
1

Trillium: Refinement and Higher-Order Distributed

Separation Logic

Technical Appendix

ANONYMOUS AUTHOR(S)

A OPERATIONAL SEMANTICS OF ANERISLANG

In AnerisLang, the state 𝜎 is of the form (®H , ®S,P,M) where M is a message soup, a multiset

of messages in transit, and
®H ,

®S, and P are mappings from IP addresses to, respectively, node-

local heaps H , node-local socket mappings S, and node-local ports in use P. For the relation

(𝑒 ;𝜎) → (𝑒 ′;𝜎 ′) each step either occurs on the network (a system step) or at some particular node

(uniquely determined by its IP address). We define steps that take place on nodes by defining a

so-called head-steps and closing them under evaluation contexts:

(𝑒, 𝜎) →ℎ (𝑒 ′, 𝜎 ′, (𝑒𝑓1 , · · · , 𝑒𝑓𝑘))
(𝐾 [𝑒];𝜎) → (𝐾 [𝑒 ′], 𝜎 ′, (𝑒𝑓1 , · · · , 𝑒𝑓𝑘))

We split the head step relation into two parts: head steps that do not modify the network-related

state (sockets, ports, and the message soup), and the head steps that do modify the network-related

state. We call the latter steps for network-aware head steps, and in this section we focus on these;

the steps that do not modify the network state are mostly standard. Figure 1 shows reduction rules

for the network-aware head step →ip (ip being the IP address of the node executing the head step)

— note that none of these steps forks any threads and hence we have omitted forked threads in the

form of network-aware head steps. Note how the network-aware head step relation does not have

access to the heaps part (
®H) of the state.

A socket mappingS associates each socket handler (file descriptor) 𝑧 to a UDP-socket represented

by a pair ((ip, 𝑝), b) and a receiving message buffer B. In the pair ((ip, 𝑝), b), the address (ip, 𝑝) is
the one to which the socket handler 𝑧 is bound, and the Boolean b indicates whether the socket
is in a blocking (true) or non-blocking (false) receive mode. Initially, all sockets are in blocking

receive mode (cf., Socket-Bind). The rules Set-Socket-To-Non-Blocking-Receive and Set-Socket-To-

Blocking-Receive change the receive mode from blocking to non-blocking using a timeout (𝑛,𝑚)

(which represents a float 𝑛.𝑚).
1
The receive buffer B stores the set of messages delivered to the

node at socket address (ip, 𝑝). When a message𝑚 is in buffer B the Receive-Some-Message rule

applies and the message𝑚 can get delivered to the user application while getting removed from the

buffer. When the buffer is empty, one of two network-aware rules applies, depending on whether

the socket of the buffer is in the non-blocking (Receive-Empty-Buffer-Non-Blocking) or blocking

(Receive-Empty-Buffer-Blocking) receive mode. In the former case, the reduction does not block and

it may return None. In the latter case, the reduction blocks in the sense that the call to the receive

function reduces to itself. Note that his makes the blocking receivefrom operation non-atomic.

We call such operations stuttering-atomic operations: they reduce to themselves (stutter) a number

of times before taking an atomic step. We have shown that the rules applying to atomic steps, i.e.,
accessing invariants and taking steps in the model, also apply to stuttering atomic steps.

Another way the machine can take a step in AnerisLang is through the system-step relation

→sys⊆ State × State. As explained in the Section 2 of the paper, system steps are those that do not

correspond to actual program execution steps. The system step relation in AnerisLang has just two

1
Timeouts with concrete numbers are strictly speaking not needed as we do not model time in AnerisLang; we use timeouts

to align setReceiveTimeout with the OCaml function Unix.setsockopt_float.

1 Anon.

New-Socket

𝑧 ∉ dom(S) S′ = S[𝑧 ↦→ (None, ∅)]
(socket (), (S,P,M)) →𝑖𝑝 (𝑧, (S′,P,M))

Socket-Bind

S(𝑧) = (None, ∅) 𝑝 ∉ P(ip)
S′ = S[𝑧 ↦→ (Some((ip, 𝑝), true), ∅)]

P ′ = P[ip ↦→ P(ip) ∪ {𝑝}]
(socketbind 𝑧 (ip, 𝑝), (S,P,M)) →𝑖𝑝 (0, (S′,P ′,M))

Send-Message

S(𝑧) = (Some((ip, 𝑝), true),B) M ′ = M ⊎ {((ip, 𝑝), 𝑡𝑜,𝑚𝑠𝑔)}
(sendto 𝑧 𝑚𝑠𝑔 𝑡𝑜, (S,P,M)) →𝑖𝑝 (|𝑚𝑠𝑔 |, (S,P,M ′))

Receive-Some-Message

𝑡𝑜 = (𝑖𝑝, 𝑝) 𝑚 = (𝑓 𝑟𝑜𝑚, 𝑡𝑜,𝑚𝑠𝑔)
{𝑚} ∈ B S(𝑧) = (Some(𝑡𝑜, b),B)

S′ = S[𝑧 ↦→ (Some(𝑡𝑜, b),B − {𝑚})]
(receivefrom 𝑧, (S,P,M)) →𝑖𝑝 (Some (𝑚𝑠𝑔, 𝑓 𝑟𝑜𝑚), (S′,P,M))

