Iris: Higher-Order Concurrent Separation Logic

Lecture 12: The Authoritative Resource Algebra: Concurrent Counter Modules

Lars Birkedal

Aarhus University, Denmark

November 30, 2017
Overview

Earlier:

- Operational Semantics of $\lambda_{\text{ref,conc}}$
 - $e, (h, e) \leadsto (h, e'),$ and $(h, E) \rightarrow (h', E')$
- Basic Logic of Resources
 - $l \leftrightarrow v, P \ast Q, P \nabla Q, \Gamma \mid P \vdash Q$
- Basic Separation Logic
 - $\{P\} e \{v.Q\} : \text{Prop, isList} l \ x s, \text{ADTs, foldr}$
- Later (\triangledown) and Persistent (\Box) Modalities.
- Concurrency Intro, Invariants and Ghost State
- CAS and Spin Locks.

Today:

- Proof patterns for concurrency
- Key Points:
 - Authoritative Resource Algebra.
 - Fractions to track concurrent ownership.
A Recurring Specification and Proof Pattern

▶ Wish to consider situation where several threads operate on shared state.
▶ Each thread has a *partial view* or *fragmental view* of the shared state.
▶ There is an invariant governing the shared state.
▶ The invariant keeps track of what the actual state is, hence it tracks the *authoritative view* of the shared state.
Example: Counter Module

- Counter module with three methods:
 - newCounter for creating a fresh counter,
 - incr for increasing the value of the counter,
 - read for reading the current value of the counter.

- Abstract predicate isCounter(v, n): v is a counter whose current value is n.

- isCounter(v, n) should be persistent, so different threads can access the counter simultaneously.

- Hence isCounter(v, n) cannot state that n is exactly the value of the counter, but only its lower bound.
Counter Implementation

- The newCounter method creates the counter: a location containing the counter value.

\[
\text{newCounter}() = \text{ref}(0)
\]

- The incr method increases the value of the counter by 1. Since \(\ell \leftarrow !\ell + 1\) is not an atomic operation we use a \text{cas} loop:

\[
\text{rec incr}(\ell) = \text{let } n = !\ell \text{ in}
\]
\[
\text{let } m = n + 1 \text{ in}
\]
\[
\text{if } \text{cas}(\ell, n, m) \text{ then } () \text{ else incr } \ell
\]

- The read method simply reads the value

\[
\text{read } \ell = !\ell.
\]
Authoritative and Fragmental Views

- We will use an invariant to keep track of the shared state of the module, the value of the counter.
- The invariant will have the authoritative view of the value of the counter, a ghost assertion:
 \[
 \bullet m^\gamma
 \]
 Intuitively, this is the correct, true, value of the counter.
- Each thread will have a fragmental view of the value of the counter, captured by a ghost assertion:
 \[
 \circ n^\gamma
 \]
 Intuitively, this is a lower bound of the correct, true, value of the counter.
Authoritative and Fragmental Views

- We will use an invariant to keep track of the shared state of the module, the value of the counter.
- The invariant will have the authoritative view of the value of the counter, a ghost assertion:

 $\bullet m^\gamma$

 Intuitively, this is the correct, true, value of the counter.
- Each thread will have a fragmental view of the value of the counter, captured by a ghost assertion:

 $\diamond n^\gamma$

 Intuitively, this is a lower bound of the correct, true, value of the counter.
- Define abstract predicate by

 $\text{isCounter}(\ell, n, \gamma) = \diamond n^\gamma \ast \exists \ell. \exists m. \ell \rightarrow m \ast \bullet m^\gamma$
1. a fragmental view should be duplicable (several threads may share the same fragmental view, \textit{i.e.}, several threads may agree that the lower bound of counter is n, say)

2. the fragmental view is a lower bound of the true value

3. if we own both the authoriative view and a fragmental view, then we may update them (so we can only update a fragmental view, if we also update the authoritive view!)
RA definition

- **Carrier**: $\mathcal{M} = \mathbb{N}_{\bot, \top} \times \mathbb{N}$ where $\mathbb{N}_{\bot, \top}$ is the naturals with two additional elements \bot and \top.
 - Idea: for $m, n \in \mathbb{N}$, write $\bullet m$ for $(m, 0)$ and $\circ n$ for (\bot, n).
- **Operation**:

 \[
 (x, n) \cdot (y, m) = \begin{cases}
 (y, \max(n, m)) & \text{if } x = \bot \\
 (x, \max(n, m)) & \text{if } y = \bot \\
 (\top, \max(n, m)) & \text{otherwise}
 \end{cases}
 \]
- **Unit**: $(\bot, 0)$.
- **Validity**
 \[
 \mathcal{V} = \{(x, n) \mid x = \bot \lor x \in \mathbb{N} \land x \geq n\}.
 \]
- **Core**
 \[
 |(x, n)| = (\bot, n).
 \]
- $(\mathcal{M}, \mathcal{V}, |\cdot|)$ is a unital resource algebra.
RA definition

