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Abstract

We describe and prove specifications for two implementations of hash tables using Iris,
a recent separation logic framework. The first implementation is not thread-safe and
supports operations for iteration. The second implementation is a concurrent implemen-
tation. We use higher-order predicates together with the invariants in Iris to achieve
very general specifications that can allow either unrestricted sharing of the tables or
ownership of parts of the tables.
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Chapter 1

Introduction

Concurrency poses major challenges for the specification and verification of programs.
Shared resources often result in complex and potentially unpredictable behavior.
O’Hearn [20] proposed separation logic as a useful tool for reasoning about concur-
rent programs, as it allows local reasoning about different parts of a program that
use disjoint resources. This has resulted in the development of numerous concurrent
separation logics such as CAP [8], TaDA [6], and Iris [15, 14, 18] just to name a few.
This report will focus on Iris, a recent separation logic framework, which offers features
from several other separation logics derived from a few basic primitives. Since it is a
quite recent framework that is still being developed further, only a small number of
specifications have actually been proven using Iris at the time of writing and many
of those specifications only describe very simple programs. In this report, we aim to
provide evidence that Iris is in fact suitable for proving specifications for programs of
non-trivial complexity. We do so by presenting a case study, where we present and prove
specifications for implementations of hash tables. We present two different implementa-
tions: a “regular” implementation, that is only safe to use in sequential programs, and
a concurrent implementation, where all operations are thread-safe. The specifications
and proofs are written and verified using the Coq proof assistant1.

1.1 Iris

Iris is a concurrent separation logic framework developed as an attempt at unifying
many of the features seen in various different concurrent separation logics while only
introducing a small set of primitive constructions and rules. The main idea behind Iris
is that partial commutative monoids (or the similar resource algebras described in §2.3)
and invariants form a basis powerful enough to implement many advanced features seen
in different concurrent separation logics. Key features of Iris include higher-order pred-
icates, user-defined higher-order ghost state, invariants, and language agnosticism, i.e.,
Iris can be instantiated for a wide range of programming languages. Many constructions,

1The Coq code can be found at https://github.com/esbengc/iris-hashtable.
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including invariants and Hoare triples, are defined entirely in terms of simpler construc-
tions. Iris has been fully specified in the Coq proof assistant [12]. In addition, Krebbers,
Timany, and Birkedal [17] have extended the Coq implementation of Iris with a dedi-
cated proof mode. This proof mode treats Iris as an embedded logic in Coq, making
it possible write Iris propositions in the embedded logic and prove them interactively.
It offers variants of common Coq tactics such as intros and apply which allows Iris
propositions to be proven similarly to how one would normally prove statements in Coq.
This proof mode has been used to prove all the specifications presented in this report.

1.2 Contributions
We present a case study, where we state and proof specifications of two hash table
modules. This is done using the latest version of Iris, Iris 3.0 [18], and is verified in Coq.
The first module is an implementation of “regular” hash tables, that are not safe for
concurrent use. This implementation supports the common operations create, lookup,
insert, and remove, as well as the following two operations for iteration: fold and
cascade. The specifications for this module is based on the work of Pottier [21], who
verified a hash table module written in OCaml using CFML.

The second module is an implementation of concurrent hash tables that includes
the common operations create, lookup, insert, and remove. The specifications use a
shared higher-order predicate parameterized with a user-provided predicate, which the
content of the table must satisfy at all times as an invariant. To our knowledge, this
approach has not been used before for specifying concurrent data structures.

1.3 Reader assumptions and outline
The reader of this report should be familiar with separation logic. A basic understanding
of Iris is preferred as well, though not strictly required, as we will introduce the most
important features later in this report. The reader should also be familiar with Coq,
including a basic understanding of the type system, the specification language, and
commonly used elements from the standard library.

The remainder of the report is structured as follows: Chapter 2 provides a short
introduction to the most important features of Iris. This introduction is intentionally
kept short and only contains the bare minimum needed to understand the specifications
presented in this report. In Chapter 3, we present two hash table modules and their
specifications. The definitions and specifications are presented as they are written in
Coq (slightly modified in some places for readability) rather than using mathematical
notation, as the Coq implementation of Iris uses quite readable notations. We do not
include proofs of the specifications in the report, as everything presented has been proven
interactively using Coq. Finally, in Chapter 4 we sum up our experiences with Iris and
present related work.
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Chapter 2

Iris

Iris [15, 14, 18] is a recent higher-order concurrent separation logic framework. We
will not describe Iris in full detail here. The lecture notes provided by Birkedal et al. [2]
provide a basic introduction to Iris. Readers unfamiliar with Iris, and in particular those
unfamiliar with separation logic and Hoare logic in general, are encouraged to read these
notes. In this chapter, we will introduce some of the features that are more specific to
Iris. In particular, we introduce ghost state and invariants, which are the two primary
tools used for concurrent reasoning in Iris. This chapter not meant as a comprehensive
documentation of these features, but rather is meant to give a general understanding
of these features and how they are used. The proof rules presented have been selected
because they illustrate the ideas behind the features.

2.1 Programming language
Iris is a framework, which is not bound to any specific language, but rather can be
instantiated with a wide range of different languages. For this project, we will use a
call-by-value λ-calculus with recursive functions, references, compare-and-swap (CAS),
and fork. The syntax for the language is shown in Figure 2.1 (⊚ ranges over common
binary operators such as + and <). The operational semantics are quite standard and
therefore omitted here. One should note, however, that the memory model used consists
of a single heap shared by all threads, and that the heap can store any kind of value at

e ∈ Expr ::= () | n | false | true | l | x | (e, e) | inl e | inr e | rec f(x) := e |
e⊚ e | fst e | snd e | if e then e else e |
match e with inl x⇒ e | inr x⇒ e end |
ref e |!e | e← e | CAS(e, e, e) | fork e

Figure 2.1: Syntax of the language
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wp-value
Φ(v)

wp v {Φ}

wp-mono
∀x.Φ(x) ⊢ Ψ(x)

wp e {Φ} ⊢ wp e {Ψ}

wp-frame
P ∗ wp e {Φ}
wp e {P ∗ Φ}

wp-bind
K is an evaluation context wp e {v.wp K[v] {Φ}}

wp K[e] {Φ}

wp-store
l 7→ v ∗ ▷(l 7→ w −∗ Φ())

wp (l← w) {Φ}

Figure 2.2: Some rules for weakest precondition

each location. The Iris proposition l 7→ v represents a heap or part of a heap, where the
value v is stored at location l.

In addition to the constructs defined in Figure 2.1, we will also use the following de-
rived constructs: Lamdas (λx.e), let-expressions (let x = e in e), sequential composition
(e; e), and parallel composition (e||e). These constructs are all defined in terms of the
primitive constructs in a straightforward manner.

2.2 Weakest precondition, Hoare triples, and persistent
propositions

Iris uses a notion called weakest precondition from which Hoare triples are defined. For a
term e and a predicate Φ : V al→ iProp (where iProp is the type of propositions in Iris),
wp e {Φ} is an Iris proposition stating that all executions of the term t are safe (i.e., they
do not get stuck in an irreducible state before reducing to a value) and for all executions
reducing to a value v, Φ(v) holds after the execution. The resources represented by
wp e {Φ} are, as implied by the name, the weakest precondition for this to be true, i.e.,
it represents exactly the resources that must be available and owned at the start of the
execution for the execution to be safe and for the postcondition Φ to hold at the end.
In postconditions we sometimes use the notation x.P as a shorthand notation for λx.P
and Φ ∗ P as a shorthand for x.Φ(x) ∗ P .

To prove propositions involving weakest precondition, a set of rules are available. A
few of them are shown in Figure 2.2. The rules are similar to the kind of rules one would
usually see for Hoare triples, except they are specified in terms of weakest preconditions1.
Several rules other than the ones shown are available, including rules for each reduction
defined by the operational semantics of the language (the figure shows wp-store as one
of them).

1One other difference from what one might usually expect in such rules is the presence of the later
modality ▷. It is not easy to explain the meaning of the later modality without explaining the semantic
model of the Iris logic in detail, which is beyond the scope of this report. For the purpose of this report,
it suffices to know that ▷P is a strictly weaker assertion than P and that at no point in this report does
it play an important role. The reader is thus free to ignore the later modality whenever it appears.
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Hoare triples are defined in terms of weakest precondition as follows:

{P } e {Φ} ≜ □(P −∗ wp e {Φ})

Intuitively {P } e {Φ} states that if P holds at the beginning, then any execution of e is
safe and if it terminates with a value v, Φ(v) holds after termination. For readers familiar
with Hoare triples in general, it may be easier to understand weakest preconditions from
how they are used in defining Hoare triples. The definition makes use of the always
modality □. The always modality can be described as follows: The proposition □P
states that P holds without asserting exclusive ownership of any resources. We call
a proposition P persistent if it satisfies P ⊢ □P . The always modality is idempotent,
which implies that all propositions of the form □P are persistent. Persistent propositions
are duplicable as they do not assert any ownership over non-duplicable resources. By
using the always modality in definition of Hoare triples, we ensure that a triple can be
duplicated and reused as a specification. However, it also means that a proof of a triple
cannot make use of any non-persistent propositions except for the precondition of the
triple itself. In other words, even if we can show Q ⊢ P −∗ wp e {Φ}, we may not be able
to show Q ⊢ {P } e {Φ} if Q is non-persistent, unless we can do so without using Q at all.
In other words, P must always be sufficient as a precondition.

2.3 Ghost state

Iris allows users to define their own resources that can be used in proofs. These resources
can be decomposed into smaller pieces, which can be recombined. While these resources
have no bearing on the physical state of the programs, they can describe a logical state,
which can be used in proofs. This purely logical state is often called ghost state. The
resources described by ghost state are defined using resource algebras (RA). The formal
definition of a resource algebra is shown in Figure 2.3. The composition operator (·)
defines how resources are composed. The core |−| is a generalization of a unit element,
as composing an element with its core yields the same element. Unlike unit elements,
the core does not have to be unique for all elements, nor is every element required to
have a core. The set V defines a set of valid elements. An invalid element can be used
to represent an invalid resource or state. In addition, we define the notion of frame-
preserving updates:

a⇝ b ≜ ∀c? ∈M?.a · c? ∈ V ⇒ b · c? ∈ V

In other words, an update is frame-preserving if it does not cause any valid compositions
to become invalid.

