications. First, HPSlot in the precondition may contain any value ℓ0, because

protect() does not require the protected pointer slot’s value to be NULL. Second, for clarification,
variables 𝑠𝑟𝑐 , 𝑡𝑖𝑑 , and ℓ0 are explicitly universally quantified. Lastly, HPSlot is moved out from the

triple’s precondition to the left side of a wand (−∗). This means that the triple can be used only

when HPSlot(𝑡𝑖𝑑, ℓ0) is provided upfront. To understand why the last change is necessary, we need

a deeper understanding of logically atomic Hoare triples.

An ordinary Hoare triple {𝑃 (𝑥)} 𝑒 {𝑣 .𝑄 (𝑥, 𝑣)} asserts that 𝑒 is given the ownership of 𝑃 (𝑥) at
the start of its execution and returns the ownership of 𝑄 (𝑥, 𝑣) at the end. In contrast, a logically

atomic Hoare triple ⟨𝑥 . 𝑃 (𝑥)⟩ 𝑒 ⟨𝑣 .𝑄 (𝑥, 𝑣)⟩ asserts that at the atomic commit point instruction of 𝑒 ,

the current state is some 𝑥 , and the instruction is given 𝑃 (𝑥) and transforms it to 𝑄 (𝑥, 𝑣) at that
point. That is, 𝑒 can only temporarily access the precondition at each instruction with the current

state 𝑥 of that point, which may not be under full control of the current thread executing 𝑒 .

By moving out HPSlot(𝑡𝑖𝑑, _) to the left-hand side of a wand in Protect-Fixed, protect() is

given the ownership of HPSlot(𝑡𝑖𝑑, _) at the beginning and thus has full control of the slot’s value

during its execution. This reflects the property that 𝑡𝑖𝑑’s slot is updated only by 𝑡𝑖𝑑 . On the other

hand, it accesses 𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣) only temporarily at each instruction, where ℓ and 𝑣 are

current values at that point. This reflects that 𝑠𝑟𝑐 and ℓ are shared locations in the data structure

that can be modified by other threads.

Proving logically atomic Hoare triples. To discuss how to prove a logically atomic Hoare triple,

we first need to understand how it models the atomic transformation of the precondition to the

postcondition. Logically atomic triples are encoded as ordinary Hoare triples with some special

resources in precondition and postcondition:

⟨𝑥 . 𝑃 (𝑥)⟩ 𝑒 ⟨𝑣 .𝑄 (𝑥, 𝑣)⟩ := ∀𝑅. {AU(𝑃,𝑄, 𝑅)} 𝑒 {𝑣 . 𝑅(𝑣)}
The precondition AU(𝑃,𝑄, 𝑅), called atomic update, represents the permission to access the

atomic precondition 𝑃 (𝑥) at each atomic instruction and the obligation to transform it into the

atomic postcondition 𝑄 (𝑥, 𝑣) at one of such atomic instructions. The transformation should be

performed exactly once, Concretely, atomic updates can be used with the following rules:

(AU-Commit)

{∃𝑥 . 𝑃 (𝑥)} 𝑒′ {𝑣 .𝑄 (𝑥, 𝑣)} physically atomic 𝑒′

{AU(𝑃,𝑄, 𝑅)} 𝑒′ {𝑣 . 𝑅(𝑣)}

(AU-Peek)

{∃𝑥 . 𝑃 (𝑥)} 𝑒′ {𝑣 . 𝑃 (𝑥)} physically atomic 𝑒′

{AU(𝑃,𝑄, 𝑅)} 𝑒′ {𝑣 .AU(𝑃,𝑄, 𝑅)}
AU-Commit says that the atomic update can be “committed” at a physically atomic instruction.

To commit the update, the instruction is given 𝑃 (𝑥) at some 𝑥 and should transform it into 𝑄 (𝑥, 𝑣).
Then, the “receipt” 𝑅(𝑣) is returned in exchange. The receipt 𝑅(𝑣) encodes the idea that a logically
atomic program must commit the corresponding atomic update during its execution. By universally

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:31

V0

{
AUprotect (𝑅) ∗ HPSlot(𝑡𝑖𝑑, ℓ0)

}
C1 fun protect(𝑡𝑖𝑑, 𝑠𝑟𝑐):

V1.1

{
AUprotect (𝑅) ∗ HPSlot(𝑡𝑖𝑑, ℓ0)

