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Type soundness, which asserts that “well-typed programs cannot go wrong”, is widely viewed as the canonical

theorem one must prove to establish that a type system is doing its job. It is commonly proved using the

so-called syntactic approach (aka progress and preservation), which has had a huge impact on the study and

teaching of programming language foundations. Unfortunately, syntactic type soundness is a rather weak

theorem. It only applies to programs that are well-typed in their entirety, and thus tells us nothing about the

many programs written in “safe” languages that make use of “unsafe” language features. Even worse, it tells

us nothing about whether type systems achieve one of their main goals: enforcement of data abstraction. One

can easily define a language that enjoys syntactic type soundness and yet fails to support even the most basic

modular reasoning principles for abstraction mechanisms like closures, objects, and abstract data types.

Given these concerns, we argue that programming languages researchers should no longer be satisfied with

proving syntactic type soundness, and should instead start proving semantic type soundness, a more useful

theorem which captures more accurately what type systems are actually good for. Semantic type soundness is

an old idea—Milner’s original account of type soundness from 1978 was semantic—but it fell out of favor in the

1990s due to limitations and complexities of denotational models. In the succeeding decades, thanks to a series

of technical advances—notably, step-indexed Kripke logical relations constructed over operational semantics,

and higher-order concurrent separation logic as consolidated in the Iris framework in Coq—we can now build

(machine-checked) semantic soundness proofs at a much higher level of abstraction than was previously

possible.

The resulting “logical” approach to semantic type soundness has already been employed to great effect in a

number of recent papers, but those papers typically (a) concern advanced problem scenarios that complicate

the presentation, (b) assume significant prior knowledge of the reader, and (c) suppress many details of the

proofs. Here, we aim to provide a gentler, more pedagogically motivated introduction to logical type soundness,

targeted at a broader audience that may or may not be familiar with logical relations and Iris. As a bonus, we

also show how logical type soundness proofs can be easily generalized to establish an even stronger relational
property—representation independence—for realistic type systems.

Type structure is a syntactic discipline for enforcing levels of abstraction.

– Reynolds [1983]

Although types and assertions may be semantically similar, the actual development of

type systems for programming languages has been quite separate from the development

of approaches to specification such as Hoare logic. . . the real question is whether the

dividing line between types and assertions can be erased. – Reynolds [2002]

This paper is dedicated to the memory of John C. Reynolds.

1 INTRODUCTION
The type soundness (or type safety) theorem for a programming language states that if a program in

that language passes the type checker, then it is guaranteed to have well-defined behavior when

executed. Introduced over 40 years ago by Milner [1978], type soundness has become the canonical

property that type systems for “safe” programming languages are expected to satisfy.
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In Milner’s original formulation for a 𝜆-calculus with ML-style polymorphism, type soundness

was characterized using denotational semantics. Ill-behaved programs were assigned a special

denotation “wrong”, and the type soundness theorem stated that well-typed programs could not

“go wrong” (i.e., have “wrong” as their denotation). However, it turned out to be difficult to scale

this methodology to richer type systems with features such as general recursive types, higher-order

mutable state, control operators, and concurrency.

Syntactic type soundness. Today, the most common formulation of type soundness is the so-

called “syntactic approach”, pioneered byWright and Felleisen [1994] and subsequently simplified by

Robert Harper into the two theorems known as “progress and preservation”.
1
Instead of employing

a “wrong” denotation, the syntactic approach characterizes undefined behavior operationally: a
program has undefined behavior if its execution under a small-step operational semantics “gets

stuck” (i.e., reaches a non-terminal state where there is no next step of execution to take). The

preservation theorem states that a program remains well-typed as it executes, and the progress

theorem states that a well-typed program is either in a terminal state or its next step of execution

is well-defined.
2
Together, these theorems imply that the execution of a well-typed program is

well-defined in the sense that it never gets stuck.

The syntactic approach to type soundness via progress and preservation is arguably one of the

“greatest hits” of programming languages research of the past three decades. In addition to being

conceptually simple, the approach scales easily to handle a wide range of programming language

features, and has been popularized effectively through the central organizing role it plays in the

textbooks of Pierce [2002] and Harper [2016]. As a result, it has become one of the most widely

known, widely taught, and widely applied formal methods in the entire area of programming

language foundations, with countless research papers on type systems concluding triumphantly

with a statement of progress and preservation.

The limitations of syntactic type soundness. Unfortunately, syntactic type soundness also
suffers from two significant limitations that are not (in our experience) widely recognized.

The first limitation pertains to data abstraction. One of the primary functions of the type systems

of many languages is to give programmers a way of enforcing data abstraction boundaries, so

that one can place invariants on the private data representations of modules, objects, abstract data

types, etc. and be sure that client code will not violate those invariants. However, syntactic type

soundness offers no guarantees about whether a programming language’s data abstraction facility

actually works—it is easy to prove syntactic soundness of a type system whose data abstraction

mechanism is completely broken.

The second limitation pertains to unsafe features. In practice, most “safe” languages provide

unsafe escape hatches—e.g., Obj.magic in OCaml, unsafePerformIO in Haskell, unsafe blocks in

Rust—which enable programmers to perform potentially unsafe operations (such as unchecked

type casts or array accesses) that the safe fragment of the language disallows. These unsafe escape

hatches have proven indispensable, both for functionality—when the language’s safe type system is

more restrictive than necessary—and for efficiency—when performance concerns demand the use

of a lower-level unsafe abstraction. However, syntactic type soundness has nothing to say about

programs that use unsafe features: it simply declares such programs out of scope.

1
According to Felleisen and Morrisett [personal communication, Nov. 2017], Harper is responsible for suggesting the

reorganization of syntactic type soundness using a progress theorem (and the associated “canonical forms” lemma), which

superseded Wright and Felleisen’s more complex analysis of “faulty” expressions. To our knowledge, this revised proof

structure was deployed for the first time in Morrisett et al. [1995]. See Harper [2016] for a more modern presentation.

2
In order to state these theorems, one must first generalize the notion of well-typed programs to a notion of well-typed

machine states, but this is typically straightforward.



A Logical Approach to Type Soundness 1:3

These two limitations are in fact closely connected, in that it is common to justify the “safe” use

of unsafe features by appeal to data abstraction. Specifically, programmers often argue informally

that their use of unsafe operations is harmless because said operations have been encapsulated
behind a “safe API”. That is, they argue that, thanks to the abstraction boundary of the API, the

implementation of the API can enforce invariants on its private data representation which ensure

that its use of unsafe features does not lead to any undefined behavior. But of course, to make this

reasoning formal, one needs to know whether the language is enforcing data abstraction properly,

precisely one of the issues on which syntactic type soundness is silent.

Together, these limitations suggest that syntactic type soundness does not provide a sufficient

foundation for judging whether a type system is really doing its job. One may then rightly wonder:

can we do any better? And we are here to say: yes, we can!

Logical type soundness. We propose an alternative to syntactic type soundness that overcomes

the aforementioned limitations, offering a flexible foundation for reasoning about data abstraction,

as well as the safe use of unsafe features. We call our approach logical type soundness. The essence
of logical type soundness is not new: it is the age-old idea of semantic type soundness, as exemplified

by the formulation in the original paper of Milner [1978]. Under the semantic soundness approach,

one defines a semantic model of types, which offers an extensional view of typing rather than an

intensional one. In other words, unlike syntactic typing, which dictates the syntactic structure

of well-typed terms, semantic typing merely places restrictions on their observable behavior.

Accordingly, it enables us to explain when a term behaves safely at a given type, even if the term

employs unsafe or low-level operations internally.

Although Milner built his semantic model over a denotational semantics, we follow more recent

approaches [Birkedal et al. 2011; Schwinghammer et al. 2013] and build ours over an operational

semantics. In particular, we are inspired by the work by Appel, Ahmed, and their collaborators

on the Foundational Proof-Carrying Code project [Appel and Felty 2000; Appel 2001; Appel and

McAllester 2001; Ahmed et al. 2002; Ahmed 2004; Ahmed et al. 2010], which demonstrated how to

scale semantic soundness to account for a wide variety of programming language features using

the powerful technique of step-indexed models.
The key point of difference between our approach and theirs is the level of abstraction at which

the semantic soundness proof is conducted. As we explain in detail in §4.3 (and as previously noted

by Appel et al. [2007] and Dreyer et al. [2011]), prior work that built semantic soundness proofs

directly using step-indexed models involved a great deal of explicit reasoning about step-indexing

and about the quasi-circular constructions that step-indexing served to disentangle. Such reasoning

quickly became very tedious, to the point that the high-level structure of a proof would often

become obscured if one were to write out all the low-level details.

In contrast, we show how to lift semantic soundness proofs to a much higher level of abstraction

by employing recent advances in higher-order concurrent separation logic [Svendsen et al. 2013;

Svendsen and Birkedal 2014]—hence the name “logical type soundness”. Specifically, we show how

by using the separation-logic framework Iris [Jung et al. 2015, 2016; Krebbers et al. 2017a; Jung et al.
2018b], we can formulate semantic soundness proofs—for feature-rich, realistic languages—in a clear

and concise manner, uncluttered by the low-level details of prior accounts. As a major added bonus,

Iris is implemented in the Coq proof assistant and provides effective tactic support for constructing

machine-checked logical type soundness proofs with relative ease [Krebbers et al. 2017b, 2018].

Type soundness expresses a property of a single program and hence it is sometimes referred

to as a unary property. It turns out that our logical approach to type soundness can be easily

adapted to support relational reasoning as well. Here, relational reasoning refers to properties

about pairs of programs, i.e., properties that are sometimes also referred to as binary properties. A
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particularly important example of such a binary property is representation independence [Reynolds
1974; Mitchell 1986]. Representation independence is a strong guarantee on the effectiveness of a

language’s data abstraction facility, even stronger than semantic soundness—it ensures that one

can change the internal data representation of an abstract data type (ADT )3 without affecting the

behavior of its clients. Yet similarly to semantic type soundness, prior state-of-the-art semantic

models for proving representation independence have typically been expressed directly in set

theory using explicit step-indexing, see e.g., Neis et al. [2009], Ahmed et al. [2009], Dreyer et al.

[2010, 2012], Thamsborg and Birkedal [2011], and Birkedal et al. [2012, 2013]. We demonstrate by

example how the advanced features of Iris can be used to formalize (machine-checked) proofs of

representation independence at a higher level of abstraction than was previously possible.

Goal of this paper. Over the last five years, many papers have demonstrated that the logical

approach to type soundness in Iris is eminently practical and scalable: among other things, it

has been used for a machine-checked proof of type soundness of a significant subset of the Rust

programming language [Jung et al. 2018a, 2021; Jung 2020; Dang et al. 2020], an extension of Scala’s

core type system DOT [Giarrusso et al. 2020], session types [Hinrichsen et al. 2021; Jacobs et al.

2024], and refinement types for the C programming language [Sammler et al. 2021]. Aside from

type soundness, the logical approach has also been used to prove robust safety [Swasey et al. 2017;

Sammler et al. 2020; Rao et al. 2023], various forms of representation independence and program

refinement [Krogh-Jespersen et al. 2017; Tassarotti et al. 2017; Timany et al. 2018; Timany and

Birkedal 2019; Frumin et al. 2018, 2021b; Jacobs et al. 2021], and various security properties [Frumin

et al. 2021a; Gregersen et al. 2021; Georges et al. 2021].

The aforementioned papers are driven by particular applications and thus use the logical approach

in sophisticated ways, typically in the context of a complicated programming language, type system,

or program property. As a consequence, those papers typically omit many details and presuppose

expert knowledge. Our goal here in this paper is instead pedagogical: we aim to make the general

technique of logical type soundness better known to a wider audience. Thus, we present it in the

context of a simple programming language with a fairly pedestrian set of features and without

assuming that the reader is already well-versed in separation logic and step-indexing. Our intention

is that this paper should be accessible to researchers and (under)graduate students who are familiar

with basic textbooks in programming language theory such as Pierce [2002] or Harper [2016].

A note about the proofs in this paper: Most of our proofs are carried out within the Iris logic. As

Iris is a modal and substructural logic, proofs in Iris are of a rather different (and likely unfamiliar)

nature compared with proofs in ordinary (higher-order) logic. Hence, we use proof trees to spell out

our Iris proofs in great detail, and to show exactly which proof rules are applied where. However,

we hasten to note that this is merely for formal clarity; in practice, when you are developing such

Iris proofs in Coq (as nearly all Iris users do), much of this explicit detail is kept implicit, since the

Iris Proof Mode [Krebbers et al. 2017b, 2018] keeps track of the Iris proof context and performs

many “boring” proof steps for you automatically. Though a presentation of the Iris Proof Mode

is beyond the scope of this paper, we refer the interested reader to the above-cited papers and

accompanying online tutorials (see §10) for further details.

Outline. In §2, we define a simple, representative, feature-rich programming language—with

higher-order state, recursive types, abstract types, and concurrency—which we will use throughout

the rest of the paper, and we sketch the syntactic type soundness result for it. In §3, we explain the

limitations of syntactic type soundness in more detail. In §4, we give a high-level description of

the logical approach to type soundness, and provide an extensive comparison of our approach to

3
The acronym ADT is sometimes used to mean “algebraic data type”, but in this paper we always mean “abstract data type”.
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prior work on semantic type soundness. In §5, we present the definition of a logical relation—the
core ingredient for proving logical type soundness in Iris—and in §6, we present the corresponding

proofs. In §7, we show how the logical approach allows us to reason about safe encapsulation of

unsafe features, and in §8, we extend the logical approach to support relational reasoning about

representation independence. The relevant features and proof rules of Iris are introduced along the

way in §5–§8. Finally, in §9, we discuss related work, and in §10 we conclude with a brief discussion

of recent work that has employed our logical approach to type soundness and relational reasoning.

Origin of this paper. The technical content of this paper is based in part on Krebbers et al.

[2017b, §6] and Timany [2018, Chapter 5]. Krebbers et al. [2017b, §6] provide a (2-page) case study

showing that Iris and the Iris Proof Mode can be used for the mechanization of both semantic

type soundness and representation independence proofs, and Chapter 5 of Timany [2018]’s PhD

thesis provides a more extensive description of this case study. The present paper can be seen as a

significant expansion of the above, explaining semantic type soundness from first principles in a

more didactic fashion, without requiring prior knowledge of Iris, and with motivating examples

drawn from Dreyer’s keynote talk at the POPL 2018 conference [Dreyer 2018].

2 THE LANGUAGE MYLANG AND ITS SYNTACTIC TYPE SOUNDNESS
We present the syntax and the semantics of our subject of study: the language MyLang—a call-by-
value 𝜆-calculus with impredicative polymorphism, iso-recursive types, higher-order state, and

fine-grained concurrency. We start by describing the syntax (§2.1), typing (§2.2), and operational

semantics (§2.3) of MyLang. Finally, we make the notion of type soundness formal (§2.4) and show

how it is proved using the standard syntactic approach (§2.5).

2.1 Syntax
We present the syntax of MyLang in two variations: static expressions 𝑒 ∈ Êxpr, and dynamic
expressions 𝑒 ∈ Expr. The idea behind this distinction is that the static syntax is used for writing

surface programs, but in order for these programs to be executed, they must first be transformed by

an erasure function | _ | : Êxpr→ Expr into dynamic programs. Since ultimately we would like to

prove the safety of programs that are not syntactically well-typed, throughout most of this paper

we will work with dynamic syntax. In particular, we will define the operational semantics (§2.3)

and our semantic type system (§4–§6) on the dynamic syntax. However, when presenting example

programs, we use the static syntax, since these programs are written by users of MyLang.4
The syntax of types, static expressions, and dynamic expressions is shown in Figure 1. We let

𝛼 range over Tvar, a countably infinite set of type variables, and let 𝑥 and 𝑓 range over Var, a
countably infinite set of term variables.

The static expressions of MyLang are in Church style, i.e., they include type annotations

(marked in red). The dynamic, Curry-style syntax of MyLang is obtained by simply erasing all

type annotations and by adding an additional literal ℓ ∈ Loc for memory locations. Locations only

appear in the dynamic syntax because the programmer is not permitted to write them directly in

the source program—they only get created dynamically during execution.

The ground types of MyLang are: the unit type 1, the type of Booleans 2, and the type of integers
Z. Basic type formers include products (𝐴 × 𝐵), sums (𝐴 + 𝐵), and function types (𝐴→ 𝐵). Types

4
In our dynamic expression language, the reader may notice that we leave in the “markers” of type abstractions (Λ. 𝑒) and
type instantiations (𝑒 ⟨⟩), and likewise for the existentially-typed constructs, even though the type arguments have been

erased. This is following the approach taken by Ahmed [2006]. It has the benefit, e.g., that the erasure of a type abstraction
remains a value—if instead the erasure of Λ𝛼. 𝑒 were simply the erasure of 𝑒 , this would not be the case. An alternative

approach would be to impose a value restriction [Wright 1995] on type abstractions—see Pitts [2005] for example.
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𝐴, 𝐵 ∈ Type ::= 𝛼 ∈ Tvar | 1 | 2 | Z | 𝐴 ×𝐴 | 𝐴 +𝐴 | 𝐴→ 𝐴 | ∀𝛼. 𝐴 | ∃𝛼. 𝐴 | 𝜇𝛼. 𝐴 | ref𝐴
⊚ ∈ BinOp ::= + | ∗ | − | < | =

𝑒 ∈ Êxpr ::= 𝑥 ∈ Var | rec 𝑓 (𝑥) = 𝑒 | 𝑒 𝑒 | Λ𝛼. 𝑒 | 𝑒 ⟨𝐴⟩ | (Polymorphic 𝜆-calculus)

() | 𝑛 ∈ Z | 𝑒 ⊚ 𝑒 | (Unit type and arithmetic)

true | false | if 𝑒 then 𝑒 else 𝑒 | (Booleans)

(𝑒, 𝑒) | 𝜋1 𝑒 | 𝜋2 𝑒 | (Products)

inj
1
𝑒 | inj

2
𝑒 | (match 𝑒 with inj

1
𝑥 ⇒ 𝑒1 | inj2

𝑥 ⇒ 𝑒2 end) | (Sums)

pack ⟨𝐵,𝑒⟩ : ∃𝛼. 𝐴 | match 𝑒 with pack ⟨𝛼,𝑥⟩ ⇒ 𝑒 end | (Existentials)

fold 𝑒 | unfold 𝑒 | (Iso-recursive types)

ref 𝑒 | ! 𝑒 | 𝑒 ← 𝑒 | CAS(𝑒, 𝑒, 𝑒) | FAA(𝑒, 𝑒) | (References)

fork {𝑒} (Concurrency)

𝑒 ∈ Expr ::= 𝑥 ∈ Var | rec 𝑓 (𝑥) = 𝑒 | 𝑒 𝑒 | Λ. 𝑒 | 𝑒 ⟨⟩ | (Polymorphic 𝜆-calculus)

() | 𝑛 ∈ Z | 𝑒 ⊚ 𝑒 | (Unit type and arithmetic)

true | false | if 𝑒 then 𝑒 else 𝑒 | (Booleans)

(𝑒, 𝑒) | 𝜋1 𝑒 | 𝜋2 𝑒 | (Products)

inj
1
𝑒 | inj

2
𝑒 | match 𝑒 with inj𝑖 𝑥 ⇒ 𝑒𝑖 end | (Sums)

pack⟨𝑒⟩ | match 𝑒 with pack⟨𝑥⟩ ⇒ 𝑒 end | (Existentials)

fold 𝑒 | unfold 𝑒 | (Iso-recursive types)

ℓ ∈ Loc | ref 𝑒 | ! 𝑒 | 𝑒 ← 𝑒 | CAS(𝑒, 𝑒, 𝑒) | FAA(𝑒, 𝑒) | (References)

fork {𝑒} (Concurrency)

Fig. 1. Syntax of MyLang: Types 𝐴, 𝐵, binary operators ⊚, static expressions 𝑒 , and dynamic expressions 𝑒 .

also include recursive types (𝜇𝛼. 𝐴), polymorphic types (∀𝛼. 𝐴), and existential types (∃𝛼. 𝐴), which
classify abstract data types (ADTs). The type ref𝐴 is the type of memory locations that store values

of type 𝐴.

Following Mitchell and Plotkin [1988], the expression pack ⟨𝐵,𝑒⟩ : ∃𝛼. 𝐴 represents an abstract

data type (ADT), i.e., an expression of existential type (∃𝛼. 𝐴), which “packs” the type “witness”

𝐵 (representing the abstract type 𝛼) together with the term 𝑒 (representing the operations on the

ADT of type 𝐴). The type witness is “abstract” in the sense that there is no way for clients of the

ADT to observe the implementation of 𝛼 as 𝐵. ADTs can be unpacked using a syntax similar to

ML-style pattern matching: match 𝑒1 with pack ⟨𝛼,𝑥⟩ ⇒ 𝑒2 end. Here, the term component of the

ADT 𝑒1 can be referred to as 𝑥 (and its type witness as 𝛼) within the scope of the expression 𝑒2.

Recursive types inMyLang are iso-recursive, meaning that explicit fold and unfold operations

are used to coerce an expression between a recursive type (𝜇𝛼. 𝐴) and its expansion (𝐴[𝜇𝛼. 𝐴/𝛼]).
For example, linked lists with elements of type 𝐵 are given by linkedlist 𝐵 ≜ 𝜇𝛼. ref (1+ (𝐵×𝛼)),
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where the sum + indicates that the list is either “nil” (i.e., 1) or a “cons” (i.e., 𝐵 × 𝛼).

𝜇𝛼. 𝐴 𝐴[𝜇𝛼. 𝐴/𝛼]

fold

unfold

linkedlist 𝐵 ref (1 + (𝐵 × linkedlist 𝐵))

fold

unfold

An alternative would be to support equi-recursive types, whereby a recursive type is equivalent to its
unrolling. We employ iso-recursive types in this paper merely for simplicity, to avoid a non-trivial

syntactic type equivalence relation. Concerning the logical approach to type soundness presented

later in the paper, the technical development could be adapted easily to handle equi-recursive types.

See Jung et al. [2018a] and Hinrichsen et al. [2021] for examples of such developments.

References can be allocated, read from, andwritten to using the ref 𝑒 , ! 𝑒 , and 𝑒1 ← 𝑒2 expressions,

respectively. The compare-and-set (CAS) and fetch-and-add (FAA) operations areMyLang primitives

for fine-grained concurrency. The expression CAS(𝑒1, 𝑒2, 𝑒3) evaluates the three subexpressions

to values v1, v2, and v3, where v1 must be a memory location ℓ ; it then atomically checks if the

value stored in memory at ℓ is equal to v2, and, if so, updates ℓ to store v3 instead; otherwise, it

does nothing. The expression FAA(𝑒1, 𝑒2) atomically increments the value stored in the location

described by 𝑒1 by the result of 𝑒2. The expression fork {𝑒} forks a new thread to execute 𝑒 and

then immediately returns () to the current thread.

Syntactic sugar. Non-recursive functions 𝜆 𝑥. 𝑒 are defined as rec _(𝑥) = 𝑒 , let-bindings let 𝑥 =

𝑒1 in 𝑒2 are defined as (𝜆 𝑥. 𝑒2) 𝑒1, and sequential composition 𝑒1; 𝑒2 is defined as let _ = 𝑒1 in 𝑒2.

Here, we use the underscore _ to denote an anonymous binder, which is not used in the body of

the binding expression.

2.2 Typing
We write Γ ⊢ 𝑒 : 𝐴 for the syntactic typing judgment, which expresses that the expression 𝑒 has the

type 𝐴 under the typing context Γ. The typing context Γ is a list of the form 𝑥1 : 𝐴1, · · · , 𝑥𝑛 : 𝐴𝑛 ,

which associates free variables (that may appear in 𝑒) to their types. The empty typing context is

denoted by ∅.
The syntactic typing rules of MyLang are displayed in Figure 2. We adopt Barendregt’s variable

convention [Barendregt 1985], which means that in typing rules we assume that bound variables

in expressions or types are “fresh”—i.e., they do not conflict with any other variables in scope.

Accordingly, our typing judgment Γ ⊢ 𝑒 : 𝐴 does not keep track of the free type variables in Γ and

𝐴 (e.g., through an additional context Δ ⊆ Tvar) and leaves conditions on freshness of variables

implicit (e.g., in T-tlam). Such conditions are also absent in our Coq mechanization because there

we use de Bruijn indices [de Bruijn 1972] to handle variable binding.

The typing rule T-CAS for the CAS operation has the side-condition EqType(𝐴), which ensures

that a CAS can only be performed on word-sized data types. The rules for the EqType predicate are
also displayed in Figure 2. The typing rule T-Binop for a binary operator ⊚ has the side-condition

⊚ : 𝐴1 ×𝐴2 ⇒ 𝐵, which expresses that the operator, when supplied with arguments of type 𝐴1 and

𝐴2, produces a result of type 𝐵. The rules are ⊚ : Z×Z⇒ Z for ⊚ ∈ {+, ∗,−}, and (<) : Z×Z⇒ 2,
and (=) : 𝐴 ×𝐴⇒ 2 for EqType(𝐴).
We also define a typing judgment Γ ⊢ 𝑒 : 𝐴 on dynamic expressions analogously to the typing

judgment for static expressions. We omit the definition here for brevity; it can be derived from

the typing judgment for static expressions by simply removing all the red text from Figure 2 and

replacing all the 𝑒’s with 𝑒’s. It is then straightforward to show that Γ ⊢ 𝑒 : 𝐴 if and only if there

exists a static expression 𝑒 such that | 𝑒 | = 𝑒 and Γ ⊢ 𝑒 : 𝐴.
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T-var

𝑥 : 𝐴 ∈ Γ
Γ ⊢ 𝑥 : 𝐴

T-unit

Γ ⊢ () : 1

T-bool

𝑏 ∈ {true, false}
Γ ⊢ 𝑏 : 2

T-int

𝑛 ∈ Z
Γ ⊢ 𝑛 : Z

T-Binop

Γ ⊢ 𝑒1 : 𝐴1 Γ ⊢ 𝑒2 : 𝐴2 ⊚ : 𝐴1 ×𝐴2 ⇒ 𝐵

Γ ⊢ 𝑒1 ⊚ 𝑒2 : 𝐵

T-rec

Γ, 𝑥 : 𝐴, 𝑓 : 𝐴→ 𝐵 ⊢ 𝑒 : 𝐵

Γ ⊢ rec 𝑓 (𝑥) = 𝑒 : 𝐴→ 𝐵

T-app

Γ ⊢ 𝑒1 : 𝐴→ 𝐵 Γ ⊢ 𝑒2 : 𝐴

Γ ⊢ 𝑒1 𝑒2 : 𝐵

T-tlam

Γ ⊢ 𝑒 : 𝐴

Γ ⊢ Λ𝛼. 𝑒 : ∀𝛼. 𝐴

T-tapp

Γ ⊢ 𝑒 : ∀𝛼. 𝐴
Γ ⊢ 𝑒 ⟨𝐵⟩ : 𝐴[𝐵/𝛼]

T-if

Γ ⊢ 𝑒 : 2 Γ ⊢ 𝑒1 : 𝐵 Γ ⊢ 𝑒2 : 𝐵

Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝐵

T-pair

Γ ⊢ 𝑒1 : 𝐴1 Γ ⊢ 𝑒2 : 𝐴2

Γ ⊢ (𝑒1, 𝑒2) : 𝐴1 ×𝐴2

T-proj

Γ ⊢ 𝑒 : 𝐴1 ×𝐴2 𝑖 ∈ {1, 2}
Γ ⊢ 𝜋𝑖 𝑒 : 𝐴𝑖

T-inj

Γ ⊢ 𝑒 : 𝐴𝑖 𝑖 ∈ {1, 2}
Γ ⊢ inj𝑖 𝑒 : 𝐴1 +𝐴2

T-match-sum

Γ ⊢ 𝑒 : 𝐴1 +𝐴2 ∀𝑖 ∈ {1, 2} . Γ, 𝑥 : 𝐴𝑖 ⊢ 𝑒𝑖 : 𝐵

Γ ⊢ match 𝑒 with inj
1
𝑥 ⇒ 𝑒1 | inj2

𝑥 ⇒ 𝑒2 end : 𝐵

T-pack

Γ ⊢ 𝑒 : 𝐴[𝐵/𝛼]
Γ ⊢ pack ⟨𝐵,𝑒⟩ : ∃𝛼. 𝐴 : ∃𝛼. 𝐴

T-match-ex

Γ ⊢ 𝑒 : ∃𝛼. 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑒2 : 𝐵

Γ ⊢ match 𝑒 with pack ⟨𝛼,𝑥⟩ ⇒ 𝑒2 end : 𝐵

T-fold

Γ ⊢ 𝑒 : 𝐴[𝜇𝛼. 𝐴/𝛼]
Γ ⊢ fold 𝑒 : 𝜇𝛼. 𝐴

T-unfold

Γ ⊢ 𝑒 : 𝜇𝛼. 𝐴

Γ ⊢ unfold 𝑒 : 𝐴[𝜇𝛼. 𝐴/𝛼]

T-alloc

Γ ⊢ 𝑒 : 𝐴

Γ ⊢ ref 𝑒 : ref𝐴

T-load

Γ ⊢ 𝑒 : ref𝐴

Γ ⊢ ! 𝑒 : 𝐴

T-store

Γ ⊢ 𝑒1 : ref𝐴 Γ ⊢ 𝑒2 : 𝐴

Γ ⊢ 𝑒1 ← 𝑒2 : 1

T-CAS

Γ ⊢ 𝑒1 : ref𝐴 Γ ⊢ 𝑒2 : 𝐴 Γ ⊢ 𝑒3 : 𝐴 EqType(𝐴)
Γ ⊢ CAS(𝑒1, 𝑒2, 𝑒3) : 2

T-faa

Γ ⊢ 𝑒1 : ref Z Γ ⊢ 𝑒2 : Z

Γ ⊢ FAA(𝑒1, 𝑒2) : Z

T-fork

Γ ⊢ 𝑒 : 𝐴

Γ ⊢ fork {𝑒} : 1

EqTyp-unit

EqType(1)
EqTyp-bool

EqType(2)
EqTyp-int

EqType(Z)
EqTyp-ref

EqType(ref𝐴)

Fig. 2. Typing rules of MyLang.
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2.3 Operational Semantics
To define the operational semantics of MyLang, we first define values, states, and evaluation contexts
as shown in Figure 3. These definitions are mostly standard. The states 𝜎 ∈ State of MyLang
are heaps, which we model as partial functions with finite support from memory locations to

values. Evaluation contexts 𝐾 ∈ Ctx are used to define a left-to-right call-by-value (CBV) evaluation
strategy forMyLang.

With these notions in hand, we define the small-step operational semantics of MyLang in three

stages:

(1) We first define a base reduction relation, (𝜎, 𝑒) →b (𝜎 ′, 𝑒′), which describes how 𝑒 reduces

under initial state 𝜎 to a new 𝑒′ and (possibly) updated state 𝜎 ′. This definition of the base

reduction relation makes use of the auxiliary pure reduction relation 𝑒 →pure 𝑒
′
to handle state-

independent reductions. The rules are shown in Figure 3. The function J⊚K : Val × Val ⇀ Val
assigns a denotation to each binary operator⊚. This function is partial to account for operators
that are applied wrongly, e.g., 10 J+K true is undefined. We write ⊎ for the disjoint union

operation on heaps.

(2) Following Felleisen and Hieb [1992], we use evaluation contexts to lift the base reduction

relation to a thread-local reduction relation (𝜎, 𝑒) →t (𝜎 ′, 𝑒′).
(3) Finally, the thread-pool reduction relation (𝜎, #»𝑒 ) →tp (𝜎 ′,

#»

𝑒′) for our programs is a relation

defined on machine states, i.e., pairs of a state and a thread pool (represented as a sequence of
expressions

#»𝑒 executing in different threads). The thread-pool reduction relation expresses

that a machine state reduces by picking an arbitrary thread and either making a thread-local

reduction step in that expression or else executing a fork and spawning a new thread.

2.4 Type Soundness
A programming language is type-sound (or type-safe) if every closed well-typed expression is safe

(i.e., has well-defined behavior). To define this formally, we first give some auxiliary definitions:

• We say that a machine state (𝜎, #»𝑒 ) is progressive, written progressive(𝜎, #»𝑒 ), if any thread in

that state is either a value (i.e., it has finished executing), or it is reducible (i.e., it can make at

least one further step of computation):

progressive(𝜎, (𝑒1; . . . ; 𝑒𝑛)) ≜ ∀𝑖 ∈ {1, . . . , 𝑛}. (𝑒𝑖 ∈ Val ∨ red(𝜎, 𝑒𝑖 ))
red(𝜎, 𝑒) ≜ (∃𝜎 ′, 𝑒′ . (𝜎, 𝑒) →t (𝜎 ′, 𝑒′)) ∨ (∃𝐾, 𝑒′ . 𝑒 = 𝐾 [fork {𝑒′} ])

• We then say that a closed expression 𝑒 , representing a complete program, is safe, written
safe(𝑒), if any machine state reachable by evaluating 𝑒 for any number of steps is progressive:

safe(𝑒) ≜ ∀𝜎2,
#»𝑒2 . (∅, 𝑒) →∗tp (𝜎2,

#»𝑒2) ⇒ progressive(𝜎2,
#»𝑒2)

Now we can formally define type soundness as:

(∅ ⊢ 𝑒 : 𝐴) implies safe(𝑒)

2.5 Syntactic Type Soundness via Progress and Preservation
The syntactic approach to proving type soundness involves two key theorems:

(1) Progress (Theorem 2.1).Well-typed machine states are progressive.

(2) Preservation (Theorem 2.2). Reduction preserves well-typedness of machine states.

These theorems rely on a notion of a well-typed machine state (𝜎, #»𝑒 ), which intuitively expresses

that each value in the heap 𝜎 is well-typed and each expression in the thread-pool
#»𝑒 is well-typed.

