
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Verifying a concurrent data-structure from the
Dartino Framework in Iris

Morten Krogh-Jespersen

Aarhus University

Department of Computer Science

mkj@cs.au.dk

Thomas Dinsdale-Young

Aarhus University

Department of Computer Science

tyoung@cs.au.dk

Lars Birkedal

Aarhus University

Department of Computer Science

birkedal@cs.au.dk

Abstract
We specify and verify a concurrent queue data structure used

in the scheduler of a real-world virtual machine, Google’s

Dartino Framework.

Our speci�cation treats the queue operations as abstractly

atomic. This means that a client can reason about them as if

they take e�ect at a single instant in time, and thus impose its

own invariants on the queue. The speci�cations also involve

resource transfer: to enqueue a process, a thread transfers

ownership of its descriptor to the queue.

We show that an implementation of the data structure,

directly translated from the Dartino Framework source, sat-

is�es our speci�cation in Iris, a state-of-the-art higher-order

concurrent separation logic, capable of expressing both ab-

stract atomicity and resource transfer. Our veri�cation is for-

malised in the Coq proof assistant. Hence, our work shows

that Iris is both expressive and practical enough to formally

reason about production code taken from “the wild”.

CCS Concepts •Software and its engineering → Gen-
eral programming languages; •Theory of computation
→ Program analysis;

1 Introduction
The scheduler is the beating heart of any virtual machine

– it is responsible for running and pausing processes of the

system. Therefore, the scheduler must be both correct and

e�cient. The Dartino Framework is a virtual machine for

the Dart language, which was designed by Google to run

e�ciently on limited hardware (such as embedded systems

or IoT-devices). The work presented here is the result of a

collaboration with the Google Dartino team to verify the

queue data structure underlying the Dartino Framework’s

scheduler.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear

this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers

or to redistribute to lists, requires prior speci�c permission and/or a fee.

Request permissions from permissions@acm.org.

Conference’17, Washington, DC, USA
© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

The Dartino Framework uses a pool of low-level (hard-

ware) threads to run high-level Dart processes. Each thread

has its own process queue, implemented as a doubly-linked

list which we refer to as a Dartino Queue. Having a queue per

thread serves to reduce contention, although threads may

access the queues of other threads. For instance, a thread

with no processes may steal one from another thread. In

addition to the usual enqueue and dequeue operations, the

data structure allows a speci�c process to be removed from

a queue. This allows the scheduler to prioritise certain pro-

cesses – for instance, to immediately schedule a process that

is the recipient of a message.

Veri�cation of sequential implementations of doubly-linked

lists using shape analysis or separation logics has already

been studied in detail, e.g. in the seminal work by Reynolds

[7, 8]. Specifying and verifying the Dartino Queue is compli-

cated by a number of factors.

Firstly, this Dartino Queue allows for concurrent access

by multiple threads. We therefore require a speci�cation

that accounts for this. Abstract atomicity achieves this by

specifying that an operation (such as enqueuing a process)

appears to take e�ect at a single instant in time. A client can

then reason about abstractly atomic operations in a simple

manner, for instance by imposing new invariants on how the

queue is used. Linearizability [3] is a well-known veri�cation

condition for abstract atomicity. Recently, notions of abstract

atomicity have been introduced to separation logics such as

TaDA [2].

Secondly, during its lifetime, a process may belong to

multiple queues. This means that ownership of a process de-

scriptor is transferred whenever it is enqueued or dequeued.

This ownership transfer does not necessarily take place at

the same instant that the operation atomically takes e�ect.

Separation logics are well-equipped to reason about resource

transfer; consequently, a separation logic which supports ab-

stract atomicity is appropriate for this veri�cation problem.

We have chosen to verify the Dartino Queue in Iris [4, 5],

a state-of-the-art concurrent higher-order separation logic,

implemented in the Coq proof assistant [1]. The reason for

this is that the Iris Proof Mode enables us to do interactive

proofs directly in Coq [6] and, moreover, Iris allows us to

prove so-called atomic triples [2], which capture abstract

atomicity. We can therefore give strong speci�cations that

integrate ownership transfer and abstract atomicity.

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Conference’17, July 2017, Washington, DC, USA Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal

Our case study applies Iris to verifying real-world code

with non-trivial speci�cations. Our case study demonstrates

the practicality and e�ectiveness of the following:

• Using resources in Iris to reason about dynamic allo-

cation and stealing of processes which may be trans-

ferred between queues.

• Using logical atomicity in Iris in concert with resource

transfer to verify strong speci�cations that accurately

capture the intention for the real-world code.

• Using the Iris Proof Mode for formal, mechanised

veri�cation of code.

Outline. First, we describe the Dartino Queue and show the

translation from C++ to Iris in §2. In §4 we give a primer to

Iris and describe the invariants that will guard the Dartino

Queue. In §4.4 we motivate and show stronger speci�cations

for the operations on the Dartino Queue before we �nally

conclude in §6.

2 The Dartino Queue in Iris
The Dartino Framework is an experimental virtual machine,

written in C++, for running the programming language Dart

on devices with limited memory and processing resources.

One particular goal with the Dartino Framework is to in-

crease the computation throughput of concurrent programs

that use message passing for communication. To this end,

when one Dart process sends a message to another, the recip-

ient is preferentially scheduled. This means that the Dartino

Queue, which represents a process queue in the scheduler,

must allow for processes that are not at the head to be re-

moved from the queue.

In a general-purpose queue data structure, enqueuing a

value typically involves allocating a new node to hold the

value. For a process queue, however, the process descriptor,

which exists for the lifetime of the process, directly repre-

sents a node in a queue. That is, the descriptor object holds

pointers to the queue the process belongs to and its adja-

cent processes. This means that no allocation is necessary

in enqueuing a process (which is good, since allocation is

expensive and the scheduler must be as e�cient as possible).

On the other hand, one must handle ownership of process

objects carefully, since they may belong to multiple queues

during their lifetimes.

The Dartino Queue is implemented as a doubly-linked list

to support removal of an arbitrary process its queue. Updat-

ing a doubly-linked list requires multiple pointer updates.

To ensure that these updates occur safely in a concurrent

context, the Dartino Queue uses the queue’s head pointer as

a spin lock.

2.1 Modelling C++ in Iris-ML
In order to verify the Dartino Queue, we translate the C++

code used by Google into Iris-ML, one of the programming

languages supported by Iris. In doing so, we must faithfully

represent the semantics of the original program. In particular,

memory operations should have the same granularity: the

ML program cannot perform an update in a single atomic

step that takes multiple steps in the C++ source.

In C++, an object is represented as a contiguous block of

memory holding the object’s data members. A pointer to

an object is the address of such a block, and members are

accessed by computing o�sets from the address into the

block.

