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Weak persistent memory (a.k.a. non-volatile memory) is an emerging technology that offers fast byte-
addressable durable main memory. A wealth of algorithms and libraries has been developed to explore
this exciting technology. As noted by others, this has led to a significant verification gap. Towards closing
this gap, we present Spirea, the first concurrent separation logic for verification of programs under a weak
persistent memory model. Spirea is based on the Iris and Perennial verification frameworks, and by combining
features from these logics with novel techniques it supports high-level modular reasoning about crash-safe
and thread-safe programs and libraries. Spirea is fully mechanized in the Coq proof assistant and allows
for interactive development of proofs with the Iris Proof Mode. We use Spirea to verify several challenging
examples with modular specifications. We show how our logic can verify thread-safety and crash-safety of
non-blocking durable data structures with null-recovery, in particular the Treiber stack and the Michael-Scott
queue adapted to persistent memory. This is the first time durable data structures have been verified with a
program logic.

CCS Concepts: • Theory of computation→ Separation logic; Logic and verification.

Additional Key Words and Phrases: weak memory, persistent memory, non-volatile memory, persistency,
program verification, program logic, Iris

ACM Reference Format:
Simon Friis Vindum and Lars Birkedal. 2023. Spirea: A Mechanized Concurrent Separation Logic for Weak
Persistent Memory. Proc. ACM Program. Lang. 7, OOPSLA2, Article 244 (October 2023), 37 pages. https:
//doi.org/10.1145/3622820

1 INTRODUCTION
In the traditional storage hierarchy programmers can choose between fast, but volatile, main
memory and non-volatile, but slower, secondary storage. Persistent memory (a.k.a. non-volatile
memory) is an exciting emerging technology that, uniquely, offers both fast random access at byte
granularity and persistence of data in the absence of power and across system crashes. It thus
shakes up the traditional storage hierarchy with a new abstraction: storage that is suitable both as
main memory and as durable storage of data.

A wealth of algorithms, libraries, and tools have been developed for persistent memory, exploring
the new potential. This includes durable data structures [Cai et al. 2021; Friedman et al. 2018],
memory allocators [Schwalb et al. 2015], garbage collectors [Cai et al. 2020], transactions [Ramalhete
et al. 2021; Volos et al. 2011], key-value stores [Chen et al. 2020; Kaiyrakhmet et al. 2019], and
language-level support for persistent memory [George et al. 2020], just to mention a few. An
important class of data structures that is new and unique to persistent memory is durable data-
structures with null-recovery [Izraelevitz et al. 2016]. These reside in persistent memory and are
preserved across crashes with no recovery being needed after a crash to maintain their consistency.

Ensuring correctness when programming for persistent memory is, however, extremely challeng-
ing. Since data stored in persistent memory is expected to be permanent, programs for persistent
memory must be crash-safe. Thus, programmers must ensure that if the system crashes (which
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can happen non-deterministically at any time, e.g., due to power failure) then, after the crash, the
content of the persistent memory should be in a consistent state from which recovery is possible.
Moreover, due to the volatile caches on contemporary CPUs, writes to persistent memory are

buffered. They occur asynchronously and may reach persistent memory in a different order than the
one in which they were carried out. This persistent memory order (or persist order) does not coincide
with the weak memory order, the order in which the CPU guarantees that writes by one thread are
made visible to other threads. Hence, a program can be correct for weak memory (by taking into
account the weak memory order), but not correct for persistent memory (by failing to take the
persistent memory order properly into account). To tame this non-determinism, modern instruction
sets such as x86 and ARM offer various flush and fence instructions, which programmers can insert
between writes to enforce a desired persist order. These instructions are expensive, though, and
should only be used when necessary.

One solution to ensure correctness in the presence of these challenges is, of course, to formally
verify programs for persistent memory using a program logic. However, as Raad et al. [2020a]
identified, there is a significant verification gap: The development of algorithms and libraries for
persistent memory is far ahead of formal verification techniques for persistent memory. As a first
step towards closing this gap two program logics have been developed: Persistent Owicki-Gries
(POG) [Raad et al. 2020a] and Pierogi [Bila et al. 2022]. Both are adaptations of the Owicki-Gries
proof system and for reasoning about programs under the machine-level x86-TSO memory model.
However, since these logics are based on Owicki-Gries they only support a very simple first-order
sequential programming language and do not include features such as separation, (user defined)
ghost state, higher-order reasoning, and abstract specifications. This results in a lack of modularity
that is evident, for instance, in [Raad et al. 2020a], where to verify an example using a lock, the lock
and the client of the lock are verified together using a global invariant with knowledge about the
internals of both. It is not possible to give the lock an abstract specification, verify it in isolation,
and reuse the specification with multiple clients. In contrast, modern concurrent separation logics
(CSLs), such as Iris [Jung et al. 2018], scale to much richer programming languages and support
the aforementioned features. We thus think that the next step to closing the verification gap is to
develop a CSL for persistent memory, and that is exactly what we do in this paper.

1.1 Challenges
Prior work has explored the application of CSL to weak memory and to persistency individually.
The RSL and GPS logics has spawned a line of logics for weak (but not persistent) memory [Doko
and Vafeiadis 2016; Kaiser et al. 2017; Turon et al. 2014; Vafeiadis and Narayan 2013]. The Perennial
logic, which is a state-of-the-art CSL for reasoning about crash-safety, and its predecessor Crash
Hoare Logic applies to programs that use durable secondary storage (but without any weak
behaviors) [Chajed 2022; Chajed et al. 2019, 2021; Chen et al. 2016]. These logics have been
successful in their respective domains but no CSL has been developed for the weak persistency
found in persistent memory. As persistent memory combines challenging aspects from both weak
memory and persistency a natural approach is to learn from the above-mentioned logics and try
to adapt their techniques into a logic for persistent memory. As it turns out, there are however
serious obstacles to such an endeavor:

Non-deterministic crashes. In a strong persistency model, such as the one considered for Crash
Hoare Logic and Perennial, crashes are deterministic. This means that if a crash occurs at a given
program point the state of the machine after the crash is uniquely determined by its state before the
crash at that program point. The durable storage is completely unaffected by the crash whereas the
content of volatile memory is entirely lost. At the program logic level this means that some logical
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resources are kept unchanged at a crash while others are discarded. Perennial includes a post-crash
modality, ⟨PC⟩, that carries out this transformation. All rules for their post-crash modality have
the form 𝑅 ⊢ ⟨PC⟩ 𝑅, which means that the resource 𝑅 is preseved during a crash. If a resource 𝑃 is
lost at a crash this is simply encoded by having no such rule for 𝑃 .

For persistent memory the persistency model is weak due to the asynchronous nature of writes
and fences. This means that the crash step is non-deterministic. As such, resources are not merely
kept or lost at a crash; instead they are non-deterministically kept, discarded, or changed. Hence,
the straightforward behavior of Perennial’s post-crash modality is no longer sufficient and its
model, which relies on changing ghost names for lost resources, is not applicable either! We thus
introduce a more sophisticated post-crash modality and prove it sound using a more subtle model.

Sound invariants. It is well-known that Iris-style invariants are unsound for weak memory.
To overcome this, CSLs for weak memory have had to restrict invariants in various ways. One
approach taken by GPS, iGPS and iRC11 is to associate invariants with specific locations and only
allow access to their content when physically synchronizing with the location. We observe that
in a persistent memory setting even these restricted invariants allows for resource transfer that
is unsound for persistent memory. In particular, in weak memory if a RMW (read-modify-write)
operation is successful then the overwritten value can never be read again by another RMW
operation. The weak memory invariants rely on this property for certain types of resource transfer.
But, in persistent memory, a write made by an RMW operation might be lost at a crash, and the
overwritten value will then be observable again after the crash.

Additionally, we want invariants that are strong enough to handle durable data structures with
null-recovery. The obvious way to encode at the logic level that a data-structure is preserved across
crashed is to say that its invariant (inside its representation predicate) is preserved under the
post-crash modality. However, it is not clear how an Iris invariant can soundly interact with a
post-crash modality. Indeed, in Perennial, which uses Iris invariants, one cannot use the post-crash
modality to establish that an invariant holds after a crash. Instead, Perennial relies on recovery
code to establish new invariants after a crash, but this approach does not work for null-recovery
where there is no recovery code.

A somewhat subtle point is that the issues with reconciling Iris invariants and crashes also
pose challenges regarding modeling of the logic. Prior Iris-based logics for weak memory use Iris
invariants internally to model their more restrictive user-level invariants. But if invariants can not
survive crashes, then they can not be used in the model either.

Persistent memory instructions. Persistent memory models usually involve some combination
of flushes and fences to restrict the persist order when necessary. These instructions are specific
to persistent memory and are not addressed by prior separation logics. We consider a weak flush
instruction that may be reordered with respect to other instructions up to a fence. As noted by
Raad et al. [2020a] such a flush instruction is difficult to reason about as its effect does not take
place at the program point of the flush. As for fences we consider both asynchronous fences and
synchronous fences.

1.2 Our Contributions
This paper contributes Spirea, the first CSL for weak persistency in general and persistent memory
in particular. We use the explicit epoch persistency model by Izraelevitz et al. [2016].1 This model
is a slight generalization of the x86 and the ARM persistency models which can be efficiently
implemented on both processors. As the model is slightly weaker than x86 and ARM, programs that

1Not to be confused with the (implicit) epoch persistency model which cannot be efficiently implemented on x86 or ARM.
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are proven correct for this model are correct for both x86 and ARM. Similarly, reasoning principles
that apply for this model are more general and are sound also for x86 and ARM. As such, the ideas
in Spirea are generally applicable and can also be used, for instance, in logics specifically for x86 and
ARM. In §2 we give an intuitive account of the persistency model as well as the consistency model
and explain the verification challenges in more detail. Izraelevitz et al. [2016] define the explicit
epoch persistency model in a declarative style, as a number of ordering constraints on abstract
histories. Such a formulation is not well-suited for reasoning in a CSL, so we recast their model as
a view-based small-step operational semantics (see §5.1) that can be used with the Perennial and
Iris logical frameworks. As our focus in this paper is squarely on the logic we do not establish a
formal correspondence between Izraelevitz et al.’s formulation and ours but instead leave this to
future work.
Our logic improves the state-of-the-art both in terms the programming language features it

supports, the expressivity and power of the logic, and in the scope of the case studies we have
verified. Our programming language 𝜆pmem includes many features that are not supported by the
Owicki-Gries based logics, most importantly: dynamic allocation of references, dynamic forking of
threads, functions (including higher-order recursive functions and closures), and compound data
types. As for the logic, Spirea is a higher-order separation logic and includes all the usual features
in Iris based separation logics (except for those that are unsound in our setting). For reasoning
about crashes Spirea contains features equivalent to those of Perennial. We cover this background
in §3.

To tackle the above-mentioned challenges, Spirea includes the following key innovations:

(1) A resource changing posts crash modality that can account for the non-deterministic changes
in resources at crashes under weak persistency. Our post-crash modality supports rules of
the form 𝑅 ⊢ ⟨PC⟩ 𝑅′, where 𝑅′ reflects how 𝑅 is non-deterministically affected by the crash.
We make this possible by modelling our post-crash modality using an exchange resource. This
can be seen as a generalization of the model of Perennial’s post-crash modality: the Perennial
model is the special case where the exchange resource is the empty resource.

(2) Crash-aware invariants, which, in contrast to Iris-style and GPS-style invariants, are sound
under weak persistency. Soundness of Spirea crash-aware invariants relies on having novel
proof rules for transfer of resources in and out of invariants. Our Spirea invariants are crash-
aware, meaning that they can be preserved under our post-crash modality and thus facilitate
resource transfer between code executing before and after a crash. This is the first time a
separation logic contains invariants that can be used to this end. We devise a novel model for
our invariants that does not rely on Iris invariants.

(3) An assortment of features to handle persistent memory instructions: Post-fence modalities,
a post-crash flush modality, and state lower-bounds w.r.t. fences. These work in tandem to
reason about weak flushes and synchronous and asynchronous fences.

We explain these in depth in §4 where we give a high level introduction to Spirea, explain its design,
and present several examples.

Spirea and its high-level reasoning rule aremodelled on top of a lower-level logic called BaseSpirea.
This logic, in turn, is modelled using an instantiation of the Perennial program logic and using
the Iris base logic. In §5 we state the soundness result in terms of the operational semantics. We
also give an overview of the semantic model and the proof of soundness to the extent that space
permits. For the full details regarding the model and the soundness proof we refer the reader to our
mechanization.
Spirea and all our results are fully mechanized in the Coq proof assistant. The mechanization

allows for interactive development of proofs using the Iris proof mode. The development is available
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𝑣 ∈ Val ::= () | 𝑖 ∈ Z | ℓ ∈ 𝐿𝑜𝑐 | true | false | (𝑣, 𝑣) | inj1 𝑣 | inj2 𝑣 | rec 𝑓 (𝑥) = 𝑒 | · · ·
𝑒 ∈ Exp ::= 𝑥 | 𝑣 | if 𝑒 then 𝑒 else 𝑒 | (𝑒, 𝑒) | 𝜋1 𝑒 | 𝜋2 𝑒 | inj1 𝑒 | inj2 𝑒 | 𝑒 𝑒 | · · ·

| match 𝑒 with inj1 𝑥 ⇒ 𝑒 | inj2 𝑥 ⇒ 𝑒 | fork {𝑒} | ref𝑎 𝑒 | !𝑎 𝑒 | 𝑒 B𝑎 𝑒

| CAS 𝑒 𝑒 𝑒 | FAA 𝑒 𝑒 𝑒 | flush 𝑒 | fence | fencesync for 𝑎 ∈ {na, at}

Fig. 1. The syntax of 𝜆pmem

𝑥 Bna 37;
𝑦 Bat 1


if !at 𝑦 = 1
then

assert (!na 𝑥 = 37)

(a) Message passing (MP)

𝑥 Bna 37;
flush 𝑥 ;
fence;
𝑦 Bat 1


if !at 𝑦 = 1
then

fence;
𝑧 Bna 1

⟲

if !at 𝑧 = 1
then

assert (!na 𝑥 = 37)

(b) Durable MP

𝑥 Bna 37;
flush 𝑥 ;
fence;
𝑦 Bna 1

⟲

if !na 𝑦 = 1
then

assert (!na 𝑥 = 37)

(c) Flush and fence

𝑥 Bna 37;
𝑦 Bat 1


if !at 𝑦 = 1
then flush 𝑥 ;

fence;
𝑧 Bna 1

⟲

if !at 𝑧 = 1
then

assert (!na 𝑥 = 37)

(d) Optimized durable MP

Fig. 2. Examples of programs that use weak and persistent memory operations

online at https://github.com/logsem/spirea and as an artifact accompanying this paper ??. We have
used the mechanization of our logic to formally verify a range of examples and case studies. We
cover a number of these in §6. The case studies demonstrate how our logic is capable of verifying
tricky synthetic examples, that it can give modular and compositional specifications to thread-safe
and crash-safe libraries, and even verify entire durable data structures with null-recovery. For the
latter we have verified crash-safety and thread-safety of both a durable version of the Treiber stack
and the Michael-Scott queue. This is the first time durable data structures have been verified with a
program logic.

In §7 we discuss related and future work.

2 PERSISTENT MEMORY VERIFICATION CHALLENGES
Before we can introduce Spirea we must first understand the kinds of programs that it aims to
verify correctness of and the challenges involved in this. To this end we introduce our programming
language 𝜆pmem. Its syntax is seen in Fig. 1. We use highlighted text to indicate the parts of the
language that are related to persistent memory only. Loosely speaking, if we erased those parts we
would get a language for weak, but not persistent, memory.
𝜆pmem is a lambda-calculus with standard features (recursive functions, booleans, products,

sums, etc.), fork-based concurrency, references with dynamic allocation, and operations for weak
persistent memory. The expression fork {𝑒} spawns a new thread that evaluates 𝑒 in parallel
with existing threads. We use the notation 𝑒1 ∥ 𝑒2 for the parallel execution of 𝑒1 and 𝑒2, which is
derivable from fork. We define assert to be function that is unsafe (gets stuck) if its argument
is not true. The language features a weak persistent memory model. The full formal operational
semantics appears in Appendix A. In this section we give an intuitive explanation of the memory
model illustrated by the examples in Fig. 2. But first we fix some terminology.
A consistency model specifies the semantics of shared memory by restricting the weak memory

order, the order of memory operations across threads. A concurrent program that correctly accounts
for interleavings and the weak memory order is thread-safe. A persistency model specifies the
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semantics of persistent memory by restricting the persist order, the order in which writes may reach
the persistent memory[Pelley et al. 2014]. A program using durable storage that correctly accounts
for crashes and the persist order is crash-safe. The mentioned orders are defined using the program
order, the order in which memory operations are issued by the program.