Receive-Empty-Buffer-Non-Blocking

S(𝑧) = (Some((𝑖𝑝, 𝑝), false), ∅)
(receivefrom 𝑧, (S,P,M)) →𝑖𝑝 (None, (S,P,M))

Receive-Empty-Buffer-Blocking

S(𝑧) = (Some((𝑖𝑝, 𝑝), true), ∅)
(receivefrom 𝑧, (S,P,M)) →𝑖𝑝 (receivefrom 𝑧, (S,P,M))

Set-Socket-To-Non-Blocking-Receive

S(𝑧) = (Some((𝑖𝑝, 𝑝), b),B) (0 ≤ 𝑚 ∧ 0 ≤ 𝑛 ∧ 0 < (𝑚 + 𝑛))
S′(𝑧) = S[𝑧 ↦→ (Some((𝑖𝑝, 𝑝), false),B)]

(setReceiveTimeout(𝑚,𝑛), (S,P,M)) →𝑖𝑝 ((), (S′,P,M))

Set-Socket-To-Blocking-Receive

S(𝑧) = (Some((𝑖𝑝, 𝑝), b),B)
S′(𝑧) = S[𝑧 ↦→ (Some((𝑖𝑝, 𝑝), true),B)]

(setReceiveTimeout(0, 0), (S,P,M)) →𝑖𝑝 ((), (S′,P,M))

Fig. 1. The rules for network-aware head reduction.

steps as seen in Figure 2. The Message-Deliver rule corresponds to the system step that delivers a

message (𝑓 𝑟𝑜𝑚, 𝑡𝑜,𝑚𝑠𝑔) sent from socket address 𝑓 𝑟𝑜𝑚 to the socket address 𝑡𝑜 = (ip, 𝑝). Messages

are delivered when they are moved into the corresponding receive buffer. The Message-Drop rule

corresponds to the network dropping a message.

Note that the operational semantics of AnerisLang described here is different from the original

operational semantics of AnerisLang presented in Krogh-Jespersen et al. [2020]. The difference is

that the new operational semantics, as explained above, now features blocking receive operations as

Technical Appendix 1

Message-Deliver

𝑡𝑜 = (ip, 𝑝) 𝑚 = (𝑓 𝑟𝑜𝑚, 𝑡𝑜,𝑚𝑠𝑔) ∈ M
®S(𝑖𝑝) = Some(S) S(𝑧) = (Some(𝑡𝑜, b),B)

®S′ = ®S[ip ↦→ S[𝑧 ↦→ (Some(𝑡𝑜, b),B ∪ {𝑚})]]

(®H , ®S,P,M) →sys (®H , ®S′,P,M)

Message-Drop

𝑚 ∈ M

(®H , ®S,P,M) →sys (®H , ®S′,P,M \ {𝑚})

Fig. 2. The rules for configuration head reduction.

well as separate system steps for dropping and delivering messages. The old operational semantics

did not remove dropped messages from the message soup; it simply ignored them. Also, the old

operational semantics did not feature buffers for sockets; any message in the message soup could

simply be delivered upon performing a receive operation. The motivation for these changes is to

make the operational semantics more realistic.

B SEMANTICS OF WEAKEST PRECONDITIONS IN TRILLIUM

The core idea of Trillium is to track a model trace alongside the program execution trace and enforce
that whenever the program takes a step, there is an extension of the model trace that corresponds

to this step. This is achieved using a new weakest precondition, from which one can easily recover

Hoare triples.

The weakest precondition of Trillium is defined using the Iris base logic, similarly to how the

weakest precondition of the Iris program logic is defined using the Iris base logic [Jung et al. 2018].

We recall that the Iris base logic is a higher-order logic equipped with facilities for definitions and

reasoning by guarded recursion and with support for reasoning about ownership (separation logic)

and invariants. Concretely, the Trillium definition of the weakest precondition predicate wpE 𝑒
{
𝛷
}

is as follows:

wpE 𝑒
{
𝛷
}
≜



|⇛E𝛷 (𝑒) if 𝑒 ∈ Val

∀𝜏, 𝜇, 𝑖, 𝐾 .
thread (𝑖, last (𝜏)) = 𝐾 [𝑒] −∗
ValidExec(𝜏) −∗
StateInterp(𝜏, 𝜇) ≡∗E ∅

reducible(𝑒, state(last (𝜏))) ∗
∀𝑒 ′, 𝜎 ′, (𝑒𝑓1 , · · · , 𝑒𝑓𝑘) .
(𝑒, state(last (𝜏))) → (𝑒 ′, 𝜎 ′, (𝑒𝑓1 , · · · , 𝑒𝑓𝑘))−∗ ⊲ ≡∗∅ E

∃𝛿.StateInterp(𝜏 ::tr updateth (𝑖, 𝐾 [𝑒 ′], 𝜎 ′, last (𝜏)), 𝜇 ::tr 𝛿)∗
ValidEvolution(𝜏, 𝜇, updateth (𝑖, 𝐾 [𝑒 ′], 𝜎 ′, last (𝜏)), 𝛿)∗
wpE 𝑒

