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Writing concurrent code that is both correct and e�cient is notoriously di�cult. Thus, programmers often

prefer to use synchronization abstractions, which render code simpler and easier to reason about. Despite

a wealth of work on this topic, there is still a gap between the rich semantics provided by synchronization

abstractions in modern programming languages—speci�cally, fair FIFO ordering of synchronization requests

and support for abortable operations—and frameworks for implementing it correctly and e�ciently. Supporting

such semantics is critical given the rising popularity of constructs for asynchronous programming, such as

coroutines, which abort frequently and are cheaper to suspend and resume compared to native threads.

This paper introduces a new framework called CancellableQueueSynchronizer (CQS), which enables

simple yet e�cient implementations of a wide range of fair and abortable synchronization primitives: mutexes,

semaphores, barriers, count-down latches, and blocking pools. Our main contribution is algorithmic, as

implementing both fairness and abortability e�ciently at this level of generality is non-trivial. Importantly, all

our algorithms, including the CQS framework and the primitives built on top of it, come with formal proofs

in the Iris framework for Coq for many of their properties. These proofs are modular, so it is easy to show

correctness for new primitives implemented on top of CQS. From a practical perspective, implementation

of CQS for native threads on the JVM improves throughput by up to two orders of magnitude over Java’s

AbstractQueuedSynchronizer, the only practical abstraction o�ering similar semantics. Further, we success-

fully integrated CQS as a core component of the popular Kotlin Coroutines library, validating the framework’s

practical impact and expressiveness in a real-world environment. In sum, CancellableQueueSynchronizer

is the �rst framework to combine expressiveness with formal guarantees and solid practical performance. Our

approach should be extensible to other languages and families of synchronization primitives.
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1 INTRODUCTION

Providing the “right” set of programming abstractions to enable e�cient and correct concurrent
code is a question as old as the �eld of concurrency [Dijkstra 2001; Knuth 1966]. One of the most
basic primitives is the mutex, which allows access to the critical section to at most one thread, via
lock() and unlock() invocations. Standard libraries, e.g., the Java concurrency library [Lea 2005],
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provide more general primitives, such as the semaphore, which allows at most a �xed number of
threads to be in the critical section simultaneously, the barrier, which allows a set of threads to
wait for each other at a common program point, and the count-down latch, which allows threads to
wait until a given set of operations is completed.

Although basic versions of the above primitives exist in most specialized libraries, programmers
often require stronger semantics from synchronization abstractions, which are supported by modern
programming languages such as Java, C#, Go, Kotlin and Scala. One particularly desirable property
is fairness [Izraelevitz and Scott 2017], by which the order of critical section traversals should
respect the FIFO order of arrivals, to avoid starvation. A second key property is abortability, which
enables a thread to cancel its request, due to a time-out or user-speci�ed behavior. Abortability and
scalability are especially important in the context of coroutines [kot 2022; Kahn and MacQueen
1976], the number of which can be in the millions simultaneously, and which can be frequently
cancelled. Coroutines are also signi�cantly cheaper to suspend and resume compared to native
threads: internally, they are scheduled on a thread pool, so when a coroutine is suspended, the
corresponding thread immediately picks up another one and executes it instead, so the native thread
never blocks. In such a setting, e�cient cancellation is vital, while fairness becomes less expensive
and more natural. Coroutines are now a key component of modern programming languages such
as Java, C++, Go, Scala, and Kotlin.
Implementing fairness and cancellation e�ciently in a concurrent context is known to be very

challenging, and there is a long line of work proposing highly non-trivial designs [Alon and
Morrison 2018; Danek and Golab 2010; Giakkoupis and Woelfel 2017; Jayanti 2003; Lee 2010; Pareek
and Woelfel 2012]. Modern languages and libraries typically either restrict the generality of the
semantics, providing more e�cient unfair synchronization, or implement complex constructs,
which may lead to correctness and performance issues. This paper addresses the question of
implementing fair and abortable synchronization primitives in a way that is general, e�cient, and
easy to reason.

For intuition, we begin with the observation that most of the synchronization operations we focus
on are inherently blocking: threads attempt to acquire a shared resource or synchronize, and may
have to wait for the resource to become available. For example, the mutex lock() operation either
acquires the lock instantly or adds the currently running thread to a queue of waiting operations
and suspends. The unlock() invocation resumes the �rst waiting lock() request, handing the lock
over. To our knowledge, the only practical abstraction to implement such synchronization primitives
in full generality is the AbstractQueuedSynchronizer in Java [Lea 2005], which maintains a FIFO
queue of suspended requests in a way reminiscent of the state-of-the-art CLH mutex [Magnusson
et al. 1994]. While the AbstractQueuedSynchronizer has been extremely in�uential, its design
does not scale to high contention. Our goal is to provide a design that is general enough to support
a wide range of abstractions, but also e�cient enough to support modern usage scenarios.

Our Contribution. We introduce a new framework called CancellableQueueSynchronizer

(CQS), which enables simple and e�cient implementations of a wide range of fair and abortable

synchronization and communication primitives, such as mutexes, semaphores, barriers, count-down
latches, and blocking pools. We show that CQS can implement this wide range of synchronization
primitives, for which we provide both formal proofs and extensive experimental validation, showing
signi�cant practical improvements over the state of the art.

Conceptually, the goal of the CancellableQueueSynchronizer framework is to e�ciently main-
tain a FIFO queue of waiting threads, corresponding to operations to be completed. To this end, CQS
provides two main operations: (1) suspend(), which adds the current thread as a waiter into the
queue and suspends, and (2) resume(result), which tries to retrieve and resume the �rst waiter
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with the speci�ed result. One key advantage of the CQS semantics is that it allows operations to
invoke resume(..) before suspend(): we actively use this property for implementation simplicity
and better performance. Despite the relative simplicity of the CancellableQueueSynchronizer
API, it allows us to support a rich set of synchronization and communication primitives.

The data structure behind CancellableQueueSynchronizer uses techniques from modern con-
current queue implementations [Morrison and Afek 2013; Yang and Mellor-Crummey 2016], lever-
aging the Fetch-and-Add instruction for better scalability. In brief, our solution is based on a
logically-in�nite array, equipped with two position counters, indexing suspend() and resume(..)
operations, respectively. Each operation starts by incrementing its counter via Fetch-and-Add, thus
reserving the cell in the �rst-come-�rst-served order. The rest of the synchronization is performed
in the cell: suspend() stores the current thread, while resume(..) wakes up the suspended thread.

The main novelty behind CancellableQueueSynchronizer is the e�cient built-in support for
aborting/cancelling operations. We emulate the in�nite array with a linked list of �xed-sized cell

segments, so each cell stores a waiting operation. On thread cancellation, the cell state should be
reclaimed to avoid memory leaks, but also segments full of cancelled requests should be physically
removed from the linked list. One naive way to implement such functionality is by linearly searching
the waiting queue for the corresponding segment, which is then unlinked [Lea 2005]. However,
this would have a worst-case linear time in the queue size, making frequent cancellations lead to
signi�cant overheads. While for threads this approach is su�cient (since their number is small
and they rarely abort), for coroutines, of which millions can exist at the same time and which
cancel frequently, signi�cant complexity improvements are required. We propose a more e�cient
design, where segments form a concurrent doubly-linked list, enabling constant time removals via
careful pointer manipulations. This also allows us to support di�erent cancellation modes: in case
of simple cancellation, resume(..) is allowed to fail if the waiter located in the corresponding cell
was cancelled, whereas smart cancellation provides a mechanism to e�ciently skip a sequence of
aborted requests but requires complex mechanisms to ensure that some thread is always resumed.