2.1 Release-Acquire and Non-Atomic Consistency
We use a highly relaxed consistency model closely resembling the release-acquire and non-atomic
fragment of C11.2 The memory operations for allocations (ref𝑎), writes (B𝑎), and reads (!𝑎) are
annotated with a memory access mode 𝑎 ∈ {na, at}. Allocations are considered a form of writes in
the memory model. The access modes na and at are non-atomic and atomic access, respectively.
Non-atomic access is to be used when there are no races on data. For instance, when a thread

uses a location exclusively or when synchronization has been established through other means,
e.g., through a lock or atomic operations (explained below). Non-atomic writes (Bna) performed by
one thread give no guarantees on the order in which other threads may see them. This implies that
it would be unsafe to use a non-atomic write to 𝑦 in the example in Fig. 2a. The right thread might
read 1 from 𝑦 without also reading 37 from 𝑥 .

To ensure a desired weak memory order across threads, atomic access must be used. An atomic
write (Bat) is called a release-write and an atomic read (!at) is called an acquire-read. If an acquire-
read reads a value written by a release-write we say that the acquire-read synchronizes with
the release-write. In this case, the write is ordered before the read in the weak memory order.
Furthermore, a release-write is ordered after all preceding (in program order) memory operations,
and an acquire-read is ordered before all succeeding (in program order) reads and writes. Together,
this means that when a thread, call it 𝑡1, performs an acquire-read and synchronizes with a release-
write of another thread, say 𝑡2, then 𝑡1 becomes “aware of” (or acquires) all the writes that 𝑡2 was
aware of at the time of writing. This is exemplified by the message passing (MP) example in Fig. 2a
where the use of atomic operations make the assertion safe. When the sender thread writes 1 to 𝑦
it is aware of the write of 37 to 𝑥 (since it wrote it itself, program order). Hence, if the receiving
thread reads 1 from 𝑦 it also becomes aware of the write to 𝑥 , thus the following read of 𝑥 is certain
to yield 37, and the assert will succeed.

The read-modify-write (RMW) operations CAS (compare-and-set) and FAA (fetch-and-add) count
as both an acquire-read and a release-write at the same time.

2.2 Explicit Epoch Persistency
We use the examples in Figs. 2b to 2d to explain the memory model we use. The notation 𝑒 ⟲ 𝑒𝑟
denotes execution of 𝑒 with 𝑒𝑟 configured as recovery code.3 We use the explicit epoch persistency
model by Izraelevitz et al. [2016]. As they argue this persistency model is a slight generalization
of the x86 and ARM machine level persistency models. The model includes three operations to
manage the persist order: an explicit flush, flush (also called a write-back), an asynchronous fence,
fence, and a synchronous fence, fencesync. In the absence of these instructions, no guarantees are
given on the persist order. For instance, it is not safe to run the left-hand side of Fig. 2a with the
recovery code in Fig. 2b. As there are no flushes or fences, the two writes might persist in any
order: after a crash the recovery code might see 𝑦 being 1 and 𝑥 still being 0, even though, during
normal execution, this would never be observable due to the release-write.

2The largest deviation from C11 is that we make no attempt to rule out data races on non-atomics which is undefined
behavior in C11. This can be done with a race-detector [Dang et al. 2020; Kaiser et al. 2017]—we avoid that here for simplicity.
3Note, that this is not syntax in the programming language.
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Htc-atomic
atomic(𝑒) 𝑃 −∗ 𝑄𝑐

{𝑃} 𝑒 {𝑄 ∧𝑄𝑐 } ⊢ {𝑃} 𝑒 {𝑄}{𝑄𝑐 }

Htr-idempotence
{𝑃} 𝑒 {𝑄}{𝑄𝑟 } 𝑄𝑟 −∗ ⟨PC⟩ 𝑅 {𝑅} 𝑒𝑟 {𝑄𝑟 }{𝑄𝑟 }

{𝑃} 𝑒 ⟲ 𝑒𝑟 {𝑄}{𝑄𝑟 }

Fig. 3. Key rules for quadruples in Perennial

To enforce a certain persist order one must explicitly flush writes and then end an epoch with
a fence. An asynchronous fence ensures that all writes that have been flushed before the fence
persist prior to any writes after the fence. The asynchronous fence does not ensure that the flushed
writes have actually been persisted; hence, if a crash happens after the fence, the writes flushed
prior to it might still be lost. But, when a certain persist order has been established, recovery code
can perform a kind of “backwards reasoning”. For instance, in Fig. 2c the flush and fence implies
that the write to 𝑥 persists before the write to 𝑦. Hence the recovery code can read 𝑦, and then, if
the read yielded 1, reason backwards through the persist order and conclude that it is now certain
to read 37 from 𝑥 . This makes the assertion in Fig. 2c safe. A synchronous fence, is stronger, but
also potentially slower, than an asynchronous fence. It additionally blocks execution until all flushed
writes have actually reached persistent memory. This means that had Fig. 2c used a synchronous
fence, then the write to 𝑥 would have been persisted with certainty after executing the program.
Flushes and fences interact with release-writes and acquires-reads as a way to “connect” the

weak memory order and the persist order. If an acquire-read synchronizes with a release-write then
anything flushed and fenced prior to the release-write is guaranteed to persist before anything
following a fence after the acquire-read. In the durable MP example in Fig. 2b this ensures that
the write to 𝑧 in the right thread must persist after the write to 𝑥 in the left thread and hence that
the assertion made at recovery is safe. Note that the fence after the acquire-read of 𝑦 is necessary.
When performing an acquire-read a thread immediately gains knowledge of the writes the releasing
thread know about. But, only after a fence does it gain knowledge about flushed and fenced writes
known to the releasing thread. Note also that flushes without fences provide no ordering guarantees
with respect to atomic operations.

The optimized durable MP example in Fig. 2d is similar to the durable MP example except that
the left thread does not flush the write to 𝑥 before sending it through 𝑦. Hence, when the right
threads read 1 from 𝑦 it is still certain to know about the write to 𝑥 (as in Fig. 2a), but it no longer
receives knowledge about the write being flushed. Hence, the right thread must flush 𝑥 . With this
being done it is still the case that the write to 𝑧 persists after the write to 𝑥 . But, it is no longer
the case that the write to 𝑥 will persist before the write to 𝑦. This brings us to the crucial point
regarding this example: reading 1 from 𝑦 carries with it different information to a concurrent thread
(which gains knowledge that 𝑥 holds 37) than it does to recovery code (which gains nothing). In
Fig. 2b it would also have been safe for the recovery code to read 𝑦 instead of 𝑧, but here this would
not be safe. At the logic level, this means that the resources associated with the write to 𝑦 in Fig. 2d
must change at a crash, but it need not change in Fig. 2b.
The next section introduces Spirea. Readers who first want to see the full formal operational

semantics can read Appendix A before proceeding.

3 BACKGROUND: CRASH REASONING FEATURES IN PERENNIAL
Perennial extends Hoare logic with a crash Hoare quadruple of the form {𝑃} 𝑒 {𝑄}{𝑄𝑐 } . Here 𝑃
and 𝑄 are standard pre- and postconditions. The fourth component 𝑄𝑐 is a crash condition that
must hold during every step of execution of 𝑒 . Since 𝑄𝑐 holds at every step, if a crash occurs at
some point, then 𝑄𝑐 will necessarily hold at that point. Hence, the crash-condition is a property
that recovery code can rely on after a crash.
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In addition to standard language independent structural rules (a frame rule, a bind rule, etc.), the
key rule for deriving a crash Hoare quadruple is Htc-atomic seen in Fig. 3. The rule states that to
prove a crash Hoare quadruple for an atomic expression 𝑒 , it suffices to prove that the pre-condition
implies 𝑄𝑐 and an ordinary Hoare triple for 𝑒 with 𝑄𝑐 added to the postcondition. Since 𝑒 is atomic
and can take only a single step, it suffices to show the crash condition before and after this single
step. Note the use of the standard (non-separating) conjunction ∧. This makes it possible to use all
the resources one has at hand to show both 𝑄 and 𝑄𝑐 . This is a crucial aspect of crash conditions:
they can be established without losing the resources necessary to show them.4 The use of ∧ is
sound since, when the program runs, it will either take a normal step of execution (in which case
the proof of 𝑄 is needed) or crash (in which case the proof of 𝑄𝑐 is needed). Since both cannot
happen at the same time, it is not necessary to show the two conjuncts for disjoint resources. The
Htc-atomic rule is important since it, in combination with the structural rules, allows us to show a
crash Hoare quadruple by showing a normal Hoare triple at each step. This explains why we show
rules for normal Hoare triples later in §4.

To show crash-safety Perennial offers recovery Hoare quadruples of the form {𝑃} 𝑒 ⟲ 𝑒𝑟 {𝑄}{𝑄𝑟 } .
The intuitive reading is: given that 𝑃 holds initially, it is safe to execute 𝑒 with the recovery program
𝑒𝑟 . If 𝑒 terminates in a value 𝑣 without crashing then 𝑄 (𝑣) holds. If, on the other hand, one or more
crashes occur during execution (of 𝑒 and 𝑒𝑟 ) and 𝑒𝑟 terminates in a value 𝑣 , then 𝑄𝑟 (𝑣) holds.
Per the idempotence rule Htr-idempotence one can show a recovery Hoare quadruple for a

program 𝑒 and recovery program 𝑒𝑟 by showing a crash Hoare quadruple for 𝑒 and one for 𝑒𝑟 . In
both cases the crash condition is 𝑄𝑟 , such that 𝑒𝑟 can rely on this resource; not directly though,
as the crash itself might change 𝑄𝑟 , hence the inclusion of the post-crash modality. Since 𝑒𝑟 itself
maintains the crash condition 𝑄𝑟 , any number of crashes during 𝑒𝑟 are still safe.
In summary, the proof burden for proving crash-safety is to pick a crash condition and apply

Htr-idempotence. Then one verifies two crash Hoare quadruples. The verification of these is similar
to using normal Hoare triples except that the crash condition must be shown at every step.5

4 SPIREA
Spirea is a CSL based on the Iris separation logic framework. As such it contains all the standard
connectives from Iris-based separation logics such as the separating conjunction, ghost state,
higher-order quantifiers, etc. For reasoning about programs it offers Hoare triples, recovery Hoare
quadruples, and crash Hoare quadruples. The latter two support the same rules as they do in
Perennial. In this section we explain the novel aspects of Spirea. Throughout the section we cover
the verification of the two examples from Fig. 2a and Fig. 2c; proof outlines are shown in Fig. 7 and
Fig. 8.

Knowledge vs. resources. In Iris a persistent proposition is one that does not entail ownership
but only represents duplicable knowledge. � 𝑃 means that 𝑃 always holds, and a proposition 𝑃 is
persistent if 𝑃 ⊢ � 𝑃 . To avoid confusion with the different notions of "persistent" we use the word
"knowledge" to mean persistent propositions. For example, 𝑛 = 37 is knowledge and ℓ ↩→ 37 is not.

Conventions for modalities. As we will see, Spirea contains a healthy number of modalities. In
order to avoid having to introduce a plethora of symbols, we denote modalities (except already
well-known ones) as ⟨M⟩ where M is a mnemonic for the modality. All of our modalities satisfy

4This is in contrast to normal Iris invariants, where one has to sacrifice ownership of the resources necessary to show the
invariant.
5Showing the crash condition is usually trivial and can be automated with a Coq tactic.
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mod-sep
⟨M⟩ 𝑃 ∗ ⟨M⟩𝑄 ⊢ ⟨M⟩(𝑃 ∗𝑄)

mod-mono
𝑃 ⊢ 𝑄

⟨M⟩ 𝑃 ⊢ ⟨M⟩𝑄
mod-intro
𝑃 ⊢ ⟨M⟩ 𝑃

mod-idemp
⟨M⟩ ⟨M⟩ 𝑃 ⊣⊢ ⟨M⟩ 𝑃

mod-elim
⟨M⟩ 𝑃 ⊢ 𝑃

Fig. 4. General rules for modalities
lb-knowledge

𝑙 ∈ {p, f, s}
ℓ ≿l 𝜎 ⊢ � ℓ ≿l 𝜎

lb-persistent-flush-store
ℓ ≿p 𝜎 ⊢ ℓ ≿f 𝜎 ⊢ ℓ ≿s 𝜎

obj-noflush-nobuffer
⟨obj⟩ 𝑃 ⊢ ⟨NF⟩ 𝑃 ⊢ ⟨NB⟩ 𝑃

mapsto-store-lb
ℓ ↩→𝑎 ®𝜎𝜎 ⊢ ℓ ≿s 𝜎

mapsto-lb-pers
𝜎2 @ 𝜎1 ℓ ≿p 𝜎2 ℓ ↩→na 𝜎1 ®𝜎

ℓ ↩→na ®𝜎

mapsto-na-store-lb
ℓ ≿s 𝜎1 ℓ ↩→na ®𝜎𝜎2

𝜎1 ⊑ 𝜎2

post-fence-no-flush
⟨PF⟩ ⟨NF⟩ 𝑃 ⊢ 𝑃

pfs-pf
⟨PF⟩ 𝑃 ⊢ ⟨PFS⟩ 𝑃

rec-in-if-rec
crashedIn(ℓ, 𝜎) ∗ ⟨ifRec⟩ℓ 𝑃 ⊢ 𝑃

Rules for the post-crash modality
PC-na-mapsto
ℓ ↩→na 𝜎1𝜎2 · · ·𝜎𝑛 ⊢ ⟨PC⟩ ⟨ifRec⟩ℓ ∃𝑖 ≤ 𝑛. ℓ ↩→na 𝜓 (𝜎1)𝜓 (𝜎2) · · ·𝜓 (𝜎𝑖 ) ∗ crashedIn(ℓ, 𝜎𝑖 )

PC-at-mapsto
ℓ ↩→at 𝜎 ⊢ ⟨PC⟩ ⟨ifRec⟩ℓ ∃𝜎𝑟 . ℓ ↩→at 𝜓 (𝜎𝑟 ) ∗ crashedIn(ℓ, 𝜎𝑟 )

PC-invariant
ℓ 𝜋 ⊢ ⟨PC⟩ ⟨ifRec⟩ℓ ℓ 𝜋

PC-PCF
⟨PC⟩ 𝑃 ⊢ ⟨PCF⟩ 𝑃

PC-persist-lb
ℓ ≿p 𝜎 ⊢ ⟨PC⟩ ℓ ≿p 𝜓 (𝜎) ∗ ∃𝜎𝑟 ⊒ 𝜎. crashedIn(ℓ, 𝜎𝑟 )

PCF-flush-lb
ℓ ≿f 𝜎 ⊢ ⟨PCF⟩ ℓ ≿p 𝜓 (𝜎) ∗ ∃𝜎𝑟 ⊒ 𝜎. crashedIn(ℓ, 𝜎𝑟 )

rec-in-agree
crashedIn(ℓ, 𝜎) ∗ crashedIn(ℓ, 𝜎′) ⊢ 𝜎 = 𝜎′

Fig. 5. Selected rules for assertions and modalities in the logic

basic structural rules such as mod-sep and mod-mono seen in Fig. 4. Additionally, some modalities
are monadic (they satisfy mod-intro, etc.) or comonadic (they satisfy mod-elim, etc.).

Crash-Aware Invariants. As mentioned, one of the key innovations in Spirea is crash-aware
invariants (or just invariants for short when it is clear from the context that we are not talking
about Iris invariants). We start things off with the definition. The definition uses concepts in Spirea
that we have yet to see, but these can be ignored for now. We will refer back to, and provide
explanations of, the definition throughout the section.

Definition 4.1. A crash-aware invariant 𝜋 consists of: a set of states Σ, a preorder ⊑ on Σ, a write
assertion 𝜙 : Σ × Val → dProp (dProp is the type of propositions in Spirea), and a state-change
function𝜓 : Σ → Σ that is monotone w.r.t. ⊑. The data must satisfy the following two conditions:
(1) ∀𝜎 ∈ Σ, 𝑣 ∈ Val. 𝜙 (𝜎, 𝑣) ⊢ ⟨NB⟩ 𝜙 (𝜎, 𝑣)
(2) ∀𝜎 ∈ Σ, 𝑣 ∈ Val. 𝜙 (𝜎, 𝑣) ⊢ ⟨PCF⟩ 𝜙 (𝜓 (𝜎), 𝑣).
For an invariant 𝜋 we refer to its components, say 𝜙 , with 𝜋.𝜙 , but more often we just write 𝜙

when it is clear from context which invariant the component is from.
In the logic every location ℓ is associated with a specific invariant 𝜋 throughout its lifetime.