To formalize this notion, we need to account for location literals ℓ . While location literals do not
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Values, states, and evaluation contexts:

v ∈ Val ::= rec 𝑓 (𝑥) = 𝑒 | Λ. 𝑒 | () | 𝑛 | true | false |
(v,v) | inj

1
v | inj

2
v | pack⟨v⟩ | foldv | ℓ ∈ Loc

𝜎 ∈ State ≜ Loc ⇀fin Val

𝐾 ∈ Ctx ::= [ ] | 𝐾 𝑒 | v 𝐾 | 𝐾 ⟨⟩ | 𝐾 ⊚ 𝑒 | v ⊚ 𝐾 | if𝐾 then 𝑒 else 𝑒

(𝐾, 𝑒) | (v, 𝐾) | 𝜋1 𝐾 | 𝜋2 𝐾 |
inj

1
𝐾 | inj

2
𝐾 | (match𝐾 with inj

1
𝑥 ⇒ 𝑒1 | inj2

𝑥 ⇒ 𝑒2 end) |
pack⟨𝐾⟩ | match𝐾 with pack⟨𝑥⟩ ⇒ 𝑒 end |
fold𝐾 | unfold𝐾 |
ref𝐾 | !𝐾 | 𝐾 ← 𝑒 | v ← 𝐾 |
CAS(𝐾, 𝑒, 𝑒) | CAS(v, 𝐾, 𝑒) | CAS(v,v, 𝐾) |
FAA(𝐾, 𝑒) | FAA(v, 𝐾)

Pure reduction:

(rec 𝑓 (𝑥) = 𝑒) v →pure 𝑒 [v/𝑥] [rec 𝑓 (𝑥) = 𝑒/𝑓 ]
(Λ. 𝑒)⟨⟩ →pure 𝑒

v1 ⊚ v2 →pure v1 J⊚K v2

if true then 𝑒1 else 𝑒2 →pure 𝑒1

if false then 𝑒1 else 𝑒2 →pure 𝑒2

𝜋𝑖 (v1,v2) →pure v𝑖 (if 𝑖 ∈ {1, 2})
match inj𝑖 v with inj1

𝑥 ⇒ 𝑒1 | inj2
𝑥 ⇒ 𝑒2 end→pure 𝑒𝑖 [v/𝑥] (if 𝑖 ∈ {1, 2})

match pack⟨v⟩ with pack⟨𝑥⟩ ⇒ 𝑒 end→pure 𝑒 [v/𝑥]
unfold (foldv) →pure v

Base reduction:

(𝜎, 𝑒1) →b (𝜎, 𝑒2) (if 𝑒1 →pure 𝑒2)

(𝜎, refv) →b (𝜎 ⊎ {(ℓ,v)}, ℓ) (if ℓ ∉ dom(𝜎))
(𝜎, ! ℓ) →b (𝜎,v) (if (ℓ,v) ∈ 𝜎)

(𝜎 ⊎ {(ℓ,v)} , ℓ ←w) →b (𝜎 ⊎ {(ℓ,w)} , ())
(𝜎 ⊎ {(ℓ,v)} , CAS(ℓ,v, 𝑢)) →b (𝜎 ⊎ {(ℓ,𝑢)} , true)
(𝜎 ⊎ {(ℓ,v)} , CAS(ℓ,w, 𝑢)) →b (𝜎 ⊎ {(ℓ,v)} , false) (if v ≠w)

(𝜎 ⊎ {(ℓ, 𝑛)} , FAA(ℓ,𝑚)) →b (𝜎 ⊎ {(ℓ, 𝑛 +𝑚)} , 𝑛)

Thread-local and thread-pool reduction:

(𝜎, 𝑒) →b (𝜎 ′, 𝑒′)
(𝜎, 𝐾 [𝑒]) →t (𝜎 ′, 𝐾 [𝑒′])

(𝜎, 𝑒) →t (𝜎 ′, 𝑒′)
(𝜎, ( #»𝑒1 ; 𝑒; #»𝑒2)) →tp (𝜎 ′, ( #»𝑒1 ; 𝑒′; #»𝑒2))

(𝜎, ( #»𝑒1 ;𝐾 [fork {𝑒} ]; #»𝑒2)) →tp (𝜎, ( #»𝑒1 ;𝐾 [()]; #»𝑒2 ; 𝑒))

Fig. 3. Operational semantics of MyLang.
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appear in static expressions, they may appear in runtime expressions and values during reduction

(when memory cells are allocated), and their types need to match up with the types of values in

the heap 𝜎 . We thus define a generalized typing judgment, written Σ; Γ ⊢ 𝑒 : 𝐴, which extends the

typing judgment Γ ⊢ 𝑒 : 𝐴 with a heap typing Σ : Loc ⇀fin Type. A heap typing is a partial function

with finite support that assigns a closed type to each location. The essential rule of the generalized

typing judgment is the one for location literals:

DT-loc

Σ(ℓ) = 𝐴
Σ; Γ ⊢ ℓ : ref𝐴

In all rules but DT-loc above, the heap typing is simply threaded through. For example, the rules

for function application and allocation become:

DT-app

Σ; Γ ⊢ 𝑒1 : 𝐴→ 𝐵 Σ; Γ ⊢ 𝑒2 : 𝐴

Σ; Γ ⊢ 𝑒1 𝑒2 : 𝐵

DT-alloc

Σ; Γ ⊢ 𝑒 : 𝐴

Σ; Γ ⊢ ref 𝑒 : ref𝐴

We can now define the notion of well-typed machine states with the judgment Σ ⊢MS (𝜎, #»𝑒 ) :

#»
𝐴 :

dom(Σ) = dom(𝜎) length( #»𝑒 ) = length( #»
𝐴 )

∀ℓ ∈ dom(Σ). Σ; ∅ ⊢ 𝜎 (ℓ) : Σ(ℓ) ∀𝑖 < length( #»𝑒 ). Σ; ∅ ⊢ 𝑒𝑖 : 𝐴𝑖

Σ ⊢MS (𝜎, #»𝑒 ) :

#»
𝐴

This judgment says that each value 𝜎 (ℓ) in 𝜎 has the corresponding type Σ(ℓ) from the heap typing

Σ, and that, under Σ, each expression 𝑒𝑖 in
#»𝑒 has the corresponding type 𝐴𝑖 from the list

#»
𝐴 .

Theorem 2.1 (Progress). Every machine state (𝜎, #»𝑒 ) that is typed for some heap environment Σ
is safe. Formally, if Σ ⊢MS (𝜎, #»𝑒 ) :

#»
𝐴 , then progressive(𝜎, #»𝑒 ).

Theorem 2.2 (Preservation). Typing of machine states is preserved by the reduction relation→tp.
Formally, if Σ ⊢MS (𝜎, #»𝑒 ) :

#»
𝐴 and (𝜎, #»𝑒 ) →tp (𝜎 ′,

#»

𝑒′), then there exists an extended heap typing
Σ′ ⊇ Σ and an extended list of thread types

#»
𝐴 ′ ⊇prefix

#»
𝐴 such that Σ′ ⊢MS (𝜎 ′,

#»

𝑒′) :

#»
𝐴 ′.

Progress and preservation are typically proven by induction and straightforward case analysis

on the given typing and reduction derivations. The proofs involve some easy helper lemmas related

to substitution and weakening w.r.t. extension of the heap typing, as well as (in some variations)

lemmas for decomposing a well-typed term into a well-typed evaluation context and a well-typed

redex. The interested reader can find a detailed account of the proofs in the course lecture notes of

Dreyer et al. [2022]. For present purposes, what is important is that progress and preservation give

rise to the following result:

Corollary 2.3 (Syntactic type soundness). Every closed well-typed expression 𝑒 is safe. Formally,
if (∅ ⊢ 𝑒 : 𝐴), then safe(𝑒).

Proof. Assume that we have (∅ ⊢ 𝑒 : 𝐴) and that we are given a reduction (∅, 𝑒) →∗tp (𝜎2,
#»𝑒2).

Our goal is to prove progressive(𝜎2,
#»𝑒2).

By definition of the judgment for well-typed machine states, we obtain ∅ ⊢MS (∅, 𝑒) : 𝐴 from the

assumption (∅ ⊢ 𝑒 : 𝐴). By repeatedly using preservation (Theorem 2.2) for each reduction step in

(∅, 𝑒) →∗tp (𝜎2,
#»𝑒2), we obtain Σ ⊢MS (𝜎2,

#»𝑒2) :

#»
𝐴 ′ for some Σ and

#»
𝐴 ′. By progress (Theorem 2.1),

we obtain progressive(𝜎2,
#»𝑒2), which concludes the proof. □



1:12 Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal

3 LIMITATIONS OF SYNTACTIC TYPE SOUNDNESS
Now that we have reviewed a typical formulation of syntactic type soundness, we are in a position

to expound our criticisms of it:

(1) It says nothing about whether a programming language enforces data abstraction (§3.1).

(2) It says nothing about programs that use unsafe features in a safely encapsulated way (§3.2).

3.1 Data Abstraction
Consider the following type symbol_type, which describes an (extremely simplified) interface of

an abstract data type (ADT) of symbols:

symbol_type ≜ ∃𝛼. (1→ 𝛼) × (𝛼 → 2)

Following Mitchell and Plotkin [1988], we model the type of an ADT using an existential type.5 Here,
the existential type describes the interface of an ADT that exports an abstract type 𝛼 representing

“symbols”, along with two operations: a gensym function of type 1→ 𝛼 with which one can generate

fresh symbols, and a check function of type 𝛼 → 2 which one can use to check if a symbol is valid.

This interface is obviously not very useful in the stripped-down form presented here, but it gives

the flavor of the interface one often sees for symbol tables in compilers and will suffice to get across

our point about syntactic type soundness.

Now, consider the implementation symbol of the symbol_type interface:

symbol ≜ let 𝑐 = ref 0 in

pack

〈
Z,

(
𝜆 (). FAA(𝑐, 1),
𝜆 𝑠. 𝑠 < ! 𝑐

)〉
: symbol_type

This implementation employs a private integer counter 𝑐 , which is allocated when the expression

defining symbol is evaluated. The counter 𝑐 is used as a perpetual source of fresh symbols. When

the gensym function (the first closure returned by symbol) is called, it uses fetch-and-add (FAA) to
atomically increment the value of 𝑐 and return the previous value. Thus, when called repeatedly,

gensym will return 0, 1, 2, etc. The check function (the second closure returned by symbol) checks
validity of its symbol argument by checking that it is less than the current value of the counter.

It is easy to argue by appeal to intuitive reasoning that the check function returned by symbol
must always return true. To see this, we first observe that the only values of the abstract type

symbol (i.e., 𝛼) that can ever be generated are those returned by the gensym function. However,

whenever such a value is returned by gensym, it is at that instant one less than the current value of

the counter 𝑐 . Furthermore, the value of the counter only increases over time. Put together, these

imply that, at all times, all values of type symbol are always less than the current value of the

counter, so check applied to a value of type symbol should always return true.
This is the kind of informal reasoning about program correctness that programmers employ all

the time. Crucially, though, it relies on the assumption that the programming language properly

enforces two forms of data abstraction: private state (via closures) and abstract types. To enforce

the invariant that the value of the counter 𝑐 only increases over time, it is essential that the only

way to modify 𝑐 is by applying one of the closures returned by symbol—i.e., that 𝑐 is maintained as

private state of those closures. Otherwise, clients could update 𝑐 willy-nilly, and thus break the

invariant. To enforce the invariant that the only values of the symbol type are the ones produced

by calls to the gensym function, it is essential that the representation of the symbol type as Z be

5
See Rossberg et al. [2014] for an explanation of how existential types provide a foundation for understanding and formally

modeling much more complex data abstraction facilities, such as those of the ML module system [MacQueen 1984].
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held abstract from clients. Otherwise, clients could take an arbitrary integer and “forge” a value of

type symbol from it, which could cause the check function to return false.
Fortunately, the languageMyLang does properly enforce data abstraction, so the above informal

reasoning is in fact valid. Unfortunately, proper treatment of data abstraction is not in any way

a consequence of syntactic type soundness. To demonstrate this point, we will extendMyLang
with a new and rather devious feature that we call, for lack of a better name, gremlin. This new
feature has the property that on the one hand it is “harmless” in that it preserves the syntactic type

soundness of MyLang, but on the other hand it completely breaks the language’s support for data

abstraction and hence the ability to reason modularly about MyLang code.

The static and dynamic semantics of gremlin are as follows:

Γ ⊢ gremlin : 1

(𝜎, gremlin) →b (𝜎, ()) (𝜎 ⊎ {(ℓ, 𝑛)} , gremlin) →b (𝜎 ⊎ {(ℓ, 0)} , ())

In short, gremlin is an expression of type 1, and its execution non-deterministically proceeds in

one of two ways. Either it is simply a no-op, or else it non-deterministically selects some memory

location ℓ currently storing an integer value 𝑛, and it updates ℓ to store 0.

As far as syntactic type soundness is concerned, gremlin is almost trivially a “safe” operator. First,

the no-op evaluation rule ensures that gremlin can always make progress. Second, if gremlin does
have an effect, it is merely to replace the integer value stored at some memory location with another

integer value (namely, 0), thus preserving syntactic well-typedness of the heap. Consequently, it is

easy to extend the syntactic soundness result from §2.5 to account for gremlin.
However, as should be intuitively clear, gremlin is a terrible feature because it destroys the

programmer’s ability to place invariants on the private state of their ADTs. To make this point

perfectly concrete, consider the following client of the symbol ADT:

evil_client ≜ match symbol with pack ⟨𝛼,𝑥⟩ ⇒
let gensym = 𝜋1 𝑥 in
let check = 𝜋2 𝑥 in
let 𝑠 = gensym () in
gremlin; check 𝑠

end

After unpacking the existential representing the ADT, the client first calls the gensym function to

create a fresh symbol value 𝑠 . It then invokes gremlin, and finally calls check on 𝑠 .
When this client is executed, the call to gensymwill have the effect of updating the ADT’s private

counter 𝑐 to 1, and returning the value 0 for 𝑠 . When gremlin is invoked, one possible behavior is

that the counter 𝑐 will be set back to 0. If that happens, the subsequent application of check to 𝑠
(i.e., to 0) will return false! The problem here, of course, is that with gremlin in the language, the

private state of the symbol ADT is no longer truly private since gremlin can modify it. As a result,

the programmer cannot depend on any invariants on the private counter being maintained.

Now gremlin may seem like a rather contrived operator, but it is actually just an absurdly

pointless variation of what is already supported, for example, by the Reflection API in Java. Using

reflection, one can inspect the private fields and methods of an arbitrary object and freely modify

its private state [Nasi 2011], thus achieving the same devastating effect on data abstraction as

gremlin does.

Fortunately, since version 9, Java has given programmers the choice of whether the private state

of their ADTs should be accessible via reflection from other ADTs. (Prior to Java 9, there was no

way to limit reflective access.) Consequently, we would really like to be able to prove some theorem
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about data abstraction in Java 9 that would not hold of prior versions of the language. But seeing as

reflection—like gremlin—is perfectly “type-safe” in the syntactic sense, syntactic type soundness

is not that theorem.

In summary, syntactic type soundness of a programming language tells us essentially nothing

about whether the language is sensible to program in.

3.2 Safe Encapsulation of Unsafe Features
As noted in the introduction, the price that “safe” programming languages pay for safety is that

they do not always allow the programmer to write the code they want to write. Consequently,

most such languages provide unsafe escape hatches by which programmers can circumvent the

restrictions of their type systems. For example, OCaml provides Obj.magic, an unchecked type cast

operator. Haskell provides unsafeCoerce (similar to Obj.magic), unsafePerformIO (for escaping

the IO monad), and more. Rust provides a whole host of low-level C-style operations, although

uses of them must be confined to blocks of code explicitly marked unsafe. These unsafe escape
hatches are widely used and depended upon in real-world applications.

Of course, given that these unsafe features are blatantly dangerous, programmers are advised to

only make use of them if “you know what you are doing”, and a major aspect of “knowing what

you are doing” is knowing how to use such features in a safely encapsulated way. That is, when

a programmer uses unsafe features in the implementation of some ADT (or module or object) M,
they typically rely on the data abstraction mechanisms of the programming language to enforce

invariants on the private state or data representation of M—invariants which imply that the local

uses of unsafe features within Mwill never lead to any undefined behavior for M’s clients. In this way,

one can see the data abstraction mechanisms of a language as their own saving grace: though the

restrictions they place on programmers sometimes necessitate the use of unsafe workarounds, it is

the data abstraction afforded by these mechanisms that make it possible to use those workarounds

“locally”—i.e., without breaking the safety guarantees of the language as a whole.

Hence, the ability to safely encapsulate uses of unsafe features is inextricably linked with

data abstraction: understanding whether a programming language supports one is tantamount to

understanding whether it supports the other. To drive this point home, let us explain how we can

recast the example of the symbol ADT from §3.1 in terms of safe encapsulation of unsafe features.

First, let us extend (the static and dynamic) syntax of MyLang with a new feature: assertions,
written assert 𝑒 . The dynamic semantics of assertion expressions is given as follows:

𝐾 ::= . . . | assert 𝐾 assert true→pure true

In words, assert 𝑒 will first evaluate 𝑒 to a valuev, and then return true iff v = true. Ifv evaluates
to anything else, assert 𝑒 will get stuck.6 Thus, in order for assert 𝑒 is a safe expression, 𝑒 must

never evaluate to any value other than true. However, seeing as there is no type inMyLang which

would ensure that 𝑒 satisfies this property, assert is an example of an unsafe feature.
Now consider the following, slightly revised implementation of the symbol ADT from §3.1 (the

changed code is underlined):

symbol ≜ let 𝑐 = ref 0 in

pack

〈
Z,

(
𝜆 () . FAA(𝑐, 1),
𝜆 𝑠. assert (𝑠 < ! 𝑐)

)〉
: symbol_type

Rather than simply returning the result of 𝑠 < ! 𝑐 , the check function now asserts it. Consequently,
check will now only be safe to execute (i.e., not get stuck) if the expression 𝑠 < ! 𝑐 indeed evaluates

6
One can in fact encode a primitive extremely similar to assert 𝑒 inMyLang without any extension, via the following

syntactic sugar: assert 𝑒 ≜ if 𝑒 then true else 42(42) .
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to true. As we have already mentioned in §3.1, MyLang’s support for data abstraction should
ensure that 𝑠 < ! 𝑐 does always evaluate to true in all well-typed contexts—or equivalently, that the

new symbol ADT has safely encapsulated the potentially unsafe behavior of the assert expression
in its body, so that no well-typed client of symbol will ever encounter undefined (stuck) behavior.

But syntactic type soundness—by restricting attention to syntactically well-typed programs—does

not offer us a means to prove this! In the next section, we will see a more powerful approach to

formalizing type soundness that does.

4 SEMANTIC TYPE SOUNDNESS
In this section, we explain how to overcome the limitations of syntactic type soundness (described

in §3) via the alternative approach of semantic type soundness. We begin with a brief high-level

explanation of how a semantic type soundness proof is structured (§4.1). We then discuss prior

approaches to semantic type soundness and the problems they suffer, which might explain why

such approaches have not been more widely adopted (§4.2 and §4.3). We conclude by explaining

how Iris addresses these problems, thus providing an ideal logical framework in which semantic

type soundness can be more effectively formalized (§4.4). The sections that follow (§5–§7) will then

present our logical approach to proving semantic type soundness in great detail.

4.1 High-Level Overview of Semantic Type Soundness
The central problem with syntactic type soundness is that it identifies “safe” with “syntactically

well-typed”. As a result, it is unable to account for the safety of code that uses potentially unsafe

features in a well-encapsulated way, such as the symbol example at the end of §3.2.

To overcome this problem, semantic type soundness models safety instead using a more liberal

view of well-typedness, which we call semantic typing and write as Γ ⊨ 𝑒 : 𝐴. The difference is that,

whereas syntactic typing is intensional (it dictates a fixed set of syntactic rules by which safe terms

can be constructed), semantic typing is extensional (it merely requires that terms behave in a safe

way when executed). For example, the symbol ADT from §3.2, though not syntactically well-typed

due to its use of the unsafe assert expression, will be shown to be semantically well-typed at

the type symbol_type, thus establishing that symbol is in fact safe to use at that type. Of course,

the price paid for this extensionality is that semantic typing is in general not a property that can

be checked algorithmically. Rather, proving that a term is semantically well-typed may require

arbitrarily interesting verification effort. But this is to be expected, given that the goal of semantic

soundness is to help establish that ADTs are properly maintaining their internal invariants, a task

which often amounts to proving full functional correctness of the code.

The high-level structure of a semantic type soundness proof is simple:

• Adequacy. First, we prove an adequacy theorem, which establishes that closed, semantically

well-typed terms are indeed safe to execute. Formally, this means that ∅ ⊨ 𝑒 : 𝐴 implies

safe(𝑒). This theorem is usually almost trivial to prove because, as explained above, it is

typically more or less baked into the extensional definition of semantic typing.

• Semantic typing rules. Second, and more interestingly, we prove semantic versions of

all the syntactic typing rules of the language, where the semantic version of a typing rule

simply replaces all the syntactic ⊢’s in it with semantic ⊨’s. For instance, concerning function
applications inMyLang, we will prove the following semantic typing rule as a lemma stating

that the premises imply the conclusion:

Γ ⊨ 𝑒1 : 𝐴→ 𝐵 Γ ⊨ 𝑒2 : 𝐴

Γ ⊨ 𝑒1 𝑒2 : 𝐵
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These semantic typing rules serve to demonstrate that semantic typing is compositional in

the same way that syntactic typing is.

One immediate consequence of the semantic typing rules is that syntactic typing implies semantic

typing, i.e., Γ ⊢ 𝑒 : 𝐴 implies Γ ⊨ 𝑒 : 𝐴. Historically, this property is often referred to as the

fundamental theorem or fundamental property. (It is provable by a straightforward induction

on syntactic typing derivations.) As a result, closed syntactically well-typed programs are also

semantically well-typed, and by adequacy, they must be safe to execute. In other words, once we
have proven semantic type soundness, syntactic type soundness falls out as a simple corollary.7

But the main reason we care about semantic type soundness is that it is a more useful result than

syntactic type soundness: it shows that we can safely compose syntactically well-typed pieces of a

program with other pieces that may be syntactically ill-typed (e.g., use unsafe features) so long as

those other pieces are semantically well-typed. For instance, once we prove that the symbol ADT
is semantically well-typed at the type symbol_type, we will be able to deduce that if symbol is

used within any syntactically (or semantically) well-typed program context 𝐶 , then the resulting

whole program 𝐶 [symbol] will be safe to execute—implying that the assertion inside symbol’s
check function will always succeed.

4.2 Prior Work on Semantic Type Soundness
As noted in the introduction, there is a great deal of prior work on semantic type soundness, dating

back to the original paper of Milner [1978], in which the idea of type soundness was introduced.

However, the approach has never really “taken off” as a method for proving type soundness of

more realistic languages in the same way that syntactic type soundness has. We now explain why

we believe this is so, as it helps to provide a clearer motivation for the “logical” formulation of type

soundness that is our main contribution.
8

Milner’s original semantic soundness proof for a core ML-like calculus, as well as subsequent

semantic soundness proofs for more expressive type systems with higher-order polymorphism,

recursive types, and subtyping—e.g., [MacQueen et al. 1986; Bruce and Mitchell 1992]—were formu-

lated using “realizability” models, in which types were interpreted as certain kinds of subsets or

partial equivalence relations over a domain-theoretic (i.e., denotational) model of untyped compu-

tation. Such models were also used to study parametricity and data abstraction, both for functional

languages with polymorphic types—e.g., [Bainbridge et al. 1990; Abadi and Plotkin 1990]—and for

imperative languages with local variables—e.g., [O’Hearn and Tennent 1992]. However, developing

denotational semantics for programming languages with higher-order state (i.e., general mutable

references to values of arbitrary type) turned out to be quite challenging. Indeed, despite the

ubiquity of higher-order state in programming languages for the past several decades, it was only

in the work of Birkedal et al. [2010b] that the realizability approach over domains was finally

extended to handle this feature.

In much of this work, it was understood implicitly that, due to the inherent compositionality of

denotational models, they could serve to establish the safety of combining syntactically well-typed

programs with syntactically unsafe, but semantically well-typed, programs (as we described in

7
Technically speaking, although semantic type soundness implies syntactic type soundness (Corollary 2.3)—i.e., that
syntactically well-typed programs are safe to execute—it does not imply Preservation (Theorem 2.2)—i.e., that syntactically
well-typed programs remain syntactically well-typed throughout execution. However, we would argue that for realistic

languages likeMyLang, the Preservation property is not independently that useful, as it relies on an essentially ad hoc
notion of typing on machine states.

8
The literature on semantics of type systems is voluminous, so this section should not be viewed as a comprehensive survey,

but rather a brief dive into the literature in order to suggest where existing approaches to semantic type soundness come up

short. See §9 for additional discussion.
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§4.1). But this capability was not commonly exploited or even remarked upon, perhaps because the

focus was on building semantic models of higher-order richly-typed 𝜆-calculi, not on modeling

realistic languages with low-level unsafe primitives (such as the language studied in the RustBelt

project [Jung et al. 2018a, 2021; Jung 2020; Dang et al. 2020]).

Unfortunately, this state of affairs has meant that, for realistic languages, Milner-style semantic

soundness based on denotational semantics has not offered a viable solution to the problem we

posed in the introduction. And for the more modest goal of simply proving well-defined behavior

for syntactically well-typed programs, progress and preservation has offered a more elementary

and broadly applicable technique.

In the 1980s and 1990s, there arose a related but distinct line of work on building semantic models

of typed languages over an operational semantics rather than a denotational one. In particular,

partial equivalence relations over operational semantics were used early on in seminal work on

the NuPRL type theory [Constable et al. 1986; Allen 1987]. This approach was further developed

to account for recursive types [Birkedal and Harper 1999], local state [Pitts and Stark 1998], and

the combination of recursive types and polymorphism [Crary and Harper 2007]. The approach

to recursive types in [Birkedal and Harper 1999; Crary and Harper 2007] employed a syntactic

adaptation of the denotational idea ofminimal invariance [Pitts 1996], but this was quite technically
involved and, as with denotational methods, it was for a long time not clear how to generalize the

approach to handle higher-order state.

An important breakthrough came in 2001 when Appel and McAllester [2001] developed their

step-indexed model of recursive types. The basic idea of step-indexing is to stratify the quasi-circular

definition of semantic typing for recursive types by the number of steps for which the term in

question is allowed to execute.
9
One immediate benefit of step-indexing was that it supplied a

much more elementary model of recursive types than the previous approaches based on minimal

invariance. But the more important benefit of step-indexing was that the basic idea scaled to account

for more complex features that were beyond the scope of denotational models. In particular, Ahmed

in her PhD thesis [Ahmed 2004] (building on prior work with Appel and Virga [Ahmed et al. 2002])

showed how to apply step-indexing in a more sophisticated fashion in order to construct a semantic

model of higher-order state.

Ahmed’s thesis led in turn to a flood of follow-on work, including [Appel et al. 2007; Ahmed et al.

2009; Neis et al. 2009; Benton and Hur 2009; Dreyer et al. 2010; Birkedal et al. 2011; Krishnaswami

and Benton 2011; Schwinghammer et al. 2013; Dreyer et al. 2012; Thamsborg and Birkedal 2011;

Birkedal et al. 2012; Turon et al. 2013b; Birkedal et al. 2013]. This line of work has demonstrated that

step-indexing—in conjunction with various other techniques, notably biorthogonality [Krivine 1994;

Pitts and Stark 1998] and Kripke logical relations [Jung and Tiuryn 1993]—could be used to construct

operational-semantics-based models of much more realistic languages, featuring (among other

things) control effects, substructural types, intensional polymorphism, and concurrency. What is

more, some of these models (e.g., [Ahmed et al. 2009; Dreyer et al. 2010, 2012; Schwinghammer et al.

2013])
10
were developed for the express purpose of verifying the kind of invariants on the private

state of ADTs that we saw in the symbol example from §3.1. (In fact, that example is adapted from

one proven by Ahmed et al. [2009].) Other models used step-indexing and semantic soundness

to reason about low-level code, e.g., to capture what it means for a piece of low-level code to

9
See Ahmed [2004] for a more detailed exposition of step-indexing.

10
The cited works formalized invariants on private state relationally—i.e., by proving certain kinds of contextual refinements—

rather than in the setting of semantic soundness. We find it useful to start first in this section by formalizing such invariants

in the simpler “unary” setting of semantic soundness, before showing in §8 how our approach generalizes to the more

complex “binary” relational setting of prior work.



1:18 Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal

implement a high-level function and to prove correctness of a simple compiler [Benton and Hur

2009; Hur and Dreyer 2011].

These more sophisticated semantic models—constructed using step-indexing and companion

techniques—are often referred to as step-indexed Kripke logical-relations (or SKLR) models. At this

point, the reader may rightly wonder: if SKLR models already address the limitations of syntactic

type soundness from §3, why are we writing this article? And if they are so powerful, why have

they not gained widespread adoption? Why does syntactic type soundness continue to be much

more commonly known and used?

4.3 The Problems with SKLR Models
Based on our personal experience with these SKLR models, we believe the reason they have not

been more widely adopted is that if one works directly with these models, one’s proofs become

painfully tedious, low-level, and difficult to maintain. Specifically:

(1) Explicit step-index arithmetic: When working directly in a step-indexed model of any

kind, one ends up performing a great deal of tedious “step-index arithmetic”—i.e., counting of
how many computation steps different operations take—even though it seems for the most

part completely irrelevant to what one is proving.
11

(2) Explicit reasoning about global state: When working directly in an SKLR model for a

stateful language, one ends up reasoning explicitly about the global state of memory, even

though the operations one is reasoning about only affect local pieces of that memory (e.g., a
single location).

12

(3) Explicit reasoning about possible worlds: When working directly in one of the more

advanced SKLR models, one ends up performing a lot of tedious manipulation of and quantifi-

cation over “possible worlds”, which describe the set of invariants that have been established

on the program state.
13

For a representative example of all these points, we refer the reader to Amal Ahmed’s PhD

thesis [Ahmed 2004] and the technical appendices accompanying several of her papers, e.g., [Ahmed

2006]. Her formal developments are unusual (and commendable) in that they spell out step-indexing-

based proofs in full, and with great attention to detail.
14
The end result, however, is that her proofs

are cluttered with seemingly unnecessary low-level technical details about step-indexing, the global

state, and possible worlds.
15
For example, see Ahmed’s proof of the rule mentioned earlier in this

section—the semantic typing rule for function applications—which appears as Theorem 3.21 in her

thesis. The proof involves explicit step-index arithmetic throughout (e.g., “let 𝑘∗ = 𝑘 − 𝑗 − 𝑖 − 1”), as

well as manipulation of three global states and four possible worlds—and that is all for a semantic

typing rule that has nothing to do with mutable state! As a result, compared with the cases of a

progress-and-preservation proof concerning function applications, the semantic soundness proof

appears significantly more low-level and complex, and for no clear reason.

This problem was noted fairly early on in the development of SKLR models [Appel et al. 2007],

and led to a fruitful line of work on program logics for encoding SKLR models at a much higher

level of abstraction [Dreyer et al. 2011, 2010; Turon et al. 2013a]. In combination with a line of work

on higher-order concurrent separation logic [Svendsen et al. 2013; Svendsen and Birkedal 2014],

11
See for instance the proofs in [Ahmed 2004] or [Ahmed et al. 2009].

12
See for instance the proofs in [Ahmed et al. 2009] or [Schwinghammer et al. 2013].

13
See for instance the proofs in [Ahmed et al. 2009], [Schwinghammer et al. 2013], or [Turon et al. 2013b].

14
The technical appendix accompanying [Dreyer et al. 2012] is similarly detail-oriented in this respect.

15
In contrast, some subsequent papers employing step-indexed proofs, such as [Krishnaswami et al. 2012; Turon et al.

2013b], may seem marginally less cluttered, but that is only because they systematically elide “boring details” related to

step-indexing that are quite easy to get wrong.
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this line of work culminated in the development of Iris [Jung et al. 2015, 2016; Krebbers et al. 2017a;

Jung et al. 2018b]: a unifying, language-generic framework for higher-order concurrent separation
logic, implemented in the Coq proof assistant [Krebbers et al. 2017b, 2018], into which a variety of

SKLR models can be (and have already been) encoded. We give an overview of SKLR models that

have been encoded in Iris in §10.

4.4 How Iris Solves the Problems of SKLR Models
Using Iris, the pain points of working with SKLR models—the global, “tedious” reasoning—can

largely be made to disappear—replaced by local, “interesting” reasoning. In particular, concerning

the complications of working directly with SKLR models that we mentioned in §4.3, Iris addresses

them head-on:

(1) Eliminating tedious step-indexed reasoning: In Iris, the tedious details of step-index

arithmetic are (to a large extent) hidden within the soundness proof of Iris itself, so that

proofs done on top of Iris are not cluttered with them. To the limited extent that step-indexed

reasoning is necessary (to avoid circular paradoxes), it is handled abstractly—following prior

work by Appel et al. [2007]—using the so-called “later” (⊲) modality [Nakano 2000], which

enables one to assert that a proposition should hold “one step of computation later”.

(2) Local reasoning about state: In contrast to direct proofs with SKLR models, which involve

manipulation of global state, Iris builds on separation logic [O’Hearn et al. 2001; Reynolds

2002] to support local reasoning about state. Local reasoning makes proofs about stateful

code much more pleasant: when proving semantic soundness of an expression 𝑒 , we need

only reason about what happens to the piece of state that 𝑒 itself manipulates. Moreover,

separation logic is a good fit for formalizing semantic soundness because semantic soundness

is a compositional property and separation-logic proofs are compositional by construction.

(3) High-level reasoning about stateful invariants: Iris extends vanilla separation logic

with two logical mechanisms—impredicative invariants (a higher-order generalization, first
developed in [Svendsen and Birkedal 2014], of the shared resource invariants from O’Hearn’s

original concurrent separation logic [O’Hearn 2007; Brookes 2007]) and user-defined ghost
state (the ability to define custom, domain-specific notions of logical resource). Used in

tandem, these two mechanisms enable one to express complex invariants on the private

state of modules, ADTs, etc., and to reason about those invariants at a much higher level of

abstraction than is afforded by the possible worlds of SKLRs.

In short, Iris provides an ideal framework for formalizing logical type soundness—i.e., semantic

type soundness proofs for richly-typed programming languages encoded in higher-order separation

logic. We now proceed to concretely demonstrate the abovementioned benefits of logical type

soundness in the context of our example language MyLang.

5 DEFINING A LOGICAL RELATION IN IRIS
Figure 4 shows the syntax of Iris, a higher-order logic extended with connectives from separation

logic as well as a few other custom modalities that we will present in due course. In this and the

next section, we show, step-by-step, how indeed Iris provides a natural logical language in which

semantic type soundness for realistic languages can be formalized.

Before we begin, we note that there are multiple ways to formalize higher-order logic. Iris is

formalized as a two-sorted system, with a sort of types and sort of terms: there are typing rules

formalizing when a term is well-typed (omitted here), and equality rules formalizing when two

terms are equal, including standard 𝛽- and 𝜂-rules for product, coproduct, and function types (also

omitted here). Types include those of the simply-typed lambda calculus, and also the special type
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𝜏 ::= 0 | 1 | B | N | Z | Val | Expr | iProp | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝜏 → 𝜏 | . . . (Types)

𝑡,𝑢, 𝑃,𝑄 ::= 𝑥 | 𝜆 𝑥 : 𝜏 . 𝑡 | 𝑡 (𝑢) | True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | (Propositional logic)

∀𝑥 : 𝜏 . 𝑃 | ∃𝑥 : 𝜏 . 𝑃 | 𝑡 = 𝑢 | (Higher-order logic)

𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | ℓ ↦→ v | wpE 𝑒 {Φ} | (Separation logic)

□ 𝑃 | ⊲ 𝑃 | 𝜇 𝑥 : 𝜏 . 𝑡 | |⇛E 𝑃 | 𝑃
N | . . . (Iris-specific connectives)

Fig. 4. Syntax of Iris. (We use 𝑃 , 𝑄 to represent terms of type iProp, and Φ, Ψ to represent (persistent) Iris
predicates (i.e., functions to iProp or iProp□), and 𝑡 , 𝑢 to represent arbitrary terms.)

iProp of Iris propositions. To a first approximation, one can think of Iris propositions as being like

the assertions of standard separation logic: predicates over some underlying types of resources

(e.g., pieces of the heap), which implicitly describe ownership of those resources.

