
A Relational Model of Types-and-Effects in
Higher-Order Concurrent Separation Logic

Morten Krogh-Jespersen
Aarhus University, Denmark

mkj@cs.au.dk

Kasper Svendsen
University of Cambridge, UK

ks775@cl.cam.ac.uk

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Abstract
Recently we have seen a renewed interest in programming lan-
guages that tame the complexity of state and concurrency through
refined type systems with more fine-grained control over effects. In
addition to simplifying reasoning and eliminating whole classes of
bugs, statically tracking effects opens the door to advanced com-
piler optimizations.

In this paper we present a relational model of a type-and-effect
system for a higher-order, concurrent programming language. The
model precisely captures the semantic invariants expressed by the
effect annotations. We demonstrate that these invariants are strong
enough to prove advanced program transformations, including au-
tomatic parallelization of expressions with suitably disjoint effects.
The model also supports refinement proofs between abstract data
type implementations with different internal data representations,
including proofs that fine-grained concurrent algorithms refine their
coarse-grained counterparts. This is the first model for such an ex-
pressive language that supports both effect-based optimizations and
data abstraction.

The logical relation is defined in Iris, a state-of-the-art higher-
order concurrent separation logic. This greatly simplifies proving
well-definedness of the logical relation and provides us with a
powerful logic for reasoning in the model.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and mean-
ings of programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation logic, type-and-effect system, logical rela-
tions, program transformation, automatic parallelisation

1. Introduction
Programming with and reasoning about effects in higher-order pro-
grams is well-known to be very challenging. Over the years, there
have therefore been many proposals of refined type systems for
taming and simplifying reasoning about effectful programs. Exam-
ples include alias types [28], capability type systems [23], linear
type systems [14, 17, 20] Hoare type theory [21], permissions-
based type systems [24], type-and-effect systems [5, 6, 15, 19],
etc. Lately, we have also witnessed some larger-scale implemen-

tation efforts on higher-order programming languages, e.g., the
Mezzo programming language [24] and the Rust programming lan-
guage [27], which employ refined type systems to control the use
of state in the presence of concurrency.

In this paper, we provide a logical account of an expressive
region-based type-and-effect system for a higher-order concurrent
programming language λref,conc with general references (higher-
order store). The type-and-effect system is taken from [11]; it is
inspired by Lucassen and Gifford’s seminal work [15, 19], but also
features a notion of public and private regions, which can be used to
limit interference from threads running in parallel. Hence it can be
used to express effect-based optimizations, as emphasized for type-
and-effect systems for sequential languages by Benton et al., see,
e.g., [5, 6]. Effect-based optimizations are examples of so-called
“free theorems”, i.e., they just depend on the types and effects
of the involved expressions, not on the particular expressions in-
volved. The most interesting effect-based optimization is a paral-
lelization theorem expressing the equivalence of running expres-
sions e1 and e2 in parallel and running them sequentially, assuming
their effects are suitably disjoint. Note that this is a relational prop-
erty, i.e., the intended invariants of the type-and-effect system are
relational in nature. Our logical account of the type-and-effect sys-
tem thus consists of a logical relations interpretation of the types
in a program logic, and we prove that logical relatedness implies
contextual equivalence. We show that our logical relations inter-
pretation is strong enough to prove the soundness of effect-based
optimizations, in particular the challenging parallelization theorem.

Since the programming language λref,conc includes higher-order
store, it is non-trivial to define a logical relations interpretation of
the types, as one is faced with the well-known type-world circular-
ity [1] (see [10] for an overview). Here we factor out this challenge,
by using a state-of-the-art program logic, Iris [16], as the logic in
which we express the logical relations. Iris has direct support for
impredicative invariants, as needed for defining logical relations
for general references. Iris also supports reasoning about concur-
rency; in particular, it supports a form of rely-guarantee reasoning
about shared state. We use this facility to capture invariants of pri-
vate and public regions. Moreover, we show, using simple synthetic
examples, how we can also use the logic to prove that syntactically
ill-typed programs obey the semantic invariants enforced by the
type system. This is important in practice: both Mezzo and Rust
contain facilities for programming with statically ill-typed expres-
sions (Mezzo uses dynamic type checks [25] and Rust allows for
including unsafe code in statically typed programs [27]) thus mod-
els of type-and-effect systems should preferably support reasoning
about combinations of statically ill-typed and statically well-typed
programs.

1.1 Overview of Challenges and Contributions
The typing judgments of our type-and-effect system take the form

Π | Λ | Γ ` e : τ, ε

and express that the term e is of type τ and has effect ε in the typing
context Γ mapping variables to types. The additional contexts Π
and Λ consist of region variables ρ denoting, respectively, the
public regions and the private regions that e may use. Intuitively,
public regions are those that other threads may also use, whereas
private regions are not subject to interference from other threads.
Thus, from a thread-local perspective, the segregation describes
an expression’s expectations of interference from the environment.
The effect ε is a finite set of read rdρ, write wrρ, or allocation
effects, alρ, the intuition being that if, e.g., rdρ ∈ ε, then e may
read a reference belonging to region ρ.

Effect-based optimizations. Using effect annotations we can ex-
press the idea of parallelization mentioned above formally as fol-
lows (where rds ε is the set of regions with read effects in ε and
likewise for wrs ε and als ε):

Theorem 1 (Parallelization). If Λ = Λ1,Λ2,Λ3 and

1. Λ3 | Λ1 | Γ1 ` e1 : τ1, ε1 and Λ3 | Λ2 | Γ2 ` e2 : τ2, ε2

2. als ε1 ∪ wrs ε1 ⊆ Λ1, als ε2 ∪ wrs ε2 ⊆ Λ2

3. rds ε1 ⊆ Λ1 ∪ Λ3 and rds ε2 ⊆ Λ2 ∪ Λ3

then · |Λ |Γ1,Γ2 ` e1 || e2
∼=ctx (e1, e2) : τ1 × τ2, ε1 ∪ ε2.

Here Λ1 are the private regions of e1, Λ2 are the private regions
of e2, and Λ3 are regions that can be used by both e1 and e2.
The theorem then says, that if the expressions ei only write and
allocate in their private regions (item 2) and only read in private
or shared regions (item 3), then, running e1 in parallel with e2

is contextually equivalent with running e1 and e2 sequentially, if
the context is not allowed to access any locations used by the two
expressions (expressed by the fact that Λ1,Λ2,Λ3 are all private in
the conclusion).

Intuitively, this theorem sounds very plausible, perhaps even
quite obvious, but proving it formally was an open problem for
more than 25 years [11] and it is still very difficult to prove for
higher-order languages with general references, such as ours. In-
deed, one of our key contributions is a novel proof technique for
proving parallelization. To outline our approach, consider proving
the left-to-right approximation of the parallelization theorem (The-
orem 1). Then we, in particular, have to show that any reduction
step taken by e1 || e2 can also be taken by (e1, e2). In the case
where the expression e1 || e2 takes a step in the right branch, we
cannot yet take the corresponding step in (e1, e2), unless e1 has al-
ready reduced to a value. Previous methods for proving paralleliza-
tion therefore relied on reordering steps taken in e2 with steps from
e1, while preserving the semantic invariants - resulting in very diffi-
cult proofs [11] or trace-based arguments [9], which are not known
to scale to programming languages with general references and dy-
namic allocation.

Our new technique is instead based on framing. We suspend
the reduction on the right hand side temporarily, and first disen-
tangle the reduction of e1 || e2 into two semi-independent (“semi”
because they can read from shared regions) reductions for e1 and
e2 respectively, which can then be reassembled into a reduction for
(e1, e2) using framing. The disentanglement and the reassembling
qua framing, of course, depends on the effect annotations, and our
formal argument leverages Iris’ facility for capturing sophisticated
ownership disciplines. We present a more detailed description and
the formal argument in Section 3.4.

Data abstraction and local state. The λref,conc language supports
hiding of local state using closures. Hiding can be used to imple-

ment abstract data types (ADTs) that manipulate an internal data
representation, which can only be accessed through the provided
operations. Relating ADT implementations that use different inter-
nal data representations is well-studied in the setting of ML-like
type systems (see, e.g., [2, 32] and the references therein); effect
tracking adds several interesting dimensions.

In the ML setting the type system imposes no constraints on
local state when relating ADT implementations. This is not the
case in our setting. To illustrate, consider the following counter
implemented using local state:

ecount , let x = new 0 in rec inc().let y = !x in

if CAS(x, y, y + 1) then y else inc()

ecount allocates a local reference x and returns a function that try
to increment x inside a loop, until it succeeds, and returns the old
value. To allow for concurrent access, the function uses a compare-
and-set operation (CAS), which atomically sets the value of x to
y + 1 if the value of x is equal to y and returns true or false
depending on the result. The counter has the following type:

ρ | − | − ` ecount : 1→ρ,−
{rdρ,wrρ} int, {alρ}

The type is a function type, which is annotated with a latent ef-
fect, expressing that the returned function may read and write in
the public region ρ. To prove soundness of effect-based trans-
formations, it is, of course, crucial that the semantic model also
enforces the semantic invariants expressed by the effect annota-
tions on local state. Otherwise, if our semantic model would al-
low us to forget about the effects on the local reference x, then
we would be able to show, using a semantic version of Theo-
rem 1, that let g = ecount in g() || g() is contextually equivalent
to let g = ecount in (g(), g()), which is not the case (the first ex-
pression may evaluate to (1, 0), while the second always evaluates
to (0, 1)).

We can use the type-and-effect system to limit interference
from the environment on the internal state of ADTs, when relat-
ing ADTs. For example, consider the two stack modules listed in
Figure 1. The left stack module, STACK1, uses a single refer-
ence to a pure functional list whereas the right module, STACK2,
uses a linked list representation. Both stack implementations use a
CAS operation to ensure that they function correctly in the pres-
ence of concurrent interference. The implementations (i.e., stack1

and stack2) can be given the following type τSTACK:

1→ρ,−
{alρ} (int→ρ,−

{wrρ,rdρ,alρ} 1)× (1→ρ,−
{wrρ,rdρ} 1 + int)

This type expresses that each module will allocate in region ρ and
return two functions push and pop. The type further expresses that
push is allowed to have read, write and allocate effects on the local
state described by ρ and that pop is allowed to read and write.

Intuitively, the two implementations are equivalent at this type,
because their internal data representations are purely local and
hidden from clients of the modules. Indeed, we can use our logical
relation to prove:

Theorem 2. ρ | − | − ` stack1
∼=ctx stack2 : τSTACK, {alρ}

Now, if we restrict possible interference from the environment
by making the ρ region private, as expressed by the type τ ′STACK (ρ is
now private on the latent effects, since it comes after the comma):

1→−,ρalρ
(int→−,ρ{wrρ,rdρ,alρ} 1)× (1→−,ρ{wrρ,rdρ} 1 + int)

then the two implementations are still contextually equivalent at
this type.