This invariant is chosen dynamically when the location is allocated by using the rules Ht-na-alloc
and Ht-at-alloc that appear in Fig. 6. In these rules the invariant assertion ℓ 𝜋 appears in the
postcondition. It denotes the knowledge that ℓ is associated with 𝜋 . On the first line of the proof
outlines (Fig. 7 and Fig. 8) we see invariant assertions for both 𝑥 and 𝑦. For such preexisting
locations invariants can be picked at the beginning of the proof (we will see the details in §5.2).
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Ht-flush
{ℓ ≿s 𝜎} flush ℓ

{
⟨PF⟩(ℓ ≿f 𝜎) ∗ ⟨PFS⟩(ℓ ≿p 𝜎)

} Ht-fence-sync
{⟨PFS⟩ 𝑃} fencesync {𝑃}

Ht-fence
{⟨PF⟩ 𝑃} fence {𝑃}

Ht-na-alloc
{𝜙 (𝜎, 𝑣)} refna 𝑣

{
ℓ . ℓ 𝜋 ∗ ℓ ↩→na 𝜎

} Ht-at-alloc
{𝜙 (𝜎, 𝑣)} refat 𝑣

{
ℓ . ℓ 𝜋 ∗ ℓ ↩→at 𝜎

}
Ht-na-read
ℓ 𝜋 ∗ ℓ ↩→na ®𝜎𝜎 ∗(
⟨obj⟩ ∀𝑣 . 𝜙 (𝜎, 𝑣) −∗
𝑄 (𝑣) ∗ 𝜙 (𝜎, 𝑣)

) !na ℓ
{
𝑤. ℓ ↩→na ®𝜎𝜎 ∗𝑄 (𝑤)

} Ht-na-write{
ℓ 𝜋 ∗ ℓ ↩→na ®𝜎𝜎 ∗
𝜙 (𝜎𝑡 , 𝑣𝑡 ) ∗ 𝜎 ⊑ 𝜎𝑡

}
ℓ Bna 𝑣𝑡

{
ℓ ↩→na ®𝜎𝜎𝜎𝑡

}
Ht-at-read{
ℓ 𝜋 ∗ ℓ ↩→at 𝜎 ∗
⟨obj⟩ ∀𝜎𝑟 ⊒ 𝜎, 𝑣𝑟 . 𝜙 (𝜎𝑟 , 𝑣𝑟 ) −∗ 𝑄 (𝜎𝑟 , 𝑣𝑟 ) ∗ 𝜙 (𝜎𝑟 , 𝑣𝑟 )

}
!at ℓ

{
𝑣 . ∃𝜎𝑟 ⊒ 𝜎. ℓ ↩→at 𝜎𝑟 ∗ ⟨PF⟩𝑄 (𝜎𝑟 , 𝑣)

}
Ht-at-write{
ℓ 𝜋 ∗ ℓ ↩→at 𝜎 ∗ 𝜙 (𝜎𝑡 , 𝑣𝑡 ) ∗ 𝜎 ⊑ 𝜎𝑡 ∗
∀𝜎𝑐 ⊒ 𝜎, 𝑣, 𝑣𝑐 . 𝜙 (𝜎, 𝑣) −∗ 𝜙 (𝜎𝑡 , 𝑣𝑡 ) −∗ 𝜙 (𝜎𝑐 , 𝑣𝑐 ) −∗ 𝜎𝑐 ⊑ 𝜎𝑡 ⊑ 𝜎𝑐

}
ℓ Bat 𝑣𝑡

{
ℓ ↩→at 𝜎𝑡

}
Fig. 6. Selected program rules for memory operations{

𝑥 𝜋𝑥 ∗ 𝑦 𝜋𝑦,mp ∗
𝑥 ↩→na [⊥] ∗ 𝑦 ↩→at ⊥ ∗ tok1

}
{
𝑥 ↩→na [⊥] ∗
𝑦 ↩→at ⊥

}
𝑥 Bna 37;{
𝑥 ↩→na [⊥,⊤]

}
𝑦 Bat 1{
𝑦 ↩→at ⊤

}



{
𝑦 ↩→at ⊥ ∗ tok1

}
if !at 𝑦 = 1
then{

𝑦 ↩→at ⊤ ∗
𝑥 ↩→na [⊥,⊤]

}
assert !na 𝑥 = 37
{True}

{True}

Fig. 7. Proof outline for the message
passing example.


𝑥 𝜋𝑥 ∗ 𝑦 𝜋𝑦,ff ∗
𝑥 ↩→na [⊥] ∗ 𝑦 ↩→na [⊥]
𝑦 ≿p 𝜎𝑦 ∗ 𝑦 ↩→na [𝜎𝑦]


𝑥 Bna 37;{
𝑥 ↩→na [⊥,⊤] ∗ 𝑥 ≿s ⊤

}
flush 𝑥 ;
{⟨PF⟩ 𝑥 ≿f ⊤}
fence;
{𝑥 ≿f ⊤ ∗ 𝑦 ↩→ [⊥]}
𝑦 Bna 1{
𝑦 ↩→na [⊥,⊤]

}

⟲


∃𝜎𝑥 , 𝜎𝑦 .
𝑥 𝜋𝑥 ∗ 𝑦 𝜋𝑦,ff ∗
𝑥 ≿p 𝜎𝑥 ∗ 𝑥 ↩→na [𝜎𝑥 ] ∗
𝑦 ≿p 𝜎𝑦 ∗ 𝑦 ↩→na [𝜎𝑦]


if !at 𝑦 = 1
then{

𝜎𝑦 = ⊤ ∗ 𝑥 ≿f ⊤
}{

𝑥 ↩→na [⊤]
}

assert !na 𝑥 = 37
{True}

Fig. 8. Proof outline for the asynchronous fence example

The invariant assertions hold throughout the proofs, but to avoid clutter in the outlines we do not
repeat unchanged resources.

Invariant States. Consider a thread reading 𝑦 in parallel with the sending thread in Fig. 7. Such a
thread can observe the initial value of 0, the final value of 1, and once it sees the latter it never sees
the former again. We can represent the situation with a state transition system (STS): 𝑦 can be in
one of the two states ⊥ and ⊤ (corresponding to 0 and 1 respectively) and it can transition from ⊥
to ⊤—we say that ⊤ is a greater state and write ⊥ ⊑ ⊤. A key insight going back to GPS is that the
above can be put to good use in a logic by letting each location be governed by an STS as part of
its invariant. This is the purpose of Σ and ⊑ in Def. 4.1, they represent an STS that the location
must evolve through. In the examples, we use the described STS with two states for 𝑥 and 𝑦 as
both locations are written exactly once. When writing to a location a state 𝜎 ∈ Σ must be picked
such that the states grow monotonically with each write. For a single location the memory model
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ensures all threads observe writes to it in the same order, and the invariant rules ensure that this
order corresponds to an increasing order of states. Furthermore, while the weak memory order and
the persist order do not agree in general they do coincide for a single location. We hence observe
that we can soundly adopt the use of STSs for persistent memory such that they represent both the
weak memory order (as in GPS) as well as the persist order.

Write Assertions. A release-write can transfer resources from one thread to another, as in Fig. 7
where the write to 𝑦 carries with it the right to access 𝑥 . The write assertion in invariants describe
such resources. A write assertion, 𝜙 : Σ×Val → dProp, is parameterized over the invariant’s states
and values. The idea is that for every write to the location governed by the invariant, say with
value 𝑣 and state 𝜎 , the assertion 𝜙 (𝜎, 𝑣) holds.

As a simple example, in both Fig. 7 and Fig. 8 we pick the following write assertion for 𝑥 :

𝜙𝑥 (𝜎, 𝑣) ≜ (𝜎 = ⊥ ∗ 𝑣 = 0) ∨ (𝜎 = ⊤ ∗ 𝑣 = 37). (1)

The write assertion gives meaning to the states by establishing a correspondence between them
and specific values. Having the state determine the value in this way is a common pattern. Since 𝑥
is not used for resource transfer this suffices for its write assertion. When we verify the message
passing example below we see an example where resource transfer is needed.

Points-To Predicates. Points-to predicates in Spirea have the form ℓ ↩→𝑎 ®𝜎 . Here ®𝜎 is a sequence of
states that has been written to ℓ .6 When 𝑎 is na (respectively at) we say that the points-to predicate
is non-atomic (atomic) and the location can then only be accessed using the na (at) access mode.
On the first line in Fig. 7 we use a non-atomic points-to predicate for 𝑥 and an atomic one for 𝑦.
The non-atomic points-to predicate entails exclusive ownership over ℓ and supports fractional

permissions, denoted ℓ ↩→𝑞
na ®𝜎 for a fraction 𝑞 ∈ (0; 1]. (As usual, we often omit the fraction 𝑞 if it

is 1.) Hence, in Fig. 7 we need to transfer ownership over the points-to predicate for 𝑥 from the left
thread to the right thread. The sequence ®𝜎 contains (at least) all writes that can ever be read again,
both before and after a crash. It may be surprising that we use a sequence of states for non-atomics
as prior logics for weak memory have been able to establish “normal” points-to predicates for
non-atomics that associate a location with a single value, thereby completely hiding the weak
semantics. However, this is not possible in the persistent setting, where the asynchronicity of writes
and the fact that crashes are ever-present (in contrast to data-races that can be avoided) means that
at least some old states must be remembered. For instance, in Fig. 8, at the end of executing the
right thread we have the resource 𝑥 ↩→na [⊥,⊤]. This preserves the precise information that after
a crash 𝑥 can have the value 0 or 37.
The atomic points-to predicate does not entail ownership and is knowledge. Hence, several

threads can access atomic locations in parallel. This is needed for𝑦 in Fig. 7 where both threads own
𝑦 ↩→at ⊥ initially. Since several threads can write to an atomic location without any synchronization
the sequence of states ®𝜎 is only partial. Other threads may have performed writes that the current
thread is not aware of and that are thus not in ®𝜎 . Hence, for the atomic points-to predicate states
can freely be dropped and, in practice, it often suffices to remember only the latest write. Therefore,
and as the rules that take advantage of the entire sequence of states in the atomic case are fairly
involved, in the remainder of the paper we only use the atomic points-to predicate with a single
state and present specialized proof rules for this simpler case.

Message Passing Example. The message passing example contains reads and writes of all kinds.
This makes it a great example to explain the read and write rules in Spirea and to see how invariants
6By convention, we name sequences with arrows ®𝜎 and use juxtaposition for concatenation. For instance, ®𝜎𝜎 is a sequence
starting with ®𝜎 and ending with 𝜎 . For a concrete sequence we sometimes use list notation, as in [𝜎1, 𝜎2, 𝜎3 ].
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facilitate resource transfer between threads. We start with the write assertion for 𝑦:

𝜙𝑦,mp (⊥, 𝑣) ≜ 𝑣 = 0 ∗ tok0 𝜙𝑦,mp (⊤, 𝑣) ≜ 𝑣 = 1 ∗ (𝑥 ↩→na [⊥,⊤] ∨ tok1)

The equalities on 𝑣 should be clear. The two tokens, tok0 and tok1, are exclusive: Only one of each
exist and hence tok𝑛 ∗ tok𝑛 is a contradiction (i.e., it implies false). This is a standard construction
using Iris ghost state. The purpose of these tokens and the disjunction is best explained in the proof.

Notice how we split the initial resources from the first to the second line in Fig. 7. The left thread
gets the non-atomic points-to predicate for 𝑥 and the right thread gets the token tok1. The rest is
knowledge, so both threads get a copy. We now cover the two writes and the two reads.

Non-atomic write (𝑥 Bna 37). The rule Ht-na-write states that to write 𝑣 to a non-atomic location
one must pick a target state 𝜎𝑡 . We choose ⊤. The precondition requires an invariant assertion, a
points-to predicate, that the write assertion holds, and that the new state preserves the order of
the states. All of these are trivial: we have an invariant assertion, a points-to predicate ending in
the state ⊥, 𝜙𝑥 (⊤, 37) is immediate from the definition in eq. (1), and ⊥ ⊑ ⊤ per definition. In the
postcondition we receive an updated points-to predicate with the newly written state appended at
the end. Non-atomic writes are usually this trivial, as precise information about them is known.

Atomic write (𝑦 Bat 1). The first line of the precondition of Ht-at-write is similar to what we just
saw for non-atomics. We pick the state ⊤ for the write and show the write assertion by choosing
the left side of the disjunction and using our points-predicate for 𝑥 . That is, we transfer ownership
over 𝑥 into the invariant. The conjunct on the second line of the precondition of Ht-at-write serves
to maintain the monotone order of writes. Since atomic locations can be shared, we need to account
for potential racy writes to the location. The universally quantified 𝜎𝑐 represents such a write and
the obligation is to show that it and the written state 𝜎𝑡 can transition between each other, 𝜎𝑐 ⊑ 𝜎𝑡
and 𝜎𝑡 ⊑ 𝜎𝑐 . This ensures that they are equivalent w.r.t. the preorder and that the order of the states
is preserved no matter which of the two racy writes end up first in the memory order. To show this
obligation the writer can assume the assertion of both the original state 𝜎 , the concurrent state
𝜎𝑐 , and the written state 𝜎𝑡 . If we look at the whole program we are verifying it is clear that there
are no concurrent writes to 𝑦. But, as we are verifying the left thread modularly in isolation, we
must be able to draw this conclusion based solely on the invariant. To this end, we assume some
concurrent write 𝜎𝑐 and must show 𝜎𝑐 ⊑ ⊤ ⊑ 𝜎𝑐 . If 𝜎𝑐 = ⊤ the conclusion is trivial. If the 𝜎𝑐 = ⊥
the conclusion is impossible. Fortunately, in this case we have the invariant for ⊥ twice, hence we
have the token tok0 twice, which is a contradiction. Intuitively, the token tok0 represents the right
to write ⊥ to 𝑥 , and since only one token exists, this state can only ever be written once.
Atomic read (!at 𝑦). Now in the right thread we, apply Ht-at-read. At the present time we can

ignore the ⟨obj⟩ and ⟨PF⟩ in the rule. We have the invariant and the points-to predicate required
in the precondition. The last conjunct lets us open the invariant, access its content, and potentially
transfer resources in and out of the invariant. The resource 𝑄 represents the resources that we
want to transfer out of the invariant. We use

𝑄 (⊥, 𝑣) ≜ 𝑣 = 0 𝑄 (⊤, 𝑣) ≜ 𝑣 = 1 ∗ 𝑥 ↩→na [⊥,⊤] .

Hence, if we read 1 we transfer the points-to predicate for 𝑥 out. We need to show the wand in
Ht-at-read. For some read state 𝜎𝑟 and value 𝑣𝑟 the reader receives the invariant 𝜙 (𝜎𝑟 , 𝑣𝑟 ) (the
antecedent of the wand). We now have access to the content of the invariant, but, since the invariant
also appears in the consequent the access is temporary—we say that we have to close the invariant.
If 𝜎𝑟 = ⊥ then 𝑄 (⊥, 𝑣𝑟 ) is plain knowledge and showing it and the invariant is trivial. If 𝜎𝑟 = ⊤
then we use 𝑥 ↩→na [⊥,⊤] to show𝑄 (⊤, 𝑣𝑟 ). However, now we can not use this points-to predicate
to close the invariant. Fortunately, the invariant contains a disjunction and we can show the right
disjunct using the tok1 that the right thread owns. That is, we transfer tok1 in to the invariant
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in order to transfer 𝑥 ↩→na [⊥,⊤] out of the invariant. This sort of reasoning is well-known to
readers familiar with Iris invariants, but it is in fact significantly stronger than the read rule in GPS
and iGPS. In these logics, a read can only transfer knowledge out of the invariant—transferring
ownership over resources is not possible! Returning to the proof, having shown the preconditions
for the read, we now get𝑄 in the postcondition. The case where we read 0 is trivial, so we consider
the case where we read 1 and enter the branch. In this case we have the points-to predicate for 𝑥
after the read, as shown in the proof outline. All that remains is to show that the read of 𝑥 yields 37.

Non-atomic read (!na 𝑥).We apply Ht-na-read which is much like the read rule for atomics, which
we just went through. The notable difference is that for a non-atomic is it certain that the last state
in the points-to predicate (𝜎 in the rule) is read. Hence, the rule does not quantify over some read
state. When applying the rule we pick 𝑄 (𝑣) ≜ 𝑣 = 37, which is easy to show when opening the
invariant, and which gives us what we need.

RMW Operations. We have now seen the rules for reading and writing. Spirea also contains rules
for the RMW operations CAS and FAA. We do not include these rules for space reasons and since they
are rather complex. Since RMW operations are simultaneously both a read and a write, our rules
for these essentially combine the read and the write rule. The rules require that the write assertion
is shown for the read value (like Ht-at-read) and the written value (like Ht-at-write). This is in
contrast to other CSLs for weak memory, where the equivalent notion to our write assertion would
not have to be shown for the read value. This makes resource transfer through RMW operations
more restricted, but ensures that invariants are sound. In §6.2 we show how to combine Spirea
with BaseSpirea for examples where the CAS rule is not strong enough, in §6.3 we see an example
where the CAS rule is sufficient, and we discuss the limitation further in §7.