′ {𝛷}∗∗
1≤ 𝑗≤𝑘

wp⊤ 𝑒𝑓𝑗
{
True

}
otherwise

Here the postcondition𝛷 is a predicate that takes a return value as an argument. We sometimes

write𝛷 as 𝑥 . 𝑃 ; then 𝑥 acts as a binder for the return value in 𝑃 . In the above definition, Iris-specific

logical connectives are typeset in blue; to understand the high-level ideas of the definition and, in

1 Anon.

particular, what is new compared to the Iris definition of weakest preconditions, they can mostly

be ignored. On a first reading |⇛E and ⊲ may be ignored, and ∗ may be thought of as ordinary

conjunction, and both −∗ and ≡∗E E′
as ordinary implication.

Next we remark that, just as for standard Iris weakest preconditions, our definition implies safety:

if wp 𝑒
{
𝛷
}
holds then 𝑒 will not get stuck and whenever it reduces to a value, then that value

satisfies the postcondition. This follows from the high-level pattern of the definition: either 𝑒 is a

value in which case the postcondition must hold, or 𝑒 is reducible in the current state (the state

of the last configuration in our execution trace 𝜏) and, furthermore, whatever 𝑒 reduces to in this

current state (as well as all the forked threads) should again satisfy the weakest precondition—we

do not care about the postcondition of the forked threads.

The parts typeset in red and green in the definition above are, respectively, the parts that have

been added or adapted, compared to standard Iris weakest preconditions. We now explain these

parts in more detail.

The state interpretation predicate, StateInterp, in Iris weakest preconditions takes only the

current state as an argument; here it has been extended to take the entire execution trace of the

program as well as the model trace as arguments. This is crucial and means in particular that we

can reflect the history of the program execution in the program logic and use it in our reasoning.

For example, in the AnerisLang instantiation of Trillium, it allows us to track the history of sent

and received messages. In the paper we discuss how this is useful for expressing the correctness

of CRDTs. The role of the StateInterp predicate is to tie the state of both the program and the

model state to Iris resources, e.g., the points-to predicate of separation logic for heap locations;

see Trillium’s instantiation with AnerisLang in the main paper for more details. To appreciate the

role of the StateInterp predicate better, let us consider part of the soundness proof of the following

Aneris inference rule:2
wp-load

ℓ ↦→ip 𝑣

wpE ⟨ip; ! ℓ⟩
{
𝑥 . 𝑥 = 𝑣 ∗ ℓ ↦→ip 𝑣

}
This rule states that if we own the location ℓ with value 𝑣 on a node with IP address ip, i.e. we
have the points-to predicate ℓ ↦→ip 𝑣 , then on that node, reading ℓ returns a value that is equal to 𝑣

and, moreover, we retain ownership of ℓ . To show soundness of this rule, we need to show that

the program ! ℓ does not get stuck when run in the current state which would happen if ℓ was not

allocated. Hence, we need to rule out that case and show that no matter what the current state

may be, ℓ is allocated in that state—note how the current state (in our case part of 𝜏) is universally

quantified in the definition of the weakest precondition predicate. This is where StateInterp plays

an important role: StateInterp and the points-to predicate are defined so that they satisfy the

following property:
3

StateInterp(𝜏, 𝜇) ∗ ℓ ↦→ip 𝑣 ⊢ Heap(ip, last (𝜏)) (ℓ) = 𝑣

where Heap(ip, c) is the heap (a partial map with finite support from locations to values) for the

node with IP address ip in the state of the configuration c. Here ⊢ is Iris’s entailment relation. Hence,

we can conclude that ℓ is allocated in the heap of the current state and that the program does not

get stuck.

Apart from knowing that the resources pertaining to state, such as heap points-to predicates,

network messages, etc., are properly reflected in Iris resources, we need to know that the execution

2
In the AnerisLang instantion of Trillium, a program expression consists of a pair of a node IP address and an ordinary

expression.

3
See Jung et al. [2018] for details of how this can be done in Iris.

Technical Appendix 1

trace 𝜏 is consistent with a given program. That is, when proving wp 𝑒
{
𝛷
}
we need to know that

whatever the execution trace 𝜏 up to now is, the expression 𝑒 is now about to take a step. This is

captured by thread (𝑖, last (𝜏)) = 𝐾 [𝑒], which states that on thread 𝑖 of the current configuration,

last (𝜏), the expression 𝑒 can now take a step, i.e., 𝑒 appears under an evaluation context 𝐾 .

The definition of the weakest precondition requires that after 𝑒 takes a step, there must be a

model state 𝛿 such that the following holds:

(1) The state interpretation holds for the resulting execution trace and model trace (note that

both traces are extended with their respective new states).

(2) The user specified predicate ValidEvolution is satisfied.

(3) The weakest precondition holds for 𝑒 ′, the program that 𝑒 steps to.

(4) All threads forked during the step also satisfy the weakest precondition.

Note also that the user of Trillium can restrict the new model state 𝛿 by picking ValidEvolution
appropriately.