In Iris-ML, there are no objects, but there are references

to arbitrary (untyped) values. The basic operations on refer-

ences are:

• ref v — allocate a reference with initial value v;

• !r — atomically read the value stored in reference r;

• r <- v — atomically update the contents of reference

r to value v; and

• CAS r oldval newval— atomically compare the con-

tents of reference r with value oldval, updating it to

newval if equal; return true if successful (the value

was updated) and false otherwise.

One way a C++ object reference might be represented in

Iris-ML is as a reference to a tuple of the object’s data mem-

bers. This representation is problematic, however, since any

update to the object updates all of its members at once, while

in C++ each data member is updated individually. Conse-

quently, a C++ object reference is represented as a tuple of

references to each of the object’s data members. Each data

member can thus be manipulated independently.

Apart from a reference to an object, a C++ pointer may

instead hold the value null. To re�ect that pointers are

nullable in Iris-ML, we represent pointers as tagged data:

NONE represents the null pointer, and SOME r represents a

pointer with a valid object reference r. To dereference a

pointer, we �rst apply the function unSOME, which strips the

SOME tag and crashes when given NONE.

2.2 Doubly-Linked List with Arbitrary Removal
The interface of the Dartino Queue consists of �ve opera-

tions:

makeQueue: Construct a new Dartino Queue.

makeProc: Construct a new process descriptor.

enqueue: Append a process to a Dartino Queue.

dequeue: Attempt to remove the �rst process from a Dartino

Queue, returning a pointer to the process. This can

fail, returning a null pointer (Iris-ML: NONE), if the

queue is empty.

tryDequeueEntry: Attempt to remove a speci�ed process

from a Dartino Queue. This can fail, returning false,

if the process is no longer in the queue.

The Iris-ML implementation is given in Figure 1. We now

describe each operation in detail.

New Dartino Queue. The function mkQueue() creates a

new, empty Dartino Queue. A Dartino Queue object has

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Verifying a concurrent data-structure from the Dartino Framework in Iris Conference’17, July 2017, Washington, DC, USA

Definition unSOME :=
λ: p,

match: p with NONE => assert false
| SOME p' => p' end.

Definition queue__head := λ: p, Fst p.
Definition queue__tail := λ: p, Fst (Snd p).
Definition queue__sent := λ: p, Snd (Snd p).

Definition pval := λ: p, Fst p.
Definition qref := λ: p, Fst (Snd p).
Definition prev := λ: p, Fst (Snd (Snd p)).
Definition next := λ: p, Snd (Snd (Snd p)).

Definition makeQueue :=
λ: <>,

(ref NONE, (ref NONE, ref ())).

Definition makeProc :=
λ: v,

(ref v, (ref NONE, (ref NONE, ref NONE))).

Definition obtainLockDeq :=
rec: loop head sentinel h :=

let: hv := !h in
if: (hv = SOME sentinel)

|| (∼ CAS head hv (SOME sentinel))
then h <- !head ;;

if: (!h) = NONE then true
else loop head sentinel h

else false.

Definition dequeue :=
λ: head tail s,

λ:
let: h := ref !head in
if: !h = NONE then NONE
else let: obtLock := obtainLockDeq head s h in

if: obtLock then NONE
else let: h' := unSOME (!h) in

let: next := !(next h') in
(if: next = NONE then

tail <- NONE
else prev (unSOME next) <- NONE)
;; next h' <- NONE
;; qref h' <- NONE
;; head <- next
;; SOME h'.

Definition obtainLockEnq :=
rec: loop head sentinel h :=

let: hv := !h in
if: (hv = SOME sentinel) || (∼ CAS head hv (SOME sentinel))
then h <- !head ;; loop head sentinel h
else ().

Definition enqueue :=
λ: head tail s,

λ: p,
let: h := ref !head in

obtainLockEnq head s h
;; qref p <- SOME (head,(tail,s))
;; match: !h with

NONE => tail <- SOME p
;; head <- SOME p
;; true

| SOME h' => prev p <- !tail
;; next (unSOME !tail) <- SOME p
;; tail <- SOME p
;; head <- SOME h'
;; false

end.

Definition tryDequeueEntry :=
λ: head tail s,

λ: p,
let: h := ref !head in
if: !h = NONE then false
else let: obtLock := obtainLockDeq head s h in

if: obtLock then
false

else if: !(qref p) = SOME (head,(tail,s)) then
let: next := !(next p) in
let: prev := !(prev p) in
(if: next = NONE then

tail <- prev
else

prev (unSOME next) <- prev)
;; (if: prev = NONE then

h <- next
else

next (unSOME prev) <- next)
;; (prev p) <- NONE
;; (next p) <- NONE
;; (qref p) <- NONE
;; head <- !h
;; true

else
head <- !h ;; false.

Figure 1. Implementation of a doubly-linked queue with a virtual lock. Function binders in Iris-ML are strings in Coq, but are

shown as regular binders for the sake of clarity.

three data members: the pointers head and tail to the head

and tail of the queue, and a distinguished sentinel value sent.

To indicate when the lock on the queue is held, the head
pointer is set to the sentinel. To ensure that this sentinel

value is distinct from any process reference, the makeQueue
constructor generates a new reference (whose contents is

immaterial). The head and tail pointers are both initialised

to NONE (representing null). Figure 2 shows the initial con-

�guration of a Dartino Queue object.

New Process. The function mkProcess(v) constructs a new

process descriptor holding value v. (The meaning of the

value is determined by the client of the queue, which in the

Dartino Framework is the process’s instruction pointer.) A

process descriptor has four members: a value pval; a pointer

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Conference’17, July 2017, Washington, DC, USA Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal

sentinel

sent head tail

Figure 2. Initial con�guration of the queue

to the queue that currently holds the process, qref; and

pointers prev and next to the previous and next processes

in the queue respectively. We depict processes as so (where

the qref pointer is not drawn since the queue that owns the

process is obvious from the context):

prev

v

next

In Iris-ML, a process object is represented as a tuple of

references, and we de�ne four projections out of the tuple

named pval, qref, prev and next.

Enqueuing. The function enqueue(q,p) enqueues process

p in the Dartino Queue q. Enqueuing elements involves ob-

taining the (virtual) lock of the Dartino Queue, inserting the

new element once the lock is acquired, and �nally releasing

the lock again. These steps are illustrated in Figure 3.

Obtaining the lock is delegated to obtainLockEnq, which

loops attempting to update the head pointer of the queue

(head) to the sentinel value (sentinel); the old value of the

head pointer is recorded in the reference h. The function

retries if the head currently holds the sentinel value (indicat-

ing that another thread holds the lock) or if the CAS fails as a

result of another thread updating it. When obtainLockEnq
returns, it must have successfully updated the head pointer

from the (non-sentinel) value now stored in h to the sentinel

value. Thus the thread will have acquired the lock. Obtaining

the lock takes us from (a) to (b) in Figure 3.