Flushes and Fences. To verify programs using flushes and fences we need assertions that capture
the knowledge gained by these operations. Consider the pre-crash code in Fig. 8. Just after writing
to 𝑥 the thread merely knows that the write with state ⊤ exists (which implies that a successive
read reads this or a more recent state). Knowledge of this form is captured by the store lower bound
assertion ℓ ≿s 𝜎 . The program then flushes 𝑥 and carries out an asynchronous fence. After this
the thread knows that the write will persist before any succeeding writes. This form of knowledge
is represented by the flush lower bound ℓ ≿f 𝜎 . Suppose the program had instead carried out a
synchronous fence. The thread would then know that the write had been saved to persistent memory.
The persist lower bound ℓ ≿p 𝜎 represents this knowledge.

These assertions are lower bounds, in the sense that ℓ ≿𝑙 𝜎 implies knowledge of a write in
at least state 𝜎 but not that this is necessarily the most recent state. This, together with the fact
that states grow monotonically, makes the assertions knowledge (lb-knowledge). The three lower
bound relations are ordered as shown in lb-persistent-flush-store since a state is written before it
is flushed, and since a synchronous fence is strictly stronger than an asynchronous fence.
Following the above, the effect of flushing a location ℓ and a fence is then that the most recent

write 𝜎 known to the flushing thread advances from ℓ ≿s 𝜎 to ℓ ≿f 𝜎 (in the case of an asynchronous
fence) or to ℓ ≿p ℓ (in the case of a synchronous). The rules for flush and fence should achieve
this while taking the following three things into account: (1) flush and fence are two separate
operations and the fence may not necessarily immediately follow the flush. (2) A fence can apply to
arbitrarily many preceding flushes. (3) A fence is not only used in combination with a flush. As in
Fig. 2b it is also used in combination with an acquire-read to acquire persist information from the
release-write. We want our program rules to support all these usage patterns. To this end Spirea
includes two fence modalities: ⟨PF⟩ and ⟨PFS⟩. The assertions ⟨PF⟩ 𝑃 and ⟨PFS⟩ 𝑃 mean that 𝑃 holds
after the next asynchronous fence and synchronous fence, respectively.
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In Fig. 8 we apply Ht-flush at the flush operation. The precondition takes a store lower bound
that we can extract from 𝑥 ↩→na [⊥,⊤] using mapsto-store-lb. The postcondition contains both
a flush lower bound under ⟨PF⟩ and a persist lower bound under ⟨PFS⟩ such that the flush can
later be matched with both types of fences. In our case we only need the flush lower bound. At
fence we use Ht-fence. This rule (and Ht-fence-sync) exactly matches the intuition of the fence
modalities. If 𝑃 holds under a fence modality, then executing a fence eliminates the modality. In
our case this means that we have the flush lower bound after the fence. Note, that since the fence
modalities are modalities and have a separation rule (as mod-sep) the result from several flushes
can be combined and extracted with a single fence. In the rule Ht-at-read the extracted resource
𝑄 is under a fence modality which enforces that a fence be used when necessary. As such, using
modalities for fences neatly achieves the requirements stated above.

To conclude the proof of the pre-crash program in Fig. 8 we define the write assertion for 𝑦

𝜙𝑦,ff (𝜎, 𝑣) ≜ (𝜎 = ⊥ ∗ 𝑣 = 0) ∨ (𝜎 = ⊤ ∗ 𝑣 = 1 ∗ 𝑥 ≿f ⊤). (2)

The assertion contains a flush lower bound for 𝑥 when 𝑦 has the state ⊤. To prove this at the write
to 𝑦 we use the flush lower bound gained from the flush and the fence. In the next section we see
how this is used to verify the recovery code.

Non-Deterministic Post-Crash Modality. To verify the entire flush and fence example, including
the recovery code, we apply Htr-idempotencewhere we must pick a crash condition𝑄𝑐 . The 𝑅 in the
rule is the precondition for the recovery code in Fig. 8. As a crash condition we pick ⟨PC⟩ 𝑅. Using
the post-crash modality directly in the crash condition like this is common in Spirea as it turns
out to be the most convenient approach in practice. Proving the wand for 𝑅 in Htr-idempotence
becomes trivial, and the proof effort is concentrated on showing the crash condition at every step.
In order to do this, we need to understand how our post-crash modality works. The rules for it
appear in the lower half of Fig. 5.

Consider how an invariant ℓ 𝜋 should change at a crash. As we have mentioned, our invariants
are crash-aware, and we want them to survive crashes. At the same time our programming language
supports allocation, and since allocations might not persist before a crash, locations can be entirely
lost at crashes. If a location is not lost after a crash, we say that it was recovered after the crash, and
only in this case would it make sense still to have an invariant assertion for it. Such a situation is
common, and we capture it by an if-recovered modality: the assertion ⟨ifRec⟩ℓ 𝑃 mean that if the
location ℓ was recovered at the last crash, then 𝑃 (which would typically mention ℓ) holds. The
rule PC-invariant is now clear: it preserves invariants for locations as long as they are recovered.
The if-recovered modality captures some of the non-determinism at a crash. Additional non-

determinism is present in the rule PC-na-mapsto for non-atomic points-to predicates. Here the
non-determinism is represented by the existential quantifier. The rule states that, for some 𝑖 , only
the first 𝑖 states of the points-to predicate exist after the crash (ignore the 𝜓 in the rule for now,
it is explained later in the section). For state 𝜎𝑖 , the rule contains the assertion crashedIn(ℓ, 𝜎𝑖 ).
The meaning of this assertion is that 𝜎𝑖 is the most recent recovered state for ℓ , which is exactly
how it is used in the rule. Only one such state exists so two such assertion must agree on the state
rec-in-agree. The crashedIn(ℓ, 𝜎𝑖 ) assertion also implies that ℓ was in fact recovered and it can thus
be used to eliminate the if-recovered modality as seen in rec-in-if-rec.
The only way to know with certainty that a location will be recovered is through a persistent

lower bound ℓ ≿p 𝜎 . Per PC-persist-lb a persistent lower bound is preserved across a crash (again,
ignore 𝜓 ) and the most recent recovered state 𝜎𝑟 has to be at least 𝜎 . In contrast, a store lower
bound clearly offers no knowledge after a crash as it only deals with the weak memory order. But
what about a flush lower bound? A flush lower bound (and the flush and fence it represents)
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provides no knowledge of the state of the persistent memory, and as such it too has no meaningful
interaction with the post-crash modality. Its effect is more subtle and only restricts the order of
persists, as in the flush and fence example where the write to 𝑥 persists before the write to 𝑦. To
tease out this effect in the logic we introduce a post-crash-flush modality: ⟨PCF⟩ 𝑃 means that 𝑃
holds after a crash if we are in the fortunate scenario where everything flushed and fenced actually
reached persistent memory before the crash. In this case, a flush lower bound is just as good as
a persist lower bound, and PCF-flush-lb results in the same resources under the post-crash-flush
modality as we saw in PC-persist-lb. The post-crash-flush modality is weaker than the post-crash
modality (PC-PCF) so the rules for the post-crash modality also applies to it.

The single place where we use the post-crash-flush modality is in the second condition for write
assertions in the definition of invariants (Def. 4.1). This condition is necessary to make it possible
to transfer invariants across a crash, i.e., it is used to prove soundness of PC-invariant. During this
proof the write assertion 𝜙 must be established for the recovered state 𝜎 . Since 𝜎 was recovered, it
must have persisted before the crash, and thus anything flushed and fenced prior to 𝜎 (that 𝜙 might
know about) is also guaranteed to have persisted. As such, using the post-crash-flush modality
in the condition is sufficiently strong, and allows us to use PCF-flush-lb to show that 𝜙 holds for
the recovered state. We note that, in our example, it is easy to show (using PCF-flush-lb) that the
second condition in Def. 4.1 does indeed hold for 𝜙y,ff .

By using the rules for the post-crash modality it is now quite trivial to show the crash condition
at every program point in the pre-crash code. And with the resources after the crash established,
proving the recovery code is also straightforward. If reading 1 from 𝑦 the recovery code learns
that 𝜎𝑦 = ⊤ and acquires the resource 𝑥 ≿f ⊤ from the invariant. The flush lower bound can
be weakened to 𝑥 ≿s ⊤ per lb-persistent-flush-store, and combined with 𝑥 ↩→na [𝜎𝑥 ] the rule
mapsto-na-store-lb implies that ⊤ ⊑ 𝜎𝑥 , which in turn means that 𝜎𝑥 = ⊤. With that established
reading 𝑥 is sure to result in 37 just as what we saw in the message passing example.

Subjectivity. We now take a step back and consider an issue that we have so far swept under the
rug. Propositions in Spirea can be subjective. That is, describe facts that are true from one thread’s
perspective, but that are not necessarily true from the point of view of other threads. For instance,
after the left thread in Fig. 8 has flushed 𝑥 it knows ⟨PF⟩ 𝑥 ≿f ⊤. But, as a flush by one thread
provides no orderings across threads, it would be unsound to transfer this resource to another
thread. We thus need to make certain restrictions on resource transfer. We accomplish this with
three comonadic modalities. The no-buffer modality, ⟨NB⟩ 𝑃 , means that 𝑃 does not contain any of
the post-fence modalities.7 The first condition in Def. 4.1 uses this modality to ensures that the
described unsound transfer is not possible. Write assertions that invole ⟨PF⟩ or ⟨PFS⟩ do not pass
this requirement. The no-flush modality, ⟨NF⟩ 𝑃 , adds the requirement that 𝑃 does not contain
knowledge of flushes ℓ ≿f 𝜎 . Assertions of the form ⟨NF⟩ 𝑃 are of interest as they can safely be
extracted from the post-fence modality per post-fence-no-flush. This is what allowed us to ignore
the ⟨PF⟩ modality when we applied Ht-at-read in Fig. 7 as the 𝑄 we picked did not use flush lower
bounds. Finally, the objectively modality, ⟨obj⟩ 𝑃 , means that 𝑃 holds at all points of view of the
memory and thus that it is always sound to transfer 𝑃 between threads. Examples are ℓ ≿p 𝜎 and
ℓ 𝜋 . One use of this modality is in Ht-at-read where it ensures that the reading thread can not
transfer subjective resources to other reading threads.

State-Change Function. The final component of invariants that we still have not seen is state-
change functions. To understand the need for these, consider how we would verify the optimized
message passing example in Fig. 2d. Similar to the verification in Fig. 8, the write to 𝑧 need

7The name refers to the fact that flushes use a buffer in the operational semantics.
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to carry with it the knowledge 𝑥 ≿f ⊤. In order for the left thread to have this knowledge it
must acquire 𝑥 ≿s ⊤ when reading 𝑦. As such, the write assertion for 𝑦 must have the form
𝜙𝑦 (⊤, 𝑣) ≜ 𝑣 = 1 ∗ 𝑥 ≿s ⊤. However, as there are no fences between the writes to 𝑥 and 𝑦, if the
recovery code were to read 𝑦 it would be unsound for it to gain the knowledge 𝑥 ≿s ⊤. In other
words, the write to 𝑦 serves to transfer a resource to concurrently running threads that should not
be available to recovery code. To capture this, a monotone state-change function𝜓 can change the
state of a write after a crash. The idea is that if a write corresponds to the state 𝜎 before a crash,
it then corresponds to 𝜓 (𝜎) after the crash. This is evident by looking at the crash related rules
in Fig. 5 where states under the post-crash modality always have𝜓 applied to them. In examples
where the above issue does not arise, the state-change function can simply be the identity function,
and then the𝜓s can be ignored as we have done so far.
In order to verify the optimized message passing example we can extend the set of states for 𝑦

with an additional state 𝜎pc that is below the two other states. The state-change function transitions
every write into this state at a crash: 𝜓 (𝜎) ≜ 𝜎pc . The write assertion for this state is simply
𝜙𝑦 (𝜎pc, 𝑣) ≜ 𝑣 = 0 ∨ 𝑣 = 1. This ensures that if the recovery code were to read 𝑦 it would gain no
information whatsoever while still allowing for the desired resource transfer to work.

Summary. We have now completed our tour of Spirea. We hope it has become clear that it
supports thread-local modular reasoning by extending ideas from separation logic, in particular
ownership and resource transfer, with a range of modalities, which allow us to capture the subtle
conditions under which resource transfer is sound.

5 SOUNDNESS
In this section we present an overview over the operational semantics of 𝜆pmem, state the soundness
theorem of Spirea, and give an overview of the model, including some of the details. Readers who
are more interested in seeing Spirea applied to examples can proceed to our case studies in §6.

5.1 Operational Semantics
The semantics of 𝜆pmem is a small-step interleaving operational semantics. Like prior such semantics
for weak memory, it is based on views. For instance, Bila et al. created a view-based operational
semantics for the x86 and ARM persistency models [Bila et al. 2022].

The small-step semantics is lifted to a big-step recoverable execution relation of the form 𝑒𝑟 ; 𝜌 ⇒r
𝜌 ′; 𝑠 . Here, 𝑒𝑟 is the recovery expression to execute after a crash, 𝜌 and 𝜌 ′ are machine configurations,
and 𝑠 ∈ {NotCrashed,Crashed} is a crash-status. A machine configuration contains the state of
entire machine, in particular the memory and all threads. The meaning of the relation is then: a
machine in state 𝜌 can execute to state 𝜌 ′ with zero or more crashes along the way where 𝑒𝑟 is
executed after every crash. The crash-status indicates whether the execution has been crash free or
not. If 𝑠 = NotCrashed the execution was crash free and otherwise if 𝑠 = Crashed then one or more
crashed occurred. As we see below the soundness theorem is stated in terms of the recoverable
execution relation.

The full operational semantics appears in Appendix A.

5.2 Soundness
Before we state the soundness theorem we define the safety result that the soundness theorem
implies.
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Definition 5.1 (safe). For expressions 𝑒 and 𝑒𝑟 , memory configurationM , and meta-level predicates
on values Φ and Φ𝑟 , safe(𝑒, 𝑒𝑟 ,M,Φ,Φ𝑟 ) holds if, for any recoverable execution

𝑒𝑟 ; ⟨M, [⟨𝑒, ⟨⊥,⊥,⊥⟩⟩]⟩ ⇒r ⟨M, ®𝑡⟩; 𝑠
it is the case that: (1) For every thread ⟨𝑒,T⟩ ∈ ®𝑡 , if 𝑒 is not a value then the thread is not stuck.
(2) For ⟨𝑒′,T⟩ = (®𝑡)1, if 𝑒′ is a value 𝑣 (i.e., the initial expression 𝑒 terminated) then Φ(𝑣) holds if
𝑠 = NotCrashed and Φ𝑟 (𝑣) holds if 𝑠 = Crashed.

Theorem 5.2 (soundness). Given expressions 𝑒 and 𝑒𝑟 , meta-level predicates on values Φ and Φ𝑟 ,
a finite set of location 𝐿, and for each ℓ ∈ 𝐿: an access mode 𝑎ℓ , an invariant 𝜋ℓ , a state 𝜎ℓ ∈ 𝜋ℓ .𝜙 ( i.e.,
an element of the state of the invariant 𝜋ℓ ). Let 𝑅 be the resource∗

ℓ∈dom(ℎ)
ℓ 𝜋ℓ ∗ ℓ ≿p 𝜎ℓ ∗ ℓ ↩→𝑎ℓ

𝜎ℓ .

If 𝑅 −∗ ∗ℓ∈dom(ℎ) 𝜋ℓ .𝜙 (𝜎ℓ , 𝑣ℓ ) and the recovery Hoare triple {𝑅} 𝑒 ⟲ 𝑒𝑟 {Φ}{Φ𝑟 } are provable in
Spirea then safe(𝑒, 𝑒𝑟 , ⟨ℎ,P⟩,Φ,Φ𝑟 ) holds where ℎ(ℓ) = ⟨𝑣ℓ ,⊥,⊥,⊥⟩ and where P(ℓ) = 0 for all ℓ ∈ 𝐿.
This theorem applies to a memory that is not necessarily empty to begin with. When applying

the soundness theorem one then gets to pick, for each location, its access mode, invariant, initial
state, etc. The resource 𝑅 then contains the resources for all locations. It must then be shown that
the invariants hold for the initial states, and to do this one can use 𝑅. This is such that the initial
invariants can use resources (persistent lower bounds, points-to predicates, etc.) for other locations.

5.3 Model
We give a brief overview of the model of Spirea and highlight some of the underlying key ideas.

Overall Structure. Spirea is modeled atop a lower-level logic that we call BaseSpirea. BaseSpirea is
constructed as an instantiation of Perennial’s program logic framework based on the Iris base logic.
This framework gives BaseSpirea basic definitions of the three Hoare triples/quadruples. Based
on these we define various assertions to represent the physical state, define a post-crash modality,
and prove program rules. However, these program proof rules directly expose the intricacies of the
operational semantics, such as views, timestamps, and histories, and thus, while perfectly capable
of verifying programs, BaseSpirea is quite tedious to use. We explain BaseSpirea in more detail in
Appendix B. To provide the more abstract reasoning rules of Spirea, we use BaseSpirea to model
Spirea. It is at this level that we add crash-aware invariants, the facilities for handling persistent
memory instructions without explicit mention of views, and a post-crash modality that works for
the higher-level assertions.