- For $m, n \in \mathbb{N}$, write $\bullet m$ for $(m, 0)$ and $\circ n$ for (\bot, n).
- Then the required properties hold.
Checking required properties: example

Let us check $\bullet m \cdot \circ n \sim \bullet (m + 1) \cdot \circ (n + 1)$:

- First, recall that
 - $\bullet m \cdot \circ n = (m, 0) \cdot (\perp, n) = (m, n)$, and
 - $\bullet (m + 1) \cdot \circ (n + 1) = (m + 1, 0) \cdot (\perp, n + 1) = (m + 1, n + 1)$.

- TS, for all (x, y),

\[
(m, n) \cdot (x, y) \in V \Rightarrow (m + 1, n + 1) \cdot (x, y) \in V.
\]

- So suppose $(m, n) \cdot (x, y) \in V$. Then $x = \perp$, and $(m, n) \cdot (x, y) = (m, \max(n, y))$ and $\max(n, y) \leq m$.

- But then also $\max(n + 1, y) \leq m + 1$ and hence $(m + 1, \max(n + 1, y)) = (m + 1, n + 1) \cdot (x, y) \in V$, as required.
Counter Specification and Client

Exercise: Show the following specifications:

\{True\} \text{newCounter()} \{u. \exists \gamma. \text{isCounter}(u, 0, \gamma)\}

\forall \gamma. \forall v. \forall n. \{\text{isCounter}(v, n, \gamma)\} \text{read } v \{u. u \geq n\}

\forall \gamma. \forall v. \forall n. \{\text{isCounter}(v, n, \gamma)\} \text{incr } v \{u. u = () \ast \text{isCounter}(v, n + 1, \gamma)\}

Let e be the program

\text{let } c = \text{newCounter()} \text{ in (incr } c \|\| \text{incr } c); \text{read } c.

Show the following specification for e.

\{True\} e \{v. v \geq 2\}.
A More Precise Spec?

- For the example program e above, we know operationally that the final value will be 2.
- However, we cannot prove that without spec, since `isCounter` is freely duplicable:
 - we do not track whether other threads are using the counter.
- Now we will show how to use *fractions* to keep track of concurrent ownership.
Fractions to track concurrent ownership of counter

- Add fraction q to the abstract isCounter predicate:
 - Intuition: If a thread has ownership of $\text{isCounter}(\ell, n, \gamma, q)$, then
 - the contribution of this thread to the actual counter value is n, and
 - if $q = 1$, then this thread is the sole owner, otherwise ($q < 1$) we have fragmental ownership.

- Specification: (note two specs for read):

 \[
 \{\text{True}\} \text{ newCounter()} \{ u. \exists \gamma. \text{isCounter}(u, 0, \gamma, 1) \}
 \]

 \[
 \forall p. \forall \gamma. \forall v. \forall n. \{ \text{isCounter}(v, n, \gamma, p) \} \text{ read } v \{ u.u \geq n \}
 \]

 \[
 \forall \gamma. \forall v. \forall n. \{ \text{isCounter}(v, n, \gamma, 1) \} \text{ read } v \{ u.u = n \}
 \]

 \[
 \forall p. \forall \gamma. \forall v. \forall n. \{ \text{isCounter}(v, n, \gamma, p) \} \text{ incr } v \{ u.u = () \} * \text{isCounter}(v, n + 1, \gamma, p) \}
 \]

- isCounter is not persistent anymore; instead we have:

 \[
 \text{isCounter}(\ell, n + k, \gamma, p + q) \iff \text{isCounter}(\ell, n, \gamma, p) * \text{isCounter}(\ell, k, \gamma, q).
 \]
Given a unital RA $(\mathcal{M}, \varepsilon, \mathcal{V}, |\cdot|)$, let $\text{AUTH}(\mathcal{M})$ be RA with

- **Carrier:** $\mathcal{M}_{\bot, \top} \times \mathcal{M}$
- **Operation:**

 $$(x, a) \cdot (y, b) = \begin{cases}
 (y, a \cdot b) & \text{if } x = \bot \\
 (x, a \cdot b) & \text{if } y = \bot \\
 (\top, a \cdot b) & \text{otherwise}
 \end{cases}$$