Once the lock is held, the thread is at liberty to modify the

list, and can assume that no other thread will concurrently

modify it. The process is added to the end of the list by

performing four pointer updates: the process’s qref pointer

is updated to point to the queue; the process’s prev pointer is

updated to point to the original tail; the tail’s next pointer

is updated to point to the new process; and the tail pointer

is updated to point to the new process. This update takes

us from (b) to (c) in Figure 3. In the case where the list was

initially empty, it is only necessary to update the process’s

qref pointer and the queue’s tail pointer.

To complete the enqueue operation, the head pointer is

updated to point to the original head of the list (which was

stored in h), if the list was non-empty. This takes us from (c)

to (d) in Figure 3. If the list was empty, the head pointer is

updated to point to the newly enqueued process.

Dequeuing. The function dequeue(q) dequeues the pro-

cess at the head of the Dartino Queue q. As with enqueuing,

sentinel

a b v

sent
head tail p

(a)

sentinel

a b v

sent
head tail p

h

(b)

sentinel

a b v

sent
head tail p

h

(c)

sentinel

a b v

sent
head tail p

h

(d)

Figure 3. Enqueuing an element into the Dartino Queue.

the operation involves acquiring the lock, updating the list,

and �nally releasing the lock. This is depicted in Figure 4.

Before attempting to obtain the lock, a test checks if the

head pointer was NONE, indicating that the queue was empty,

in which case the function immediately returns NONE. Oth-

erwise, an attempt to acquire the lock is made by calling

obtainLockDeq.

obtainLockDeq behaves like obtainLockEnq in acquir-

ing the lock, except that it does not attempt to acquire the

lock if the queue is empty; it returns true if the queue was

empty, and therefore the lock was not acquired, and false
if the lock was successfully acquired with the queue non-

empty.

When the lock is successfully acquired, h holds a (non-null)

pointer to the process descriptor at the head of the queue

(Figure 4 (b)). The descriptor’s next pointer is inspected to

determine if it is the end of the queue, in which case it will

be NONE. If so, the queue’s tail pointer is set to NONE since

the queue will now be empty. If not, the next process’s prev
pointer is set to NONE, since it will now be the head of the

queue. The next and qref �elds of the head process are both

updated to NONE, since it is being removed from the queue

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Verifying a concurrent data-structure from the Dartino Framework in Iris Conference’17, July 2017, Washington, DC, USA

sentinel

a b

sent
head tail

(a)

sentinel

a b

sent
head tailh

(b)

sentinel

a b

sent
head tailh

(c)

sentinel

a b

sent
head tailh

(d)

Figure 4. Dequeuing an element from the Dartino Queue.

(Figure 4 (c)). Finally, the queue’s head is updated to point to

the new head process (the successor of the removed process,

before it was removed).

Arbitrary Dequeuing. The most interesting aspect of the

Dartino Queue is that a speci�c process p can be removed

from a queue q with the function tryDequeueEntry(q,p).

This is shown in Figure 5.

As with dequeue, the �rst step is to acquire the lock for

the queue, but only if the queue is non-empty. If the queue is

empty then the process cannot be in the queue (perhaps an-

other thread already dequeued it) and so tryDequeueEntry
returns false. Otherwise, it is necessary to check that the

process’s qref pointer points to the queue, since even if this

was initially the case, another thread may have dequeued the

process since tryDequeueEntry was called. If qref does not

match the queue, the lock is released by updating head to its

previous value and the operation returns false. Otherwise,

we can be sure that the process indeed belongs to the queue,

and since the thread holds the lock on the queue, no other

thread can concurrently dequeue it (Figure 5 (b)).

The process p is removed from the queue by �rst updating

the prev pointer of its successor to the prev pointer of p.

sentinel

a v b

sent
head tailp

(a)

sentinel

a v b

sent
head tailp

h

(b)

sentinel

a v b

sent
head tailp

h

(c)

sentinel

a v b

sent
head tailp

h

(d)

Figure 5. Dequeuing a speci�c element p from the Dartino

Queue.

If the successor is NONE then the tail pointer is updated

instead, since p must be the last process in the queue. Next,

the next pointer of p’s predecessor is updated to point to

the next pointer of p. Again, if there is no predecessor, the h
pointer is updated instead, since p must be the �rst process

in the queue. Next, the prev, next and qref pointers of p are

all set to NONE (Figure 5 (c)). Finally, the lock on the queue is

released by updating head to the pointer stored in h, which

is either the former head of the queue (if it was not p) or the

successor of p (if p used to be the head).

3 The Iris Logic
We specify and verify the Dartino Queue in Iris, a concurrent

higher-order separation logic implemented in Coq. Iris is

built around monoids and invariants. Monoids provide a way

to de�ne abstract (ghost) resources that represent knowledge

and rights available to threads. Invariants provide a way to

give concrete meaning to these abstract resources.

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Conference’17, July 2017, Washington, DC, USA Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal

Iris includes the following quanti�able types:

κ ::= 1 | κ × κ | κ → κ | Expr | Val | B | N | Names

| Monoid | iProp | . . .

Here, 1, B and N is the unit type, the type of booleans

and the type of natural numbers respectively. Expr and Val
are syntactic expressions and values of Iris-ML. Monoid is

the type of monoids, which are used for ghost resources.

Names is the type of ghost names, which is used to assign

names to instances of ghost resources. iProp is the type of Iris

propositions, which are de�ned by the following grammar:

P ::= > | ⊥ | P ∧ P | P ∨ P | P ⇒ P | P ∗ P | P −∗ P

| ∀x : κ . Φ | ∃x : κ . Φ | . P | µr .P | X(a) | � P

| Z={E1, E2}⇒P | own γ a | inv N P | . . .

The grammar includes the usual higher-order logic con-

nectives (>, ⊥, ∧, ∨,⇒, ∀, ∃). The separating conjunction

∗ describes resources that are split into two disjoint parts.

Magic wand, P −∗ Q , behaves like implication for resources:

if resources P are given up, then the resources described by

Q can be obtained. Ownership of ghost resources is written

as own γ a where a is a monoid element and γ is a ghost

name. Owned resources must be valid, which is asserted

by X(a). The update modality Z={E1, E2}⇒ allows resources

to be updated, where the masks E1 and E2 describe the set

of invariants that are not open before and after the update,

respectively. When the masks are the same we write Z={E}⇒.

The � modality asserts that a proposition holds indepen-

dently of resources. Consequently, the proposition � P is

persistent: it can be freely duplicated as it satis�es � P ⇔
� P ∗ � P .