Crash-Aware Invariants. As mentioned in the introduction, a key challenge w.r.t. the model of
Spirea’s crash-aware invariants is that it is not clear how Iris invariants can be reconciled with
crashes. We therefore take a different approach to invariants than other Iris-based logics for weak
memory in that we do not model our crash-aware invariants using Iris invariants. Instead our
model includes the resources for invariants inside the state interpretation. The state interpretation
is a resource that is threaded through Hoare triples/quadruples in the program logic. With this
approach the content of invariants is only available in the context of a Hoare triple/quadruple (as
opposed to Iris invariants that can be accessed independently of a program). However, this is the
case already in prior logics for weak memory, as accessing invariants in a weak memory model
needs physical synchronization. The benefit of our approach is that when a crash occurs (more
precisely, when proving soundness of Htr-idempotence), the resources belonging to all invariants
are found inside the state interpretation, and can then be systematically updated to account for the
crash.
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Post-Crash Modality. We explain our post-crash modality with a simplified sketch of its model
that highlights the key ideas.

J⟨PC⟩ 𝑃K ≜ 𝜆T , ®𝛾old .∀®𝛾new . 𝑅(®𝛾old, ®𝛾new) −∗ 𝑅(®𝛾old, ®𝛾new) ∗ J𝑃K(⟨⊥,⊥,⊥⟩, ®𝛾new)

The semantic domain of propositions in Spirea is monotone predicates over thread views and a
record of ghost names (denoted ®𝛾 ). This explains why the model of the modality is a function taking
two such arguments. Since resources are changed by a crash, new ghost resources along with new
ghost names are introduced after a crash. The universal quantifier is over any such new record of
new ghost names. However, the new resources are, to some extent, related to the old resources.
The relationship is represented by the exchange resource 𝑅, which makes it possible to exchange old
resources (valid before the crash) into new resources (valid after the crash). This works through
rules of the form 𝑃old ∗ 𝑅(®𝛾old, ®𝛾new) −∗ 𝑃new ∗ 𝑅(®𝛾old, ®𝛾new). Here 𝑃old could be a points-to predicate
before the crash and 𝑃new would then be an updated points-to predicate corresponding to the
physical state after the crash. When proving soundness of a rule such as PC-na-mapsto we then use
the exchange resource to acquire the updated points-to predicate. Note that as 𝑅 appears in the
conclusion, it can perform these exchanges without being consumed itself. This is necessary to
prove rules such as mod-sep for the post-crash modality. The definition of 𝑅 is rather extensive as it
must allow for resource exchanges for all the various resources used in the model. Establishing 𝑅
is done in the soundness proof of Htr-idempotence. This rule is given an assumption involving a
post-crash modality, and to extract the resource under it, 𝑅 must be procured.

6 CASE STUDIES
In order to demonstrate the usefulness of our logic we have used it to verify several case studies.

6.1 Read-Optimized Reference
To show how Spirea supports modular specifications, we give in Fig. 9 a specification of a library
implementing what we call read-optimized references. This module implements an interface that
appears to clients as a single reference that can be read and writen. The implementation however
optimizes the performance of reads. It does this by storing the content of the reference redundantly
both in a “volatile” location (one can imagine it being stored in faster volatile memory) and in a
persistent location (in the slightly slower persistent memory). When a client writes to the read-
optimized reference the value it is saved to both locations, but when reading only the volatile
reference is consulted for improved performance.

In the specification, an abstract (existentially quantified) predicate isRR(vr, 𝑣) is used to abstract
over (hide from clients) the concrete data representation used by the library implementation;
intuitively, it means that the value vr is a read optimized value with value 𝑣 . After a crash, the
volatile location might be lost and hence the reference needs to be recovered before it can be used
after a crash. The abstract predicate recRR(vr, 𝑣) intuitively means that vr needs recovery. Just like
in the verification of the flush and fence example we choose a crash condition that directly contains
the post-crash modality. This simplifies the specification, in particular, in the crash condition for
write. During the execution of write, after updating the volatile location but before updating
the persistent location, the read-optimized reference is in an inconsistent state where it satisfies
neither isRR for the old value nor the new value. Instead of trying to express this intermediate state
we give the client what they actually need: the information that after a crash the read-optimized
reference is recoverable in either the old or the new state.

Our Coq mechanization contains the full proof of the specification.
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init ≜ 𝜆v.
let per = refna v in
flush per; fencesync;
let vol = refna v in
(per, vol)

read ≜ 𝜆vr. !na (𝜋2 vr)
write ≜ 𝜆vr, v.

(𝜋1 vr) Bna v;
flush (𝜋1 vr); fencesync;
(𝜋2 vr) Bna v

recover ≜ 𝜆vr.
let per = 𝜋1 vr in
let vol = refna (!na per) in
(per, vol)

{True} init 𝑣 {vr . isRR(vr, 𝑣)}{True} {isRR(vr, 𝑣)} read vr {𝑤. 𝑣 = 𝑤 ∗ isRR(vr, 𝑣)}{⟨PC⟩ recRR(vr, 𝑣)}

{isRR(vr, 𝑣)} write vr 𝑤 {𝑢. isRR(vr,𝑤)}{⟨PC⟩ ∃𝑢 ∈ {𝑣,𝑤}. recRR(vr, 𝑢)}

{recRR(vr, 𝑣)} recover vr
{
vr′ . isRR(vr′, 𝑣)

}
{⟨PC⟩ recRR(vr, 𝑣)} isRR(vr, 𝑣) ⊢ ⟨PC⟩ recRR(vr, 𝑣)

Fig. 9. Implementation and specification of the read-optimized reference

makeStack ≜ 𝜆_.
let node = refna nil in
flush node;
fence;
refat node

sync ≜ 𝜆toHead.
flush toHead;
fencesync;

nil ≜ inj1 ()
cons v toNext ≜ inj2 (v, toNext)

pop ≜ rec loop toHead =

let head = !at toHead in

fence;
match !na head with

inj1 _ ⇒ inj1 ()
inj2 pair ⇒

let next = !na (𝜋2 pair) in
if CAS toHead head next
then inj2 (𝜋1 pair)
else loop toHead

push ≜ 𝜆toHead, val.
let toNext = refna () in
let newNode =

refna (cons val toNext) in
flush newNode;
(rec loop () =
let head = !at toHead in

toNext Bna head;
flush toNext; fence;
if CAS toHead head newNode
then () else loop ()) ()

Fig. 10. Implementation of the durable Treiber stack

6.2 Atomic Persists
Raad et al. [2020a] used the POG logic to verify an example where one thread writes to two locations,
flushes and fences the writes, and transfers the information to a second thread through a spin lock.
They call this example the atomic persists example. Due to the limitations of the CAS rule in Spirea
we can not verify the spin lock in Spirea. Instead we verify the spin lock in BaseSpirea but give
it a specification inside Spirea. We give the lock a crash-aware lock specification, similar to the
one found in Perennial [Chajed 2022, Chapter 3]. With the lock verified in BaseSpirea we can then
verify the rest of the example purely in Spirea. This demonstrates both how to use BaseSpirea in
combination with Spirea and modularity. In the proof given by Raad et al. [2020a] the lock and the
clients are verified together using one global invariant that contains knowledge about the locations
used both internally in the lock and in the two clients. Hence, if the lock implementation is changed,
the entire proof is affected. In our proof the lock is given a modular specification and a change in
the lock implementation will only affect this proof and not the verification of the clients. For more
details see Appendix D or the full proof in our Coq mechanization.

6.3 Durable Data-Structures With Null-Recovery
Concurrent non-blocking data structures have the property that they can be made durable and
crash-safe by appropriately inserting flushes and fences [Friedman et al. 2020; Izraelevitz et al.
2016]. They furthermore enjoy null-recovery. As mentioned, this is the property that no recovery
code is needed after a crash to restore the consistency of the data structure. Data structures with
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{True} makeStack () {ℓ . isStack(ℓ, 𝜙)} {isStack(ℓ, 𝜙) ∗ 𝜙 (𝑤)} push ℓ 𝑤 {True}

{isStack(ℓ, 𝜙)} pop ℓ {𝑣 . 𝑣 = inj1 () ∨ ∃𝑥 . 𝑣 = inj2 𝑥 ∗ 𝜙 (𝑥)} {isStack(ℓ, 𝜙)} sync ℓ {synced(ℓ)}

isStack(ℓ, 𝜙) −∗ ⟨PCF⟩ isStack(ℓ, 𝜙) isStack(ℓ, 𝜙) ∗ synced(ℓ) −∗ ⟨PC⟩ isStack(ℓ, 𝜙)

Fig. 11. Specification of the durable Treiber stack

this property are by construction always in a consistent state—even after a crash. This makes them
particularly well suited in a persistent setting and easier to use as clients of such data structures
do not need to carry out recovery procedures (in contrast to, for instance, the read optimized
reference). One would therefore hope to be able to derive similarly easy to use CSL specifications
for such data structures. In this section we show how this is the possible in Spirea and explain
how to specify and verify safety (including thread-safety and crash-safety) of non-blocking data
structures with null-recovery. In our Coq mechanization we have verified durable implementations
of both the Treiber stack and the Michael-Scott queue. These case studies show that our crash-aware
invariants are sufficiently expressive to capture representation predicates for durable concurrent
data structures and capable of handling null-recovery.

For space reasons we cover only the Treiber stack in this section. We focus on the resulting spec-
ification and sketch the proof. The full verification of both examples appears in our mechanization.

6.3.1 Implementation. The Treiber stack consists of a pointer to a linked list where, for thread-
safety, the pointer is updated with CAS. The implementation of the stack appears in Fig. 10. We use
pointers to sums to represent nodes in the linked list: inj1 () represents a nil-node and inj2 (𝑣, ℓ)
represents a cons-node with value 𝑣 and with ℓ pointing to the succeeding node. In order to make
the stack crash-safe we have inserted flushes and fences appropriately.
Our implementation is buffered durable linearizable, which means that it never waits (with

fencesync) for an operation to reach persistent memory, but only ensures (with fence) that opera-
tions persist in the order in which they linearize. This improves performance but means that at a
crash some returned operations might be lost. As is common for such data structures we include a
sync operation that explicitly makes sure that the stack is persisted by using fencesync.

6.3.2 Specification. The specification (in Fig. 11) enforces that a predicate 𝜙 : Val → dProp holds
for each item in the stack. The specifications make use of an abstract (existentially quantified)
representation predicate isStack, which is persistent, in the Iris sense, and hence duplicable, so
that several threads can access the stack concurrently. Since isStack is persistent it does not need
to appear in crash-conditions and hence we can use normal Hoare triples instead of crash Hoare
triples. As such, the non-highlighted part forms a completely typical per-item CSL specification for
a concurrent stack. This is exactly what we want, as it implies that a client can use the durable
stack as they would a normal stack. Note that our specification does not imply linearizability or
the LIFO property of the stack, but it does imply thread-safety and crash-safety.

The three highlighted rules are specific for persistent memory. The first of these shows that by
running sync ℓ one gets the resource synced(ℓ) which is evidence that the stack has been persisted.
The two last rules concern the interaction between isStack and the post-crash modalities. The first
rule states that if ℓ is a stack before a crash then after a crash it is still a stack, but only under the
⟨PCF⟩ modality since the stack is buffered. The second rule applies if the stack is certain to have
been persisted, as witnessed by synced; in this case the stack is preserved under the ⟨PC⟩ modality.
The last two rules capture not only crash-safety but also the null-recovery property of the

stack. They imply that with no recovery code needed, the isStack representation predicate can be
reclaimed after a crash, and thus that a client can safely keep using the stack after a crash.
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synced(ℓ) ≜ ℓ ≿p ★
isStack(ℓ, 𝜙) ≜ ℓ 𝜋stack (𝜙) ∗ ℓ ↩→at ★

𝜙stack (𝜙) (_, 𝑣) ≜ ∃ℓℎ, xs ∈ List(Val). 𝑣 = ℓℎ ∗∗
𝑥∈xs

𝜙 (𝑥) ∗ isNode(ℓ, xs)

isNode(ℓnode, []) ≜ ∃𝑞. ℓnode inj1 () ∗ ℓnode ↩→
𝑞
na ★ ∗ ℓnode ≿f ★

isNode(ℓnode, 𝑥 :: xs) ≜ ∃ℓtoNext , ℓnext , 𝑞1, 𝑞2, ®𝜎, 𝑖 . ℓnode inj2 (𝑥, ℓtoNext ) ∗ ℓnode ↩→
𝑞1
na ★ ∗ ℓnode ≿f ★ ∗

ℓtoNext 𝜋toNext ∗ ℓtoNext ↩→
𝑞2
na ®𝜎 (𝑖, ℓnext ) ∗ ℓtoNext ≿f (𝑖, ℓnext ) ∗ isNode(ℓnext , xs)

Fig. 12. Invariants and definitions used in the proof of durable concurrent stack

For the specification to be sound in our weak persistent memory setting, the per-item predicate
𝜙 must satisfy that for all 𝑣 ∈ Val it is the case that (1) 𝜙 (𝑣) ⊢ ⟨NB⟩ 𝜙 (𝑣), (2) 𝜙 (𝑣) ⊢ ⟨PCF⟩ 𝜙 (𝑣),
and (3) 𝜙 (𝑣) ⊢ �𝜙 (𝑣). The first two requirements are necessary to make 𝜙 safe to transfer between
threads and across crashes. The third requirement expresses that 𝜙 must be persistent (in the Iris
sense). This is required for a subtle reason: Since the stack is buffered, operations might return
before they persist. Therefore, a value 𝑣 can be popped from the stack (at which point the client is
given 𝜙 (𝑣)), and then a crash can happen before the changes by the pop persist. Then, after the
crash, 𝑣 is still present in the stack, and thus it can be popped again (at which point the client is
given 𝜙 (𝑣) once more). In summary, due to crashes, the same value can be popped several times
and hence the resource must be duplicable, i.e., persistent. This requirement holds, for instance, for
simple properties such as 𝑣 being an even number and for assertions about atomic locations. Had
the implementation been non-buffered, i.e., implemented using the synchronous fence, then this
requirement could be removed.

6.3.3 Proof (sketch). The proof proceeds by defining the predicates synced and isStack and then
verifying that the specifications hold. The definition of synced expresses that ℓ has been persisted.
For isStack we use three invariants. In all three the𝜓 function is the identity function. Two of the
invariants use the abstract state set 1 = {★}. Elements of this abstract state carry no information,
but lower bounds are still meaningful, e.g., ℓ ≿f ★means that location ℓ has certainly been flushed.
For a node the pointer to the sum never changes. For these locations we use the constant

invariant. Given a value 𝑣 the constant invariant 𝜋const (𝑣) has the abstract state 1 and the invariant
𝜙const (_, 𝑣 ′) ≜ 𝑣 = 𝑣 ′. We use the notation ℓ 𝑣 for ℓ 𝜋const (𝑣) .

The pointer from a cons-node to its successor potentially changes many times in push if the CAS
in push fails. For this location we use the invariant 𝜋toNext . Its abstract state is N × Val ordered by
the natural numbers in the first component. The invariant is 𝜙toNext = 𝜆(𝑛, 𝑣), 𝑣 ′ . 𝑣 = 𝑣 ′.
For the stack itself (the pointer to the head of the linked list) we use the invariant 𝜋stack (𝜙). Its

abstract state is 1 and the invariant 𝜙stack (𝜙) appears in Fig. 12. It states that there exists a logic-level
list xs, all of whose elements satisfy 𝜙 , and it uses isNode to recursively express that the structure
of the linked list corresponds to xs.

With these definitions and invariants in place the proof that the code satisfies the specification
is fairly straightforward; see our Coq mechanization for the details.
We finally remark that a similar (non-persistent, non-weak memory) concurrent stack can be

verified in standard Iris [Birkedal and Bizjak 2020]. The Iris proof uses an Iris invariant to define
the isStack representation predicate.

7 RELATED AND FUTUREWORK
We now discuss aspects of related work that have not already been treated in the paper.
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Logics for Persistent Memory. To our knowledge, there are only two prior program logics for
persistent memory, namely Persistent Owicky-Gries (POG) [Raad et al. 2020a] and Pierogi [Bila
et al. 2022]. Both POG and Pierogi focus on the persistent memory model of the x86 architecture
[Raad et al. 2020a], which is stronger, both in terms of weak and persistent memory, than our
memory model, which does not include details specific for any one architecture; instead it is a slight
generalization of the persistent memory models in x86 and ARM. The programming languages
covered by POG and Pierogi are much simpler than ours, 𝜆pmem; the languages in op. cit. support
only a static number of threads running sequential commands, and a static number of memory
locations. In contrast, 𝜆pmem includes more high-level features such as higher-order functions and
dynamic allocation of threads and locations.