In summary, the weakest precondition wp 𝑒
{
𝛷
}
states that 𝑒 is safe to execute (does not get

stuck), that any value resulting from 𝑒 satisfies the postcondition𝛷 , and, that every execution step

has been matched by a model step.

C TWO-PHASE COMMIT

The two-phase commit protocol [Gray 1978] is one of the best-known practical algorithms for

solving the transaction-commit problem where a collection of processes, called resource managers,
have to agree on whether a transaction ought to be committed or aborted. A protocol that solves

the problem has to ensure agreement, i.e., no two processes may decide differently.

In this development, we consider a TLA
+
model of transaction commit and show that a distributed

implementation of the two-phase commit protocol refines it. As a corollary of the refinement and

the agreement theorem for the model we show that the implementation also ensures agreement.

Model. The transaction commit model is summarized in Figure 3. The model is parameterized

by a set 𝑅𝑀𝑠 of resource managers that are each in either an initialWorking state, a preparation
state Prepared, or in a final state Committed or Aborted. The full state of the model is a finite

mapping from resource managers to one of these states. The transition relation allows resource

managers to transition freely from the Working to the Prepared state (TC-Prepare). A resource

manager may transition from the Prepared to the Committed state if all resource managers are

either in the Prepared or the Committed state (TC-Commit), and from the Working or Prepared
state to the Aborted state if no resource manager is in the Committed state (TC-Abort).

By induction on the transition relation one can easily show that the model satisfies the agreement

property when starting from an initial state where all resource managers are in the Working state.

Theorem C.1 (Agreement of TC). Let 𝛿Init (𝑟) ≜ Working. If 𝛿Init ⇀∗
TC 𝛿 then for all 𝑟1, 𝑟2 ∈ 𝑅𝑀𝑠

it is not the case that 𝛿 (𝑟1) = Committed and 𝛿 (𝑟2) = Aborted.

Implementation. The two-phase commit protocol relies on a transaction manager to orchestrate

the agreement process; the transaction manager may either be a distinguished resource manager or

a separate process. Listing 1 and Listing 2 show implementations in AnerisLang of the transaction

manager and resource manager roles, respectively. The transaction manager uses a simple library

functionality for removing duplicate messages; the functionality is initialized with the nodup_init

invocation that returns a wrapped receivefrom primitive that removes duplicates messages but is

otherwise not important.

The transaction manager implementation starts by allocating a socket and binding it to the

socket address TM given as argument. It continues by sending a "PREPARE"message to all the resource

1 Anon.

RMStates ≜ {Working, Prepared,Committed,Aborted}

𝛿 ∈ 𝑅𝑀𝑠 fin−⇀ RMStates

CanCommit(𝛿) ≜ ∀𝑟 ∈ 𝑅𝑀𝑠. 𝛿 (𝑟) = Prepared ∨ 𝛿 (𝑟) = Committed

NotCommitted(𝛿) ≜ ∀𝑟 ∈ 𝑅𝑀𝑠. 𝛿 (𝑟) ≠ Committed

TC-Prepare

𝛿 (𝑟) = Working

𝛿 ⇀TC 𝛿 [𝑟 ↦→ Prepared]

TC-Commit

𝛿 (𝑟) = Prepared CanCommit(𝛿)
𝛿 ⇀TC 𝛿 [𝑟 ↦→ Committed]

TC-Abort

𝛿 (𝑟) = Working ∨ 𝛿 (𝑟) = Prepared NotCommitted(𝛿)
𝛿 ⇀TC 𝛿 [𝑟 ↦→ Aborted]

Fig. 3. TLA+ specification of the transaction-commit (TC) problem.

Listing 1. Transaction manager.
let recv_resps recv skt RMs =
let rec loop prepared =
Set.equal prepared RMs ||
let (msg, sndr) = recv skt in
msg = "PREPARED" &&
loop (Set.add sndr prepared) in

loop (Set.empty ()) in

let transaction_manager TM RMs =
let skt = socket () in
socketbind skt TM;
let recv = nodup_init () in
sendto_all skt RMs "PREPARE";
let ready = recv_resps recv skt RMs in
if ready then
sendto_all skt RMs "COMMIT";
receivefrom_all skt recv RMs;
"COMMITTED"

else
sendto_all skt RMs "ABORT";
"ABORTED"

Listing 2. Resource manager.
let resource_manager RM TM =
let skt = socket () in
socketbind skt RM;
let (m, _) = receivefrom skt in
if m = "ABORT"
then sendto skt "ABORTED" TM
else
let local_abort = coin_flip () in
if local_abort
then sendto skt "ABORTED" TM
else
sendto skt "PREPARED" TM;
let (decision, _) =
wait_receivefrom skt
(fun (_, m) => m = "COMMIT" ||

m = "ABORT") in
if decision = "COMMIT" then
sendto skt "COMMITTED" TM

else
sendto skt "ABORTED" TM

manager socket addresses given in RMs, asking the resource managers to transition to the preparation

phase. If all the resource managers respond with "PREPARED"—signifying that they are all ready to

commit—the transaction manager continues by sending a "COMMIT" message, telling the resource

managers the decision is to commit, after which it awaits their responses and returns. If a single

resource manager responds with "ABORTED", the transaction manager stops receiving responses,

relays the information, and returns.