Formal Proofs in Iris/Coq. The complexity of the resulting CQS implementation renders manual
correctness proofs quite challenging and error-prone. We provide modular formal proofs for all
the presented primitives in Coq [Krebbers et al. 2017] using the Iris separation logic [Jung et al.
2018]. We formally specify the CQS operations and then demonstrate that they obey the semantics
corresponding to the primitives we consider. One property we do not show formally is the FIFO
order, which is notoriously di�cult to approach in Iris but can be demonstrated through classical
proofs. We emphasize the complexity of our formalization task, as only a few similar real-world
implementations are formally veri�ed [Chajed et al. 2021; Jung et al. 2017; Krishna et al. 2020;
Krogh-Jespersen et al. 2016; Vindum and Birkedal 2021]. Our proofs for CQS span approximately
8000 lines of Coq code, often requiring non-trivial reasoning. Yet, the proofs are modular, so they
can be employed as the basis for proving new synchronization primitives implemented on top of
CQS, reducing formalization e�ort. Speci�cally, proving each higher-order CQS-based primitive
presented in the paper on this basis takes only around 500 lines.

Evaluation.We integrated the CQS framework as part of the standard Kotlin Coroutines library
and used it to implement several fundamental synchronization primitives. To validate performance,
we implemented CancellableQueueSynchronizer on the JVM for native threads and compared it
against the state-of-the-art AbstractQueuedSynchronizer framework in Java [Lea 2005], which
aims to solve the same problem, and, to our knowledge, is the only practical abstraction that provides
similarly general semantics. We present di�erent versions of mutex and semaphore, barrier and
count-down-latch primitives, and two versions of blocking pools. Our algorithms outperform
existing implementations in almost all scenarios and are sometimes faster by orders of magnitude.
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In particular, our semaphore implementation outperforms the standard Java solution, which is im-
plemented via AbstractQueuedSynchronizer [Lea 2005], up to 4x in the uncontended case where
the number of threads does not exceed the number of permits, and up to 90x in a highly-contended
scenario. For the count-down-latch implementation, our solution shows up to 7x speedup compared
to the Java library, while the barrier synchronization is faster by up to 4x. For blocking pools, which
share a limited set of resources, our approach is faster than the Java library implementation by up
to 150x. In some cases, the fair synchronization primitives we present even outperform the unfair
variants in the Java standard library. Finally, results show that the cancellation support of CQS is
more e�cient than the one of the AbstractQueuedSynchronizer framework. Our analysis shows
that these improvements come mainly because from the superior scalability of our design.

2 BASIC CQS ALGORITHM

In this section, we describe the key ideas behind the CancellableQueueSynchronizer algorithm
in an iterative fashion, using a simple non-abortable mutex construct as an example. We then focus
on the complexities of supporting cancellation/abortability in the next section.

Thread Management.We manipulate threads to suspend and resume operations. While our main
application is coroutines, we will use threads for illustration, as they may be more familiar to the
readers. Listing 1 presents the API we use in the paper. We emphasize that our approach can be
directly adapted to any concurrency model, such as coroutines, futures, or continuations. 1 Our
implementations for Java native threads and Kotlin coroutines (Section 6) support this claim.

1 interface Thread {

2 fun park(onCancel: lambda () -> Unit2): Any

3 fun unpark(result: Any): Bool

4 fun cancel () // invoked by user

5 }

6 fun currentThread (): Thread

Listing 1. Thread management API.

Our API assumes that the currently-
running thread can be obtained by call-
ing currentThread(), and suspended
by invoking park(..). While suspended,
the thread can be aborted via cancel()
call, becoming unable to resume. In that
case, the onCancel lambda provided in
park(..) is executed. If a thread is can-
celled in an active state, the cancellation takes e�ect with the following park(..) invocation.

To resume a thread, the unpark(result) function should be called. It returns true if the resump-
tion succeeds, so the corresponding park(..) invocation completes with the speci�ed result. Other-
wise, if the thread is already cancelled, unpark(result) returns false. Notably, unpark(result)
can be called before park(..) – in this case, the following park(..) invocation immediately
completes without suspension, returning the provided result.

Environment. For simplicity, we assume the sequentially-consistent memory model, which
matches our implementation, as all real-world weak memory models provide sequential con-
sistency for data-race-free programs. In addition to plain reads and writes, we use atomic Compare-
and-Swap (CAS), Get-and-Set, and Fetch-and-Add (FAA) instructions, which are available in all
modern programming languages. We also assume that the runtime environment supports garbage
collection (GC). Reclamation techniques such as hazard pointers [M. Michael 2004] or hazard
eras [Ramalhete and Correia 2017] can be used in environments without GC.

1Many languages support asynchronous programming either explicitly via Future-s, or implicitly via the async/await

construct that internally manipulates continuation objects.
2Unit is a type with only one value: the Unit object. This type corresponds to the void type in Java.
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High-Level Algorithm Overview. At the logical level, the CancellableQueueSynchronizer

maintains a �rst-in-�rst-out (FIFO) queue of waiting requests and provides two main functions:
• suspend(): T, which adds the current thread as a waiter into the queue and suspends, and
• resume(result: T): Bool, which tries to retrieve and resume the next waiter, passing the
speci�ed value of type T.

A key advantage is that the framework allows to invoke resume(..) before suspend() as long as
it is known that suspend() will happen eventually, so synchronization primitive implementations
can allow such races. In Section 4, we present several algorithms that leverage this property for
better performance and simplicity.

1 val cells = InfiniteArray ()

2 var suspendIdx: Int64 = 0

3 var resumeIdx: Int64 = 0

4

5 fun suspend (): T {

6 i := FAA(&suspendIdx , +1)

7 // Try to suspend in cells[i].

8 t := currentThread ()

9 if CAS(&cells[i], null , t):

10 return park() // enqueued , suspend

11 // Read the result and finish.

12 result := cells[i]; cells[i] = TAKEN

13 return result

14 }

15 fun resume(result: T) {

16 i := FAA(&resumeIdx , +1)

17 t := cells[i]

18 if t == null: // is the cell empty?

19 // `suspend ()` is coming , try to

20 // install the result and finish.

21 if CAS(&cells[i], null , result):

22 return

23 // The cell stores a thread.

24 t = cells[i]

25 // Resume the waiting request.

26 cells[i] = RESUMED

27 t.unpark(result) // t is Thread

28 }

Listing 2. High-level CQS implementation on top of an infinite array without abortability support.

A useful mental image of CQS is that of an in�nite array supplied with two counters: one that
references the cell in which the new waiter should be enqueued as part of the next suspend() call,
and one that references the next cell for resume(..). The intuition is that suspend() atomically
increments its counter via Fetch-and-Add, stores the currently running thread in the corresponding
cell, and suspends. Likewise, resume(..) increments its counter, visits the corresponding cell,
and resumes the stored thread with the speci�ed value. However, if resume(..) comes before
suspend(), it simply places the value in the cell and �nishes — suspend() grabs the value later
and completes without an actual suspension. 3

Listing 2 provides a high-level pseudocode for this simpli�ed CancellableQueueSynchronizer,
without abortability support. An in�nite array cells (line 1) stores waiting threads and values
inserted by racing resumptions. Counters suspendIdx and resumeIdx (lines 2–3) reference cells
for the next suspend() and resume(..) operations.

When suspend() starts, it �rst gets its index and increments the counter atomically via Fetch-
And-Add (FAA), which returns the value right before the increment (line 6). Next, it obtains the
currently running thread to be inserted into the cell (line 8) and tries to do so via Compare-And-Swap
(CAS) (line 9). If this CAS succeeds, the operation parks the thread, �nishing when resumed (line 10).
Otherwise, a concurrent resume(..) has already visited the cell — thus, suspend() extracts the
placed value, cleans the cell by placing a special TAKEN token (line 12), and returns the extracted
value (line 13). Note that in the mutex implementation, we always pass Unit through CQS; other
data structures, such as blocking pools discussed in Section 4.4, may pass di�erent values.

3The suspend() and resume(..) race behavior is similar to the thread parking mechanism in both our API and Java, where

unpark(..) followed by park() results in the latter operation returning immediately.
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1 val cqs = CQS<Unit>()

2 var state: Int = 1 // "unlocked" intially

3 fun lock() {

4 s := FAA(&state , -1)

5 if s > 0: return // was the lock acquired?