Invariants, inv N P, where N is the name of the invariant

and P the invariant assertion, are also persistent propositions

and hence duplicable. The resources embodied by an invari-

ant can only be accessed during atomic operations, which

must reestablish the invariant. This ensures that no thread

can see a violation of the invariant: it is indeed invariant.

Updating resources and opening invariants modify the

ghost state without executing any code. The following two

connectives, view shift and wand shift, are particularly useful

for these tasks:

P ={E1, E2}⇒Q , �(P −∗ Z={E1, E2}⇒Q)

P ={E1, E2}=∗Q , P −∗ Z={E1, E2}⇒Q

The behaviour of view shifts and wand shifts are similar to

Hoare-triples, taking a precondition P , that asserts the shape

of the ghost state before updating and a postconditionQ , the

ghost state obtained by running the view shift or wand shift.

There is not need for any code, since these shifts only update

ghost resources and not the physical state. Note that the

Monoid-Alloc

X(a)

Z={E}⇒∃γ , own γ a

Monoid-Update

a B

own γ a ` Z={E}⇒∃b ∈ B, own γ b

Monoid-Valid

own γ a ` X(a)
Monoid-Op

own γ a ∗ own γ b a` own γ a · b

Figure 6. Rules for monoid resources in Iris

view shift is persistent: it cannot depend on any currently-

available resources. By contrast, the wand shift may use up

available resources in the update.

3.1 Monoids
Commutative monoids are the bread and butter of any sepa-

ration logic. A commutative monoid consists of a set with

a binary operation (which we denote ·) that is associative,

commutative and has an identity element. In Iris, arbitrary

monoids can be used as ghost resources. (Technically, Iris

uses resource algebras, which relax the identity property, but

have some other properties. We will abuse the terminology

by referring to resource algebras as monoids even when they

do not have an identity element.)

Figure 6 shows Iris rules for working with monoid re-

sources. The Monoid-Alloc rule allows a new ghost re-

source to be allocated holding any valid monoid element.

The Monoid-Valid rule requires that any allocated resource

must hold a valid monoid element. The Monoid-Update

rule allows a ghost resource to be updated. The represents

frame-preserving update: if a B and X(a · c) then it must

be that X(b · c) holds for some b ∈ B. Frame-preserving

updates thus do not invalidate the ownership of any other

concurrent threads. The Monoid-Op rule allows ghost re-

sources to be split and joined with the monoid composition

operator.

We now present a number of standard monoid construc-

tions that are useful in our veri�cation.

Exclusive. The Ex(S) monoid (over a given set S) is one

of the simplest monoids, where the composition a · b is

unde�ned everywhere. (“Unde�ned” is represented by a

distinguished element of the monoid that is not valid.) For

the exclusive monoid, we thus have the following law:

∀ a b, own γ (Excl a) ∗ own γ (Excl b) ` ⊥.

There cannot be two owned instances at one point in time,

therefore one is always free to update the resource using the

Monoid-Update rule.

Decidable Agreement. TheDecAgree(S)monoid over a set

S with decidable equality has composition de�ned by s ·s = s
for all s ∈ S , but unde�ned otherwise. This means that if

two threads own elements of this monoid then they must

agree. This is expressed by the following Iris proposition:

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Verifying a concurrent data-structure from the Dartino Framework in Iris Conference’17, July 2017, Washington, DC, USA

∀ a b, own γ (DecAgree a) ∗ own γ (DecAgree b) ` a = b.

To show this holds, we use Monoid-Op to combine the

components into one assertion. Then, by Monoid-Valid,

we have that a · b is valid, but that can only be true if a = b.

Notice that we cannot perform a frame-preserving update

for this monoid.

Fractional Permissions. Given a monoid M , the fractional

permissions monoid Frac(M) has carrier (Q ∩ (0, 1]) × M .

Composition is de�ned as (π1,a) · (π2,b) = (π1 + π2,a · b),
where the sum π1 + π2 may not exceed 1. We thus have the

following Iris propositions:

∀ a b, own γ (π,a) ` own γ (π/2,a) ∗ own γ (π/2,a).
∀ a b, own γ (π,a) ∗ own γ (π',a) ∗ π + π' <= 1

` own γ (π + π',a).

If one has own γ (1,a), no other fractions can be owned.

Thus one has exclusive ownership and can freely update the

resource.

Finite Sets. Given a set X , the �nite-set monoid Gset(X)
consists of the �nite subsets of X under disjoint union. That

is, the composition of two �nite subsets a · b is de�ned as

the union a ∪ b when a ∩ b = ∅, and unde�ned otherwise.

Finite Maps. Given a set X and monoid Y , the �nite-map

monoid Gmap(X ,Y) consists of the �nite partial functions

from X to Y . Composition is given by:

(a · b)(x) =

a(x) · b(x) if x ∈ dom(a) and x ∈ dom(b)

a(x) if x ∈ dom(a) and x < dom(b)

b(x) if x < dom(a) and x ∈ dom(b)

Composition is thus functorial in the co-domain monoid:

{[i := x]} · {[i := y]} = {[i := x · y]}

where {[i := x]} represents the singleton map from

i to x.

A frame-preserving update can extend the domain of a

�nite map with a new key, provided that we are not speci�c

about which new key:

X(x) `m {m′ | ∃i .m′ = {[i := x]} ·m ∧ i < dom(m)}

This gives a way of allocating new ghost resources in a

monoid.

Authoritative. Given a monoidX , the authoritative monoid

is built from two types of resources: authoritative resources

•a, and fragment resources ◦b. Fragment resources can be

composed according to the underlying monoid: ◦a · ◦b =
◦ (a · b). Authoritative resources cannot be composed with

each other: •a · •b is unde�ned. When an authoritative

and fragment resource are combined, the fragment must be

contained with in the authoritative resource: X(•a · ◦b)
implies b 4 a, where the induced monoid ordering b 4 a
means that there exists some c such that b · c = a.

File name Contents

program.v the Dartino Queue implementation

de�nitions.v record de�nitions that model processes

and queues

monoids.v declarations of ghost resources and

lemmas about them

invariants.v invariants for processes and queues

helpers.v helper lemmas for the invariants

wp_helpers.v helper lemmas regarding

weakest-precondition reduction of

terms

atomize.v the de�nition of abstract atomicity

makers.v proofs for the queue and process

constructors

enqueue.v proofs for enqueuing processes

dequeue.v proofs for dequeuing processes (at the

head and arbitrarily)

client_sequential.v proofs for a sequential client of the

Dartino Queue

client_concurrent.v proofs for a concurrent client of the

Dartino Queue

Table 1. Organization of the Coq project.