Both POG and Pierogi are Owicki-Gries-style program logics. POG makes use of rely-guarantee
style reasoning to support composition of threads that do not interfere, whereas Pierogi does not
support thread-local reasoning. In contrast, Spirea is a separation logic and hence it supports frame
rules and thread-local reasoning. Moreover, since Spirea is built on top of Iris, it includes advanced
features such as user-defineable ghost state and higher-order quantification, which are not present
in POG or Pierogi but which are important for modular specification and verification of libraries,
such as the stack case study we considered in §6.3. From Perennial we gain the ability to reason
about durable resources in a convenient fashion using normal separation logic ownership.
In contrast to POG but similarly to Pierogi, our Spirea logic is mechanized in a proof assistant.

Pierogi has been mechanized in Isabelle/HOL and its authors report that the Sledgehammer tool
can be used to search automatically for program proof rules to apply. In contrast, we make use of
the Iris Proof Mode [Krebbers et al. 2017] to support interactive development of program proofs in
the Coq style, which works well for our higher-order logic and larger examples.
Similarly to Pierogi, Spirea supports reasoning directly about optimized flushes (write-backs)

(flush) and the use of fences. In contrast, POG only supports reasoning about a stronger operation
that combines the write back and the fence. To handle other programs they instead offer a translation
that in some cases can translate a program with the weaker, and more tricky to reason about,
instructions into equivalent programs. This translation only works for programs that use these
instructions in a certain pattern, and programs that do not adhere to this pattern can not be reasoned
about using their logic. Since we handle these operations directly we can verify such programs.

Finally, POG and Pierogi have, to the best of our knowledge, only been applied to reason about
very small programs consisting of only a few lines, whereas we have used Spirea to verify larger
programs, in particular entire data structures. Additionally we have shown how to give such data
structures modular specifications as extensions of traditional CSL specifications.

Separation Logic for Weak Memory. GPS [Turon et al. 2014] is a program logic for the release-
acquire and non-atomic fragment of the C11 weak memory model. The logic introduced protocols
to reason about atomic location, the inspiration for our crash-aware invariants. GPS does not use
protocols for non-atomic locations, but instead a standard points-to predicate. As mentioned, this
approach is not sufficient in a persistent setting. The CAS rule in GPS does not require that (what
we call) the invariant for the read value is preserved. When reading 𝑣1 and simultaneously writing
𝑣2 with a CAS, the CAS rules in GPS allows one to use the invariant for 𝑣1 to show the invariant
for 𝑣2 and keep any additional resources without reestablishing the invariant for 𝑣1. This is sound
because the C11 semantics ensures that no CAS operation will ever read 𝑣1 again. While this is
also the case in our semantics, after a crash, the write for 𝑣1 might have been persisted while the
write for 𝑣2 has not been persisted. Then another CAS operation might read 𝑣1 again. Hence, in
the presence of crashes the GPS CAS rule is unsound. Our rule for CAS requires that the invariant
still holds for the read value, ensuring that the invariant always holds for all writes. This is sound
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even with crashes but is significantly more limiting than the GPS CAS rule. Essentially, the GPS
CAS rule is sound for transferring resources between concurrently running CAS-operations, but
not across crashes. Our CAS rule is sound for transferring resources across crashes, but only in a
limited way between concurrent CAS’es. Creating a CSL rule that is simultaneously sound for both
is very challenging and something that we would like to explore in future work. The CAS rule in
BaseSpirea does not suffer from this limitation, and as demonstrated in §6.2, it can be used together
with Spirea for cases where a stronger CAS rule would otherwise be needed.

The read rule for atomic locations in GPS does not make it possible to transfer exclusive resources
out of the invariant for the value read. Our read rule makes it possible to extract exclusive resources
as long as the invariant still holds (for instance by transferring other resources into the invariant).
We make use of this capability to verify the message passing examples. In GPS an additional feature,
escrows, is needed to verify the message passing examples.
Our use of modalities to reason about fences is inspired by Fenced Separation Logic (FSL), a

program logic that supports reasoning about the release and acquire memory fences in the C11
memory model [Doko and Vafeiadis 2016]. FSL includes two fence modalities to describe resources
that have been prepared for release or acquire by a release or acquire fence. The release and
acquire fences in C11 serve a different purpose than those in 𝜆pmem and the modalities in FLS are
correspondingly different as well.
Recently, in the context of weak memory we have seen logics that support specifications that

go beyond safety. Compass [Dang et al. 2022] and Cosmos [Mével and Jourdan 2021] are both
capable of showing stronger correctness results by using logically atomic triples as specifications. In
contrast, our specification for the durable stack only implies safety. We think it would be interesting
to investigate how ideas from these logics apply in our setting and we believe that a stronger CAS
rule (per the discussion above) is necessary to achieve this.

Separation Logics for Durable Storage. CrashHoare Logic [Chen et al. 2016] and themore advanced
Perennial [Chajed 2022; Chajed et al. 2019, 2021] are separation logics capable of verifying crash-
safety. In contrast to our work, Crash Hoare Logic and prior work using Perennial has only
considered sequentially consistent memory and synchronously persisting writes without any weak
behavior. When writes persist synchronously/atomically the content of durable storage is always
in a single certain state. Therefore, rules for the post-crash modality include no non-determinism
and are simpler “either/or” rules where some (volatile) resources are entirely lost at a crash and
other (non-volatile) resources are preserved unchanged after a crash. In our setting, since the crash
step is non-deterministic, the rules for the post-crash modality are significantly more involved.
Consider for instance a rule such as PC-na-mapsto which illustrates that the post-crash modality
both introduces non-determinism (the quantified 𝑖), potentially takes resources away (represented
both by ⟨ifRec⟩ and the lost states), and potentially adds new resources (the crashedIn(ℓ, 𝜎𝑖 )).

Persistency Models. While our focus in this paper is on the logic, we remark on related work
on persistency models. As mentioned, persistency models of the x86 and ARM architecture have
been formalized [Khyzha and Lahav 2021; Raad et al. 2020b, 2019]. In parallel with our work, new
variants of these that, like our semantics, are based on views have been presented [Cho et al. 2021].
It would be interesting to formally verify a correspondence between the explicit epoch persistency
model and the x86 and ARM persistency models. We believe that our operational semantics could be
used for this purpose. It would also be worthwhile to show an equivalence between our operational
model and a model in a declarative or axiomatic style.
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𝑚 ∈ MEvent ::= Al𝑎 (ℓ, 𝑣) | R𝑎 (ℓ, 𝑣) | W𝑎 (ℓ, 𝑣) | RMW(ℓ, 𝑣𝑟 , 𝑣𝑤) | RMWfail (ℓ, 𝑣) | FL(ℓ) | F | FS

V,S, F ,P,B ∈ View ≜ Loc fin−−⇀ N 𝜎 ∈ Store ≜ Loc fin−−⇀ History

⟨S, F ,B⟩,T ∈ ThreadView ≜ View3 ℎ ∈ History ≜ N fin−−⇀ Message
⟨𝜎,P⟩,M ∈ MemConf ≜ Store × View ⟨𝑒,T⟩, 𝑡 ∈ ThreadState ≜ Exp × ThreadView

⟨𝑣,S𝑚, F𝑚,P𝑚⟩ ∈ Message ≜ Val × View3 ⟨M, ®𝑡⟩, 𝜌 ∈ MemConf × List(ThreadState)

Fig. 13. Definitions of semantic objects used in the operational semantics
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A OPERATIONAL SEMANTICS
We define a small-step interleaving operational semantics for 𝜆pmem. The semantics formalizes the
consistency and persistency models described informally in the paper.
To define how expressions interact with the memory we use two labeled transition systems

(LTSs), one for expressions and one for the memory. This approach neatly keeps the memory model
considerations separate from the rest of the language semantics. The labels for the LTSs arememory
events, defined in Fig. 13, describing how expressions can interact with the memory.

A.1 Expression LTS

The LTS for expressions has the form 𝑒
𝑚−→ 𝑒′; ®𝑒 , meaning that the expression 𝑒 can step to 𝑒′

with the label𝑚 ∈ MEvent ∪ {𝜖} while forking the sequence of threads ®𝑒 . The label 𝜖 is used for
expressions that do not interact with the memory (pure reductions, etc.). A selection of expression
transitions is seen in Fig. 14. First is the step for application (just to show that standard reductions
work as expected), then the one for fork (the only rule where the sequence of forked threads is
not the empty sequence 𝜀), and then transitions that interact with the memory (i.e., where𝑚 ≠ 𝜖).
Note how these transitions make it clear how the memory events correspond to operations in the
language, for instance, the expression ref𝑎 𝑣 emits an event for allocation of the form Al𝑎 (ℓ, 𝑣),
reading a value with !𝑎 ℓ emits an event for reading R𝑎 (ℓ, 𝑣), and so on.

A.2 Memory LTS
We now wish to define an LTS for the memory. To this end, we need some semantic objects, defined
in Fig. 13, which we now explain.
In a strong sequentially consistent memory threads always read the last write to a location,

and hence the store (i.e., the memory) can be modeled simply as a finite map from locations to
values. In a weak persistent memory model, on the other hand, threads and recovery code may
read out-of-date values. Therefore, the store is a finite map from locations to histories. Each history
contains all writes to a location as a finite map from timestamps (natural numbers) to messages.
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Every message corresponds to a write to the location and contains the written value and other data
explained below. The timestamps correspond to the order of the writes.

Closely related to the definition of the store is the notion of a view: a finite map from locations
to timestamps. Views are used to represent subsets of messages in the store. For a store 𝜎 , a view
V intuitively represents all messages of the form 𝜎 (ℓ) (𝑡) for 𝑡 ≤ V(ℓ). We sometimes talk of the
messages “in” a view to mean this set of messages. Views naturally form a semi-lattice where the
least element ⊥ is the empty partial function, where V1 ⊑ V2 ≜ ∀ℓ ∈ dom(V1).V1 (ℓ) ≤ V2 (ℓ),
and where the least upper bound is given by (V1 ⊔V2) (ℓ) ≜ max(V1 (ℓ),V2 (ℓ)).
A memory configuration (MemConf) contains the entire state of the memory. It is a pair of a

store and a view: ⟨𝜎,P⟩. We refer to P as the persist view; it represents the messages in 𝜎 that are
certain to have been persisted.
A thread view is a triple of views: ⟨S, F ,B⟩. These views are a thread’s store view, flush view,

and buffer view. The store view S (flush view F , respectively) is used to encode the weak memory
order (persistent memory order). Messages in S are those that the thread knows of and that future
memory operations will be ordered after. Messages in F are those that the thread knows have been
flushed and fenced, meaning that will persist before any future memory operations by the thread.
The buffer view B represents the messages that the thread has flushed.

A message is a tuple of the form: ⟨𝑣,S𝑚, F𝑚,P𝑚⟩. As mentioned, a message corresponds to a
write and 𝑣 is the value written. For an atomic write S𝑚 and F𝑚 is the writing thread’s store view
and flush view at the time of the write. An atomic read will acquire these views when reading the
message. The P𝑚 view enforces the persist order—a write can have persisted only if all messages in
P𝑚 have also persisted. In the operational semantics, the persist view of a message is only used in
the reduction rule for a crash, corresponding to the fact that the persist order only affects crashes.
For a message𝑚, we write𝑚.𝑣 ,𝑚.S, etc. for its components.

The LTS for the memory has the form ⟨𝜎,P⟩; ⟨S, F ,B⟩ 𝑚−→ ⟨𝜎 ′,P′⟩; ⟨S′, F ′,B′⟩. As the outcome
of a memory operation depends on the views of the thread making the operation, the LTS is
parameterized both by a memory configuration and by a thread view: The transition rules appear
in Fig. 14; to keep the presentation concise we make use of the notation

⌊V⌋at ≜ V
⌊V⌋na ≜ ⊥ V0 (ℓ) =

{
V(ℓ) if ℓ ∈ dom(V)
0 otherwise

The ⌊V⌋𝑎 notation captures the effect of the access mode in several of the rules. For instance, the
only difference between a write (Bna) and a release-write (Bat) is in which views are stored in the
written message. We use V0 simply to be able to write V0 (ℓ) even if ℓ is not certain to be in the
domain ofV .
We now comment on the transition rules. The rule for allocation (with label Al𝑎 (ℓ, 𝑣)) extends

the store with a fresh location that contains a history with a single message at timestamp 0. In
this rule and in the rule for writing the store view and flush view of the message is ⊥ if the access
mode is na. This is because non-atomic operations are not for synchronization between threads
and therefore no views should be exchanged when performing them. In contrast, when the access
mode is at then the thread’s store view and flush view are included in the message. For a read with
access mode at, rule (with label R𝑎 (ℓ, 𝑣)) then merges the store view from the read message into
the thread’s store view. This ensures that the acquire-read actually acquires information from the
thread whose write it is reading. The flush view from the message is only added to the thread’s
buffer view. The buffer view is never transferred between threads, it is only used within a thread
to keep account of information that will be acquired at the next fence. Indeed, the buffer view is
moved into a thread’s flush view by the two fence rules (with labels F and FS).
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Expression LTS

(rec 𝑓 (𝑥) = 𝑒) 𝑣 𝜀−→ 𝑒 [rec 𝑓 (𝑥) = 𝑒, 𝑣/𝑓 , 𝑥]; 𝜀 fork {𝑒} 𝜀−→ (); 𝑒 ref𝑎 𝑣
Al𝑎 (ℓ,𝑣)−−−−−−−→ ℓ ; 𝜀

!𝑎 ℓ
R𝑎 (ℓ,𝑣)−−−−−−→ 𝑣 ; 𝜀 ℓ B𝑎 𝑣

W𝑎 (ℓ,𝑣)−−−−−−−→ (); 𝜀 flush ℓ
FL(ℓ )
−−−−−→ (); 𝜀 fence

F−→ (); 𝜀

fencesync
FS−−→ (); 𝜀 CAS ℓ 𝑣1 𝑣2

RMW(ℓ,𝑣1,𝑣2 )−−−−−−−−−−−−→ true; 𝜀
𝑣1 ≠ 𝑣𝑙

CAS ℓ 𝑣1 𝑣2
RMWfail (ℓ,𝑣𝑙 )−−−−−−−−−−−→ false; 𝜀

Memory Model LTS

ℓ ∉ dom(𝜎) ℎ = {0 ↦→ ⟨𝑣, ⌊S⌋𝑎, ⌊F ⌋𝑎, F ⟩}

⟨𝜎, P ⟩; ⟨S, F ,B⟩
Al𝑎 (ℓ,𝑣)−−−−−−−→ ⟨𝜎 [ℓ ↦→ ℎ], P ⟩; ⟨S, F ,B⟩

𝑡 = S0 (ℓ) B′ = B[ℓ ↦→ 𝑡]

⟨𝜎, P ⟩; ⟨S, F ,B⟩
FL(ℓ )
−−−−−→ ⟨𝜎, P ⟩; ⟨S, F ,B′⟩

S0 (ℓ) ≤ 𝑡 𝜎 (ℓ) (𝑡) = ⟨𝑣,S𝑚, F𝑚, _ ⟩

⟨𝜎, P ⟩; ⟨S, F ,B⟩
R𝑎 (ℓ,𝑣)−−−−−−→ ⟨𝜎, P ⟩; ⟨S ⊔ ⌊S𝑚⌋𝑎, F ,B ⊔ ⌊F𝑚⌋𝑎 ⟩

S0 (ℓ) < 𝑡 𝜎 (ℓ) = ℎ 𝑡 ∉ dom(ℎ) ℎ′ = ℎ[𝑡 ↦→ ⟨𝑣, ⌊S⌋𝑎, ⌊F ⌋𝑎, F ⟩]

⟨𝜎, P ⟩; ⟨S, F ,B⟩
W𝑎 (ℓ,𝑣)−−−−−−−→ ⟨𝜎 [ℓ ↦→ ℎ′], P ⟩; ⟨S[ℓ ↦→ 𝑡], F ,B⟩

S0 (ℓ) ≤ 𝑡 𝑡 + 1 ∉ dom(ℎ) 𝜎 (ℓ) = ℎ
ℎ(𝑡) = ⟨𝑣𝑚,S𝑚, F𝑚, _ ⟩ S′ = (S ⊔ S𝑚) [ℓ ↦→ 𝑡 + 1] ℎ′ = ℎ[𝑡 + 1 ↦→ ⟨𝑣,S′, F ⊔ F𝑚, F ⊔ F𝑚 ⟩]

⟨𝜎, P ⟩; ⟨S, F ,B⟩
RMW(ℓ,𝑣,𝑣′ )
−−−−−−−−−−−→ ⟨𝜎 [ℓ ↦→ ℎ′], P ⟩; ⟨S′, F ,B ⊔ F𝑚 ⟩

S0 (ℓ) ≤ 𝑡 𝑡 + 1 ∉ dom(ℎ) 𝜎 (ℓ) = ℎ ℎ(𝑡) = ⟨𝑣𝑚,S𝑚, F𝑚, _ ⟩

⟨𝜎, P ⟩; ⟨S, F ,B⟩
RMWfail (ℓ,𝑣)−−−−−−−−−−−→ ⟨𝜎, P ⟩; ⟨S ⊔ S𝑚, F ,B ⊔ F𝑚 ⟩

⟨𝜎, P ⟩; ⟨S, F ,B⟩ F−→ ⟨𝜎, P ⟩; ⟨S, F ⊔ B,B⟩ ⟨𝜎, P ⟩; ⟨S, F ,B⟩ FS−−→ ⟨𝜎 ;P ⊔ B⟩; ⟨S, F ⊔ B,B⟩
Head Reduction

M;T 𝑚−−→ M′;T ′ 𝑒
𝑚−−→ 𝑒′; 𝑒1 . . . 𝑒𝑛

M; ⟨𝑒,T⟩ →h M′; ⟨𝑒′,T ′⟩; ⟨𝑒1,T ′⟩ . . . ⟨𝑒𝑛,T ′⟩
𝑒

𝜀−→ 𝑒′; 𝑒1 . . . 𝑒𝑛
M; ⟨𝑒,T⟩ →h M; ⟨𝑒′,T⟩; ⟨𝑒1,T⟩ . . . ⟨𝑒𝑛,T⟩

Thread-local and threadpool reduction

M; ⟨𝑒,T⟩ →h M′; ⟨𝑒′,T ′⟩; ®𝑡
M; ⟨𝐾 [𝑒],T⟩ →t M′; ⟨𝐾 [𝑒′],T ′⟩; ®𝑡

M; 𝑡 →t M′; 𝑡 ′; ®𝑡
⟨M; ®𝑡𝑙 𝑡®𝑡𝑟 ⟩ →tp ⟨M′; ®𝑡𝑙 𝑡 ′®𝑡𝑟 ®𝑡⟩

Fig. 14. Expression and Memory Model LTS transitions

Due to the condition S0 (ℓ) ≤ 𝑡 in rule for reading, a read may non-deterministically read any
message for ℓ with a timestamp greater than the thread’s timestamp in its store view for ℓ .