6 cqs.suspend () // suspend otherwise

7 }

8 fun unlock () {

9 s := FAA(&state , +1)

10 // Resume the first waiting

11 // request if there is one.

12 if s < 0: cqs.resume(Unit)

13 }

Listing 3. Basic mutex algorithm without abortability support using the CQS framework.

Symmetrically, resume(..) increments resumeIdx �rst (line 16). It then checks whether the cell is
empty (line 18), in which case it tries to place the resumption value directly into the cell (line 21). If
the attempt fails, a waiter is already stored in the cell, so the algorithm re-reads it (line 24). After
the waiter is extracted, the operation stores a special RESUMED token in the cell to avoid memory
leaks and resumes the extracted thread (lines 26–27).

Mutex on Top of CQS. To illustrate how primitives should use CQS, consider the simple mutex
implementation from Listing 3. The rough idea is to maintain a state �eld (line 2) that stores 1 if
the mutex is unlocked, andF ≤ 0 if the mutex is locked. In the latter case, the negated value ofF
is the number of waiters on this mutex.
Initially, the mutex is unlocked and its state equals 1. When a lock() operation arrives, it

atomically decrements the state, setting it to 0 (line 4), so the logical state becomes “locked”. Since
the previous logical state was “unlocked”, the operation completes immediately (line 5). However, if
another lock() arrives after that, it changes state to −1, keeping the logical state as “locked” and
incrementing the number of waiters. Since the mutex was already locked, this invocation suspends
via CQS (line 6). Likewise, unlock() increments state, either making the mutex “unlocked” if the
counter was 0, or decrementing the number of waiters (line 9). In the latter case, unlock() resumes
the �rst waiter via CQS (line 12). It is worth emphasizing that lock() and unlock() contain only
�ve lines of easy-to-follow code in total.

Non-Blocking Operations. Synchronization primitives typically provide non-blocking variants
of operations, such as the tryLock() sibling of Mutex.lock(), which succeed only when the
operation does not require suspension. However, supporting them becomes non-trivial when
resume(..) comes before suspend(), so the data (e.g., the lock permit) is stored in CQS and
cannot be extracted without suspension; thus, the non-blocking sibling cannot access it.

To solve the problem, we introduce a special synchronous resumption mode, so that resume(..)
always makes a rendezvous with suspend() and does not leave the value in CQS, failing when
this rendezvous cannot happen in bounded time. We view this as an extension to Cancellable-

QueueSynchronizer and present it in the full version of the paper [Koval et al. 2023b].

In�nite Array Implementation. The last building block of the basic CQS implementation is
the emulation of an in�nite array. Since all cells are processed in sequential order, the algorithm
only requires having access to the cells between resumeIdx and suspendIdx and does not need
to store an in�nite number of cells. We follow the approach behind the channels implementation
in Kotlin [Koval et al. 2023a], maintaining a linked list of cell segments, each containing a �xed
number of cells, as illustrated in Figure 1.

Fig. 1. An infinite array as a linked list of cell segments.

Each segment has a unique id and can
be seen as a node in a Michael-Scott
queue [Michael and Scott 1996]. Following
this structure, we maintain only those cells
that are in the current active range (between
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resumeIdx and suspendIdx) and access them similarly to an array. Speci�cally, we change the
current working segment after completing operations equal to the number of cells in each segment.
Despite conceptual simplicity, the implementation of this structure is non-trivial, as shown

in [Koval et al. 2023a]. We discuss the implementation and the required changes to the CQS
algorithm in the full version of the paper [Koval et al. 2023b].

3 CANCELLATION SUPPORT

In this section, we extend the basic construct above with cancellation support. We assume that
threads can be aborted via Thread.cancel() call, which bounds the following unpark(..) to fail.
Additionally, the onCancel cancellation handler provided in the park(..) call4 is invoked when
the thread aborts. We will use this functionality later in this section.
We support two cancellation modes: simple and smart. Intuitively, the di�erence is that in

the simple cancellation mode, resume(..) fails if the thread in the corresponding cell has been
cancelled, whereas the smart cancellation enables e�cient skipping a sequence of aborted requests.

3.1 Simple Cancellation

The simple cancellation mode is relatively straightforward — when a waiter becomes cancelled,
the resume(..) operation that processes this cell is bound to fail. Thus, the code for resume(..)
in Listing 2 should return true if t.unpark(result) at line 27 succeeds, and false on failure,
indicating that the thread has already been aborted. Figure 2 shows the corresponding cell life-cycle.

Fig. 2. Cell life-cycle with simple cancella-
tion. When a thread becomes cancelled by
a successful Thread.cancel() invocation
(tagged with “C”), its content changes to
CANCELLED to avoid memory leaks, and the
corresponding resume(..) fails. The edges
marked with S and R correspond to the tran-
sitions by suspend() and resume(..).

An important technical detail is that aborted threads
should be physically removed from the waiting queue
to allow the garbage collector to reclaim the related
memory. Thus, we specify a cancellation handler that
replaces the aborted Thread with a special CANCELLED
marker, according to the diagram in Figure 2. In addi-
tion, we must remove segments full of cancelled cells
from the linked list to avoid memory leaks; we discuss
the corresponding part of the algorithm in the full ver-
sion of the paper [Koval et al. 2023b].

Mutex with Simple Cancellation. Please recall the
mutex algorithm presented in Listing 3. With sim-
ple cancellation, resume(..) fails when the resum-
ing thread is already aborted (THREADCANCELLED or CAN-
CELLED state). In this case, the corresponding lock()

request is no longer valid, and the unlock() invocation, which performs resume(..) on this cell,
incremented the counter (which must have been decremented by a lock() operation earlier). Thus,
the balance is met, and unlock() should restart.

Limitations. One issue with the cancellation logic above is that it requires the resume(..) op-
eration to process all the cancelled cells. Consider # lock() operations which execute and then
immediately abort — the following call to unlock() increments state and unsuccessfully invokes
resume(..) exactly # times. This leads to Θ(# ) complexity, which is, nevertheless, amortized
by Thread.cancel() invocations. Ideally, however, unlock() should require $ (1) time under no
contention and should not “pay” for the cancelled requests.

4Since in practice we manipulate threads or coroutines, cancellation should be handled via an existing mechanism. In Java,

for example, aborted threads throw InterruptedException, which can be caught and processed by the user. Moreover,

some coroutines libraries, such as Kotlin Coroutines [kot 2022], already support an API similar to the one we use.
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Another problem is that it is sometimes infeasible to wait until a resume(..) operation observes that
the waiter is cancelled. We often wish to immediately learn about a waiter being cancelled and
change the state correspondingly. As an example, consider a readers-writer lock and the following
execution: (1) a reader comes and takes a lock, (2) a writer arrives and suspends, (3) then, another
reader arrives and also suspends, because it should take a lock after the suspended writer. After
that, (4) the suspended writer becomes cancelled, so the second reader should be resumed and take
the lock. However, with simple cancellation, the e�ect of cancellation is postponed until another
operation tries to resume the cancelled waiter, so the reader does not wake up. Making cancellations
take e�ect immediately is critical in this context.

3.2 Smart Cancellation

A better option would be to skip cancelled waiters in resume(..) and install a cancellation handler
that de-registers the operation when it aborts. For mutex, this could be incrementing the state �eld.
However, a naive approach where resume(..) simply skips aborted threads would be incorrect.

Fig. 3. An incorrect execution of mutex with naive cancel-
lation strategy, where the cancellation handler increments
state back, while resume(..) simply skips cancelled cells.