Given a RA M , an element a ∈ M , and a ghost name γ, the proposition a
γ

asserts ownership over (a part of) a resource represented by a. The name γ belongs
to a countably infinite set of ghost names. Ghost assertions under different names are
independent from each other and may not even be represented by the same RA. The
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A resource algebra (RA) is a tuple (M,V ⊆ M, |−| : M → M?, (·) : M ×M → M)
satisfying:

∀a, b, c. (a · b) · c = a · (b · c) ∀a, b. a · b = b · a
∀a. |a| ∈M ⇒ |a| · a = a ∀a. |a| ∈M ⇒ ||a|| = |a|
∀a, b. |a| ∈M ∧ a ≼ b⇒ |b| ∈M ∧ |a| ≼ |b| ∀a, b. (a · b) ∈ V ⇒ a ∈ V

where M? ≜M ⊎ {⊥} a? · ⊥ ≜ ⊥ · a? ≜ a? a ≼ b ≜ ∃c ∈M. b = a · c

Figure 2.3: Resource algebras

following proof rules are available for ghost state:
res-alloc

a ∈ V
⊢ |⇛∃γ. a γ

res-update
a⇝ b

a
γ ⊢ |⇛ b

γ

res-op
a

γ ∗ b
γ ⊣⊢ a · b γ

These rules allow us to allocate a new ghost resource under a new name, perform frame-
preserving updates, and compose and decompose resources. The rules mention the
update modality |⇛. The intuition of the update modality is described quite well by
the rule res-update: The proposition |⇛P represents resources from which P can be
obtained by performing frame-preserving updates. The following two rules state that we
can perform updates before and after each step of a computation:

fup-wp
|⇛E wp e {Φ} ⊢ wp e {Φ}

wp-fup
wp e {v.|⇛EΦ(v)} ⊢ wp e {Φ}

2.4 Invariants
A very useful tool in Iris when reasoning about concurrent programs is invariants. An
invariant is a proposition, which must be satisfied at all times during execution. The
proposition P

ι states that the proposition P holds as an invariant. Each invariant is
indexed by a name ι from an infinite set of invariant names. A key property of the
proposition P

ι is that it is persistent, which means that it can be duplicated and thus
be made available to multiple threads. The following two rules describe how invariants
are used:

inv-alloc
▷P ⊢ |⇛E ′ ∃ι ∈ E . P

ι

wp-inv
▷P ⊢ wpE\{ι} e {▷P ∗ Φ} atomic(e) ι ∈ E

P
ι ⊢ wpE e {Φ}

where atomic(e) means that e reduces to a value in a single step. The later modality ▷
is there mainly to ensure that the rules are sound. The reader may feel free to ignore it
as it does not play an important role anywhere in this report. In wp-inv, the weakest
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preconditions are annotated with masks (denoted by E), which is a set of invariant
names indicating which invariants can be opened. The mask is usually omitted from the
weakest preconditions when it is not important.

The first rule inv-alloc allows us to allocate a new invariant if we can show that
the proposition already holds. It uses the fancy update modality |⇛E which, in addition
to permitting frame-preserving updates like the basic update modality |⇛, is also used
for enabling and disabling invariants. We will not cover this modality in further detail
here. It can usually be stripped away when used for proving weakest preconditions.

The proposition P
ι cannot itself be used in place of P as it does not assert any

ownership. It only asserts that we know that the resources exist. The second rule wp-inv
allows an invariant to be opened for a single reduction step. When doing this, we take
exclusive ownership of the proposition and the associated resource, thus allowing us to
use it. The proposition must be reestablished in the postcondition after this single step.
The name of the invariant is removed from the mask upon opening, which ensures that
multiple copies of the potentially non-duplicable proposition cannot be obtained. The
restriction to atomic expressions ensures that no other threads may take a step before
the invariant has been reestablished in the postcondition, thus avoiding that another
thread takes ownership of the proposition before the current thread has released the
ownership.

Rather than work with invariant names directly, we will often work with namespaces
instead. A namespace N is a sequence of natural numbers describing an infinite set of
invariant names N ↑. The mapping from namespaces to sets of invariant names is defined
such that N ↑

1 ⊆ N
↑
2 if and only if N2 is a suffix of N1. In addition, if m ̸= n, then N .m↑

and N .n↑ are disjoint, where N .m ≜ [m] ++N . This allows users to pick disjoint sets of
invariant names for separate parts of a program. Each part can then further decompose
the set of names if said part consists of several smaller parts. This is similar to how
many programming languages support nested modules.

We overload the notation for invariants as follows:

P
N ≜ ∃ι ∈ N ↑. P

ι

We also have the following updated rules for invariants:

inv-alloc
▷P ⊢ |⇛E ′ P

N

wp-inv
▷P ⊢ wpE\N ↑ e {▷P ∗ Φ} atomic(e) N ↑ ⊆ E

P
N ⊢ wpE e {Φ}

2.5 Iris in Coq

A full implementation of Iris exists in Coq[12]. Everything presented in this report is
implemented in Coq using the Iris implementation as a basis. Several definitions will
be presented using snippets of Coq code. We here give a brief introduction to this
implementation to aid the reader in understanding these snippets.
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The Coq implementation of Iris introduces iProp Σ as the type of Iris propositions2.
It also introduces notations for all logical constructs. Most of these notations use Unicode
characters to make them look exactly like the corresponding mathematical notations: P
∧ Q, P ∗ Q, P -∗ Q, and ∀x,P just to give a few examples. Many of these notations
overload existing notations for regular Coq propositions. To distinguish between the
different interpretations, we will adopt the following convention for all code snippets
presented in this report: For regular Coq propositions of type Prop, we will use ASCII
based notations such as forall, and /\, while for Iris propositions of type iProp Σ we
will use Unicode based notations.

The implementation also supports the notion of pure propositions, i.e. Coq proposi-
tions lifted into Iris. A pure proposition is written ⌜P⌝, where P is a Coq proposition, i.e.
P has type Prop. A pure proposition holds if the underlying Coq proposition holds and
claims no ownership of any resources. As a result, all pure propositions are persistent.

In §2.1, we presented the programming language that we will use. The Iris imple-
mentation comes bundled with a formalization of this language. The type of expressions
in the programming language is expr, while val denotes values in the language. Values
of type val can be coerced into type expr implicitly. The formalization introduces the
proposition l ↦ v, which asserts that the heap stores the value v in location l. It also
specifies notations for objects of type expr and val. Most of these notations are quite
obvious, so we will not cover them all. There are a few things worth noting, however.
The first is literals, which are written as #l, where l can have type Z, bool, or the type
of heap locations loc or it can be the unit value (). Another thing worth noting is the
notations SOME e and NONE. These are syntactic sugar for InjR e and InjL #() respec-
tively. Note that these notations use all capital letters unlike Coqs option type, which
uses the constructors Some and None. Finally, it is worth noting that some notations
sometimes uses keywords prepending the letter V such as InjRV. This indicates that it
is an expression of type val rather than expr.

A weakest precondition proposition is written as WP e @ E {{ Φ }}, where e is an
expression, E is a mask, and Φ is an Iris predicate of type val -> iProp Σ. It can also
be written as WP e @ E {{ v, P }} in which case the postcondition is λ v, P. In both
cases, @ E can be omitted, in which case the mask ⊤ is used, i.e., the mask containing
all possible invariant names. The notation for Hoare triples is {{ P }} e @ E {{ Φ }}.
Like for weakest precondition, the mask can be omitted and the postcondition can be
written as {{ v, P }}.

The implementation supports a different kind of triples as well. These are written
as follows:

{{{{ P }}} e @ E {{{ x1 .. xn , RET v ; Q }}}}

where x1 .. xn are binders (i.e., variable declarations) and v is a value. The scope of the
variables x1 .. xn is v and Q. As with the other variants, the mask can be omitted. It has
approximately the same meaning as writing {{ P }} e @ E {{ u, ∃ x1 .. xn, ⌜u =

2The parameter Σ has type gFunctors. The precise definition of this type is beyond the scope of this
report, however, it is used for specifying which resource algebras are available for ghost states.
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v⌝ ∗ Q }} using the other notation, though the exact definition behind the notation is
significantly different. Though this notation is sometimes a bit convenient, the main
reason it exists is that it is defined in a way that makes it much simpler to use as a
specification when writing proofs using tactics.

Finally, there is the notation for ghost state and invariants. A ghost assertion is
written own γ a, where γ has type gname, the type of ghost names, and a has the carrier
type of some RA. Similarly, an invariant is written inv N P, where P is the enclosed Iris
proposition and N has type namespace, the type of invariant namespaces.

9
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Chapter 3

Hash tables in Iris

A dictionary is a finite mapping from keys to values. Hash tables are an implementation
of dictionaries, where the keys are equipped with a hash function, i.e., a function from
keys to integers. For the implementations used here, we adopt the convention that
multiple values can be stored under the same key (this is not to be confused with other
implementations of hash tables, where different keys can be mapped to the same bucket,
but each bucket only contain one entry per key). Performing a lookup operation on a
key with multiple associated values will return the value inserted last under that key.

Presented here are two hash table modules fully specified in Iris. The first module is
for sequential use only, while the second module supports concurrent use. The sequential
specification is based on the specification for hash tables in CFML by Pottier [21],
Both modules support the following operations: create, insert, lookup, and remove.
The remove operation removes an element from the table and returns the removed
element. The other operations do exactly what their names suggest. The sequential
module additionally supports two operations for iterating through the entries: fold and
cascade. The fold function is a variant of the similarly named functions over lists
known from functional programming. It takes a function f and a value a as arguments,
and returns f kn xn(f kn−1 xn−1(. . . (f k1 x1 a))), where the (ki, xi)’s are the key-
value pairs stored in the table. The cascade function returns a cascade [21], which is a
stateless variant of iterators [10] as known from many programming languages, including
Java. A cascade is a nullary function (i.e., a function taking the unit value () as its
only argument) which either returns SOME(k,x,c), where (k,x) is a key-value pair in
the table and c is a cascade for the remaining entries in the table, or it returns NONE
if there are no more entries to return. For a reader familiar with iterators in Java, a
cascade can be seen as the next method of an iterator. However, rather than advancing
by updating some internal state of the iterator object, the updated “state” is returned
as a new function.

11



3.1 Model
Since hash tables rely on hash functions that can be applied to keys, both the imple-
mentations and specifications of the hash tables are parameterized with a Coq type key
and a function hash that implement the type class Hashable shown in Figure 3.1. The
type key should be a set of logical keys reflecting the set of program values that are
valid keys. Similarly, the function hash must be a hash function on the key type. The
co-domain of the hash function is the set of natural numbers. This avoid potential am-
biguities that could arise due to how the modulo operator in programming languages
often have semantics different from the mathematical modulo function when applied to
negative numbers. The class Hashable contains fields relating key objects to program
values and defining the hash function as a program function. In particular, it defines
two program functions equalf and hashf, which decide equality on keys and compute
the hash function respectively. This is formally specified by the fields equal_spec and
hash_spec. It also contains a field as_key, which is a partial function from program
values to objects of type key. The set of valid keys is defined as the values v for which
as_key v = Some k. Note that as_key is not required to be injective for the set of valid
keys. Thus multiple distinct program values may map to the same logical key. If this is
the case, then an equivalence relation is induced on the set of valid keys in the language,
such that each logical key defines an equivalence class. The idea of a separate type of
logical keys is different from the approach used in the CFML specification [21]. Since
program values in CFML are typed, it is not necessary to introduce a separate logical
key type, as the set of valid keys is already defined by the key type in the program-
ming language. The approach used here, however, allows the valid keys to be any set
expressible in Coq, rather than being restricted to the types of programming languages
such as OCaml. It would be possible to avoid introducing the logical key type if we
instead required a predicate directly stating whether a value is a valid key. For the user,
reasoning about a logical key type might be just as convenient, however. In any case, if
the user wishes to use a predicate defining valid keys, they can usually still do so in this
model, for example by defining the type key as a dependent pair { k: val | is_key
k } if is_key is the name of the predicate.