It is also important to note that Iris is a language-generic framework, meaning that it can

be instantiated and used to reason about any language defined by a relatively common form of

operational semantics. We provide more information about Iris’s language parameterization in §6.1.

For space reasons, we will not attempt to present Iris in its full generality. Rather, to make things

concrete, we will instantiate Iris specifically withMyLang and show how one can build a semantic

soundness proof for this representative language.

Furthermore, instead of first explaining the design of Iris and then showing how to use it, we

will present the features of Iris on-demand, as they arise in defining a logical relation (§5.1)—the key

ingredient to encoding our semantic typing judgment forMyLang (§5.8). Then, in §6, we will show

how to use this logical relation to prove semantic type soundness, and in §7, we will show how to

formalize the idea of “safe encapsulation of unsafe features” that we presented informally in §3.2.

5.1 The Value and Expression Interpretations of Types
As explained in §4.1, proving semantic type soundness for the language MyLang involves defining

a semantic version of theMyLang typing judgment, Γ ⊨ 𝑒 : 𝐴. Before defining the general semantic

typing relation, we will first define a logical relation, which represents semantic typing for closed
terms. It will then be straightforward in §5.8 to lift the logical relation on closed terms to a semantic

typing relation on open terms using closing substitutions.

The logical relation forMyLang, shown in Figure 5, consists of two semantic interpretations

of types 𝐴—a value interpretation J𝐴K𝛿 and an expression interpretation J𝐴Ke
𝛿
—which are defined

by structural recursion on 𝐴. These interpretations describe which values and expressions behave
like valid inhabitants of 𝐴. Here, 𝛿 is a semantic environment, mapping type variables to their

semantic value interpretations—hence, J𝛼K𝛿 = 𝛿 (𝛼). We will explain the need for this semantic

environment when we come to the cases of the logical relation for types that bind variables, namely

universal types, existential types, and recursive types. Until then, the reader can simply ignore the

𝛿 parameter, since it is otherwise merely threaded through the definition.

Crucially, note that J𝐴K𝛿 and J𝐴Ke
𝛿
are interpretations of MyLang types in Iris—i.e., they are

simply Iris predicates of type Val → iProp and Expr → iProp.16 We now proceed to explain the

definition of these predicates, step by step.

16
More specifically, since the type system of MyLang is an intuitionistic type system (where variables can be used repeatedly),

the value interpretation uses persistent Iris predicates—i.e., their return type is really iProp□—which intuitively means that

they are predicates that can be freely duplicated. See §6.2 for more on this point.
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J𝐴Ke
𝛿
≜ 𝜆 𝑒. wp 𝑒

{
J𝐴K𝛿

}
J𝛼K𝛿 ≜ 𝛿 (𝛼)
J1K𝛿 ≜ 𝜆v.v = ()
J2K𝛿 ≜ 𝜆v.v ∈ {true, false}
JZK𝛿 ≜ 𝜆v.v ∈ Z

J𝐴1 ×𝐴2K𝛿 ≜ 𝜆v. ∃v1,v2 . (v = (v1,v2)) ∗ J𝐴1K𝛿 (v1) ∗ J𝐴2K𝛿 (v2)
J𝐴1 +𝐴2K𝛿 ≜ 𝜆v.

∨
𝑖∈{1,2} ∃w. (v = inj𝑖 w) ∗ J𝐴𝑖K𝛿 (w)

J𝐴→ 𝐵K𝛿 ≜ 𝜆v. □
(
∀w. J𝐴K𝛿 (w) −∗ J𝐵Ke

𝛿
(v w)

)
J∀𝛼. 𝐴K𝛿 ≜ 𝜆v. □

(
∀(Ψ : Val→ iProp□). J𝐴Ke

𝛿,𝛼 ↦→Ψ (v⟨⟩)
)

J∃𝛼. 𝐴K𝛿 ≜ 𝜆v. ∃(Ψ : Val→ iProp□). ∃w. (v = pack⟨w⟩) ∗ J𝐴K𝛿,𝛼 ↦→Ψ (w)
J𝜇𝛼. 𝐴K𝛿 ≜ 𝜇 (Ψ : Val→ iProp□). 𝜆v. ∃w. (v = foldw) ∗ ⊲J𝐴K𝛿,𝛼 ↦→Ψ (w)

Jref𝐴K𝛿 ≜ 𝜆v. ∃(ℓ : Loc). (v = ℓ) ∗ ∃w. ℓ ↦→w ∗ J𝐴K𝛿 (w)
Nℓ

J∅Kc
𝛿
(∅) ≜ True

JΓ, 𝑥 : 𝐴Kc
𝛿
(𝛾, 𝑥 ↦→w) ≜ JΓKc

𝛿
(𝛾) ∗ J𝐴K𝛿 (w)

Γ ⊨ 𝑒 : 𝐴 ≜ □
(
∀𝛿,𝛾 . JΓKc

𝛿
(𝛾) −∗ J𝐴Ke

𝛿
(𝛾 (𝑒))

)
Fig. 5. The expression interpretation J_Ke, value interpretation J_K, typing context interpretation J_Kc, and
semantic typing judgment forMyLang.

The expression interpretation. The first line of Figure 5 line shows how the expression

interpretation is defined in terms of the value interpretation. Intuitively, a closed expression is in

the expression interpretation of a type 𝐴 if it computes a result that is in the value interpretation of

𝐴. This intuitive idea can be concisely captured using Iris’s weakest precondition connective:
17

J𝐴Ke
𝛿
≜ 𝜆 𝑒. wp 𝑒

{
J𝐴K𝛿

}
Given a postcondition Φ : Val→ iProp, the connective wp 𝑒 {Φ} represents the weakest precon-

dition ensuring that (1) 𝑒 is safe to execute, and (2) any result value that 𝑒 computes will satisfy Φ.
Accordingly, J𝐴Ke

𝛿
(𝑒) expresses that 𝑒 is safe to execute (i.e., it will not get stuck), and whatever

value it evaluates to will be in the value interpretation of the type 𝐴. For administrative reasons,

the weakest precondition wpE 𝑒 {Φ} is equipped with an invariant mask E. We discuss the purpose

of the invariant mask in §6.9 and omit it until then.

The remainder of Figure 5 defines the value interpretation of types, which we now explain.

5.2 Ground Types
The value interpretations of ground types are exactly what one would expect:

J1K𝛿 ≜ 𝜆v.v = () J2K𝛿 ≜ 𝜆v.v ∈ {true, false} JZK𝛿 ≜ 𝜆v.v ∈ Z
The only value of the unit type 1 is the unit value (), the values of the Boolean type 2 are true and

false, and the values of the integer type Z are the integers Z.

17
The particular weakest precondition predicate we use here is specific to theMyLang instantiation of Iris (see §6.1).
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5.3 Product and Sum Types
The value interpretations of product and sum types are similarly straightforward:

J𝐴1 ×𝐴2K𝛿 ≜ 𝜆v. ∃v1,v2 . (v = (v1,v2)) ∗ J𝐴1K𝛿 (v1) ∗ J𝐴2K𝛿 (v2)
J𝐴1 +𝐴2K𝛿 ≜ 𝜆v.

∨
𝑖∈{1,2} ∃w. (v = inj𝑖 w) ∗ J𝐴𝑖K𝛿 (w)

Values of type 𝐴1 × 𝐴2 are tuples (v1,v2), where v1 and v2 are in the interpretation of 𝐴1 and 𝐴2,

respectively. Values of type 𝐴1 +𝐴2 are either inj1
w or inj

2
w, wherew is in the interpretation of

𝐴1 or 𝐴2, respectively.

The reader may wonder why we use separating conjunction (𝑃 ∗𝑄) in the definition of J𝐴1×𝐴2K𝛿
rather than ordinary conjunction (𝑃 ∧ 𝑄)—especially because, as we explain in §6.2, one can in

fact replace all occurrences of ∗ in Figure 5 by ∧ without changing the meaning of the logical

relation. The short answer is that, in Iris proofs, particularly when mechanized in Coq, separating

conjunction is the “default” and most commonly used form of conjunction. In the general case

where ∗ and ∧ are not interchangeable, the appropriate connective to use is almost always ∗, not ∧.
(There are exceptions to this rule, but we will not encounter any in this paper.) So in cases where ∗
and ∧ turn out to be interchangeable, we use ∗ there as well for uniformity of notation.

We will return to this point in more detail in §6.2, but for the moment, the reader can simply

think of ∗ as being synonymous with ∧.

5.4 Function Types
The value interpretation of the function type 𝐴→ 𝐵 is perhaps the most iconic and familiar case,

as some slight variation of it appears in any proof that calls itself a “logical relations” proof:

J𝐴→ 𝐵K𝛿 ≜ 𝜆v. □
(
∀w. J𝐴K𝛿 (w) −∗ J𝐵Ke

𝛿
(v w)

)
It expresses that a value v inhabits the type 𝐴→ 𝐵 if v maps arguments in J𝐴K𝛿 to results in J𝐵Ke

𝛿
.

Note that this definition imposes no syntactic restriction on v—it merely insists that, when v is

used like a function of type 𝐴→ 𝐵 (i.e., when applied to an argument of type 𝐴), it behaves like a
function of type 𝐴→ 𝐵 (i.e., it is safe to execute and returns a result of type 𝐵).

There are three technical points of note here.

First, note that we use the separating implication connective (𝑃 −∗ 𝑄), aka magic wand, instead of

ordinary implication (𝑃 ⇒ 𝑄). The reason is simple: since magic wand is the adjoint connective

to separating conjunction—i.e., 𝑃 ∗ 𝑄 ⊢ 𝑅 iff 𝑃 ⊢ 𝑄 −∗ 𝑅 (where ⊢ is the entailment relation of

Iris)—and since in Iris (as noted above) we work mostly with ∗ rather than ∧, we correspondingly
work mostly with −∗ rather than⇒. However, just as with ∗ vs. ∧, and as we detail in §6.2, the

distinction between −∗ and⇒ is not important in the context of our logical relation, and the reader

can comfortably gloss over it.

Second, note that J𝐴K𝛿 appears in a negative (contravariant) position in the definition of J𝐴→ 𝐵K𝛿 .
If one attempted to define the logical relation directly as an inductive predicate, this negative

occurrence would cause a problem because it would render the inductive generating function

non-monotone, so the definition would not be well-founded. However, as mentioned above, the

logical relation is in fact defined by structural recursion on its type parameter, so since 𝐴 is smaller

than𝐴→ 𝐵, the definition is in fact well-founded. It is precisely this function case that necessitates

defining J𝐴K𝛿 by structural recursion on 𝐴.

Lastly, note that the definition of J𝐴→ 𝐵K𝛿 is wrapped in Iris’s persistence modality (□); we defer
explanation of this modality until §6.2.
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5.5 Universal and Existential Types
The cases we have seen so far exhibit a common pattern. Types are interpreted semantically using

the logical connective to which they are associated via the Curry-Howard correspondence: product

types by conjunction, sum types by disjunction, and function types by implication. This pattern

explains what is “logical” about a logical relation.

The next two cases continue this pattern, interpreting universal and existential types using logical

propositions that are universally and existentially quantified, respectively. For those readers familiar

with prior work on logical relations—the “reducibility candidates” of Girard [1972], parametricity

à la Reynolds [1983], or the logical characterization of parametricity due to Plotkin and Abadi

[1993]—these cases should look very familiar. For other readers, some explanation is in order.

Naively, one might expect that since the type variable 𝛼 in ∀𝛼. 𝐴 (resp. ∃𝛼. 𝐴) represents an
unknown syntactic type 𝐵, the definition of the logical relation for these types should universally

(resp. existentially) quantify over a syntactic type 𝐵 and then recurse on 𝐴[𝐵/𝛼], as follows:
Ill-founded attempt to define logical relation for ∀𝛼. 𝐴 and ∃𝛼. 𝐴:

J∀𝛼. 𝐴K𝛿 ≜ 𝜆v. ∀(𝐵 : Type) . J𝐴[𝐵/𝛼]Ke
𝛿
(v⟨⟩)

J∃𝛼. 𝐴K𝛿 ≜ 𝜆v. ∃(𝐵 : Type). ∃w. (v = pack⟨w⟩) ∗ J𝐴[𝐵/𝛼]K𝛿 (w)
But we have seen that the logical relation is crucially defined by structural recursion on its type

parameter, and 𝐴[𝐵/𝛼] is not structurally smaller than ∀𝛼. 𝐴 and ∃𝛼. 𝐴. Even if we were to define

the logical relation by recursion on the size of the type, we would run into the same problem because,

thanks to the impredicativity of polymorphism in MyLang, the type 𝐵 could be of arbitrary size.
18

Hence, this naive definition is not well-founded.

The solution, due originally to Girard [1972], is instead to define these cases of the logical relation

by quantifying over a semantic type Ψ, rather than a syntactic type 𝐵:

J∀𝛼. 𝐴K𝛿 ≜ 𝜆v. □
(
∀(Ψ : Val→ iProp□). J𝐴Ke

𝛿,𝛼 ↦→Ψ (v⟨⟩)
)

J∃𝛼. 𝐴K𝛿 ≜ 𝜆v. ∃(Ψ : Val→ iProp□). ∃w. (v = pack⟨w⟩) ∗ J𝐴K𝛿,𝛼 ↦→Ψ (w)

By “semantic type”, we mean an arbitrary element Ψ drawn from the same space to which the

value interpretation of types belongs—that is, Ψ is any (persistent) Iris predicate on values, of type

Val → iProp□. (We defer discussion of persistence until §6.2.) Once we have quantified over Ψ,
we can then recurse over 𝐴, interpreting (free) occurrences of 𝛼 in 𝐴 using Ψ. This is achieved by

extending the semantic environment 𝛿 to map 𝛼 to Ψ. On a purely technical level, it is easy to see

that this solves the problem with well-foundedness, since 𝐴 is structurally smaller than ∀𝛼. 𝐴 and

∃𝛼. 𝐴. It also goes to show why we needed the semantic environment 𝛿 around in the first place.

However, if one has not seen Girard’s method before, one may well wonder how this could

possibly work and what ramifications it has. In particular, the space of semantic types includes

many value predicates that are not the value interpretation of any syntactic type, so by quantifying

over semantic types, does the definition of J∀𝛼. 𝐴K𝛿 not become too strong, and the definition

of J∃𝛼. 𝐴K𝛿 too weak? The short answer why this works is parametricity: in MyLang, abstract
types 𝛼 are “really abstract”, in the sense that the language provides no way for the client of 𝛼 to

syntactically analyze the type 𝐵 by which 𝛼 is implemented (i.e., the type with which 𝛼 ultimately

gets instantiated at runtime). Hence, there is no need to require that 𝛼 be modeled as a syntactic

MyLang type; it is fine to instead model 𝛼 as belonging to the larger space of semantic types.

Moreover, Girard’s method has the major side benefit that it will enable us to establish invariants

18
It is not accidental that polymorphism in MyLang is impredicative: impredicativity enables the programmer to represent

an abstract data type internally using whatever type they want.
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on the private data representations of existentially-typed ADTs. We will see how this works when

we formalize “safe encapsulation” in §7.

Finally, note that, when we quantify over semantic types, we are fundamentally relying on Iris’s

support for higher-order (in this case, second-order) impredicative quantification.

5.6 Recursive Types
The value interpretation of recursive types poses yet another challenge. In principle, we would

like to say that foldw inhabits the type 𝜇𝛼. 𝐴 ifw inhabits the type 𝐴[𝜇𝛼. 𝐴/𝛼], just as syntactic
typing dictates. However, this would mean defining the value interpretation of 𝜇𝛼. 𝐴 in terms of

the value interpretation of the larger type 𝐴[𝜇𝛼. 𝐴/𝛼], which is not well-founded.

Enter guarded recursive predicates, a distinctive feature of Iris which offers a way out of our

predicament. In Iris, the guarded fixed-point operator 𝜇 𝑥 . 𝑡 can be used to define recursive predicates
without a restriction on the variance of the recursive occurrences of 𝑥 in 𝑡 . In return for this

flexibility, all recursive occurrences of 𝑥 must be guarded, meaning that they must appear below a

later modality (⊲)—i.e.,within a term of the form ⊲ 𝑃 . Subject to this restriction, (𝜇 𝑥 . 𝑡) = 𝑡 [𝜇 𝑥 . 𝑡/𝑥].
Using guarded recursion, the interpretation of recursive types becomes:

J𝜇𝛼. 𝐴K𝛿 ≜ 𝜇 (Ψ : Val→ iProp□). 𝜆v. ∃w. (v = foldw) ∗ ⊲J𝐴K𝛿,𝛼 ↦→Ψ (w)

By unrolling the 𝜇 we obtain the following:
19

J𝜇𝛼. 𝐴K𝛿 (v) =
(
∃w. (v = foldw) ∗ ⊲J𝐴[𝜇𝛼. 𝐴/𝛼]K𝛿 (w)

)
This is almost exactly what we wanted. The only wrinkle here is the ⊲ modality, which ensures

well-foundedness of the guarded fixed-point. Roughly speaking, ⊲ 𝑃 means that “𝑃 will hold in the

future after one step of computation”. That means that, if we have ⊲ 𝑃 in our context when proving

a weakest precondition wp 𝑒 {Φ}, we cannot make use of 𝑃 right away; but after we have verified

that 𝑒 can safely take a step of reduction to 𝑒′, and the goal reduces to showing wp 𝑒′ {Φ}, we are
allowed to strip the ⊲ off of ⊲ 𝑃 and use 𝑃 in the rest of the proof. As we shall see in §6.8, this “under

a later” knowledge about the semantic well-typedness ofw is strong enough for us to be able to

establish semantic type soundness.

5.7 Reference Types
Intuitively, values of the reference type ref𝐴 are memory locations ℓ at which the valuew stored

may change over time but must always be of type 𝐴. In order to formalize this intuition in Figure 5,

we make use of two features of Iris:

• The points-to connective ℓ ↦→ v (from vanilla separation logic) asserts exclusive ownership of

location ℓ , along with the knowledge that it currently stores value v. (We will return to the

concept of ownership in §6.2.)

• The invariant assertion 𝑃
N
expresses the knowledge that a proposition 𝑃 holds invariantly—

i.e., at all times. Here, N denotes the namespace of the invariant, which is needed to ensure

that invariants are not accessed repeatedly in an unsound fashion. See §6.9 for details.

With these connectives in hand, the interpretation of references types becomes:

Jref𝐴K𝛿 ≜ 𝜆v. ∃(ℓ : Loc). (v = ℓ) ∗ ∃w. ℓ ↦→w ∗ J𝐴K𝛿 (w)
Nℓ

19
The proof of this equivalence relies on the 𝜇-equation, together with the fact that J𝐴[𝐵/𝛼 ]K𝛿 = J𝐴K𝛿,𝛼 ↦→J𝐵K𝛿 , which is

proved by straightforward induction on the structure of 𝐴 (see Lemma 6.3).
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It says that v inhabits the type ref𝐴 if v is a location ℓ and there is an invariant enforcing that ℓ

always points to some valuew that inhabits the type 𝐴. Here, Nℓ is the unique namespace that we

use to designate the invariant on location ℓ .

5.8 The Semantic Typing Judgment
We now proceed to define the semantic typing judgment Γ ⊨ 𝑒 : 𝐴, which lifts the expression

interpretation to open expressions 𝑒 using a closing substitution 𝛾 ∈ Subst. Here, 𝛾 is a list of the form
𝑥1 ↦→ v1, · · · , 𝑥𝑛 ↦→ v𝑛 , which associates variables to (closed) values; we write 𝛾 (𝑒) to denote the

result of applying the substitution 𝛾 to 𝑒 . We will quantify over closing substitutions 𝛾 belonging to

the context interpretation JΓKc
𝛿

: Subst→ iProp□, which says that 𝛾 maps every 𝑥 : 𝐵 ∈ Γ to a value

v that is in the value interpretation J𝐵K𝛿 of 𝑥 ’s type 𝐵. The formal definition is shown in Figure 5.

The semantic typing judgment Γ ⊨ 𝑒 : 𝐴 is defined as a relation in the Iris logic as follows:

Γ ⊨ 𝑒 : 𝐴 ≜ □
(
∀𝛿,𝛾 . JΓKc

𝛿
(𝛾) −∗ J𝐴Ke

𝛿
(𝛾 (𝑒))

)
It says that 𝑒 should inhabit the expression interpretation of 𝐴 under any semantic environment 𝛿

and any closing substitution 𝛾 that satisfies the context interpretation JΓKc
𝛿
. One can see this

definition as essentially consisting of iterated applications of the function and universal type cases

of the logical relation, which serve to abstract 𝑒 over its typing context. The definition uses the

persistence modality (□) to ensure that semantic typing is a freely duplicable proposition.

6 LOGICAL TYPE SOUNDNESS: PROVING SEMANTIC TYPE SOUNDNESS IN IRIS
In this section, we demonstrate the method of logical type soundness—i.e., proving semantic type

soundness within the separation logic framework of Iris. In particular, this involves proving (in

Iris) semantic versions of the typing rules of MyLang. For instance, we will prove the following
semantic typing rule for function application:

Γ ⊨ 𝑒1 : 𝐴→ 𝐵 Γ ⊨ 𝑒2 : 𝐴

Γ ⊨ 𝑒1 𝑒2 : 𝐵

Since the semantic typing judgment is an Iris definition, semantic typing rules are simply implica-

tions in Iris. For instance, the above inference rule should be read as:(
Γ ⊨ 𝑒1 : 𝐴→ 𝐵 ∗ Γ ⊨ 𝑒2 : 𝐴

)
−∗ Γ ⊨ 𝑒1 𝑒2 : 𝐵

Semantic typing rules are proven by unfolding the definition of the semantic typing judgment, the

expression interpretation, and the value interpretation. Before carrying out these proofs in detail,

we first discuss how Iris can be instantiated with a concrete programming language (§6.1), and

return to a key technical issue that we have thus far glossed over—persistent propositions and the

persistence modality □ (§6.2). We then explain the proof rules for weakest preconditions (§6.3),

and how they are used to derive higher-level reasoning principles for the logical relation (§6.4). At

that point, we are well equipped to prove the semantic typing rules (§6.5–§6.9). We then prove the

fundamental theorem, which states that syntactic typing implies semantic typing, and the adequacy
theorem, which states that closed semantically well-typed terms are indeed safe to execute (§6.10).

In §7, we then demonstrate the key benefit of semantic typing—the ability to reason about “safe

encapsulation of unsafe features”.

6.1 Language Parameterization and Basics of Iris
To make Iris applicable to a variety of programming languages, it is parametric in the types of

expressions, values and states, and in a reduction relation [Jung et al. 2018b, §7.3]. The choice

of programming language influences the semantics of Iris’s connective wp 𝑒 {Φ} for weakest
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Rules for separating conjunction and separating implication:

True ∗ 𝑃 ⊣⊢ 𝑃
𝑃 ∗𝑄 ⊣⊢ 𝑄 ∗ 𝑃

(𝑃 ∗𝑄) ∗ 𝑅 ⊣⊢ 𝑃 ∗ (𝑄 ∗ 𝑅)

∗-mono
𝑃1 ⊢ 𝑄1 𝑃2 ⊢ 𝑄2

𝑃1 ∗ 𝑃2 ⊢ 𝑄1 ∗𝑄2

−∗-intro
𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −∗ 𝑅

−∗-elim
𝑃 ⊢ 𝑄 −∗ 𝑅
𝑃 ∗𝑄 ⊢ 𝑅

Rules for the persistence modality:
□-mono
𝑃 ⊢ 𝑄

□ 𝑃 ⊢ □𝑄
□-dup
□ 𝑃 ⊣⊢ (□ 𝑃 ∗ □ 𝑃)

□-elim
□ 𝑃 ⊢ 𝑃

□-idemp
□ 𝑃 ⊢ □□ 𝑃

□-and-sep
(□ 𝑃 ∧𝑄) ⊣⊢ (□ 𝑃 ∗𝑄)

□-impl-wand
(□ 𝑃 ⇒ 𝑄) ⊣⊢ (□ 𝑃 −∗ 𝑄)

□-sep
□(𝑃 ∗𝑄) ⊣⊢ (□ 𝑃 ∗ □𝑄)

□-true
True ⊢ □ True

□-false
False ⊢ □ False

□-eqal

𝑡 = 𝑢 ⊢ □(𝑡 = 𝑢)
□-and
□(𝑃 ∧𝑄) ⊣⊢ (□ 𝑃 ∧ □𝑄)

□-or
□(𝑃 ∨𝑄) ⊣⊢ (□ 𝑃 ∨ □𝑄)

□-forall
□(∀𝑥 . 𝑃) ⊣⊢ (∀𝑥 . □ 𝑃)

□-exists
□(∃𝑥 . 𝑃) ⊣⊢ (∃𝑥 . □ 𝑃)

Rules for guarded recursion and the later modality:

𝜇-unfold

⊢ (𝜇 𝑥 . 𝑡) = 𝑡 [𝜇 𝑥 . 𝑡/𝑥]

⊲-mono

𝑃 ⊢ 𝑄
⊲ 𝑃 ⊢ ⊲𝑄

⊲-intro

𝑃 ⊢ ⊲ 𝑃

Löb

⊲ 𝑃 ⊢ 𝑃
⊢ 𝑃

⊲-sep

⊲(𝑃 ∗𝑄) ⊣⊢ (⊲ 𝑃 ∗ ⊲𝑄)

⊲-and

⊲(𝑃 ∧𝑄) ⊣⊢ (⊲ 𝑃 ∧ ⊲𝑄)
⊲-or

⊲(𝑃 ∨𝑄) ⊣⊢ (⊲ 𝑃 ∨ ⊲𝑄)
⊲-forall

⊲(∀𝑥 . 𝑃) ⊣⊢ (∀𝑥 . ⊲ 𝑃)

exists-⊲

(∃𝑥 . ⊲ 𝑃) ⊢ ⊲(∃𝑥 . 𝑃)

⊲-exists

inhabited(𝜏)
⊲(∃𝑥 : 𝜏 . 𝑃) ⊢ (∃𝑥 : 𝜏 . ⊲ 𝑃)

⊲-pers

⊲(□ 𝑃) ⊣⊢ □ (⊲ 𝑃)

Rules for weakest preconditions (specialized to MyLang):

Φ(v) ⊢ wpE v {Φ} (wp-val)

if 𝑒1 →pure 𝑒2 then

(
⊲(wpE 𝑒2 {Φ}) ⊢ wpE 𝑒1 {Φ}

)
(wp-pure)

wpE 𝑒
{
w. wpE 𝐾 [w] {Φ}

}
⊢ wpE 𝐾 [𝑒] {Φ} (wp-bind)

(∀w. Φ(w) −∗ Ψ(w)) ∗ wpE 𝑒 {Φ} ⊢ wpE 𝑒 {Ψ} (wp-wand)

⊲(∀ℓ . ℓ ↦→ v −∗ wpE ℓ {Φ}) ⊢ wpE refv {Φ} (wp-alloc)

⊲(ℓ ↦→ v ∗ (ℓ ↦→ v −∗ wpE v {Φ})) ⊢ wpE ! ℓ {Φ} (wp-load)

⊲(ℓ ↦→ v ∗ (ℓ ↦→w −∗ wpE () {Φ})) ⊢ wpE (ℓ ←w) {Φ} (wp-store)

⊲(ℓ ↦→ v ∗ (ℓ ↦→w −∗ wpE true {Φ})) ⊢ wpE CAS(ℓ,v,w) {Φ} (wp-cas-suc)

⊲((v ≠ v′) ∗ ℓ ↦→ v ∗ (ℓ ↦→ v −∗ wpE false {Φ})) ⊢ wpE CAS(ℓ,v
′,w) {Φ} (wp-cas-fail)

⊲(ℓ ↦→ 𝑛 ∗ (ℓ ↦→ (𝑛 +𝑚) −∗ wpE 𝑛 {Φ})) ⊢ wpE FAA(ℓ,𝑚) {Φ} (wp-faa)

⊲(wpE () {Φ} ∗ wp⊤ 𝑒 {v. True}) ⊢ wpE fork {𝑒} {Φ} (wp-fork)

Fig. 6. Selected rules of the Iris logic.
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Rules for invariants:

inv-alloc

⊲ 𝑃 ⊢ |⇛E 𝑃
N

inv-persist

𝑃
N ⊢ □ 𝑃

N

inv-open-upd

N↑ ⊆ E

𝑃
N ∗ (⊲ 𝑃 −∗ |⇛E\N↑ (⊲ 𝑃 ∗𝑄)) ⊢ |⇛E𝑄

inv-open-wp

atomic(𝑒) N ↑ ⊆ E

𝑃
N ∗

(
⊲ 𝑃 −∗ wpE\N↑ 𝑒 {v. ⊲ 𝑃 ∗ Φ(v)}

)
⊢ wpE 𝑒 {Φ}

Rules for the update modality:
|⇛-mono

𝑃 ⊢ 𝑄
|⇛E 𝑃 ⊢ |⇛E𝑄

|⇛-intro

𝑃 ⊢ |⇛E 𝑃
|⇛-idemp

|⇛E |⇛E 𝑃 ⊢ |⇛E 𝑃
|⇛-frame

𝑄 ∗ |⇛E 𝑃 ⊢ |⇛E (𝑄 ∗ 𝑃)

|⇛-timeless

timeless(𝑃)
⊲ 𝑃 ⊢ |⇛E 𝑃

|⇛-wp

|⇛EwpE 𝑒 {Φ} ⊢ wpE 𝑒 {Φ}
wp-|⇛
wpE 𝑒

{
w. |⇛EΦ(w)

}
⊢ wpE 𝑒 {Φ}

Fig. 7. Selected rules for invariants and the update modality of the Iris logic.

preconditions. Consequently, Iris’s proof rules for weakest preconditions are specific to the choice of

language, while all other rules are language independent. For the purpose of this paper we instantiate

Iris with the expressions, states, and reduction relation of MyLang (§2.3). This instantiation of Iris

satisfies the proof rules given in Figure 6 and Figure 7, which we explain throughout this section.

Iris’s proof rules are not axioms. Their soundness is justified by a step-indexed model that is

detailed in Jung et al. [2018b]. To use Iris, it is not necessary to understand the Iris model. Rather,

the key purpose of the model is to establish the adequacy theorem of weakest preconditions, which

says that a closed proof of a weakest precondition implies safety w.r.t. the operational semantics.

Theorem 6.1 (Adeqacy of weakest preconditions). If True ⊢ wp 𝑒 {Φ}, then safe(𝑒).

Adequacy of weakest preconditions is essential in proving the adequacy theorem for our logical

relation (Theorem 6.6). But it is important to emphasize that neither Iris’s connectives, nor its proof

rules, nor its weakest preconditions, nor its adequacy theorem are specific to semantic soundness.

These features and meta-theorems are also exploited by many Iris developments which have a

completely different motivation, such as functional verification of low-level systems code.

Since we develop our semantic soundness proofs within Iris, these proofs are rather different

from proofs in ordinary logic—they involve reasoning in separation logic and use the various Iris

connectives. To allow the reader to get accustomed to the way such proofs are carried out, we

visualize many proofs using proof trees. These proof trees make explicit many low-level details, so

as to make clear exactly how the Iris rules are used. However, we would like to stress that when

Iris proofs are carried out in practice, they are done in Coq using the Iris Proof Mode [Krebbers

et al. 2017b, 2018], which takes care of many of the low-level proof steps automatically.

The entailment relation 𝑃 ⊢ 𝑄 says that 𝑃 entails 𝑄 . For brevity, we use the following notations:

• 𝑃 ⊣⊢ 𝑄 means 𝑃 ⊢ 𝑄 and 𝑄 ⊢ 𝑃 .
• ⊢ 𝑄 means True ⊢ 𝑄 .
• If we write “proof of 𝑄” or “𝑄 is true” or “𝑄 holds”, we mean ⊢ 𝑄 .
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6.2 Persistent vs. Ephemeral Propositions and the □ Modality
In separation logic, propositions may express exclusive ownership of resources. We have already

seen the prototypical example of such a proposition, namely the points-to connective, ℓ ↦→ v, which
denotes exclusive ownership of a location ℓ storing value v. Along with exclusive ownership of a

resource typically comes the right to mutate the resource, which may have the effect of invalidating

previously valid assertions about the resource. For example, if we can assert ℓ ↦→ 3, we have the

right to update ℓ to 5, after which we can assert ℓ ↦→ 5, but at that point ℓ ↦→ 3 no longer holds.

Thus, propositions 𝑃 expressing exclusive ownership are (to use Iris’s terminology) ephemeral:
although 𝑃 may hold at one point in a program proof, it may cease to hold later on.

There are many propositions, however, that do not assert exclusive ownership of resources; these

propositions are (again following Iris’s terminology) persistent: once they hold, they hold forever.

Examples of persistent propositions include pure facts like equality (𝑡 = 𝑢), as well as invariant

assertions 𝑃
N
. Although persistent propositions do not offer any exclusive capabilities to their

asserters, they do have an advantage over ephemeral propositions, namely that they are duplicable.
That is, if 𝑃 is persistent, then 𝑃 ⊣⊢ 𝑃 ∗ 𝑃 . Being duplicable is very useful because it means that

once 𝑃 is proven, it represents freely shareable knowledge: 𝑃 can be used repeatedly, as often as

needed, in the rest of the proof. For instance, if we need to prove 𝑃 ⊢ 𝑄 ∗ 𝑅, we can reduce this to

proving 𝑃 ⊢ 𝑄 and 𝑃 ⊢ 𝑅, which we could not do if 𝑃 were ephemeral.

Due to Iris’s support for ghost state, there are many other examples of ephemeral and persistent

propositions besides the ones mentioned above. For example, in §7, we will see the connectives

𝛾 ↩→= 𝑛 and 𝛾 ↩→> 𝑛 of ghost counters, with the former being ephemeral and the latter persistent.

The notion of being persistent is expressed in Iris by means of the persistence modality □. The
purpose of □ 𝑃 is to say that 𝑃 holds without depending on any ephemeral propositions. The most

important rules for the persistence modality are □ 𝑃 ⊣⊢ □ 𝑃 ∗ □ 𝑃 (rule □-dup) and □ 𝑃 ⊢ 𝑃 (rule

□-elim), which allow one to freely duplicate □ 𝑃 , and use it to obtain 𝑃 when desired. Using the

persistence modality, we can formally define the class iProp□ of persistent propositions, and what

it means for a proposition 𝑃 to be persistent (denoted persistent(𝑃)):20

iProp□ ≜ {𝑃 : iProp | persistent(𝑃)}
persistent(𝑃) ≜ 𝑃 ⊢ □ 𝑃

As usual for □ in modal logic, we have □ 𝑃 ⊢ □□ 𝑃 (□-idemp), which implies that □ 𝑃 is persistent

regardless of what 𝑃 is. Furthermore, using the fact that the □ modality commutes with most

logical connectives (see Figure 6), we can show that the class of persistent propositions is closed

under separating conjunction, conjunction, disjunction, universal quantification, and existential

quantification. Lastly, using the fact that □ is monotone (□-mono), we can derive the following

introduction rule, which says that a □ modality can be introduced if the context is persistent:

□-intro
𝑃 ⊢ 𝑄 persistent(𝑃)

𝑃 ⊢ □𝑄

Persistent propositions play an important role when defining a logical relation in separation logic.