The Problem. Figure 3 illustrates a po-
tential problematic execution with such
a mutex. Assume it is initially locked
and two threads start. The �rst thread in-
vokes lock(), placing itself in the CQS,
and immediately aborts; however, the
state is not incremented back yet. After
that, the second thread calls unlock(),
which increments the state counter (so
it becomes 0) and intends to wake up a
waiting lock() operation. The corresponding resume(..) sees the �rst cell in CANCELLED state
and places its value in the next empty cell. The execution switches back to the �rst thread, and the
cancellation handler of the aborted lock() increases the counter to 1. The resulting state is shown
in the �gure. Finally, two lock() calls by both threads are performed (they are under the dashed
red line). One of them decrements state to 0 and enters the critical section; the other suspends via
CQS and, observing the value in the cell, also proceeds to enter the critical section, thus breaking
the mutex semantics.

The REFUSE State. Notice that the naive version above would work �ne in cases where the
cancellation handler does not change the mutex state from “locked” to “unlocked” (thus, state
stays non-positive). The problem occurs when the “last” waiter becomes cancelled, and a concurrent
resume(..) tries to complete it. In this case, resume(..) must be informed that there is no longer
any waiter in the CancellableQueueSynchronizer that could receive the value.

Fig. 4. Cell life-cycle for smart cancellation, with a
special REFUSE state. The suspension, elimination,
and resumption parts stay unchanged (see Figure 2).

To signal this, a new REFUSE state is added to
the cell life-cycle; see Figure 4 on the right for the
updated cancellation part. This state signals that
an operation attempted to abort, but determined
that there is an upcoming resume(..) and the
aborted waiter was the last one in the CQS. Thus,
the resume(..) that inevitably visits the cell
should be refused by CQS and will no longer
attempt to pass the value to any waiter.
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1 // Invoked on cancellation and returns

2 // `true ` if the cell should enter to

3 // CANCELLED state and `false ` when it

4 // should transition to REFUSE.

5 fun onCancellation (): Bool

6 // Defines how to process a refused

7 // resume (..) with the specified value

8 fun completeRefusedResume(value: T)

Listing 4. Smart cancellation API.

Smart Cancellation API. Users who de-
velop primitives on top of CQS with smart
cancellation should implement onCancella-

tion() and completeRefusedResume(value)

functions, whose semantics are described in List-
ing 4. Speci�cally, when awaiter is cancelled (the
cell state changes to THREADCANCELLED), the can-
cellation handler invokes onCancellation(),
which tries to logically remove the waiter from
the data structure. If the resume(..) operation that sees this cell can safely skip it and still match
with another non-cancelled suspend(), the operation returns true, and the cell state becomes
CANCELLED. Otherwise, when the cell state becomes REFUSE, and the corresponding resume(..)

should be refused, onCancellation() should return false. This way, the refused resume(..)

invokes completeRefusedResume(...) to complete the operation.
Note that the behavior of resume(..) depends on whether the aborted thread moves the cell

to CANCELLED or REFUSE state. However, if resume(..) observes THREADCANCELLED state (the cell
stores a Thread instance while unpark(..) fails), the expected behavior can not yet be predicted.
We resolve this race by delegating the rest of the current resume(..) to the cancellation handler,
replacing the thread instance with the resumption value — see the corresponding transition from
THREADCANCELLED to VALUE in Figure 4. After that, when the cancellation handler changes the cell’s
state to CANCELLED or REFUSE, it receives the value and completes the resumption correspondingly.
In this case, the value passed to resume(..) can be out of the data structure for a while but is
guaranteed to be processed eventually. Note that resume(..) never fails when using the smart
cancellation mode.

Mutex with Smart Cancellation. Consider the mutex example again. Listing 5 presents the
onCancellation() and completeRefusedResume(..) implementations for the basic algorithm
from Listing 3; the rest stays the same.

1 fun onCancellation (): Bool {

2 // Increment the counter back.

3 s := FAA(&state , +1)

4 // s < 0: still in the "locked" state;

5 // s = 0: the mutex has become "unlocked",

6 // refuse the upcoming resume(..).

7 return s < 0

8 }

9 fun completeRefusedResume(permit: Unit) {

10 // Do nothing , the mutex has already

11 // been moved to the "unlocked" state.

12 }

Listing 5. Cancellation handling in the smart mode for
the basic mutex algorithm from Listing 3.

When a lock() request aborts, the onCan-
cellation() operation increments state

(thus, decrementing the number of wait-
ers). However, when the increment changes
state to 1 (“unlocked”), the operation must
return false to refuse the upcoming re-

sume(..). After that, the resume(..) that
comes to the cell sees it in REFUSE state and
invokes completeRefusedResume(..). For
the mutex, the lock is already successfully re-
turned at the moment of incrementing state
in onCancellation(), so this function does
nothing. However, when CQS is used to trans-
fer elements (see blocking pools in Subsec-
tion 4.4 as an example), the refused element should be returned back to the data structure via
completeRefusedResume(..).

The resume(..) Operation. Listing 6 presents a pseudocode for resume(..) that supports all
cancellation modes and for the cancellation handler — the function that is invoked when Thread

becomes cancelled; it is set in the park(..) invocation (see Listing 1). For simplicity, we assume
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1 fun resume(value: T): Bool {

2 i := FAA(&resumeIdx , +1)

3 while (true): // modify the cell state

4 cur := cells[i]

5 when {

6 cur == null:

7 if CAS(&cells[i], null , value):

8 return true

9 cur is Thread:

10 if cur.unpark(value):

11 cells[i] = RESUMED

12 return true

13 // The thread is cancelled.

14 if cancellationMode == SIMPLE:

15 return false

16 // In smart cancellation , delegate

17 // this resume (..) completion

18 // to the cancellation handler.

19 if CAS(&cells[i], cur , value):

20 return true

21 cur == CANCELLED:

22 // Fail with simple cancellation.

23 if cancellationMode == SIMPLE:

24 return false

25 // Skip the cell in the smart mode

26 return resume(value)

27 cur == REFUSE:

28 completeRefusedResume(value)

29 return true

30 }

31 }

32 fun cancellationHandler(s: Segment ,

33 i: Int) {

34 // Which cancellation mode do we use?

35 if cancellationMode == SIMPLE:

36 // Mark the cell state to

37 // CANCELLED and finish.

38 s[i] = CANCELLED

39 s.onCancelledCell ()

40 return

41 // Smart cancellation mode is used.

42 markCancelled := onCancellation ()

43 if markCancelled:

44 // Mark the cell as CANCELLED.

45 old := GetAndSet(&s[i], CANCELLED)

46 // Did it store an aborted thread?

47 if old is Thread:

48 s.onCancelledCell ()

49 else: // old is a value of type T

50 // A concurrent resume (..) has

51 // delegated its completion.

52 resume(old)

53 else:

54 // Move the cell state to REFUSE.

55 old := GetAndSet(&s[i], REFUSE)

56 // Did it store an aborted thread?

57 if old is Thread: return

58 // A concurrent resume (..) has

59 // delegated its completion;

60 // old is a value of type T.

61 completeRefusedResume(old)

62 }

Listing 6. Pseudocode for resume(..) that supports all cancellationmodes and the corresponding cancellation
handler. The suspend() implementation stays the same. The user-specified operations are highlighted
in yellow. The onCancelledCell() operation, highlighted with green, informs the segment about a new
cancelled cell — we have to remove segments full of cancelled cells to avoid memory leaks; the details are
discussed in the full version of the paper [Koval et al. 2023b].

that CQS uses an in�nite array in resume(..); the changes required for support of cancellation in
its emulation are discussed in the full version of the paper [Koval et al. 2023b].