Since a hash table represents of a dictionary, our specifications will rely on a predicate
relating a table to an abstract model of a dictionary. For this model, we will use the
finite map types from the std++ library [16]. The model type we use is map (list
val), where map can be any type for which an instance of the type class FinMap key
map exists, i. e. map must be a type of finite maps with key as the type of keys. Since
we allow multiple values to be stored under each key, we use list val as the co-domain
for the maps. We use the convention that each inserted element will be stored at the
head of the list associated with the given key. To support this, we define the following
operations on the model:

• insert_val m k x returns m with the value x inserted at the head of the list stored
at k.

• remove_val m k returns m with the head of the list stored under key k removed.
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Class Hashable Σ `{heapG Σ} (key : Type)
`{EqDecision Key} (hash : key -> nat) :=

{
equalf : val;
hashf : val;
as_key : val -> option key;

equal_spec (k1 k2: key) (v1 v2: val) :
as_key v1 = Some k1 ->
as_key v2 = Some k2 ->
WP equalf v1 v2 {{u, ⌜u = #(bool_decide (k1 = k2))⌝}};

hash_spec k v :
as_key v = Some k -> WP hashf v {{u, ⌜u = #(hash k)⌝}}

}.

Figure 3.1: Definition of the class Hashable

If no values are stored in m under k, it returns m unchanged.

We also need to express when two maps are equal. The FinMap class is defined such that
two maps are equal according to Coqs built-in equality if they agree on all entries, i.e.,
m1 = m2 if m1 !! k = m2 !! k for all k, where the m !! k syntax denotes a lookup. This
still leaves us with a problem: Since our co-domain is lists of values, we can represent
that a table contains no values under a key k by using a map m that either maps k to
the empty list, or does not map it to anything at all. In the former case we would have
m !! k = Some [], while in the latter case, we would have m !! k = None. Therefore
they would not be considered equal even though they represent the same dictionary.
Our solution to this is to only allow the latter case. We consider a map well-formed if
it contains no empty lists. We define the Coq predicate table_wf, which states exactly
that. The operations insert_val and remove_val are defined such that they preserve
well-formedness.

The specification in CFML [21], uses a slightly different model. Rather than using
a type specifically for representing finite maps, like we do here, that specification uses
regular functions of type key -> list A (since CFML is typed, they use a type pa-
rameter A to indicate the type of values in the table). In this model, unused keys can
only be modelled by mapping them to empty lists. However, it also makes it necessary
to explicitly state that a map is finite. In particular, it is impossible to iterate over a
function. Therefore, in order to specify operations that iterate over the entries in a table,
one may need a list containing all the keys that are actually mapped, i.e., the domain
of the map. Thus, it must be possible to derive the domain from the map.

There are other ways in which we could have solved the problem of having multiple
representations of the same tables. One way would be to define an equivalence relation
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stating exactly the kind of equivalence we would like. Another way would be to define a
type of non-empty lists and use that instead of regular lists. That would eliminate the
problem completely. Our reason for not choosing these approaches is that we want to
use definitions and lemmas available in existing Coq libraries that relate to the existing
definitions. If we define a new equivalence relation, we have to show which operations
and predicates on the tables are compatible with this relation, and define new versions of
those that are not. If we define a new type of lists, we cannot use any of the operations
and lemmas for regular lists.

One should note that the model does not mention the program values acting as
keys directly. Only the logical keys of type key are mentioned. This means that if a
value is inserted into a table under a key, and if multiple values represents the same
logical key, then the information about which key was used during the insert operation
will be lost. Implementations are thus allowed to forget this information as well. For
instance, an implementation could choose to store only the first key being inserted from
each equivalence class and reuse that key whenever subsequent insertions are done using
equivalent keys. This could be a potential optimization as it could reduce the memory
used by the data structure if the keys are large in size.

3.2 Array operations
Hash tables are implemented using arrays. The language, as it is, does not support
arrays in any efficient way. Ideally, we would extend the language with array operations
as primitive constructs. However, if we actually extend the language, we would really be
defining a new language, which is a lot of work in Coq. Due to time constraints, we will
not do this. Instead, we add the necessary operations and specifications as assumptions.
We add three operations: make_array, array_load, and array_store. We also add
a predicate array. The proposition array a xs states that the value a is an array
containing the values given by the list xs. The assumed specification for the operations
are shown in Figure 3.2. The expression replicate n x creates a list containing n
copies of x, the expression xs !! n is syntax for looking up the n’th element in the list
xs, while <[ n := x]> xs is syntax for replacing the n’th element in the list xs with
x. Other than that, the specifications should be self-explanatory. In addition, we also
assume that load and store operations are atomic. We need atomicity for the concurrent
hash tables, where we will use the array predicate in an invariant (recall that invariants
can only be opened for atomic expression).

We remind the reader, that these specifications are added as assumptions that cannot
be proven for the language as it is. The assumptions should be seen as specifications
that would hold if we had actually extended the language.

3.3 Sequential hash tables
The specification presented here is based on the specification for hash tables in CFML
by Pottier [21]. It uses the same ideas behind the model and the function specifications
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make_array_spec E n v:
WP make_array (#n, v) @ E {{arr, array arr (replicate n v)}}

array_load_spec E arr xs v n :
xs !! n = Some v ->
{{{▷array arr xs}}}
array_load (arr, #n) @ E

{{{ RET v ; array arr xs}}}

array_store_spec E arr xs v n:
n < length xs ->
{{{▷array arr xs}}}
array_store (arr, #n, v) @ E

{{{ RET #() ; array arr (<[n := v]> xs)}}}

array_load_atomic arr i:
atomic (array_load (arr, i))

array_store_atomic arr i v:
atomic (array_store (arr, i, v))

Figure 3.2: The specifications for the array operations assumed to be available
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and adapts the solution for Iris. The main differences between the two stems from the
fact that CFML uses typed values, while the language used here is untyped.

The interface for the sequential hash table module is is defined as a record type
table, whose definition is shown in Figure 3.3. It contains the six available opera-
tions as program values along with their specifications (the body of the specifications
have been omitted here for brevity). It also contains an abstract type table_state
which describes the internal state of the table and two predicates table_in_state and
is_cascade. The former states that a value represents a table. The latter is used in the
specification for cascades. Finally it contains two statements table_in_state_wf and
is_cascade_persistent. The former guarantees that the model is always well-formed
as discussed in §3.1. The latter states that the predicate is_cascade is persistent.

3.3.1 Implementation and table predicate

A hash table is represented as a triple of references (la, ls, lc), where la points to
an array of buckets, and ls and lc points to integers containing the number of stored
elements and the length of the array respectively. Each bucket is a linked list of key-
value pairs, i.e., a bucket is either NONE or SOME (k, x, b) for a key k, a value x, and
a bucket b.

We first present the definition of the table_in_state predicate, shown in Figure 3.4.
The proposition table_in_state m data t states that the program value t is a table
representing the dictionary modeled by m and that data is a representation of the cur-
rent state of the table. The data state argument allows specification to state whether
an operation changes the state of the table. Specifically, if an operation has a specifica-
tion with the proposition table_in_state m data t as both the precondition and the
postcondition, then that operation does not change the state of the table (or at least
it restores the table to the state it was in at the beginning of the operation). On the
other hand, if the operation may change the state of the table, the specification will
state table_in_state m data' t in the postcondition for some new state data'.

The data argument represents the data stored in the internal array of the hash table.
It has type list bucket_data, which instantiates the table_state field of the interface.
The type bucket_data is defined as list (val * val), i.e., it represents a bucket as
a Coq list of key-value pairs (note that we store the concrete value used as key rather
than the corresponding key). Let us take a look at the definition of table_in_state
in Figure 3.4. Overall, there are two parts to the definition. The first part consists
entirely of pure Coq level statements about the model m and the content of the array
data. The last part states that the value t has the correct form, i.e., it is a triple of
locations and the locations point to an array containing bucket <$> data (bucket is
a function mapping a bucket_data object to the program value representation of that
bucket and <$> is syntax for the monadic fmap operator), the population count of the
dictionary, and the length of the array respectively. Going back to the first part, we see
that it consists of five assertions. It should be obvious what length data > 0 means.
The other four are summarized here:
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Structure table Σ key hash map
`{FinMap key map, heapG Σ,
!Hashable Σ key hash}

: Type :=
{ table_create : val ;

table_insert : val ;
table_remove : val ;
table_lookup : val ;
table_fold : val ;
table_cascade : val ;

table_state : Type ;

table_in_state : map (list val) -> table_state -> val -> iProp Σ ;
is_cascade : map (list val) -> val -> list (val * val) ->

table_state -> val -> iProp Σ ;

table_in_state_wf m state t :
table_in_state m state t → ⌜table_wf m⌝ ;

is_cascade_persistent m f seq state t :
PersistentP (is_cascade m f seq state t) ;

table_create_spec n : (* ... *) ;
table_insert_spec t k x m state k' : (* ... *) ;
table_remove_spec m state t k k' : (* ... *) ;
table_lookup_spec m state t k k' : (* ... *) ;
table_fold_spec m state I f t a : (* ... *) ;
is_cascade_spec m f seq state t : (* ... *) ;
table_cascade_spec m state t : (* ... *) ;

}.

Figure 3.3: The table type defines the interface of the hash table module
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Definition table_in_state m data t : iProp Σ :=
⌜length data > 0⌝ ∗
⌜table_wf m⌝ ∗
⌜content m data⌝ ∗
⌜no_garbage data⌝ ∗
⌜have_keys data⌝ ∗
∃ lArr lSize lCap arr,
⌜t = (#lArr, #lSize, #lCap)⌝ ∗
array arr (bucket <$> data) ∗
lArr ↦ arr ∗
lSize ↦ #(population m) ∗
lCap ↦ #(length data).

Figure 3.4: Definition of the table invariant

• The proposition table_wf m states that m is a well-formed model as explained in
§3.1.

• The proposition content m data states that data contains the right values in the
right buckets as required by m.

• The proposition no_garbage data states that no keys are stored in the wrong
buckets.

• The proposition have_keys data states that data contains only valid keys.