Moreover, for this type, we can also prove that we can safely
omit the CAS operation from the stack implementations (intu-
itively, because there is no possible concurrent interference). Thus,
writing stack nci for the implementation of stacki without a CAS

stack1() = let h = new inj1 () in (push1(h), pop1(h))

push1(h) = rec loop(n).let v = !h in

if CAS(h, v, inj2 (n, v)) then () else loop(n)

pop1(h) = rec loop().let v = !h in case(v, inj1 ()⇒ inj1 (),

inj2 (n, v′)⇒ if CAS(h, v, v′) then inj2 n else loop())

stack2() = let h = new (new inj1 ()) in (push2(h), pop2(h))

push2(h) = rec loop(n).let v = !h in

if CAS(h, v, new inj2 (n, v)) then () else loop(n)

pop2(h) = rec loop().let v = !h in case(!v, inj1 ()⇒ inj1 (),

inj2 (n, v′′)⇒ if CAS(h, v, v′′) then inj2 n else loop())

Figure 1. The left stack module, Stack1, has a single reference to a pure list where Stack2 uses a reference to a linked list.

loop, we can use our logical relation to prove the following equiv-
alences.

Theorem 3.
− | ρ | − ` stack nc1 ∼=ctx stack1 : τ ′STACK, {alρ}

and − | ρ | − ` stack nc2 ∼=ctx stack2 : τ ′STACK, {alρ}
Our proofs of data abstraction, detailed in 3.4 and [18], leverage

Iris’s facility for expressing invariants on local state. As pointed out
in [11] the logical relation in loc.cit. could not be used to prove
equivalences such as this one, since the logical relation there only
allowed for much more restricted invariants.

Ill-typed terms. Here is a simple example of a statically ill-typed
expression which nevertheless satisfies the semantic invariants en-
forced by the type system:

e , x := ();x := true

This expression first assigns the unit value to a boolean reference,
and then assigns true to it.

This expression is not statically typable, due to the assignment
of unit to a boolean reference. However, if the boolean reference
is private then the rest of the program is not allowed to observe
the ill-typed intermediate value and will thus never observe that the
typing discipline has been broken. It is thus perfectly safe to use
the untypable term e as if it had the following type:

− | ρ | x : refρ B ` e : 1, {rdρ, wrρ}
Our logical relations model allows us also to reason about such
statically ill-typed terms and, e.g., prove that e is equivalent to a
statically well-typed expression which only assigns true to x.

Summary of Contributions In summary, the contributions of this
paper are:

• We show how to interpret types of a region-based type-and-
effect system for a concurrent higher-order imperative program-
ming language with higher-order store as logical relations in the
state-of-the-art program logic Iris.
• We use the interpretation to prove soundness of effect-based

optimizations. In particular, we prove the soundness of the par-
allelization theorem. Our parallelization theorem is a strength-
ening of the one in [11] and for our proof we use a novel proof
technique, based on framing. The resulting proof is arguably a
lot clearer and more abstract than the one in [11], thanks to the
use of the logical features of Iris.
• We use the interpretation to prove contextual equivalence of

fine-grained concurrent data structures that use local state to
hide internal data representations. Our examples could not be
proved with the logical relation in [11].
• We show how the logic may be used to prove that syntactically

ill-typed expressions obey the semantic properties enforced by
the type system.
• We demonstrate that the logic allows us to give a modular

definition of the logical relation and explain the relation by
breaking it down into more manageable parts.

Outline We begin by formally defining the syntax and semantics
of λref,conc, the type-and-effect system, and contextual equivalence
in Section 2. In Section 3 we turn our attention to logical relations
for λref,conc. We present our logical relation in four stages, starting
from a unary relation that characterizes type inhabitance and ending
with a binary relation for reasoning about contextual equivalence
that supports advanced effect-based optimizations, each building
on the previous relation. We conclude and discuss related and future
work in Section 4.

2. λref,conc with Types, Regions and Effects
In this section we present the operational semantics and the type-
and-effect system for λref,conc, a call-by-value language with general
references and concurrency primitives || and CAS (compare-and-
set).

2.1 Syntax and Operational Semantics of λref,conc

The syntax of λref,conc is shown in Figure 2 and the operational se-
mantics is summarized in Figure 3. We assume given denumerably
infinite sets of variables VAR, ranged over by x, y, f , and loca-
tions LOC, ranged over by l. We use v to range over the set of
values, VAL, and e to range over the set of expressions, EXP. Note
that expressions do not include types. We use B, true, false and
if e then e1 else e2 as shorthands for booleans and branching en-
coded using sums.

v ::= () | n | (v, v) | inji v | rec f(x).e | x | l
e ::= v | e = e | e e | (e, e) | prji e | inji e | e+ e | new e | !e
| e := e | CAS(e, e, e) | e || e | case(e, inj1 x⇒ e, inj2 y ⇒ e)

Figure 2. Syntax of λref,conc.

The operational semantics is defined by a small-step relation be-
tween configurations consisting of a heap and an expression. Heaps
h are finite partial maps from locations to values. The semantics is
defined in terms of evaluation contexts, K ∈ ECTX. We use K[e]
to denote the expression obtained by plugging e into the context K
and e[v/x] to denote capture-avoiding substitution of value v for
variable x in expression e.

2.2 Types and Effects for λref,conc

The set of types is defined by the following grammar:

TYPE τ ::= 1 | int | refρ τ | τ × τ | τ + τ | τ →Π,Λ
ε τ

Π and Λ are finite sets of region variables, taken from a denumer-
ably infinite set REGVAR ranged over by ρ. We use comma to de-
note disjoint union of sets of region variables. An atomic effect on
a region ρ is either a read effect, rdρ, a write effect, wrρ, or an
allocation effect, alρ. An effect ε is a finite set of atomic effects.
Typing judgments take the form Π |Λ |Γ ` e : τ, ε. An excerpt
of the typing rules are shown in Figure 4. All typing rules can be
found in [18].

K ::= [] | K = e | v = K | K e | v K | (K, e) | (v,K) | prji K
| inji K | case(K, inj1 x⇒ e, inj2 y ⇒ e) | new K

| !K | K := e | v := K | K || e | e ||K | CAS(K, e, e)

| CAS(v,K, e) | CAS(v, v,K) | K + e | v +K

Pure reduction e
pure→ e′

v1 || v2
pure→ (v1, v2)

Reduction h; e→ h′; e′

h; e → h; e′ if e
pure→ e′

h; new v → h] [l 7→ v]; l

h; !l → h; v if h(l) = v

h[l 7→ −]; l := v → h[l 7→ v]; ()

h;CAS(l, vo, vn) → h; false if h(l) 6= vo

h[l 7→ vo];CAS(l, vo, vn) → h[l 7→ vn]; true

h;K[e] → h′;K[e′] if h; e→ h′; e′

Figure 3. Operational semantics of λref,conc. Remaining pure reduc-
tions are standard (see [18]).

Regions can be introduced by the masking rule (TMASK). The
masking rule expresses when we can introduce a new private region
ρ for the evaluation of an expression e and hide all of e’s effects
on region ρ. The condition ρ 6∈ FRV (Γ, τ) ensures that we do
not leak any locations of ρ and hence, from the perspective of e,
region ρ is private. The masking rule has been used to do memory-
management [30] and to hide local effects to enable more program-
transformations [4, 29].

Since the masking rule allows us to hide local state effects, a
pure operation is not necessarily deterministic in our setting. For
instance, the following code-snippet which non-deterministically
returns true or false can be typed as a pure expression:

− ` let x = new true in (x := true||x := false); !x : B, ∅

2.3 Contextual Equivalence for λref,conc

We take contextual equivalence as our basic notion of equivalence.
Contextual equivalence relates two expressions if no suitably typed
context can distinguish them. For a concurrent language such as
λref,conc we have to choose whether there simply has to exist an
indistinguishable reduction (may-equivalence) or whether all pos-
sible reductions must be indistinguishable (must-equivalence). In
this paper we study may-equivalence and may-approximation, as
defined below.

Definition 1. Π | Λ | Γ ` e1 ≤ctx e2 : τ, ε iff for all contexts C,
values v, and heaps h1 such that C : (Π | Λ | Γ ` τ, ε) (− |
− | − ` B, ∅) and [];C[e1] →∗ h1; v there exists a heap h2 such
that [];C[e2]→∗ h2; v.

The C : (Π | Λ | Γ ` τ, ε) (Π′ | Λ′ | Γ′ ` τ ′, ε′) relation
expresses that the context C takes a term e of the former type to
a term of the latter type; the definition is standard and relegated to
[18]. Note that e1 and e2 are not required to be well-typed in the
definition above. Contextual equivalence Π | Λ | Γ ` e1

∼=ctx e2 :
τ, ε is then defined as contextual approximation in both directions.

3. A Logical Relation for λref,conc
In this section we present a logical relation for λref,conc. To aid
exposition we present the logical relation in four steps. We start
by defining a unary logical relation for a simplified type system
without regions and effects. This allows us to focus on the use of

Iris as a meta-language for logical relations and provide a gentle
introduction to Iris. We then extend the unary relation to the full
type system with regions and effects, focusing on how effects are
translated into abstract descriptions of possible interference. These
unary logical relations characterize type inhabitance, which suffices
for establishing type soundness, but not for proving equivalences.
As the third step we naively extend the unary relation for the
full type system to a binary relation, focusing on how to express
a binary relation in a unary program logic. This yields a logical
relation that is sound with respect to contextual approximation and
suffices for proving equivalences of many concrete examples, but
not advanced effect-based equivalences such as parallelization. For
the fourth and final relation, we refine the third relation further,
to support reasoning using multiple simulations. This final relation
validates parallelization and is also sound with respect to contextual
approximation.

This staged presentation also highlights the modularity of using
Iris as a meta-language for logical relations. In particular, each step
builds naturally on the previous, only requiring small changes or
additions between each relation.

3.1 Unary Relation for λref,conc Without Effects
We begin by defining a unary logical relation for λref,conc with a
standard ML-like type system without regions and effects. The
goal is to define a unary relation, LRML that characterizes type
inhabitance semantically and is sound with respect to the syntactic
typing rules. More precisely, we wish to define two unary relations,
a value relation, JτK, that characterizes values of type τ and an
expression relation, EJτK, that characterizes expressions that either
diverge or evaluate to values of type τ .

For ground types the definition of JτK is obvious: it is the values
of the given type τ . The main difficulty arises when defining the
interpretation of reference types. The idea is to take a location l
to be an inhabitant of type ref τ if location l contains a value of
type τ in the current heap. λref,conc is a concurrent language and
the context is free to update the heap as it sees fit. However, the
context must preserve typing and we can thus think of Jref τK(l)
as expressing an invariant that l must always contain a value v of
the semantic type JτK in the heap. To formalize this we introduce
our meta-language, Iris.

