Iris: Higher-Order Concurrent Separation Logic

Lecture 8: Persistent Modality

Lars Birkedal

Aarhus University, Denmark

November 17, 2017
Overview

Earlier:

- Operational Semantics of $\lambda_{\text{ref,conc}}$
 - $e, (h, e) \leadsto (h, e')$, and $(h, E) \rightarrow (h', E')$
- Basic Logic of Resources
 - $l \hookrightarrow v, P * Q, P \rightarrow Q, \Gamma \mid P \vdash Q$
- Basic Separation Logic
 - $\{P\} e \{v.Q\} : \text{Prop, isList} \mid l \text{ xs, ADTs, foldr}$
- Later Modality: \triangleright

Today:

- Persistent Modality: \Box
- Key Points:
 - General treatment of persistent predicates.
 - Allows to recover ordinary non-sub-structural logic for reasoning about “knowledge” only (not resources).
Persistent Modality □

- Earlier: explained that Hoare triples and equality predicates are *persistent* and hence may be moved in-and-out of preconditions.
- Today: systematic definition and treatment of persistent predicates.
- Informally, persistent predicates are those predicates that do not assert exclusive ownership over resources.
- Hence they only express “knowledge”, not exclusive ownership.
- Hence persistent predicates P are duplicable: $P \vdash P \star P$.
- Duplicable predicates are important because we can always make a copy of them to give away to other threads.
Persistent Modality □

▶ Typing for □:

\[\Gamma \vdash P : \text{Prop} \]
\[\Gamma \vdash \square P : \text{Prop} \]

▶ Definition: we call a proposition \(P \) *persistent* if it satisfies \(P \vdash \square P \).
Persistent Modality □

- Typing for □:

\[
\Gamma \vdash P : \text{Prop} \\
\hline
\Gamma \vdash \Box P : \text{Prop}
\]

- Definition: we call a proposition \(P \) persistent if it satisfies \(P \vdash \Box P \).

- Persistent modality aka Always modality
Intuitive Semantics of □ Modality

- Intuitive semantics:

\[\square P = \{ r \in \mathcal{R} \mid \exists s, r'. s \in P \land s = s \cdot s \land r = s \cdot r' \} \]

- You might think of this as “\(\square P \) is the upwards-closure of the set of duplicable resources in \(P \)” (recall that Iris propositions are upwards-closed wrt. resources, hence the upwards-closure).

- Example: If \(\mathcal{R} = \text{Heap} \), then
 - the only duplicable resource is the empty heap,
 - hence, \(\square P \) is either the the set of all heaps (true), if the empty heap is in \(P \), or the empty set (false), if the empty heap is not in \(P \).
The following laws are immediate from the intuitive reading of $\Box P$:

\[
\begin{align*}
\text{ALWAYS-MONO} & \quad P \vdash Q \\
& \quad \Box P \vdash \Box Q \\
\text{ALWAYS-E} & \quad \Box P \vdash P \\
\text{ALWAYS-IDEEMP} & \quad \Box P \vdash \Box \Box P
\end{align*}
\]

Using these we can derive:

\[
\begin{align*}
\text{ALWAYS-INTRO} & \quad \Box P \vdash Q \\
& \quad \Box P \vdash \Box Q
\end{align*}
\]
Laws for □

The following laws are immediate from the intuitive reading of □ P:

\[
\begin{align*}
\text{ALWAYS-MONO} & \quad P \vdash Q \\
& \quad \Box P \vdash \Box Q \\
\text{ALWAYS-E} & \quad \Box P \vdash P \\
\text{ALWAYS-IDEMP} & \quad \Box P \vdash \Box \Box P
\end{align*}
\]

Using these we can derive:

\[
\begin{align*}
\text{ALWAYS-INTRO} & \quad \Box P \vdash Q \\
& \quad \Box P \vdash \Box Q
\end{align*}
\]

▶ Assume □ P ⊢ Q. By ALWAYS-MONO, □ □ P ⊢ □ Q, and by ALWAYS-E, □ P ⊢ □ □ P, so done by transitivity.
Laws for □

□ commutes with many of the ordinary logical connectives (note: not ⇒):

True ⊢ □ True
□(P ∧ Q) ⊨ □ P ∧ □ Q
□(P ∨ Q) ⊨ □ P ∨ □ Q
□ □P ⊨ □ □P
∀x. □ P ⊨ □ ∀x. P
□ ∃x. P ⊨ ∃x. □ P