}
V1.2 {∃ℓ1, 𝑣1 . 𝑠𝑟𝑐 ↦→ ℓ1 ∗Managed(ℓ1, 𝑣1) ∗ HPSlot(𝑡𝑖𝑑, ℓ0)}
C2 ℓ1 := *𝑠𝑟𝑐

V2.1 {𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣) ∗ HPSlot(𝑡𝑖𝑑, ℓ0)}
V2.2

{
AUprotect (𝑅) ∗ HPSlot(𝑡𝑖𝑑, ℓ0)

}
C3 loop:

V3.1

{
∃ℓ′ .AUprotect (𝑅) ∗ HPSlot(𝑡𝑖𝑑, ℓ′)

}
C4 protected[𝑡𝑖𝑑] := ℓ1

V4.1

{
AUprotect (𝑅) ∗ HPSlot(𝑡𝑖𝑑, ℓ1)

}
V4.2 {∃ℓ2, 𝑣2 . 𝑠𝑟𝑐 ↦→ ℓ2 ∗Managed(ℓ2, 𝑣2) ∗ HPSlot(𝑡𝑖𝑑, ℓ1)}
C5 ℓ2 := *𝑠𝑟𝑐

V5.1 {𝑠𝑟𝑐 ↦→ ℓ2 ∗Managed(ℓ2, 𝑣2) ∗ HPSlot(𝑡𝑖𝑑, ℓ1)}

V5.2

𝑠𝑟𝑐 ↦→ ℓ2 ∗Managed(ℓ2, 𝑣2) ∗
∨ 

ℓ1 = ℓ2 ∗ Protected(𝑡𝑖𝑑, ℓ1, 𝑣2)

ℓ1 ≠ ℓ2 ∗ HPSlot(𝑡𝑖𝑑, ℓ1)


V5.3


∨ 

ℓ1 = ℓ2 ∗ 𝑅(ℓ2)

ℓ1 ≠ ℓ2 ∗ AUprotect (𝑅)


C6 ...

Fig. 13. Proof of Protect-Fixed

quantifying 𝑅 in the definition of the logically atomic triple, the only way to return 𝑅(𝑣) as the
precondition is to commit the atomic update. For example, in the proof of stack pop(), this rule is
used at the successful CAS to commit a successful pop operation.

The atomic update comes with another rule AU-Peek to “peek” at the atomic precondition without

actually committing the update. The atomic instruction should return the precondition without

change, and then it will be returned the atomic update so that it can be used later. For example, in

pop(), this rule is used when reading the head pointer.

Proof of Protect-Fixed. Finally, Protect-Fixed can be rewritten as follows:

𝑃protect (𝑠𝑟𝑐, ℓ, 𝑣) := 𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣)
𝑄protect (𝑠𝑟𝑐, 𝑡𝑖𝑑, ℓ, 𝑣) := 𝑠𝑟𝑐 ↦→ ℓ ∗Managed(ℓ, 𝑣) ∗ Protected(𝑡𝑖𝑑, 𝑣)

AUprotect (𝑅) := AU(𝜆ℓ, 𝑣 . 𝑃protect (𝑠𝑟𝑐, ℓ, 𝑣), 𝜆ℓ, 𝑣 . 𝑄protect (𝑠𝑟𝑐, 𝑡𝑖𝑑, ℓ, 𝑣), 𝑅)

∀𝑠𝑟𝑐, 𝑡𝑖𝑑, ℓ0, 𝑅. {AUprotect (𝑅) ∗ HPSlot(𝑡𝑖𝑑, ℓ0)} protect(𝑡𝑖𝑑,𝑠𝑟𝑐) {ℓ . 𝑅(ℓ)} .
Fig. 13 shows the excerpt of the proof.

• V0: We start with the atomic update and the ownership of the slot.

• V1.1-2.2: We use AU-Peek to access the atomic precondition, and read from 𝑠𝑟𝑐 ↦→ ℓ1.

• V3.1: We generalize the precondition over the slot’s value as the loop invariant.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:32 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

Fig. 14. The epoch consensus example annotated with tokens.

• V3.1-3.2: We write to the thread’s protected pointer slot.

• V4.1-5.3: We use either AU-Commit or AU-Peek based on the value ℓ2.
13

– If ℓ1 = ℓ2, the validation is successful. We use AU-Commit to read from 𝑠𝑟𝑐 , use HPSlot-

Validate to transform HPSlot to Protected, and commit.