Iris and invariants. Iris is a generic framework for constructing
higher-order separation logics. For the purposes of this paper we
present one particular instance of this framework for the λref,conc

language and we refer to this instance simply as Iris.
Figure 5 contains an excerpt of the Iris syntax. Iris is a higher-

order logic over a simply-typed term language. The set of Iris
types, ranged over by κ, includes a type of λref,conc expressions Exp
and values Val, a type of propositions, Prop, and is closed under
products and function spaces. Iris includes the usual connectives
(⊥,>,∧,∨,⇒, ∀,∃, ∗, —∗ ,=κ) and proof rules of higher-order
separation logic. Iris extends this with a few new primitives, which
we explain below.

Iris makes no distinction between assertions and specifications.
Specifications are simply treated as special assertions that do not
express ownership of any state. This is captured by the always
modality, �P , which expresses that P holds and does not assert
ownership of any state. Since �P does not assert any ownership, it
can be freely duplicated (�P =⇒ �P ∗ �P). We therefore call
assertions of the form �P pure.

One of the main features of Iris is invariants for reasoning about
shared state. The pure assertion P

ι
asserts the existence of an in-

variant with the name ι that owns a resource satisfying the assertion
P . Resources owned by invariants are shared by every thread and
can be accessed freely by atomic operations, provided the invariant
is preserved. For atomic operations we can thus open an invariant

(x : τ) ∈ Γ

Π | Λ | Γ ` x : τ, ∅ Ξ ` () : 1, ∅
Ξ ` e1 : τ, ε1 Ξ ` e2 : τ, ε2 eqtype(τ)

Ξ ` e1 = e2 : B, ε1 ∪ ε2
Π | Λ | Γ, f : τ1 →Π,Λ

ε τ2, x : τ1 ` e : τ2, ε

Π | Λ | Γ ` rec f(x).e : τ1 →Π,Λ
ε τ2, ∅

Π | Λ | Γ ` e1 : τ1 →Π,Λ
ε τ2, ε1 Π | Λ | Γ ` e2 : τ1, ε2

Π | Λ | Γ ` e1 e2 : τ2, ε ∪ ε1 ∪ ε2
Ξ ` e : refρ τ, ε

Ξ ` !e : τ, ε ∪ {rdρ}
Π | Λ | Γ ` e : τ, ε ρ ∈ Π,Λ

Π | Λ | Γ ` new e : refρ τ, ε ∪ {alρ}

Ξ ` e1 : refρ τ, ε1 Ξ ` e2 : τ, ε2

Ξ ` e1 := e2 : 1, ε1 ∪ ε2 ∪ {wrρ}

Π | Λ, ρ | Γ ` e : τ, ε ρ 6∈ FRV (Γ, τ)

Π | Λ | Γ ` e : τ, ε− ρ
TMASK

eqtype(1)

Π,Λ3 | Λ1 | Γ1 ` e1 : τ1, ε1 Π,Λ3 | Λ2 | Γ2 ` e2 : τ2, ε2

Π | Λ1,Λ2,Λ3 | Γ1,Γ2 ` e1 || e2 : τ1 × τ2, ε1 ∪ ε2
Ξ ` e1 : refρ τ, ε1 Ξ ` e2 : τ, ε2 Ξ ` e3 : τ, ε3 eqtype(τ)

Ξ ` CAS(e1, e2, e3) : B, ε1 ∪ ε2 ∪ ε3 ∪ {wrρ, rdρ}

Π | Λ | Γ ` e : τ1, ε1 Π,Λ ` τ1 ≤ τ2 ε1 ⊆ ε2
Π | Λ | Γ ` e : τ2, ε2

eqtype(τ) eqtype(σ) op ∈ {+,×}
eqtype(τ op σ)

FRV (τ) ∈ Π

Π ` τ ≤ τ
Π ` τ1 ≤ τ ′1 Π ` τ2 ≤ τ ′2

Π ` τ1 × τ2 ≤ τ ′1 × τ ′2

Π ` τ ′1 ≤ τ1 Π ` τ2 ≤ τ ′2 ε1 ⊆ ε2 Π1 ⊆ Π2 Λ1 ⊆ Λ2

Π ` τ1→Π1,Λ1
ε1

τ2 ≤ τ ′1→Π2,Λ2
ε2

τ ′2

Figure 4. Excerpt of typing and sub-typing inference rules. We write FV (e) and FRV (e) for the sets of free program variables and region
variables respectively. For all typing judgments Π | Λ | Γ ` e : τ, ε we implicitly assume that FRV (Γ, τ, ε) ∈ Π ∪ Λ. The equality type
predicate, eqtype, defines the types we may test for equality. We use Ξ as shorthand for Π | Λ | Γ.

κ ::= 1 |Exp |Val |Name |Prop |Monoid |κ× κ | · · ·
t, ϕ, ι ::= x | λx : κ. t | ϕ t | (t, t) | π1(t) | π2(t) | t =κ t

P,M | t 7→ t | ⊥ | > | P ∧ P | P ∨ P | P ⇒ P |
| ∀x : κ. P | ∃x : κ. P | P ∗ P | P —∗ P | �P
| .P | P ι | {P} e {v. Q}M | P MVM Q | · · ·

Figure 5. Excerpt of Iris syntax.

and take local ownership of the resource owned by the invariant for
the duration of the operation, provided we transfer back a resource
that satisfies the invariant assertion after the operation. In Iris this is
captured formally by view-shifts. A view-shift, written P V Q ex-
presses that it is possible to transform a resource satisfying P into
a resource satisfying Q, without changing the underlying physical
state. To reason about opening of invariants, view-shifts are fur-
ther annotated with invariant masks indicating which invariants are
required to hold before and after the view-shift. In the view-shift
P M1VM2 Q,M1 andM2 are invariant masks (sets of invariant
names) required to hold before and after the view-shift respectively.
The invariant masks ensure that we do not open an invariant twice
(which would not be sound in general). Opening and closing of
invariants is captured by the two following view-shift axioms:

P
ι {ι}V∅ .P

INVOPEN
P

ι ∗ .P ∅V{ι} >
INVCLOSE

The INVOPEN rule allows us to take ownership of P upon opening
the invariant ι, while the INVCLOSE rule requires us to relinquish
ownership of P to close the invariant ι. In both rules, the resource
P is guarded by a modality, ., which we explain shortly.

To apply these view-shifts to open an invariant for the duration
of an atomic operation, such as reading (!e), writing (x := e)
or allocating (new e), Iris features the following atomic rule-of-
consequence.

e atomic P1
M]M′

VM P2

{P2} e {Q2}M ∀v.Q2(v) MVM]M
′
Q1(v)

{P1} e {Q1}M]M′
ACSQ

Iris triples, {P} e {Q}M, are also annotated with an invariant
mask, M, indicating which invariants are required to hold be-

fore, during and after the execution of e. The atomic rule-of-
consequence allows us to change this mask to open invariants for
the duration of an atomic expression e. View-shifts include impli-
cation (�(p⇒ q) ` p V q) and we can thus recover the usual
rule-of-consequence from ACSQ.

The “later” modality, ., is used to express that a property is only
required to hold after one step of execution. It is used in connection
with invariants because an Iris invariant may contain any predicate
P , including one referring to the invariant itself. To ensure this
is well-defined, Iris uses a form of guarded recursion, an abstract
version of step-indexing — where . is used to guard the resource
in the invariant. Since the later modality expresses that a predicate
holds after one step of execution, we can remove a .modality from
a precondition whenever our program makes an operational step.
This is captured by the frame rule for atomic expressions:

{P} e {Q} e atomic
{P ∗ .R} e {v. Q(v) ∗R} AFRAME

For many assertions it is also possible to remove laters without an
operational step. We call these assertions timeless as they are in-
dependent of the number of steps left. For timeless assertions P
we can view-shift away laters: .P V P . Timeless assertions are
closed under the connectives and quantifiers of first-order separa-
tion logic, but crucially does not include invariant assertions P

ι
, as

the steps are precisely needed to model potentially self-referential
invariants. With the exception of the reference invariants we use,
all the invariants used throughout this article are timeless.

While the invariant names ι on invariant assertions, view shifts
and Hoare triples are important for soundness, they are not impor-
tant for understanding our encodings of logical relations in Iris. We
have therefore chosen to elide all invariant names in the article, and
refer interested readers to [18], where everything is fully annotated.

Logical relation. We now have enough logical machinery to de-
fine the first unary logical relation in Iris. The full definition of
LRML is given in Figure 6.

The value relation, JτK, is defined by induction on τ and defines
an Iris assertion of type Val → Prop. The expression relation, E ,
is defined independently of the value relation and takes an arbitrary

J1K , λx. x = () JintK , λx. x ∈ N

REF(x, φ) , ∃v. x 7→ v ∗ φ(v) Jref τK , λx. REF(x, JτK)

Jτ1 → τ2K , λx. �∀y. (.Jτ1K(y))⇒ E(Jτ2K)(x y)

E(φ)(e) , {>} e {v. φ(v)}>
Logical relatedness

x : τ |=ML e : τ , `IRIS ∀x′. JτK(x′) =⇒ E(JτK)(e[x′/x])

Figure 6. LRML: Unary rel. for λref,conc sans effect-types.

value predicate and extends it to expressions. It has the following
type in Iris:

E : (Val→ Prop)→ (Exp→ Prop)

As already mentioned, for ground types, JτK is simply the set of
values of the given type τ . The definition for arrow-types follows
the usual idea of related arguments to related values, with the added
wrinkle that we only require the argument to be related later. This
suffices since applying a function takes a step in the operational
semantics. The always modality in the value relation for arrow
types is there to ensure the value relation is pure, which allows us
to duplicate the resource that witnesses that a value is well-typed. It
is needed in the arrow-case as implication does not preserve purity
in general. For space reasons we omit the cases for products and
sum types and refer the reader to [18].

Finally, for reference types, ref τ , the value relation is the set of
locations l such that there exists an invariant that owns the location
l and contains a value v in JτK. Resources owned by invariants
are shared, which allow all concurrently executing threads to freely
update references, provided they respect the typing of the reference.
This type of invariant can be seen as a particularly simple instance
of rely / guarantee reasoning, where the rely and the guarantee are
the same: namely, to preserve the invariant. A large part of the
challenge throughout the rest of this article boils down to refining
this invariant to limit possible interference from the environment,
based on the region and effect system.

The expression relation E(φ) extends a value predicate φ to
expressions e by requiring that, if e terminates, then it terminates
with a value satisfying φ. Finally, Γ |=ML e : τ extends this to
open expressions, by closing under all substitutions. This semantic
typing judgment is sound with respect to the usual typing rules, in
the sense that for any well-typed term Γ ` e : τ , the Iris assertion
Γ |=ML e : τ is provable in Iris.

Lemma 1 (Soundness). If Γ ` e : τ then `IRIS Γ |=ML e : τ .

We note in passing that this logical relation shows the power of
using Iris as a meta-language for defining logical relations: Usually,
to define logical relations for a language with general references,
one would need to index semantic types by worlds containing
semantic types for allocated locations and the worlds and semantic
types would have to be recursively defined [1, 10]; here this is all
taken care of by Iris’ built-in general logical facility for defining
and working with invariants.