The resource manager implementation starts by allocating a socket and binding it to the socket

address RM given as argument. It continues by listening for an initial request from the transaction

manager; in case another resource manager already aborted and this information arrived prior

to the initial "PREPARE" request, the resource manager aborts. If asked to prepare, the resource

manager makes a local decision—here with a nondeterministic coin flip–and sends the decision to

Technical Appendix 1

the transaction manager. If the resource manager decides to abort, it immediately returns; otherwise

it awaits the final decision from the transaction manager, confirms the transition, and returns.

Refinement. To show that the two-phase commit implementation refines the transaction-commit

model we instantiate the Aneris logic with the model; this gives us a handle to the current model

state 𝛿 that we can manipulate through the separation logic resourceModel◦ (𝛿). The key proof

strategy is to keep this resource in an invariant that ties together the model state and the physical

with enough information such that the continued simulation is strong enough for proving our final

correctness theorem (Theorem C.2). In this development, we will tie sending a message (such as

"COMMITTED") from resource manager 𝑟 to the corresponding transition in the model (such as TC-

Commit). Additionally, the invariant will have to keep sufficient ghost resources and information for

us to establish the conditions (CanCommit(𝛿) and NotCommitted(𝛿)) for progressing the model.

To state a sufficient invariant for the two-phase commit refinement we will make use of two

resource algebras: a variation of the oneshot algebra [Jung et al. 2018] with discardable fractions
[Vindum and Birkedal 2021] as well as a monotone ghost map algebra.

The oneshot algebrawith discardable fractions allows us to define resources pending(𝑞), discarded,
and shot(𝑎) governed by the rules below.

pending(𝑞) ≡∗ discarded

shot(𝑎) ∗ pending(𝑞) ⊢ False
shot(𝑎) ∗ discarded ⊢ False
shot(𝑎) ∗ shot(𝑏) ⊢ 𝑎 = 𝑏

pending(1) ≡∗ shot(𝑎)
pending(𝑝) ∗ pending(𝑞) ⊣⊢ pending(𝑝 + 𝑞)
shot(𝑎) ∗ shot(𝑎) ⊣⊢ shot(𝑎)
discarded ∗ discarded ⊣⊢ discarded

Intuitively, pending(𝑞) corresponds to owning a 𝑞-sized share in making some decision; only by

owning all shares a unique decision can be made as witnessed by owning shot(𝑎). By discarding

a share a party can ensure that no decision can ever be made. Notice how this construction can

be used to model the two-phase commit protocol (in particular the condition CanCommit(𝛿) and
NotCommitted(𝛿)) by picking the decision value 𝑎 to be the unit value: each party initially owns

an evenly sized share of the decision and transfers this share to the transaction manager when

preparing to commit. By receiving a share from all resource managers, the transaction manager

can make the decision to commit. By discarding a share, a resource manager can ensure that no

decision to commit will ever be made and safely abort.

Using themonotone resource algebra [Timany and Birkedal 2021], we construct a logical points-to

connective 𝑟
𝑞
↦→• 𝑠 that will track 𝑞-fractional ownership of the current model state 𝑠 of resource

manager 𝑟 , but where 𝑠 may only evolve monotonically according to the internal resource manager

transition relation given by Working ⇝ Prepared ⇝ Committed and Working, Prepared ⇝
Aborted. The construction is accompanied by a duplicable 𝑟 ↦→◦ 𝑠 resource that gives a lower-bound
on the current state of resource manager 𝑟 as seen from the rules below.

𝑟
𝑞
↦→• 𝑠 ∗ 𝑟 ↦→◦ 𝑠

′ ⊢ 𝑠 ′⇝∗ 𝑠

𝑟
1↦→• 𝑠 ∗ 𝑠 ⇝∗ 𝑠 ′ ≡∗ 𝑟 1↦→• 𝑠

′ ∗ 𝑟 ↦→◦ 𝑠
′

𝑟 ↦→◦ 𝑠 ∗ 𝑟 ↦→◦ 𝑠 ⊣⊢ 𝑟 ↦→◦ 𝑠

1 Anon.

Equipped with the two constructions from above we can define the refinement invariant for the

two-phase commit implementation:

𝐼TPC ≜ ∃𝛿.Model◦ (𝛿) ∗ ∗
𝑟 ∈𝑅𝑀𝑠

∃𝑅,𝑇 , 𝑠 . 𝑟
1

2↦→• 𝑠 ∗ 𝛿 (𝑟) = 𝑠 ∗ TokenCoh(𝑠) ∗
𝑟 {

𝜙RM
□ (𝑅,𝑇) ∗ ModelCoh(𝑟, 𝑠,𝑇)

The invariant owns the current model state 𝛿 and for each resource manager 𝑟 it owns half of the

corresponding monotone points-to connective for some state 𝑠 such that 𝛿 (𝑟) = 𝑠; the resource
manager itself will own the remaining half. This ensures that the resource manager itself knows

exactly which state it is in and that the resource cannot be updated without updating the model

as well. We moreover tie being in the model states Committed and Aborted to ownership of,

respectively, the shot and discarded resources as given by TokenCoh(𝑠) below.