Figure 3.5 shows the specifications for the four basic operations. The specifications
should mostly be self-explanatory, though there are a few things worth noting. First, the
argument to the create function is a natural number indicating the initial number of
buckets. Second, the insert function moves the content into a new array of double size if
the population exceeds twice the length of the current array. Resizing is an optimization,
so this is not visible in the specification, Specifically, it is hidden within the new state
data' introduced in the postcondition.

3.3.2 Specification of fold
The function fold iterates over all key-value pairs in a table applying a function provided
by the user to each entry using an accumulator to pass on a value between entries.
Specifically, it takes three arguments: A table t, an initial value a for the accumulator,
and a function f, which, when applied to a key-value pair and an accumulator value,
returns an updated value for the accumulator. The specification for fold is shown in
Figure 3.6. The specification requires a user-provided predicate I, which is used as loop
invariant. Specifically, if, at any point during iteration after visiting all entries in the
sequence seq, the accumulator has value a, then the proposition I seq a holds. The
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Lemma create_spec n :
n > 0 ->
WP create #n {{t, ∃ data, table_in_state ∅ data t}}.

Lemma insert_spec t k x m data k' :
as_key k = Some k' ->
{{{table_in_state m data t}}}

insert t k x
{{{data', RET #(); table_in_state (insert_val m k' x) data' t}}}.

Lemma lookup_spec m data t k k' :
as_key k = Some k' ->
{{{table_in_state m data t}}}

lookup t k
{{{ RET match m !! k' with

| Some (v :: _) => SOMEV v
| _ => NONEV end ;

table_in_state m data t}}}.

Lemma remove_spec m data t k k' :
as_key k = Some k' ->
{{{table_in_state m data t}}}

remove t k
{{{ data', RET match m !! k' with

| Some (v :: _) => SOMEV v
| _ => NONEV end ;

table_in_state (remove_val m k') data' t}}}.

Figure 3.5: Specifications for the basic operations on sequential hash tables
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Lemma fold_spec m data I f t a :
{{{(∀ k x seq (a' : val),

{{⌜permitted m (seq ++ [(k,x)])⌝ ∗I seq a'}}
f k x a'

{{v, I (seq ++ [(k,x)]) v }}) ∗
table_in_state m data t ∗ I [] a}}}

fold f t a
{{{v seq, RET v; ⌜complete m seq⌝ ∗

table_in_state m data t ∗
I seq v}}}.

Figure 3.6: Specification for the fold function

client must prove that the invariant holds initially, i.e., I [] a holds for the initial
accumulator a, and that applying f always updates the invariant. This requirement is
expressed by the nested triple in the precondition. The fact that this specification is
defined in terms of another specification makes this a higher-order specification. Note
that the expected specification for f does not include table_in_state as a precondition.
Thus, f will not have any access to the table. An alternative specification could list
table_in_state m data t as both a precondition and a postcondition. This would
give f read-only access to the table – or at least it would require that f leaves the table
in the same state as it was given.

The possible sequences seq that fold may produce are described by the predicates
permitted and complete. The proposition permitted m seq, states that seq is a
sequence of elements that could be produced from the model m. In other words seq
could be obtained by removing entries of m one by one and putting them into a list. A
sequence permitted by the permitted predicate is not necessarily complete, i.e., there
may be elements left in the model after removing the elements in the sequence. The
user provided specification of the function f may assume that the sequence produced
so far, including the entry currently being processed, is permitted. The proposition
complete m seq states that, in addition to being a permitted sequence, the sequence
seq is complete, i.e., it contains all the entries of m. The specification of fold states in
the postcondition that the invariant I seq v, where v is the return value, holds for a
complete sequence seq.

The order in which the elements are visited by fold is mostly unspecified. However,
for any key mapped to more than one value in the model, the most recently inserted
values associated with that key are visited first. In other words, for each key k, the
internal order of the elements in m !! k is preserved in all permitted sequences. Other
than this restriction, no guarantees are made about the order of the entries of permitted
sequences.

The fold function is implemented using two nested loops. The outer loop iterates
over the array of buckets, and for each bucket it executes the inner loop, which visits
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each entry in the bucket. When proving the specification of the function, it must be
shown that after each iteration of the inner or outer loop, the user provided invariant I
seq a holds and that the sequence seq is permitted. Both permitted and complete are
defined in terms of the removal predicate. The proposition removal m seq m' states
that m' can be obtained from m by removing the elements in seq one at a time using
remove_val. The proposition permitted m seq is defined as exists m', removal m
seq m', while complete m seq is defined as removal m seq ∅. Thus, whenever an
entry is visited and added to the sequence, we need to come up with a model that
can be obtained by removing said sequence from the original model. We do this by
maintaining a simulated table. This table is initially identical to the actual table, and
whenever an entry is visited, we remove that entry from the simulated table. When the
function terminates, the simulated table will be empty. This is done by maintaining
the invariant shown in Figure 3.7. This pure predicate holds at any point during fold
in addition to the table_in_state and user defined I invariants. It takes quite a lot
of parameters. The first m and data are the model and representation of the bucket
array of the actual table. These are the only parameters to remain constant between
iterations. The m' and data' are the model and representation of the simulated table.
The i parameter is the index for the outer loop and therefor also the index for the
bucket currently being visited. During the i’th iteration the state of the j’th bucket of
the simulated table is as follows for each index j:

• If j < i, then the j’th bucket has been fully processed and is therefor empty.

• If j = i, then the j’th bucket is currently being processed. The sequence bPref
contains the already visited entries from this bucket. In the simulated table this
bucket contains the remaining entries.

• If j > i, then the j’th bucket has not been visited and its content is identical to
that of j’th bucket in the actual table.

The sequence seq contains the entries from previously visited buckets (i. e. buckets with
indices lower than i). The sequence bPref contains the entries from the current bucket,
that have been visited. Thus seq ++ bPref is the sequence of entries visited so far. The
body of the definition of the invariant is quite large, but it really boils down to stating
that both the actual and simulated tables are in a valid state and that the content of
the simulated table is as stated above. The most important part of the definition is the
statement removal m (seq ++ bPref) m', which allows us to show that the sequence
produced so far is indeed permitted.

With this invariant at hand, the proof of the specification boils down to showing
that the invariant is maintained after each iteration of the loops, which is fairly straight
forward.

3.3.3 Specification of cascade
The function cascade returns a cascade, which can be thought of as a stateless functional
variant of an iterator [10]. It is a function which, when applied to the unit value, either
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Definition fold_loop_inv data m seq bPref data' m' i :=
table_wf m /\
content m data /\
no_garbage data /\
have_keys data /\
removal m (seq ++ bPref) m' /\
table_wf m' /\
content m' data' /\
no_garbage data' /\
have_keys data' /\
length data = length data' /\
(forall j, j < i -> data' !! j = Some []) /\
(forall b, data' !! i = Some b -> data !! i = Some (bPref ++ b)) /\
(forall j, i < j -> data' !! j = data !! j).

Figure 3.7: The loop invariant maintained during fold

returns a key-value pair and a new cascade, or returns NONE if there are no entries left.
The specification for cascade is very straightforward: If t is a table, then cascade
t maintains the table invariant and returns a cascade as stated by the is_cascade
predicate. The proposition is_cascade m f seq data t states that f is a cascade for
the table t in state data representing dictionary m and that the sequence of entries
seq has already been produced. The user does not need to know how is_cascade is
defined. They only need to know the is_cascade_spec specification, which is shown in
Figure 3.8 along with the specification for cascade. This specification assumes in the
precondition that f is a cascade and that the associated table is in the same state as
when cascade was called. The postcondition states that the table remains in that state
and that one of the following two cases holds:

• The returned value is NONE, in which case the sequence seq already produced is
complete.

• The returned value is SOME (k, x, f'), where f' is a new cascade for which the
key-value pair (k, x) is added to the sequence of produced entries.

The definition uses the predicates permitted and complete, which are presented in
§3.3.2.

The is_cascade predicate is parameterized with the state of the table data and
the specification for the cascade requires that the table is in that same state when the
cascade is used. This means that cascades are invalidated when the state of the table is
changed as the specification no longer applies.

It is also worth noting that is_cascade is persistent, meaning it can be duplicated
freely. This stems from the fact that cascades are stateless. Because of this, cascades
can be shared and reused, though access to the table is needed whenever they are used.
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Lemma cascade_spec m data t:
{{{table_in_state m data t}}}

cascade t
{{{f, RET f; is_cascade m f [] data t ∗

table_in_state m data t }}}.

Lemma is_cascade_spec m f seq data t:
{{{ is_cascade m f seq data t ∗ table_in_state m data t }}}

f #()
{{{v k x f' , RET v;

table_in_state m data t ∗
((⌜v = NONEV⌝ ∗ ⌜complete m seq⌝) ∨
(⌜v = SOMEV ((k, x), f')⌝ ∗
⌜permitted m (seq ++ [(k, x)])⌝ ∗
is_cascade m f' (seq ++ [(k, x)]) data t)) }}}.

Figure 3.8: Specification for cascades and the cascade function

Like fold, the cascades are implemented using two nested loops. The outer loop
iterates over the array of buckets and for each bucket it executes the inner loop, which
visits each entry in the bucket. However, unlike in fold, the loop is evaluated in a
lazy fashion. Whenever the loop visits an entry, it suspends and returns, along with
the entry, the rest of the loop as a continuation – a lambda which, when applied, will
resume the loop where it stopped. The returned continuation acts as the next cascade.
The loop visits the entries in the same order as fold does. Because of this, the same
invariant fold_loop_inv(see Figure 3.7) is used to prove the permitted and complete
propositions in the specification for cascades. This is done by embedding the invariant
into the is_cascade predicate. The is_cascade predicate (definition shown in Fig-
ure 3.9) uses existential quantification to define the current state of the loop, i.e., the
index of the current bucket i and the remaining elements of the current bucket b, that
have yet to be visited. This is also where it becomes necessary to assume that the state
of the table has not changed. The fold_loop_inv predicate is parameterized with the
state data and in order to use the invariant to argue that the sequence produced is
permitted, the table needs to be in state data as well. The is_cascade predicate makes
two claims: The first claim is that the cascade_inv predicate holds, which is essentially
just a wrapper for the fold_loop_inv invariant. The second claim is that when applied,
the cascade has the same behavior as cascade_next applied to the table and the current
state of the loop. The function cascade_next is used internally in the implementation
of cascade. It can be thought of as a lambda lifted version of the cascades. In fact the
cascades are simply implemented as lambda closures, whose bodies apply cascade_next.
The specification for cascade_next is shown in Figure 3.9. The postcondition for this
specification is similar to the one from is_cascade_spec, while the precondition uses
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Definition cascade_inv seq m data b i :=
exists seq' bPref data' m',

data' !! i = Some b /\
seq = seq' ++ bPref /\
fold_loop_inv data m seq' bPref data' m' i.