3.2 Unary Relation for λref,conc with Effects
In this section we extend the unary relation from the previous
section to the full type system with regions and effects. Note that
simply extending the relation from the previous section to the full
type system by ignoring all region and effect annotations already
yields a relation that is sound with respect to the full type system.
However, this is needlessly conservative and by interpreting region

and effect annotations as restricting interference, we obtain a more
precise semantic typing relation that is also sound.

The idea is to use the distinction between public and private
regions to limit interference from the context, and the effect anno-
tations to limit the effects of the given expression. We can encode
this in Iris using tokens indexed by a region r corresponding to
each type of effect: [RD]πr , [WR]πr , [AL]πr . Each token is intended
to grant permission to perform the corresponding effect on region
r and, depending on the fractional permission π ∈ {π ∈ Q | 0 <
π ≤ 1}, prevent the context from performing the given effect.
These tokens must satisfy the following properties (and likewise
for WR,AL):

[RD]1r ∗ [RD]πr ⇒ ⊥ [RD]π1+π2
r ⇔ [RD]π1

r ∗ [RD]π2
r (1)

expressing that the full permission (π = 1) really means exclusive
ownership of the token and that these tokens can be split and
recombined arbitrarily. In Iris we can define such tokens using
ghost state. Below we give a brief introduction to ghost state in
Iris; for a more thorough treatment, we refer the reader to [16].

Iris and ghost state. Ghost resources provide a modular way of
reasoning about knowledge and rights to modify some shared state.
Ghost state is modeled using partial commutative monoids in Iris.
Formally, these partial commutative monoids are presented as total
commutative monoids with a distinguished zero element, ⊥. The
assertion m : M

γ
asserts ownership of a ghost resource m ∈ |M |

of the monoid instance γ. Separating conjunction on ghost state is
simply the lifting of the underlying monoid composition:

m1 : M
γ ∗ m2 : M

γ ⇔ m1 ·M m2
γ

(2)

The zero-element represents an ill-defined resource and thus cannot
be owned: ⊥ : M

γ ⇔ false.
Tokens are a degenerate form of ghost state, consisting only of

rights. The FRAC monoid, defined below, allows us to define an
effect token for a single region. The carrier is rationals between 0
and 1, with addition as composition and 0 as the unit (we typically
omit the explicit zero element from the definition of the monoid
carrier and composition):

FRAC = [0, 1] ∩Q q · q′ = q + q′, if q + q′ ≤ 1

The idea is that 0 represents no ownership, 1 exclusive ownership
and anything rational in the interval (0, 1) non-exclusive owner-
ship.

To define effect tokens for arbitrary regions, we also need the
partial finite function monoid, FPFUN(X,M), with unit ε being
the empty map and whose carrier is functions f from a set X into
the non-zero elements of a monoid M , such that the set {x ∈ X |
f(x) 6= ε} is finite. Composition on FPFUN(X,M) is defined
point-wise, but is only defined if all point-wise compositions are
well-defined:

(f · g)(x) , f(x) · g(x) if f(x) · g(x) 6= ⊥ for all x ∈ X
Effect tokens can now be defined as follows and proven to

satisfy property (1). The proof is an easy consequence of (2) and
the definition of the monoid.

[X]πr , [r 7→ π] : FPFUN(RN , FRAC)
X
, X ∈ {RD,WR,AL}

Ghost state is a purely logical construct and is updated using
view-shifts rather than assignments. To update a ghost resource we
must ensure that our update is consistent with all ghost resources
potentially owned by the environment. This is captured by the
GHOSTUPD rule given below:

GHOSTUPD
∀mf .m ·mf 6= ⊥ ⇒ ∃m′ ∈M ′.m′ ·mf 6= ⊥

m : M
γ
V ∃m′ ∈M ′. m′ : M

γ

To update a ghost resource m to some element m′ ∈ M ′, we have
to show that doing so preserves all possible framesmf composable
with the resource m.

We can instantiate the finite partial functions monoid with lo-
cations and values to obtain the standard monoid of heaps used in
separation logic. To define a monoid on values, we extend it with a
unit element and a composition operator that is only defined if one
of the two elements is unit.

HEAP , FPFUN(LOC,VAL + {ε})

The ghost resource [l 7→ v] : HEAP
γ

asserts the exclusive right
to modify location l in ghost heap γ and that location l currently
contains the value v (here we use [l 7→ v] for the function that
maps l to v and every other argument to ε). Using the GHOSTUPD
rule, we can update ghost locations we own and allocate new ghost
locations:

[l 7→ v] : HEAP
γ
V [l 7→ v′] : HEAP

γ
(3)

[] : HEAP
γ
V ∃l. [l 7→ v] : HEAP

γ
(4)

Throughout the rest of the article we will need many ghost re-
sources, including the HEAP monoid. We will introduce them by
explaining the properties we expect them to satisfy. Naturally, we
must define monoids for all of these resources and prove that the
desired properties hold. All of these definitions and proofs can be
found in [18].

Encoding effects using ghost state. Now that we have seen how
to define and work with ghost state in Iris, we proceed with how to
encode effects using ghost state.

A read-effect on a private region translates into exclusive own-
ership of the corresponding read token, while a read-effect on a
public region translates into ownership of the corresponding read
token with an arbitrary fractional permission π (and likewise for
write and allocation effects).

The intended meaning of these tokens is enforced through the
interplay between two invariants: a new region invariant, REG(r),
linking references with their corresponding region, and an updated
reference invariant, REF(r, φ, x), indexed by a region identifier
r and the reference’s semantic type φ. Before we define these
formally, we review some properties that should hold. If we own
part of the read token for a region r then the context knows we
might read references belonging to this region and must ensure
that their values are well-typed. This is captured by the following
property (where all free variables are universally quantified):

REG(r) , REF(r, φ, x) `{[RD]πr } !x{y. [RD]πr ∗ φ(y)} (5)

Preservation of well-typedness is expressed by φ(y) in the post-
condition. If we own part of the write token for a region r then
we should be allowed to write any well-typed value to a reference
belonging to region r:

REG(r) , REF(r, φ, x) , φ(v)`{[WR]πr}x :=v{y. [WR]πr } (6)

Likewise, if we own any part of the allocation token for a region r
we should be allowed to allocate a new reference and associate it
with region r:

REG(r) , φ(v) ` {[AL]πr } new v {y. [AL]πr ∗ REF(r, φ, y) }

Those three properties were fairly uneventful; the interesting prop-
erties deal with exclusive ownership of effect tokens.

Exclusive read effect. If we own the read token for region r
exclusively, then the context cannot rely on references in region r
containing well-typed values. If we additionally own a write token
for region r, then we should be allowed to assign arbitrary values
to references belonging to region r, provided we restore them with

well-typed values before returning the exclusive read token. To
capture this formally, we introduce two new tokens, [RD(x)]r and
[NORD(x)]r , which express that if location x belongs to region r
then it contains a well-typed value and may contain a value that is
not well-typed, respectively. If we own the read token on a region
r exclusively, then the following property allows us to exchange it
for tokens that force all locations belonging to region r to contain
well-typed values.

REG(r) ` [RD]1r WV ~x[RD(x)]r (7)

By giving up the token that expresses that a location contains a
well-typed value, we can assign an arbitrary value to the location.
If we later assign a well-typed value, we can recover the token
witnessing the well-typedness of the location. This is captured by
the following two properties.

REG(r) , REF(r, φ, x) (8)
` {[WR]πr ∗ [RD(x)]r} x := v {y. [WR]πr ∗ [NORD(x)]r}

REG(r) , REF(r, φ, x) , φ(v) (9)
` {[WR]πr ∗ [NORD(x)]r} x := v {y. [WR]πr ∗ [RD(x)]r}

Exclusive write effect. If we own the full write token, [WR]1r ,
then the context should not be allowed to modify references be-
longing to region r. Again, we capture this property by introducing
new tokens [WR(x)]r and x

π
↪−→r v. Both tokens express that if

location x belongs to region r, then we own the exclusive right to
update it; the latter token further asserts that the current value is v.
As before, we can trade ownership of a per-region write token for
region r for all per-location write tokens for region r:

REG(r) ` [WR]1r WV ~x[WR(x)]r (10)

Given ownership of a per-location write token for a location x
belonging to region r, we can trade the token for a points-to proxy
for x with fractional permission 1

2
:

REF(r, φ, x) ` [WR(x)]r WV ∃v. x
1
2
↪−→r v (11)

This points-to proxy satisfies similar properties as the standard
separation logic points-to: If we own the points-to proxy x

π
↪−→r v

and read location x, we will read the value v:

REG(r) ` {x π
↪−→r v} !x {y. y = v ∗ x π

↪−→r v} (12)

If we own half of the points-to proxy for a location x we can also
use it to assign a well-typed value to x:

REG(r) , REF(r, φ, x) , (13)

φ(v2) ` {x
1
2
↪−→r v1} x := v2 {y. x

1
2
↪−→r v2}

Exclusive ownership of the per-region write token thus allows us
to reason about the exact value of all references belonging to the
region.

Exclusive allocation effect. Exclusive ownership of a per-region
allocation token allows us to lock the domain of the heap associated
with the given region. By trading our exclusive per-region alloca-
tion token, we can take ownership of a new token, [AL(h)]πr , that
witnesses the domain of the heap associated with the given region:

REG(r) ` [AL]1r WV ∃h. [AL(h)]
1
2
r (14)

As usual, we use fractional permissions to share the [AL(h)]πr
token. Given fractional ownership of two parts of the [AL(h)]πr
token, the domains of the two heaps must agree:

[AL(h1)]π1
r ∗ [AL(h2)]π2

r

⇒ [AL(h1)]π1
r ∗ [AL(h2)]π2

r ∗ dom(h1) = dom(h2)

New predicates

effs(r, φ, x, v) , ([WR(x)]r ∨ x
1
2
↪−→r v) ∗

([RD(x)]r ∨ (φ(v) ∗ [NORD(x)]r))

REG(r) , locs(r) ∗ toks(r)
locs(r) , ∃h. rheap(h, r)∗alloc(h, r)∗~(l,v)∈hl 7→ v

~{x|x∈(Loc\dom(h))} [NORD(x)]r

toks(r) , ([RD]1r ∨~x∈Loc[RD(x)]r) ∗
([WR]1r ∨~x∈Loc[WR(x)]r)

alloc(h, r) , ([AL]1r ∗ [AL(h)]
1
2
r) ∨ [AL(h)]1r

Ptoks(ρ, r, π, ε) , (ρ 6∈ rds ε ∨ [RD]πr) ∗ (ρ 6∈ wrs ε ∨ [WR]πr) ∗
(ρ 6∈ als ε ∨ [AL]πr)

Preg(R, g, ε,M) , ~
ρ∈R

Ptoks(ρ,M(ρ), g(ρ), ε) ∗ REG(M(ρ))

PΠ,Λ(g, ε,M) , Preg(Λ, 1, ε,M) ∗ Preg(Π, g, ε,M)

Changes to previous definitions

REF(r, φ, x) , ∃v. x
1
2
↪−→r v ∗ effs(r, φ, x, v)

Jτ1→Π,Λ
ε τ2KM , λx. �∀y. (.y ∈ Jτ1KM)⇒ EΠ,Λ

ε,M (Jτ2KM)(x y)

Jrefρ τKM , λx. REF(M(ρ), JτKM , x)

EΠ,Λ
ε,M (φ)(e) , ∀g.