Like before, resume(..) increments resumeIdx �rst (line 2). After that, the corresponding cell
should be modi�ed — this logic is wrapped with a while(true) loop (lines 3–29); the current cell
state is obtained in the beginning of it (line 4). When the cell is empty (line 6), resume(..) tries to
set the resumption value to the cell (lines 7–8). If the corresponding CAS succeeds, this resume(..)
�nishes immediately. If the CAS fails, the cell modi�cation procedure restarts.
When the cell stores a suspended thread (line 9), resume(..) tries to complete it (line 10). If

successful, the cell value is cleared for garbage collection, and the operation �nishes (lines 11–12).
Otherwise, the thread has been cancelled. In the simple cancellation mode, resume(..) simply
fails (lines 14–15). With the smart cancellation, resume(..) tries to replace the cancelled waiter
with the resumption value, thus, delegating its completion to the cancellation handler, and �nishes
on success (line 19–20). On failure, one of the branches below will be entered.
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When the cell is in CANCELLED state (line 21), resume(..) either fails in the simple cancellation
mode (lines 23–24), or skips this cell in the smart one, invoking resume(..) one more time (line 26).
In the full version of the paper [Koval et al. 2023b], we describe how to skip a sequence of CANCELLED
cells in $ (1) under no contention, with the in�nite array implemented as a linked list of segments.

In the remaining case, when the cell is in the REFUSE state (line 27), this resume(..) should be
refused, and completeRefusedResume(..) is called (line 28). After that, the operation successfully
�nishes (line 29).

The Cancellation Handler. The cancellation handler can be speci�ed as a parameter of the
park(..) call (see Listing 1) and is invoked when the thread becomes aborted. Here, the cancel-
lationHandler(..) function accepts the segment and the location index of the cell inside it — we
know them at the point of invoking park(..), so the handler has access to the cell and can update
its state to CANCELLED or REFUSE.

In the �rst case, when the simple cancellation mode is used (lines 35–40), the cell state is always
updated to CANCELLED and a special onCancelledCell() function is invoked on the segment
(lines 38–39). This onCancelledCell() function signals that one more cell in this segment was
cancelled and removes the segment if all the cells become cancelled (see the full version of the
paper [Koval et al. 2023b] for details).
With smart cancellation, onCancellation() is invoked �rst (line 42). If it succeeds (returns

true), then the cell state can be moved to CANCELLED. However, a concurrent resume(..) may
come and replace the aborted thread with its resumption value, see the cell state diagram in Figure 4.
Therefore, we put the CANCELLED token via an atomic GetAndSet operation, which returns the
previous cell state (line 45). If a thread instance was stored in the cell (line 47), resume(..) has
not come there: the handler signals about a new cancelled cell, removing the segment if needed
(line 48), and �nishes. Otherwise, if a resumption value was stored in the cell, the cancellation
handler completes the corresponding resumption by invoking resume(..) with this value (line 52).

In case onCancellation() returns false (line 53), the matching resume(..) should be refused.
Thus, the cell state moves to REFUSE via an atomic GetAndSet (line 55). If the cell stored the
cancelled thread, the handler �nishes (line 57). Otherwise, a concurrent resume(..) has replaced
it with the resumption value — we complete it with completeRefusedResume(..) (line 61).

4 SYNCHRONIZATION PRIMITIVES ON TOP OF CQS

To show the expressiveness of the CancellableQueueSynchronizer framework, we present several
algorithms developed on top of it. Starting with the barrier, we present a new count-down-latch
algorithm, then several semaphore algorithms, and �nish with blocking pools.

4.1 Barrier

A simple but popular synchronization abstraction is the barrier, which allows a set of parallel
threads wait for each other at a common program point, via a provided arrive() operation.

1 val cqs = CQS<Unit>()

2 var remaining: Int = parties

3

4 fun arrive () {

5 r := FAA(&remaining , -1)

6 if r > 1: return cqs.suspend ()

7 repeat(parties - 1) { cqs.resume(Unit) }

8 }

Listing 7. Barrier algorithm via CQS.

Algorithm. Listing 7 on the right presents
the algorithm on top of CQS. The imple-
mentation is straightforward: it maintains
a counter of the parties who arrived (line 2)
and increments it in the beginning of the
arrive() operation (line 5). All but the
last arrive() invocations suspend (line 6),
while the latter one resumes all those who
previously arrived (line 7).
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Once the last thread arrives, all the waiters should be resumed. However, if any of these waiters
becomes cancelled, the barrier contract is violated — fewer waiters will be successfully resumed and
overcome the barrier. Unfortunately, solving this problem would require an ability to atomically

resume a set of waiters (so either all the waiters are resumed or none), but no real system provides
such a primitive. Thus, similarly to the implementation in Java, we do not support cancellation.
However, instead of breaking the barrier when a thread is cancelled, we ignore cancellation. The
intuition behind this design is that even if a waiter has been cancelled, it has successfully reached
the barrier point and should not block the other parties from continuing.

4.2 Count-Down-Latch

The next synchronization primitive we consider is the count-down-latch, which allows waiting
until the speci�ed number of operations are completed. It is initialized with a given count, and each
countDown() invocation decrements the number of operations yet to be completed. Meanwhile,
the await() operation suspends until the count reaches zero.

Basic Algorithm. The pseudocode of our count-down-latch implementation is presented in
Listing 8. Essentially, the latchmaintains two counters: count, representing the number of remaining
operations (line 5), and waiters, which stores the number of pending await()-s (line 7).

1 val cqs = CQS<Unit>(

2 cancellationMode = SMART

3 )

4 // initialized by user

5 var count: Int = initCount

6 // the number of waiters

7 var waiters: Int = 0

8

9 fun countDown () {

10 r := FAA(&count , -1)

11 // Has the counter reached zero?

12 if r <= 1: resumeWaiters ()

13 }

14

15 fun await() {

16 if count <= 0: return

17 w := FAA(&waiters , +1)

18 // Is DONE_BIT set?

19 if w & DONE_BIT != 0: return

20 // Suspend until count reaches zero

21 cqs.suspend ()

22 }

23 fun resumeWaiters () = while(true) {

24 w := waiters

25 // Is DONE_BIT set?

26 if w & DONE_BIT != 0: return

27 // Set DONE_BIT and resume waiters.

28 if CAS(&waiters , w, w | DONE_BIT):

29 repeat(w) { cqs.resume(Unit) }

30 return

31 }

32

33 fun onCancellation (): Bool {

34 w := FAA(&waiters , -1)

35 // Move the cell to CANCELLED if the

36 // bit is unset; otherwise , to REFUSE.

37 return w & DONE_BIT == 0

38 }

39

40 fun completeRefusedResume(token: Unit) {

41 // Ignore cancelled await()-s.

42 }

43

44 const DONE_BIT = 1 << 31

Listing 8. Count-down-latch implementation on top of CQS with smart cancellation. When manipulating
with DONE_BIT, we use bitwise "and", "or", and "le� shi�" operators, denoted as &, |, and <<, respectively.

The countDown() function is straightforward: it decrements the number of remaining operations
(line 10), resuming the waiting await()-s if the count reached zero (line 12).5 Meanwhile, await()
checks whether the counter of remaining operations has already reached zero, immediately com-
pleting in this case (line 16). If await() observes that count is positive, it increments the number
of waiters (line 17) and suspends (line 21).

5We allow the number of countDown() calls to be greater than the initially speci�ed one. However, we could check in

countDown() that the counter is still non-negative after the decrement, throwing an exception otherwise.
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Given that resumeWaiters(), which is invoked by the last countDown(), can be executed con-
currently with await(), they should synchronize. For this purpose, resumeWaiters() sets the
DONE_BIT in the waiters counter (line 28), forbidding further suspensions and showing that this
count-down-latch has reached zero. Thereby, await() checks for this DONE_BIT before suspension
and completes immediately if the bit is set (line 19).

Cancellation. The simplest way to support cancellation is to do nothing: the algorithm already
works with the simple cancellation mode, where resume(..)-s silently fail on cancelled await() re-
quests (line 29). This strategy results in resuming cancelled waiters, which makes resumeWaiters()
work in a linear time on the total number of await() invocations, including the aborted ones.