TokenCoh(𝑠) ≜


shot if 𝑠 = Committed

discarded if 𝑠 = Aborted

True otherwise

The remaining two clauses constitute the key component in connecting the model to the physical

state; the persistent socket protocol 𝑟 {
𝜙RM
□ (𝑅,𝑇) tracks the history 𝑇 of sent messages from

resource manager 𝑟 and ModelCoh(𝑟, 𝑠,𝑇) requires that if the resource manager 𝑟 is in state 𝑠

then a corresponding message must have been sent to the transaction manager 𝑡 and if a message

corresponding to a state 𝑠 ′ has been sent, the resource manager must be in at least that state:

MessageCoh(𝑟, 𝑠,𝑇) ≜


(𝑟, 𝑡, "PREPARED") ∈ 𝑇 if 𝑠 = Prepared

(𝑟, 𝑡, "COMMITTED") ∈ 𝑇 if 𝑠 = Committed

(𝑟, 𝑡, "ABORTED") ∈ 𝑇 if 𝑠 = Aborted

True otherwise

ModelCoh(𝑟, 𝑠,𝑇) ≜ MessageCoh(𝑟, 𝑠,𝑇) ∧ ∀𝑠 ′.MessageCoh(𝑟, 𝑠 ′,𝑇) → 𝑠 ′⇝∗ 𝑠

The socket protocol 𝜙TM governing the communication with the transaction manager is defined

below. It follows the intuitive description given earlier: when preparing to commit, the pending
resource is transferred to the transaction manager, and in order to commit or abort, the resources

shot and discarded must be transferred as well, respectively. Moreover, the resource manager has to

prove that its model state has (at least) been progressed to the corresponding states. The socket

protocol for 𝜙RM for the resource manager follows a similar pattern.

𝜙TM (𝑟, 𝑡, 𝑏) ≜ 𝑟 ∈ 𝑅𝑀𝑠 ∗(
𝑏 = "PREPARED" ∗ pending(1

|𝑅𝑀𝑠 |+1) ∗ 𝑟 ↦→◦ Prepared
)
∨

(𝑏 = "COMMITTED" ∗ shot ∗ 𝑟 ↦→◦ Committed) ∨
(𝑏 = "ABORTED" ∗ discarded ∗ 𝑟 ↦→◦ Aborted)

𝜙RM (𝑟, 𝑡, 𝑏) ≜ 𝑏 = "PREPARE" ∨
(𝑏 = "COMMIT" ∗ shot ∗ ∗𝑟 ∈𝑅𝑀𝑠 𝑟 ↦→◦ Prepared) ∨
(𝑏 = "ABORT" ∗ discarded)

The transaction manager implementation can be given the specification below; notice how it does

not rely on the refinement invariant but only on the socket protocols and resources as described.

Technical Appendix 1

{Fixed(𝐴) ∗ 𝑡 ∈ 𝐴 ∗ FreePort(𝑡) ∗ 𝑡 { (∅, ∅) ∗
pending(1

|𝑅𝑀𝑠 |+1) ∗ 𝑡 Z⇒ 𝜙TM ∗ ∗𝑟 ∈𝑅𝑀𝑠 𝑟 Z⇒ 𝜙RM}
⟨𝑡 ; transaction_manager 𝑡 𝑅𝑀𝑠⟩

{𝑣 . (𝑣 = "COMMITTED" ∗ ∗𝑟 ∈𝑅𝑀𝑠 𝑟 ↦→◦ Committed) ∨
(𝑣 = "ABORTED" ∗ ∃𝑟 ∈ 𝑅𝑀𝑠. 𝑟 ↦→◦ Aborted) }

The specification for the resource manager as seen below, however, relies on the invariant as

well as fractional ownership of the resource manager’s model state.

{Fixed(𝐴) ∗ 𝑟 ∈ 𝐴 ∗ FreePort(𝑟) ∗ 𝐼TPC
NTPC ∗

𝑟 Z⇒ 𝜙RM ∗ 𝑡 Z⇒ 𝜙TM ∗ pending(1

|𝑅𝑀𝑠 |+1) ∗ 𝑟
1

2↦→• Working}
⟨𝑟 ; resource_manager 𝑟 𝑡⟩

{True}

Theorem C.2 (Agreement, two-phase commit implementation). If (𝑒; ∅) →∗ (𝑇 ;𝜎) and
𝑚𝑠1 ,𝑚𝑠2 ∈ M such that𝑚𝑠𝑖 is the physical message corresponding to state 𝑠𝑖 then it is not the case
that 𝑠1 = Committed and 𝑠2 = Aborted.