{PΠ,Λ(g, ε,M)} e {v. φ(v) ∗ PΠ,Λ(g, ε,M)}>
Logical relatedness

Π | Λ | x : τ |=EFF e : τ, ε ,

`IRIS ∀M.∀x′. JτKM (x′) =⇒ EΠ,Λ
ε,M (JτKM)(e[x′/x])

Figure 7. LREFF: Unary rel. for λref,conc with effect-types.

Exclusive ownership (π = 1) is required to update the domain of
the heap. It is possible to update the heap without exclusive access,
as long as the domain is preserved:

[AL(h)]1r V [AL(h′)]1r

[AL(h)]πr ∗ dom(h) = dom(h′)V [AL(h′)]πr

Logical relation. The LREFF logical relation, including the new
region invariant and updated reference invariant is defined in Figure
7. Changes to existing predicates are in green. The value relation,
JτKM , is now indexed by an injective mapping M from region
variables to Iris invariant names. This mapping allows us to model
that the same region variable might refer to different regions in the
case where a region ρ is created after hiding a region with the same
name ρ. Likewise, the expression relation, EΠ,Λ

ε,M (φ), is also indexed
by the region mapping M , in addition to the region contexts Π,Λ
and the effect typing ε.

To explain the relation, let us start with the reference invariant
REF(r, φ, x). Note first that the reference invariant no longer owns
the underlying physical location (i.e., x 7→ v). Instead it owns a

proxy x
1
2
↪−→r v. The effs predicate encodes the meaning of the per-

location read and write tokens. It allows us to exchange a write
token [WR(x)]r for a proxy that describes the current value of
the location (property (11)) and track when the location contains
a well-typed value (properties (8) and (9)).

The region invariant REG(r) consists of two resources, a token
resource toks(r) that ties all the per-region tokens together with

the per-location tokens, and the locs(r) resource that ties together
the points-to proxies with the physical state. The toks(r) resource
allows us to exchange an exclusive per-region read or write token
for all the corresponding per-location read or write tokens (prop-
erties (7) and (10)). It also enforces that if we only own a fraction
of the per-region read or write token then the region invariant must
own all per-location read and write tokens for the given region. This
ensures that the location must contain a well-typed value and that
we are allowed to update it, respectively (properties (5) and (6)).

The local points-to proxies for a region r are tied to the physical
state using the global counter-part rheap(h, r) resource in locs(r).
The local points-to proxy always agrees with the global heap proxy:

rheap(h, r) ∗ x π
↪−→r v V rheap(h, r) ∗ x π

↪−→r v ∗ h(x) = v

To update a points-to proxy thus requires ownership of both the
corresponding global heap proxy and exclusive ownership of the
local points-to proxy:

rheap(h, r) ∗ x 1
↪−→r v V rheap(h[x 7→ v′], r) ∗ x 1

↪−→r v
′

The locs(r) resource asserts ownership of physical points-to re-
sources for each location and value in the global points-to proxy
for region r. Since these are tied together with the local points-to
proxies, the local points-to proxies must agree with the underlying
physical state (properties (12) and (13)). locs(r) also asserts owner-
ship of all the [NORD(x)]r resources for locations x not belonging
to the region.

The reason for introducing the indirection of proxies, is to
allow reasoning about the set of locations belonging to a region,
to interpret allocation effects. This is captured by the alloc(h, r)
resource, which allows clients to trade the exclusive allocation
token for a lock on the set of locations belonging to the region
(property (14)).

Finally, Preg specifies how the effect annotation translates into
ownership of the corresponding effect tokens. Effects in private
regions yield exclusive ownership, while effects in public regions
yield non-exclusive ownership.

Example: type violating update. To illustrate how we can use this
stronger semantic typing judgment to semantically type-check code
that is not syntactically well-typed, recall the previous mentioned
type-violating example.

− | ρ | x : refρ B |=EFF x := ();x := true : 1, {rdρ, wrρ}
The read and write effect on the private region ρ translates into
exclusive ownership of the read and write token. Using properties
(7), (8) and (9) we can thus easily verify that the example is
semantically well-typed.

Context: REG(r) , REF(r, JBKM , x){
[WR]1r ∗ [RD]1r

}
V
{

[WR]1r ∗~y∈Loc[RD(y)]r
}

x := (){
[WR]1r ∗ [NORD(x)]r ∗~y∈Loc\{x}[RD(y)]r

}
x := true{

[WR]1r ∗~y∈Loc[RD(y)]r
}
V
{

[WR]1r ∗ [RD]1r
}

3.3 Binary Relation for λref,conc with Effects
Previously we looked at unary relations for semantically character-
izing type inhabitance. Now, we switch to binary relations intended
to imply contextual approximation.

We define two families of binary relations, JτKM and E(JτKM),
that characterize contextual approximation on values and expres-
sions of type τ , respectively. Generalizing the value relation to con-
textual approximation is fairly straightforward: on ground types it

New predicates

SPEC(h0, e0) , ∃h, e. heapS(h) ∗mctx(e) ∗ (h0; e0 →∗ h; e)

Changes to previous definitions

REF(r, φ, x) , ∃v. xI
1
2
↪−→I,r vI ∗ xS

1
2
↪−→S,r vS ∗ effs(r, φ, x, v)

effs(r, φ, x, v) , ([WR(x)]r ∨ (xI
1
2
↪−→I,r vI ∗ xS

1
2
↪−→S,r vS)) ∗

([RD(x)]r ∨ (φ(vI , vS) ∗ [NORD(x)]r))

locs(r) , ∃h. rheapI(hI , r) ∗ rheapS(hS , r) ∗ alloc(h, r)
~(l,v)∈hI l 7→I v ∗~(l,v)∈hS l 7→S v

~x∈Loc\dom(hI)×(Loc\dom(hS)) [NORD(x)]r

tokens(r) , ([WR]1r ∨~x∈Loc2 [WR(x)]r) ∗
([RD]1r ∨~x∈Loc2 [RD(x)]r)

alloc(h, r) , ([AL]1r ∗ [AL(hI , hS)]
1
2
r) ∨ [AL(hI , hS)]1r

J1KM , λx. xI = xS = ()

JintKM , λx. xI , xS ∈ N ∧ xI = xS

Jτ1 →Π,Λ
ε τ2KM , λx. �∀y. (.Jτ1KM)(yI , yS) ⇒

EΠ,Λ
ε,M (Jτ2KM)(xI yI , xS yS)

Jrefρ τKM , λx. REF(M(ρ), JτKM , x)

EΠ,Λ
ε,M (φ)(eI , eS) , ∀g, j, h0, e0. SPEC(h0, e0) `

{j =⇒S eS ∗ PΠ,Λ(g, ε,M)} eI
{vI . ∃vS . j =⇒S vS ∗ φ(vI , vS) ∗ PΠ,Λ(g, ε,M)}>

Logical relatedness

Π | Λ | x : τ |=BIN e1 ≤log e2 :τ, ε ,

`IRIS ∀M.∀x. JτKM (x)⇒ EΠ,Λ
ε,M (JτKM)(e1[xI/x], e2[xS/x])

Figure 8. LRBIN: Binary rel. for λref,conc with effect-types.

is simply the identity relation on the values of the given type; for
arrow types it relates functions that map related arguments to re-
lated expressions, and for reference types it relates two locations if
they contain related values.

The expression relation is more interesting: intuitively it should
express that eI approximates eS , if any step that eI can make can
be simulated by zero or more steps of eS . We think of eI as an
“implementation” and of eS as a “specification”. We follow the
approach of Turon et al. [31] and capture this relational property as
a unary Hoare triple on eI by requiring the triple to update ghost
resources that force the execution of eS . The idea is to introduce
a ghost resource j =⇒S e that expresses that the expression e
is in an evaluation context on the “specification” side and the
exclusive right to reduce this expression. With this ghost resource
we can express a simulation between an implementation eI and a
specification eS as follows:

eI ≤ eS ≈ {j =⇒S eS} eI {vI . ∃vS . j =⇒S vS ∗ φ(vI , vS)}

By requiring eI to update the ghost resource from eS to a value
vS , we are forced to show that we can reduce eS , which appears
in an evaluation context on the specification side, to the value vS .
We refer to j =⇒S e as a local expression resource, as it allows
us to reason locally about reductions on sub-expressions of the full
specification program.

The generalization to expressions in evaluation contexts is nec-
essary to prove that the relation is a congruence. In particular, to
prove the following congruence property:

e1I ≤ e1S ∧ e2I ≤ e2S ⇒ e1I ||e2I ≤ e1S ||e2S

We need to be able to split the local expression resource j =⇒S

e1S ||e2S into two separate resources, one for e1S and another
for e2S . Then we can pass one to e1I and the other to e2I and
they can each reduce their corresponding expression on the right,
independently of the other. This is possible because e1S and e2S

both occur in evaluation contexts. This is also the reason why
local expression resources j =⇒S e are indexed. The j serves as a
logical “thread identifier”, allowing us to distinguish different local
expression resources.

Specification resources. To formalize this idea, we need a num-
ber of ghost resources. In addition to the local expression resource,
j =⇒S e we also need a global expression resource, mctx(e), for
reasoning about the full specification program. Naturally, the global
expression resource and all local expression resources must agree
on the specification program, so splitting a local expression re-
source requires ownership of both. The following lemma allows
us to introduce and eliminate a local expression resource for an ex-
pression that occurs in an evaluation context inside another local
expression resources:

j =⇒S κ[e1] ∗mctx(e)WV ∃i. j =⇒S κ[i] ∗ i =⇒S e1 ∗mctx(e)
(15)

This is achieved by introducing a new logical thread identifier i for
the new local expression resource for e1 and replacing e1 with i
in the original local expression resource. Here κ is an evaluation
context extended to expressions that may contain logical thread
identifiers. By applying the above property twice, we can split a
local expression resource for a parallel composition into two:

j =⇒S e1||e2 ∗mctx(e)WV ∃i1, i2.
j =⇒S i1||i2 ∗ i1 =⇒S e1 ∗ i2 =⇒S e2 ∗mctx(e)

Since all local specification expressions are in an evaluation context
of the global specification expression, any reduction of a local
specification expression can be extended to the global specification
expression:

j =⇒S e1 ∗mctx(e) ∗ (h; e1 → h′; e′1)V (16)

∃e′. j =⇒S e
′
1 ∗mctx(e′) ∗ (h; e→ h′; e′)

In the case where there exists just one local expression resource that
contains no free logical thread identifiers, then the local expression
should agree with the global expression. To formalize this, we treat
the thread identifier 0 as the “root” local expression:

0 =⇒S e1 ∗mctx(e2) ∗ FA(e1) = ∅ ⇒ (17)
0 =⇒S e1 ∗mctx(e2) ∗ e1 = e2

where FA(e) is the set of free logical thread identifiers in e. These
local and global expression resources are definable in Iris and we
refer the reader to [18] for detailed definitions.