– If ℓ1 ≠ ℓ2, the validation fails. We use AU-Peek to read from 𝑠𝑟𝑐 . We take back the atomic

update and retry (omitted).

B DETAILS OF EPOCH-BASED RCU
Among many variants of RCU [Desnoyers et al. 2012; McKenney and Slingwine 1998; McKenney

et al. 2023], we focus on an epoch-based lock-free version [Fraser 2004; Harris 2001; Hart et al. 2007],

and especially, the variant due to Parkinson et al. [2017]. We believe the verification techniques we

propose apply also to other variants of RCU because they share the same high-level idea.

B.1 Implementation of Epoch-Based RCU
We review the implementation of epoch-based RCU due to Parkinson et al. [2017]. To keep the

algorithm simple, we assume that retire() is only called inside a critical section.

Fig. 14 illustrates the synchronization protocol of epoch-based RCU to ensure safe dereference of

a shared pointer, ℓ , inside a critical section delimited by a pair of rcu_lock() and rcu_unlock()
invocations.

14
(Please ignore the boxes for now.) The critical sections synchronize with each other

using epoch counters. In the figure, black arrows represent four critical sections for threads 𝑇0 to 𝑇3
that are locked at epochs 10, 11, 12, and 13, respectively.

The epoch-based RCU has the following epoch-consensus protocol: the difference between the

locked epochs of concurrently active critical sections is at most one. Specifically, as represented by

the blue dashed arrows, the end of a critical section locked at an epoch, say 10, happens before the

beginning of another critical section locked at 12 or later.

Under this protocol, a retired memory block is can be reclaimed after three epochs have passed.

For instance, since thread 𝑇0 retires ℓ at the epoch 10, it can be reclaimed by thread 𝑇3 at the

epoch 13. This reclamation rule is safe thanks to the following property: a retired pointer becomes

13
In Iris, the user actually can decide whether to commit or peek after accessing the atomic precondition.

14
For concise presentation, assume that an address coincides with the block ID. Our formalized verification lifts this

assumption by tracking the current block ID of each address, as briefly noted in §5.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:33

C11 fun rcu_lock(tid):

C12 e := global_epoch

C13 loop:

C14 locked_epochs[tid] := e

C15 e’ := global_epoch

C16 if e’ == e:

C17 return

C18 e := e’

C21 fun rcu_unlock(tid):

C22 locked_epochs[tid] := -1

C31 fun retire(tid, p):

C32 retired.push((p, locked_epochs[tid]))

C33 if /* some condition */:

C34 do_reclamation()

C41 fun do_reclamation():

C42 ge := try_advance()

C43 for (r, e) in retired.pop_all():

C44 if ge < e + 3:

C45 retired.push((r, e))

C46 else:

C47 free(r)

C51 fun try_advance():

C52 ge := global_epoch

C53 for e in locked_epochs:

C54 if e ≥ 0 && e ≠ ge:

C55 return ge

C56 if CAS(&global_epoch, ge, ge + 1):

C57 return ge + 1

C58 else:

C59 return ge

Fig. 15. Implementation of epoch-based RCU.

inaccessible to all threads after two epochs have passed. For instance, 𝑇2 locked at 12 cannot access

ℓ retired by 𝑇0 locked at 10. Formally:

Lemma 1. Let 𝐷𝑒 be the set of retired pointers at epoch 𝑒 . If a pointer is in ∪𝑖≤𝑒𝐷𝑖 , then it is

inaccessible at epoch 𝑒 + 2.

Proof. Let ℓ ∈ 𝐷𝑖 be a pointer retired at the epoch 𝑖 . Then ℓ is detached before the end of a

critical section locked at 𝑖 , which happens before the beginning of a critical section locked at 𝑒 + 2,
as 𝑖 + 2 ≤ 𝑒 + 2. Thus, a critical section locked at 𝑒 + 2 cannot access the detached pointer ℓ . □

As a consequence, retired pointers are indeed safe to reclaim after three epochs have passed, e.g.,𝑇3
locked at 13 can reclaim ℓ . If ℓ is retired at 𝑒 , then all accesses to ℓ are in the critical sections locked

at 𝑖 ≤ 𝑒 + 1, which happens before the beginning of the critical sections locked at 𝑒 + 3 or later. A
natural corollary of Lemma 1 is that the complement of retired sets until 𝑒 − 2, 𝐿𝑜𝑐 \ ∪𝑖≤𝑒−2𝐷𝑖 , is

precisely the set of pointers a thread locked at 𝑒 may access. We denote this set by 𝐴𝑒 .