To perform a frame-preserving update in the authoritative

monoid, one typically requires the authoritative resource,

and any such update must preserve all fragments that may

be owned by other threads. For instance, it is possible to

extend the authority by introducing a new fragment:

∀ γ a b, own γ •a ∗ X(a · b) ` own γ •(a · b) · ◦b.

The Heap We can now give the ordinary Heap monoid in

terms of the above constructions:

Heap , Auth(Gmap(N,Ex(Val)))

Having ownership of an authoritative part of a heap is then

own γ • h, where local ownership of a points-to predicate

is written as own γ ◦ {[l := Excl v]}, which we can give a

nicer syntactic representation as l 7→ v.

4 A Speci�cation for the Dartino Queue
In this section, we present the Iris speci�cation for the Dartino

Queue. Table 1 shows the structure of the Coq project. While

the Coq development includes all proofs, we only present

the speci�cations here.

To simplify our presentation, we take a few liberties with

the Coq syntax. In particular, we omit some injections be-

tween types (e.g. from Coq propositions into Iris terms) as

well as scope speci�ers.

7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Conference’17, July 2017, Washington, DC, USA Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal

4.1 Datatype De�nitions
A reference to a process descriptor object is modelled as a

record of four locations, a process address. These locations

correspond to the addresses of the data members of the ob-

ject.

Record procAddrT := ProcAddrT {
pvall : loc; pqueuel : loc; pprevl : loc; pnextl : loc

}.

A queue address is similarly de�ned as a record of three

locations that comprise the data members of a queue object.

Record queueAddrT := QueueAddrT {
qhead : loc; qtail : loc; qsent : loc

}.

A process value record models the contents of a process

descriptor object. It thus comprises the values of each data

member of the object.

Record procValT := ProcValT' {
pvalv : val;
pqueuev : option queueAddrT;
pprevv : option procAddrT;
pnextv : option procAddrT

}.

4.2 Monoids
Our speci�cation of the Dartino Queue uses four custom

monoids to represent ghost state.

4.2.1 Process Monoid
The process monoid is the authoritative monoid on partial

maps from process addresses to process values with frac-

tional permissions:

Auth(Gmap(procAddrT, Frac(DecAgree(procValT))).

This monoid represents the current state of process descrip-

tor objects. The authoritative part of the monoid belongs

to an invariant (described by procs__inv), which ensures

that the pval pointer of each process matches the value

recorded in the monoid. A ¼ fraction of the fragment part

typically belongs to an invariant for the process (described by

proc__inv), which establishes the relationship between the

qref, prev and next pointers and the values in the monoid.

The remaining ¾ fraction represents ownership of the pro-

cess, which may either belong to a queue (if the process is

in that queue) or a thread.

To denote a fragment part with a given fraction, we de�ne:

Definition Proc (x : procAddrT)(π : Qp)(v : procValT)
:= ◦ {[x := (π, DecAgree v)]}.

4.2.2 Queue Membership Monoid
The queue membership monoid is the authoritative monoid

on �nite sets of process addresses:

Auth(Gset(procAddrT)).

Each queue has an instance of this monoid that tracks which

processes currently belong to it. The authoritative part of

the monoid belongs to the predicate that represents a queue,

which maintains that the processes recorded in the monoid

are exactly those belonging to the queue. The authoritative

part is represented as InQueueAuth l, where l is a list of

process addresses. When a process belongs to a queue, the

invariant for the process holds a (singleton) fragment of the

monoid to track that the process does indeed belong to the

queue. This fragment is represented as InQueue p, where p
is a process address. The authoritative monoid gives us the

following property:

own γ (InQueueAuth l) ∗ own γ (InQueue a) ` a ∈ l

4.2.3 Link Monoid
Since queues may be dynamically created, their ghost re-

sources (i.e. the queue membership monoid for a queue) are

also dynamically allocated. To track these, we use a link

monoid that records the ghost resource name associated

with queues. This monoid is the authoritative monoid on

maps from locations to ghost resource names:

Auth(Gmap(Loc,DecAgree(Names))).

A fragment part is represented as Link qs γ , indicating

that the queue with sentinel qs is associated with ghost

name γ . The authoritative part belongs to a global invariant

(queues) which tracks the current queues. The following

useful property holds for the link monoid:

own γq (Link (qsent q) γ) ∗ own γq (Link (qsent q) γ')
` γ = γ'

4.2.4 List Monoid
The list monoid is used to track the list of processes that

logically belong to a queue. This is used to ensure that,

when a thread holds the lock on a queue, no other thread

can update the logical contents of the queue: the monoid

records the logical contents of the queue; the thread has half

of the resource and the queue has the other half; both halves

must agree, so only the thread with the lock can update

the queue. This monoid is the fractional monoid on lists of

process addresses:

Frac(DecAgree(list procAddrT)).

We de�ne List l to be a ½ fraction with value l. This

monoid has the following important property:

own γ (List l) ∗ own γ (List l′) ` l = l′

and, for updating,

own γ (List l) ∗ own γ (List l)

` own γ (List l′) ∗ own γ (List l′)
8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Verifying a concurrent data-structure from the Dartino Framework in Iris Conference’17, July 2017, Washington, DC, USA

4.3 Predicate De�nitions
We now de�ne predicates to represent processes and queues,

using the above monoids.

4.3.1 Processes
The proc predicate speci�es a process:

Definition proc γp γq (a : procAddrT) (v : val)
(qv : option queueAddrT)(pv nv : option procAddrT) :=
own γp (Proc a 1/4 {| pvalv := v; pqueuev := qv;

pprevv := pv; pnextv := nv |}) ∗
(pqueuel a) 7→ option__queueAddrT__to__val qv ∗
(pprevl a) 7→ option__procAddrT__to__val pv ∗
(pnextl a) 7→ option__procAddrT__to__val nv ∗
match qv with
| None => True
| Some q => ∃ γ, own γq (Link (qsent q) γ) ∗

own γ (InQueue a)
end.

The assertion proc γp γq a v qv pv nv declares owner-

ship of the points-to predicates for the qref (pqueuel a),

prev (pprevl a) and next (pnextl a) locations. These lo-

cations hold pointers to the speci�ed queue (qv), previous

process (pv) and next process (nv) respectively. Furthermore,

the assertion declares ownership of a ¼ fragment of the cor-

responding process ghost resource.

If the process belongs to a queue (i.e. qv is Some q) then

the assertion establishes this relationship by holding the

ghost resources own γq (Link (qsent q) γ) and own γ
(InQueue a) (for someγ). The �rst of these certi�es that the

ghost name associated with the queue is γ , while the second

certi�es that the process logically belongs to the queue.