Note that the rule for writing ensures that the thread’s flush view F is transferred irrespectively
of access mode; this is to ensure that the persist order is recorded (it is used when we account for
crashes, in Appendix A.4).

The rules for flushes and fences are rather straightforward. Flushing a location moves the thread’s
timestamp for the location in its store view into its buffer view. The two rules for fences, move a
thread’s buffer view into its flush view. The rule for the synchronous fence additionally moves the
buffer into the memory configuration’s persist view as well.
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A.3 Machine Reductions
We define a head reduction →h for a memory and a thread state (a pair of an expression and a
thread view) by combining the LTSs for the memory and for expressions. It is given by the two
rules seen in Fig. 14. The first rule is for expression steps that interact with the memory and the
second for those that do not.

As is standard we use evaluation contexts 𝐾 to lift the head reduction to a per-thread reduction
→t which again is lifted to a threadpool reduction→tp that non-deterministically picks a thread
from the threadpool to reduce. They are each given by a single rule seen in Fig. 14. Here 𝐾 is an
evaluation context; the definition of evaluation contexts for 𝜆pmem is entirely standard, capturing a
call-by-value left-to-right evaluation order, and has thus been omitted.

A.4 Accounting for Crashes
The state of the memory after a crash is determined by a crash view C. The crash view represents
all the messages that persisted before the crash. It has to be a consistent cut in the sense that no
message can have persisted without all of the messages in its persist view also having persisted:

Definition A.1. A view C is a consistent cut of a store 𝜎 , written consistent(𝜎, C), iff for every
C(ℓ) = 𝑡 there exists a historyℎ such that𝜎 (ℓ) = ℎ and 𝑡 ∈ dom(ℎ). Furthermore, for all 𝑡 ′ ∈ dom(ℎ)
where 𝑡 ′ ≤ 𝑡 there exists a message𝑚 such that ℎ(𝑡 ′) =𝑚 and𝑚.P ⊑ C.

With this in hand, we can define the crash step reduction
 −→. This reduction goes from memory

configurations to memory configurations and describes what can happen to the memory at a crash.
It is generated by a single rule:

M-crash
P ⊑ C consistent(𝜎, C)

dom(𝜎 ′) = dom(C) ∀ℓ ∈ dom(C) . 𝜎 ′ (ℓ) = {0 ↦→ ⟨𝜎 (ℓ) (C(ℓ)) .𝑣,⊥,⊥,⊥⟩}

⟨𝜎,P⟩  −→ ⟨𝜎 ′, viewToZero(C)⟩
The first two assumptions ensure that C is a consistent cut and that it includes all the definitely
persisted messages in P. The next line serves to constrict the new store 𝜎 ′, created by picking out
a message for each recovered location. The new persist view viewToZero(C) is the view such that
viewToZero(C)(ℓ) = 0 for all ℓ ∈ dom(C) and which is undefined for all ℓ ∉ dom(C). That is, the
crash view but with 0 at every entry.

Finally, we define a recoverable execution relation ⇒r, which expresses what it means to execute
a program together with a recovery program 𝑒𝑟 that is run after each crash. The relation has the
form 𝑒𝑟 ; 𝜌 ⇒r 𝜌

′; 𝑠 where 𝑒𝑟 is the recovery expression, 𝜌 and 𝜌 ′ are machine configurations, and
𝑠 ∈ {NotCrashed,Crashed} is a crash-status indicating whether the execution has been crash free
or has crashed along the way.

rexec-normal
𝜌 →∗

tp 𝜌
′

𝑒𝑟 ; 𝜌 ⇒r 𝜌
′;NoCrash

rexec-crashed

𝜌 →∗
tp ⟨M, ®𝑡⟩ M

 −→ M′ 𝑒𝑟 ; ⟨M′, [⟨𝑒𝑟 , ⟨⊥,⊥,⊥⟩⟩]⟩ ⇒r 𝜌
′; 𝑠

𝑒𝑟 ; 𝜌 ⇒r 𝜌
′;Crashed

Note that in contrast to the other relations we have defined above this is a big step relation. The
first rule says that a machine can execute (without crashes) per the threadpool reduction with the
label NoCrash. The second rule says that a machine may execute normally for some number of
steps (the first assumption), then let the memory take a crash step (the second assumption), and
then keep executing with the memory after the crash and a single thread executing the recovery
expression. Note that at a crash all the running threads ®𝑡 are discarded.
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B BASESPIREA – THE LOW-LEVEL LOGIC
In this section we present BaseSpirea, a program logic for 𝜆pmem. The logic is built on top of Iris and
Perennial by instantiating the Perennial program logic framework. Before we proceed, we briefly
explain the relationship between Iris and Perennial and what such an instantiation entails.

B.1 Instantiating Perennial
Iris includes both a base logic and a program logic framework. The base logic contains the funda-
mental features of Iris, such as the separation logic connectives and ghost state, but not program
verification capabilities. Perennial, in turn, builds a program logic framework on top of the Iris
base logic. Unlike the program logic in Iris, Perennial’s is able to reason about crashes and to verify
crash-safety, through a combination of powerful features made for this purpose. Here “framework”
describes the fact that one can instantiate the program logic with any suitable programming lan-
guage. We instantiate the framework with 𝜆pmem, which, by no coincidence, is one such suitable
language. By doing this instantiation one gets the basic building blocks of a program logic “for free”.
These building blocks include the definition of Hoare triples (and related notions explained in the
next section) and language independent structural rules for working with them. The instantiator
(i.e., us) then defines language specific assertions and proof rules that must be proven sound. This
is done in tandem with a so-called state interpretation that is picked as part of the instantiation.
The state interpretation’s purpose is to link the physical state (i.e., the state in the operational
semantics) with logical ghost state. At this level, our state interpretation is fairly standard and we
do not give the details here—the interested reader can find them in our Coq mechanization. One
noteworthy aspect of our state interpretation is that it is parameterized over an “extra” resource. In
BaseSpirea this extra resource is simply True, but when building Spirea on top of BaseSpirea, we
use it to inject additional resources into the state interpretation.
We next describe the most important features of the Perennial program logic that we inherit

(Appendix B.2); the language specific assertions BaseSpirea adds (Appendix B.3); some of the
program rules that BaseSpirea includes (Appendix B.4); and finally we give the adequacy result of
the logic (Appendix B.5).

B.2 The Perennial Program Logic
In this section we explain the most important features from Perennial that are also present in
BaseSpirea. Note that in this subsection we use 𝑒 to denote expressions from the point of view of
Perennial. When instantiated with 𝜆pmem, such an expression is in fact a thread state (defined in
Appendix A).

In addition to the well-known Hoare triple, Perennial includes a crash Hoare triple8 of the form
{𝑃} 𝑒 {𝑄}{𝑄𝑐 } . Here 𝑃 and𝑄 are standard pre- and postconditions and the fourth component𝑄𝑐 is
a crash condition that must hold during every step of execution of 𝑒 . Since 𝑄𝑐 holds at every step, if
a crash occurs at some point, then𝑄𝑐 will necessarily hold at that point. Hence, the crash-condition
is a property that recovery code can rely on after a crash.

In addition to standard language independent structural rules (a frame rule, a bind rule, etc.), the
key rule for deriving a crash Hoare triple is Htc-atomic seen in Fig. 15
The rule states that to prove a crash Hoare triple for an atomic expression 𝑒 , it suffices to

prove that the pre-condition implies 𝑄𝑐 and an ordinary Hoare triple for 𝑒 holds with 𝑄𝑐 added
to the postcondition. Since 𝑒 is atomic and can take only a single step, it suffices to show the
crash condition before and after this single step. Note the use of the standard (non-separating)
conjunction ∧. This makes it possible to use all the resources one has at hand to show both 𝑄 and

8Really, it is a quadruple, but we stick with the Hoare triple terminology
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𝑄𝑐 . This is a crucial aspect of crash conditions: they can be established without losing the resources
necessary to show them.9 The use of ∧ is sound since when the program runs it will either take a
normal step of execution (in which case the proof of 𝑄 is needed) or crash (in which case the proof
of 𝑄𝑐 is needed). Since both cannot happen at the same time, it is not necessary to show the two
conjuncts for disjoint resources. The Htc-atomic rule is important since it, in combination with the
structural rules, allows us to show a crash Hoare triple by showing a normal Hoare triple. This
explains why we show rules for normal Hoare triples later on in this section.

To reason about the combination of a program 𝑒 and its associated recovery program 𝑒𝑟 , Perennial
offers a recovery Hoare triple10 of the form {𝑃} 𝑒 ⟲ 𝑒𝑟 {𝑄}{𝑄𝑟 } . The intuitive reading is: given
that 𝑃 holds initially, it is safe to execute 𝑒 with the recovery program 𝑒𝑟 . If 𝑒 terminates in a
value 𝑣 without crashing then 𝑄 (𝑣) holds. If, on the other hand, one or more crashes occur during
execution (of 𝑒 and 𝑒𝑟 ) then, if 𝑒𝑟 terminates in a value 𝑣 , then 𝑄𝑟 (𝑣) holds. Beware that the 𝑄𝑟

plays a different role from the 𝑄𝑐 used in a crash Hoare triple.
A post-crash modality ⟨PC⟩ internalises in the logic how resources are affected by a crash. The

assertion ⟨PC⟩ 𝑃 means that 𝑃 holds after a crash and a rule of the form 𝑃 ⊢ ⟨PC⟩𝑄 means that if
one has 𝑃 then one has 𝑄 after a crash.

Since the post-crash modality depends intrinsically on the semantics of the specific programming
language one reasons about, we do not get the post-crash modality by instantiating Perennial; we
have to define it ourselves. The idea of a post-crash modality, however, is from Perennial. That
being said, ours is more complicated than earlier ones used with Perennial due to the more intricate
semantics for crashes in 𝜆pmem (for more details, see the discussion of related work in §7).

Per the idempotence rule Htr-idempotence one can show a recovery Hoare triple for a program
𝑒 and recovery program 𝑒𝑟 by showing a crash Hoare triple for 𝑒 and one for 𝑒𝑟 . In both cases the
crash condition is 𝑄𝑟 , such that 𝑒𝑟 can rely on this resource; not directly though, as the crash itself
might change𝑄𝑟 , hence the inclusion of the post-crash modality. Since 𝑒𝑟 itself maintains the crash
condition 𝑄𝑟 , any number of crashes during 𝑒𝑟 are still safe.
The Perennial program logic contains other features. For instance, crash borrows that make it

possible to transfer and split crash conditions between threads. But what we have explained thus
far suffices for this paper, so we proceed to explain the assertions specific to BaseSpirea.

B.3 Assertions in BaseSpirea
Since the store in our operational semantics contains not just single values, but entire histories, the
points-to predicate in BaseSpirea ℓ ↩→h ℎ naturally associates a location with a history ℎ. Except
for this, it is similar to the normal separation logic points-to predicate.

The assertion valid(S) states that a view S is valid. This means that if S(ℓ) = 𝑡 then the history
for ℓ in the physical store actually contains a message with at least the timestamp 𝑡 . Knowing this
is necessary to conclude, for instance, that performing a read with the store view S is safe.

The assertion persisted(P) means that the view P is included in the persist view in the physical
state. It does not entail any ownership (in the separation logic sense) of the physical persist view.
Since it only expresses a lower bound and since the physical persist view only grows during normal
execution it is persistent.11
The assertion crashedAt(C) means that at the last crash the consistent cut that the machine

crashed at was C. The assertion crashedAt(C) is persistent and has agreement (crashed-at-agree).

9This is in contrast to normal Iris invariants, where one has to sacrifice ownership of the resources necessary to show the
invariant.
10Again, we stick with the Hoare triple terminology, even if more than three components are involved.
11Not to be confused with persistent memory, in Iris a persistent proposition is one that does not entail exclusive ownership
but only represents duplicable knowledge. �𝑃 means that 𝑃 always holds and a proposition 𝑃 is persistent if 𝑃 ⊢ �𝑃 .
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Htc-atomic
atomic(𝑒) 𝑃 −∗ 𝑄𝑐

{𝑃} 𝑒 {𝑄 ∧𝑄𝑐 } ⊢ {𝑃} 𝑒 {𝑄}{𝑄𝑐 }

Htr-idempotence
{𝑃} 𝑒 {𝑄}{𝑄𝑟 } 𝑄𝑟 −∗ ⟨PC⟩ 𝑅 {𝑅} 𝑒𝑟 {𝑄𝑟 }{𝑄𝑟 }

{𝑃} 𝑒 ⟲ 𝑒𝑟 {𝑄}{𝑄𝑟 } .

crashed-at-agree
crashedAt(C) ∗ crashedAt(C′) ⊢ C = C′

persisted-sep
persistedP1 ∗ persistedP2 ⊣⊢ persisted(P1 ⊔ P2)

Pc-persisted
persisted(P) ⊢ ⟨PC⟩ persisted(viewToZero(P)) ∗ ∃C ⊒ P . crashedAt(C)

Pc-points-to

ℓ ↩→h ℎ ⊢ ⟨PC⟩ ∃C.crashedAt(C) ∗
(
ℓ ∉ dom(C) ∨

(
∃𝑡,𝑚.

ℎ(𝑡) =𝑚 ∗ C(ℓ) = 𝑡 ∗𝑚.P ⊑ C ∗
ℓ ↩→ℎ {0 ↦→ ⟨𝑚.𝑣,⊥,⊥,⊥⟩}

))
Fig. 15. Selected rules for assertions in BaseSpirea

We now need to describe how the assertions interact with the post-crash modality. There are no
rules for valid or crashedAt. These resource do not imply any non-trivial resources after a crash,
i.e.,, the assertions valid(S) and crashedAt(C) are lost under the post-crash modality.

For persisted(P) we have the rule Pc-persisted. It says that given persisted(P), then after a crash
persisted holds for the same view but with zero at every entry. Furthermore, there exists some view
C such that C ⊒ P and crashedAt(C) holds. This rule is sound because persisted(P) is a lower
bound on the persist view in the physical state and a crash view has to include the persist view
(recall the rule M-crash in the operational semantics).

The rule Pc-points-to for the points-to predicate is a bit more involved. After a crash, we again
have crashedAt(C) for some C and two distinct cases: the location was either lost or recovered at
the crash. In the first case, the location must not be present in the crash view, ℓ ∉ dom(C), and we
have, of course, lost the points-to predicate. In the latter case, C(ℓ) = 𝑡 for some 𝑡 , the message ℎ(𝑡)
was recovered, and we now have a points-to predicate for the recovered message. Furthermore, the
view P in the message must be included in C. This internalizes the fact that C must be a consistent
cut and hence respect P in the message. This is what makes it possible to do the kind of “backwards
reasoning” for recovery code that we discussed earlier.

Let us see how the post-crash rules for persisted(P) and ℓ ↩→h ℎ work together if we have both
before a crash. Since crashedAt has agreement (crashed-at-agree) the two crash views gained by
Pc-persisted and Pc-points-to must be equal. Hence, if one knows that ℓ ∈ dom(P) then one can
rule out the first case in the disjunction in Pc-points-to and obtain a points-to predicate after the
crash.