We need another two ghost resources, heapS(h) and l 7→S v,
for reasoning about specification heaps. This is in fact the HEAP
monoid we have seen before, with some additional structure. The
heapS(h) resource asserts global ownership of the full specifica-
tion heap h, while l 7→S v asserts local ownership of a single loca-
tion l, respectively. We require that the global heap agrees with the
local heap resources:

heapS(h) ∗ l 7→S v ⇒ heapS(h) ∗ l 7→S v ∗ h(l) = v (18)

Updating a location l requires both local ownership of l and the
global heap resource and allocation requires ownership of the

global heap resource, both lifted from updating and allocating ghost
locations seen before in (3) and (4).

heapS(h) ∗ l 7→S v V heapS(h[l 7→ v′]) ∗ l 7→S v
′ (19)

heapS(h) ∗ l 6∈ dom(h)V heapS(h[l 7→ v]) ∗ l 7→S v (20)

With these resources in hand, we can now formally define a sim-
ulation as a Hoare triple. We define a specification invariant that
asserts ownership of the global specification heap and expression.
Additionally, it also requires that there exists a reduction from some
initial configuration h0; e0 to the current global specification heap
and expression:

SPEC(h0, e0),∃h, e. heapS(h) ∗mctx(e) ∗ (h0; e0→∗h; e)

By requiring the Hoare triple to update the local expression eS of a
to a value vS , we thus force it to show the existence of a reduction:

SPEC(h0, e0) ` {j =⇒S eS} eI {vI . ∃vS . j =⇒S vS}
The only way to update the local expression resource j =⇒S e is
through property (16) which also requires opening and reestablish-
ing the specification invariant to gain access to the global expres-
sion resource.

The logical relation. Now that we have seen how we can express
relational properties as unary Hoare triples, we just need to inte-
grate this idea with the techniques from the previous section for
translating region and effect annotations into specifications of ab-
stract interference.

Consider the reference invariant, REF(r, φ, x). In the unary set-
ting it asserts ownership of a proxy for the underlying heap location
that, depending on ownership of the per-location read and write to-
kens, contains a well-typed value and may be updated. In the bi-
nary setting, x is now a pair of locations (xI , xS) and the invariant
asserts ownership of proxies for both the implementation and spec-
ification side heaps, but otherwise the structure of the definition re-
mains the same. The binary reference invariant is defined in Figure
8. We use xI and xS as shorthand for the first and second projection
of a pair x. Note that, in the binary setting, per-location read, write
and no-read tokens are now indexed by a pair of locations, rather
than just a single location. The [RD(xI , xS)]r token now expresses
that if locations xI and xS are related and belong to region r, then
they contain related values, and likewise for the other tokens.

The LRBIN logical relation satisfies the fundamental theorem of
logical relations (Theorem 4), which expresses that all well-typed
terms are related to themselves. It is also sound with respect to
contextual approximation (Theorem 5).

Theorem 4 (Fundamental Theorem). If Π | ∆ | Γ ` e : τ, ε then
Π | ∆ | Γ |=BIN e ≤log e : τ, ε

Theorem 5 (Soundness). If Π | ∆ | Γ |=BIN eI ≤log eS : τ, ε
then Π | ∆ | Γ ` eI ≤ctx eS : τ, ε.

3.4 Binary Relation for λref,conc with Effects Using Multiple
Simulations

The LRBIN relation supports proofs of contextual approximations
by showing that each step on the left can be simulated on the right.
However, it requires that each thread on the left owns the local
expression resource of the thread on the right that simulates the
thread on the left. This is too restrictive in cases where multiple
threads on the left are simulated by a single thread on the right,
such as the case of parallelization. In this section we introduce our
final logical relation, LRPAR, that removes this restriction.

The idea is simple: The LRBIN relation allowed us to reason
about a single simulation; now, we generalize the relation to allow
reasoning about multiple simulations, such that multiple threads on
the left can be given ownership of an expression resource for the
same thread on the right, in different simulations.

Multiple simulations. To make this precise, we generalize the
existing specification ghost resources, so that we can have mul-
tiple independent copies, by indexing the global and local ex-
pression resources (mctx(e, ζ) and j

ζ
=⇒S e) and heap resources

(heapS(h, ζ) and l 7→ζ
S v) with a simulation identifier ζ. For each

simulation identifier ζ, the resources mctx(e, ζ) and j
ζ

=⇒S e sat-
isfy the same properties as before (properties (15) to (17)) and like-
wise for the heap resources (properties (18) and (19)). We can allo-
cate new expression and heap resources initialized with an arbitrary
expression e and an empty heap:

>V ∃ζ.mctx(e, ζ) ∗ heapS([], ζ) ∗ 0
ζ

=⇒S e (21)

The idea is to relate eI and eS if eS can simulate any step per-
formed by eI in an arbitrary simulation ζ in which eS appears in
an evaluation context:

∀ζ, i, h0, e0. ∃h, e. heapS(h, ζ) ∗mctx(e, ζ) ∗ (h0; e0 →∗ h; e)

` {i ζ
=⇒S eS} eI {vI . ∃vS . i

ζ
=⇒S vS}

This allows the caller of eI to choose in which simulation ζ the
specification eS must simulate eI . It also allows eI to simulate
sub-expressions of eI in different simulations than ζ, provided it
can still prove a simulation in ζ at the end.

We can allocate a new simulation with an arbitrary initial con-
figuration h; e and take ownership of the local heap and expression
resources for this simulation, using (21) and (20).

This ability to simulate sub-expressions in different simulations
is exactly what we need to disentangle an execution of e1 || e2 into
two independent executions of e1 and e2, when proving paralleliza-
tion. To show that e1 || e2 is related to (e1, e2) in the expression
relation, we (roughly) prove the following triple:

∃h, e. heapS(h, ζ) ∗mctx(e, ζ) ∗ (h0; e0 →∗ h; e) `

{i ζ
=⇒S (e1, e2) ∗ · · · } e1 || e2 {vI . ∃vS . i

ζ
=⇒S vS ∗ · · · }

Recall from the Introduction that the idea is to use the effect an-
notations to prove that an execution of e1 || e2 can be disentangled
into semi-independent executions of e1 and e2.

Since e1 and e2 are well-typed, it follows by the fundamental
theorem of logical relations that they are related to themselves. To
use these assumptions we must pass ownership of a local expres-
sion resource to each of e1 and e2 with e1 and e2 in an evaluation
context, respectively. We could use the ζ simulation with e1 since
e1 is already in an evaluation context in the ζ simulation. However,
this leaves us without an expression resource for e2.

Instead, the idea is to suspend the ζ simulation and create two
new simulations ζ1 and ζ2 with e1 as the full specification of the
ζ1 simulation and e2 as the full specification of the ζ2 simulation.
Then we can appeal to relatedness of e1 and e2 to themselves
with ζ1 and ζ2 as the respective simulations, which will show the
existence of the two independent executions of e1 and e2. Once
e1 || e2 has terminated on the left, we can resume the ζ simulation
and use the two independent executions of e1 and e2 to take the
appropriate steps in the ζ simulation.

The reason this works, is the effect annotations, which ensure
that e1 and e2 are semi-independent. In particular, all locations
accessed by both e1 and e2 are read-only and can therefore soundly
be shared between the ζ1 and ζ2 simulations.

Relating heaps in multiple simulations. In previous relations, the
region invariant ensured that all specification heap proxies (l

π
↪−→S,r

v) matched the contents of the actual specification heap. With
multiple simulations, we have multiple specification heaps. The
idea is to allow proxies to be tied to multiple specification heaps,
provided we can guarantee that the given references are immutable.

In cases where we cannot guarantee immutability, we still only
allow proxies to be tied to a single simulation, to ensure we can
reason locally about reductions in simulations.

To capture this formally, we introduce a new ghost resource,
to specify whether a region is immutable or not, and which sim-
ulations the region proxies are tied to. The [IM(r, S, h)]π resource
asserts that region r is immutable and the current specification heap
of the region is h, while [MU(r, S)]π asserts that it is mutable. In
both cases the set S specifies which simulations the proxies of re-
gion r are tied to. In the mutable state, we require that the set S
is a singleton. We call this ghost resource the specification link re-
source.

The fractional permission is used to track whether we are al-
lowed to change the state of a region. If we own a specification link
resource exclusively (i.e., π = 1), then we can change its state be-
tween mutable and immutable and which simulations the proxies
of the region are tied to.

[MU(r, S)]1 WV [IM(r, S′, h)]1 (22)

Both tokens can be split arbitrarily using the fraction. Any two
fractional immutable tokens must agree on the current heap and
which simulations the region is tied to:

[IM(r, S1, h1)]π1 ∗ [IM(r, S2, h2)]π2 =⇒ (23)
[IM(r, S1, h1)]π1 ∗ [IM(r, S2, h2)]π2 ∗ (h1 = h2) ∗ (S1 = S2)

Disjointness of allocations. We need two final bits of ghost state
before we can define the full logical relation. Namely, we need a
way to control which locations simulations use when allocating
new locations.

To facilitate this level of control over locations, we introduce a
ghost resource, [X], for asserting ownership of a set of locations
X . These can be split and recombined and ensure that disjoint
resources refer to disjoint sets of locations:

[X1]X2]WV [X1] ∗ [X2] (24)
[X1] ∗ [X2] =⇒ [X1] ∗ [X2] ∗X1 ∩X2 = ∅ (25)

The idea is to give each specification invariant ownership of a
countably infinite set of locations that only that simulation may use
for future allocations.

To allow simulations to replay reductions from other simula-
tions, we also need a way of deactivating a simulation, such that we
can take back ownership of that simulation’s locations. To achieve
this we introduce a ghost resource [SR]πζ , which we refer to as a
specification runner resource, to track whether a simulation is ac-
tive. Ownership of any fraction of this token witnesses that the sim-
ulation is active.

The LRPAR logical relation is defined in Figure 9. The most
important difference compared to the LRBIN relation, is in the
locs(r) predicate contained in the region invariant REG. REG now
asserts fractional ownership of a specification link resource for
the given region through the slink predicate. In case the region
is immutable, the pair of heaps given by the specification link
resource must match the actual implementation and specification
heap for the references belonging to the given region. The region
invariant further asserts ownership of the local specification heap
resource l 7→ζ

S v for every simulation ζ ∈ S tied to the given
region through the specification link resource.