- **Core:**

 $$| (x, a) |_{\text{AUTH}(\mathcal{M})} = (\bot, |a|)$$

- **Valid elements:**

 $$\mathcal{V}_{\text{AUTH}(\mathcal{M})} = \{ (x, a) \mid x = \bot \land a \in \mathcal{V} \lor x \in \mathcal{M} \land x \in \mathcal{V} \land a \preceq x \}$$

We write $\bullet m$ for (m, ε) and $\circ n$ for (\bot, n).
Properties of $\text{AUTH}(\mathcal{M})$

- $\text{AUTH}(\mathcal{M})$ is unital with unit (\perp, ε), where ε is the unit of \mathcal{M}
- $\bullet x \cdot \bullet y \notin \mathcal{V}_{\text{AUTH}(\mathcal{M})}$ for any x and y
- $\circ x \cdot \circ y = \circ (x \cdot y)$
- $\bullet x \cdot \circ y \in \mathcal{V} \Rightarrow y \preccurlyeq x$
- if $x \cdot z$ is valid in \mathcal{M} then
 \[\bullet x \cdot \circ y \leadsto \bullet (x \cdot z) \cdot \circ (y \cdot z) \]

in $\text{AUTH}(\mathcal{M})$

(Exercise!)

- Remark: The RA we used earlier for the counter is $\text{AUTH}(\mathbb{N}_{\text{max}})$, where \mathbb{N}_{max} is the RA with carrier the natural number and operation the maximum, core the identity function and all elements valid.
Verifying the more precise spec

► New def’n of representation predicate:

\[\text{isCounter}(\ell, n, \gamma, p) = \circ (p, n)^\gamma \land \exists \iota. \exists m. \ell \mapsto m \land \bullet (1, m)^\gamma \land \iota. \]

► Idea: invariant stores the exact value of the counter, hence the fraction is 1.

► Fragment \(\circ (p, n)^\gamma \) connects the actual value of the counter to the value known to a particular thread.

► Thus, to be able to read the exact value of the counter when \(p \) is 1 we need the property that if \(\bullet (1, m) \cdot \circ (1, n) \) is valid then \(n = m \).

► Further, need that if \(\bullet (1, m) \cdot \circ (p, n) \) is valid then \(m \geq n \).

► Finally, wish

\[\text{isCounter}(\ell, n + k, \gamma, p + q) \vdash \text{isCounter}(\ell, n, \gamma, p) \land \text{isCounter}(\ell, k, \gamma, q). \]
Verifying the more precise spec: choice of RA

- Achieve the above by using $\text{AUTH}((\mathbb{Q}_{01} \times \mathbb{N})_?)$, where
 - \mathbb{Q}_{01} is the RA of fractions.
 - \mathbb{N} is the resource algebra of natural numbers with addition as the operation, and every element is valid,
 - $(\mathbb{Q}_{01} \times \mathbb{N})_?$ is the option RA on the product of the two previous ones.

- Properties:
 - $(p, n) \cdot \circ (q, m) = \circ (p + q, n + m)$
 - if $\bullet (1, m) \cdot \circ (p, n)$ is valid then $n \leq m$ and $p \leq 1$
 - if $\bullet (1, m) \cdot \circ (1, n)$ is valid then $n = m$
 - $\bullet (1, m) \cdot \circ (p, n) \leadsto \bullet (1, m + 1) \cdot \circ (p, n + 1)$.
Verifying the more precise spec

With isCounter defined as shown above, we get

\[
\text{isCounter}(\ell, n + k, \gamma, p + q) \dashv \vdash \text{isCounter}(\ell, n, \gamma, p) \ast \text{isCounter}(\ell, k, \gamma, q).
\]

and

\[
\begin{align*}
\{\text{True}\} \text{ newCounter()} & \{u.\exists \gamma. \text{isCounter}(u, 0, \gamma, 1)\} \\
\forall p. \forall \gamma. \forall v. \forall n. \{\text{isCounter}(v, n, \gamma, p)\} & \text{ read } v \{u.u \geq n\} \\
\forall \gamma. \forall v. \forall n. \{\text{isCounter}(v, n, \gamma, 1)\} & \text{ read } v \{u.u = n\} \\
\forall p. \forall \gamma. \forall v. \forall n. \{\text{isCounter}(v, n, \gamma, p)\} & \text{ incr } v \{u.u = () \ast \text{isCounter}(v, n + 1, \gamma, p)\}
\end{align*}
\]

Let e be the program

\[
\text{let } c = \text{newCounter()} \text{ in } (\text{incr } c || \text{incr } c); \text{read } c.
\]

Now one can use the above spec to show:

\[
\{\text{True}\} e \{v.v = 2\}.
\]