The predicate proc__inv γp γq x wraps the proc pred-

icate in an invariant (with other parameters existentially

quanti�ed). The qproc predicate combines ¾ ownership of

the Proc ghost resource for a process with the proc__inv
invariant:

Definition qproc γp γq x :=
(∃ v, own γp (Proc x 3/4 {| pvalv := v;

pqueuev := None;
pprevv := None;
pnextv := None |})

∗ proc__inv γp γq x)%I.

Since the Proc fragment from the qproc predicate must

agree with the Proc fragment from the proc__inv invariant,

we can be sure that the heap cells representing the process

object will hold the appropriate values. The qproc requires

that the qref, prev and next pointers should all be None —

i.e. the process does not belong to any queue.

4.3.2 Queues
A queue is represented by the queue γp γq q γ γ' l pred-

icate, where q is the queue address, l is a list of the process

addresses for processes that belong to the queue, and the

remaining parameters are ghost resource names. A queue

may either be locked or unlocked. If it is locked then the

queue’s head pointer must point to the sentinel value, and

the majority of the resources representing the queue will

have been transferred to the thread that holds the lock. If

the queue is unlocked then these resources (which are rep-

resented by the queue__lock predicate) will belong to the

queue. In either state, the queue maintains ½ ownership

of the head and sentinel points-to predicates, since threads

require access to these in both cases. The predicate also

includes one (of two) List l ghost resources that tracks the

logical contents of the queue; the other is in the queue__lock
predicate. Finally, it includes a Link (qsent q) γ' ghost

resource, which records that γ' is the ghost name for the

queue’s list membership resource. The predicate is de�ned

as follows:

Definition queue γp γq (q : queueAddrT) γ γ' l :=
∃ (hv : val) (hvOP tvOP : option procAddrT),
(qhead q) 7→{1/2} hv ∗ (qsent q) 7→{1/2}() ∗
own γ (List l) ∗ own γq (Link (qsent q) γ') ∗
(hv = SOMEV (qsent q) ∨
(hv = (option__procAddrT__to__val hvOP) ∗
queue__lock γp γq q γ γ' hv hvOP tvOP l)).

The queue__lock γp γq q γ γ' hv hv' tv l predicate

represents the majority of the resources that constitute a

queue, and which may be obtained by a thread on acquiring

the lock. Here, q is the queue address, hv is the value of the

queue’s head pointer, hv' and tv are pointers to the head

and tail processes in the queue respectively, and l is a list of

process addresses that are in the queue.

Definition queue__lock γp γq (q : queueAddrT) γ γ'
(hv : val) (hv' tv : option procAddrT)
(l : list procAddrT) := (qhead q) 7→{1/2} hv ∗
own γ (List l) ∗ own γ' (InQueueAuth l) ∗
(qtail q) 7→ option__procAddrT__to__val tv ∗
queue__cont γp γq q hv' tv l.

The queue__lock predicate includes half ownership of the

queue’s head pointer and the second List l ghost resource

for the queue. These resources complement those of the

queue predicate, and ensure that the head pointer and logical

contents of the queue cannot be changed by other threads

while the lock is held.

The predicate also asserts ownership of InQueueAuth
l ghost resource, which ensures that only processes in l
can have a corresponding InQueue resource. Moreover, the

full permission on the queue’s tail pointer belongs to the

queue__lock predicate, since this pointer is only accessed

by threads that have acquired the lock. Finally, the list of pro-

cesses, represented by the queue__cont predicate, completes

the predicate.

The predicate queue__cont consists of proc__inv invari-

ants for each process in the list, together with a recursively-

de�ned predicate queue__dll that ensures that the processes

form a doubly-linked list.

Definition queue__cont γp γq (q : queueAddrT)
(h t : option procAddrT) (l : list procAddrT) :=

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Conference’17, July 2017, Washington, DC, USA Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal

([∗ list] p ∈ l, proc__inv γp γq p) ∗
queue__dll γp q l h t None None.

The queue__dll γp q l i e p n resembles a standard

doubly-linked list segment predicate [8], except that Proc
ghost resources are used to represent the nodes of the list.

(The proc__inv invariant for each process establishes the

connection between these ghost resources and the actual

values in the process object, since it holds the complementary

Proc resource.) The pointers i and e are to the �rst and last

processes in the segment, respectively, and p and n are the

previous and next pointers of the �rst and last nodes of the

segment.

Fixpoint queue__dll γp (q : queueAddrT) (l : list
procAddrT) (i e p n : option procAddrT) :=
match l with
| nil => (i = n ∧ e = p)
| x :: l' => ∃ (v : val) (n' : option procAddrT),

i = Some x ∗
own γp (Proc x 3/4 {| pvalv := v;

pqueuev := (Some q);
pprevv := p;
pnextv := n' |}) ∗

queue__dll γp q l' n' e i n
end.

4.4 A Logically Atomic Speci�cation for the Dartino
Queue

One approach to specifying the Dartino Queue would be

with Hoare-triples such as the following
1
:

{qproc p ∗ queue q l}

enqueue(q, p)

{v. v = () ∗ queue q (l ++ [p])}

This speci�es that calling enqueue with a valid queue q and

un-enqueued process p will result in the process being ap-

pended to the queue. Unfortunately, to use this speci�cation,

a thread must have ownership of the queue. Therefore, it is

not useful in a concurrent situation where the queue may be

shared among many threads (such as a scheduler).

An alternative speci�cation would be to wrap the queue

in an invariant:

{qproc p ∗ inv N (∃l. queue q l)}
enqueue(q, p)

{v. v = () ∗ inv N (∃l. queue q l)}
With such a speci�cation, multiple threads can access the

queue. However, we lose the information that enqueue actu-

ally appends the process to the queue. Indeed an implemen-

tation could not change the queue at all and be correct with

respect to such a speci�cation.

The problem with the �rst speci�cation is that we do not

allow any concurrent updates to the queue. The problem

with the second is that we allow all possible concurrent

1
For exposition, we elide some parameters of the predicates.

updates to the queue. The optimal speci�cation would allow

the client of the queue to determine exactly which concurrent

updates are possible. We can achieve such a speci�cation by

viewing the update as logically atomic [2].

Access to invariants is generally only permitted to atomic

operations: if the operation preserves the invariant, then no

other thread can observe a violation of the invariant because

the operation is atomic. Logically atomic operations can

similarly be used to access invariants, although they do not

execute in a single atomic step. In [2], da Rocha Pinto et
al. propose an atomic triple for specifying logical atomicity.

For enqueue, we might give the following atomic triple:

A

l.〈qproc p ∗ queue q l〉

enqueue(q, p)

〈v. v = () ∗ queue q (l ++ [p])〉

This speci�cation expresses that the process p is atomically

appended to the queue q in the execution of enqueue(q,p).