The specification invariant, SPEC, has been extended to sup-
port global freshness when allocating, as explained above. Either
the specification invariant owns half of the specification runner re-
source, in which case it also asserts ownership of countably infinite
sets of fresh locations through the disj predicate. Otherwise, the
specification invariant is inactive and asserts exclusive ownership
of the specification runner resource.

New predicates

Ppar(R, g, ε,M, ζ) , ~ρ∈mutable(R,g,ε)[MU(M(ρ), {ζ})]g(ρ) ∗
~ρ∈R\mutable(R,g,ε)∃h, S.slink(M(ρ), {ζ}] S, h, g(ρ), g(ρ))

slink(r, S, h, π, π′) , [MU(r, S)]π ∨ [IM(r, S, h)]π
′

disj(X0, X) , ∃Y. [Y] ∧ dom(X0) ∩ Y = ∅ ∧
(dom(X) \ dom(X0)) ⊂ Y

mutable(R, g, ε) , wrs ε ∪ als ε ∪
{
ρ | ρ ∈ R ∧ g(ρ) = 1

2

}
Changes to previous definitions

locs(r) , ∃h, S. slink(r, S, hS ,
1
2
, 1

4
) ∗ rheapI(hI , r) ∗

rheapS(hS , r) ∗ alloc(h, r) ∗

~(l,v)∈hI l 7→I v ∗~ζ∈S ~(l,v)∈hS l 7→
ζ
S v

SPEC(h0, e0, ζ) , ∃h, e, π. heapS(h, ζ) ∗mctx(e, ζ) ∗

(h0, e0)→∗ (h, e) ∗ ([SR]1ζ ∨ ([SR]
1
2
ζ ∗ disj(h0, hS)))

Preg(· · · , ζ) , · · · ∗ Ppar(R, 1
2
◦ g, ε,M, ζ)

EΠ,Λ
ε,M (φ)(eI , eS) , ∀g, j, h0, e0, π, ζ. SPEC(h0, e0, ζ) `

{j ζ
=⇒S eS ∗ [SR]πζ ∗ Preg(Λ, 1, ε,M, ζ) ∗ Preg(Π, g, ε,M, ζ)}
eI

{ vI . ∃vS . j ζ
=⇒S vS ∗ [SR]πζ ∗ φ(vI , vS) ∗

Preg(Λ, 1, ε,M, ζ) ∗ Preg(Π, g, ε,M, ζ)}>
Figure 9. LRPAR: Binary rel. for λref,conc with effect-types and
effect-based simulations.

Finally, the expression relation now asserts fractional ownership
of the specification runner resource and fractional ownership of
specification link resources, for all regions in the context. The
specification runner resource ensures that the ζ simulation is active.
In case a region is private or the effect mask contains a write or
allocation effect for the given region, then the region must be in
the mutable state and tied only to the simulation ζ. Otherwise, the
region may be in either the mutable or the immutable state, as long
as it is tied to the ζ simulation.

The LRPAR relation is sound with respect to contextual approx-
imation and supports parallelization.

Theorem 6 (Soundness). If Π | ∆ | Γ |=PAR eI ≤log eS : τ, ε
then Π | ∆ | Γ ` eI ≤ctx eS : τ, ε.

Theorem 7 (Parallelization (semantically)). If

1. EΛ3,Λ1
ε1,M

(Jτ1KM)(e1I , e1S) and EΛ3,Λ2
ε2,M

(Jτ2KM)(e2I , e2S)

2. als ε1 ∪ wrs ε1 ⊆ Λ1, als ε2 ∪ wrs ε2 ⊆ Λ2

3. rds ε1 ⊆ Λ1 ∪ Λ3 and rds ε2 ⊆ Λ2 ∪ Λ3

then E−,(Λ1,Λ2,Λ3)
ε1∪ε2,M (Jτ1 × τ2KM)(e1I || e2I , (e1S , e2S)).

To illustrate how we can use the LRPAR relation to prove contextual
refinements that depend on the effect annotations, we give a proof
sketch of Theorem 3 below. The full proof can be found in [18].

Recall that Theorem 3 states that each of the two stack modules
is contextually equivalent to their counterpart without a CAS loop,
at an effect type where the local state of the stack module belongs
to a private region:

− | ρ | − ` stack nc1 ∼=ctx stack1 : τ ′STACK, {alρ} and

− | ρ | − ` stack nc2 ∼=ctx stack2 : τ ′STACK, {alρ} with

τ ′STACK =1→−,ρ{alρ} (int→−,ρ{wrρ,rdρ} 1)×(1→−,ρ{wrρ,rdρ} 1 + int)

stacknc1() = let h = new inj1 () in (pushnc1(h), popnc1(h))

pushnc1(h) = rec p(n).h := inj2 (n, !h)

popnc1(h) = rec p().case(!h, inj1 ()⇒ inj1 (),

inj2 (n, v′)⇒ h := v′; inj2 n)

Figure 10. Stack module without CAS.

We will focus on the first contextual equivalence where the
stacknc1 module is implemented using a single reference to a pure
functional list as shown in Figure 10.

To show logical relatedness between stacknc1 and stack1 we
will have to assert a relation between the state maintained by
the modules. Since the state is local to each module we are not
required to use the Jrefρ τKM interpretation and are free to pick
any invariant to relate the state of the two modules.

A suitable relation would assert ownership of each head-pointer
for the region ρ and would state that each pair-wise entry in the
stacks are related. STACK is a promising candidate:

STACK(h, r, l, v) , hI
1
↪−→I,r vI ∗ hS

1
↪−→S,r vS ∗ vals(l, v)

vals(nil, v) , vI = inj1 () ∧ vS = inj1 ()

vals(x :: xs, v) , JintK(x) ∗ ∃v′. vI = inj2 (xI , v
′
I) ∧

vS = inj2 (xS , v
′
S) ∧ vals(xs, v′)

Note that while we are free to pick an invariant to relate the internal
state of the modules, we still use the points-to proxy resources to
ensure that the state is tied to simulations correctly.

The STACK relation allows us to read from the head-pointer
using a simple extension of property 12:

REG(r) ` {STACK(h, r, l, v)} !hI (26)
{vI . ∃vS . STACK(h, r, l, (vI , vS)}

Similarly, we can use a variant of property 13 to do assignment to
the head-pointer location:

REG(r) ` {STACK(h, r, l, v)} hI := v′ (27)

{hI
1
↪−→I,r v

′ ∗ hS
1
↪−→S,r vS ∗ vals(l, v)}

Putting STACK into an invariant is not sufficient, however,
for showing the direction stacknc1 ≤log stack1. The reason
is that both push1(hS)(nS) and pop1(hS)() has a CAS opera-
tion, that we must guarantee succeeds in a compatible state with
pushnc1(hI)(nI) and popnc1(hI)(), for related nI and nS . This
relies on the fact that the ρ region is private which ensures that
the environment cannot access the local state during the stack op-
erations. We can capture this by defining a REL predicate with a
property that allow us to exchange the exclusive write permission
[WR]1r for ownership of the stack module’s points-to proxies:

REL(h, r) ` [WR]1r WV ∃l, v. STACK(h, r, l, v) (28)

We will need to establish the invariant when the data structures in
the implementation and specification side are both empty:

` hI
1
↪−→I,r inj1 () ∗ hS

1
↪−→S,r inj1 ()V REL(h, r) (29)

REL as defined below allows for the above view-shifts:

REL(h, r) , ∃l, v. STACK(h, r, l, v) ∨ [WR]1r

For this particular example we have no need for interpreting read
effects on the local state. The REL invariant therefore makes no
mention of the [RD]1r token.

We show logical equivalence by showing logical approximation
in both directions. Here we present a proof outline of the direction

stacknc1 ≤ctx stack1, the full proof of both directions can be
found in [18]. Since stacknc1 and stack1 are already values, it
suffices to show they are related in the value relation for τ ′STACK,
which reduces to showing that:

E−,ρ{alρ},M (φ)(stacknc1(), stack1())

where φ = J(int→−,ρ{wrρ,rdρ} 1)×(1→−,ρ{wrρ,rdρ} 1 + int)KM .
Thus we first show that we can establish the REL invariant

using the local state allocated by the two modules. Next, we show
that this invariant is preserved by the push and pop operations and
that they are pairwise related assuming this invariant. The proof
outline is given below and uses the following two properties to
allocate points-to proxies on the implementation and specification
side, respectively:

REG(r) ` {[AL]πr } new v {y. [AL]πr ∗ hI
1
↪−→I,r v} (30)

REG(r) ` [AL]πr ∗ [MU(r, {ζ})]π ∗ i ζ
=⇒S new v (31)

V ∃l. [AL]πr ∗ [MU(r, {ζ})]π ∗ i ζ
=⇒S l ∗ l

1
↪−→S,r v

Context: SPEC(h0, e0, ζ) , REG(r) , J1KM (y){
j
ζ

=⇒S let hS = new inj1 () in (push1(hS), pop1(hS)) ∗
[SR]πζ ∗ [AL]1r ∗ [MU(r, {ζ})]

1
2

}
{
∃i. j ζ

=⇒S let hS = i in (push1(hS), pop1(hS)) ∗
i
ζ

=⇒S new inj1 () ∗ [SR]πζ ∗ [AL]1r ∗ [MU(r, {ζ})]
1
2

}
new inj1 ()

// Follows from Properties 30 and 31
hI . ∃h′S , i. j

ζ
=⇒S let hS = i in (push1(hS), pop1(hS)) ∗

i
ζ

=⇒S h
′
S ∗ [SR]πζ ∗ [AL]1r ∗ [MU(r, {ζ})]

1
2 ∗

hI
1
↪−→I,r inj1 () ∗ hS

1
↪−→S,r inj1 ()

// Follows from Property 29{
∃hI , h′S . j

ζ
=⇒S let hS = h′S in (push1(hS), pop1(hS)) ∗

[SR]πζ ∗ [AL]1r ∗ [MU(r, {ζ})]
1
2 ∗ REL((hI , h

′
S), r)

}
{
∃h. j ζ

=⇒S (push1(hS), pop1(hS)) ∗ [SR]πζ ∗ [AL]1r ∗
[MU(r, {ζ})]

1
2 ∗ REL(h, r)

}
(pushnc1(hI), popnc1(hI)){
vI . ∃vS . j

ζ
=⇒S vS ∗ [SR]πζ ∗ [AL]1r ∗ [MU(r, {ζ})]

1
2 ∗

J(int→−,ρ{wrρ,rdρ} 1)×(1→−,ρ{wrρ,rdρ} 1 + int)KM (vI , vS)

}

For the last step we need to show the following two refinements:

REL(h, r) , JintKM (n) `
E−,ρ{wrρ,rdρ},M (J1KM)(pushnc1(hI)(nI), push1(hS)(nS))

REL(h, r) `
E−,ρ{wrρ,rdρ},M (J1 + intKM)(popnc1(hI)(), pop1(hS)())

We sketch a proof of the first refinement below. The proof of the
second refinement can be found in [18].

The interpretation of the region and effect annotations for the
first refinement is as follows. Since we do not interpret read effects
on the local state, [RD]1r is framed off in the proof outline below.