Fig. 15 presents an implementation of RCU based on the above epoch consensus rule. The global

variable global_epoch contains the monotonic global epoch and locked_epochs is the list of the
epochs at which each thread is locked. For each 𝑒 , we maintain invariants that (1) the increment

of the global epoch to 𝑒 happens before the beginning of a critical section locked at 𝑒; and (2) the
end of a critical section locked at 𝑒 happens before the increment of global epoch to 𝑒 + 2. As a
consequence, the end of a critical section locked at 𝑒 happens before the increment of the global

epoch to 𝑒 + 2, which in turn happens before the beginning of a critical section locked at 𝑒 + 2,
satisfying the epoch consensus.

The implementation resembles hazard pointers in the sense that rcu_lock(tid) proposes an
epoch it wants to protect, and try_advance() checks each thread’s epoch before incrementing the

global epoch. Specifically, rcu_lock(tid) copies the global epoch to its locked epoch slot (lines

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:34 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

C12-14); validates that global epoch has not changed (lines C15-17); and if changed, retries with the

new epoch (line C13). The validation is necessary for maintaining the epoch consensus: if the global

epoch has increased between C12-14, the incrementing thread has not seen tid’s intention to begin

a critical section, breaking the second invariant. To end the protection, rcu_unlock(tid) simply

assigns the dummy value −1 to tid’s epoch slot (line C22). On the other hand, try_advance()
tries incrementing the global epoch by one (line C56-59) only if every active critical section is

locked at the same epoch as the global epoch (line C52-55).

The retire(tid, p) and do_reclamation() functions are similar to those of hazard pointers,

but with the following differences: (1) a retired pointer is annotated with the epoch at which the

enclosing critical section is locked (line C32); and (2) a retired pointer is reclaimed only if three

epochs have passed since the retirement (line C44).

B.2 Verification of Epoch-Based RCU
We sketch a proof that the implementation of RCU (Fig. 15) satisfies the epoch consensus (Fig. 14)

and our specification (Fig. 11).

Reserving Pointer Ownershipwith Permission Tokens. Unlike hazard pointers, RCU’s protection
ruleManaged-Protected does not require any physical interactionwith the internals of RCU. Instead,

the synchronization of rcu_lock() at epoch 𝑒 alone guarantees safe access to all pointers in 𝐴𝑒 .

This means that ownership transfer of the entire 𝐴𝑒 must happen during RCU-Lock, and Managed-

Protected just recalls that the guard has already obtained the ownership for the pointer, by assuring

that it is not retired at 𝑒 , hence in 𝐴𝑒 .

However, at RCU-Lock time, some pointers in 𝐴𝑒 may have not been allocated yet. For example,

a thread in a critical section may access a memory block just allocated and attached to a data

structure after it entered the critical section. Thus, RCU-Lock cannot take the necessary partial

points-to ownership of those non-existent pointers.

We follow Tassarotti et al. [2015] to resolve this issue by introducing a logical proxy of pointer to

reserve the pointer ownership. Specifically, they use permission tokens of the form ({ℓ}, {𝑡𝑖𝑑}) ∈
℘(Loc)⊎ × ℘(ThreadId)⊎ which are ghost resources allocated at the beginning of the proof, and set

up invariants that each token can be exchanged with the actual pointer ownership ℓ
{𝑡𝑖𝑑 }↦−−−−→ _.

Distributing and Collecting Tokens. Now we verify RCU’s proof rules (Fig. 11) by reasoning

about the permission token’s transfer.

We first reason about the contention between RCU-Lock and try_advance() on the owner-

ship of tokens. This interaction can be understood as a mutual exclusion protocol, just like the

contention between protect() and do_reclamation() in hazard pointers (§4.2). Specifically, the

locked_epochs and global_epoch variables play the role of 𝑝 and 𝑑 flags in Fig. 8, respectively.

On the one hand, when rcu_lock(𝑡𝑖𝑑) validates epoch 𝑒 , it takes tokens (𝐴𝑒 , {𝑡𝑖𝑑}) that are

returned by rcu_unlock(𝑡𝑖𝑑), as illustrated in Fig. 14. On the other hand, when try_advance()
increases the global epoch from 𝑒 − 1 to 𝑒 , the value of each locked_epochs[𝑡𝑖𝑑] must’ve been -1

or 𝑒 − 1. At that point, 𝑡𝑖𝑑 must have returned tokens for 𝐴𝑒−2 \𝐴𝑒−1 = 𝐷𝑒−3, which means that

try_advance() may take those tokens.