These facts are not supposed to be intuitively obvious; they rely on the precise semantics, which we do not cover in this course.
Laws for □

□ commutes with many of the ordinary logical connectives (note: not ⇒):

- \(\text{True} \vdash \square \text{True}\)
- \(\square (P \land Q) \not\vdash \square P \land \square Q\)
- \(\square (P \lor Q) \not\vdash \square P \lor \square Q\)
- \(\square \triangleright P \not\vdash \triangleright \square P\)
- \(\forall x. \square P \not\vdash \square \forall x. P\)
- \(\square \exists x. P \not\vdash \exists x. \square P\)

- These facts are not supposed to be intuitively obvious; they rely on the precise semantics, which we do not cover in this course.
Laws for □

\[\text{Always-sep} \]
\[S \vdash □ P \land Q \]
\[\vdash □ P \ast Q \]

- Intuitively sound: suppose \(r \) is in \(□ P \land Q \). Then \(r \in □ P \) and \(r \in Q \). By the former, \(r = s \cdot r' \) for some \(s \in P \) such that \(s \cdot s = s \). Hence also \(s \in □ P \).
Moreover, \(r = s \cdot r' = (s \cdot s) \cdot r' = s \cdot (s \cdot r') = s \cdot r \). Hence \(r \) is in \(□ P \ast Q \), as required.
Laws for □

Derivable rule:

\[
\begin{align*}
\text{ALWAYS-SEP-DERIVED} \\
S \vdash □ (P \land Q) \\
\hline \\
S \vdash □ (P \ast Q)
\end{align*}
\]

which is equivalent to the entailment

\[
□ (P \land Q) \vdash □ (P \ast Q).
\]
Proof of \(\Box (P \land Q) \vdash \Box (P \ast Q) \).

- We first show

\[
\begin{align*}
P & \vdash \Box P \\
\Box P & \vdash \Box P \land \Box P \\
\Box P \land \Box P & \vdash \Box P \ast \Box P.
\end{align*}
\]

(1)

- Indeed, using \(P \vdash \Box P \) we have

\[
P \vdash \Box P \vdash \Box P \land \Box P \vdash \Box P \ast \Box P \vdash P \ast P
\]

using rule **Always-sep** in the third step.

- Next, since \(\Box \) commutes with conjunction and the above (1), we have

\[
\Box P \land \Box Q \vdash \Box(P \land Q) \vdash \Box(P \land Q) \ast \Box(P \land Q)
\]

- Now, using the fact that \(P \land Q \vdash P \) and \(P \land Q \vdash Q \) and monotonicity, we have

\[
\Box(P \land Q) \ast \Box(P \land Q) \vdash \Box P \ast \Box Q.
\]
Proof continued

▶ Hence we have proved

$\Box P \land \Box Q \vdash \Box P \ast \Box Q.$ \hspace{1cm} (2)

▶ Finally, we get the desired by:

$\Box(P \land Q) \vdash \Box\Box(P \land Q) \vdash \Box(\Box P \land \Box Q) \vdash \Box(\Box P \ast \Box Q) \vdash \Box(P \ast Q)$

where in the last step we use $\Box P \vdash P$ for any P and monotonicity of separating conjunction.
Laws for □

We have two kinds of primitive persistent propositions.

\[t =_\tau t' \vdash \square (t =_\tau t') \quad \{ P \} e \{ \Phi \} \vdash \square \{ P \} e \{ \Phi \} \]

Finally, we have the following rule generalizing the in-out rules (\(\text{HT-HT} \) and \(\text{HT-EQ} \) we saw earlier) we saw earlier:

\[
\begin{align*}
\text{HT-ALWAYS} \\
\quad \square Q \land S \vdash \{ P \} e \{ v. R \} \\
\quad S \vdash \{ P \land \square Q \} e \{ v. R \}
\end{align*}
\]
Using similar reasoning as in the proof above show the following derived rules.