D SINGLE-DECREE PAXOS

D.1 Auxiliary implementation components

let recv_promises skt n bal0 =
let promises = ref (Set.empty ()) in
let senders = ref (Set.empty ()) in
let rec loop () =
if Set.cardinal !senders = n
then !promises
else
let (m, sndr) = receivefrom skt in
let (bal, mval) =
proposer_deser m in

if bal = bal0 then
senders <- Set.add !senders sndr;
promises <- Set.add !promises mval

else ();
loop ()

in loop ()

let find_max_promise s =
let max_promise acc promise =
match promise, acc with
| Some (b1, _), Some (b2, _) =>
if b1 < b2 then acc else promise

| None, Some _ => acc
| _, _ => promise
end

in Set.fold max_promise s None

1 Anon.

let learner acceptors addr client =
let skt = socket () in
socketbind skt addr;
let majority =
Set.cardinal acceptors / 2 + 1 in

let votes = ref (Map.empty ()) in
let rec go () =
let (m, sndr) = receivefrom skt in
let (bal, v) = learner_deser m in
let bal_votes =
match Map.find_opt bal !votes with
| Some vs => vs
| None => Set.empty ()
end in
let bal_votes' =
Set.add sndr bal_votes in

if Set.cardinal bal_votes' = majority
then (bal, v)
else
votes <- Map.add bal bal_votes' votes;
go () in

let result = go () in
let _ = sendto skt
(client_ser result) client in

result

let wait_receivefrom skt test =
let rec loop () =
let msg = receivefrom skt in
if test msg then msg else loop ()

in loop ()

let sendto_all skt X msg =
Set.iter (fun x => sendto skt msg x) X

E FAIR TERMINATION OF CONCURRENT PROGRAMS, DETAILS

The section gives a few definitions which were alluded to in Section 5.

E.1 Fairness model

A fairness model is a state transition system, with a set of roles which label its transitions. Each

state has a set of enabled roles, and a “fuel limit” which is used to keep the control the branching of

Live(F) which we define below.

Definition E.1. A fairness model F is the data of a set F of states, a set R of roles, and a transition

relation → ⊆ F × R × F labeled by roles. Moreover, it is equipped with a map enabled_roles :
F → ℘fin (R) which associates a finite set of enabled roles to each state 𝑠 ∈ F . It must approximate

the set of outgoing roles:

∀𝜌 ∈ R, ∀𝛿, 𝛿 ′ ∈ F , 𝛿
𝜌
−→ 𝛿 ′ =⇒ 𝜌 ∈ enabled_roles 𝛿.

and it must not disable other roles: if 𝛿
𝜌
−→ 𝛿 ′, then

∀𝜌 ′ ≠ 𝜌, 𝜌 ′ ∈ enabled_roles 𝛿 ⇒ 𝜌 ′ ∈ enabled_roles 𝛿 ′

Finally, F comprises a map fuel_limit : F → N which will be useful to ensure finite branching

conditions.

A run, or trace of F is a non-empty finite or infinite sequence of the form:

𝛿1
𝜌1−−→ 𝛿2

𝜌2−−→ · · ·

E.2 The Live construction

Given a "fairness model" F , we define a (labeled) STS Live(F) which keeps track of mapping

between roles and threads, and of fuels, as explained in Section 5.

Technical Appendix 1

A state of Live(F) is a triple (𝛿, 𝐹,𝑇) of a state𝛿 ∈ F , togetherwith twomaps 𝐹 : enabled_roles 𝛿 →
N and 𝑇 : enabled_roles 𝛿 → N which associate a fuel amount and a thread id to each role 𝜌 which

is enabled in the current underlying state 𝛿 .

The set of labels of Live(F) is
{Step 𝜌 tid | 𝜌 ∈ R, tid ∈ N} ⊎ {Silent tid | tid ∈ N}

(recall that R is the set of roles of the "fairness model" F) The intuition is that a step labeled

by Step 𝜌 tid corresponds to the situation where the thread tid takes a step in the program, and one

of the roles 𝜌 under its responsibility takes a step in the fairness model. A step labeled Silent tid,
on the other hand, corresponds to a step in the program which does not correspond to a step in the

fairness model, in other words, a stuttering step.

We now describe the transitions in the labeled STS Live(F). The idea is that there are two kinds

of transitions

• A thread tid can take a step in Live(𝑀) of the form

(𝛿, 𝐹,𝑇) Silent tid−−−−−−−→ (𝛿, 𝐹 ′,𝑇 ′)
which does not corresponds to a step in the underlying fairness model F in exchange of

consuming fuel: for every 𝜌 ∈ 𝑇 −1 (tid) which the thread tid is in charge of, the corresponding

fuel 𝐹 (𝜌) must decrease strictly, in that 𝐹 ′(𝜌) < 𝐹 (𝜌).
• A thread tid can also take a step in the underlying model which corresponds to a role 𝜌 ∈
𝑇 −1 (tid)

(𝛿, 𝐹,𝑇)
Step 𝜌 tid
−−−−−−−→ (𝛿 ′, 𝐹 ′,𝑇 ′)

This allows to refill the fuel of 𝜌 up to the limit fuel_limit 𝛿 ′, that is, 𝐹 ′(𝜌) ≤ fuel_limit 𝛿 ′;
this is required to keep the STS finitely branching. All the other roles which are associated

with tid must decrease:

∀𝜌 ′ ∈ 𝑇 (tid) \ {𝜌}, 𝐹 ′(𝜌 ′) < 𝐹 (𝜌 ′)
Roles which appear between 𝛿 and 𝛿 ′ can have any fuel ≤ fuel_limit 𝛿 ′ in 𝐹 ′. Of course, we
also require there be a step

𝛿
𝜌
−−→ 𝛿 ′

in the fairness model F .