In particular, in the syntactic typing derivation 𝑥 : 𝐴 ⊢ 𝑒 : 𝐵, the assumption that 𝑥 has type 𝐴 may

be used repeatedly. In establishing the corresponding semantic typing relation 𝑥 : 𝐴 ⊨ 𝑒 : 𝐵, we

quantify over a valuev, and must then prove that J𝐴K (v) −∗ J𝐵Ke (𝑒 [v/𝑥]). To prove that implication,

20
Iris’s step-indexed model, which is based on the category of OFEs (Ordered Families of Equivalences) [Birkedal et al.

2010a], does not support subset types in general—i.e., {𝑥 : 𝜏 | Φ𝑥 } is not well-defined for every Iris type 𝜏 and predicate Φ.
We omit the technical conditions on 𝜏 and Φ, but note that iProp□ is a well-defined subset type.
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we will need to use the assumption J𝐴K (v) repeatedly, namely for each occurrence of 𝑥 in 𝑒 , which

we can only do if it is persistent.

Consequently, we have set up the logical relation in Figure 5 so that J𝐴K𝛿 (v) is persistent by
definition.

21
In particular, the value and expression interpretations have the following types:

J_Ke(_) : Type→ (Tvar→ (Val→ iProp□)) → Expr→ iProp

J_K(_) : Type→ (Tvar→ (Val→ iProp□)) → Val→ iProp□

Here, we require the semantic environments 𝛿 (over which the interpretations are parameterized) to

map type variables to persistent value predicates (i.e., functions from Val to iProp□), and we require
the value interpretation to return a persistent value predicate as well. Most cases of the value

interpretation are persistent by construction. The only two that require some “intervention” in

order to ensure persistence are the function and universal type cases. In these cases, the definition

involves J_Ke(_) , which is not persistent in general; so to make the definition persistent, we place its

entire right-hand side under a □ modality.

Another important property of persistent propositions is (□ 𝑃 ∧𝑄) ⊣⊢ (□ 𝑃 ∗𝑄) (rule □-and-sep),
which says that ordinary conjunction and separating conjunction coincide when one conjunct

is persistent, i.e., we have 𝑃 ∧𝑄 ⊣⊢ 𝑃 ∗𝑄 if 𝑃 or 𝑄 is persistent. Similarly, ordinary implication

𝑃 ⇒ 𝑄 and magic wand 𝑃 −∗ 𝑄 coincide when 𝑃 is persistent, which follows from the fact that

(□ 𝑃 ⇒ 𝑄) ⊣⊢ (□ 𝑃 −∗ 𝑄) (rule □-impl-wand). As a result, in the definition of the logical relation in

Figure 5, the choice between ∧ vs. ∗, and⇒ vs. −∗, is actually irrelevant. Nevertheless, as explained

in §5.3–§5.4, we prefer to stick to ∗ and −∗ in this paper for uniformity of notation (and thus not

having to worry about how to associate ∗ and ∧) and because that is what we actually do in Coq.

6.3 Weakest Preconditions
At the heart of the logical relation—in the definition of the expression interpretation J𝑒Ke

𝛿
, as

shown in Figure 5—we use Iris’s connective wp 𝑒 {Φ} for weakest preconditions. Recall from §5.1

that, given a postcondition Φ : Val → iProp, the connective wp 𝑒 {Φ} represents the weakest

precondition ensuring that (1) 𝑒 is safe to execute, and (2) any result value 𝑒 computes will satisfy Φ.
To improve readability, we often write wp 𝑒 {w. 𝑄} instead of wp 𝑒 {𝜆w. 𝑄}, and we completely

omit the binderw in the postcondition if we do not say anything about the return value.

We will now go over the proof rules for weakest preconditions from Figure 6. The occurrences

of invariant masks (E) in this figure can be ignored for now; we will come back to those in §6.9.

Pure expressions. The simplest proof rules for weakest preconditions are wp-val and wp-pure.

The rule wp-val expresses that if an expression is a value v, then proving wp v {Φ} can be reduced

to proving the postcondition Φ(v). After all, a value v is vacuously safe, and values are results

themselves. The rule wp-pure expresses that if 𝑒1 reduces to 𝑒2 by a pure step (see Figure 3 for the

definition of→pure), then proving wp 𝑒1 {Φ} can be reduced to proving ⊲(wp 𝑒2 {Φ}). The later
modality (⊲) makes the new goal ⊲(wp 𝑒2 {Φ}) weaker (i.e., easier to prove) than wp 𝑒2 {Φ}, since
we have 𝑃 ⊢ ⊲ 𝑃 (⊲-intro). Towards the end of this subsection, we explain the use of the later

modality, but much of the time we can ignore it by applying ⊲-intro.

21
Iris can of course also be used to model substructural type systems, in which the value interpretation J𝐴K(v) will no

longer be persistent, although persistence is useful in Iris for a number of other reasons as well. Examples of substructural

type systems modeled in Iris include the Rust programming language [Jung et al. 2018a, 2021; Jung 2020; Dang et al. 2020]

and session types [Tassarotti et al. 2017; Hinrichsen et al. 2021; Jacobs et al. 2024].
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For example, we can prove wp (if true then () else 42(42)) {v.v = ()} using wp-pure, ⊲-intro,

and wp-val consecutively:

=-refl⊢ () = ( )
wp-val

⊢ wp ( ) {v.v = ( ) }
⊲-intro

⊢ ⊲wp ( ) {v.v = ( ) }
wp-pure

⊢ wp (if true then ( ) else 42(42) ) {v.v = ( ) }

There are a couple of important things we should point out.

First, here and in the following text, we explain the proof trees starting with the conclusion and

applying inference rules bottom-up to reduce it to simpler hypotheses, as one does generally when

mechanizing these proofs in Coq.

Second, to compose proof rules, we implicitly use transitivity of the entailment relation (⊢). For
example, the bottom part of the proof above is actually (recall that ⊢ 𝑃 means True ⊢ 𝑃 ):

· · ·
True ⊢ ⊲wp ( ) {v.v = ( ) }

wp-pure

⊲wp ( ) {v.v = ( ) } ⊢ wp (if true then ( ) else 42(42) ) {v.v = ( ) }
⊢-trans

True ⊢ wp (if true then ( ) else 42(42) ) {v.v = ( ) }

Finally, we note that the weakest precondition in this example is logically equivalent to the

semantic typing judgment ⊨ (if true then () else 42(42)) : 1. We show the proof for one direction

of the equivalence (the other is similar):

J∅Kc
𝛿
(𝛾 ) ⊢ wp (if true then ( ) else 42(42) ) {v.v = ( ) }

unfold J1K
J∅Kc

𝛿
(𝛾 ) ⊢ wp (if true then ( ) else 42(42) )

{
J1K𝛿

}
unfold J_Ke

J∅Kc
𝛿
(𝛾 ) ⊢ J1Ke

𝛿
(if true then ( ) else 42(42) )

𝛾 = ∅ by definition of J∅Kc
𝛿J∅Kc

𝛿
(𝛾 ) ⊢ J1Ke

𝛿
(𝛾 (if true then ( ) else 42(42) ) )

∀-intro, −∗-intro
⊢ ∀𝛿,𝛾 . J∅Kc

𝛿
(𝛾 ) −∗ J1Ke

𝛿
(𝛾 (if true then ( ) else 42(42) ) )

□-intro
⊢ □

(
∀𝛿,𝛾 . J∅Kc

𝛿
(𝛾 ) −∗ J1Ke

𝛿
(𝛾 (if true then ( ) else 42(42) ) )

)
unfold ⊨⊢ ⊨ (if true then ( ) else 42(42) ) : 1

This simple example already demonstrates the flexibility of semantic typing—while the expression

if true then () else 42(42) cannot be typed syntactically due to the presence of the ill-typed

subexpression 42(42), it can be typed semantically because the subexpression 42(42) appears in
the else-branch, which never gets executed.

Composition of proofs of weakest preconditions. Iris provides two important rules to

compose proofs of weakest preconditions:

wp 𝑒
{
w. wp 𝐾 [w] {Φ}

}
⊢ wp 𝐾 [𝑒] {Φ} (wp-bind)

(∀w. Φ(w) −∗ Ψ(w)) ∗ wp 𝑒 {Φ} ⊢ wp 𝑒 {Ψ} (wp-wand)

The rule wp-bind generalizes the sequencing rule of Hoare logic, and wp-wand generalizes the

rules of consequence and framing of separation logic. Concretely, wp-bind expresses that proving a

weakest precondition for𝐾 [𝑒] can be reduced to proving a weakest precondition for 𝑒 , followed by a
weakest precondition for the continuation 𝐾 [w], wherew is the result value of 𝑒 . The rule wp-wand

provides a form of “internal monotonicity”, which allows applying a wand in the postcondition of

the weakest precondition. This rule is interderivable with the more conventional rules for “external

monotonicity” and framing:

wp-mono

∀w.
(
Φ(w) ⊢ Ψ(w)

)
wp 𝑒 {Φ} ⊢ wp 𝑒 {Ψ}

wp-frame

𝑃 ∗ wp 𝑒 {Φ} ⊢ wp 𝑒 {w. 𝑃 ∗ Φ(w)}
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To see the ruleswp-mono andwp-frame in action, assumewe have some expression 𝑒 , for whichwe

already have in hand a proof of the weakest precondition wp 𝑒 {v.v = ()}. To show how this proof

can be reused, suppose we want to establish the weakest precondition wp ((𝜆 𝑥. 𝑥) 𝑒) {v.v = ()}.
This is done as follows:

=-refl⊢ () = ( )
wp-val

⊢ wp ( ) {v.v = ( ) }
⊲-intro

⊢ ⊲wp ( ) {v.v = ( ) }
wp-pure

⊢ wp ( (𝜆 𝑥. 𝑥 ) ( ) ) {v.v = ( ) }
∀-intro, −∗-intro, =-subst

⊢ ∀w. (w = ( ) ) −∗ wp ( (𝜆 𝑥. 𝑥 ) w) {v.v = ( ) }
· · ·

⊢ wp 𝑒 {v.v = ( ) } ∗-mono
⊢ (∀w. (w = ( ) ) −∗ wp ( (𝜆 𝑥. 𝑥 ) w) {v.v = ( ) } ) ∗ wp 𝑒 {v.v = ( ) }

wp-wand

⊢ wp 𝑒
{
w. wp ( (𝜆 𝑥. 𝑥 ) w) {v.v = ( ) }

}
wp-bind

⊢ wp ( (𝜆 𝑥. 𝑥 ) 𝑒 ) {v.v = ( ) }

Here, we use rule wp-bind with the call-by-value evaluation context 𝐾 ≜ (𝜆 𝑥. 𝑥) [ ]. This allows us
to prove a weakest precondition for 𝑒 , followed by a weakest precondition for 𝐾 [w] = (𝜆 𝑥. 𝑥) w,
wherew is the result of 𝑒 . After applying wp-bind, we need to prove a weakest precondition for 𝑒 ,

but the postcondition does not match up with the postcondition of the already proven weakest

precondition wp 𝑒 {v.v = ()}. We therefore apply the rule wp-wand, after which we proceed using

the rules wp-pure and wp-val, as in the previous example.

Hoare-style specifications and stateful expressions. To explain Iris’s weakest precondition

rules for stateful expressions, we first show how conventional Hoare style specifications are written

in Iris. We then explain why we prefer the weakest-precondition style specifications in Figure 6.

The standard Hoare triple {𝑃 } 𝑒 {Φ} can be encoded as 𝑃 ⊢ wp 𝑒 {Φ} (or □(𝑃 −∗ wp 𝑒 {Φ}) if
one wants to allow nested Hoare-triples). The standard rules from separation logic for stateful

expressions [Reynolds 2002; O’Hearn et al. 2001] can be formulated as follows:

{True} refv {𝑢. 𝑢 ∈ Loc ∗ 𝑢 ↦→ v} (hoare-alloc)

{ℓ ↦→ v} ! ℓ {𝑢. 𝑢 = v ∗ ℓ ↦→ v} (hoare-load)

{ℓ ↦→ v} ℓ ←w {𝑢. 𝑢 = () ∗ ℓ ↦→w} (hoare-store)

The rule hoare-alloc says that allocation can be performed in any context (precondition True) and
produces a location that points to the right value (𝑢 ↦→ v in the postcondition). The rule hoare-load

says that, to read from a location ℓ , the location should exist on the heap (precondition ℓ ↦→ v), and
the value that is returned is equal to the stored value (𝑢 = v in the postcondition). We emphasize

that it is necessary to include ℓ ↦→ v in the postcondition as well because ℓ ↦→ v is an ephemeral

proposition, which describes exclusive ownership of the location ℓ—if it were not included in the

postcondition, we would lose the ownership, making it impossible to use ℓ afterwards. The rule

hoare-store is similar: it says that, to write to a location ℓ , the location needs to exist on the heap

(precondition ℓ ↦→ v), and the value is changed accordingly (ℓ ↦→w in the postcondition).

While the above Hoare-style specifications are valid in Iris (and can be derived from the rules in

Figure 6), they are inconvenient in proof trees and Coq proofs. As usual in a weakest-precondition

style system [Dijkstra 1975], we prefer to write the rules so that the postcondition is an arbitrary

predicate Φ and we can apply them in a bottom-up fashion. Inspired by the “backwards” rules for

separation logic by Ishtiaq and O’Hearn [2001], our rules thus adopt the following template:

“precondition” ∗ (“postcondition” −∗ wp “result” {Φ}) ⊢ wp “expression” {Φ}
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The concrete instances for stateful expressions are:

⊲(∀ℓ . ℓ ↦→ v −∗ wp ℓ {Φ}) ⊢ wp refv {Φ} (wp-alloc)

⊲(ℓ ↦→ v ∗ (ℓ ↦→ v −∗ wp v {Φ})) ⊢ wp ! ℓ {Φ} (wp-load)

⊲(ℓ ↦→ v ∗ (ℓ ↦→w −∗ wp () {Φ})) ⊢ wp (ℓ ←w) {Φ} (wp-store)

These rules use the separating conjunction (∗) to express that ownership of the precondition needs

to be given up, and the magic wand (−∗) to express that ownership of the postcondition is given

back and one should continue proving the weakest precondition for the result. For example, the

rule wp-store states that ℓ ↦→ v needs to be given up (where v is the old value stored at ℓ), and

ℓ ↦→w is given in return (wherew is the new value stored at ℓ). Concerning the ⊲ modality, it is

used the same way here as in wp-pure; for more details, see the paragraph on Löb induction below.

Let us see the rule wp-store in action:

𝑃 ∗ ℓ ↦→w ⊢ 𝑃 ∗ ℓ ↦→w −∗-intro
𝑃 ⊢ ℓ ↦→w −∗ (𝑃 ∗ ℓ ↦→w) ℓ ↦→ v ⊢ ℓ ↦→ v ∗-mono

𝑃 ∗ ℓ ↦→ v ⊢ (ℓ ↦→w −∗ (𝑃 ∗ ℓ ↦→w) ) ∗ ℓ ↦→ v ∗-comm

𝑃 ∗ ℓ ↦→ v ⊢ ℓ ↦→ v ∗ (ℓ ↦→w −∗ (𝑃 ∗ ℓ ↦→w) )
⊲-intro

𝑃 ∗ ℓ ↦→ v ⊢ ⊲(ℓ ↦→ v ∗ (ℓ ↦→w −∗ (𝑃 ∗ ℓ ↦→w) ) )
wp-store with Φ(𝑢 ) = 𝑃 ∗ ℓ ↦→w

𝑃 ∗ ℓ ↦→ v ⊢ wp (ℓ ←w) {𝑃 ∗ ℓ ↦→w}

After applying wp-store, we use ∗-mono to give up the hypothesis ℓ ↦→ v—this is often called

“framing out a hypothesis”—and then use −∗-intro to introduce ℓ ↦→ w. To frame out ℓ ↦→ v, we
use commutativity of the separating conjunction (∗) so as to ensure ℓ ↦→ v appears in the same

position on both sides of the entailment relation (⊢). In larger proofs we leave reasoning up to

commutativity (and associativity) implicit because it quickly becomes tedious, and in practice, the

Iris Proof Mode in Coq takes care of it automatically anyway.

We have previously seen how the rule wp-wand makes it possible to compose proofs of pure

expressions. Now let us see how that rule is used for stateful expressions. Suppose we have proved

∀ℓ, 𝑛. ℓ ↦→ 𝑛 −∗ wp (inc ℓ) {w. (w = ()) ∗ ℓ ↦→ 𝑛+1}, (wp-inc)

where inc ≜ 𝜆 𝑥. 𝑥 ← (!𝑥 + 1), and we wish to prove

ℓ ↦→ 𝑛 −∗ wp (inc ℓ ; inc ℓ) {w. (w = ()) ∗ ℓ ↦→ 𝑛+2}.
A proof tree for this example is as follows:

wp-inc

ℓ ↦→ 𝑛+1 ⊢ wp inc ℓ {Φ𝑛+2}
⊲-intro

ℓ ↦→ 𝑛+1 ⊢ ⊲wp inc ℓ {Φ𝑛+2}
wp-pure

ℓ ↦→ 𝑛+1 ⊢ wp ( ( ) ; inc ℓ ) {Φ𝑛+2}
substw

w = ( ) ∗ ℓ ↦→ 𝑛+1 ⊢ wp (w; inc ℓ ) {Φ𝑛+2}
unfold Φ𝑛+1

Φ𝑛+1 (w) ⊢ wp (w; inc ℓ ) {Φ𝑛+2} ∀-intro, −∗-intro
⊢ ∀w. Φ𝑛+1 (w) −∗ wp (w; inc ℓ ) {Φ𝑛+2}

wp-inc

ℓ ↦→ 𝑛 ⊢ wp inc ℓ {Φ𝑛+1} ∗-mono
ℓ ↦→ 𝑛 ⊢ (∀w. Φ𝑛+1 (w) −∗ wp (w; inc ℓ ) {Φ𝑛+2}) ∗ wp inc ℓ {Φ𝑛+1}

wp-wand

ℓ ↦→ 𝑛 ⊢ wp inc ℓ
{
w. wp (w; inc ℓ ) {Φ𝑛+2}

}
wp-bind

ℓ ↦→ 𝑛 ⊢ wp (inc ℓ ; inc ℓ ) {Φ𝑛+2} −∗-intro
⊢ ℓ ↦→ 𝑛 −∗ wp (inc ℓ ; inc ℓ ) {Φ𝑛+2}

Here, we let Φ𝑚 (w) ≜ (w = ()) ∗ ℓ ↦→ 𝑚. To use the specification of inc, we first apply wp-bind

and wp-wand. We use ∗-mono to split the separating conjunction (∗), giving ownership of ℓ ↦→ 𝑛 to

the right branch and no ownership (i.e., True) to the left. The right branch follows immediately

from the specification of inc. In the left branch, we use −∗-intro to obtain ℓ ↦→ 𝑛+1 in the context,

so we can conclude the proof by using the specification of inc again.
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Löb induction and recursive functions. An important feature of Iris is Löb induction:

Löb

⊲ 𝑃 ⊢ 𝑃
⊢ 𝑃

This rule allows one to reason about recursive computations by a kind of implicit induction on

the number of steps they take. Specifically, when proving a goal 𝑃 , Löb induction allows one to

assume ⊲ 𝑃 , which denotes that 𝑃 will hold one step of computation later. Correspondingly, weakest
precondition rules for reasoning about expressions that take a step of computation—such aswp-pure

and wp-store—contain a later modality ⊲ in the premise because the verification of the rest of the

computation (after the first step) need only be valid “later”. As a consequence, after applying such

a rule (backwards) in a program proof, the new goal (i.e., the premise of the rule just applied) will

have the form ⊲𝑄 . By the rule ⊲-mono, one can strip the ⊲ off both the goal (⊲𝑄) and any hypothesis

⊲ 𝑃 that had been previously introduced by Löb induction. From that point on, the Löb induction

hypothesis 𝑃 can be used freely in the remainder of the proof.

To see Löb induction in action, let us prove a weakest precondition for a trivial program that

loops forever, loop ≜ rec 𝑓 (𝑥) = 1 + 𝑓 𝑥 . The specification is wp loop () {False}. We can prove

the postcondition False because the program never returns a value. A proof tree for this example is:

· · ·
wp loop ( ) {False} ⊢ wp 1 + loop ( ) {False}

⊲-mono
⊲wp loop ( ) {False} ⊢ ⊲wp 1 + loop ( ) {False}

wp-pure

⊲wp loop ( ) {False} ⊢ wp loop ( ) {False}
Löb⊢ wp loop ( ) {False}

The Löb rule provides the goal under a later (⊲) as a hypothesis. By taking a step of computation

(loop () →pure 1 + loop ()) using wp-pure, we obtain a new goal wrapped in a ⊲ modality. Using

⊲-mono (instead of ⊲-intro) we obtain the Löb induction hypothesis without ⊲. The remainder of

the proof is routine, using wp-bind and wp-wand.

The later modalities ⊲ in the rules for weakest preconditions (Figure 6) make these rules strictly

stronger. The later modalities signify that a step of computation has been taken, and thereby make

it possible to strip a later off all hypotheses, and in particular the Löb induction hypothesis, as

we have seen in the proof above. If it is not needed to strip off a later, versions of the weakest

precondition rules without the ⊲ can be derived using the rule ⊲-intro.

6.4 Monadic Rules for the Expression Interpretation
To prove the semantic typing rules in the coming sections (§6.5–§6.9), we typically proceed by

unfolding the definition of the semantic typing judgment Γ ⊨ 𝑒 : 𝐴, the expression interpretation

J𝐴Ke
𝛿
(𝑒), and the value interpretation J𝐴K𝛿 (v), to obtain an Iris proposition that we then prove

using Iris’s proof rules. To streamline these proofs, we prove the following auxiliary rules, whose

statements resemble the types of the monadic operators return and bind.

Lemma 6.2 (The monadic rules for the expression interpretation).

J𝐴K𝛿 (v) −∗ J𝐴Ke
𝛿
(v) (logrel-val)

J𝐴Ke
𝛿
(𝑒) ∗

(
∀v. J𝐴K𝛿 (v) −∗ J𝐵Ke

𝛿
(𝐾 [v])

)
−∗ J𝐵Ke

𝛿
(𝐾 [𝑒]) (logrel-bind)

Proof. The rule logrel-val follows by unfolding the expression interpretation and the rule

wp-val. The rule logrel-bind follows by unfolding the expression interpretation and a combination
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of wp-bind and wp-wand. The proof is visualized in the following proof tree:

wp-wand

wp 𝑒
{
J𝐴K𝛿

}
∗
(
∀v. J𝐴K𝛿 (v) −∗ wp 𝐾 [v ]

{
J𝐵K𝛿

})
⊢ wp 𝑒

{
v. wp 𝐾 [v ]

{
J𝐵K𝛿

}}
wp-bind

wp 𝑒
{
J𝐴K𝛿

}
∗
(
∀v. J𝐴K𝛿 (v) −∗ wp 𝐾 [v ]

{
J𝐵K𝛿

})
⊢ wp 𝐾 [𝑒 ]

{
J𝐵K𝛿

}
unfold J_Ke

J𝐴Ke
𝛿
(𝑒 ) ∗

(
∀v. J𝐴K𝛿 (v) −∗ J𝐵Ke

𝛿
(𝐾 [v ] )

)
⊢ J𝐵Ke

𝛿
(𝐾 [𝑒 ] ) □

The logrel-bind rule is particularly useful in the proofs of semantic typing rules because it

enables us to “zap” an unknown but semantically well-typed term to a semantically well-typed

value and proceed with the proof. Specifically, suppose we are trying to establish a goal of the

form J𝐴Ke
𝛿
(𝑒) ∗ 𝑃 ⊢ J𝐵Ke

𝛿
(𝐾 [𝑒]). That is, we want to prove that 𝐾 [𝑒] is semantically well-typed at

type 𝐵, and we have by assumption that the first subexpression to be evaluated (𝑒) is semantically

well-typed at type 𝐴. Now, if we knew what 𝑒 was, then we could proceed by evaluating it, but

often when proving semantic typing rules, we do not know what 𝑒 is (i.e., it is universally quantified
by the typing rule), so it may seem the proof is stuck. Fortunately, in these cases, we can instead

apply the logrel-bind rule to reduce the goal to one in which the occurrences of the unknown 𝑒

are “zapped” to (i.e., replaced by) an unknown value v:
J𝐴K𝛿 (v) ∗ 𝑃 ⊢ J𝐵Ke

𝛿
(𝐾 [v ] )

∀-intro, −∗-intro
𝑃 ⊢ ∀v. J𝐴K𝛿 (v) −∗ J𝐵Ke

𝛿
(𝐾 [v ] )

∗-mono
J𝐴Ke

𝛿
(𝑒 ) ∗ 𝑃 ⊢ J𝐴Ke

𝛿
(𝑒 ) ∗ (∀v. J𝐴K𝛿 (v) −∗ J𝐵Ke

𝛿
(𝐾 [v ] )

logrel-bind

J𝐴Ke
𝛿
(𝑒 ) ∗ 𝑃 ⊢ J𝐵Ke

𝛿
(𝐾 [𝑒 ] )

We can then proceed by unfolding the definition of J𝐴K𝛿 (v), which typically yields information

about v that allows us to make progress in evaluating 𝐾 [v].
In the following sections, we will use the above proof pattern repeatedly and refer to it simply as

“zap the goal using logrel-bind”.

6.5 Variables and Ground Types
We are now ready to start proving semantic versions of the typing rules of MyLang. Let us begin
with the rules for variables and ground types. The semantic typing rule for variables is as follows:

S-var

𝑥 : 𝐴 ∈ Γ
Γ ⊨ 𝑥 : 𝐴

Proof of S-var. The proof follows almost immediately from the way we defined the semantic

typing judgment. Unfolding Γ ⊨ 𝑥 : 𝐴, our goal becomes to show JΓKc
𝛿
(𝛾) −∗ J𝐴Ke

𝛿
(𝛾 (𝑥)) for any

semantic environment 𝛿 and closing substitution 𝛾 . From 𝑥 : 𝐴 ∈ Γ, we obtain that JΓKc
𝛿
(𝛾) entails

J𝐴K𝛿 (𝛾 (𝑥)). Since 𝛾 (𝑥) is a value, we conclude by logrel-val from Lemma 6.2. □

Let us proceed with the ground types, whose value interpretations we recall from Figure 5:

J1K𝛿 ≜ 𝜆v.v = () JZK𝛿 ≜ 𝜆v.v ∈ Z J2K𝛿 ≜ 𝜆v.v ∈ {true, false}
As explained in §5.1, these interpretations are exactly what one would expect: the only value of

the unit type 1 is the unit value (), the values of the Boolean type 2 are true and false, and the

values of the integer type Z are the integer literals Z. The semantic typing rules for introduction of

these types are as follows:

S-unit

Γ ⊨ () : 1

S-int

𝑛 ∈ Z
Γ ⊨ 𝑛 : Z

S-bool

𝑏 ∈ {true, false}
Γ ⊨ 𝑏 : 2
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Proof of S-unit, S-int and S-bool. These semantic typing rules are proven by unfolding the

definition of the semantic typing judgment and making use of the rule logrel-val. For example,

Γ ⊨ () : 1 unfolds to JΓKc
𝛿
(𝛾) −∗ J1Ke

𝛿
(𝛾 ()) for any semantic environment 𝛿 and closing substitution𝛾 .

Since the unit value () is closed, we have 𝛾 () = (). Hence the expression interpretation J1Ke
𝛿
(𝛾 ())

can be reduced to J1Ke
𝛿
(), which in turn can be reduced to the value interpretation J1K𝛿 () by

logrel-val. The value interpretation J1K𝛿 () unfolds to () = (), which is a tautology. □

While the proofs of the preceding rules follow almost immediately from unfolding the definition

of the typing judgment, the next rules are more interesting to prove:

S-if

Γ ⊨ 𝑒 : 2 Γ ⊨ 𝑒1 : 𝐵 Γ ⊨ 𝑒2 : 𝐵

Γ ⊨ if 𝑒 then 𝑒1 else 𝑒2 : 𝐵

S-fork

Γ ⊨ 𝑒 : 𝐴

Γ ⊨ fork {𝑒} : 1

Proof of S-if. We first prove the following auxiliary result for closed expressions:

J2Ke
𝛿
(𝑒) ∗ J𝐵Ke

𝛿
(𝑒1) ∗ J𝐵Ke

𝛿
(𝑒2) −∗ J𝐵Ke

𝛿
(if 𝑒 then 𝑒1 else 𝑒2)

Here is a proof tree for the auxiliary result:

wp 𝑒1

{
J𝐵K𝛿

}
∗ wp 𝑒2

{
J𝐵K𝛿

}
⊢ wp 𝑒1

{
J𝐵K𝛿

}
wp-pure, ⊲-intro

wp 𝑒1

{
J𝐵K𝛿

}
∗ wp 𝑒2

{
J𝐵K𝛿

}
⊢ wp if true then 𝑒1 else 𝑒2

{
J𝐵K𝛿

} . . .

case for false

v ∈ {true, false} ∗ wp 𝑒1

{
J𝐵K𝛿

}
∗ wp 𝑒2

{
J𝐵K𝛿

}
⊢ wp ifv then 𝑒1 else 𝑒2

{
J𝐵K𝛿

}
unfold J2K

J2K𝛿 (v) ∗ wp 𝑒1

{
J𝐵K𝛿

}
∗ wp 𝑒2

{
J𝐵K𝛿

}
⊢ wp ifv then 𝑒1 else 𝑒2

{
J𝐵K𝛿

}
unfold J_Ke

J2K𝛿 (v) ∗ J𝐵Ke
𝛿
(𝑒1 ) ∗ J𝐵Ke

𝛿
(𝑒2 ) ⊢ J𝐵Ke

𝛿
(ifv then 𝑒1 else 𝑒2 )

logrel-bind

J2Ke
𝛿
(𝑒 ) ∗ J𝐵Ke

𝛿
(𝑒1 ) ∗ J𝐵Ke

𝛿
(𝑒2 ) ⊢ J𝐵Ke

𝛿
(if 𝑒 then 𝑒1 else 𝑒2 )

Reading this proof tree bottom-up, we zap the goal using logrel-bind (as discussed in §6.4) with

evaluation context 𝐾 ≜ if [ ] then 𝑒1 else 𝑒2. This turns the premise J2Ke
𝛿
(𝑒) into J2K𝛿 (v), where

v is an unknown value, and leaves us with the subgoal J𝐵Ke
𝛿
(ifv then 𝑒1 else 𝑒2). After that, we

unfold the definitions of J2K and J𝐵Ke, and perform a case analysis on v ∈ {true, false}. In both

cases, we then use wp-pure to take a pure step to either 𝑒1 or 𝑒2, which satisfy J𝐵Ke
𝛿
by assumption.

To prove the actual semantic typing rule S-if, we unfold the definition of the semantic typing

judgment Γ ⊨ if 𝑒 then 𝑒1 else 𝑒2 : 𝐵, which shows that we have to prove that

JΓKc
𝛿
(𝛾) −∗ J𝐵Ke

𝛿
(if𝛾 (𝑒) then𝛾 (𝑒1) else𝛾 (𝑒2))

follows from the assumptions Γ ⊨ 𝑒 : 2 and Γ ⊨ 𝑒1 : 𝐵 and Γ ⊨ 𝑒2 : 𝐵, which unfold to

JΓKc
𝛿
(𝛾) −∗ J2Ke

𝛿
(𝛾 (𝑒)) and JΓKc

𝛿
(𝛾) −∗ J𝐵Ke

𝛿
(𝛾 (𝑒1)) and JΓKc

𝛿
(𝛾) −∗ J𝐵Ke

𝛿
(𝛾 (𝑒2)).

Since the interpretation JΓKc
𝛿
(𝛾) of typing contexts is persistent, we can duplicate it. Our goal then

follows from the auxiliary result J2Ke
𝛿
(𝑒) ∗ J𝐵Ke

𝛿
(𝑒1) ∗ J𝐵Ke

𝛿
(𝑒2) −∗ J𝐵Ke

𝛿
(if 𝑒 then 𝑒1 else 𝑒2) for

closed expressions that we proved above. □

A note about proofs. For all the semantic typing rules that follow, we (1) prove an auxiliary

result about closed expressions, and (2) prove the semantic typing rule as a corollary. Step (1) is the

interesting part, whereas step (2) involves just threading through the context interpretation. From

now on, we only show step (2) and omit step (1). On a related note, our Coq tactics perform step (2)

mostly automatically, so for example, the mechanized proof of S-if is only 4 lines long.

Proof of S-fork. We prove the following auxiliary result for closed expressions, from which

the semantic typing rule follows immediately:

J𝐴Ke
𝛿
(𝑒) −∗ J1Ke

𝛿
(fork {𝑒})
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Below there follows a proof tree for the auxiliary result:

=-refl⊢ () = ( )
unfold J1K

⊢ J1K𝛿 ( )
wp-val

⊢ wp ( )
{
J1K𝛿

} ⊢ ∀v. J𝐴K𝛿 (v) −∗ True
wp-wand

wp 𝑒
{
J𝐴K𝛿

}
⊢ wp 𝑒 {True}

∗-mono
wp 𝑒

{
J𝐴K𝛿

}
⊢ wp ( )

{
J1K𝛿

}
∗ wp 𝑒 {True}

wp-fork, ⊲-intro
wp 𝑒

{
J𝐴K𝛿

}
⊢ wp fork {𝑒 }

{
J1K𝛿

}
unfold J_Ke

J𝐴Ke
𝛿
(𝑒 ) ⊢ J1Ke

𝛿
(fork {𝑒 })

The key part of this proof relies on the fork rule of the Iris instance for MyLang:

⊲(wp () {Φ} ∗ wp 𝑒 {True}) ⊢ wp fork {𝑒} {Φ} (wp-fork)

This rule says that to prove a weakest precondition for fork {𝑒}, we need to prove a weakest

precondition wp () {Φ} for the main thread separately from a weakest precondition wp 𝑒 {True}
for the forked-off thread. Note that a forked-off expression is allowed to return any value since its

result is thrown away, hence the postcondition is simply True. □

Neither the proof of S-fork, nor that of other semantic typing rules, involves explicit reasoning

about the thread-pool semantics. This kind of reasoning is hidden by working in the Iris logic.

6.6 Product, Sum, and Function Types
Recall from Figure 5 the value interpretation for product, sum, and function types:

J𝐴1 ×𝐴2K𝛿 ≜ 𝜆v. ∃v1,v2 . (v = (v1,v2)) ∗ J𝐴1K𝛿 (v1) ∗ J𝐴2K𝛿 (v2)
J𝐴1 +𝐴2K𝛿 ≜ 𝜆v.