To verify Managed-Protected, we prove that the guard already has the token of the pointer ℓ

to protect. To this end, we maintain an invariant that Managed(ℓ, _) implies ℓ ∉
⋃

𝑖∈N 𝐷𝑖 . We also

note that 𝐷𝑖 monotonically grows over time for each 𝑖 , so if a pointer is currently not in

⋃
𝑖∈N 𝐷𝑖 ,

then it must have not been there in the past either. Thus, if one can provide Managed(ℓ, _) to
Managed-Protected, 𝐴𝑒 at RCU-Lock contains ℓ , and thus the Guard(𝑡𝑖𝑑, _) has the token for ℓ .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic 251:35

EpochHistory(𝐷 : List(℘(Loc))) : iProp OwnEpoch(𝑒 : N, 𝐴𝑒 : ℘(Loc), 𝑠 : ℘(ThreadId)) : iProp

(Epoch-History-Retire)

EpochHistory(𝐷) ∗ OwnEpoch(𝑒,𝐴𝑒 , {𝑡𝑖𝑑}) EpochHistory(𝐷 [𝑒 ↦→𝐷 [𝑒] ⊎ {ℓ}]) ∗ OwnEpoch(𝑒, 𝐴𝑒 , {𝑡𝑖𝑑})

(Epoch-Own-Fract)

OwnEpoch(𝑒,𝐴𝑒 , 𝑠1) ∗ OwnEpoch(𝑒, 𝐴𝑒 , 𝑠2) ⊣⊢ OwnEpoch(𝑒,𝐴𝑒 , 𝑠1 ⊎ 𝑠2)

(Epoch-History-Advance)

let 𝑒 := len(𝐷) − 1 in
EpochHistory(𝐷) EpochHistory(𝐷 ++ [∅]) ∗OwnEpoch(𝑒 + 1, Loc \⋃𝑖≤𝑒−1 𝐷 [𝑖], ThreadId)

RCUInv := ∃𝐷. let 𝑒 := len(𝐷) − 1 in global_epoch ↦→ 𝑒 ∗ locked_epochs 1/2↦−−−→ . . . ∗
EpochHistory(𝐷) ∗ (mutual exclusion protocol governing OwnEpoch and tokens) ∗ . . .

Guard(𝑡𝑖𝑑,𝐺) := ∃𝑒. locked_epochs[𝑡𝑖𝑑] 1/2↦−−−→ 𝑒 ∗OwnEpoch(𝑒, 𝐴𝑒 , 𝑡𝑖𝑑) ∗ (𝐴𝑒 , {𝑡𝑖𝑑}) ∗𝐺 ⊆ 𝐴𝑒 ∗ . . .

Fig. 16. Definition of the predicates and invariant of epoch-based RCU.

Tracking Retired Pointers with Epoch History Ghost State. In the above verification, we did

not formalize how the logical variable (𝐷𝑖)𝑖∈N is modified by multiple threads. To fill in the gap, we

maintain a protocol on (𝐷𝑖)𝑖 with the epoch history ghost state, illustrated in Fig. 16, that consists

of two resource types:

• EpochHistory(𝐷), the authoritative resource owned by the RCU’s invariant RCUInv to record

the up-to-date list of set of pointers retired at each epoch; and

• OwnEpoch(𝑒, 𝐴𝑒 , {𝑡𝑖𝑑}), a resource owned by Guard(𝑡𝑖𝑑, _) that represents the fractional

permission for 𝑡𝑖𝑑 (Epoch-Own-Fract) to retire pointers at epoch 𝑒 (Epoch-History-Retire) and

the knowledge that 𝐴𝑒 is accessible in epoch 𝑒 .

In the invariant RCUInv of epoch-based RCU, we also relate the epoch history ghost state and

the physical value of global_epoch by equating the last index of 𝐷 in EpochHistory(𝐷) and
global_epoch. The mutual exclusion protocol between RCU-Lock and try_advance() described
above also governs transfer ofOwnEpoch(𝑒, 𝐴𝑒 , {𝑡𝑖𝑑}). When try_advance() increments epoch, it

uses Epoch-History-Advance to allocate the ownership for the new epoch and compute the pointers

accessible in a critical section of the new epoch.