Definition is_cascade m f seq data t : iProp Σ :=
∃ b i,
⌜cascade_inv seq m data b i⌝ ∗
∀ P Q,
□({{P}} cascade_next (bucket b) t #i {{Q}} →
{{P}} f #() {{Q}}).

Lemma cascade_next_spec seq m data b i t:
cascade_inv seq m data b i ->
{{{ table_in_state m data t }}}

cascade_next (bucket b) t #i
{{{v k x f' , RET v;

table_in_state m data t ∗
((⌜v = NONEV⌝ ∗ ⌜complete m seq⌝) ∨
(⌜v = SOMEV ((k, x), f')⌝ ∗
is_cascade m f' (seq ++ [(k, x)]) data t)) }}}.

Figure 3.9: Definition of is_cascade and specification for the internal function cas-
cade_next

the weaker cascade_inv predicate over is_cascade. Thus, using this specification, it
is quite easy to show the specification for cascades given that cascades have the same
behavior as cascade_next.

3.3.4 Entry invariants

The model and the specifications for the hash tables makes no assumptions about the
values stored in the table. Since the values are untyped in the language, it is possible to
store any value in the table. This makes the tables very flexible, however, it also makes
it difficult to say anything about the values stored in the table. Users may not always
need this much flexibility, but may instead want to restrict the kind of values that a
table is allowed to store. One way of doing this is to introduce a predicate that must be
satisfied by each entry in the table. We here present a simple set of tools to support this.
These tools only refer to the model and do not depend on the implementation or even
the specifications of the hash table. Figure 3.10 shows the definition of the table_inv
predicate. The proposition table_inv P m states that the predicate P is satisfied by
each key-value pair in the table. The definition makes use of the [∗ list] syntax for
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Definition table_inv (P : key -> val -> iProp Σ) m : iProp Σ :=
[∗ list] kv ∈ all_elements m, P (kv.1) (kv.2).

Lemma table_inv_empty P : table_inv P ∅.

Lemma table_inv_insert P m k x:
table_inv P m ∗ P k x ⊣⊢
table_inv P (insert_val m k x).

Lemma table_inv_remove P m k x xs:
m !! k = Some (x :: xs) ->
table_inv P m ⊣⊢
P k x ∗ table_inv P (remove_val m k).

Lemma table_inv_removal P m seq m':
removal m seq m' ->
table_inv P m ⊣⊢
([∗ list] kv ∈ seq, (∃ k, ⌜as_key (kv.1) = Some k⌝ ∗ P k (kv.2))) ∗
table_inv P m'.

Lemma table_inv_complete P m seq:
complete m seq ->
table_inv P m ⊣⊢
[∗ list] kv ∈ seq, (∃ k, ⌜as_key (kv.1) = Some k⌝ ∗ P k (kv.2)).

Figure 3.10: Definition of table_inv and related lemmas

separating conjunction of a predicate applied to each element of a list. The predicate P
will usually at least require the values to have a certain syntactical form, which would
correspond to them having a certain type in a typed language, though it is in no way
limited to that. Since the predicate takes both a key and a value, it can express a relation
between a value and the key under which it is stored. In addition, because P is an Iris
predicate and table_inv is defined using separating conjunction, it is possible for P to
assert ownership of some resources, in which case that same ownership will be asserted
by table_inv. In other words, it allows the table to own resources in addition to those
required by the data structure itself. For instance, P k v could state that v is a resource
handle while also asserting ownership of the resource associated with v. In that case
table_inv P m would state that m is a dictionary storing resource handles while also
asserting ownership of all the resources associated with the stored handles.

In addition to defining the table_inv predicate, we also provide a few related lem-
mas, which are listed in Figure 3.10. The table_inv_empty, table_inv_insert, and
table_inv_remove lemmas should be self explanatory. The table_inv_removal lemma
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Definition test_1 : expr :=
let: "t" := table_create tab #10 in
table_insert tab "t" #1 #1 ;;
table_insert tab "t" #2 #2 ;;
let: "a" := ref #0 in
table_fold tab (λ: "k" "x" <>, "a" <- !"a" + "x") "t" #() ;;
!"a".

Figure 3.11: Sample program. Here tab is an object of type table shown in Figure 3.3.

states that P k v holds for each pair (k, v) in a possibly incomplete sequence of en-
tries produced by one of the iteration operations. The table_inv_complete lemma is
a corollary to table_inv_removal stating that the predicate holds for all entries in a
complete sequence.

3.3.5 Sample client

To illustrate how the specifications for the hash table module can be used, we here
present a simple client program that uses the module. The program creates a table,
inserts a few numbers into the table, and finally sums up the numbers in the table using
fold. Before we can write the program, however, we need a key type and a hash function
to instantiate the table module. To keep things as simple as possible, we choose nat,
Coqs type of natural numbers, as the key type. As hash function, we choose the identity
function. Thus, the set of legal keys becomes the non-negative integer literals.

The program we will verify is shown in Figure 3.11. The specification we wish to prove
is quite simple: The program should return the value 3. In the proof of this specification,
we apply the specifications for table_create, table_insert, and table_fold. The
first two are straightforward to use. For the table_fold operation, however, we need
to come up with a loop invariant. We choose the invariant test_1_inv m l defined in
Figure 3.12. The invariant first states that all the values in the table are integers. This is
expressed using the table_inv predicate, presented in §3.3.4.1 In addition, the invariant
states that the location l, which will be instantiated by the location returned by the ref
#0 expression in the program, points to an integer that is the result of summing up all
the values visited so far.

With the invariant picked, the specification of table_fold requires that we show
that the loop invariant is updated in each iteration. In other words, we have to prove
the lemma shown in Figure 3.13. Using the table_inv_removal lemma from Figure 3.10
to assert that the value of the currently visited entry is an integer, the proof becomes
quite straight forward.

1Strictly speaking, it is not necessary to state this as part of the invariant as we are dealing with a
persistent predicate. However, in other applications, where non-persistent instances of table_inv are
used, it is necessary to include this in the loop invariant if the proof depends on it.
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Definition int_table : gmap nat _ -> iProp Σ :=
table_inv (fun _ v => ∃ (j : Z), ⌜v = #j⌝).

Fixpoint int_val_sum (seq : list val) :=
match seq with
| [] => Some 0
| #(LitInt x) :: seq => z ← int_val_sum seq ; Some (z + x)
| _ => None
end.

Definition test_1_inv m l seq _ : iProp Σ :=
int_table m ∗
∃ i, ⌜int_val_sum (seq.*2) = Some i⌝

∗ l ↦ #i.

Figure 3.12: Invariant used for the application of table_fold

Lemma test_1_inner m l k x seq a:
permitted m (seq ++ [(k,x)]) ->
{{test_1_inv m l seq a}}

(λ: "k" "x" <>, #l <- !#l + "x") k x a
{{v, test_1_inv m l (seq ++ [(k,x)]) v }}.

Figure 3.13: Specification of the lambda given to table_fold as required by ta-
ble_fold_spec
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3.4 Concurrent hash tables
The hash table module presented in §3.3 is intended to be used in sequential programs
only. If a single table is used concurrently by multiple threads, race conditions may
occur. If, for example, two insertions are performed concurrently on the same bucket,
the updated bucket resulting from the first insertion may be overridden by that of the
second insertion thus causing the first insertion to be undone. The lack of concurrent
support is reflected in the specifications by the fact that all the operations require the
table_in_state m state t proposition to hold, a proposition which in general cannot
be duplicated. Thus, it is impossible for anyone except the sole owner of the proposition
to perform any operations on the table.

We here present an implementation and a specification of concurrent hash tables.
The implementation supports a set of basic operations: create, insert, lookup, and
remove. The implementation is inspired by the ConcurrentHashMap class from the Java
standard library [13].

Before going into detail, we have to consider what kind of specification we can hope
to prove for shared tables. In the sequential case, we modeled each table as a dictionary
allowing us to describe the content of the table precisely at all times. This was possible
because no one except the owner had access to the table and thus the owner would know
that the content of the table would not change between uses. In the case where a table
is shared, this is not the case. Here, other users of the table may change the content at
any time, which means that each individual user cannot in general know the content of
the table when they use it. The question then is: What do we know about the content
of the table from the perspective of a single thread? In general, the answer is basically
nothing. If other threads can change the table arbitrarily then we never know what
the table contains. If we want to know anything, then we need to restrict what other
threads are allowed to do. It may, however, be impossible to choose a set of restrictions
that are suitable for all applications. Instead, we let the client choose. This leads us to
the following approach: The table will be described by a predicate parameterized with
another predicate chosen by the client. This predicate will act as an invariant for the
table in the sense that the dictionary represented by the table will always satisfy it.

3.4.1 Implementation
Like for the sequential version, it is assumed that array operations are available. Addi-
tionally, the implementation also relies on a module providing support for locks. Such
modules already exist and are included with the Coq formalization of Iris. The interface
and specifications for the lock modules are shown in Figure 3.14. The main idea behind
the specification of the lock module is that each lock is parameterized with a proposition
R, which must hold whenever the lock is available. Acquiring the lock will make the
proposition available to the client. When releaseing the lock, the proposition must be
reestablished.

The implementation does not use a single lock to protect an entire table. Rather,
each bucket in a table is protected by its own lock. This ensures that different threads
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Structure lock Σ `{!heapG Σ} := Lock {
(* -- operations -- *)
newlock : val;
acquire : val;
release : val;
(* -- predicates -- *)
(* name is used to associate locked with is_lock *)
name : Type;
is_lock (N: namespace) (γ: name) (lock: val) (R: iProp Σ) : iProp Σ;
locked (γ: name) : iProp Σ;
(* -- general properties -- *)
is_lock_persistent N γ lk R : PersistentP (is_lock N γ lk R);
locked_exclusive γ : locked γ -∗ locked γ -∗ False;
(* -- operation specs -- *)
newlock_spec N (R : iProp Σ) :

{{{ R }}} newlock #() {{{ lk γ, RET lk; is_lock N γ lk R }}};
acquire_spec N γ lk R :

{{{ is_lock N γ lk R }}}
acquire lk

{{{ RET #(); locked γ ∗ R }}};
release_spec N γ lk R :

{{{ is_lock N γ lk R ∗ locked γ ∗ R }}}
release lk

{{{ RET #(); True }}}
}.

Figure 3.14: Interface for the lock modules already included in Iris

can access different buckets concurrently without blocking. This approach is inspired by
the implementation of the ConcurrentHashMap class from the Java standard library.

A table is represented as a pair (a,n), where a is an array and n is the length of a
represented as an integer. Each entry in the array is a pair (lk, l) of a lock lk and
a reference l to a bucket. A bucket is a linked list of key-value pairs, just like in the
non-concurrent version. For the sake of simplicity, this implementation is very minimal
and does not support certain advanced features that one might expect from hash tables
used in practice. In particular, the tables do not support resizing of the arrays. The
arrays remain unchanged after initialization.