∨
𝑖∈{1,2} ∃w. (v = inj𝑖 w) ∗ J𝐴𝑖K𝛿 (w)

J𝐴→ 𝐵K𝛿 ≜ 𝜆v. □
(
∀w. J𝐴K𝛿 (w) −∗ J𝐵Ke

𝛿
(v w)

)
As explained in §5.1, values of𝐴1×𝐴2 are tuples (v1,v2), wherev1 andv2 are in the interpretations of

𝐴1 and𝐴2, respectively. Values of𝐴1+𝐴2 are either inj1
w or inj

2
w, wherew is in the interpretation

of 𝐴1 or 𝐴2, respectively. Values of 𝐴→ 𝐵 are functions v that map arguments in the interpretation

of 𝐴 to results v w in the interpretation of 𝐵. Recall from §6.2 that the □ modality is used to make

the interpretation of the function type 𝐴→ 𝐵 persistent.

For products and sums, we prove semantic typing rules corresponding to the syntactic typing

rules T-pair, T-proj, T-inj, T-match-sum. The proofs proceed in a similar way to the proofs we have

seen in §6.5. More interesting are the rules for functions:

S-app

Γ ⊨ 𝑒1 : 𝐴→ 𝐵 Γ ⊨ 𝑒2 : 𝐴

Γ ⊨ 𝑒1 𝑒2 : 𝐵

S-rec

Γ, 𝑥 : 𝐴, 𝑓 : 𝐴→ 𝐵 ⊨ 𝑒 : 𝐵

Γ ⊨ rec 𝑓 (𝑥) = 𝑒 : 𝐴→ 𝐵

Proof of S-app. As in the proofs in §6.5, we show just the auxiliary result that we prove for

closed expressions, from which S-app follows immediately:

J𝐴→ 𝐵Ke
𝛿
(𝑒1) ∗ J𝐴Ke

𝛿
(𝑒2) −∗ J𝐵Ke

𝛿
(𝑒1 𝑒2)

Here is a proof tree for this auxiliary result:

−∗-elim on LHS(
J𝐴K𝛿 (v2 ) −∗ J𝐵Ke

𝛿
(v1 v2 )

)
∗ J𝐴K𝛿 (v2 ) ⊢ J𝐵Ke

𝛿
(v1 v2 )

□-elim, ∀-elim on LHS

□
(
∀w. J𝐴K𝛿 (w) −∗ J𝐵Ke

𝛿
(v1 w)

)
∗ J𝐴K𝛿 (v2 ) ⊢ J𝐵Ke

𝛿
(v1 v2 )

unfold J𝐴→ 𝐵K
J𝐴→ 𝐵K𝛿 (v1 ) ∗ J𝐴K𝛿 (v2 ) ⊢ J𝐵Ke

𝛿
(v1 v2 )

logrel-bind

J𝐴→ 𝐵K𝛿 (v1 ) ∗ J𝐴Ke
𝛿
(𝑒2 ) ⊢ J𝐵Ke

𝛿
(v1 𝑒2 )

logrel-bind

J𝐴→ 𝐵Ke
𝛿
(𝑒1 ) ∗ J𝐴Ke

𝛿
(𝑒2 ) ⊢ J𝐵Ke

𝛿
(𝑒1 𝑒2 )
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Reading this proof tree bottom-up, we zap the goal using logrel-bind twice (following the scheme

we described in §6.4), first for 𝑒1 in context 𝐾 ≜ [ ] 𝑒2, and then for 𝑒2 in context 𝐾 ≜ v1 [ ]. The last
step truly demonstrates why “logical relations” are called “logical”—we use Iris’s modus ponens

rule (𝑄 −∗ 𝑅) ∗𝑄 ⊢ 𝑅 (−∗-elim) to eliminate the magic wand that appears in the interpretation of the

function type 𝐴→ 𝐵. □

Proof of S-rec. The auxiliary result for closed expressions is as follows:

□
(
∀wv. J𝐴K𝛿 (w) ∗ J𝐴→ 𝐵K𝛿 (v) −∗ J𝐵Ke

𝛿
(𝑒 [w/𝑥] [v/𝑓 ])

)
−∗ J𝐴→ 𝐵Ke

𝛿
(rec 𝑓 (𝑥) = 𝑒)

This says that rec 𝑓 (𝑥) = 𝑒 is in the interpretation of𝐴→ 𝐵 if, for all valuesw in the interpretation

of 𝐴 and for all values v in the interpretation of the recursive call of 𝐴 → 𝐵, we have that

𝑒 [w/𝑥] [v/𝑓 ] in the interpretation of 𝐴→ 𝐵.

Let us abbreviate 𝑃 ≜ □
(
∀wv. J𝐴K𝛿 (w) ∗ J𝐴→ 𝐵K𝛿 (v) −∗ J𝐵Ke

𝛿
(𝑒 [w/𝑥] [v/𝑓 ])

)
. The proof of the

auxiliary result is as follows:

unfold J_Ke
J𝐵Ke

𝛿
(𝑒 [w/𝑥 ] [rec 𝑓 (𝑥 ) = 𝑒/𝑓 ] ) ⊢ wp 𝑒 [w/𝑥 ] [rec 𝑓 (𝑥 ) = 𝑒/𝑓 ]

{
J𝐵K𝛿

}
□-elim, ∀-elim, −∗-elim in 𝑃

𝑃 ∗ J𝐴K𝛿 (w) ∗ J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥 ) = 𝑒 ) ⊢ wp 𝑒 [w/𝑥 ] [rec 𝑓 (𝑥 ) = 𝑒/𝑓 ]
{
J𝐵K𝛿

}
⊲-mono

𝑃 ∗ J𝐴K𝛿 (w) ∗ ⊲J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥 ) = 𝑒 ) ⊢ ⊲wp 𝑒 [w/𝑥 ] [rec 𝑓 (𝑥 ) = 𝑒/𝑓 ]
{
J𝐵K𝛿

}
wp-pure

𝑃 ∗ J𝐴K𝛿 (w) ∗ ⊲J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥 ) = 𝑒 ) ⊢ wp (rec 𝑓 (𝑥 ) = 𝑒 ) w
{
J𝐵K𝛿

}
□-intro, ∀-intro,
−∗-intro

𝑃 ∗ ⊲J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥 ) = 𝑒 ) ⊢ □
(
∀w. J𝐴K𝛿 (w) −∗ wp (rec 𝑓 (𝑥 ) = 𝑒 ) w

{
J𝐵K𝛿

})
unfold J𝐴→ 𝐵K, J_Ke

𝑃 ∗ ⊲J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥 ) = 𝑒 ) ⊢ J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥 ) = 𝑒 )
Löb

𝑃 ⊢ J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥 ) = 𝑒 )
logrel-val

𝑃 ⊢ J𝐴→ 𝐵Ke
𝛿
(rec 𝑓 (𝑥 ) = 𝑒 )

The key step of this proof is the use of the rule Löb for Löb induction, using which we obtain

the induction hypothesis (IH) ⊲J𝐴→ 𝐵K𝛿 (rec 𝑓 (𝑥) = 𝑒). Subsequently, we proceed by unfolding

the value interpretation of the function type 𝐴 → 𝐵, after which we obtain the resulting goal

□
(
∀w. J𝐴K𝛿 (w) −∗ wp (rec 𝑓 (𝑥) = 𝑒) w

{
J𝐵K𝛿

})
. We then introduce the □ modality, universal

quantifier, and magic wand, and use wp-pure to reduce (rec 𝑓 (𝑥) = 𝑒) w to 𝑒 [w/𝑥] [v/𝑓 ] by
performing a step of computation. As a result of that, we obtain a later modality ⊲ in our goal,

allowing us to use ⊲-mono to obtain the IH now (i.e., without ⊲). We then eliminate the magic wand

connectives in the premise 𝑃 ≜ □
(
∀wv. J𝐴K𝛿 (w) ∗ J𝐴→ 𝐵K𝛿 (v) −∗ J𝐵Ke

𝛿
(𝑒 [w/𝑥] [v/𝑓 ])

)
to obtain

J𝐵Ke
𝛿
(𝑒 [w/𝑥] [rec 𝑓 (𝑥) = 𝑒/𝑓 ]), which matches our goal exactly. □

A formal note. The primitive version of Iris’s rule Löb is restricted to the empty context (i.e.,
the LHS of the entailment ⊢ should be True). However, in the above proof, the context is non-empty

(it contains 𝑃 ). We therefore in fact use the following derived rule:

𝑃 ∗ ⊲𝑄 ⊢ 𝑄 persistent(𝑃)
𝑃 ⊢ 𝑄

The primitive version of ⊲-mono allows us to introduce a later if the entire context is below a later.

In the above proof this is not the case, and we thus use the following derived rule:

𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ∗ ⊲𝑄 ⊢ ⊲𝑅

This rule is derived by using ⊲-intro and ⊲-sep to turn the context 𝑃 ∗ ⊲𝑄 into ⊲(𝑃 ∗ 𝑄), which
makes it possible to use the primitive ⊲-mono.
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6.7 Universal and Existential Types
Recall from Figure 5 the value interpretation for universal and existential types:

J𝛼K𝛿 ≜ 𝛿 (𝛼)
J∀𝛼. 𝐴K𝛿 ≜ 𝜆v. □

(
∀(Ψ : Val→ iProp□). J𝐴Ke

𝛿,𝛼 ↦→Ψ (v⟨⟩)
)

J∃𝛼. 𝐴K𝛿 ≜ 𝜆v. ∃(Ψ : Val→ iProp□). ∃w. (v = pack⟨w⟩) ∗ J𝐴K𝛿,𝛼 ↦→Ψ (w)

As explained in §5.1, the semantic environment 𝛿 maps the free type variables to their semantic

value interpretations—hence, J𝛼K𝛿 = 𝛿 (𝛼). The value interpretations of ∀𝛼. 𝐴 and ∃𝛼. 𝐴 quantify

over a semantic type Ψ : Val→ iProp□ using Iris’s universal and existential quantifiers, respectively.

Within the quantification, they extend the semantic environment 𝛿 of the value interpretation of 𝐴

to map 𝛼 to Ψ. Note that since the expression J𝐴Ke
𝛿,𝛼 ↦→Ψ

(v⟨⟩) is not persistent (it is defined in terms

of a weakest precondition, which is not persistent), we wrap the value interpretation of ∀𝛼. 𝐴 in a

persistence modality □ to ensure it is persistent.

The proofs of the semantic typing rules corresponding to T-tapp, T-tlam, T-pack, and T-match-ex

crucially rely on Iris’s rules for quantifiers. We additionally need the standard substitution lemma

for logical relations, which says that substitution in types corresponds to extending the semantic

type environment.

Lemma 6.3. J𝐴[𝐵/𝛼]K𝛿 = J𝐴K𝛿,𝛼 ↦→J𝐵K𝛿 and J𝐴[𝐵/𝛼]Ke
𝛿
= J𝐴Ke

𝛿,𝛼 ↦→J𝐵K𝛿
.

Proof. Both results are proven mutually by induction on the structure of 𝐴. □

Now let us show the proofs for the elimination and introduction rules for universal types:

S-tapp

Γ ⊨ 𝑒 : ∀𝛼. 𝐴
Γ ⊨ 𝑒 ⟨⟩ : 𝐴[𝐵/𝛼]

S-tlam

Γ ⊨ 𝑒 : 𝐴

Γ ⊨ Λ. 𝑒 : ∀𝛼. 𝐴

Proof of S-tapp. Following the usual approach, we first prove an auxiliary result for closed

expressions:

J∀𝛼. 𝐴Ke
𝛿
(𝑒) −∗ J𝐴Ke

𝛿,𝛼 ↦→J𝐵K𝛿
(𝑒 ⟨⟩)

The proof tree is as follows:

□-elim, ∀-elim
□
(
∀(Ψ : Val→ iProp□ ) . J𝐴Ke

𝛿,𝛼 ↦→Ψ
(v⟨⟩)

)
⊢ J𝐴Ke

𝛿,𝛼 ↦→J𝐵K𝛿
(v⟨⟩)

unfold J∀𝛼. 𝐴K
J∀𝛼. 𝐴K𝛿 (v) ⊢ J𝐴Ke

𝛿,𝛼 ↦→J𝐵K𝛿
(v⟨⟩)

logrel-bind

J∀𝛼. 𝐴Ke
𝛿
(𝑒 ) ⊢ J𝐴Ke

𝛿,𝛼 ↦→J𝐵K𝛿
(𝑒 ⟨⟩)

The key step of this proof is the elimination of the universally quantified semantic type Ψ, which
employs the standard elimination rule of the universal quantifier in higher-order logic. This again

demonstrates why “logical relations” are called “logical”.

To prove the actual semantic typing rule S-tapp, we unfold the definition of the semantic typing

judgment, and see that we must prove that

JΓKc
𝛿
(𝛾) −∗ J𝐴[𝐵/𝛼]Ke

𝛿
(𝛾 (𝑒)⟨⟩)

follows from the assumption

JΓKc
𝛿
(𝛾) −∗ J∀𝛼. 𝐴Ke

𝛿
(𝛾 (𝑒)) .

This result follows by threading through JΓKc
𝛿
(𝛾), Lemma 6.3, and the auxiliary result for closed

expressions that we proved above. □
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Proof of S-tlam. The auxiliary result for closed expressions is as follows:

□
(
∀(Ψ : Val→ iProp□) . J𝐴Ke

𝛿,𝛼 ↦→Ψ (𝑒)
)
−∗ J∀𝛼. 𝐴Ke

𝛿
(Λ. 𝑒)

The proof tree is as follows:

unfold J_Ke
J𝐴Ke

𝛿,𝛼 ↦→Ψ
(𝑒 ) ⊢ wp 𝑒

{
J𝐴K𝛿,𝛼 ↦→Ψ

}
wp-pure, ⊲-intro

J𝐴Ke
𝛿,𝛼 ↦→Ψ

(𝑒 ) ⊢ wp (Λ. 𝑒 ) ⟨⟩
{
J𝐴K𝛿,𝛼 ↦→Ψ

}
□-mono, ∀-mono

□
(
∀(Ψ : Val→ iProp□ ) . J𝐴Ke

𝛿,𝛼 ↦→Ψ
(𝑒 )

)
⊢ □

(
∀(Ψ : Val→ iProp□ ) . wp (Λ. 𝑒 ) ⟨⟩

{
J𝐴K𝛿,𝛼 ↦→Ψ

})
unfold J∀𝛼. 𝐴K
and J_Ke on RHS

□
(
∀(Ψ : Val→ iProp□ ) . J𝐴Ke

𝛿,𝛼 ↦→Ψ
(𝑒 )

)
⊢ J∀𝛼. 𝐴K𝛿 (Λ. 𝑒 )

logrel-val

□
(
∀(Ψ : Val→ iProp□ ) . J𝐴Ke

𝛿,𝛼 ↦→Ψ
(𝑒 )

)
⊢ J∀𝛼. 𝐴Ke

𝛿
(Λ. 𝑒 ) □

6.8 Recursive Types
Recall from Figure 5 the value interpretation for recursive types:

J𝜇𝛼. 𝐴K𝛿 ≜ 𝜇 (Ψ : Val→ iProp□). 𝜆v. ∃w. (v = foldw) ∗ ⊲J𝐴K𝛿,𝛼 ↦→Ψ (w)

As explained in §5.1, the interpretation of recursive types (𝜇𝛼. 𝐴) uses Iris’s guarded fixed-point
operator (𝜇 𝑥 . 𝑡 ), which can be used to define recursive predicates without a restriction on the

variance of the recursive occurrences of 𝑥 in 𝑡 . Instead, all recursive occurrences of 𝑥 must be

guarded, i.e., they have to appear below a later modality (⊲). In the above definition this means that

J𝐴K𝛿,𝛼 ↦→Ψ (w) must appear below a later. The later makes a proposition weaker—we have 𝑃 ⊢ ⊲ 𝑃
(see ⊲-intro), but not the inverse (indeed, that would make the logic inconsistent). However, having

J𝐴K𝛿,𝛼 ↦→Ψ (w) below a later is strong enough for proving the semantic typing rules:

S-fold

Γ ⊨ 𝑒 : 𝐴[𝜇𝛼. 𝐴/𝛼]
Γ ⊨ fold 𝑒 : 𝜇𝛼. 𝐴

S-unfold

Γ ⊨ 𝑒 : 𝜇𝛼. 𝐴

Γ ⊨ unfold 𝑒 : 𝐴[𝜇𝛼. 𝐴/𝛼]
As we will see, the proof of S-fold uses rule ⊲-intro, i.e., 𝑃 ⊢ ⊲ 𝑃 , while the proof of S-unfold

crucially relies on the fact that a computation step is performed to strip off the later.

The proofs of the semantic typing rules use the following unfolding lemma.

Lemma 6.4. J𝜇𝛼. 𝐴K𝛿 (v) =
(
∃w. (v = foldw) ∗ ⊲J𝐴[𝜇𝛼. 𝐴/𝛼]K𝛿 (w)

)
.

Proof. By definition of J𝜇𝛼. 𝐴K and 𝜇-unfold we obtain J𝜇𝛼. 𝐴K𝛿 (v) =
(
∃w. (v = foldw) ∗

⊲J𝐴K𝛿,𝛼 ↦→J𝜇𝛼. 𝐴K𝛿 (w)
)
, which in turn by Lemma 6.3 concludes the proof. □

Proof of S-fold. The auxiliary result for closed expressions is as follows:

J𝐴[𝜇𝛼. 𝐴/𝛼]Ke
𝛿
(𝑒) −∗ J𝜇𝛼. 𝐴Ke

𝛿
(fold 𝑒)

Below there follows a proof tree for the auxiliary result:

⊲-intro
J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (v) ⊢ ⊲J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (v) ∃-intro (w ≜ v), =-refl
J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (v) ⊢ ∃w. (foldv = foldw) ∗ ⊲J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (w)

Lemma 6.4 on RHS

J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (v) ⊢ J𝜇𝛼. 𝐴K𝛿 (foldv)
logrel-val

J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (v) ⊢ J𝜇𝛼. 𝐴Ke
𝛿
(foldv)

logrel-bind

J𝐴[𝜇𝛼. 𝐴/𝛼 ]Ke
𝛿
(𝑒 ) ⊢ J𝜇𝛼. 𝐴Ke

𝛿
(fold 𝑒 ) □

Proof of S-unfold. The auxiliary result for closed expressions is as follows:

J𝜇𝛼. 𝐴Ke
𝛿
(𝑒) −∗ J𝐴[𝜇𝛼. 𝐴/𝛼]Ke

𝛿
(unfold 𝑒)



1:40 Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal

Below there follows a proof tree for the auxiliary result:

wp-val

J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (w) ⊢ wpw
{
J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿

}
⊲-mono

⊲J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (w) ⊢ ⊲wpw
{
J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿

}
wp-pure

⊲J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (w) ⊢ wp unfold (foldw)
{
J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿

}
unfold J_Ke

⊲J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (w) ⊢ J𝐴[𝜇𝛼. 𝐴/𝛼 ]Ke
𝛿
(unfold (foldw) )

∃-elim, =-subst
∃w. (v = foldw) ∗ ⊲J𝐴[𝜇𝛼. 𝐴/𝛼 ]K𝛿 (w) ⊢ J𝐴[𝜇𝛼. 𝐴/𝛼 ]Ke

𝛿
(unfoldv)

Lemma 6.4 on LHS

J𝜇𝛼. 𝐴Ke
𝛿
(v) ⊢ J𝐴[𝜇𝛼. 𝐴/𝛼 ]Ke

𝛿
(unfoldv)

logrel-bind

J𝜇𝛼. 𝐴Ke
𝛿
(𝑒 ) ⊢ J𝐴[𝜇𝛼. 𝐴/𝛼 ]Ke

𝛿
(unfold 𝑒 )

The key step of this proof is the use of rule wp-pure, whose premise contains a later, and thus allows

stripping the later off of the hypothesis ⊲J𝐴[𝜇𝛼. 𝐴/𝛼]K𝛿 (w) using ⊲-mono. □

It is worth noting that neither the proofs in this section, nor the proofs of any other semantic

typing rule, involve explicit reasoning about step-indices. The only place where step-indexed

reasoning pops up is in a few judicious applications of the later modality.

6.9 Reference Types
Recall from Figure 5 the value interpretation for reference types:

Jref𝐴K𝛿 ≜ 𝜆v. ∃(ℓ : Loc). (v = ℓ) ∗ ∃w. ℓ ↦→w ∗ J𝐴K𝛿 (w)
Nℓ

As explained in §5.1, values of the reference type ref𝐴 should be memory locations ℓ at which

the valuew stored may change over time but is always of type 𝐴. This definition uses the points-to
connective ℓ ↦→ v (from vanilla separation logic), which asserts exclusive ownership of the location

ℓ storing value v, and Iris’s invariant assertion 𝑃
N
, which expresses that a proposition 𝑃 holds

invariantly—i.e., at all times. As explained in §6.2, ℓ ↦→ v asserts exclusive ownership and is thus

an ephemeral (non-persistent) proposition. By wrapping it in an invariant, we obtain a persistent

proposition, which is thus freely duplicable.

The formal rules for invariants in Iris (inv-alloc, inv-persist, and inv-open-wp) can be found in

Figure 7. Before we go into detail about these rules, let us informally explain the high-level roadmap

for how one reasons about invariants in Iris:

(1) Invariant allocation: At any moment in an Iris proof, if one can assert ownership of a

proposition 𝑃 , one can give this up in exchange for creating an invariant 𝑃
N
(the invariant

namespaceN can be ignored for now). This can be understood as a form of ownership transfer :
𝑃 is being transferred from one’s private state (i.e., the private state of the thread whose code

one is verifying) to the shared state (i.e., state shared by all threads). This ownership transfer

to obtain an invariant is called allocating an invariant.

(2) Invariant duplication: The upside of creating an invariant is that it enables one to take an

ephemeral proposition (describing exclusive ownership of some state) and make it accessible

to multiple threads at the same time. As explained above, this is achieved by the fact that the

invariant assertion 𝑃
N
is persistent: after an invariant has been allocated, it can be freely

duplicated and thus shared among multiple threads.

(3) Invariant access: The downside of turning 𝑃 into an invariant is that no thread has unfettered
access to 𝑃 anymore because it has become a shared resource. Rather, each thread may only

access the resource governed by the invariant in a carefully restricted way: during any atomic
step of computation, a thread may acquire exclusive ownership of 𝑃 so long as it gives 𝑃 back

by the end of that step. Atomicity of invariant access is essential for soundness of invariants

because, in between acquiring and releasing ownership of 𝑃 , the thread does have exclusive
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ownership, so it may in fact temporarily break the invariant (by falsifying 𝑃 ). But since this

temporary breaking of the invariant only occurs within the reasoning about an atomic step

of computation, no other threads can observe it, so it does not cause any problems. We refer

to the acquisition and release of the ownership of the contents of an invariant as the opening
and closing of the invariant.

Opening and closing invariants. Iris’s rule for opening invariants is inv-open-wp (the other

rule for opening invariants, inv-open-upd, will be discussed in §7):

inv-open-wp

atomic(𝑒) N ↑ ⊆ E

𝑃
N ∗

(
⊲ 𝑃 −∗ wpE\N↑ 𝑒 {v. ⊲ 𝑃 ∗ Φ(v)}

)
⊢ wpE 𝑒 {Φ}

This rule is quite a mouthful, so let us go over it piece by piece.When proving a weakest precondition

of an atomic expression 𝑒 , this rule allows one to temporarily acquire exclusive ownership of 𝑃 for

the duration of the atomic step. Using the magic wand, one acquires ⊲ 𝑃 as an additional resource

that can be used for proving the weakest precondition. In turn, in the postcondition of the weakest

precondition, one has to restore ⊲ 𝑃 . The side-condition atomic(𝑒) makes sure the rule is only used

for physically atomic expressions, i.e., expressions 𝑒 that take at most one step of computation:
22

atomic(𝑒) ≜ ∀𝜎, 𝜎 ′, 𝑒′ . (𝜎, 𝑒) →t (𝜎 ′, 𝑒′) ⇒ 𝑒′ ∈ Val
Examples of physically atomic expressions are refv, ! ℓ , ℓ ← v, FAA(ℓ,v), and CAS(ℓ,v1,v2).

Later modalities and impredicativity. The reader may rightly wonder about the appearance

of the ⊲modality in the rule inv-open-wp. It turns out this modality is crucial for ensuring soundness

in the presence of impredicative invariants.
23
By impredicativity of invariants, we mean that the

proposition 𝑃 in 𝑃
N
can be any Iris proposition, including one that contains nested invariant

assertions. Impredicativity in turn is crucial for modeling the combination of polymorphism and

higher-order references: the interpretation of a type like ∀𝛼 . . . ref𝐴 . . . will quantify (universally)

over an arbitrary predicate Ψ representing 𝛼 , and then Ψ will appear inside the invariant modeling

the reference type ref𝐴. The later modality is largely not a problem in practice: after opening an

invariant, one can use the step-taking weakest precondition rules (like wp-pure, wp-alloc, wp-load)

in order to strip the ⊲ modality off the assumed proposition ⊲ 𝑃 , thus obtaining 𝑃 for use “now” in

proving the postcondition Φ(v). We will see an example of this in the proof of S-load below.

Invariant namespaces and masks. Two other important Iris mechanisms—albeit largely

administrative ones that serve to ensure soundness of invariant reasoning—are invariant namespaces
N ∈ InvName and invariant masks E ⊆ InvName. Namespaces and masks are used to ensure that

invariants cannot be opened twice in a nested fashion, i.e., that a thread cannot acquire exclusive

ownership of the contents of the same invariant twice during the same atomic step of computation—

an issue often referred to as reentrancy. To avoid reentrancy, Iris annotates each invariant 𝑃
N

with a namespace N that identifies the invariant, and annotates weakest preconditions wpE 𝑒 {Φ}
with a mask E that keeps track of the invariants that may be opened. At the top level, we always

22
Aside from physical atomicity, Iris also supports a notion of logical atomicity, inspired by the TaDA logic [da Rocha Pinto

et al. 2014]. Logically atomic triples express a form of linearizability—i.e., that even though an expression might take multiple

steps in the operational semantics, it still appears to behave atomically [Jung et al. 2015, 2020].

23
Krebbers et al. [2017a] and Jung et al. [2018b] present a paradox showing that a removal of the ⊲ from inv-open-upd

makes the logic inconsistent (i.e., allows proving False). By contrast, the two occurrences of the ⊲modality in inv-open-wp

are not strictly needed for ensuring consistency. In particular, recent work by Spies et al. [2022] on “later credits” shows

that it is possible to remove the first occurrence at the expense of complicating the invariant allocation rule inv-alloc.

The second occurrence simply makes the rule stronger by weakening the postcondition that must be proved for 𝑒 .
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consider weakest preconditions with the mask ⊤ (i.e., the whole set InvName), meaning that all

invariants are available to be opened. Opening an invariant 𝑃
N
removes the namespace N from

the mask E, ensuring that it cannot be opened in a nested fashion.

There is a minor but potentially confusing technical point here that is worth clarifying. Names-

paces have a hierarchical structure and are like fully qualified module names (using “dot notation”)

in conventional programming languages. This hierarchical structure is convenient in developing

modular proofs. When we write 𝑃
N
, what we therefore really mean is that 𝑃 is enforced by some

invariant whose name 𝜄 belongs to the namespace N (i.e., N is a prefix of 𝜄). For example, 𝜄 might

be N , but it also might be N .foo. Consequently, when the rule inv-open-wp is used to open an

invariant 𝑃
N
in a proof of wpE 𝑒 {Φ}, we must remove from E all invariant names 𝜄 which have

N as a prefix. The set of all such invariant names is denoted N ↑, which explains why the mask

E \ N ↑ appears on the left-hand side of the turnstile in inv-open-wp.

In this paper, we suppress details of how namespaces are constructed since they are really a

minor implementation detail. For example, to identify the invariant for each reference ℓ , we simply

assume the existence of a namespace Nℓ , defined so that distinct locations map to disjoint sets of

invariant names—i.e., if ℓ ≠ ℓ ′, then Nℓ ↑ ∩ Nℓ ′ ↑ = ∅. A detailed description of namespaces can be

found in Jung et al. [2018b, §7.1.2].

Allocation of invariants. Using the following rules, one can transfer exclusive ownership of

⊲ 𝑃 into an invariant 𝑃
N
:

⊲ 𝑃 ∗
(
𝑃
N −∗ wpE 𝑒 {Φ}

)
⊢ wpE 𝑒 {Φ} (inv-alloc-wp)

Iris in fact provides a more flexible rule for invariant allocation, called inv-alloc, from which the

above rule is derived. We will discuss this more flexible rule in §7.

Semantic typing rules. Some of the semantic typing rules for references are:

S-alloc

Γ ⊨ 𝑒 : 𝐴

Γ ⊨ ref 𝑒 : ref𝐴

S-load

Γ ⊨ 𝑒 : ref𝐴

Γ ⊨ ! 𝑒 : 𝐴

S-store

Γ ⊨ 𝑒1 : ref𝐴 Γ ⊢ 𝑒2 : 𝐴

Γ ⊨ 𝑒1 ← 𝑒2 : 1

Proof of S-alloc. The auxiliary result for closed expressions is:

J𝐴Ke
𝛿
(𝑒) −∗ Jref𝐴K𝛿 (ref 𝑒)

This result is proved as follows:

unfold 𝐼ℓ , ∃-intro
ℓ ↦→ v ∗ J𝐴K𝛿 (v) ⊢ 𝐼ℓ

⊲-intro
ℓ ↦→ v ∗ J𝐴K𝛿 (v) ⊢ ⊲ 𝐼ℓ

∃-intro, =-refl
𝐼ℓ
Nℓ ⊢ ∃ℓ ′ . (ℓ = ℓ ′ ) ∗ 𝐼ℓ ′

Nℓ ′

unfold Jref𝐴K
𝐼ℓ
Nℓ ⊢ Jref𝐴K𝛿 (ℓ )

wp-val

𝐼ℓ
Nℓ ⊢ wp ℓ

{
Jref𝐴K𝛿

}
∗-mono, −∗-intro

ℓ ↦→ v ∗ J𝐴K𝛿 (v) ⊢ ⊲ 𝐼ℓ ∗
(
𝐼ℓ
Nℓ −∗ wp ℓ

{
Jref𝐴K𝛿

})
inv-alloc-wp

ℓ ↦→ v ∗ J𝐴K𝛿 (v) ⊢ wp ℓ
{
Jref𝐴K𝛿

}
∀-intro, −∗-intro

J𝐴K𝛿 (v) ⊢ ∀ℓ . ℓ ↦→ v −∗ wp ℓ
{
Jref𝐴K𝛿

}
wp-alloc, ⊲-intro

J𝐴K𝛿 (v) ⊢ wp refv
{
Jref𝐴K𝛿

}
unfold J_Ke

J𝐴K𝛿 (v) ⊢ Jref𝐴Ke
𝛿
(refv)

logrel-bind

J𝐴Ke
𝛿
(𝑒 ) ⊢ Jref𝐴Ke

𝛿
(ref 𝑒 )

Here, we let 𝐼ℓ ≜ ∃w. ℓ ↦→ w ∗ J𝐴K𝛿 (w). The most important part of this proof is the use of the

invariant allocation rule inv-alloc-wp. This rule allows us to transfer the exclusive ownership of



A Logical Approach to Type Soundness 1:43

ℓ ↦→ v and the interpretation J𝐴K𝛿 (v) into the invariant ∃w. ℓ ↦→w ∗ J𝐴K𝛿 (w)
Nℓ

(i.e., 𝐼ℓ ), which
we in turn use to prove the value interpretation of Jref𝐴K𝛿 (ℓ). □

Proof of S-load. The auxiliary result for closed expressions is:

Jref𝐴Ke
𝛿
(𝑒) −∗ J𝐴Ke

𝛿
(! 𝑒)

This result is proved as follows:

unfold 𝐼ℓ , ∃-intro
ℓ ↦→w ∗ J𝐴K𝛿 (w) ⊢ 𝐼ℓ

⊲-intro
ℓ ↦→w ∗ J𝐴K𝛿 (w) ⊢ ⊲ 𝐼ℓ J𝐴K𝛿 (w) ⊢ J𝐴K𝛿 (w) ∗-mono and □-dup

ℓ ↦→w ∗ J𝐴K𝛿 (w) ⊢ ⊲ 𝐼ℓ ∗ J𝐴K𝛿 (w)
wp-val

ℓ ↦→w ∗ J𝐴K𝛿 (w) ⊢ wp⊤\Nℓ ↑
w
{
w. ⊲ 𝐼ℓ ∗ J𝐴K𝛿 (w)

}
−∗-intro

J𝐴K𝛿 (w) ⊢ ℓ ↦→w −∗ wp
⊤\Nℓ ↑

! ℓ
{
w. ⊲ 𝐼ℓ ∗ J𝐴K𝛿 (w)

}
⊲-mono, ∗-mono

⊲(ℓ ↦→w ∗ J𝐴K𝛿 (w) ) ⊢ ⊲
(
ℓ ↦→w ∗

(
ℓ ↦→w −∗ wp

⊤\Nℓ ↑
! ℓ

{
w. ⊲ 𝐼ℓ ∗ J𝐴K𝛿 (w)

}))
wp-load

⊲(ℓ ↦→w ∗ J𝐴K𝛿 (w) ) ⊢ wp⊤\Nℓ ↑
! ℓ

{
w. ⊲ 𝐼ℓ ∗ J𝐴K𝛿 (w)

}
⊲-exists, ∃-elim on LHS

⊲(∃w. ℓ ↦→w ∗ J𝐴K𝛿 (w) ) ⊢ wp⊤\Nℓ ↑
! ℓ

{
w. ⊲ 𝐼ℓ ∗ J𝐴K𝛿 (w)

}
unfold 𝐼ℓ

⊲ 𝐼ℓ ⊢ wp⊤\Nℓ ↑
! ℓ

{
w. ⊲ 𝐼ℓ ∗ J𝐴K𝛿 (w)

}
inv-open-wp

𝐼ℓ
Nℓ ⊢ wp ! ℓ

{
J𝐴K𝛿

}
∃-elim, =-subst(

∃ℓ . (v = ℓ ) ∗ 𝐼ℓ
Nℓ ) ⊢ wp !v

{
J𝐴K𝛿

}
unfold Jref𝐴K

Jref𝐴K𝛿 (v) ⊢ wp !v
{
J𝐴K𝛿

}
unfold J_Ke

Jref𝐴K𝛿 (v) ⊢ J𝐴Ke
𝛿
(!v)

logrel-bind

Jref𝐴Ke
𝛿
(𝑒 ) ⊢ J𝐴Ke

𝛿
(!𝑒 )

Again, we let 𝐼ℓ ≜ ∃w. ℓ ↦→ w ∗ J𝐴K𝛿 (w). The most important part of this proof is the use of the

invariant opening rule inv-open-wp to obtain temporary ownership of 𝐼ℓ , which is needed to prove

the weakest precondition for the load operation. Rule inv-open-wp only gives ⊲ 𝐼ℓ , but since the

load instruction takes a step of computation, we can use ⊲-mono to strip off the later. (We first

distribute the later over the existential quantifier in 𝐼ℓ to obtain the witnessw needed to apply

wp-load.) Finally, note that, at the top of the proof we are free to duplicate J𝐴K𝛿 (w) because the
value interpretation of types is persistent by construction. □

The proof of S-store is similar to the proof of S-load. The key part of the proof lies in the fact

that the valuew is existentially quantified in ∃w. ℓ ↦→w ∗ J𝐴K𝛿 (w)
Nℓ
. This means that it is fine

to update ℓ to a neww so long as it satisfies J𝐴K𝛿 (as the second premise of S-store guarantees).