The binding of l, representing the contents of the queue,

allows the client to arbitrarily update the queue during the

execution of enqueue, provided that the precondition holds

for some l up until the atomic update takes e�ect. Immedi-

ately after the atomic update, the postcondition will hold for

the value of l at which the precondition held immediately

prior.

4.4.1 Logical Atomicity in Iris
In Iris hoare-triples are encoded using weakest precondition,

as so:

{P } e {Φ} , �(P −∗ wp e {Φ})

Therefore, we show how to construct a logically-atomic

weakest precondition in Iris. The core idea is expressed

by an “atomic shift” [4]:

Definition atomic__shift {A B : Type}
(α: A → iProp Σ) (* atomic pre-condition *)
(β: A → B → iProp Σ) (* atomic post-condition *)
(Ei Eo: coPset) (* inside/outside invs *)
(P : iProp Σ) (Q : A → B → iProp Σ) : iProp Σ :=
(P ={Eo, Ei}=> ∃ x:A, α x ∗
((α x ={Ei, Eo}=∗ P) ∧

(∀ y, β x y ={Ei, Eo}=∗ Q x y))).

An atomic shift is a persistent assertion. It e�ectively

captures that an atomic update from α to β is su�cient to

take precondition P to postcondition Q. Speci�cally, it says:

• From the precondition P we can obtain α x for some

x, by opening the invariants Eo \ Ei.

• Having done so, it is possible to restore P by reestab-

lishing α x and closing the invariants.

• Alternatively, by instead establishing β x y for any y,

we my establish Q x y by closing the invariants.

The idea is that if an operation e performs a logically-atomic

update from α to β , then for any given P and Q such that

atomic__shift α β Ei Eo P Q we have {P} e {Q} . Such

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Verifying a concurrent data-structure from the Dartino Framework in Iris Conference’17, July 2017, Washington, DC, USA

an operation thus consists of steps that may access α x but

must preserve it, followed by a step that updates α x to

β x y, followed by steps that cannot violate the (arbitrary)

postcondition Q. This idea is expressed in the de�nition of

logically-atomic weakest precondition:

Definition atomic__wp {A : Type}
(α: A → iProp Σ) (* atomic pre-cond. *)
(β: A → val __ → iProp Σ) (* atomic post-cond. *)
(Ei Eo : coPset) (* in/out invs *)
(e: expr __) : iProp Σ :=
(∀ P Q, atomic__shift α β Ei Eo P Q -∗

P -∗ WP e {{ v, ∃ x: A, Q x v }}).

4.4.2 Logically-atomic Speci�cations for the
Dartino Queue Operations

Using this de�nition of logical atomicity, we can �nally show

the following speci�cation for enqueue:

Lemma enqueue__spec :
∀ q p γ γ' E, procs__inv N γp ∗ qproc N γp γq p `
atomic__wp

(λ l => . queue N γp γq q γ γ' l)
(λ l ret => queue N γp γq q γ γ' (l++[p]) ∗

ret = is__nil l)
∅ E
enqueue (qhead q) (qtail q) (qsent q)

(procAddrT__to__val p).

This speci�cation establishes that enqueue atomically

adds the process p to the end of the queue q, with the re-

turn value indicating whether the queue was empty at the

time. However, the qproc predicate does not form part of

the atomic precondition. Instead, it is in the overall precon-

dition. This means that ownership of the qproc predicate

is transferred to enqueue when it is called, rather than at

the point it performs the atomic update. (This is analogous

to the generalization of atomic triples in [2] that permits

this kind of resource transfer.) The implementation can thus

use these particular resources as it sees �t, without being

concerned with interference from other threads. The overall

precondition also establishes the invariant procs__inv.

Note that the atomic precondition is guarded under the .
modality. Since we have P ` .P , we could derive a speci�ca-

tion without .. However, in Iris when an invariant is opened

with a view shift, the contents is guarded by the . modality.

Therefore it is more convenient for clients that the atomic

precondition should be guarded by ..
We can also show the following speci�cation for dequeue:

Lemma dequeue__spec :
∀ q γ γ' E, procs__inv N γp
` atomic__wp
(λ l => . queue N γp γq q γ γ' l)
(λ l ret =>
∃ p l', l = p :: l' ∗ queue N γp γq q γ γ' l' ∗

qproc N γp γq p ∗ ret = Some p
∨ l = [] ∗ queue N γp γq q γ γ' [] ∗ ret = NONE)

∅ E dequeue (qhead q) (qtail q) (qsent q) ().

Note that the atomic postcondition consists of a disjunc-

tion of the two cases: either the queue was non-empty and

the process at the head of the queue is dequeued and re-

turned; or the queue was empty, it is unchanged and the

value NONE is returned.

Finally, we present the speci�cation for tryDequeueEntry:

Lemma tryDequeueEntry__spec :
∀ q p γ γ' E, procs__inv N γp ∗ proc__inv N γp γq p
` atomic__wp

(λ l => . queue N γp γq q γ γ' l)
(λ l ret => (p ∈ l ∗ ∃ l1 l2, l = l1 ++ p :: l2 ∗

queue N γp γq q γ γ' (l1 ++ l2) ∗
qproc N γp γq p ∗ ret = true) ∨
(p < l ∗ queue N γp γq q γ γ' l ∗
ret = false))

(n__inv__proc N p) E
tryDequeueEntry (qhead q) (qtail q) (qsent q)

(procAddrT__to__val p).

As with dequeue, the atomic postcondition is a disjunction:

if the process p is in l, then the list l can be split such that

l = l1++p :: l2, so we update the queue to l1++l2, extract

the qproc resource for p, and return true; if p is not in l,

we do nothing and return false.

Note that the global precondition requires the proc__inv
invariant for the process we wish to dequeue, in addition to

the procs__inv invariant present in the other speci�cations.

This is since otherwise we would have no guarantee that p
indeed represents a legitimate process object.

Interestingly, we also require that the invariant for the

process is closed when obtaining the atomic pre-condition.

This is because we have to case on the process being in the

queue, which requires us to open the invariant. Since it is

unsound to open the invariant twice, we need to enforce that

the client does not open the invariant for the process.

5 Client
Logically atomic speci�cations allow clients to build and

enforce their own protocol on top of data-structures. To

illustrate this, we will consider a simple client of the Dartino

Queue that simulates a round-robin scheduler. To simulate

executing a process, we de�ne a function doWork that simply

reads and writes a process’s pval pointer. We also de�ne

a function scheduler, which loops attempting to dequeue,

“execute” and re-enqueue a process from a given queue, and

a function enqueuer, which loops creating fresh processes

and enqueuing them.

Definition doWork : val :=
λ: pval,
pval <- !pval.