B.4 BaseSpirea Program Logic
BaseSpirea includes proof rules for all programming language constructs of 𝜆pmem. The rules for
the memory-related operations are shown in Fig. 16; we only include these rules as the proof rules
for the remaining part of 𝜆pmem are as in standard Iris, see, e.g., [Jung et al. 2018] (but, we hasten to
point out, we have also proven those standard rules sound!).

The memory-related rules very closely reflect the underlying operational semantics and thus we
do not explain them in great detail, but only make a few general observations. Since the state of a
thread in our operational semantics is described not only by an expression but also by a thread
view, the “program” in our Hoare-triple is a thread state and not just an expression. All the rules
that involve reading and writing to a location include valid(S) in their precondition and valid(S′)
in their postcondition. The knowledge of validity is necessary to conclude that reads do not get
stuck, as mentioned above.
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Ht-alloc
{valid(S)} ref𝑎 𝑣 ; ⟨S, F ,B⟩

{
ℓ ; ⟨S′, F ′,B′⟩. ℓ ↩→h {0 ↦→ ⟨𝑣, ⌊S⌋𝑎, ⌊F ⌋𝑎, F ⟩} ∗ S = S′ ∗ F = F ′ ∗ B = B′}

Ht-read{
valid(S) ∗
ℓ ↩→h ℎ

}
!𝑎 ℓ ; ⟨S, F ,B⟩

{
𝑣 ; ⟨S′, F ′,B′⟩. ∃𝑡 .S0 (ℓ) ≤ 𝑡 ∗ ℎ(𝑡) = ⟨𝑣𝑚,S𝑚,P𝑚, _⟩ ∗ 𝑣 = 𝑣𝑚 ∗

S′ = S ⊔ ⌊S𝑚⌋𝑎 ∗ F ′ = F ∗ B = B′ ⊔ ⌊P𝑚⌋𝑎 ∗ valid(S′) ∗ ℓ ↩→h ℎ

}
Ht-store{
valid(S) ∗
ℓ ↩→h ℎ

}
ℓ B𝑎 𝑣 ; ⟨S, F ,B⟩

{
𝑤 ; ⟨S′, F ′,B′⟩. ∃𝑡 .S0 (ℓ) < 𝑡 ∗ 𝑡 ∉ dom(ℎ) ∗𝑤 = () ∗ S′ = S[ℓ ↦→ 𝑡] ∗

F ′ = F ∗ B′ = B ∗ valid(S′) ∗ ℓ ↩→h ℎ[𝑡 ↦→ ⟨𝑣, ⌊S′⌋𝑎, ⌊F ⌋𝑎, F ⟩]

}
Ht-flush
{ℓ ↩→h ℎ} flush ℓ ; ⟨S, F ,B⟩

{
𝑤 ; ⟨S′, F ′,B′⟩.S′ = S ∗ F ′ = F ∗ B′ = B[ℓ ↦→ S0 (𝑡)] ∗ ℓ ↩→h ℎ

}
Ht-fence
{True} fence; ⟨S, F ,B⟩

{
𝑤 ; ⟨S′, F ′,B′⟩.S′ = S ∗ F ′ = F ⊔ B ∗ B′ = B

}
Ht-fence-sync
{True} fencesync; ⟨S, F ,B⟩

{
𝑤 ; ⟨S′, F ′,B′⟩.S′ = S ∗ F ′ = F ⊔ B ∗ B′ = B ∗ persisted(B)

}
Fig. 16. Selected rules for Hoare triples in BaseSpirea

The rules for flushing and fences are very simple. The rule Ht-flush requires a points-to predicate
only to ensure that the flushed location actually exists in the store. The only difference between
Ht-fence and Ht-fence-sync is that the later includes persisted(B) in the postcondition. The rule
for a synchronous fence is the only way to get the persisted(𝑃) assertion.

B.5 Soundness
The soundness theorem for BaseSpirea states that a recovery Hoare triple for a program proven
inside the logic implies a safety result about the program with respect to the operational semantics—
independently of the logic. Since this result is the same in the soundness theorem for both BaseSpirea
and Spirea we define it separately, such that we can reuse it in both theorems.

Definition B.1. For expressions 𝑒 and 𝑒𝑟 , memory configuration M , and meta-level predicates on
values Φ and Φ𝑟 , we say that safe(𝑒, 𝑒𝑟 ,M,Φ,Φ𝑟 ) holds if, for any recoverable execution

𝑒𝑟 ; ⟨M, [⟨𝑒, ⟨⊥,⊥,⊥⟩⟩]⟩ ⇒r ⟨M, ®𝑡⟩; 𝑠
it is the case that: (1) For every thread ⟨𝑒,T⟩ ∈ ®𝑡 , if 𝑒 is not a value then the thread is not stuck.
(2) For ⟨𝑒′,T⟩ = (®𝑡)1, if 𝑒′ is a value 𝑣 (i.e., the initial expression 𝑒 terminated) then Φ(𝑣) holds if
𝑠 = NotCrashed and Φ𝑟 (𝑣) holds if 𝑠 = Crashed.

With this safety definition we state the soundness theorem.

Theorem B.2 (soundness). Let 𝑒 , 𝑒𝑟 , ⟨𝜎,P⟩, Φ, and Φ𝑟 be as in Def. B.1. If the following recovery
Hoare triple is provable in BaseSpirea{

valid(P) ∗ ∗ℓ∈dom(𝜎 ) ℓ ↩→h 𝜎 (ℓ)
}
⟨𝑒,P⟩ ⟲ ⟨𝑒𝑟 ,⊥,⊥,⊥⟩ {Φ}{Φ𝑟 }

then safe(𝑒, 𝑒𝑟 , ⟨𝜎,P⟩,Φ,Φ𝑟 ) holds.

Note that the theorem applies to a store and persist view that is not necessarily empty to begin
with. Importantly, this makes it possible to apply it to programs that assume already existing and
persisted locations.
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{
𝑥 ↩→na [0] ∗ 𝑦 ↩→at 0 ∗ 𝑧 ↩→na 0 ∗ 𝑥 ≿p 0 ∗ 𝑧 ≿p 0

}
{
𝑥 ↩→na [0] ∗ 𝑦 ↩→at 0

}
𝑥 Bna 1;{
𝑥 ↩→na [0, 1]

}
flush 𝑥 ;{
𝑥 ↩→na [0, 1] ∗ ⟨PF⟩ 𝑥 ≿f 1

}
fence;{
𝑥 ↩→na [0, 1] ∗ 𝑥 ≿f 1

}
𝑦 Bat 1{
𝑥 ↩→na [0, 1] ∗ 𝑦 ↩→at 1

}



{
𝑦 ↩→at 0 ∗ 𝑧 ↩→na 0

}
if !at 𝑦 = 1
then{

𝑧 ↩→na 0 ∗ ⟨PF⟩ 𝑥 ≿f 1
}

fence;{
𝑧 ↩→na 0 ∗ 𝑥 ≿f 1

}
𝑧 Bna 1
{True}

else

{True}() {True}

{
𝑥 ↩→at 𝑛 ∗ 𝑧 ↩→na 𝑚

}
if !na 𝑧 = 1
then{

𝑥 ↩→at 𝑛 ∗ 𝑧 ↩→na 1 ∗ 𝑥 ≿f 1
}{

𝑥 ↩→at 1 ∗ 𝑧 ↩→na 1
}

assert !na 𝑥 = 1
{True}

else

{True}() {True}

Fig. 17. Proof outline for the durable message passing example

C DURABLE MESSAGE PASSING
To demonstrate resource transfer between threads we verify the durable message passing example
from Fig. 2b. We include recovery code, the safety of which depends on the property that the
example satisfies. The recovery code is seen in the proof outline in Fig. 17.

For all locations we pick the set of abstract states {0, 1} and we choose the𝜓 in the invariant to
be the identify function. The invariants are:

𝜙𝑥 (𝑛, 𝑣) ≜ 𝑛 = 𝑣 𝜙𝑦 (𝑛, 𝑣) ≜ (𝑛 = 𝑣 = 0 ∗ tok) ∨ 𝜙𝑧 (𝑛, 𝑣) ≜ (𝑛 = 𝑣 = 0) ∨
(𝑛 = 𝑣 = 1 ∗ 𝑥 ≿f 1) (𝑛 = 𝑣 = 1 ∗ 𝑥 ≿f 1)

Here “tok" is an exclusive token implemented using standard Iris ghost state. By exclusive we mean
that “tok ∗ tok” is a contradiction. We choose the following crash condition:

⟨PC⟩ ∃𝑛,𝑚. 𝑥 ≿p 𝑛 ∗ 𝑥 ↩→na 𝑛 ∗ 𝑧 ≿p 𝑚 ∗ 𝑧 ↩→na 𝑚

The crash condition does not mention 𝑦 as the recovery code does not use 𝑦. The crash condition is
easy to show at every step. Since the example involves two threads we need to mention that, using
features derived from Perennial, it is possible to split a crash condition between threads where each
thread is responsible for maintaining its part. This means that we can use standard concurrent-
separation-logic-style thread-local reasoning and prove each of the two threads separately.

The key idea of the proof that we want to highlight is at the write 𝑦 Bat 1 in the left thread. Here
we use Ht-at-write where 𝜎 is 0 and 𝜎𝑡 is 1. Showing the invariant is trivial, the tricky part is the
last conjunct in the precondition of Ht-at-write, namely that the written state fits in the ordered
history of states. To do this we assume some 𝜎𝑐 that is either 0 or 1 (here we crucially use that the
abstract state contains only 0 and 1). The latter case is trivial, so suppose 𝜎𝑐 = 0. In the first case we
have the invariant for 0 twice. Since 𝜙 (0, 𝑣) contains an exclusive token this is a contradiction. The
use of the exclusive token for the state 0 in 𝜙𝑦 ensures that the abstract history can only contain 0
once. Hence, when writing the state 1 we can rule out the case where another thread writes 0 that
ends up succeeding our write of 1 (which would violate the order of the abstract history). Notice
how the argument is modular, we do not assume any knowledge of any other threads, only that
the invariant is respected.

We remark that Bila et al. [2022] verified a variant of the durable message passing example where
the flush and fence for 𝑥 is moved from the left to the right thread. We have verified this variant as
well in Coq and in this example the𝜓 function in the invariant for 𝑦 is not the identity function.
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{
isLock(lk, 𝑃lk, 𝑃𝑐,lk) ∗ 𝑧 ↩→na [false] ∗ 𝑧 ≿p false

}
{True}
acquire lk{
𝑥 ≿p false ∗ 𝑥 ≿f 𝑏 ∗ 𝑥 ↩→na ®𝜎 ++ [𝑏] ∗
𝑦 ≿p false ∗ 𝑦 ≿f 𝑏 ∗ 𝑦 ↩→na ®𝜎 ++ [𝑏]

}
𝑥 Bna true;{
𝑥 ↩→na 𝜎 ++ [𝑏, true]

}
𝑦 Bna true;{
𝑦 ↩→na 𝜎 ++ [𝑏, true]

}
flush 𝑥 ;
{⟨PF⟩ 𝑥 ≿f true}
flush 𝑦;
{⟨PF⟩(𝑥 ≿f true ∗ 𝑦 ≿f true)}
fence;
{𝑥 ≿f true ∗ 𝑦 ≿f true}
release lk
{True}



{
𝑧 ↩→na [false]

}
acquire lk{
𝑥 ≿p false ∗ 𝑥 ≿f 𝑏 ∗ 𝑥 ↩→na ®𝜎 ++ [𝑏] ∗
𝑦 ≿p false ∗ 𝑦 ≿f 𝑏 ∗ 𝑦 ↩→na ®𝜎 ++ [𝑏]

}
if !na 𝑥 = true

then

{𝑏 = true}{
𝑥 ≿f true ∗ 𝑥 ↩→na ®𝜎 ++ [true] ∗
𝑦 ≿f true ∗ 𝑦 ↩→na ®𝜎 ++ [true]

}
𝑧 Bna 1
{True}

else ()
{True}
release lk
{True}


𝑥 ≿p 𝑏𝑥 ∗ 𝑥 ↩→na ®𝜎 ++ [𝑏𝑥 ]∗
𝑦 ≿p 𝑏𝑦 ∗ 𝑦 ↩→na ®𝜎 ++ [𝑏𝑦]
𝑧 ≿p 𝑏𝑧 ∗ 𝑧 ↩→na ®𝜎 ++ [𝑏𝑧]


if !na 𝑧 = true

then

{𝑥 ≿f true ∗ 𝑦 ≿f true}{
𝑥 ↩→na ®𝜎 ++ [true]∗
𝑦 ↩→na ®𝜎 ++ [true]

}
assert !na 𝑥 = true

assert !na 𝑦 = true

{True}
else

{True}() {True}

Fig. 18. Proof outline for the atomic persists example. At the top is the pre-crash code and below the recovery
code

Since the message is sent before anything is flushed the information in the message is lost at a
crash, and hence the state needs to change at a crash. For the details see our Coq mechanization.

D ATOMIC PERSISTS EXAMPLE
We explain the proof of the atomic persist example. The program can be seen in the proof outline in
Fig. 18. The two threads use a shared lock that they both attempt to acquire. When the left thread
acquires the lock it writes true to the locations 𝑥 and 𝑦. It then flushes both locations and carries
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out a fence before it releases the lock. When the right thread acquires the lock it reads 𝑥 and if it
reads true it writes true to 𝑧.
The property that we want to show is that the write to 𝑧 must be ordered after the two writes

to 𝑥 and 𝑦. In other words if the right thread reads true from 𝑥 it must also be the case that it
would read true from 𝑦 if it where to do so. So, due to the use of the lock the two separate writes
performed by the left thread appear as one atomic write to the right thread, i.e., the right thread
either sees none of the writes or all of the writes.

For the locations𝑥 and𝑦we use a simple invariantwith an abstract state of booleans {true, false}
and 𝜙𝑏 (𝜎,𝑏) ≜ 𝜎 = 𝑏 as the invariant.
To verify the example we prove a crash-aware lock specification for a (volatile) lock using

BaseSpirea. The specification that we show for the lock is identical to the crash-aware lock speci-
fication proposed by Chajed [2022, Chapter 3] (note that while the specification is the same our
proof is different as it has to account for weak persistent memory whereas Perennial’s lock assumes
sequentially consistent memory). Since our specification is identical to their we do not repeat it
here. The key point that is relevant to our present goal is that the assertion for the lock has the
form isLock(𝑣, 𝑃, 𝑃𝑐 ) and means that the lock protects both a resource 𝑃 , as the standard CSL lock
specification, and a crash-resource 𝑃𝑐 , which essentially is a crash condition that the lock guarantees
to preserve.

We want the lock to own the points-to predicates for 𝑥 and 𝑦. Furthermore, the resource should
state that 𝑥 and 𝑦 have the same last state and that that state has been flushed. Finally, they should
be persisted in at least the initial state.

𝑃lock ≜ ∃®𝜎,𝑏. 𝑥 ≿p false ∗ 𝑥 ≿f 𝑏 ∗ 𝑥 ↩→na ®𝜎 ++ [𝑏]∗
𝑦 ≿p false ∗ 𝑦 ≿f 𝑏 ∗ 𝑦 ↩→na ®𝜎 ++ [𝑏]

For the lock’s crash-resource we only need that the locations have been persisted in some state and
then the points-to predicates ending in that state.

𝑃𝑐,lock ≜ ⟨PC⟩ ∃®𝜎𝑥 , ®𝜎𝑦, 𝑏𝑦, 𝑏𝑥 .
𝑥 ≿p 𝑏𝑥 ∗ 𝑥 ↩→na ®𝜎 ++ [𝑏𝑥 ]∗
𝑦 ≿p 𝑏𝑦 ∗ 𝑦 ↩→na ®𝜎 ++ [𝑏𝑦]

For the location 𝑧 we use the abstract state of booleans and the invariant:
𝜙𝑧 (false, 𝑣) ≜ 𝑣 = false

𝜙𝑧 (true, 𝑣) ≜ 𝑣 = true ∗ 𝑥 ≿f true ∗ 𝑦 ≿f true
The key aspect here is that when 𝑧 has the value true then the invariant contains the fact that 𝑥
and 𝑦 has been flushed in the state true.

In addition to the crash resource for the lock we also need a crash condition that ensures that 𝑧
is available after a crash:

𝑃𝑐 ≜ ⟨PC⟩ ∃®𝜎,𝑏. 𝑧 ≿p 𝑏 ∗ 𝑧 ↩→na ®𝜎 ++ [𝑏]
The entire crash condition for the two threads is then: 𝑃𝑐,lock ∗𝑃𝑐 . When the lock is acquired threads
are required to maintain 𝑃𝑐,lock and the 𝑃𝑐 part we let the right thread maintain.

With this setup in place the proof outline appears in Fig. 18. Note that to keep the outline simple
we do not repeat resources that are unchanged in between lines in the program.
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