Similarly, we can prove semantic typing rules corresponding to T-faa and T-fork.

6.10 The Fundamental Theorem and Adequacy
With the semantic typing rules corresponding to all syntactic typing rules in hand, we obtain that

syntactic typing implies semantic typing:

Theorem 6.5 (Fundamental theorem of unary logical relations). Every syntactically well-
typed term is semantically well-typed. Formally, if (Γ ⊢ 𝑒 : 𝐴), then (Γ ⊨ 𝑒 : 𝐴).

Proof. This theorem is proven by induction on the type derivation (Γ ⊢ 𝑒 : 𝐴). For each case we

use the corresponding semantic typing rule. □
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Theorem 6.6 (Adeqacy of unary logical relations). Every closed semantically well-typed
expression 𝑒 is safe: If (∅ ⊨ 𝑒 : 𝐴), then safe(𝑒).

Proof. From (∅ ⊨ 𝑒 : 𝐴), we obtain J𝐴Ke∅ (𝑒) by definition of the semantic typing relation, which

in turn, by definition, is equivalent to a closed proof of wp 𝑒
{
J𝐴K∅

}
. We now obtain safe(𝑒) by

adequacy of weakest preconditions (Theorem 6.1). □

Corollary 6.7 (Semantic type soundness). Every closed syntactically well-typed expression 𝑒 is
safe. Formally, if (∅ ⊢ 𝑒 : 𝐴), then safe(𝑒).

Proof. Let us assume that we have (∅ ⊢ 𝑒 : 𝐴). By the fundamental theorem (Theorem 6.5), we

obtain (∅ ⊨ 𝑒 : 𝐴). By adequacy (Theorem 6.6), we obtain safe(𝑒), which concludes the proof. □

7 SAFE ENCAPSULATION OF UNSAFE FEATURES
In the previous section, we showed how the logical approach to type soundness in Iris can be used

to establish the well-known type soundness theorem (Corollary 6.7): well-typed programs are safe.

Of course, if all we wanted was to prove Corollary 6.7, logical/semantic type soundness would

not be needed—syntactic type soundness would suffice. What the stronger logical/semantic type

soundness affords us is the additional ability to ensure that our language provides proper support

for data abstraction, and to exploit that data abstraction for modular reasoning.

Concretely, recall the “evil”, data abstraction-breaking gremlin operator from §3.1, which non-

deterministically proceeds as a simple no-op or selects some memory location ℓ currently storing

an integer value 𝑛, and it updates ℓ to store 0. Intuitively, it is easy to see that, although gremlin
does not disturb syntactic type soundness, it would violate semantic type soundness because it

is not semantically well-typed.
24
Suppose we tried to prove ⊨ gremlin : 1. To do so, we would

have to show a weakest precondition for gremlin, and the difficult case would be the one where

gremlin nondeterministically updates some arbitrary memory cell ℓ to 0. Of course, in a separation

logic like Iris, one cannot simply modify a location ℓ that one does not own: it could be owned

by another part of the program or governed by a shared invariant, and either way, updating it to

0 could break whatever invariant or ownership assertion is currently imposed on it. So with our

Iris-based semantic typing judgment in hand, we can happily declare gremlin persona non grata in
our programming language.

This is great news, but even better is the positive thing we obtain from the guaranteed absence

of features like gremlin: namely, the ability to verify safety of abstractions that are implemented

internally using unsafe (syntactically ill-typed) features. We will now demonstrate this additional

power by verifying safety of the symbol ADT from §3.2.

Recall the implementation of the symbol ADT:

symbol_type ≜ ∃𝛼. (1→ 𝛼) × (𝛼 → 2)
symbol ≜ let 𝑐 = ref 0 in

pack

〈
Z,

(
𝜆 (). FAA(𝑐, 1),
𝜆 𝑠. assert (𝑠 < ! 𝑐)

)〉
: symbol_type

As we already explained in §3, the implementation employs a private integer counter 𝑐 , which is

allocated when the expression defining symbol is evaluated. The counter 𝑐 is used as a perpetual

source of fresh symbols. When the gensym function (the first closure returned by symbol) is called,
it uses the fetch-and-add (FAA) instruction to atomically increment the value of 𝑐 and return the

previous value. Thus, when called repeatedly, gensym will return 0, 1, 2, and so on.

24
The argument given here for the semantic ill-typedness of gremlin is intuitive but informal. For a more formal argument,

see the discussion of gremlin at the end of this section.
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The check function (the second closure returned by symbol) checks validity of its symbol

argument by checking that it is less than the current value of the counter. For this, it usesMyLang’s
unsafe assert operation; hence, check is only safe to execute (i.e., will not get stuck) if 𝑠 < ! 𝑐

indeed evaluates to true. Due to MyLang’s support for data abstraction, 𝑠 < ! 𝑐 does always
evaluate to true in all well-typed contexts. We will now formalize this informal argument by

proving the following theorem:

Theorem 7.1 (The Symbol ADT is Semantically Well-Typed).

⊨ symbol : symbol_type

When proving that the symbol ADT is semantically well-typed at an existential type—here,

symbol_type = ∃𝛼. (1 → 𝛼) × (𝛼 → 2)—the key step is to choose the right semantic type for
modeling 𝛼 , i.e., an Iris predicate Ψ : Val→ iProp□ that describes the valid values of the abstract

type 𝛼 . When the functions of the ADT are given a value v of type 𝛼 , they can assume that v
satisfies Ψ, and when they return a value v of type 𝛼 , they must establish that v satisfies Ψ.

The difficulty in the case of the symbol ADT is that the valid values of type 𝛼 change over time.

Intuitively, at any given point during the execution of a program containing symbol, the valid
values of type 𝛼 will be the symbols that have been generated so far—these are represented by

the integers that are smaller than the current value stored in the private integer counter 𝑐 used

in the implementation of symbol. But how do we describe this intuitive property as a (persistent)

Iris predicate Ψ : Val → iProp□? It must be a state-dependent predicate, meaning that it grows

dynamically to be satisfied by more and more values as the state of 𝑐 increases over time. How can

we even define such a thing in Iris?

Naively, one might think that the following definition of Ψ should do the trick:

Ψ ≜ 𝜆v. ∃𝑛 : N. (v < 𝑛) ∗ 𝑐 ↦→ 𝑛

This definition appears to say that v is a valid symbol if it is less than the current value 𝑛 pointed

to by 𝑐 . The problem is that semantic types must be persistent, but this definition is not persistent.
It asserts exclusive ownership of 𝑐 , which persistent predicates may not do. Moreover, if a value

v satisfies Ψ now, there is no guarantee that it will continue to do so even after 𝑐 gets updated.

Intuitively, to make Ψ persistent, we will need some way of ensuring that valid symbols stay valid,

which means we will need some way of enforcing the invariant that the counter value pointed

to by 𝑐 only grows larger over time. Toward that end, we now introduce one more feature of Iris,

which is in fact one of its most powerful and defining features: user-defined ghost state.

User-defined ghost state in Iris. Modern separation logics provide a variety of mechanisms

for ownership of auxiliary state, often called ghost state. Some well-known examples include

ghost variables [O’Hearn 2007], permissions [Bornat et al. 2005], protocols [Dinsdale-Young et al.

2010; Svendsen and Birkedal 2014], and history/prophecy assertions about the past/future trace of

execution [Fu et al. 2010; Jung et al. 2020]. These mechanisms do not denote ownership of physical
state (e.g., a location in the heap); rather, they describe logical state—i.e., state that is useful to track

in proofs, but which is not directly manifested in the physical state of the program being verified.

In this section, we will show how to use Iris’s support for ghost state to encode the logical state of

the counter in the symbol ADT, along with the property that it only grows larger over time, so that

we can formulate an appropriate persistent predicate Ψ with which to model the ADT’s abstract

type 𝛼 . To be as flexible as possible, Iris does not bake in a particular ghost state mechanism, but

rather allows the user of the framework to “roll their own” form of user-defined ghost state. Rolling

your own ghost state essentially involves choosing an appropriate “resource algebra” to represent

the ghost state mechanism you want; once the resource algebra is chosen, the base proof rules of
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True ⊢ |⇛E ∃𝛾 . 𝛾 ↩→= 0 (cnt-init)

𝛾 ↩→= 𝑛 ⊢ |⇛E 𝛾 ↩→= (𝑛 + 1) ∗ 𝛾 ↩→> 𝑛 (cnt-inc)

𝛾 ↩→> 𝑚 ⊢ □(𝛾 ↩→> 𝑚) (cnt-persist)

𝛾 ↩→= 𝑛 ∗ 𝛾 ↩→> 𝑚 ⊢𝑚 < 𝑛 (cnt-lt)

timeless(𝛾 ↩→= 𝑛) and timeless(𝛾 ↩→> 𝑛) (cnt-timeless)

Fig. 8. Iris’s rules for ghost counters.

Iris allow you to derive a corresponding ghost theory—i.e., a set of abstract predicates describing
ownership of ghost state, together with axioms for manipulating them—on top of it.

The details of resource algebras, and how they can be used to derive ghost theories, are beyond

the scope of this paper. We focus our attention on a handful of concrete instances of user-defined

ghost theories and refer the reader to Jung et al. [2018b] for more details about how such theories

can be derived from suitably chosen resource algebras within Iris.

We begin by presenting a ghost theory that is directly relevant to the proof of the symbol
ADT—namely, a theory of ghost counters. The connectives for ghost counters are as follows:

↩→= : GName→ N→ iProp ↩→> : GName→ N→ iProp□
Similar to locations ℓ ↦→ v in physical state, ghost counters 𝛾 ↩→= 𝑚 and 𝛾 ↩→> 𝑛 can be referred

to by a name 𝛾 ∈ GName. The set of ghost names GName is similar to the set of locations Loc; it
needs to be infinite so Iris can pick a fresh name for each ghost allocation. Ghost counters can be

allocated at any time during a proof and come in pairs: 𝛾 ↩→= 𝑛 is an ephemeral proposition that

provides exclusive ownership of the ghost location and says its value is exactly 𝑛, while 𝛾 ↩→> 𝑚

is a persistent proposition that says its value is strictly greater than𝑚. Since 𝛾 ↩→> 𝑚 provides

persistent knowledge, the value of the ghost location 𝛾 can only ever be increased—decreasing it

could result in an already-established persistent assertion 𝛾 ↩→> 𝑚 becoming falsified, which is

not something that Iris lets happen.

Ghost counters are used in the proof of semantic typing of the symbol ADT as follows:

𝐼𝛾 ≜ 𝜆 ℓ. ∃𝑛 : N. ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛
Nsym

Ψ𝛾 ≜ 𝜆v.v ∈ N ∗ 𝛾 ↩→> v

The invariant 𝐼𝛾 (ℓ), which will be shared by the closures of the ADT, describes that the value stored

in the physical location ℓ (the location to which 𝑐 in symbol gets bound) matches up with the value

stored in the ghost counter at all times. The predicate Ψ𝛾 , which is used for the interpretation of

the abstract type 𝛼 , employs the persistent part of the ghost counter 𝛾 ↩→> 𝑚 to ensure that the

values of type 𝛼 are integers𝑚 that are smaller than the value stored in the counter 𝑐 .

The rules for ghost counters are given in Figure 8. These rules make use of a new connective

called the update modality |⇛E , which (as the name suggests) is used to account for updates to

ghost state. Before explaining it, let us provide the intuition for the rules for ghost counters:

• The rule cnt-init is used to allocate a new ghost counter. It provides exclusive ownership of

𝛾 ↩→= 0, where 𝛾 is a fresh (i.e., existentially quantified) name.

• The rule cnt-inc is used to increment the ghost counter. In addition to transforming 𝛾 ↩→= 𝑛

into 𝛾 ↩→= (𝑛 + 1), the rule also yields 𝛾 ↩→> 𝑛, which provides the persistent knowledge

that the ghost counter is strictly greater than 𝑛. (Note: ∗ binds more tightly than |⇛E , so
“|⇛E 𝑃 ∗𝑄” means “|⇛E (𝑃 ∗𝑄)”.)
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• The rule cnt-persist states that the connective 𝛾 ↩→> 𝑚 is indeed persistent.

• The rule cnt-lt states that if we have exclusive ownership of 𝛾 (with current value 𝑛), along

with the knowledge that 𝛾 ’s value is greater than𝑚, then we must know that𝑚 < 𝑛.

The update modality. The update modality |⇛E𝑄 has many similarities with the weakest pre-

condition connective wpE 𝑒 {w. 𝑄}, but is used for reasoning about ghost state rather than physical

state. Since ghost state is merely logical, there is no physical program 𝑒 , and the postcondition is

merely a proposition, not a value predicate (i.e., it does not have a binderw for the return value).

The update modality can be used for the following purposes:

• In order for clients of a ghost theory to make use of rules for allocating or updating ghost

state (like cnt-init and cnt-inc in Figure 8), Iris provides the rules |⇛-wp and wp-|⇛. These

rules allow one to eliminate update modalities around weakest preconditions:

|⇛-wp

|⇛EwpE 𝑒 {Φ} ⊢ wpE 𝑒 {Φ}
wp-|⇛
wpE 𝑒

{
w. |⇛EΦ(w)

}
⊢ wpE 𝑒 {Φ}

(In a more traditional presentation with Hoare triples, these rules would correspond to

a strengthened rule of consequence, in which the implications for adjusting the pre- and

postcondition of the Hoare triple are additionally permitted to perform ghost updates.)

Apart from these rules, there are a number of administrative rules (|⇛-mono, |⇛-intro, |⇛-

idemp, and |⇛-frame), shown in Figure 7, which collectively establish that the update modality

is a strong monad with respect to separating conjunction [Kock 1970, 1972]. Using these

administrative rules, we can turn the rule cnt-inc into the following, more usable rule:

cnt-inc’

𝛾 ↩→= (𝑛 + 1) ∗ 𝛾 ↩→> 𝑛 ∗𝑄 ⊢ wpE 𝑒 {Φ}
𝛾 ↩→= 𝑛 ∗𝑄 ⊢ wpE 𝑒 {Φ}

This rule says that if our context provides exclusive ownership of a ghost counter 𝛾 ↩→= 𝑛

with name 𝛾 whose current value is exactly 𝑛, we can increase its value to 𝑛 + 1. Additionally

we obtain the persistent knowledge 𝛾 ↩→> 𝑛 that the new value is strictly greater than 𝑛.

A proof tree for this rule is as follows:

𝛾 ↩→= (𝑛 + 1) ∗ 𝛾 ↩→> 𝑛 ∗𝑄 ⊢ wpE 𝑒 {Φ} |⇛-mono

|⇛E𝛾 ↩→= (𝑛 + 1) ∗ 𝛾 ↩→> 𝑛 ∗𝑄 ⊢ |⇛EwpE 𝑒 {Φ} |⇛-frame

( |⇛E𝛾 ↩→= (𝑛 + 1) ∗ 𝛾 ↩→> 𝑛) ∗𝑄 ⊢ |⇛EwpE 𝑒 {Φ}
cnt-inc

𝛾 ↩→= 𝑛 ∗𝑄 ⊢ |⇛EwpE 𝑒 {Φ} |⇛-wp

𝛾 ↩→= 𝑛 ∗𝑄 ⊢ wpE 𝑒 {Φ}

This proof shows a typical pattern in Iris. We use a rule like cnt-inc in one of the hypotheses,

and use |⇛-wp to obtain a matching update modality in the goal. Then, using |⇛-frame on

the LHS, we move all other hypotheses below the update modality, and finally use |⇛-mono

to strip the update modality off both the hypotheses and goal. When mechanizing Iris proofs

in Coq, the Iris Proof Mode takes care of these administrative steps automatically.

• In order to build modular logical abstractions (as we will show in §8.3), Iris’s update modality

can also be used for allocating and opening invariants. Similar to weakest preconditions, the

update modality |⇛E is thus equipped with a mask E that denotes which invariants may

be opened. The rules inv-alloc and inv-open-upd for opening invariants around the update
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modality are as follows:

inv-alloc

⊲ 𝑃 ⊢ |⇛E 𝑃
N

inv-open-upd

N↑ ⊆ E

𝑃
N ∗ (⊲ 𝑃 −∗ |⇛E\N↑ (⊲ 𝑃 ∗𝑄)) ⊢ |⇛E𝑄

The rule inv-alloc transfers ownership of a proposition 𝑃 into an invariant 𝑃
N
. The rule

inv-alloc-wp for allocating invariants around weakest preconditions can be derived from

inv-alloc and |⇛-wp.

The rule inv-open-upd is very similar to the rule inv-open-wp that we have seen in §6.9, except

with update modalities instead of weakest precondition assertions. When proving an update

to 𝑄 , this rule allows one to temporarily acquire exclusive ownership of 𝑃 , assuming 𝑃 is the

content of an invariant named N . Using the magic wand, one acquires ⊲ 𝑃 as an additional

resource that can be used for proving the update to 𝑄 . In turn, one has to restore ⊲ 𝑃 , and the

mask keeps track of the fact that the invariant N cannot be opened in a nested fashion.

• When opening an invariant 𝑃
N
via the rules inv-open-upd and inv-open-wp, one temporarily

gets ownership of ⊲ 𝑃 , where 𝑃 is guarded by a later modality (⊲). As discussed in §6.9, the

later modality is crucial for soundness in the presence of impredicative invariants; however,

for the class of so-called timeless Iris propositions, one can acquire access to the contents of

the invariant without a later:
inv-open-upd-tl

N ↑ ⊆ E timeless(𝑃)

𝑃
N ∗ (𝑃 −∗ |⇛E\N↑ (𝑃 ∗𝑄)) ⊢ |⇛E𝑄

inv-open-wp-tl

atomic(𝑒) N ↑ ⊆ E timeless(𝑃)

𝑃
N ∗

(
𝑃 −∗ wpE\N↑ 𝑒 {v. 𝑃 ∗ Φ(v)}

)
⊢ wpE 𝑒 {Φ}

The formal definition of timelessness can be found in [Krebbers et al. 2017a; Jung et al.

2018b]; for present purposes, it is sufficient to think of timeless propositions as those whose

meaning is independent of step-indexing (i.e., is the same at every step-index). The class of

timeless propositions is closed under the connectives of first-order logic (truth, falsehood,

conjunction, disjunction, implication, and universal and existential quantification), separation

logic (separating conjunction, magic wand, and the points-to connective), the persistence

modality, and Iris’s connectives for ghost ownership (e.g., ghost counters). Propositions that
are not timeless include invariant and weakest precondition assertions, as well as the later

and update modalities. In practice, it is common in Iris to establish invariants 𝑃
N
where 𝑃

is timeless and hence the above ⊲-free rules apply.

Instead of baking in the rules inv-open-upd-tl and inv-open-wp-tl as primitives, Iris provides

the primitive rule |⇛-timeless for removing a later from a timeless proposition:

|⇛-timeless

timeless(𝑃)
⊲ 𝑃 ⊢ |⇛E 𝑃

The rules inv-open-upd-tl and inv-open-wp-tl follow from the ordinary rules for opening

invariants (inv-open-upd and inv-open-wp, respectively) and |⇛-timeless. Apart from brevity,

the rule |⇛-timeless also provides more flexibility. When dealing with invariants that contain

both a timeless and a non-timeless part, one can remove the later from just the timeless part.
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We are now ready to proceed with the proof of semantic typing of the symbol ADT.

Proof of Theorem 7.1. To prove ⊨ symbol : symbol_type, we unfold the definition and see

that we must first prove a result about the expression interpretation:

Jsymbol_typeKe
𝛿
(symbol)

The proof of this property is as follows:

proof of gensym

𝐼𝛾 (ℓ ) ⊢ J1→ 𝛼K𝛿,𝛼 ↦→Ψ𝛾 (𝜆 ( ) . FAA(ℓ, 1) )
proof of check

𝐼𝛾 (ℓ ) ⊢ J𝛼 → 2K𝛿,𝛼 ↦→Ψ𝛾 (𝜆 𝑠. assert(𝑠 < ! ℓ ) )
unfold J_ × _K

𝐼𝛾 (ℓ ) ⊢ J(1→ 𝛼 ) × (𝛼 → 2)K𝛿,𝛼 ↦→Ψ𝛾

(
𝜆 ( ) . FAA(ℓ, 1), 𝜆 𝑠. assert(𝑠 < ! ℓ )

)
∃-intro

𝐼𝛾 (ℓ ) ⊢ ∃Φ. J(1→ 𝛼 ) × (𝛼 → 2)K𝛿,𝛼 ↦→Φ

(
𝜆 ( ) . FAA(ℓ, 1), 𝜆 𝑠. assert(𝑠 < ! ℓ )

)
unfold J∃𝛼. _K

𝐼𝛾 (ℓ ) ⊢ J∃𝛼. (1→ 𝛼 ) × (𝛼 → 2)K𝛿 (pack ⟨Z, . . . ⟩)
unfold symbol_type

𝐼𝛾 (ℓ ) ⊢ Jsymbol_typeK𝛿 (pack ⟨Z, . . . ⟩)
wp-val

𝐼𝛾 (ℓ ) ⊢ wp pack ⟨Z, . . . ⟩
{
Jsymbol_typeK𝛿

}
inv-alloc

ℓ ↦→ 0 ∗ 𝛾 ↩→= 0 ⊢ wp pack ⟨Z, . . . ⟩
{
Jsymbol_typeK𝛿

}
cnt-init

ℓ ↦→ 0 ⊢ wp pack ⟨Z, . . . ⟩
{
Jsymbol_typeK𝛿

}
wp-pure, ⊲-intro

ℓ ↦→ 0 ⊢ wp let 𝑐 = ℓ in pack ⟨Z, . . . ⟩
{
Jsymbol_typeK𝛿

}
wp-val

ℓ ↦→ 0 ⊢ wp ℓ
{
v. wp let 𝑐 = v in pack ⟨Z, . . . ⟩

{
Jsymbol_typeK𝛿

}}
wp-alloc, ⊲-intro

⊢ wp ref 0

{
v. wp let 𝑐 = v in pack ⟨Z, . . . ⟩

{
Jsymbol_typeK𝛿

}}
wp-bind

⊢ wp let 𝑐 = ref 0 in pack ⟨Z, . . . ⟩
{
Jsymbol_typeK𝛿

}
unfold symbol

⊢ wp symbol
{
Jsymbol_typeK𝛿

}
unfold J_Ke

⊢ Jsymbol_typeKe
𝛿
(symbol)

Reading this proof tree bottom-up, as usual, we see that it comprises the following steps:

(1) Symbolically execute the expression symbol, thereby obtaining exclusive ownership of the

private counter location ℓ with initial value 0.

(2) Use rule cnt-init to allocate ghost counter 𝛾 with initial value 0 (implicitly here, we use the

same pattern as in the proof of cnt-inc’ to eliminate the update modality).

(3) Transfer ownership of both into a new counter invariant 𝐼𝛾 (ℓ), defined as follows:

𝐼𝛾 ≜ 𝜆 ℓ. ∃𝑛 : N. ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛
Nsym

(4) The remaining goal is to prove that the value produced by executing symbol inhabits the

value interpretation of symbol_type ≜ ∃𝛼. (1→ 𝛼) × (𝛼 → 2). Correspondingly, we choose
as our interpretation of 𝛼 the semantic type Ψ𝛾 (v), defined as follows:

Ψ𝛾 ≜ 𝜆v. ∃𝑚 : N. (v =𝑚) ∗ 𝛾 ↩→> 𝑚

(5) The proof then splits into the following two subgoals, corresponding to the gensym and

check operations of the ADT.

𝐼𝛾 (ℓ) ⊢ J1→ 𝛼K𝛿,𝛼 ↦→Ψ𝛾 (𝜆 (). FAA(ℓ, 1))
𝐼𝛾 (ℓ) ⊢ J𝛼 → 2K𝛿,𝛼 ↦→Ψ𝛾 (𝜆 𝑠. assert(𝑠 < ! ℓ))

We now proceed to prove these subgoals.
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The proof of gensym.

ℓ ↦→ (𝑛 + 1) ∗ 𝛾 ↩→= (𝑛 + 1) ⊢ (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚)
𝛾 ↩→> 𝑛 ⊢ ∃𝑘. (𝑛 = 𝑘 ) ∗ 𝛾 ↩→> 𝑘

unfold Ψ𝛾
𝛾 ↩→> 𝑛 ⊢ Ψ𝛾 (𝑛) ∗-mono

ℓ ↦→ (𝑛 + 1) ∗ 𝛾 ↩→= (𝑛 + 1) ∗ 𝛾 ↩→> 𝑛 ⊢ (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ Ψ𝛾 (𝑛)
wp-val

ℓ ↦→ (𝑛 + 1) ∗ 𝛾 ↩→= (𝑛 + 1) ∗ 𝛾 ↩→> 𝑛 ⊢ wp⊤\Nsym↑
𝑛
{
v. (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ Ψ𝛾 (v)

}
cnt-inc’

ℓ ↦→ (𝑛 + 1) ∗ 𝛾 ↩→= 𝑛 ⊢ wp⊤\Nsym↑
𝑛
{
v. (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ Ψ𝛾 (v)

}
wp-faa, ⊲-intro

ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛 ⊢ wp⊤\Nsym↑
FAA(ℓ, 1)

{
v. (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ Ψ𝛾 (v)

}
inv-open-wp-tl

𝐼𝛾 (ℓ ) ⊢ wp FAA(ℓ, 1)
{
Ψ𝛾

}
wp-pure, ⊲-intro

𝐼𝛾 (ℓ ) ⊢ wp ( (𝜆 ( ) . FAA(ℓ, 1) ) ( ) )
{
Ψ𝛾

}
□-mono, −∗-intro, subst 𝑣

𝐼𝛾 (ℓ ) ⊢ □ ∀v. (v = ( ) ) −∗ wp ( (𝜆 ( ) . FAA(ℓ, 1) ) v)
{
Ψ𝛾

}
unfold J1→ 𝛼K

𝐼𝛾 (ℓ ) ⊢ J1→ 𝛼K𝛿,𝛼 ↦→Ψ𝛾 (𝜆 ( ) . FAA(ℓ, 1) )

The beginning of this proof is like the proofs we have seen before: we unfold the expression interpre-

tation, after which we have to prove a weakest precondition. To prove the weakest precondition for

FAA(ℓ, 1), we need to get temporary ownership of the points-to connective ℓ ↦→ 𝑛, which we do by

opening the invariant 𝐼𝛾 (ℓ). Since the invariant 𝐼𝛾 (ℓ) is timeless, we can use the rule inv-open-wp-tl

to acquire ownership of 𝐼𝛾 (ℓ) without the later modality. After we have used the rule wp-faa, we

use the rule cnt-inc to update the ghost counter 𝛾 ↩→= 𝑛 to 𝛾 ↩→= (𝑛 + 1), as needed to restore the

invariant 𝐼𝛾 (ℓ). By using cnt-inc, we also get 𝛾 ↩→> 𝑛, which we need to establish Ψ𝛾 (𝑛).

The proof of check.

ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛 ⊢ ∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚

𝛾 ↩→> 𝑘 ∗ 𝑘 < 𝑛 ⊢ true ∈ {true, false}
wp-val, unfold J2K

𝛾 ↩→> 𝑘 ∗ 𝑘 < 𝑛 ⊢ wp true
{
J2K

}
wp-pure, ⊲-intro

𝛾 ↩→> 𝑘 ∗ 𝑘 < 𝑛 ⊢ wp assert(𝑘 < 𝑛)
{
J2K

}
∗-mono

ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛 ∗ 𝛾 ↩→> 𝑘 ∗ 𝑘 < 𝑛 ⊢ (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ wp . . .
cnt-lt

ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛 ∗ 𝛾 ↩→> 𝑘 ⊢ (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ wp . . .
wp-val

ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛 ∗ 𝛾 ↩→> 𝑘 ⊢ wp⊤\Nsym↑
𝑛 {w. (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ wp . . . }

wp-load, ⊲-intro
ℓ ↦→ 𝑛 ∗ 𝛾 ↩→= 𝑛 ∗ 𝛾 ↩→> 𝑘 ⊢ wp⊤\Nsym↑

! ℓ {w. (∃𝑚. ℓ ↦→𝑚 ∗ 𝛾 ↩→= 𝑚) ∗ wp . . . }
inv-open-wp-tl

𝐼𝛾 (ℓ ) ∗ 𝛾 ↩→> 𝑘 ⊢ wp ! ℓ
{
w. wp assert(𝑘 < w)

{
J2K

}}
wp-bind

𝐼𝛾 (ℓ ) ∗ 𝛾 ↩→> 𝑘 ⊢ wp assert(𝑘 < ! ℓ )
{
J2K

}
wp-pure, ⊲-intro

𝐼𝛾 (ℓ ) ∗ 𝛾 ↩→> 𝑘 ⊢ wp (𝜆 𝑠. assert(𝑠 < ! ℓ ) ) 𝑘
{
J2K

}
−∗,∀ intro, unpack Ψ𝛾

𝐼𝛾 (ℓ ) ⊢ ∀v. Ψ𝛾 (v) −∗ wp (𝜆 𝑠. assert(𝑠 < ! ℓ ) ) v
{
J2K

}
□-mono

𝐼𝛾 (ℓ ) ⊢ □ ∀v. Ψ𝛾 (v) −∗ wp (𝜆 𝑠. assert(𝑠 < ! ℓ ) ) v
{
J2K

}
unfold J𝛼 → 2K

𝐼𝛾 (ℓ ) ⊢ J𝛼 → 2K𝛿,𝛼 ↦→Ψ𝛾 (𝜆 𝑠. assert(𝑠 < ! ℓ ) )

This proof is similar structurally to the proof of gensym—to prove the weakest precondition for

! ℓ , we need temporary access to the points-to connective ℓ ↦→ 𝑛, which we do by opening the

invariant 𝐼𝛾 (ℓ) using inv-open-wp-tl. Apart from the points-to connective, the invariant 𝐼𝛾 (ℓ) also
provides temporary access to 𝛾 ↩→= 𝑛, which, using cnt-lt, allows us to deduce that 𝑘 < 𝑛 and

hence that assert(𝑘 < 𝑛) is safe.
This concludes the proof of Theorem 7.1: symbol is semantically well-typed and thus safe to use

in all well-typed contexts, despite its use of an unsafe feature. □

Semantic ill-typedness of gremlin. With the proof of Theorem 7.1 in hand, it is worth circling

back around to the evil gremlin operator. At the beginning of this section, we argued informally
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that any attempt to prove that gremlin is semantically well-typed is doomed to fail, but now we

can state and prove this result formally:

Theorem 7.2 (gremlin is Semantically Ill-Typed).

̸⊨ gremlin : 1

Proof. Suppose the opposite, i.e., that ⊨ gremlin : 1. Then, by Theorem 7.1, along with the

compatibility rules of MyLang, it is straightforward to show that evil_client from §3.1 is

semantically well-typed as well. By Adequacy (Theorem 6.6), that means evil_client is safe to
execute, and yet we know there is an execution of evil_client that gets stuck due to a failed

assertion, thus yielding a contradiction. □

Concluding remarks. In this section, we have demonstrated how the logical relation for

semantic soundness, encoded in Iris, can be used to (1) enforce that language features respect data

abstraction and (2) reason about the safe encapsulation of unsafe features. As shown in the RustBelt

project [Jung et al. 2018a, 2021; Jung 2020; Dang et al. 2020], this approach scales up to much more

complicated uses of unsafe features. Of course, when dealing with more complicated uses of unsafe

features, one needs more complicated invariants and “ghost theories”, but the basic structure of the

proofs nevertheless follows the template we have shown here.

8 REPRESENTATION INDEPENDENCE
In the previous sections, we have shown how the semantic approach can be used to prove type

safety. However, the semantic approach is by no means limited to type safety—it can be used for

the verification of many program properties, including but not limited to compiler correctness

[Benton and Hur 2009], capability safety (both for object capabilities [Devriese et al. 2016] and for

capability machines [Georges et al. 2021]), and non-interference [Frumin et al. 2021a; Gregersen

et al. 2021], as well as contextual refinement and representation independence, the topic of this

section. Many of these properties are not about the execution of a single program—i.e., they are

not unary properties—but are rather about the relation between two runs of possibly different

programs—i.e., they are binary properties. In this section, we discuss how Iris can be used to apply

the semantic approach to prove a particularly important binary program property—contextual
refinement—and in particular, the instance of that property known as representation independence.
A program 𝑒 is said to contextually refine a program 𝑒′, written Γ ⊨ 𝑒 ≤ctx 𝑒′ : 𝐴, if for all

program contexts 𝐶 with hole of type 𝐴, if 𝐶 [𝑒] has some observable behavior, then so does 𝐶 [𝑒′].
Contextual refinement is a strong notion: if 𝑒 contextually refines 𝑒′, then whenever 𝑒′ appears as
part of a well-typed program (i.e., plugged into a well-typed context 𝐶), 𝑒′ can be replaced by 𝑒

without changing the observable behavior of the program.

A particularly interesting application of contextual refinement is in relational reasoning about

ADTs. Specifically, suppose we have two different ADTs, M1 and M2, which have the same interface,

i.e., the same type, but with different implementations, e.g., different representations of the abstract
type or of the internal state managed by it. If we can prove M1 refines M2, we know that any program

that is written against the common interface of these ADTs can be linked with M1 instead of M2, and

this should not have any observable effect, despite the fact that the ADTs are implemented differently.

This property is known as representation independence. In practice, representation independence

can be used to show that it is sound to replace a less efficient reference implementation M2 by an

optimized implementation M1. Correspondingly, in a contextual refinement Γ ⊨ 𝑒 ≤ctx 𝑒′ : 𝐴, we

often refer to 𝑒 as the implementation and 𝑒′ as the specification.
Contextual refinement (see Definition 8.1) is defined by quantifying over all possible program

contexts 𝐶 . This makes direct proofs of contextual refinement difficult in practice—carrying out a
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proof by induction on the context 𝐶 is known to be tedious and complicated, and infeasible for

even relatively small programs. A common approach to easing proofs of contextual refinement

is to define a judgment Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴 for logical refinement, using binary logical relations. The
high-level structure of the binary logical relations method is similar to the high-level structure of

the unary method for semantic typing we have already seen.

• Soundness.We prove a soundness theorem, which states that the logical relation is sound

with respect to contextual refinement:

Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴 implies Γ ⊨ 𝑒 ≤ctx 𝑒′ : 𝐴.