1. $\Box\Box P \vdash \Box P$
2. $\Box(P \Rightarrow Q) \vdash \Box P \Rightarrow \Box Q$
3. $P \Rightarrow Q \vdash P \Rightarrow Q$
4. $\Box(P \Rightarrow Q) \vdash \Box(P \Rightarrow Q)$
5. $\Box(P \Rightarrow Q) \vdash \Box P \Rightarrow \Box Q$
6. $(P \Rightarrow (Q \Rightarrow R)) \Rightarrow P \vdash (P \Rightarrow (Q \Rightarrow R)) \Rightarrow P \Rightarrow R$
Recall the stack example from earlier:

\[\exists \text{isStack} : \text{Val} \to \text{list Val} \to (\text{Val} \to \text{Prop}) \to \text{Prop.} \]
\[\forall \Phi : \text{Val} \to \text{Prop.} \]
\[\{\text{True}\} \ \text{mk_stack()} \ \{s.\text{isStack}(s, [], \Phi)\} \land \]
\[\forall s.\forall xs.\{\text{isStack}(s, xs, \Phi) \ast \Phi(x)\} \ \text{push}(x, s) \ \{v.v = () \land \text{isStack}(s, x : xs, \Phi)\} \land \]
\[\forall s.\forall x, xs.\{\text{isStack}(s, x : xs, \Phi)\} \ \text{pop}(s) \ \{v.v = x \land \text{isStack}(s, xs, \Phi) \ast \Phi(x)\} \]

The idea is that \text{isStack}(s, xs, \Phi) asserts that \(s \) is a stack whose values are \(xs \) and all of the values \(x \in xs \) satisfy the given predicate \(\Phi \).
Example

Suppose we write in the fully modular ADT style:

\[
\{ \text{True} \} \\
\text{mk_stack()} \\
\left\{ \\
\quad s. \ \exists \text{isStack}. \ \forall \Phi. \\
\quad \quad \text{isStack}(s, [], \Phi) \ast \\
\quad \quad \forall s. \forall xs. \{ \text{isStack}(s, xs, \Phi) \ast \Phi(x) \} \ \text{push}(x, s) \{ v. v = () \land \text{isStack}(s, x : xs, \Phi) \} \land \\
\quad \quad \forall s. \forall x, xs. \{ \text{isStack}(s, x : xs, \Phi) \} \ \text{pop}(s) \{ v. v = x \land \text{isStack}(s, xs, \Phi) \ast \Phi(x) \} \\
\right\}
\]
Example: adding an iterator

- Suppose we wish to add an iterator function to the module (similarly to what they have in OCaml, see http://caml.inria.fr/pub/docs/manual-ocaml/libref/Stack.html):
 - val iter : ('a -> unit) -> 'a t -> unit
 - iter f s applies f in turn to all elements of s, from the element at the top of the stack to the element at the bottom of the stack. The stack itself is unchanged.
- Then we wish to add a specification of the iterator to our stack specification, e.g., as follows:
Example: iterator spec, v1

{True}

mk_stack()

s. ∃isStack. ∀Φ.
 isStack(s, [], Φ) *
 ∀s.∀xs.{isStack(s, xs, Φ) * Φ(x)} push(x, s) {v.v = () ∧ isStack(s, x : xs, Φ)} ∧
 ∀s.∀x, xs.{isStack(s, x : xs, Φ)} pop(s) {v.v = x ∧ isStack(s, xs, Φ) * Φ(x)} ∧
 ∀s.∀xs.∀Ψ.
 ∀x.{Φ(x)} f(x) {v.v = () ∧ Ψ(x)}
 ⇒
 {isStack(s, xs, Φ)} iter(f, s) {v.v = () ∧ isStack(s, xs, Ψ)}
Example: iterator spec

- When we use the stack module, *e.g.*, like this

 \[
 \text{let } s = \text{mk_stack()} \text{ in } e
 \]

 then we use the HT-LET-DET rule, and thus when we prove something for e, the precondition will essentially be the postcondition of the stack spec above.

- To reason about calls to the iterator, we will then need to move the spec for the iterator into the context.

- To do that, we need to know that the iterator spec (the formula above) is PERSISTENT.

- However, that is not necessarily the case, since persistent predicates are not closed under \Rightarrow.

- Hence we need to use the \square modality!
Example: iterator spec, v2

\{\text{True}\}

\text{mk_stack()}

\begin{align*}
\text{s. } & \exists \text{isStack. } \forall \Phi. \\
& \text{isStack}(s, [], \Phi)^* \\
& \forall s. \forall xs. \{\text{isStack}(s, xs, \Phi) \land \Phi(x)\} \land \\
& \forall s. \forall x, xs. \{\text{isStack}(s, x : xs, \Phi)\} \land \\
& \forall s. \forall x, xs. \forall \Psi. \\
& \square \left(\forall x. \{\Phi(x)\} f(x) \{v. v = () \land \Psi(x)\} \Rightarrow \\ & \{\text{isStack}(s, xs, \Phi)\} \text{ iter}(f, s) \{v. v = () \land \text{isStack}(s, xs, \Psi)\} \right)
\end{align*}