The implementation of the operations are mostly as one would expect. One thing
worth noting is how the locks are used. In insert and remove, the lock for the appro-
priate bucket is acquired before the bucket is read and released after the updated bucket
is written. In lookup, no locks are acquired. Thus, the locks are only needed to obtain
write access. Simply reading is always allowed.

29



Definition is_table N P t :=
∃ arr refs locks,
⌜t = (arr, #(length refs))⌝ ∗
⌜length refs > 0⌝ ∗
⌜length refs = length locks⌝ ∗
([∗ list] i ↦ lr ∈ zip locks refs,
let '(l, r) := lr in
∃ lname, is_lock lck (N.@(S i)) lname l (r ↦{1/2} -)) ∗

inv (N.@0)
(array arr (zip_with PairV (LitV ∘ LitLoc <$> refs) locks) ∗
∃ m data,
⌜table_wf m⌝ ∗
⌜content m data⌝ ∗
⌜no_garbage data⌝ ∗
⌜have_keys data⌝ ∗
⌜length data = length refs⌝ ∗
P m ∗
[∗ list] rb ∈ zip refs data,
let '(r, b) := rb in
r ↦{1/2} bucket b).

Figure 3.15: Definition of the is_table predicate for concurrent hash tables.

3.4.2 Table invariants and predicates

Just like the non-concurrent version, both the implementation and specification of the
concurrent hash table are parameterized with a type key and a function hash imple-
menting the class Hashable shown in Figure 3.1.

The proposition is_table N P t states that the value t is a table representing a
dictionary, which satisfies the predicate P and uses the namespace N for invariants. The
predicate P must have type map (list (val * val)) -> iProp Σ, where for map there
exists an instance of the type class FinMap key map. Thus, P is a predicate on Coq level
dictionaries. It is important to note that is_table N P t is persistent, which means
that it can be duplicated freely.

The definition of is_table is shown in Figure 3.15. The predicate existentially
quantifies over the array (arr) and the references (refs) and locks (locks) stored in the
array. The predicate states that the table t has the correct format, that all the lists used
have the same (non-zero) length, and that the locks are indeed all locks. In addition it
defines an Iris invariant. The body of the invariant contains an assertion that the array
contains what it is supposed to contain. In addition, it defines two variables m and data
through existential quantification. At any given time the variable m contains the model
dictionary represented by the table. The data variable has type list bucket_data,
where bucket_data is defined as list (val * val). It is thus a Coq representation of
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the contents of the buckets. The existential quantifiers for these are contained within the
body of the invariant to allow the table to change. If the variables were declared outside
the invariant, the table would be locked into single state that could not be changed.
The body of the invariants contains assertions defined using the predicates table_wf,
content, no_garbage, and have_keys. These are described in §3.1 and §3.3.1. Together
they state that data represents m. The invariant also contains the assertion P m stating
that the table satisfies the user provided predicate.

Finally, the invariant contains a number of assertions of the form r ↦{1/2} bucket
b. This syntax indicates fractional ownership [4, 3] of a heap location. Fractional own-
ership means that the full ownership has been split into multiple parts, each annotated
with a rational number q ∈ (0; 1], which can be recombined into the full ownership ac-
cording to the following rule (expressed using mathematical notation rather than Coq
notation):

l
q1+q27→ v ⊣⊢ l

q17→ v ∗ l q27→ v

The assertion l
17→ v (i.e., when q = 1) represents full ownership (in which case we usually

omit the annotation). Full ownership is needed to modify the value, while reading the
value can be done with any fraction. For all fractions q < 1, the actual value does not
matter. For instance, l 1/107→ v and l

9/107→ v both give exactly the same rights.
Thus, the invariant contains half ownership of each reference. The other halfs are

stored behind the locks (the syntax l ↦{q} - asserts fractional ownership of a reference
l, but with no knowledge of the stored value). The result is that the buckets can always
be read by opening the invariant and obtaining half ownership. However, to modify a
bucket, full ownership is needed, which means the lock must be acquired. In addition,
acquiring the lock allows us to maintain half ownership for as long as we hold the lock.
Thus, we are guaranteed that the bucket is not modified by someone else, while we hold
the lock.

The predicate as described here makes use of the fact that the Iris implementation
already provides fractional heap assertions. However, it could just as well not have been
the case, i.e., it could have been the case that we only had exclusive ownership available.
In this case, we could get the same result by using ghost state. We would need a RA
supporting half ownership of buckets. One such RA could be the following:

Auth
(
(Ex (list (val× val)))?

)
This RA is built from several general constructions described in [18]. For a set S,
Ex (S) is the exclusive RA of S. The valid elements of Ex (S) is the set S and the
composition operator is defined such that a · b is never valid. For a RA M , Auth(M) is
the authoritative RA of M . The authoritative RA construction will be covered in §3.4.4.
We can only construct an authoritative RA from a RA with a unit element, so we use
the construction of optional RA’s M? to extend the exclusive RA with a unit element.
The result is a RA, where • l and ◦ l are valid elements for sequences of pairs of values l.
For all l1 and l2, both • l1 · • l2 and ◦ l1 · ◦ l2 are invalid, while • l1 · ◦ l2 is valid if and only
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if l1 = l2. Both • l and ◦ l each represents half ownership and both parts are needed to
update the list.

What we would do is allocate a ghost resource for each bucket and maintain the
assertion l 7→ bucket(b)∗ ◦ b γ in the invariant for each bucket. Stored behind each lock,
we would have the other half, i.e., each lock would store the proposition ∃b. • b γ . The
result would be that we would be able to read from the heap location just by opening
the invariant. However, when changing the stored value, ◦ b γ will have to be updated,
which can only be done if both halves are available. Therefore the lock must be acquired
to allow writing.

3.4.3 Specifications

Unlike in the sequential case, we do not know exactly which dictionary the table
currently represents. The table is only described using the client provided predicate
P. Since this predicate is provided by the client, we need the client to show that the
predicate is maintained as an invariant when the table is modified, and we need the
client to tell what they want to know about any returned elements. The specifications
are shown in Figure 3.16.

The create operation creates a new empty table with the number of buckets given
as argument. The user thus needs to prove that the invariant holds for the empty
dictionary.

The insert operation inserts a given element under a given key. Since it is never
known exactly which dictionary the table represents, the client needs to show that the
invariant is preserved by the insertion for any dictionary. For this, the precondition
requires a proof of ∀ m, P m ={⊤∖↑N}=∗ P (insert_val m k x) ∗ Q. The notation
P ={E}=* Q means P −∗ |⇛EQ. The update modality allows the client to perform
ghost state updates as well as open invariants in the proof. We also allow the client to
specify a proposition Q that they want returned in the postcondition. This could be any
resources resulting from the proof, that should not be thrown away. It can also serve as a
proof that the operation did indeed update the table. If the specification did not include
this postcondition, then the specification would have an empty postcondition, which
could be satisfied by letting the operation do nothing. With this postcondition, the op-
eration needs to perform the insertion. The basic idea behind this is that when proving
the specification, Q can only be obtained by using ∀ m, P m ={⊤∖↑N}=∗ P (insert_val
m k x) ∗ Q. Doing so, however, updates P m to P (insert_val m k x), which means
the table must be updated.

The remove operation removes and returns an element from the table if possible. For
this operation, the client needs to provide two proofs: One for the case where there is
something to remove, and one for the case where there isn’t. Since only one of the two
will be used, they are specified using regular non-separating conjunction. In the case,
where something is removed, we cannot say exactly what will be returned. Instead, the
user provides a predicate Q describing the returned element. In addition to describing
the returned element, Q may also contain any resources leftover from the proof. In the
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Lemma create_table_spec N P n :
n > 0 -> {{{P ∅}}} create_table #n {{{t, RET t ; is_table N P t}}}.

Lemma table_insert_spec N P Q k k' x t:
as_key k' = Some k ->
{{{is_table N P t ∗ ∀ m, P m ={⊤∖↑N}=∗ P (insert_val m k x) ∗ Q }}}

table_insert t k' x
{{{RET #(); Q}}}.

Lemma table_remove_spec N P Q Q' k k' t:
as_key k' = Some k ->
{{{is_table N P t ∗

(∀ m,
⌜m !! k = None⌝ -∗ P m ={⊤∖↑N}=∗ P m ∗ Q') ∧

∀ m x xs,
⌜m !! k = Some (x :: xs)⌝ -∗ P m ={⊤∖↑N}=∗
P (remove_val m k) ∗ Q k x}}}

table_remove t k'
{{{v x, RET v; ⌜v = NONEV⌝ ∗ Q' ∨ (⌜v = SOMEV x⌝ ∗ Q k x)}}}.

Lemma table_lookup_spec N P Q Q' k k' t:
as_key k' = Some k ->
{{{is_table N P t ∗

(∀ m,
⌜m !! k = None⌝ -∗ P m ={⊤∖↑N}=∗ P m ∗ Q') ∧

∀ m x xs,
⌜m !! k = Some (x :: xs)⌝ -∗ P m ={⊤∖↑N}=∗ P m ∗ Q k x}}}

table_lookup t k'
{{{v x, RET v; ⌜v = NONEV⌝ ∗ Q' ∨ (⌜v = SOMEV x⌝ ∗ Q k x)}}}.

Figure 3.16: Specifications for operations on concurrent hash tables.
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other case, the client just needs to show that the invariant P m is maintained when m
does not change. This is, of course, a very trivial thing to prove by itself. The purpose
of requiring any proof in this case, is to allow the client to require a proof that there
really was nothing to return, by letting them choose a postcondition Q'. Without this,
the specification could be satisfied by an implementation that always returns NONE.

The lookup operation is similar to remove. The difference is that any found element
is still kept in the table. Thus, the user must prove that P holds for the dictionary even
after obtaining the assertion Q on the returned element. This usually means that lookup
cannot be used to obtain any exclusive ownership of resources associated with elements
in the table.

Entry invariants

In order to use a concurrent hash table, the client must choose a predicate describing the
contents of the table. A possible choice for this predicate would be an instance of the
table_inv predicate presented in §3.3.4. This allows the client to state something that
holds for each entry in the table, such as the form of the stored values (i.e., what would
be the type in a typed language). In addition, the table can take ownership of resources
associated with the entries, which would make the resources shared and available to any
user of the table. The table_inv predicate, however, says nothing about which entries it
actually does contain. In particular, it never guarantees that the table contains anything
at all. This cannot be avoided without adding additional constraints with regards to
who can insert and remove elements, as there is always the option that anything inserted
by one thread is quickly removed by another thread.