This is similar to the adequacy theorem for semantic typing, which says that logically typed

programs are safe.

• Compatibility lemmas. We show that the logical relation is compatible with syntactic

typing. For instance, for function applications (the typing rule T-app) we show:

Γ ⊨ 𝑒1 ≤log 𝑒′1 : 𝐴→ 𝐵 Γ ⊨ 𝑒2 ≤log 𝑒′2 : 𝐴

Γ ⊨ 𝑒1 𝑒2 ≤log 𝑒′1 𝑒′2 : 𝐵

These compatibility lemmas are similar to the semantic typing rules.

These results can then be combined with manual proofs of logical refinements of ADTs to

modularly prove contextual refinements of larger programs. For example, suppose we havemanually

proven ∅ ⊨ 𝑒1 ≤log 𝑒2 : 𝐴, and suppose 𝐶 is a (closed) context (of type 𝐵) with a hole of type 𝐴. It is

an easy corollary of the above properties that we can obtain ∅ ⊨ 𝐶 [𝑒1] ≤ctx 𝐶 [𝑒2] : 𝐵. We will see a

more general version of this corollary in §8.5.

To define the binary logical relation for logical refinement, we follow the same pattern as we

have used for the unary logical relation for semantic typing—with the main difference that we

generalize all notions to pairs of values. That is, we define binary interpretations on pairs of closed

values J_K, and pairs of closed expressions J_Ke, and then use these binary interpretations to define

our logical relation for open programs, Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴. The binary value interpretations are

straightforward generalizations of their unary counterparts. For example, values of base type

(unit, Boolean, and integer) are related if they are equal, and values of function type are related if,

given related inputs, they have related results. The crux of the difference between the unary and

binary logical relations is in the expression relation J𝜏Ke (𝑒, 𝑒′), which expresses that 𝑒 refines 𝑒′. To
formalize this refinement in Iris, we use both weakest preconditions and Iris’s ghost theory.

We proceed in this section with a formal definition of contextual refinement (§8.1). We then show

how to generalize the value and expression interpretations to the binary case (§8.2 and 8.3). Subse-

quently, we prove the compatibility lemmas for the binary logical relation (§8.4), and prove that the

logical relation is sound with respect to contextual refinement (§8.5). Finally, we demonstrate rea-

soning about representation independence of ADTs by proving that a fine-grained implementation

of a concurrent stack refines a coarse-grained version (§8.6).

8.1 Contextual Refinement
To formally define the contextual refinement judgment Γ ⊨ 𝑒 ≤ctx 𝑒′ : 𝐴, we first need to define the

notion of program contexts. Figure 9 shows an excerpt of the grammar and the syntactic typing

rules for program contexts. We write 𝐶 : (Γ;𝐴) { (Γ′;𝐴′) to say that the context 𝐶 is a program

of type 𝐴′ (closed under Γ′) with a hole that can be filled with any program of type 𝐴 (closed

underand Γ). The typing rules for well-typed contexts in Figure 9 imply that whenever Γ ⊢ 𝑒 : 𝐴

and 𝐶 : (Γ;𝐴) { (Γ′;𝐴′) hold, so does Γ′ ⊢ 𝐶 [𝑒] : 𝐴′, capturing the intuitive idea that well-typed

contexts are just well-typed programs with a hole.
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𝐶 ::= [ ] | rec 𝑓 (𝑥) = 𝐶 | 𝐶 𝑒 | 𝑒 𝐶 | Λ. 𝐶 | 𝐶 ⟨⟩ | 𝐶 ⊚ 𝑒 | 𝑒 ⊚ 𝐶 |
if𝐶 then 𝑒 else 𝑒 | if 𝑒 then𝐶 else 𝑒 | if 𝑒 then 𝑒 else𝐶 |
fold𝐶 | unfold𝐶 | ref𝐶 | !𝐶 | 𝐶 ← 𝑒 | 𝑒 ← 𝐶 |
CAS(𝐶, 𝑒, 𝑒) | CAS(𝑒,𝐶, 𝑒) | CAS(𝑒, 𝑒,𝐶) | FAA(𝐶, 𝑒) | FAA(𝑒,𝐶) | fork {𝐶} | . . .

C-rec

𝐶 : (Γ′;𝐵′) { (Γ, 𝑥 : 𝐴, 𝑓 : 𝐴→ 𝐵;𝐵)
rec 𝑓 (𝑥) = 𝐶 : (Γ′;𝐵′) { (Γ;𝐵)

C-tlam

𝐶 : (Γ′;𝐵′) { (Γ;𝐴)
Λ. 𝐶 : (Γ′;𝐵′) { (Γ;∀𝛼. 𝐴)

C-app1

𝐶 : (Γ′;𝐵′) { (Γ;𝐴→ 𝐵)
Γ ⊢ 𝑒2 : 𝐴

𝐶 𝑒2 : (Γ′;𝐵′) { (Γ;𝐵)

C-app2

Γ ⊢ 𝑒1 : 𝐴→ 𝐵

𝐶 : (Γ′;𝐵′) { (Γ;𝐴)
𝑒1 𝐶 : (Γ′;𝐵′) { (Γ;𝐵)

C-tapp

𝐶 : (Γ′;𝐵′) { (Γ;∀𝛼. 𝐴)
𝐶 ⟨⟩ : (Γ′;𝐵′) { (Γ;𝐴[𝐵/𝛼])

Fig. 9. An excerpt of the grammar of program contexts and their syntactic typing rules.

Definition 8.1 (Contextual refinement). We say 𝑒 contextually refines 𝑒′, written Γ ⊨ 𝑒 ≤ctx 𝑒′ : 𝐴,

if both Γ ⊢ 𝑒 : 𝐴 and Γ ⊢ 𝑒′ : 𝐴, and furthermore we have:

∀𝐶 : (Γ;𝐴) { (∅; 1). 𝐶 [𝑒] ↓ =⇒ 𝐶 [𝑒′] ↓

Here, an expression 𝑒 is said to terminate, written 𝑒 ↓ , if (∅, 𝑒) →∗tp (𝜎,v; ®𝑒) for some final state 𝜎 ,

value v, and additional threads ®𝑒—i.e., if a program has 𝑒 in its main (and initially only) thread, then

there there is an execution of that program in which its main thread terminates with a value.

The above definition of contextual refinement extends the standard definition for sequential

languages. We follow Turon et al. [2013a] by only taking the termination behavior of the main

thread into account, i.e., once the main thread of the implementation has terminated, the main

thread of the specification should terminate, too.

At first glance, this definition of contextual refinement might appear weaker than it actually

is since it only talks about termination and not about the resulting values of the programs being

related. However, given two programs 𝑒 and 𝑒′ such that ∅ ⊨ 𝑒 ≤ctx 𝑒′ : Z, we can additionally

conclude the following: whenever the computation of 𝑒 results in some number 𝑛 ∈ Z, then so does

the computation of 𝑒′. To see this, simply take the well-typed context if [ ] = 𝑛 then () else Ω,
where Ω is a program that does not terminate. Similar arguments can be employed to show that

contextual refinement implies stronger properties—e.g., that related memory locations in the heaps

of the two programs always store indistinguishable values.

8.2 The Binary Value Interpretation
Similar to the unary logical relation for semantic typing, we define the binary logical relation for

logical refinements in two stages:

(1) We mutually define the value interpretation J𝐴K𝛿 : Val ×Val→ iProp□ and the expression

interpretation J𝐴Ke
𝛿

: Expr × Expr → iProp, both over closed values/expressions, where

𝛿 : Tvar ⇀fin (Val ×Val→ iProp□) is the interpretation for free type variables.

(2) We define the logical refinement relation on open terms Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴 by lifting the value

and expression relations to open terms using a closing substitution.
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J𝐴Ke
𝛿
≜ 𝜆 (𝑒, 𝑒′). ∀𝑗, 𝐾 . SpecCtx ∗ 𝑗 Z⇒ 𝐾 [𝑒′] −∗ wp 𝑒

{
v. ∃v′ . 𝑗 Z⇒ 𝐾 [v′] ∗ J𝐴K𝛿 (v,v′)

}
J𝛼K𝛿 ≜ 𝛿 (𝛼)
J1K𝛿 ≜ 𝜆 (v,v′).v = v′ = ()
J2K𝛿 ≜ 𝜆 (v,v′).v = v′ ∈ {true, false}
JZK𝛿 ≜ 𝜆 (v,v′).v = v′ ∈ Z

J𝐴1 ×𝐴2K𝛿 ≜ 𝜆 (v,v′). ∃v1,v2,v′1,v
′
2
. (v = (v1,v2)) ∗ (v′ = (v′1,v′2)) ∗ J𝐴1K𝛿 (v1,v′1) ∗ J𝐴2K𝛿 (v2,v′2)

J𝐴1 +𝐴2K𝛿 ≜ 𝜆 (v,v′). ∨𝑖∈{1,2} ∃w,w′ . (v = inj𝑖 w) ∗ (v′ = inj𝑖 w′) ∗ J𝐴𝑖K𝛿 (w,w′)
J𝐴→ 𝐵K𝛿 ≜ 𝜆 (v,v′). □

(
∀w,w′ . J𝐴K𝛿 (w,w′) −∗ J𝐵Ke

𝛿
(v w,v′ w′)

)
J∀𝛼. 𝐴K𝛿 ≜ 𝜆 (v,v′). □

(
∀(Ψ : Val ×Val→ iProp□). J𝐴Ke

𝛿,𝛼 ↦→Ψ (v⟨⟩,v
′⟨⟩)

)
J∃𝛼. 𝐴K𝛿 ≜ 𝜆 (v,v′) . ∃(Ψ : Val ×Val→ iProp□).

∃w,w′ . (v = pack⟨w⟩) ∗ (v′ = pack⟨w′⟩) ∗ J𝐴K𝛿,𝛼 ↦→Ψ (w,w′)
J𝜇𝛼. 𝐴K𝛿 ≜ 𝜇 (Ψ : Val ×Val→ iProp□).

𝜆 (v,v′). ∃w,w′ . (v = foldw) ∗ (v′ = foldw′) ∗ ⊲J𝐴K𝛿,𝛼 ↦→Ψ (w,w′)

Jref𝐴K𝛿 ≜ 𝜆 (v,v′). ∃ℓ, ℓ ′ . (v = ℓ) ∗ (v′ = ℓ ′) ∗ ∃w,w′ . ℓ ↦→w ∗ ℓ ′ ↦→s w′ ∗ J𝐴K𝛿 (w,w′)
Nℓ,ℓ ′

Fig. 10. The expression interpretation J_Ke and value interpretation J_K for logical refinement inMyLang.

The value and expression interpretations are shown in Figure 10. We begin by presenting the

former; the latter will be presented in §8.3.

The binary value interpretation is a generalization of its unary counterpart. Values of base types

(1, 2, and Z) are related if they are equal values of the respective type. Values of the product type

are related if both are pairs of values, related component-wise by the value interpretations of the

corresponding types. Values of the sum type are related if they are both constructed using the

same injection with underlying values related at the corresponding type. Values of the function

type are related if applying them to values related at the domain type produces expressions related

at the codomain type. Values of the universal type are related if their specializations are related,

regardless of which (persistent) predicate we take as the value interpretation of the quantified type.

Values of the existential type are related if they are both ADTs such that there is a (persistent)

predicate for the value interpretation of the quantified type. Values of the recursive type are related

if both are a fold and their arguments are related one step later. Finally, values of the reference

type are related if they are locations that always store related values.

As we did in the unary logical relation, we define the binary logical relation on open expressions

using a closing substitution. For that, we first define the interpretation of typing contexts:

J∅Kc
𝛿
(∅, ∅) ≜ True

JΓ, 𝑥 : 𝐴Kc
𝛿
((𝛾, 𝑥 ↦→w), (𝛾 ′, 𝑥 ↦→w′)) ≜ JΓKc

𝛿
(𝛾,𝛾 ′) ∗ J𝐴K𝛿 (w,w′)

We then define the binary logical relation for logical refinement, Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴, as follows:

Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴 ≜ □
(
∀𝛿,𝛾,𝛾 ′ . JΓKc

𝛿
(𝛾,𝛾 ′) −∗ J𝐴Ke

𝛿
(𝛾 (𝑒), 𝛾 ′ (𝑒′))

)
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8.3 The Binary Expression Interpretation
While the binary value interpretation J𝐴K𝛿 (v,v′) is an immediate generalization of the unary

version, the binary expression interpretation J𝐴Ke
𝛿
(𝑒, 𝑒′) requires more work since Iris has no built-

in support for relational reasoning.
25
No matter: instead of extending Iris with primitive support

for relational reasoning (e.g., a relational version of weakest preconditions), we will show how to

use the idea of specification resources (due to Turon et al. [2013a]) to encode relational reasoning as

a derived concept on top of ordinary Iris weakest preconditions.

To explain the idea of specification resources, recall that the expression interpretation J𝐴Ke
𝛿
(𝑒, 𝑒′)

describes a refinement between the implementation 𝑒 and specification 𝑒′. Intuitively, J𝐴Ke
𝛿
(𝑒, 𝑒′)

says that for each terminating execution of the implementation 𝑒 , there is a related terminating

execution for the specification 𝑒′ such that J𝐴K𝛿 (v,v′) where v and v′ are the values of 𝑒 and 𝑒′,
respectively. Following the approach by Turon et al. [2013a], this intuitive idea can be expressed

using a weakest precondition on the implementation 𝑒 with a pre- and postcondition that express

the existence of a related execution for the specification 𝑒′. To describe that the execution of the

specification is related to the execution of the implementation, we use specification resources:

• The specification thread connective 𝑗 Z⇒ 𝑒 describes unique ownership of a thread (with thread

identifier 𝑗 ) in the specification program, currently executing expression 𝑒 .

• The specification points-to connective ℓ ↦→s v describes unique ownership of a memory location

ℓ in the specification program, currently storing value v.

Like the ghost counter in §7, specification resources are an instance of ghost state—they do not

represent ownership of physical resources subject to weakest preconditions, but are rather there

strictly for logical purposes. This means that the specification points-to connective ℓ ↦→s v should

not be confused with the ordinary points-to connective ℓ ↦→ v. The ordinary points-to connective

ℓ ↦→ v describes ownership of a physical location that appears in the implementation program,

whereas the specification points-to connective ℓ ↦→s v describes ownership of a logical location that

appears in the specification program. Like all forms of ghost state in Iris, specification resources

can be manipulated using the update modality |⇛. The rules, given in Figure 11, basically express

that one can update 𝑗 Z⇒ 𝑒 into 𝑗 Z⇒ 𝑒′ provided that 𝑒 steps to 𝑒′ in the operational semantics. For

heap-manipulating operations (allocation, load, store, CAS, and FAA), one additionally has to update

ownership of the required specification points-to connectives ℓ ↦→s v. The assertion SpecCtx is

there for administrative reasons (which we will discuss below).

Putting all this together, the expression interpretation can be formalized as follows:

J𝐴Ke
𝛿
≜ 𝜆 (𝑒, 𝑒′). ∀𝑗, 𝐾 . SpecCtx ∗ 𝑗 Z⇒ 𝐾 [𝑒′] −∗ wp 𝑒

{
v. ∃v′ . 𝑗 Z⇒ 𝐾 [v′] ∗ J𝐴K𝛿 (v,v′)

}
This definition reads as follows: assuming a specification thread (with identifier 𝑗 ) contains the

expression 𝑒′ in evaluation position (at context 𝐾 ), then for any execution of the implementation 𝑒

that results in a value v, there is a related execution from 𝑒′ to a related value v′. That the related
execution obeys the operational semantics is guaranteed by the fact that the only way to manipulate

specification resources is through the rules in Figure 11, which exactly correspond to what steps

are allowed in the operational semantics.

The definition of specification resources. We now explain how specification resources are

defined in Iris. This is done in two steps:

(1) Using Iris’s flexible ghost state mechanism, we obtain the connectives 𝑗 Z⇒ 𝑒 and ℓ ↦→s v.

25
Actually, the (unary) weakest-precondition connective in Iris is not built-in either—it is encoded from more primitive

constructs. An exploration of how that works is outside the scope of this paper. See Jung et al. [2018b] for details.
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SpecCtx ∗ (𝑒1 →pure 𝑒2) ∗ 𝑗 Z⇒ 𝐾 [𝑒1] ⊢ |⇛E 𝑗 Z⇒ 𝐾 [𝑒2] (spec-pure)

SpecCtx ∗ 𝑗 Z⇒ 𝐾 [refv] ⊢ |⇛E ∃ℓ . 𝑗 Z⇒ 𝐾 [ℓ] ∗ ℓ ↦→s v (spec-alloc)

SpecCtx ∗ 𝑗 Z⇒ 𝐾 [ ! ℓ] ∗ ℓ ↦→s v ⊢ |⇛E 𝑗 Z⇒ 𝐾 [v] ∗ ℓ ↦→s v (spec-load)

SpecCtx ∗ 𝑗 Z⇒ 𝐾 [ℓ ←w] ∗ ℓ ↦→s v ⊢ |⇛E 𝑗 Z⇒ 𝐾 [()] ∗ ℓ ↦→s w (spec-store)

SpecCtx ∗ 𝑗 Z⇒ 𝐾 [CAS(ℓ,v,w)] ∗ ℓ ↦→s v ⊢ |⇛E 𝑗 Z⇒ 𝐾 [true] ∗ ℓ ↦→s w (spec-cas-suc)

SpecCtx ∗ (v ≠w) ∗ 𝑗 Z⇒ 𝐾 [CAS(ℓ,w, 𝑢)] ∗ ℓ ↦→s v ⊢ |⇛E 𝑗 Z⇒ 𝐾 [false] ∗ ℓ ↦→s v (spec-cas-fail)

SpecCtx ∗ 𝑗 Z⇒ 𝐾 [FAA(ℓ,𝑚)] ∗ ℓ ↦→s 𝑛 ⊢ |⇛E 𝑗 Z⇒ 𝐾 [𝑛] ∗ ℓ ↦→s (𝑛 +𝑚) (spec-faa)

SpecCtx ∗ 𝑗 Z⇒ 𝐾 [fork {𝑒} ] ⊢ |⇛E ∃ 𝑗 ′ . 𝑗 Z⇒ 𝐾 [()] ∗ 𝑗 ′ Z⇒ 𝑒 (spec-fork)

Fig. 11. Rules for specification resources (we implicitly assume Nspec
↑ ⊆ E).

SpecCnf(𝜎, ®𝑒) ∗ 𝑗 Z⇒ 𝑒 ⊢ 𝑒 𝑗 = 𝑒 (sthread-agree)

SpecCnf(𝜎, ®𝑒) ∗ ( 𝑗 = length(®𝑒)) ⊢ SpecCnf(𝜎, ®𝑒 𝑒) ∗ 𝑗 Z⇒ 𝑒 (sthread-alloc)

SpecCnf(𝜎, ®𝑒) ∗ 𝑗 Z⇒ 𝑒 ⊢ |⇛E SpecCnf(𝜎, ®𝑒 [ 𝑗 ↦→ 𝑒′]) ∗ 𝑗 Z⇒ 𝑒′ (sthread-upd)

SpecCnf(𝜎, ®𝑒) ∗ ℓ ↦→s v ⊢ 𝜎 (ℓ) = v (sheap-agree)

SpecCnf(𝜎, ®𝑒) ∗ (ℓ ∉ dom(𝜎)) ⊢ |⇛E SpecCnf(𝜎 ⊎ {(ℓ,v)} , ®𝑒) ∗ ℓ ↦→s v (sheap-alloc)

SpecCnf(𝜎 ⊎ {(ℓ,v)} , ®𝑒) ∗ ℓ ↦→s v ⊢ |⇛E SpecCnf(𝜎 ⊎ {(ℓ,v′)} , ®𝑒) ∗ ℓ ↦→s v′ (sheap-upd)

timeless(SpecCnf(𝜎, ®𝑒)) and timeless( 𝑗 Z⇒ 𝑒) and timeless(ℓ ↦→s v) (spec-timeless)

Fig. 12. Primitive rules for specification resources.

(2) Using Iris’s invariant mechanism, we ensure that these connectives are only manipulated in

ways that obey the operational semantics of MyLang.

In the first step, we instantiate Iris with a suitable ghost theory (the details of which are beyond

the scope of this paper) in order to establish the soundness of a number of primitive proof rules

concerning the new connectives 𝑗 Z⇒ 𝑒 and ℓ ↦→s v, together with an ephemeral proposition

SpecCnf(𝜎, ®𝑒) that keeps track of the entire heap 𝜎 and the entire thread-pool ®𝑒 of the specification.
These primitive rules are shown in Figure 12. Using these rules, one can basically manipulate 𝑗 Z⇒ 𝑒

and ℓ ↦→s v as long as that is done in sync with SpecCnf(𝜎, ®𝑒). The fact that SpecCnf(𝜎, ®𝑒) is in
sync is witnessed by the rules sthread-agree and sheap-agree, which say that if we own the thread

connective 𝑗 Z⇒ 𝑒 (respectively, the points-to connective ℓ ↦→s v), then the thread 𝑗 is in fact in the

thread-pool ®𝑒 (respectively, the location ℓ is in the heap 𝜎), where it is mapped to 𝑒 (respectively, v).
When allocating or updating a thread connective 𝑗 Z⇒ 𝑒 (using sthread-alloc and sthread-upd) or

a points-to connective ℓ ↦→s v (using sheap-alloc and sheap-upd), one has to change SpecCnf(𝜎, ®𝑒)
in a corresponding fashion.

In the second step, we use Iris’s invariant mechanism to ensure that the thread and points-to

connectives are manipulated in a way that obeys the operational semantics. For that, we use the
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RS-var

𝑥 : 𝐴 ∈ Γ
Γ ⊨ 𝑥 ≤log 𝑥 : 𝐴

RS-unit

Γ ⊨ () ≤log () : 1

RS-bool

𝑏 ∈ {true, false}
Γ ⊨ 𝑏 ≤log 𝑏 : 2

RS-int

𝑛 ∈ Z
Γ ⊨ 𝑛 ≤log 𝑛 : Z

RS-rec

Γ, 𝑥 : 𝐴, 𝑓 : 𝐴→ 𝐵 ⊨ 𝑒 ≤log 𝑒′ : 𝐴

Γ ⊨ (rec 𝑓 (𝑥) = 𝑒) ≤log (rec 𝑓 (𝑥) = 𝑒′) : 𝐴→ 𝐵

RS-app

Γ ⊨ 𝑒1 ≤log 𝑒′1 : 𝐴→ 𝐵 Γ ⊨ 𝑒2 ≤log 𝑒′2 : 𝐴

Γ ⊨ 𝑒1 𝑒2 ≤log 𝑒′1 𝑒′2 : 𝐵

Fig. 13. An excerpt of relational semantic typing rules (compatibility lemmas).

following invariant:

SpecInv(𝜎init, ®𝑒init) ≜ ∃𝜎, ®𝑒. SpecCnf(𝜎, ®𝑒) ∗
(
(𝜎init, ®𝑒init) →∗tp (𝜎, ®𝑒)

) Nspec

SpecCtx ≜ ∃𝜎init, ®𝑒init. SpecInv(𝜎init, ®𝑒init)

Given some initial heap 𝜎init and initial thread-pool ®𝑒init, the invariant SpecInv(𝜎init, ®𝑒init) ex-
presses that the heap and thread-pool in SpecCnf(𝜎, ®𝑒) can always be reached by taking a sequence

of steps in the operational semantics from (𝜎init, ®𝑒init). Most of the time, with the exception of the

soundness proof in §8.5, we do not need to know the initial state. Hence, we define SpecCtx, which

existentially quantifies the initial state.

With the above definitions in hand, we can now prove all the rules in Figure 11. These follow

from Iris’s rules for invariants, together with the primitive rules for specification resources in

Figure 12. Since specification resources are timeless, we can use the rule inv-open-upd-tl to open

the invariant SpecInv without a later modality. Note that, due to the use of an invariant to define

specification resources in Iris, we need the premise SpecCtx and side-condition Nspec
↑ ⊆ E in the

rules in Figure 11.

8.4 Compatibility Lemmas
Just as we proved semantic typing rules for the unary logical relation in §6, we now prove relational
semantic typing rules for MyLang. In logical relations jargon, the relational semantic typing

rules are often referred to as compatibility lemmas (see e.g., Pitts [2005]) since they show how the

binary logical relation is “compatible” with the various constructs of MyLang. A selection of the

compatibility lemmas forMyLang are presented in Figure 13. Below we discuss the proofs of a few

of them. The proofs of other compatibility lemmas follow in a similar fashion, just as many of the

semantic typing rules in §6 followed a common essential structure.

Before we go on to discuss some of the compatibility lemmas, we prove the monadic rules for

the binary expression relation, which are a generalization of the unary versions in Lemma 6.2

Lemma 8.2 (The monadic rules for the expression interpretation).

J𝐴K𝛿 (v,v′) −∗ J𝐴Ke
𝛿
(v,v′) (bin-val)

J𝐴Ke
𝛿
(𝑒, 𝑒′) ∗

(
∀v,v′ . J𝐴K𝛿 (v,v′) −∗ J𝐵Ke

𝛿
(𝐾 [v], 𝐾 ′ [v′])

)
−∗ J𝐵Ke

𝛿
(𝐾 [𝑒], 𝐾 ′ [𝑒′]) (bin-bind)
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Proof. The rule bin-val follows immediately from wp-val. The proof for bin-bind is:

∀-elim, −∗-elim
𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [v′ ] ] ∗

(
∀ 𝑗 ′, 𝐾 ′′′ . 𝑆 ∗ 𝑗 ′ Z⇒ 𝐾 ′′′ [𝐾 ′ [v′ ] ] −∗

wp 𝐾 [v ]
{
Φ𝑗 ′,𝐾 ′′′,𝐵

} )
⊢ wp 𝐾 [v ]

{
Φ𝑗,𝐾 ′′,𝐵

}
unfold J𝐵Ke

𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [v′ ] ] ∗ J𝐵Ke
𝛿
(𝐾 [v ], 𝐾 ′ [v′ ] ) ⊢ wp 𝐾 [v ]

{
Φ𝑗,𝐾 ′′,𝐵

}
unfold 𝐹 , ∀-elim, −∗-elim

𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [v′ ] ] ∗ J𝐴K𝛿 (v,v′ ) ∗ 𝐹 ⊢ wp 𝐾 [v ]
{
Φ𝑗,𝐾 ′′,𝐵

}
unfold Φ, ∃-elim

𝑆 ∗ Φ𝑗,𝐾 ′′◦𝐾 ′,𝐴 (v) ∗ 𝐹 ⊢ wp 𝐾 [v ]
{
Φ𝑗,𝐾 ′′,𝐵

}
∀-intro,
−∗-intro𝑆 ∗ 𝐹 ⊢ ∀v. Φ𝑗,𝐾 ′′◦𝐾 ′,𝐴 (v) −∗ wp 𝐾 [v ]

{
Φ𝑗,𝐾 ′′,𝐵

}
wp-wand

𝑆 ∗ wp 𝑒
{
Φ𝑗,𝐾 ′′◦𝐾 ′,𝐴

}
∗ 𝐹 ⊢ wp 𝑒

{
v. wp 𝐾 [v ]

{
Φ𝑗,𝐾 ′′,𝐵

}}
∀-elim, −∗-elim

𝑆 ∗ 𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [𝑒 ] ] ∗
(
∀ 𝑗 ′, 𝐾 ′′′ . 𝑆 ∗ 𝑗 ′ Z⇒ 𝐾 ′′′ [𝑒 ] −∗

wp 𝑒
{
Φ𝑗 ′,𝐾 ′′′,𝐴

} )
∗ 𝐹 ⊢ wp 𝑒

{
v. wp 𝐾 [v ]

{
Φ𝑗,𝐾 ′′,𝐵

}}
duplicate 𝑆

𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [𝑒 ] ] ∗
(
∀ 𝑗 ′, 𝐾 ′′′ . 𝑆 ∗ 𝑗 ′ Z⇒ 𝐾 ′′′ [𝑒 ] −∗

wp 𝑒
{
Φ𝑗 ′,𝐾 ′′′,𝐴

} )
∗ 𝐹 ⊢ wp 𝑒

{
v. wp 𝐾 [v ]

{
Φ𝑗,𝐾 ′′,𝐵

}}
unfold J𝐴Ke

𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [𝑒 ] ] ∗ J𝐴Ke
𝛿
(𝑒, 𝑒′ ) ∗ 𝐹 ⊢ wp 𝑒

{
v. wp 𝐾 [v ]

{
Φ𝑗,𝐾 ′′,𝐵

}}
wp-bind

𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [𝑒 ] ] ∗ J𝐴Ke
𝛿
(𝑒, 𝑒′ ) ∗ 𝐹 ⊢ wp 𝐾 [𝑒 ]

{
Φ𝑗,𝐾 ′′,𝐵

}
∀-intro, −∗-intro

J𝐴Ke
𝛿
(𝑒, 𝑒′ ) ∗ 𝐹 ⊢ ∀ 𝑗, 𝐾 ′′ . 𝑆 ∗ 𝑗 Z⇒ 𝐾 ′′ [𝐾 ′ [𝑒 ] ] −∗

wp 𝐾 [𝑒 ]
{
Φ𝑗,𝐾 ′′,𝐵

}
unfold J𝐵Ke

J𝐴Ke
𝛿
(𝑒, 𝑒′ ) ∗ 𝐹 ⊢ J𝐵Ke

𝛿
(𝐾 [𝑒 ], 𝐾 ′ [𝑒′ ] )

We let 𝐹 ≜ ∀v,v′ . J𝐴K𝛿 (v,v′) −∗ J𝐵Ke
𝛿
(𝐾 [v], 𝐾 ′ [v′]) and Φ𝑗,𝐾,𝐵 (w) ≜ ∃w′ . 𝑗 Z⇒ 𝐾 [w′] ∗ J𝐵K𝛿 (w,w′)

and 𝑆 ≜ SpecCtx. The proof starts as expected: we unfold the definition of J𝐵Ke and introduce

everything into our context. After using wp-bind, we need to obtain a weakest precondition for 𝑒

from our context, requiring us to unfold the definition of J𝐴Ke and instantiate it accordingly. We let

𝐾 ′′′ ≜ 𝐾 ′′ ◦𝐾 ′, where ◦ is the composition of two evaluation contexts. This step crucially relies on

𝐾 ′′ [𝐾 ′ [𝑒]] = (𝐾 ′′ ◦ 𝐾 ′) [𝑒]. Moreover, since SpecCtx is persistent, we duplicate it, which is needed

so we can use it in future steps. We now use wp-wand, requiring us to prove that the postcondition

of the weakest precondition in our context (Φ𝑗,𝐾 ′′◦𝐾 ′,𝐴 (v)) implies the postcondition of the weakest

precondition in the goal (wp 𝐾 [v]
{
Φ𝑗,𝐾 ′′,𝐵

}
). We now eliminate the existential in Φ, allowing us to

instantiate 𝐹 . We conclude the proof by unfolding J𝐵Ke and instantiating 𝐾 ′′′ this time with 𝐾 ′′. □

Proof of RS-var. By unfolding the definition of the logical refinement relation, we have to prove

JΓKc
𝛿
(𝛾,𝛾 ′) −∗ J𝐴Ke

𝛿
(𝛾 (𝑥), 𝛾 ′ (𝑥)). From JΓKc

𝛿
(𝛾,𝛾 ′) and 𝑥 : 𝐴 ∈ Γ, we obtain J𝐴K𝛿 (𝛾 (𝑥), 𝛾 ′ (𝑥)). The

result thus follows from bin-val. □

Proof of RS-app. In order to prove the compatibility lemma RS-app, we prove the following

auxiliary result for closed expressions, from which the semantic typing rule on open expressions

easily follows:

J𝐴→ 𝐵Ke
𝛿
(𝑒1, 𝑒

′
1
) ∗ J𝐴Ke

𝛿
(𝑒2, 𝑒

′
2
) −∗ J𝐵Ke

𝛿
((𝑒1 𝑒2), (𝑒′1 𝑒′2))

Below there follows a proof tree for the auxiliary result:

−∗-elim(
J𝐴K𝛿 (v2,v′

2
) −∗ J𝐵Ke

𝛿
( (v1 v2 ), (v′

1
v′

2
) )
)
∗ J𝐴K𝛿 (v2,v′

2
) ⊢ J𝐵Ke

𝛿
( (v1 v2 ), (v′

1
v′

2
) )

□-elim, ∀-elim
□
(
∀w,w′ . J𝐴K𝛿 (w,w′ ) −∗ J𝐵Ke

𝛿
( (v1 w), (v′

1
w′ ) )

)
∗ J𝐴K𝛿 (v2,v′

2
) ⊢ J𝐵Ke

𝛿
( (v1 v2 ), (v′

1
v′

2
) )

unfold J𝐴→ 𝐵Ke
J𝐴→ 𝐵K𝛿 (v1,v′

1
) ∗ J𝐴K𝛿 (v2,v′

2
) ⊢ J𝐵Ke

𝛿
( (v1 v2 ), (v′

1
v′

2
) )

bin-bind

J𝐴→ 𝐵K𝛿 (v1,v′
1
) ∗ J𝐴Ke

𝛿
(𝑒2, 𝑒

′
2
) ⊢ J𝐵Ke

𝛿
( (v1 𝑒2 ), (v′

1
𝑒′

2
) )

bin-bind

J𝐴→ 𝐵Ke
𝛿
(𝑒1, 𝑒

′
1
) ∗ J𝐴Ke

𝛿
(𝑒2, 𝑒

′
2
) ⊢ J𝐵Ke

𝛿
( (𝑒1 𝑒2 ), (𝑒′

1
𝑒′

2
) )

This proof tree is similar to the one for the semantic typing rule S-app in the unary case. Reading this

proof tree bottom-up, we start by using bin-bind twice (following the scheme we described in §6.4),
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first for expressions 𝑒1 and 𝑒
′
1
in contexts 𝐾 ≜ [ ] 𝑒2 and 𝐾

′ ≜ [ ] 𝑒′
2
, and then for expressions 𝑒2 and

𝑒′
2
in contexts 𝐾 ≜ v1 [ ] and 𝐾 ′ ≜ v′

1
[ ]. The last step again demonstrates why “logical relations”

are called “logical”—we use Iris’s modus ponens rule (𝑄 −∗ 𝑅) ∗ 𝑄 ⊢ 𝑅 (−∗-elim) to eliminate the

magic wand that appears in the interpretation of the function type 𝐴→ 𝐵.

The actual compatibility lemma RS-app follows from this auxiliary lemma in the same way that

S-app followed from its corresponding auxiliary result in §6.5. □

8.5 The Fundamental Theorem and Soundness
Theorem 8.3 (Fundamental theorem of binary logical relations). Well-typed terms are

related to themselves, i.e., if Γ ⊢ 𝑒 : 𝐴 then Γ ⊨ 𝑒 ≤log 𝑒 : 𝐴.