Smart cancellation, on the other hand, makes it possible to optimize resumeWaiters() so that
the number of steps is bounded by the number of non-cancelled await()-s. The onCancellation()
function is invokedwhen awaiter becomes cancelled. It attempts to decrement the number of waiters
(line 34), making resume(..) skip the corresponding cell in the CQS. However, if the DONE_BIT is
already set at the moment of the decrement, a concurrent resumeWaiters() is going to resume this
cancelled waiter. The corresponding resume(..) call should be ignored, so onCancellation()

returns false, while completeRefusedResume(..) does nothing (lines 40–42).

4.3 Semaphores

The barrier and count-down latch algorithms described above do not actually require waiting
requests to be resumed in FIFO order. However, this property is critical for some primitives such as
the mutex or the semaphore. While the mutex allows at most one thread to be in the critical section
protected by lock() and unlock() invocations, the semaphore is a generalization of mutex that
allows the speci�ed number of threads to be the critical section simultaneously by taking a permit
via acquire() and returning it back via release().

In fact, the semaphore algorithm is almost the same as the one for the mutex, presented under
the CQS framework presentation in Listing 3 (the basic version) and Listing 5 (the cancellation part).
The only di�erence is that the state �eld is initialized with  instead of 1, when  is the number
of threads allowed to be in the critical section concurrently. We present the implementation details
in the full version of the paper [Koval et al. 2023b].

4.4 Blocking Pools

While the previous algorithms use CancellableQueueSynchronizer only for synchronization, it
is also possible to develop communication primitives on top of it. Here, we discuss two blocking
pool implementations. When using expensive resources such as database connections or sockets,
it is common to reuse them — this usually requires an e�cient and accessible mechanism. The
blocking pool abstraction maintains a set of elements that can be retrieved in order to process some
operation, after which the element is placed back in the pool:

• take() either retrieves one of the elements (in an unspeci�ed order), suspending until an
element appears if the pool is empty;

• put(element) either resumes the �rst waiting take() operation and passes the element to
it, or puts the element into the pool.

Intuitively, the blocking pool contract reminds the semaphore one. Similarly to the semaphore,
it transfers resources, with the only di�erence being that the semaphore shares logical non-
distinguishable permits while blocking pool works with real elements. The rest is almost the same.
In the full version of the paper [Koval et al. 2023b], we present two pool implementations: queue-
based and stack-based. Intuitively, the queue-based implementation is faster since queues can be
built on segments similar to CQS and leverage Fetch-And-Add on the contended path. In contrast,
the stack-based pool retrieves the last inserted, thus the “hottest” element. Please note that both
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algorithms we discuss are not linearizable and can retrieve elements out-of-order under some races.
However, since pools do not guarantee that the stored elements are ordered, these queue- and
stack-based versions should be considered bags with speci�c heuristics; these semantics matches
practical applications.

5 CORRECTNESS AND PROGRESS GUARANTEES

In this section, we discuss correctness and progress guarantees for both CQS operations and the
primitives we built on top of the framework.

5.1 Formal Proofs of Correctness in Iris/Coq

Correctness is formally proven in the state-of-the-art concurrent higher-order separation logic
Iris [Jung et al. 2018] using its Coq formalization [Krebbers et al. 2017]. Here, we highlight the
key ideas behind the proofs and discuss their limitations. The source code of the proofs is

available in [pro 2023]. We complement this with a detailed outline in the full version of

the paper [Koval et al. 2023b].

Operation Speci�cations. Iris is a framework designed for reasoning about the safety of con-
current programs, and several non-trivial algorithms have already been formally proved using
it [Carbonneaux et al. 2022; Chajed et al. 2021; Jung et al. 2017; Krishna et al. 2020; Krogh-Jespersen
et al. 2016; Vindum and Birkedal 2021; Vindum et al. 2022]. When constructing formal proofs, one
should provide a speci�cation for each of the data structure operations. In the Iris logic, operations
manipulate resources, which are pieces of knowledge about the system-wide state and can be held
by threads or the data structure itself. These resources are logical and do not a�ect the program
execution. A speci�cation describes which resources are required for the operation to start and
how they change when it �nishes.

Consider again the mutex as an example. Intuitively, we parameterize it with a resource ', which
serves as an exclusive right to be in the critical section and, thus, to invoke unlock(). Initially, this
resource ' is held by the mutex object. The speci�cation ensures that:
(1) when the lock() operation �nishes, the resource ' is transferred to the caller thread, and
(2) when unlock() starts, the corresponding thread must provide '.

If the resource ' is unique, the speci�cation still holds; however, as it cannot be held by multiple
threads by construction, the mutual exclusion contract is satis�ed.
All our speci�cations are de�ned in a similar manner. For example, to specify the semaphore

contract, we simply need to maintain  non-distinguishable copies of '; thus, allowing at most
 threads to enter the critical section. However, the actual speci�cations in Coq contain many
additional details, mainly due to support for cancellation semantics. Please refer to the proofs
outline in the full version of the paper [Koval et al. 2023b] and the source code [pro 2023] for details.

Modularity. Our Iris proofs are modular: speci�cations treat each operation separately and do
not concern the state of the system as a whole, locally manipulating logical resources instead. As
a result, the proof of CQS itself spans 8000 lines of Coq; by comparison, the proof of the barrier,
including its de�nition, takes only 400 lines, the semaphore proof requires less than 300 lines,
and the proofs for the count-down-latch and blocking pools take up to 700 lines each. Modularity
dramatically reduces the e�ort for someone wishing to formally verify their CQS-based primitive.

Limitations.Onemain limitation is that the existing formal speci�cations do not highlight the FIFO
semantics, allowing the waiting operations to complete in any order. Instead, these speci�cations
verify high-level properties, such as “at most one thread can be in the critical section” for the mutex.
This limitation stems from the modularity of proofs and the fact that the user code parameterizes
the cancellation handler in CQS. The fairness of end-to-end structures on top of the CQS is easy to
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see by the analogy with the state-of-the-art linearizable queues [Morrison and Afek 2013; Yang
and Mellor-Crummey 2016], but proofs of such form are not modular. While the modular Iris
proofs are powerful enough to show fairness, this requires signi�cant e�ort even for simple data
structures such as the classic Michael-Scott queue [Vindum and Birkedal 2021], and constructing
them for non-trivial and, especially, higher-order structures like CQS is currently impractical. Most
importantly, a modular proof of fairness of structures on top of the CQS would require placing
highly involved contracts on the cancellation handler as well as the uses of suspend operations that
may interact with it, making it signi�cantly more di�cult to prove the correctness of primitives on
top of the CQS for the end user.
Another limitation of the provided Iris speci�cations is that they do not assert the lack of

memory leaks. In particular, they do not prevent us from always storing the whole in�nite array.
Nevertheless, the lack of memory leaks follows by construction, as we always physically remove
segments full of canceled cells. Beyond that, we have thoroughly tested our implementation for the
absence of memory leaks via the Lincheck framework [Koval et al. 2020], which enables model
checking of concurrent algorithms on the JVM.
Finally, we assume a strong sequentially-consistent memory model. We �nd this assumption

reasonable as almost all the operations that manipulate shared data are atomic in the presented
algorithms, while considering relaxed memory may signi�cantly increase the proofs complex-
ity [Dang et al. 2019; Kaiser et al. 2017]. We also rely on the SC-DRF (sequential consistency for
data-race-free programs) property of all real-world weak memory models, such as C++11 and JMM,
which makes reasoning in the strong memory model su�cient. However, we plan to extend our
proofs to support the release-acquire semantics [Kaiser et al. 2017] and, thus, match the LLVM
memory model for languages such as C/C++ and Rust.

5.2 Progress Guarantees

Similarly to the dual data structures formalism [Scherer III et al. 2006], we reason about progress
independently of whether the operation was suspended. When we say that some blocking operation
is lock- or wait-free, we mean that it performs all the synchronization with this progress guarantee,
either completing immediately or adding itself to the queue of waiters followed by suspension.