Preg({ρ} , 1, {wrρ, rdρ} ,M [ρ 7→ r], ζ)

= [WR]1r ∗ [RD]1r ∗ [MU(r, {ζ})]
1
2 ∗ REG(r)

The proof starts by trading the exclusive write token for owner-
ship of the local state (28). The we use (27) to push nI onto the
implementation-side stack.

Context: SPEC(h0, e0, ζ) , REL(h, r) , REG(r) , JintK(n){
j
ζ

=⇒S push1(hS)(nS) ∗ [SR]πζ ∗ [WR]1r ∗ [MU(r, {ζ})]
1
2

}
{
∃l, v. j ζ

=⇒S push1(hS)(nS) ∗ [SR]πζ ∗ [MU(r, {ζ})]
1
2 ∗

STACK(h, r, l, v)

}
!hI{
vI . ∃l, vS . j

ζ
=⇒S push1(hS)(nS) ∗ [SR]πζ ∗ [MU(r, {ζ})]

1
2 ∗

STACK(h, r, l, (vI , vS))

}
hI := inj2 (nI , vI){
v′I . ∃l, vS . j

ζ
=⇒S push1(hS)(nS) ∗ [SR]πζ ∗ [MU(r, {ζ})]

1
2 ∗

hI
1
↪−→I,r inj2 (nI , vI) ∗ hS

1
↪−→S,r vS ∗ vals(l, v) ∗ v′I = ()

}

After pushing nI on the stack on the implementation side, we
simulate pushing nS on the specification side. Let:

K1 , let v = [] in

if CAS(hS , v, inj2 (nS , v)) then () else loop(nS)

K2 , if [] then () else loop(nS)

be the evaluation contexts which require a non-trivial reduction.
Notice that push1(hS)(nS) = K1[!hS]. We can now perform the
simulation:

SPEC(h0, e0, ζ) , REG(r) `

j
ζ

=⇒S push1(hS)(nS)∗ [SR]πζ ∗ [MU(r, {ζ})]
1
2 ∗hS

1
↪−→S,r vS

V ∃i. j ζ
=⇒S K1[i] ∗ i ζ

=⇒S !hS ∗ [SR]πζ ∗ [MU(r, {ζ})]
1
2 ∗

hS
1
↪−→S,r vS

V ∃i. j ζ
=⇒S K2[i] ∗ i ζ

=⇒S CAS(hS , vS , inj2 (nS , vS))∗ [SR]πζ ∗

[MU(r, {ζ})]
1
2 ∗ hS

1
↪−→S,r vS

V j
ζ

=⇒S () ∗ [SR]πζ ∗ [MU(r, {ζ})]
1
2 ∗ hS

1
↪−→S,r inj2 (nS , vS)

The simulation follows from repeatedly stepping by using property
15 and 16. Observe that CAS(hS , vS , inj2 (nS , vS)) always suc-

ceeds since we have ownership of hS
1
↪−→S,r vS . We can now finish

the proof by reestablishing the relation between the local state of
the modules and trading it for the exclusive write permission:{
∃l, vS . j

ζ
=⇒S () ∗ [SR]πζ ∗ [MU(r, {ζ})]

1
2 ∗

hI
1
↪−→I,r inj2 (nI , vI) ∗ hS

1
↪−→S,r inj2 (nS , vS) ∗ vals(l, v)

}
{
∃l, v′. j ζ

=⇒S () ∗ [SR]πζ ∗ [MU(r, {ζ})]
1
2 ∗ hI

1
↪−→I,r v

′
I ∗

hS
1
↪−→S,r v

′
S ∗ vals(n :: l, v′)

}
{
∃l, v′. j ζ

=⇒S () ∗ [SR]πζ ∗ [MU(r, {ζ})]
1
2 ∗

STACK(h, r, n :: l, v′)

}
{
∃l, v′. j ζ

=⇒S () ∗ [SR]πζ ∗ [WR]1r ∗ [MU(r, {ζ})]
1
2

}
4. Discussion
We have already mentioned some related work along the way; here
we discuss some other related work.

Benton et al. initiated a line of work on relational models of
type-and-effect systems to formally justify effect-based program

transformations for increasingly sophisticated sequential program-
ming languages and increasingly expressive effect systems [4–
8, 29]. Birkedal et al. showed how to extend this approach to a con-
current language [11]. The effect system we use here is from loc.
cit. Birkedal et al.’s relational interpretation is defined by a concrete
step-indexed Kripke logical relation. They used the model to prove
a parallelization theorem similar to ours, but the proof was very
technical and consisted of manual disentangling and re-ordering
of computation steps. Part of the reason for this was that support
for parallelization was not built into their logical relation and had
to be proven separately. In contrast, we build in support for par-
allelization in the LRPAR relation through its support for multiple
simulations. This allows us to reduce the proof of the paralleliza-
tion theorem to the essence of why it holds: framing. Moreover,
as mentioned in the Introduction, it makes it possible to use the
program logic to show that an expression satisfies the semantic in-
variants imposed by the type system even if the expression is not
statically well-typed and to reason about refinements.

In recent work, Benton et al. [9] have also considered a concur-
rent language, which in contrast to the language considered here
only includes first-order store. Technically, this makes the construc-
tion of a logical relations model simpler, since one avoids having
to deal with the type-world circularity mentioned in the Introduc-
tion. Their type-and-effect system does not support dynamic allo-
cation of abstract locations (which correspond to regions in our
setup), requiring all abstract locations to be given up front. Our
type-and-effect system supports dynamic allocation and hiding of
regions, through the masking rule. On the other hand, their effect
system supports a notion of abstract effects, which means, e.g., that
an operation in a data structure module can be considered pure
even if it uses effects internally, as long as those effects are not
observable outside the module boundary. Benton et al. use this fa-
cility for treating refinement of fine-grained concurrent data struc-
tures, illustrated using an idealized Michael-Scott queue. Our se-
mantics also supports refinements between fine-grained concurrent
data structures, using Iris’ support for general invariants. In this pa-
per we have focused on an example of a refinement that only holds
by restricting interference through the type-and-effect system. Our
method also scales to fine-grained concurrent data structures that
use helping, thanks to Iris [16].

Raza et al. [26] and Botincan et al. [12], both explore automatic
parallelization of sequential programs verified in separation logic.
Raza et al. rely on specifications inferred from a shape analysis.
Botincan et al. explore the idea of using the proof to insert synchro-
nization that ensures the dependencies of the original program are
preserved. These analyses focus on first-order programs, whereas
our type-and-effect system applies to higher-order programs.

The idea of defining logical relations in a program logic goes
back at least to Plotkin and Abadi, who used a second-order logic
to define logical relations for a second-order lambda calculus [22].
Dreyer et al. used a second-order logic with a Löb modality, in-
spired by [3], to give a logical relations interpretation of a program-
ming language with recursive types [13]. The logic used by Dreyer
et al. did not support invariants and hence it did not support the
interpretation of reference types. Turon et al. showed how to use a
variant of second-order concurrent separation logic with invariants
for giving a logical relations interpretation of an ML-like type sys-
tem for a language similar to the one considered in this paper [31].
To define logical relations in the unary separation logic, their logic
had a built-in notion of specification resources and a single specifi-
cation invariant. In contrast, here we use a higher-order concurrent
separation logic, Iris, which is flexible enough that one can define
specification resources and invariants in it. We rely crucially on this
flexibility for the LRPAR relation to support multiple simulations, as
discussed in Section 3.4.

References
[1] A. Ahmed, A. Appel, and R. Virga. A Stratified Semantics of General

References. In LICS, 2002.
[2] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-

tion independence. In POPL, 2009.
[3] A. Appel, P.-A. Melliès, C. Richards, and J. Vouillon. A very modal

model of a modern, major, general type system. In POPL, 2007.
[4] N. Benton and P. Buchlovsky. Semantics of an effect analysis for

exceptions. In TLDI, 2007.
[5] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading,

writing and relations. In PLAS. Springer, 2006.
[6] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational

semantics for effect-based program transformations with dynamic al-
location. In PPDP, 2007.

[7] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational se-
mantics for effect-based program transformations: higher-order store.
In PPDP, 2009.

[8] N. Benton, M. Hofmann, and V. Nigam. Abstract effects and proof-
relevant logical relations. In POPL, 2014.

[9] N. Benton, M. Hofmann, and V. Nigam. Effect-dependent transforma-
tions for concurrent programs. In PPDP, 2016.

[10] L. Birkedal, B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,
and H. Yang. Step-Indexed Kripke models over recursive worlds. In
POPL, 2011.

[11] L. Birkedal, F. Sieczkowski, and J. Thamsborg. A concurrent logical
relation. In CSL, 2012.

[12] M. Botincan, M. Dodds, and S. Jagannathan. Proof-Directed Paral-
lelization Synthesis by Separation Logic. TOPLAS, 35(2), 2013.

[13] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical
relations. Logical Methods in Computer Science, 7(2), 2011.

[14] M. Fähndrich and R. DeLine. Adoption and focus: practical linear
types for imperative programming. In PLDI, 2002.

[15] D. K. Gifford and J. M. Lucassen. Integrating functional and impera-
tive programming. In LISP, 1986.

[16] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon,
L. Birkedal, and D. Dreyer. Iris: Monoids and invariants as an or-

thogonal basis for concurrent reasoning. In POPL, 2015.

[17] N. Krishnaswami, P. Pradic, and N. Benton. Integrating linear and
dependent types. In POPL, 2015.

[18] M. Krogh-Jespersen, K. Svendsen, and L. Birkedal. A Re-
lational Model of Types-and-Effects in Higher-Order Concurrent
Separation Logic: Technical Appendix. http://www.kasv.dk/
irisrelmodel-tr.pdf.

[19] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
POPL, 1988.

[20] G. Morrisett, A. Ahmed, and M. Fluet. L3: A linear language with
locations. In TLCA, 2005.

[21] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and sepa-
ration in hoare type theory. In ICFP, 2006.

[22] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In
TLCA, 1993.

[23] F. Pottier. Hiding local state in direct style: a higher-order anti-frame
rule. In LICS, 2008.

[24] F. Pottier and J. Protzenko. Programming with permissions in Mezzo.
In ICFP, 2013.

[25] F. Pottier and J. Protzenko. A few lessons from the mezzo project. In
SNAPL, 2015.

[26] M. Raza, C. Calcagno, and P. Gardner. Automatic Parallelization with
Separation Logic. In ESOP, 2009.

[27] Rust Language. https://doc.rust-lang.org, 2016.

[28] F. Smith, D. Walker, and G. Morrisett. Alias types. In ESOP, 2000.

[29] J. Thamsborg and L. Birkedal. A kripke logical relation for effect-
based program transformations. In ICFP, 2011.

[30] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
λ-calculus using a stack of regions. In POPL, 1994.

[31] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, 2013.

[32] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer.
Logical relations for fine-grained concurrency. In POPL, 2013.