Proof. By straightforward induction on the typing derivation Γ ⊢ 𝑒 : 𝐴. For each case in the

induction proof, we use the corresponding compatibility lemma. □

Lemma 8.4 (Congruency of binary logical relations). The binary logical relation is closed
under well-typed program contexts, i.e., if Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴 and 𝐶 : (Γ;𝐴) { (Γ′;𝐴′) then
Γ′ ⊨ 𝐶 [𝑒] ≤log 𝐶 [𝑒′] : 𝐴′.

Proof. By straightforward induction on the derivation of 𝐶 : (Γ;𝐴) { (Γ′;𝐴′). In each case,

we apply the appropriate compatibility lemma and, when necessary, use the fundamental theorem

(Theorem 8.3) to show that well-typed expressions are related to themselves. □

Lemma 8.5 (Adeqacy of binary logical relations). The binary logical relation preserves
termination, i.e., if ∅ ⊨ 𝑒 ≤log 𝑒′ : 𝐴, then 𝑒 ↓ implies 𝑒′ ↓.

Proof. To prove this lemma, we make use of a strengthened version of adequacy of weakest

preconditions (Theorem 6.1). For brevity’s sake, we do not consider the most general adequacy

statement [Jung et al. 2018b, Theorem 7], but rather consider a version that is instantiated with the

ghost theory for specification resources. That is, given a first-order proposition 𝜙 and a proof of

SpecCnf(∅, ∅) ⊢ wp 𝑒 {𝜙},

if 𝑒 ↓, then 𝜙 holds at the meta-level.

To prove our lemma, we pick 𝜙 ≜ 𝑒′ ↓, which means we are done once we have proved

SpecCnf(∅, ∅) ⊢ wp 𝑒 {𝑒′ ↓}. We prove this result in the following steps:

SpecCnf(∅, ∅) ⊢ |⇛ SpecInv(∅, 𝑒′) ∗ 1 Z⇒ 𝑒′ (step1)

SpecInv(∅, 𝑒′) ∗ 1 Z⇒ 𝑒′ ⊢ wp 𝑒
{
v. ∃v′ . 1 Z⇒ v′ ∗ J𝐴K𝛿 (v,v′)

}
(step2)

SpecInv(∅, 𝑒′) ∗ 1 Z⇒ v′ ⊢ |⇛ 𝑒′ ↓ (step3)

In step1, we allocate the invariant SpecInv(∅, 𝑒′). We do this by first creating a specification

thread resource 1 Z⇒ 𝑒′ for the main thread (using sthread-alloc), and then transferring ownership

of SpecCnf(∅, 𝑒′) into the invariant SpecInv(∅, 𝑒′) (using inv-alloc).

In step2, we make use of our premise ∅ ⊨ 𝑒 ≤log 𝑒′ : 𝐴. Since we are considering closed programs,

by definition of the binary logical relation this premise is equivalent to J𝐴Ke
𝛿
(𝑒, 𝑒′). By unfolding

the expression interpretation we then get:

∀𝑗, 𝐾 . SpecInv(∅, 𝑒′) ∗ 𝑗 Z⇒ 𝐾 [𝑒′] −∗ wp 𝑒
{
v. ∃v′ . 𝑗 Z⇒ 𝐾 [v′] ∗ J𝐴K𝛿 (v,v′)

}
Our result is obtained by specializing this statement by picking 𝐾 = [ ] and 𝑗 = 1:

SpecInv(∅, 𝑒′) ∗ 1 Z⇒ 𝑒′ −∗ wp 𝑒
{
v. ∃v′ . 1 Z⇒ v′ ∗ J𝐴K𝛿 (v,v′)

}
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In step3, we open the invariant SpecInv(∅, 𝑒′) (using inv-open-upd-tl) to obtain that we have

(∅, 𝑒′) →∗tp (𝜎, ®𝑒) for some heap 𝜎 and threadpool ®𝑒 with SpecCnf(𝜎, ®𝑒). Since we have 1 Z⇒ v′, we
obtain that the main thread of ®𝑒 is the value v′ (by sthread-agree), which gives 𝑒′ ↓ as desired.

The proof tree below shows how these steps lead to the final result:

step3

SpecInv(∅, 𝑒′ ) ∗ 1 Z⇒ v′ ∗ J𝐴K𝛿 (v,v′ ) ⊢ |⇛ 𝑒′ ↓
wp-wand, ∃-elim,wp-|⇛

SpecInv(∅, 𝑒′ ) ∗ wp 𝑒
{
v. ∃v′ . 1 Z⇒ v′ ∗ J𝐴K𝛿 (v,v′ )

}
⊢ wp 𝑒 {𝑒′ ↓}

step2

SpecInv(∅, 𝑒′ ) ∗ 1 Z⇒ 𝑒′ ⊢ wp 𝑒 {𝑒′ ↓}
step1, |⇛-wp, |⇛-mono

SpecCnf(∅, ∅) ⊢ wp 𝑒 {𝑒′ ↓}

Note that, once established, we can keep the invariant SpecInv(∅, 𝑒′) around throughout the proof

since it is persistent (and thus duplicable). □

Theorem 8.6 (Soundness of binary logical relations). The binary logical relation is sound
with respect to contextual refinement, i.e., if Γ ⊢ 𝑒 : 𝐴 and Γ ⊢ 𝑒′ : 𝐴 and Γ ⊨ 𝑒 ≤log 𝑒′ : 𝐴, then
Γ ⊨ 𝑒 ≤ctx 𝑒′ : 𝐴.

Proof. By definition of contextual refinement, in order to prove Γ ⊨ 𝑒 ≤ctx 𝑒′ : 𝐴, we are given

a well-typed program context𝐶 : (Γ;𝐴) { (∅; 1) and have to show that𝐶 [𝑒] ↓ implies𝐶 [𝑒′] ↓. By
the assumption and congruency (Lemma 8.4), we have ∅ ⊨ 𝐶 [𝑒] ≤log 𝐶 [𝑒′] : 1, which gives that

𝐶 [𝑒] ↓ implies 𝐶 [𝑒′] ↓ by adequacy (Lemma 8.5). □

8.6 Representation Independence Proofs
The soundness theorem of our binary logical relation (Theorem 8.6) allows us to prove contextual

refinement bymeans of logical refinement. As our logical relation is formalized on top of Iris, we have

the entire power and support of Iris at our disposal when proving contextual refinement by means

of logical refinement. In this subsection, we demonstrate this power by proving representation

independence of two implementations of a concurrent stack displayed in Figure 14. Specifically, we

prove the following refinement:

⊨ stackfg ≤ctx stackcg : ∀𝛼. (𝛼 → 1) × (1→ option 𝛼)

The stack ADT provides functions push and pop for pushing and popping elements on and off a

stack. Since the stack is dynamically sized, the function push will always succeed. The function
pop may fail by returning None if the stack is empty. Here, the option type is defined in the usual

way using sums, i.e., option𝐴 ≜ 1 + 𝐴, and the constructors are defined as None ≜ inj
1
() and

Some v ≜ inj
2
v.

The two implementations of the stack ADT differ in the granularity of their concurrency: the first

is fine-grained—it enforces atomicity at the level of individual instructions—whereas the second is

coarse-grained—it enforces atomicity via a critical section, protected by a lock.

Concretely, the fine-grained implementation stackfg employs a private reference s that points
to the head of a linked list defined using the following recursive type:

linkedlist𝐴 ≜ 𝜇𝛼. ref (option (𝐴 × 𝛼))

The fine-grained implementation uses a technique known as optimistic concurrency to implement

push and pop. It first reads the head reference s to the linked list. It then tries to update the head

reference using the (atomic) compare-and-set instruction (CAS) to make sure it has not beenmodified

in the meantime. If the CAS fails, another thread must have augmented the reference to the list; in

that case, the operation starts over, trying to perform the push or pop again.
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stackfg ≜ Λ.
let s = ref (ref None) in
let pushfg =

rec 𝑓 (𝑥) =
let z = ! s in
if CAS(s, z, ref (Some(𝑥, fold z))) then ()
else 𝑓 𝑥 in

let popfg =

rec 𝑓 () =
let z = ! s in
match ! z with
None ⇒ None
| Some(hd, tl) ⇒

if CAS(s, z, unfold tl) then Some(hd)
else 𝑓 ()

end in
(pushfg, popfg)

stackcg ≜ Λ.
let s = ref None in

let l = newlock () in
let pushcg = 𝜆 𝑥.

acquire l;
s← Some(𝑥, fold ! s);
release l in

let popcg = 𝜆 ().
acquire l;
letmx =

match ! z with
None ⇒ None
| Some(hd, tl) ⇒

s← unfold tl; Some(hd)
end in

release l; mx in
(pushcg, popcg)

Fig. 14. The source code of a fine-grained (left) and coarse-grained (right) concurrent stack.

𝑗 Z⇒ 𝐾 [newlock ()] ⊢ |⇛E ∃𝑙 . isLocks (𝑙, false) ∗ 𝑗 Z⇒ 𝐾 [𝑙] (spec-newlock)

isLocks (𝑙, false) ∗ 𝑗 Z⇒ 𝐾 [acquire 𝑙] ⊢ |⇛E isLocks (𝑙, true) ∗ 𝑗 Z⇒ 𝐾 [()] (spec-acqire)

isLocks (𝑙, true) ∗ 𝑗 Z⇒ 𝐾 [release 𝑙] ⊢ |⇛E isLocks (𝑙, false) ∗ 𝑗 Z⇒ 𝐾 [()] (spec-release)

timeless(isLocks (𝑙, 𝑏)) (spec-lock-timeless)

Fig. 15. Rules for lock specification resources.

The coarse-grained implementation stackcg stores the entire stack as a private reference s to a

list defined using the following recursive type:

list𝐴 ≜ 𝜇𝛼. option (𝐴 × 𝛼)

The coarse-grained implementation uses a lock 𝑙 to make sure the push and pop instructions are
carried out atomically. The operation newlock creates a new lock, which is initially in the unlocked

state. The lock can be moved into the locked state using the acquire operation, which will block if

another thread holds the lock. The lock can be put back into the unlocked state using the release
operation. Release does not block, because only if one acquired the lock, it should release the lock.

AlthoughMyLang does not have locks as primitives, they can easily be implemented using, say, a

spin lock or a ticket lock. For the purpose of this paper, it does not matter what lock implementation

is used—all that matters is that the implementation enjoys the logical rules in Figure 15. (See

[Frumin et al. 2021b, §5] for a proof that a spin lock implementation satisfies these logical rules.)

Note that since locks are used for the specification side of the refinement, we have only included

the rules in terms of specification resources, and not those in terms of weakest preconditions.

Furthermore, note that the lock rules are similar to the rules for the heap operations we have seen
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in Figure 11, but they involve a new predicate isLocks (𝑙, 𝑏), where 𝑏 = false means that the lock 𝑙

is in the unlocked state, and 𝑏 = true means it is in the locked state.

The proof of the stack refinement. In order to prove contextual refinement of the lock

implementations, it suffices, by the soundness of the binary logical relations (Theorem 8.6), to prove

the following, corresponding logical refinement:

⊨ stackfg ≤log stackcg : ∀𝛼. (𝛼 → 1) × (1→ option 𝛼)

The proof follows the same structure as the proof of safe encapsulation of the symbol ADT in §7.

We unfold the definition of the logical refinement judgment, and prove Iris weakest preconditions

for the functions push and pop. The crux of the proof involves defining an invariant that relates

the internal data structures used in both implementations. Since the stack ADT is polymorphic,

this invariant should make sure that the values of both stacks are related by the binary value

interpretation corresponding to the type 𝛼 , which we call Φ : Val ×Val → iProp. To relate the

internal data structures of both implementations we define the following Iris propositions:

Φ̄ ≜ 𝜇 Φ̄ : (Val ×Val→ iProp). 𝜆 (ℓ,v′).
(ℓ ↦→ None ∗v′ = None) ∨
(∃w,w′, ℓtl,v′tl . ℓ ↦→ Some(w, fold ℓtl) ∗v′ = Some(w′, foldv′tl) ∗ Φ(w,w

′) ∗ ⊲ Φ̄(ℓ ′tl,v
′
tl))

𝐼 ≜ ∃ℓ,v′ . 𝑠 ↦→ ℓ ∗ 𝑠′ ↦→s v′ ∗ Φ̄(ℓ,v′) ∗ isLocks (𝑙 ′, false)
Nstk

In prose, the invariant 𝐼 states that:

• the private reference 𝑠 of stackfg always points to the head of a linked list ℓ ;

• the private reference 𝑠′ of stackcg always points to a functional list v′;
• the values stored in the linked list at ℓ and function list v′ are related by Φ; and
• the lock of stackcg is in unlocked state.

The relation Φ̄(ℓ,v′) ensures that the linked list pointed by ℓ and the functional list v′ have the
same length and that the values in these lists are related by the value interpretation Φ. Note that,
as far as the behavior of the ADTs is considered, the lock is never observed in the locked state. This

is because all the acquire statements in the operations of the coarse-grained stack are followed by

a release, and these operations are all executed atomically.

With the invariant in hand, the proof of the logical refinement is straightforward but lengthy.

After we have allocated the resources of the stacks (the lists and locks), we create the Iris invariant 𝐼 .

Subsequently, we prove the refinements of push and pop using Löb induction, where in each step

we open and close the invariant 𝐼 . A detailed and formal proof can be found in the accompanying

Coq formalization (see §10 for the URL to the online repository with the Coq formalization).

Summary. We have shown how our logical relation can be used to show representation inde-

pendence of two implementations of a concurrent stack. We note that since the coarse-grained

stack uses locks to sequentialize accesses to the stack, one can understand our logical relations

proof of contextual refinement as an alternative to the linearizability proof method for concurrent

objects [Herlihy andWing 1990]. A possible advantage of the logical relations approach shown here

is that it also applies, mutatis mutandis, when the data structure in question involves higher-order

functions; for example, one can easily extend the logical relations proof above to the case where

the fine-grained and coarse-grained concurrent stacks include a higher-order iterator method. In

contrast, linearizability has so far mostly been developed for first-order languages, although recent

work by Murawski and Tzevelekos [2019] has extended linearizability to higher-order programming

languages.
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9 ADDITIONAL RELATEDWORK
The “logical approach to type soundness” that we have advanced in this paper descends from multi-

ple lines of prior work on the semantics of higher-order, imperative, and concurrent programming

languages. In §4.2, we discussed earlier work on semantic type soundness and step-indexed models.

In this section, we briefly survey some other key influences on our work, as well as closely related

approaches.

Relational logics for richly-typed languages. The most direct ancestor of our approach

is the line of work on relational logics—logics for reasoning abstractly about relational program

properties such as parametricity and representation independence in richly-typed languages. The

primogenitor of this line is the seminal paper of Plotkin and Abadi [1993], who showed how to

define logical relations for a polymorphic programming language in a second-order relational logic.

Their approach was extended by Dreyer et al. [2011], who integrated the “later” (⊲) modality into

a Plotkin-Abadi style logic in order to define step-indexed logical relations for a language with

polymorphic and recursive types. Dreyer et al.’s motivation was precisely to avoid the tedious step-

indexed arithmetic that they had previously experienced when working directly with step-indexed

models. Their method was extended further by Dreyer et al. [2010] to handle general (higher-typed)

mutable references, using a second-order relational separation logic, inspired by [Yang 2007], with

a notion of invariants (called “islands”, based on prior work of Ahmed et al. [2009]). Turon et al.

[2013a] later extended the logical approach to a language with concurrency (using a pre-Iris second-

order concurrent separation logic called CaReSL), and Krogh-Jespersen et al. [2017] extended it

(using Iris) to account for a region-based type-and-effect system.

Though directly continuing this line of work, our “logical approach to type soundness” goes

beyond the aforementioned pre-Iris work on relational logics in several ways. First of all, we have

shown that the approach of building logical relations in separation logic is useful not only in

proving relational properties like representation independence but also in formalizing semantic
type soundness results (a unary property) for richly-typed languages. We have also demonstrated

the utility of the resulting semantic soundness theorems for verifying safe encapsulation of unsafe

features. Second, our approach leverages a more modern concurrent separation logic, namely Iris,

which offers a richer, more evolved, and still evolving logical language in which to encode logical

relations models of types. Iris is also a language-agnostic framework, which can be instantiated for

a wide variety of different languages so long as they can be formalized with a relatively standard

style of operational semantics [Jung et al. 2018b, §7.3]. Last but not least, thanks to the Iris Proof

Mode [Krebbers et al. 2017b], our approach has the key benefit of making it feasible to fairly rapidly

develop both semantic soundness and representation independence proofs that are fully machine-

checked in Coq. In contrast, none of the previous work on relational logics was mechanized in a

proof assistant.

These benefits of the logical approach have already been demonstrated in a significant and

growing set of papers that employ it for both unary and relational reasoning (see §10 for citations)—

but, as we noted in the Introduction, these papers are not always the easiest on-ramps for newcomers

wanting to learn the essential methodology. We hope that the present paper helps to fill the

pedagogical gap by presenting the logical approach from first principles and in the setting of a

simpler programming language.

“Semantic soundness” for compilers. A second key ancestor of our work is that of Benton

and collaborators [Benton 2006; Benton and Zarfaty 2007; Benton and Tabareau 2009; Benton and

Hur 2009]. Over a series of papers, they propounded the idea that “compiler correctness” ought to

account for preservation of source-level relational reasoning down to the assembly level—and that,
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to realize this idea, one should build semantic models of high-level types as relational specifications

on low-level code. Though superficially distinct from the kinds of results we have established in

this paper, Benton et al.’s compiler correctness theorems were referred to as “semantic soundness”

theorems, and indeed there is a strong kinship between theirs and ours. In particular, like our

logical-relations models, theirs (1) were formulated using logical abstractions such as the later

modality and separating conjunction to support higher-level reasoning, (2) were specifically used

to verify that low-level, potentially unsafe code is well-behaved according to the semantic contracts

of high-level types, and (3) were formalized in Coq.

Aside from the specific intended application, a key difference between ourwork and Benton et al.’s

is that, although Benton et al.’s models make use of higher-level logical abstractions, the proofs

about them are still conducted directly in the model of propositions (rather than in a bona fide
logic like Iris) and without the rich tactical support for separation logic that the Iris Proof Mode

provides, thus rendering them considerably lower-level than ours. This is quite understandable,

given that Benton et al.’s work was conducted before a number of major advances in (higher-order

concurrent) separation logic, which ultimately culminated in the development of Iris. In a sense,

the work was ahead of its time. Nevertheless, it was a source of inspiration for us in how it used

logical relations, along with techniques from step-indexing and separation logic, to carve out

“well-behavedness” conditions on potentially unsafe code. Also inspiring to us were Benton et al.’s

observations concerning the limitations of syntactic type soundness, which were rather iconoclastic

given the predominance of the syntactic approach at the time.

Simulation-based approaches. Around the same time as step-indexed models were being

developed in the mid-2000s, there emerged an impressive series of papers on (bi-)simulation
techniques for relational reasoning in higher-order, imperative, and concurrent languages—e.g.,
[Koutavas and Wand 2006; Sumii and Pierce 2007; Støvring and Lassen 2007; Lassen and Levy 2007;

Sumii 2009]. We still lack a precise understanding of the relationship between logical relations and

simulation-based methods—there are tradeoffs in terms of convenience of proof effort—but suffice

it to say that, in terms of expressive power, both classes of techniques have proven capable (in

principle) of supporting sophisticated relational reasoning in a range of different programming

languages. For more details, we refer the reader to Hur et al. [2012].

There are, however, a number of differences between the simulation-based methods and the

methods we have presented in this paper. First, since the simulation-based methods rely on coinduc-

tion (rather than step-indexing) to achieve reasoning about “circular” features (e.g., recursive types,
higher-order state), they do not require anything comparable to the tedious reasoning about step-

index arithmetic that we remarked upon in §4.3. However, as with direct reasoning in step-indexed

models, the simulation-based methods do involve explicit, and sometimes low-level, reasoning

about the global machine state and invariants on it (see points 2 and 3 in §4.3). Second, nearly all of

the work on simulations has been focused exclusively on proving relational properties, not semantic

type soundness. One exception is Sumii [2010], who explores the applicability of simulation-based

methods to proving safe encapsulation of potentially unsafe deallocation operations in a sequential,

untyped 𝜆-calculus with higher-order state, but his approach has not seemingly been applied to

a wider variety of languages. Lastly, with the exception of the line of work on “parametric simu-

lations” [Hur et al. 2012; Neis et al. 2015], none of the simulation-based approaches have, to our

knowledge, been formally mechanized in a proof assistant.

Syntactic type abstraction. In §3, we discussed the strengths and limitations of the syntactic

approach to type soundness, noting in particular that syntactic type soundness has nothing to say

about whether a language properly supports data abstraction. There is, however, at least one paper

proposing a syntactic approach to reasoning about data abstraction properties of ADTs, namely that
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of Grossman et al. [2000]. Their approach involves introducing a syntactic notion of “principals”

into their operational semantics in order to track which values arise from the implementation of an

ADT vs. from its client. Although they develop their method in the presence of a wide range of

features (including higher-order state), they only use it to prove a limited class of results: one stating

that a value of some abstract type must have arisen from calling a specific operation provided by an

ADT, and another stating that changing the integer representing a value of some abstract type will

not affect client code. The proofs of those results eschew the complexities of semantic models but

supplant them with arguments concerning highly intricate syntactic invariants (see for instance

the proof of Theorem 3.13 in their paper). Moreover, it is not at all clear how one could apply their

method to verify either the symbol ADT example from §7 or the representation independence

example from §8.6, since those examples involve more complex invariants on state.

Hybrid syntactic/semantic approaches to type soundness. There have been a few ap-

proaches to type soundness that incorporate hybrids of syntactic and semantic/logical elements.

Tofte [1990] proposed an early approach to type inference (and type soundness) for an ML-like

language combining polymorphism and mutable references. Tofte’s approach, which pre-dates the

“progress and preservation” approach [Wright and Felleisen 1994; Harper 2016], defines a semantic

typing relation, albeit using coinduction to handle circularities in the construction (rather than

step-indexing as we do), and using a syntactic heap typing to track the types of memory locations

(rather than a semantic/logical model of heap typing as we formalize with Iris invariants). Tofte’s

approach was adopted by several others in the early 1990s [Leroy andWeis 1991; Talpin and Jouvelot

1994], when a number of researchers were investigating how best to make ML-style type inference

play well with mutable references. However, it fell out of favor after much simpler methods were

proposed: the “value restriction” [Wright 1995] for safely combining ML-style polymorphism with

references (which was ultimately integrated into both Standard ML and OCaml), and progress and

preservation for proving type soundness. Moreover, Tofte’s approach was limited to predicative

polymorphism (see the discussion in [Tofte 1990, p. 21]), which neither syntactic nor logical type

soundness are; and due to its reliance on syntactic techniques, it suffers from the same limitations

of syntactic type soundness that we laid out in §3.

Mezzo [Balabonski et al. 2016] is a recently proposed programming language with (broadly

speaking) similar goals to Rust: supporting low-level, fine-grained control over the representation

and access of data in memory, while preserving type and memory safety. Also like Rust, Mezzo

employs a substructural type system in order to track aliasing and ownership of memory. The

soundness proof for Mezzo is clearly syntactic, following the tradition of progress-and-preservation

proofs. However, in order to support a more modular presentation of the soundness proof, Balabon-

ski et al. formalize a notion of “resource” using something called a “monotonic resource algebra”

(which is closely related to, but not the same as, the “cameras” and “resource algebras” used in

Iris—see the discussion in [Jung et al. 2018b, §9.3]). These resources definitely give their soundness

proof a separation-logic flavor; yet it remains syntactic, and thus does not offer a way to reason

about data abstraction or safe encapsulation of unsafe features.

10 CONCLUSION
In this paper, we have demonstrated that semantic type soundness is a more useful result than

syntactic type soundness, and we have shown how to prove it at a higher level of abstraction

than in prior work by exploiting the features of a modern separation logic, Iris. We conclude in

this section by illustrating that our logical approach to type soundness is eminently scalable and

practical. We do so by describing a general recipe for extending the logical approach to different

languages, type systems, and program properties. Additionally, we offer a brief discussion of recent
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work that has employed the logical approach in practice, and provide references to papers and

online tutorials that show how to mechanize logical type soundness proofs in Coq.

Applying the logical approach to other languages. We have studied the logical approach

here in the context of the simple programming languageMyLang, which exhibits a fairly pedestrian
set of features. To apply the logical approach to a different language or a different type system, one

roughly has to follow the following three steps:

1. Instantiate Iris with the language. The most common way to instantiate Iris with a programming

language of choice is to start by defining its syntax and operational semantics. As explained in §6.1,

Iris’s program logic (whose primary component is the connective for weakest preconditions) is

parametric in the types of expressions, values, and states, and in a reduction relation.

Instead of defining the syntax and operational semantics of a language from scratch, Iris’s default

language HeapLang could be reused. HeapLang is similar to MyLang, but comes with a number of

additional features, such as arrays. Some programming languages are well-suited to be defined as

a shallow embedding on top of HeapLang (see e.g., Hinrichsen et al. [2021] for a language with

message-passing primitives à la session types).

2. Define reasoning principles for the language. After having defined the syntax and operational

semantics of the programming language, one needs to define logical connectives for ownership of

physical resources (like the points-to connective ℓ ↦→ v) and program reasoning (like the weakest

precondition connective wp 𝑒 {Φ}).
If the programming language fits into Iris’s common format for small-step operational semantics,

then Iris’s generic program logic and definition of weakest preconditions can be used. Additionally,

if the language has a simple memory model like MyLang’s, Iris’s generic library for the points-to

connective ℓ ↦→ v can be used. If the language has a more sophisticated memory model (e.g., a
block/offset-based memory model like CompCert’s [Leroy and Blazy 2008], as used in RustBelt

[Jung et al. 2018a, 2021; Jung 2020] and RefinedC [Sammler et al. 2021]), or if it has additional

physical resources (e.g., a program counter and registers as in a low-level capability machine

[Georges et al. 2021]), then custom connectives for ownership of physical resources need to be

defined, either by combining existing libraries or rolling one’s own library using ghost state. Such

a library can then be plugged into Iris’s generic weakest precondition connective.

Alternatively, instead of reusing Iris’s generic program logic and weakest preconditions, one can

define a custom program logic with the help of Iris’s base logic (which includes ∗, −∗, □, |⇛, and ⊲).

This is useful, for example, to obtain a weakest precondition in big-step rather than small-step style

(see e.g., Timany et al. [2018]; Gregersen et al. [2021]), to establish program properties that are out

of scope of Iris’s generic program logic (e.g., security, see Frumin et al. [2021a]; Gregersen et al.

[2021]), or to consider programming languages with non-local control (e.g., effect handlers, see
de Vilhena and Pottier [2023]). One can go even further and only rely on Iris’s basic constructs for

step-indexing (and the Iris Proof Mode in Coq) to develop a custom model of separation logic. For

instance, Jacobs et al. [2024] develop a linear (instead of affine) variant of Iris for deadlock-freedom

of message-passing programs, which they use to give a semantic model of linear session types.

There is a middle ground as well: rather than building a custom program logic from scratch,

one can instead define new notions of weakest precondition on top of Iris’s generic weakest

preconditions. iGPS [Kaiser et al. 2017] and RustBelt Relaxed [Dang et al. 2020] employ this

methodology to build a weakest precondition for relaxed memory concurrency. Timany and

Birkedal [2019] use this methodology to develop a notion of context-local weakest precondition
to reason about concurrent programs with first-class continuations, and Timany et al. [2024]

develop a notion of well-bracketed weakest precondition for exploiting the absence of continuations.
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Interestingly, Timany et al. [2024] then use their logic to build unary and binary logical relations

which are almost verbatim the same as the ones we have developed in this article, the only difference

being that they model their expression relation using a well-bracketed weakest precondition instead

of the generic Iris one.

3. Define ghost theories for modeling the type system. Once reasoning principles for the program-

ming language have been set up, one needs to define suitable ghost theories for modeling the

features of the type system. In this paper, we have seen three instances of ghost theories: impred-

icative invariants for modeling higher-order references (§6.9), ghost counters for monotonically

increasing counters as used in the symbol ADT example (§7), and specification resources for proving

representation independence (§8.3). Other examples of ghost theories are RustBelt’s lifetime logic

for modeling Rust’s lifetime and borrowing mechanism [Jung et al. 2018a, 2021; Jung 2020; Dang

et al. 2020], and Actris’s dependent separation protocol mechanism for modeling session types

[Hinrichsen et al. 2020, 2022, 2021].

Ghost theories are defined using Iris’s mechanism of higher-order ghost state [Jung et al. 2016].
This mechanism is based on PCMs (partial commutative monoids)—as found in many separation

logics—but generalizes them with a step-indexed notion of equality. Iris’s generalized PCMs are

called step-indexed resource algebras, or cameras for short. While we have presented impredicative

invariants as a primitive of Iris, they are in fact defined in terms of Iris’s higher-order ghost state

mechanism. Some work (e.g., Giarrusso et al. [2020]) uses higher-order ghost state directly instead

of invariants.

Recent work that employs the logical approach. In recent years, the logical approach to

type soundness has been deployed in a variety of applications. One of the earliest examples we are

aware of is the work of Gordon et al. [2012], who studied a type system for safe parallelism based

on reference immutability and uniqueness. They proved (pen-and-paper) semantic soundness of

their type system by modeling its typing judgment in an early version of the Views separation-logic

framework [Dinsdale-Young et al. 2013], a key precursor of Iris.

Since the development of the Iris Proof Mode for Coq [Krebbers et al. 2017b], Iris has become the

lingua franca for machine-checked proofs of logical type soundness. For instance, Iris has been used

for a machine-checked proof of type soundness of a significant subset of the Rust programming

language [Jung et al. 2018a, 2021; Jung 2020; Dang et al. 2020], an extension of Scala’s core type

system DOT [Giarrusso et al. 2020], session types [Hinrichsen et al. 2021; Jacobs et al. 2024], and

refinement types for the C programming language [Sammler et al. 2021]. Aside from type soundness,

it has also been used to prove robust safety [Swasey et al. 2017; Sammler et al. 2020; Georges et al.

2021; Rao et al. 2023], various forms of representation independence and program refinement

[Krogh-Jespersen et al. 2017; Tassarotti et al. 2017; Timany et al. 2018; Timany and Birkedal 2019;

Frumin et al. 2018, 2021b; Jacobs et al. 2021; Timany et al. 2024], and various security properties

[Frumin et al. 2021a; Gregersen et al. 2021; Georges et al. 2021]. It has even recently been used to

build logical relations on top of a denotational, rather than operational, semantics [Frumin et al.

2024]. Instead of discussing these applications in detail, we highlight some interesting differences

between our presentation of the logical approach and theirs.

In this paper we have considered a “standard” (unrestricted) type system, in which variables can

be used any number of times and types are not used to enforce a discipline of resource ownership.

However, since Iris is a separation logic, it is in fact designed to reason about ownership and is thus

ideally suited to applying the logical approach to substructural type systems. For example, Jung

et al. [2018a, 2021], Jung [2020], and Dang et al. [2020] have used Iris to model Rust’s type system,

which employs a strict ownership discipline to guarantee memory safety and data-race freedom in

the context of low-level programming paradigms. Tassarotti et al. [2017], Hinrichsen et al. [2021],
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and Jacobs et al. [2024] have used Iris to model session types, which employ ownership to enforce

protocol compliance in message-passing communication.

The crucial difference between unrestricted and substructural type systems is whether to make

the value interpretation J𝐴K persistent or not. In an unrestricted type system (such as the type

system for MyLang in this paper), the value interpretation J𝐴K is persistent for any type 𝐴. In

a substructural type system (such as Rust or session types), the value interpretation J𝐴K is not
persistent for types that denote ownership (such as mutable references and channels), while it is

persistent for “copyable” types (such as integers, Booleans and shared references).

With regard to refinement proofs, let us point out two differences from some of the above-cited

papers. First, in this paper we had to unfold the logical refinement judgment and carry out a proof

in terms of its definition in Iris (see §8.6 for how this is done for the example of concurrent stacks).

In contrast, Frumin et al. [2018, 2021b] present a logic for doing such refinement proofs at a higher

level of abstraction and show how it simplifies reasoning about refinements.

Second, in this paper, we have used Iris to prove termination-insensitive program refinement, in

which any non-terminating program is a contextual refinement of any other program. In contrast,

Tassarotti et al. [2017] develop a version of Iris to prove termination-preserving refinements. While

their approach establishes a stronger version of refinement, it also has some limitations—it can only

be used in the context of languages with countable non-determinism (instead of concurrency), and

for refinement proofs that involve finite stuttering. Recent work by Spies et al. [2021] overcomes

these limitations in a non-concurrent setting by employing a transfinite version of step-indexing,

where steps are modeled using ordinals instead of natural numbers. An interesting direction for

future work is to scale this approach to the concurrent setting.

Coq material. To develop Iris proofs in practice, nearly all Iris users make use of the Iris Proof

Mode [Krebbers et al. 2017b, 2018], which provides tactics and other infrastructure for carrying out

separation logic proofs in Coq. While a presentation of the Iris Proof Mode is beyond the scope of

this paper, we provide some references to relevant online materials.

First of all, there is the Coq development accompanying the present paper:

• https://gitlab.mpi-sws.org/iris/examples (directory logrel/F_mu_ref_conc)

This development contains a mechanization of the semantic type soundness proof (§5–§6)

and representation independence proof (§8) for MyLang, as well as the proofs that symbol
is semantically well-typed and gremlin is not (§7).

In addition, here are links to several other tutorial materials with different emphases:

• https://gitlab.mpi-sws.org/iris/tutorial-popl20/

This tutorial (which was presented at the POPL’20 conference) demonstrates how to prove

logical type soundness in Iris/Coq. The structure of this tutorial largely follows §5–§7, but uses

Iris’s default language HeapLang (and the infrastructure that Iris provides for HeapLang)

instead of the language MyLang. This tutorial comes with exercises.

• https://gitlab.mpi-sws.org/iris/tutorial-popl21/

This tutorial (which was presented at the POPL’21 conference, and is based on an earlier

version at POPL’18) does not specifically target logical type soundness, but provides an intro-

duction to reasoning about concurrent programs in Iris. This tutorial comes with exercises.

• https://github.com/tchajed/iris-simp-lang/

This tutorial demonstrates how to instantiate Iris with a custom language, based on a stripped-

down version of HeapLang.

https://gitlab.mpi-sws.org/iris/examples
https://gitlab.mpi-sws.org/iris/tutorial-popl20/
https://gitlab.mpi-sws.org/iris/tutorial-popl21/
https://github.com/tchajed/iris-simp-lang/
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• https://gitlab.mpi-sws.org/FP/semantics-course/

This development accompanies lecture notes from a course on Semantics taught periodically

at Saarland University (https://plv.mpi-sws.org/semantics-course/lecturenotes.pdf). The first

half of the notes cover semantic type soundness and logical relations for a language similar to

MyLang, formalized directly in the traditional, explicitly step-indexed style; the second half

of the notes offer a tutorial on Iris, with the ulterior motive of showing how to re-implement

the semantic models of the first half in the logical style. Both the lecture notes and the

accompanying Coq development come with many exercises.
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