The specifications in Figure 3.16 are relatively simple to use when combined with the
lemmas in Figure 3.10. The specification for create just requires that table_inv P ∅
holds, which is always the case according to the lemma table_inv_empty. For insert
operations, we do not need the client chosen postcondition Q, used by the specification,
so it can just be instantiated with True. This means we just need to show the following:

∀m, table_inv P m ={⊤∖↑N}=∗ table_inv P (insert_val m k x)

If the predicate P k x holds, then this follows from lemma table_inv_insert. For
remove operation, we need to choose a predicate Q returned in the success case and a
proposition Q' return in the failure case. We choose the per-entry predicate P for the
success case, which means we have to prove

∀ m x xs, ⌜m !! k = Some (x :: xs)⌝ -∗
table_inv P m ={⊤∖↑N}=∗ table_inv P (remove_val m k) ∗ P k x

This follows directly from the lemma table_inv_remove. This also means the propo-
sition P k x is given in the postcondition, if something is removed. We don’t need
anything in the postcondition in the failure case, so we just pick True as the returned
proposition. This makes the proof for this case trivial. The lookup operation is similar
to remove, however, since we are not removing the found element from the table, we
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Definition test_1 : expr :=
let: "t" := create_table #10 in
let: "x" := ref #() in
table_insert "t" #1 #1 ||| ("x" <- table_lookup "t" #1) ;;
!"x".

Figure 3.17: Very simple program that uses the concurrent table

cannot take over any ownership claimed by the table. In other words, we need P k x to
be duplicable.

Note that the specifications in Figure 3.16 are more complicated than what is needed
in this case. In particular, we did not need the client specified postconditions for the
cases where nothing was returned. In §3.4.4, we will see a more complex instantiation of
the table predicate, which makes full use of all the generality offered by the specifications.

As a proof that the specifications can indeed by used, we present a very simple client
program that uses a concurrent table. The program is shown in Figure 3.17. It creates a
table, and then inserts something into the table while in parallel performs a lookup. The
specification for this program is WP test_1 {{v, ⌜v = SOMEV #1 \/ v = NONEV⌝}},
and it is proven by instantiating the specifications with the predicate table_inv (fun
_ v => ⌜v = #1⌝), i.e., all entries in the table is the number one. While admittedly this
predicate is too simple for any practical use, it shows that it is indeed possible to use the
specifications in conjunction with table_inv. There is nothing preventing table_inv
from being instantiated with more complex predicates in more complex programs.

3.4.4 Partial table ownership
The way the concurrent hash table module is specified, the entire table can be shared
freely among any number of threads. As a consequence, none of the threads have much
control over any part of the table. It may be useful for a single thread to have full control
over some of the entries in the table. It is, in fact, possible to achieve this using the
specifications presented above. The solution uses ghost state to describe and represent
ownership of part of the table.

As explained in §2.3, ghost state is defined from a Resource Algebra (RA). We will
use a construction called an authoritative RA, which comes bundled with Iris [18]. For
a RA M with a unit element, the authoritative RA Auth(M) allows us to express that
someone has full ownership over an object represented by an element of M while others
may have ownership of fragments of that object. Full ownership is expressed as • a and
it holds that • a · • b is never valid, i.e., full ownership is exclusive. It is usually held by
a single authoritative entity responsible for administrating all access to the represented
object. We will therefore often call • a an authoritative element. Partial ownership is
expressed as ◦ a and ◦ a · ◦ b = ◦ (a · b). It also holds that • a · ◦ b is valid only if a and
b are valid and b ≼ a. In other words a partial element describes part of the object
described by the single authoritative element. We also have frame preserving updates
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described by the following rule:
auth-update
(a1, b1)

l⇝ (a2, b2)

• a1 · ◦ b1 ⇝ • a2 · ◦ b2

Here (a1, b1)
l⇝ (a2, b2) denotes a local update, which is defined as follows:

(a1, b1)
l⇝ (a2, b2) ≜ ∀n, a?f .b1 ∈ V ∧ a1 = b1 · a?f ⇒ a2 ∈ V ∧ b2 = b2 · a?f

In other words, we can perform an update to both the authoritative element and a
fragment, if the update does not change the represented object in any way that can be
observed in any other fragments.

What we will do is choose an appropriate RA M for representing fragments of a
dictionary and allocate a ghost resource represented by the RA Auth(M). As invariant
for is_table, we choose the authoritative element. Since the fragments are always
consistent with the authoritative element, each fragment will describe part of the table
and assert ownership accordingly.

What we need now is a RA that describes parts of a dictionary. We want each
element to describe a set of keys and the partial table obtained by picking the entries
from the whole table, where the key is contained in the set of keys. The element should
provide exclusive permission to perform any action on any key contained within the set,
and no access to any other keys. The set of valid elements should thus be:{

(m,S) ∈ (K
fin−⇀ list(Val))× ℘(K)

∣∣∣dom(m) ⊆ S
}
,

where K is the set of keys available. Composition should be (m1, S1) · (m2, S2) =
(m1 ∪m2, S1 ∪ S2) if S1 and S2 are disjoint. If they are not disjoint, the composition
should be invalid. In other words, each key can only be contained by the set of one
element, which means that each element provides exclusive access to its set of keys.

While the RA, as described above, is fairly simple conceptually, there are some
issues that must be resolved when we define it formally. The first issue is that the
composition operator must map elements with intersecting sets to something invalid.
The Coq implementation of Iris requires that the composition operator is implemented
as a regular Coq function, which must be computable. Since disjointness of sets is not
decidable in general, we cannot define an operator, that directly decides whether the
result should be valid or not. We do, however, have another option. Validity of elements
does not have to be decidable in general. Thus, we do not actually need to decide
whether the sets intersect, when computing the composition. We just need to make sure
that intersecting sets do indeed map to something invalid, even if we cannot in general
decide whether the elements are invalid. Our solution is to not just use sets, but rather
multisets. We define a type of multisets using functions from the type of elements to
natural numbers:

Record multiset (A : Type) : Type := {multiset_car : A -> nat}.
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Compared to using general sets (defined using predicates), the only limitation to the sets
that can be expressed using multiset is that membership of the set must be decidable.
Union on multisets is defined using addition in the obvious way. We also introduce
the predicate multiset_no_dup on the multiset type, which state that a multiset
contains no duplicates, i.e., the function multiset_car never returns a number greater
than one. It is easy to see that multiset_no_dup (X ∪ Y) holds if and only if X and
Y are disjoint and multiset_no_dup holds for both X and Y. Thus, we can get what we
want by requiring that valid elements satisfy multiset_no_dup.

Next, we need to make sure that the RA satisfies all the requirements listed in
Figure 2.3. One property in particular turns out to be a little tricky:

∀a, b. (a · b) ∈ V ⇒ a ∈ V

In other words, if the result of a composition is valid, then both components must valid
as well. With our current composition, we have the following:

(m,S) = (m, ∅) · (∅, S)

If (m,S) is valid, and m ̸= ∅, then this example violates the above rule, as (m, ∅) will not
be valid (the domain of m cannot be contained within the empty set). Our solution is to
specifically check whether this is a problem in the composition operator. In other words,
we modify the composition operator to specifically check whether the domain of each
map is contained within the corresponding set. If one of the maps do not pass the test,
the composition will return a special element ⊥, which is never valid. The reason we are
able to perform this check is that the domains are finite and membership of multisets
is decidable.

Finally, the construction for an authoritative RA requires that our RA has a unit
element. The obvious candidate would be (∅, ∅), as ∅ is generally a unit for union.
However, with the change above, it turns out that this will not work. In particular
(m,S) · (∅, ∅) = ⊥ if dom(m) /∈ S. Instead, we have add a new element ϵ, which acts
specifically as a unit.

We define the RA in Coq. The definitions are shown in Figure 3.18. The definitions
are for the most part exactly as described above. One small exception is the union_with
function used in the composition operator. While we do have a union (∪) operator
for finite maps available, it is not commutative when the operands have intersecting
domains. We know that the composition of maps with intersecting domains is never valid.
However, even though we do not care much about invalid elements, the definition of a
RA requires that the operator is commutative, even for invalid elements. The function
union_with is a generalization of the union operator, where we provide a function that
decides what to do whenever a key is used in both operand maps. As mentioned above,
we do not really care about invalid elements. We just need to make sure that all the
requirements for a RA are satisfied, so we just pick a constant dummy value (the empty
list) that we use in each case.

We can show that the following local updates hold:
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Context {K V: Type} `{FinMap K M}.

Inductive partial_table : Type :=
| PTCar : (M (list V) * multiset K) -> partial_table
| PTBot : partial_table
| PTUnit : partial_table.

Instance partial_table_op : Op partial_table :=
fun X Y => match X, Y with

| PTCar (m1, d1), PTCar (m2, d2) =>
if (decide (map_Forall (fun k _ => k ∈ d1) m1 /\

map_Forall (fun k _ => k ∈ d2) m2))
then PTCar (union_with (fun _ _ => Some []) m1 m2,

d1 ∪ d2)
else PTBot

| X, PTUnit => X
| PTUnit, Y => Y
| _, _ => PTBot
end.

Instance partial_table_core : PCore partial_table :=
fun _ => Some PTUnit.

Instance partial_table_valid : Valid partial_table :=
fun X => match X with

| PTCar (m, d) =>
multiset_no_dup d /\
forall k, (is_Some (m !! k) -> k ∈ d)

| PTUnit => True
| PTBot => False
end.

Figure 3.18: The definition of the RA partial_table
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Lemma partial_table_local_update_partial_alter m1 d1 m2 d2 f k :
k ∈ d2 ->
(PTCar (m1, d1), PTCar (m2, d2)) ~l~>
(PTCar (partial_alter f k m1, d1), PTCar (partial_alter f k m2, d2)).

Here partial_alter f k m is the most general operation for changing an entry in a
map. The function f is called with the value stored under key k in m, or None if k is not
bound. If f returns with a value, then partial_alter returns m, where k is mapped
to said value, and if f returns None, then partial_alter removes the entry at k from
m. Both insert and delete are implemented as specializations of partial_alter. In
other words, this lemma states that we can make any change at any key as a local update
if the key is within the multiset.

With this, we can prove derived specifications for the concurrent hash table mod-
ule. These specification are shown in Figure 3.19 and are all derived from the general
specifications in Figure 3.16. They use the authoritative RA constructed from the par-
tial_table RA. We define two predicates partial_inv and partial_own. The former
contains the authoritative element and is given to is_table as the invariant. The latter
represents ownership of part of the table. Specifically, partial_own γ m d states that
there exists some table m' associated with ghost name γ, and m contains exactly the en-
tries of m', where the keys are contained in d. In addition, it gives exclusive permission
to perform any operation on the keys contained in d.

In the specification for create, we allocate a new ghost variable with initial state ●
PTCar (∅, ⊤) ⋅ ◯ PTCar (∅, ⊤). We then split it and give the authoritative part to
the general specification, and return the (currently complete) fragment in the postcon-
dition.