Unfortunately, the progress guarantees cannot be mechanized in our Iris proofs. The reason for
this is that, at the time of writing, there are two forms of specifying program behavior in Iris. The
�rst way is to use (partial) weakest preconditions, which do not ensure that an operation terminates.
In fact, an in�nite loop satis�es any such speci�cation. The second less popular form uses the
total weakest precondition [Jung et al. 2018], which requires that every operation must terminate
in a bounded number of steps. This type of speci�cation can be used to show wait-freedom of
algorithms, but is not applicable to our case, as some of the operations guarantee only lock-freedom.

We do not consider the lack of formal proof of progress guarantees a major issue. Although it is
possible to write such proofs (see [Jia et al. 2015] for a comprehensive analysis), we �nd it much
easier to discuss this question separately. In essence, most of the presented primitives including
the CQS framework itself guarantee wait-freedom under no cancellation and at least lock-freedom
when requests may abort. We provide the detailed analysis in the full version of the paper [Koval
et al. 2023b].

6 EVALUATION

Our main practical contribution is integrating CQS, along with the mutex and semaphore implemen-
tations, into the standard Kotlin Coroutines library [kot 2022]. Other presented synchronization and
communication primitives are implemented in tests, enabling their fast development when needed.
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To validate performance, we implemented CancellableQueueSynchronizer on the JVM and com-
pared it against the state-of-the-art AbstractQueuedSynchronizer framework for implementing
synchronization primitives in Java [Lea 2005]. The latter provides similar semantics to CQS, and
is the only practical framework that addresses the same general problem. Notably, CQS-based
algorithms are signi�cantly more straightforward to reason. For fair performance evaluation, we
use threads as waiters in CQS; it should bene�t the Java implementation, which is well-optimized
for this case.
Our implementations for coroutines in Kotlin and native threads in Java con�rm the �exibility

of our design, let alone matching the real-world semantics.

Experimental Setup. Experiments were run on a server with 4 Intel Xeon Gold 6150 (Skylake)
sockets; each socket has 18 2.70 GHz cores, each of which multiplexes 2 hardware threads, for a total
of 144 hardware threads. We used OpenJDK 15 in all the experiments and the Java Microbenchmark

Harness (JMH) library [jmh 2021] for running benchmarks. When measuring operations, we also
add some uncontended work after each operation invocation — the work size is geometrically
distributed with a �xed mean, which we vary in benchmarks. In our CQS implementation, we have
chosen the segment size of 64 based on minimal tuning.

6.1 Barrier

We compare the CQS-based barrier implementation with the standard one in Java. In addition, we
add a baseline counter-based solution, which is organized in the same way as ours, but performs
active waiting instead of suspension, spinning in a loop until the remaining counter becomes zero.

Benchmark. Each of the threads performs barrier point synchronizations followed by some uncon-
tended work. This process is repeated a �xed number of times. We measure a single synchronization
phase, a set of arrive()-s with additional work for each thread. Without any synchronization, the
execution time is expected to stay the same independently of the number of threads.

Results. The experimental results are presented in Figure 5. We evaluated all three algorithms on
various numbers of threads and with three average work sizes — 100, 1000, and 10000 uncontended
loop iterations on average. The graphs show an average time per operation, so lower is better.

Fig. 5. Evaluation of CancellableQueueSynchronizer-based barrier implementation against the standard
one available in Java and a simple counter-based solution with active waiting. The plots show average time
per synchronization phase, lower is be�er.

Since one of the main synchronization costs is thread suspensions and resumptions, the counter-
based solution with active waiting is predictably the fastest. Nevertheless, our CQS-based algorithm
shows similar performance trends, due to all the operations being based on Fetch-And-Add. In
contrast, the solution from the standard concurrency library in Java shows signi�cantly less
scalability—we �nd the reason for such performance degradation in using a mutex under the hood;
surprisingly, it does not use AbstractQueuedSynchronizer directly. As a result, we �nd our simple
CQS-based algorithm to provide superior performance.
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6.2 Count-Down-Latch

Next, we evaluate our count-down latch implementation against the one in Java’s concurrency
package, which is built on top of the AbstractQueuedSynchronizer framework.

Benchmark.We consider a workload with a �xed number of countDown() invocations distributed
among threads, each followed by additional uncontended work. Besides, we add a baseline that
does not invoke countDown() and only performs the work. Thus, comparing with this baseline we
can measure the overhead caused by the count-down-latch synchronization.

Results. Figure 6 shows the evaluation results with di�erent additional work sizes (50 uncontended
loop iterations on average on the left, 100 in the middle, and 200 on the right). It is apparent that the
CQS implementation signi�cantly outperforms the standard one from Java, by up to 4×. Compared
to the baseline, it follows the same trend, providing an extremely small overhead on the right graph,
where the work is 200 uncontended loop cycles.

Similar to our CQS-based algorithm, the implementation in Java maintains a counter of remaining
countDown() invocations. However, they update this counter in a CAS loop: the algorithm reads the
current counter value and tries to replace it with the reduced by one via CAS, restarting the process
on failure. We �nd this di�erence the main reason for the superior scalability of our solution.

Fig. 6. Evaluation of the CQS-based count-down-latch implementation against the standard one in Java. The
baseline illustrates how the operation time would change if coundDown() took no time. Lower is be�er.

6.3 Mutex and Semaphores

Since the semaphore is a generalization of the mutex, we equate its implementation with  = 1

permits as mutual exclusion. We compare our algorithm against alternatives from the standard
Java library, unfair implementations of mutex and semaphore in Java, and the state-of-the-art fair
CLH and MCS lock algorithms. In Section 2 we also mention that implementing non-blocking
Mutex.tryLock() and Semaphore.tryAcquire() operations would require extending CQS with
a special synchronous resumption mode, leaving the details to the full version of the paper [Koval
et al. 2023b]. We included both semaphore implementations in the experiment to show that the
complexity introduced by this synchronous resumption mode does not a�ect performance.

Benchmark. Consider the workload of many operations to be executed by the speci�ed number
of threads with the parallelism level restricted via semaphore. Thus, each operation invocation is
wrapped with the acquire()-release() pair. When the parallelism level equals 1, the semaphore
is de facto a mutex, so we can compare our semaphore against other mutex algorithms. As before,
the operations are simulated with uncontended geometrically distributed work. In addition, we
perform somework before acquiring a permit, thus, simulating a preparation phase for the operation
guarded by the semaphore. We used 100 uncontended loop iterations on average for both pieces of
work; the results for other work sizes do not di�er signi�cantly and, therefore, are omitted.
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Fig. 7. Evaluation of CQS-based semaphore implementations compared to the standard ones in Java, including
the unfair variants. In addition, we compare our semaphores against the standard fair and unfair lock
implementations in Java and the classic CLH and MCS fair mutexes. Lower is be�er.

Results. The results against both fair and unfair versions of the standard ReentrantLock and
Semaphore primitives in Java, as well as against the classic CLH [Magnusson et al. 1994] and
MCS [Mellor-Crummey and Scott 1991] fair locks, are shown in Figure 7. Our semaphore imple-
mentation with the synchronous resumption mode in CQS, which enables tryAcquire() imple-
mentation, is denoted with the su�x «Sync».
In the mutex scenario, all the fair algorithms show the same performance, while Java’s unfair

mutex and semaphore are predictably faster, as unfairness signi�cantly reduces context switches
under high contention.

In the semaphore scenario, our solution outperforms both fair and unfair Java implementations
by up to 4x when the number of threads does not exceed the number of permits (so suspensions do
not happen). The main reason is that our solution leverages Fetch-and-Add to update the number
of available permits, which can be negative, indicating the number of waiters. In contrast, the
implementation in Java must ensure that this number stays non-negative, so it has to perform this
update in a CAS loop, reading the current number of available permits, trying to decrement it via
CAS if there is a permit to acquire, and restarting if the CAS fails.
With the increase in the number of threads, our algorithm is almost on par with the unfair

version when the number of permits ≥16, and signi�cantly outperforms the fair one in all scenarios.
In particular, our semaphore implementation outperforms the standard fair algorithm in Java by
up to 90x in a highly-contended scenario. More scalable queue design behind CQS is the key to
achieving such an outstanding performance. Notably, the complexity introduced by the synchronous
resumption is negligible and does not a�ect results.