C APPLICATION TO MORE SMR SCHEMES
We sketch a specification for DEBRA+ [Brown 2015], PEBR [Kang and Jung 2020], and NBR [Singh

et al. 2021]. These schemes are a hybrid of RCU and hazard pointer designed to cope with the

original schemes’ weaknesses:

• RCU’s lack of robustness: if any of the threads do not exit their critical section, the reclamation

of retired nodes cannot progress;

• hazard pointers’ incompatibility with many data structures: it does not apply to data structures

that use optimistic traversal, such as Harris’s list.

They use a mechanism called neutralization or ejection to deal with RCU’s robustness issue: if

there is a non-cooperative thread, the scheme forcefully ends the thread’s critical section so that

reclamation can proceed. These schemes apply to optimistic traversal because the traversal is

aborted only when it is absolutely necessary. When a thread detects that it is neutralized, it should

stop traversing and start a recovery procedure. To help the recovery procedure, those schemes use

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

251:36 Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang

hazard pointers to keep protecting (outside the critical section) the memory blocks relevant for

recovery. Of course, this requires the thread to manually announce the protection of such pointers.

The protection of these schemes can be modeled with a common function try_protect(tid,
p). Inside a critical section, it tries announcing protection of p, and returns a boolean value that

indicates whether it was successful. true means that the protection is established and validated.

false means that the protection failed and the critical section was neutralized. In this case, the

thread has to run the recovery procedure only using the pointers that have been successfully

protected. PEBR provides a function similar to try_protect(). In contrast, DEBRA+ and NBR

use POSIX signals for detecting ejection and non-local goto for entering the recovery procedure.

Despite the superficial difference, try_protect() still captures the protection of DEBRA+ and

NBR, because signal handlers can be modeled by atomically checking the signal on each step of

execution.

try_protect() can be specified in a style that resembles our specifications for both hazard

pointer and RCU.

(Try-Protect)

𝑖 ∉ 𝑅

BlockInfo(𝑖, ℓ, 𝑃) ⊢ {Guard(𝑡𝑖𝑑,𝐺, 𝑅)} try_protect(𝑡𝑖𝑑, ℓ) {𝑏. ∨ 
𝑏 ∧ Guard(𝑡𝑖𝑑,𝐺 [ℓ ↦→(𝑖, 𝑃)] , 𝑅)

¬𝑏 ∧ FrozenGuard(𝑡𝑖𝑑,𝐺) }
In the premise, we have a BlockInfo for the pointer we are trying to protect, and the knowledge

that the pointer was not retired before the start of the critical section (i.e., not in 𝑅). In the postcondi-

tion, if try_protect() was successful, we update the guarded set 𝐺 to include the newly protected

pointer. Otherwise, the guard changes to a frozen guard. The following two key differences capture

the essence of the neutralization mechanism. (1) The Guard predicate additionally holds a map

𝐺 of the currently protected pointers, which records its block ID and block resource, similar to a

Protected. (2) The FrozenGuard predicate represents the protected pointers of a neutralized thread:

it can still access the pointers it has protected so far (represented by 𝐺), but cannot protect new

pointers (represented by the fact that it no longer records 𝑅).

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 251. Publication date: October 2023.

	Abstract
	1 Introduction
	1.1 Modular Implementation of Memory Reclamation
	1.2 Problem: Non-Modular Verification of Memory Reclamation
	1.3 Contributions: Modular Verification of Memory Reclamation

	2 Background and Challenges
	2.1 Hazard Pointers
	2.2 RCU
	2.3 Verification of Treiber's Stack without Reclamation

	3 Specification of Hazard Pointers
	4 Verification of Hazard Pointers
	4.1 Fractional Ownership of Pointer
	4.2 The Essence of Synchronization between Protection and Reclamation
	4.3 Generalization to Multiple Pointers and Threads

	5 Reasoning about Mutable Memory Blocks
	6 Specification of RCU
	6.1 General Specification Characterizing Critical Sections
	6.2 Traversal-Friendly Specification

	7 Evaluation
	8 Related Work
	9 Future work
	Acknowledgments
	References
	A Proof of Hazard Pointer Protect Rule
	B Details of Epoch-Based RCU
	B.1 Implementation of Epoch-Based RCU
	B.2 Verification of Epoch-Based RCU

	C Application to More SMR Schemes