In addition to the two constraints above, in both cases, the fuel of the roles which are not associated

with the thread tid must not increase:

∀𝜌 ∈ R \𝑇 −1 (tid), 𝐹 ′(𝜌) ≤ 𝐹 (𝜌)
and roles which change owners (𝑇 ′(𝜌) ≠ 𝑇 (𝜌)) must have their fuel decrease strictly.

E.3 The Fyn model

The full Fyn model is defined as follows. Its states are quadruples

(𝑚,𝑏, ye, ne) ∈ N × B × B × B
Its set of roles is {Yes,No}, fuel_limit is the constant map equal to 30. The map enabled_roles is
defined so that

Yes ∈ enabled_roles (𝑚,𝑏, ye, ne) ⇐⇒ ye = 1

No ∈ enabled_roles (𝑚,𝑏, ye, ne) ⇐⇒ ne = 1

1 Anon.

It remains to define the transitions. First, there are the main types of transition which is described

in Figure 7:

(1) success for Yes: (𝑚, 1, 1, 1) Yes−−→ (𝑚, 0, 1, 1) if𝑚 > 0

(2) failure for Yes: (𝑚, 0, 1, 1) Yes−−→ (𝑚, 0, 1, 1) if𝑚 > 0

(3) success for No: (𝑚, 0, 1, 1) No−−→ (𝑚 − 1, 1, 1, 1) if𝑚 > 0

(4) failure for No: (𝑚, 1, 1, 1) No−−→ (𝑚, 1, 1, 1)
and the three transitions to account for “shutting down” the threads:

(5) the last transition of No after Yes has finished: (1, 0, 0, 1) Yes−−→ (0, 1, 0, 1);
(6) Yes terminates: (𝑚,𝑏, 1, ne) Yes−−→ (𝑚,𝑏, 0, ne) if𝑚 ≤ 1;

(7) No terminates: (0, 𝑏, ye, 1) No−−→ (0, 𝑏, ye, 0) if𝑚 ≤ 1.

It is easy to check that the only transitionwhich do not decrease the state, orderedwith lexicographic

order on (𝑚,𝑏) and the product order on ((𝑚,𝑏), ye, ne) are the two loop transitions. Moreover, in

a state (𝑚,𝑏, ye, ne), all the transitions labeled with “if 𝑏 = 1 then Yes else No” decrease the state.
This means that the following criterion shows the model is fairly terminating.

E.4 Locally fairly terminating models

Definition E.2. A fairness model F is called locally fairly terminating if there exists a well founded
order ≤ over F and a map 𝜋 : F → R from states to roles which satisfies the following conditions:

(1) for all transitions 𝛿
𝜌
−−→ 𝛿 ′, 𝛿 ′ ≤ 𝛿 ;

(2) for all states 𝛿 ∈ F which are not dead ends, 𝜋 (𝛿) ∈ enabled_roles 𝛿 and for all 𝛿 ′ such

that 𝛿
𝜋 (𝛿)
−−−−→ 𝛿 ′, 𝛿 ′ < 𝛿 ;

(3) for all transitions 𝛿
𝜌
−−→ 𝛿 ′, if 𝜌 ≠ 𝜋 (𝛿), then 𝜋 (𝛿 ′) = 𝜋 (𝛿);

where a state 𝛿 is called a dead end if there are no outgoing transitions from it.

We call this criterion local because it can be checked for each transition independently, without

any reference to traces. This criterion is correct:

Lemma E.3. If a fairness model F is locally fairly terminating, then it is fairly terminating.

REFERENCES

Jim Gray. 1978. Notes on Data Base Operating Systems. In Operating Systems, An Advanced Course, Michael J. Flynn, Jim Gray,

Anita K. Jones, Klaus Lagally, Holger Opderbeck, Gerald J. Popek, Brian Randell, Jerome H. Saltzer, and Hans-Rüdiger

Wiehle (Eds.). Lecture Notes in Computer Science, Vol. 60. Springer, 393–481. https://doi.org/10.1007/3-540-08755-9_9

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems -
29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings. 336–365. https://doi.org/10.1007/978-3-

030-44914-8_13

Amin Timany and Lars Birkedal. 2021. Reasoning about monotonicity in separation logic. In CPP ’21: 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19, 2021. 91–104. https:

//doi.org/10.1145/3437992.3439931

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue (proof pearl). In CPP ’21:
10th ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19,
2021. 76–90. https://doi.org/10.1145/3437992.3439930

https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/3437992.3439931
https://doi.org/10.1145/3437992.3439931
https://doi.org/10.1145/3437992.3439930

	A Operational Semantics of AnerisLang
	B Semantics of Weakest Preconditions in Trillium
	C Two-Phase Commit
	D Single-Decree Paxos
	D.1 Auxiliary implementation components

	E Fair termination of concurrent programs, details
	E.1 Fairness model
	E.2 The construction
	E.3 The model
	E.4 Locally fairly terminating models

	References