6.4 Blocking Pools

We implemented both queue- and stack-based pools and compared them against the existing Array-
BlockingQueue (both fair and unfair) and LinkedBlockingQueue collections from the standard
Java library. Notably, they do not leverage the AbstractQueuedSynchronizer framework, as it
serves only for synchronization, while CQS enables communication out-of-the-box. Relatively,
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their solutions provide linearizability, while our pools may be non-linearizable when threads abort.
This experiment considers all data structures as solutions for pools of shared resources.

Benchmark. We use the same benchmark as for semaphores. In essence, we run many operations
on the speci�ed number of threads with a shared pool of elements. Each operation performs
some work (100 uncontended loop iterations on average in our experiment) �rst, then takes an
element, performs some other work with this element (100 more loop iterations on average in our
experiment), and returns it to the pool at the end. The results with other work amounts are omitted
but were examined and do not di�er signi�cantly.

Fig. 8. Evaluation of the presented queue- and stack-based pool algorithms with various numbers of shared
elements against the existing ArrayBlockingQueue (both fair and unfair versions) and LinkedBlockingQueue
collections from the standard Java library. Lower is be�er.

Results. Figure 8 shows results with di�erent numbers of elements shared in the pool. First, our
queue-based version shows better results on larger numbers of elements, which is expected as
the queue perform a FAA on the contended path instead of CAS in the stack-based solution; the
latter often fails under high contention, resulting in the operation restart. Compared to the fair
ArrayBlockingQueue, both of our implementations are more performant by up to 100× times. The
synchronization behind ArrayBlockingQueue uses coarse-grained locking, while our solution is
non-blocking for storing elements and managing the queue of waiting requests.
The unfair LinkedBlockingQueue is more scalable than the unfair version of ArrayBlock-

ingQueue, and they slightly outperform our fair implementations on a large number of threads
with a small number of shared elements, which is when our solutions suspend a lot. However, both
our solutions consistently outperform these unfair primitives by up to 10× times when at least 8
elements are shared, showing the same or better performance when the number of threads does
not exceed the number of elements.

6.5 Abortability Support

Up to this point, we have primarily focused on situations where suspended requests do not get
aborted. While cancellation performance might not always be crucial, as it typically occurs due to a
more resource-intensive coroutine or thread interruption, removing aborted waiters from the queue
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in constant time remains essential. This is particularly true for coroutines, where thousands may
be waiting on a mutex or semaphore. The CQS framework ful�lls this need by physically removing
aborted threads in $ (1) under no contention. In contrast, Java’s AbstractQueuedSynchronizer
takes linear time in the queue size to remove an interrupted thread.

Fig. 9. Comparison of CQS’ and Java’s Abstrac-

tQueuedSynchronizer cancellation mechanisms.
Lower is be�er.

To assess the practical impact of constant-
time cancellation, we conducted a benchmark
comparison between CQS (with both SIMPLE

and SMART cancellation modes) and Abstrac-

tQueuedSynchronizer. Initially, we populate
the synchronization framework with a speci�ed
number of suspended threads. After that, we
measure the time required to suspend and in-
stantly abort, without parking the native thread.
Based on the initial queue size, we anticipate
that the performance of Java’s solution will de-
grade, while CQS should consistently deliver
the same level of performance. Figure 9 displays
the results, which con�rm our hypothesis. In particular, CQS outperforms Java’s solution by 1.9x

on an empty queue, and by 65x when the queue contains 1000 waiters.
Regrettably, it is not feasible to compare the cancellation mechanisms of CQS and Abstrac-

tQueuedSynchronizer under concurrent conditions at the time of writing the paper. The reason
is that the latter gets into a deadlock in its internal cleanQueue() function.

7 RELATED WORK

Our work is part of a wider e�ort of formalizing and implementing expressive, safe, and e�cient
support for asynchronous operations in modern programming languages [Bierman et al. 2012;
Cutner and Yoshida 2021; Haller and Miller 2019; Okur et al. 2014; Prokopec and Liu 2018]. In
this context, we provide contributions at the level of algorithms, semantics, and formal proofs,
with Kotlin/JVM as a practical application. Speci�cally, we perform one of the �rst thorough
explorations of how fairness and abortability semantics can be e�ciently supported at the data
structure level, and present one of the �rst formally-veri�ed such designs for this type of data
structure. Importantly, our approach enables high-performance implementations in a range of
practical applications, and could serve as a basis for standard library implementations in modern
languages.
We emphasize that few real-world implementations of similar complexity are formally veri-

�ed [Chajed et al. 2021; Jung et al. 2017; Krishna et al. 2020; Krogh-Jespersen et al. 2016; Vindum
and Birkedal 2021]. In line with prior work, we do not formally prove full linearizability, which is
notoriously di�cult to approach in Iris but can be demonstrated through classical proofs. There are
successful linearizability proofs of data structures of comparable complexity using the approach
of contextual re�nement [Vindum and Birkedal 2021; Vindum et al. 2022] using the ReLoC proof
framework. Iris itself permits making speci�cations logically atomic, which can also represent
linearizability [authors 2022]. We �nd this approach much less applicable to ensuring linearizability
of a framework, which depends heavily on the behavior of the code passed to it.

At the algorithmic level, our CQS implementation builds on ideas from both the classic Michael-
Scott queue [Michael and Scott 1996] and the highly-e�cient LCRQ queue design of Afek and
Morrison [Morrison and Afek 2013]. The latter was also used by Izraelevitz and Scott [Izraelevitz and
Scott 2017] to build blocking synchronous queues, and by Koval et al. [Koval et al. 2019, 2023a] to
build channels. Relative to these latter modern works, CQS supports much more general semantics,
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requiring signi�cant changes to the design, in particular, to support cancellations. Speci�cally,
CQS is general enough to provide full support for coroutines, while staying �exible and e�cient,
whereas these prior design focus on narrower applications, such as blocking queues.

To our knowledge, the only abstraction that provides similarly-general semantics is the Abstrac-
tQueuedSynchronizer in Java [Lea 2005], which CQS outperforms by awidemargin due to superior
algorithmic design, complemented by formal proofs. More precisely, the AbstractQueuedSynchro-
nizer framework combines the classic CLH [Magnusson et al. 1994] lock algorithm to maintain
the queue of suspended requests with an integer counter, which represents the synchronization
primitive state and is updated by CAS operations. In contrast, the CQS enables more e�cient state
updates via Fetch-And-Add-s, also maintaining the queue of waiters with FAA-s on the contended
path; thus, providing a more scalable solution.

8 DISCUSSION

We have presented a new CancellableQueueSynchronizer framework enabling e�cient imple-
mentations for a whole range of fundamental synchronization primitives in a fair and abortable
manner. We observed that the interplay between fairness and cancellation semantics can raise
subtle semantic and correctness questions. We found formalization extremely useful when identi-
fying correctness issues in our implementation, notably w.r.t. cancellation semantics. A practical
consequence of our work is e�cient support for such primitives in the context of Kotlin Coroutines,
which we show to generally outperform existing designs o�ering similar semantics in a wide range
of scenarios. Speci�cally, our algorithms on top of CQS outperform existing Java implementations
in almost all scenarios and can be faster by orders of magnitude. Surprisingly, the CQS-based
primitives frequently surpass even the unfair versions of primitives from the standard Java library
in our experiments, thanks to the superior scalability of our design.

We believe that CQS could serve as a basis for more complex semantics, designs, and primitives
(e.g., fair readers-writer locks and synchronous queues), enabling e�cient synchronization not
only for Kotlin Coroutines but for other languages and platforms as well, such as C++, Rust, and
Go. We plan to investigate this in future work, along with proof extensions to the release-acquire
memory model semantics [Kaiser et al. 2017].
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