Definition scheduler : val :=
rec: loop h t s :=

let: p := dequeue h t s () in
match: p with

NONE => ()
| SOME p' => p' ;;

11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Conference’17, July 2017, Washington, DC, USA Morten Krogh-Jespersen, Thomas Dinsdale-Young, and Lars Birkedal

doWork (pval p') ;;
enqueue h t s p'

end ;;
loop h t s.

Definition enqueuer : val :=
rec: loop h t s :=

let: p := makeProc 1 in
enqueue h t s p ;;
loop h t s.

Definition concurrent__client : val :=
λ: <>,

let: q1 := makeQueue () in
let: q1h := queue__head q1 in
let: q1t := queue__tail q1 in
let: q1s := queue__sent q1 in
Fork (scheduler q1h q1t q1s) ;;
Fork (scheduler q1h q1t q1s) ;;
Fork (enqueuer q1h q1t q1s) ;;

The concurrent__client function creates a new Dartino

Queue and forks two scheduler threads to run processes

from the queue, and one enqueuer thread to add processes

to the queue. (Recall that queue__head, queue__tail and

queue__sent are projection functions from the tuple that

represents a queue address.)

For doWork, to read and write a process’s pval member,

our custom protocol needs to transfer ownership of the ref-

erence to doWork. Similarly, for enqueuer and scheduler
to operate on the same queue, the protocol should allow for

each to access the queue, to transfer ownership of the pro-

cess’s pval to the shared state when enqueueing a process,

and to remove the ownership of pval when dequeuing a

process.

The following invariant client__queue__inv is an excel-

lent candidate for the shared state for our custom protocol:

Definition client__queue γp γq q γ γ' l :=
queue N γp γq q γ γ' l ∗

[∗ list] p ∈ l, ∃ v, pvall p 7→{1/2} v

Definition client__queue__inv γp γq (q : queueAddrT) γ γ' :=
inv (n__inv__queue q) (∃ l, client__queue γp γq q γ γ' l).

This invariant holds a ½ fraction of the pval pointer for

each process in the queue. (The remaining ½ belongs to the

procs__inv invariant, and can be obtained from the qproc
resource when a process is removed from the queue.)

To show how this custom protocol works, consider how

the scheduler function will use the logically atomic speci�-

cation for dequeue. To do so, it must establish an atomic__shift
α β Ei Eo P Q, where α , β and Ei are determined by the

dequeue speci�cation as:

α := (λ l => . queue N γp γq q γ γ' l)
β := (λ l ret =>

∃ p l', l = p :: l' ∗ queue N γp γq q γ γ' l' ∗
qproc N γp γq p ∗ ret = Some p
∨ l = [] ∗ queue N γp γq q γ γ' [] ∗ ret = NONE)

Ei := ∅

and Eo, P and Q are determined by the client as:

Eo := { n__inv__queue q }
P := True
Q := λ l ret => l = [] ∗ ret = NONE ∨

∃ p l' v, l = p :: l' ∗ qproc N γp γq p ∗
. (pvall p) 7→{1/2} v ∗ ret = Some p

The precondition is True since the queue belongs to the client

invariant, which is persistent. The postcondition extracts

the qproc and pval pointer resources from the queue when

the operation succeeds. The client obtains P and Q as a pre-

and postcondition for dequeue by establishing the atomic

shift, namely:

(P ={Eo, Ei}=> ∃ x:A, α x ∗
((α x ={Ei, Eo}=∗ P) ∧

(∀ y, β x y ={Ei, Eo}=∗ Q x y)))

Since Eo is { n__inv__queue q } and Ei is ∅, the view shift

opens the client invariant to obtain α . Recall that opening an

invariant obtains its resources guarded under the later modal-

ity (.), and hence its presence in α . The wand shifts close the

client invariant, the �rst when no update is performed, and

the second when the dequeue operation takes e�ect. For the

latter, when the operation succeeds the dequeued process is

no longer in the queue, and we have

queue N γp γq q γ γ' l ∗
. [∗ list] p' ∈ p::l, ∃ v, pvall p' 7→{1/2} v

To close the invariant again, we unfold the iterated separat-

ing conjunction ([* list]) to extract the pval resource for

the process p that is being dequeued:

queue N γp γq q γ γ' l ∗ ∃ v', . pvall p' 7→{1/2} v' ∗
. [∗ list] p' ∈ l, ∃ v, pvall p' 7→{1/2} v

The client invariant can then be closed and the

. pvall p' 7→{1/2} v'

resource can be retained by the postcondition Q.

6 Conclusion
We have formally speci�ed and veri�ed the concurrent queue

data structure at the heart of the Dartino Framework using

Iris in the Coq proof assistant. While the algorithm itself

is fairly simple, giving a reasonable speci�cation for it is

not trivial. For this, we have used an encoding of logical

atomicity in Iris. Logical atomicity allows us to precisely

capture the behaviour of the queue operations, allowing

clients of the data structure to impose their own invariants.

We demonstrate this by verifying a concurrent client using

our speci�cation. Our work is a case study which shows that

Iris and logical atomicity can be e�ectively applied to reason

about real-world code.

12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Verifying a concurrent data-structure from the Dartino Framework in Iris Conference’17, July 2017, Washington, DC, USA

References
[1] The Coq Development Team. 2016. The Coq Proof Assistant Reference

Manual. h�p://coq.inria.fr Version 8.6.

[2] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gard-

ner. 2014. TaDA: A logic for time and data abstraction. In European
Conference on Object-Oriented Programming. Springer, 207–231.

[3] Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a

correctness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463–492.

[4] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015. 637–650.

[5] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan,

Derek Dreyer, and Lars Birkedal. 2017. The essence of higher-order

concurrent separation logic. In European Symposium on Programming.

Springer, 696–723.

[6] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

proofs in higher-order concurrent separation logic. In ACM SIGPLAN-
SIGACT Symposium om Principles of Programming Languges (POPL
2017). ACM.

[7] Peter O’Hearn, John Reynolds, and Hongseok Yang. 2001. Local

reasoning about programs that alter data structures. In Computer
science logic. Springer, 1–19.

[8] John C Reynolds. 2002. Separation logic: A logic for shared mutable

data structures. In Logic in Computer Science, 2002. Proceedings. 17th
Annual IEEE Symposium on. IEEE, 55–74.

13

http://coq.inria.fr

	Abstract
	1 Introduction
	2 The Dartino Queue in Iris
	2.1 Modelling C++ in Iris-ML
	2.2 Doubly-Linked List with Arbitrary Removal

	3 The Iris Logic
	3.1 Monoids

	4 A Specification for the Dartino Queue
	4.1 Datatype Definitions
	4.2 Monoids
	4.3 Predicate Definitions
	4.4 A Logically Atomic Specification for the Dartino Queue

	5 Client
	6 Conclusion
	References