In the specification for insert, in order to use the general specification we need to
show the following:

∀ m, partial_inv γ m ={⊤∖↑N}=∗ partial_inv γ (insert_val m k x)

We can perform this update by supplying the partial_own γ m d that we have avail-
able. We also instantiate the parameter Q in the general specification with partial_own
γ (insert_val m k x) d, which allows us to get the ownership back when the opera-
tion is finished.

In the specification for remove, we need to handle two cases: The case where there is
something to remove, and the case where there is not. In the former case, we instantiate
the parameter Q with the following:

(∃ xs, ⌜m !! k = Some (x :: xs)⌝) ∗ partial_own γ (remove_val m k) d)

The first part ensures that the returned value is indeed the correct one, while the second
part ensures that we get the ownership back. In the latter case, we instantiate Q' with
⌜m !! k = None⌝ ∗ partial_own γ m d. The first part allows us to prove that if the
operation returns NONE, then it is because there really is nothing to return. Ignoring the
second part for now, this means that we have to prove the following:
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Definition partial_inv γ m : iProp Σ := own γ (● PTCar (m, ⊤)).
Definition partial_own γ m d : iProp Σ := own γ (◯ PTCar (m, d)).

Lemma partial_table_create_spec N n:
n > 0 ->
WP create_table #n

{{t, ∃ γ, is_table N (partial_inv γ) t ∗ partial_own γ ∅ ⊤}}.

Lemma partial_table_insert_spec N γ m d k k' x t:
as_key k' = Some k ->
k ∈ d ->
{{{is_table N (partial_inv γ) t ∗ partial_own γ m d }}}

table_insert t k' x
{{{RET #(); partial_own γ (insert_val m k x) d}}}.

Lemma partial_table_lookup_spec N γ m d k k' t:
as_key k' = Some k ->
k ∈ d ->
{{{is_table N (partial_inv γ) t ∗ partial_own γ m d }}}

table_lookup t k'
{{{RET match m !! k with

| Some (v :: _) => SOMEV v
| _ => NONEV end ;

partial_own γ m d}}}.

Lemma partial_table_remove_spec N γ m d k k' t:
as_key k' = Some k ->
k ∈ d ->
{{{is_table N (partial_inv γ) t ∗ partial_own γ m d }}}

table_remove t k'
{{{RET match m !! k with

| Some (v :: _) => SOMEV v
| _ => NONEV end ;

partial_own γ (remove_val m k) d}}}.

Figure 3.19: Derived specifications
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Definition test_2 : expr :=
let: "t" := create_table #10 in
table_insert "t" #1 #1 ||| table_insert "t" #2 #2 ;;
(table_lookup "t" #1, table_lookup "t" #2).

Figure 3.20: Very simple program

∀ m', ⌜m' !! k = None⌝ -∗ partial_inv γ m'
={⊤∖↑N}=∗ partial_inv γ m' ∗ ⌜m !! k = None⌝

Even though we do not perform any ghost updates, we still need to provide partial_own
γ m d in order to establish m !! k = m' !! k2. Since we provide this proposition, we
also need to get it back, hence the second part. Also note that we use partial_own γ
m d in when proving proofs for both the success and the failure case. The reason we can
do this is that the two propositions are conjoined using regular conjunction rather than
separating conjunction.

Finally, the lookup specification is proven in almost the exact same way as the
remove specification. The only difference is that we do not need to perform a ghost
update in the case where something is returned.

We illustrate how these derived specifications can be used through a very simple
program. The program, which is shown in Figure 3.20, creates a table and performs
two insertions in parallel using two different keys. We want to prove the following
specification:

WP test_2 {{v, ⌜v = (SOMEV #1, SOMEV #2)⌝}}

The proof of this specification goes as follows as follows: We first use the specification
partial_table_create_spec to obtain full ownership of the newly created table repre-
sented by the assertion partial_own γ ∅ ⊤. We then partition the ownership into two
parts: One covering all even keys and one covering all odd keys (we could just as well
have chosen any other partitioning as long as 1 and 2 become separated). The result is
the following proposition:

partial_own γ ∅ {[n | Odd n]} ∗ partial_own γ ∅ {[n | Even n]}

The next step is to verify the two parallel insertions. Since we now have two separate
ownership assertions, we can give one to each thread. We give ownership of the odd
keys to the first thread (the one inserting at key 1) and ownership of the even keys
to the second thread. For each thread, we use partial_table_insert_spec to verify
the insertion. This leaves us with partial_own γ {[1 := [#1] ]} {[n | Odd n]} in
the first thread and partial_own γ {[2 := [#2] ]} {[n | Even n]} in the second
thread. When the two threads join, we get both of these propositions back. These can

2We actually need to establish this in all cases, including in insert and the success case for remove.
In those cases, however, we need the proposition anyway to perform the ghost update
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be recombined to obtain partial_own γ {[ 1 := [#1] ; 2 := [#2] ]} ⊤, which we
use together with partial_table_lookup_spec to finish the proof. Strictly speaking
we do not need to recombine the two propositions in this particular case, as we can also
choose to use only the partial ownerships to perform the lookups.
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Chapter 4

Discussion and Perspectives

4.1 Using Iris

Iris is a quite recent framework that is still being developed further, and as such has not
been used for proving specifications of non-trivial programs very often. In this project,
Iris has been used for verifying non-trivial program modules. During this process, several
features of Iris have been used. We used higher-order specifications as part of the
specification for fold, a higher-order function, we used invariants as part of verifying
the concurrent hash table module, and we used custom ghost state to provide ownership
of part of a concurrent hash table.

The Iris logic is formalized using quite complex semantics that rely on step-indexing
[1] to ensure consistency (an explanation of step-indexing is beyond the scope of this
report). Nonetheless, we have been able to ignore step-indexing almost entirely when
proving the specifications presented in this report. For the high-level descriptions of the
specifications and proofs presented here in this report, we did not even have to mention
step-indexing. While writing the actual proofs in Coq, the only signs of step-indexing,
that become present, were a few occurrences of the later modality ▷ (which states that
a proposition holds after one step), and in essentially all of these cases it appeared in a
context where it could easily be eliminated. Some of the more interesting cases where
this happened, was cases were Löb induction was used. By Löb induction we mean a
proof that uses the Löb rule ▷P ⇒ P ⊢ P , which states that when proving a proposition,
we are allowed to assume that the proposition holds after one step. In our case, it was
used to prove statements about recursive programs. In particular, it was used to prove
specifications for functions that iterated over an array of buckets.

Being able to do the work in a proof assistant like Coq has been quite helpful. Coq
ensures that we never make any mistakes in our proofs without them being caught. This
is particularly useful when the proofs involve a lot of small details, as it becomes very
easy to accidentally overlook something when doing such proofs by hand. Many of the
proofs used in this project have involved a lot of details, including almost all presented
specifications. The drawback of using Coq is that it requires everything to be proven in
perfect detail, which means that one often spends time proving small details that would
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barely even be present in hand written proofs. For instance, Coq has separate types
for the sets N and Z (nat and Z respectively), which means we often have to explicitly
convert between the two when proving statements that involve both types.

The perhaps biggest advantage of using Coq is that it makes it easier to make changes.
In general, changing a definition may cause proofs that involve this definition to become
invalid until the proof has been changed accordingly. It is not always obvious which
changes are needed. When doing the proofs by hand, it may be hard enough that
the only way to ensure that everything has been fixed is to go through all proofs that
depend on the definition in detail. When using Coq, however, this becomes unnecessary.
Instead, after making the change, we let Coq process all existing proofs. Whenever Coq
encounters something that is now incorrect, it will report the error. We then fix the
error and repeat until Coq reports no errors. Thus we end up focusing only on what
needs to be fixed and nothing else.

4.2 Related work
Similar work on specifying hash tables for sequential use was done by Pottier [21], and
the specifications presented in §3.3 uses many of the same ideas used in that work.
His specifications are written in CFML [5], a tool that parses an OCaml program and
outputs a characteristic formula from which specifications can be proven in Coq using
higher-order separation logic. His work, however, is limited to sequential program and
does not mention concurrency. It is part of a larger project called Vocal, which aims to
develop a library of verified OCaml data structures and algorithms.

Filliâtre and Pereira [9] present a very general way of specifying iteration. Their
approach generalizes not just to data structures, but to any algorithm that produces
a sequence of elements, even infinite sequences. The general idea is to describe the
produced sequences using predicates enumerated and completed. The former describes
the possible sequences that can be produced by iteration, while the latter describes the
complete sequences that can be produced. The predicates permitted and complete
used in this report can be seen as concrete instances of enumerated and completed.
Additionally, they verify some concrete implementation of iterators using the tool Why3.

Krishnaswami et al. [19] present general specifications and proofs of common design
patterns using separation logic, including iterators for collections. When a collection is
modified, all existing iterators for that collection are invalidated. This is handled by
describing both the collection and the iterators with predicates parameterized with an
abstract state of the collection. The specifications for the iterator operations require that
the state parameters of the collection and the iterator match. This approach is similar
to the approach used in this report. In addition, they also support composite iterators,
i.e., iterators constructed from other iterators using operations like filter, which given
an iterator and a predicate (i.e., a function from elements to boolean) returns a new
iterator which skips the elements from the old iterator that do not satisfy the predicate,
and map2, which given two iterators and a binary function returns an iterator producing
elements that are the result of applying the function to the elements given by the old
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iterators. They prove the specifications in Coq using the Ynot extension.
Haack and Hurlin [11] propose multiple specifications for Java iterators. They pro-

pose protocols that avoids errors such as concurrent modification and going out of
bounds, and use separation logic to enforce them. They handle iterators that modify the
underlying collections through methods such as iterator.remove. Concurrent modifi-
cation is avoided by letting the iterators own the underlying collection. They support
fractional permissions, which allows multiple read-only iterators or a single read-write
iterator to exist.

Da Rocha Pinto et al. [7] present a general abstract specification of concurrent in-
dexes. They use the term index to describe any data structure that stores data as
key-value pairs, where entries are identified by their keys. Their specifications are based
on Concurrent Abstract Predicates [8], which provide a separation logic for verifying con-
current programs. Their approach is to split the index based on keys and allow threads
to take ownership of individual keys. This approach is similar to what we achieved with
our partial table ownership in §3.4.4, though we allow splitting into potentially infinite
disjoint sets of keys, while they handle keys individually. They also allow multiple vari-
ants of shared access to a single key using fractional permissions, while our solution
currently only support exclusive ownership.

Xiong et al. [22] present an abstract specification for concurrent maps in Java. They
also verify that the ConcurrentSkipListMap class in the Java standard library satisfy
this specification. The specification is based on the TaDA program logic [6], which uses
the notion of atomic triples. An atomic triple is used to specify the behavior of an
operation that is logically atomic, which means that to all other threads in the program
it looks like all the changes made by the operation happen in a single step.

4.3 Conclusion
We have described and proven specifications for two implementations of hash tables.
Both implementations are parameterized with a set of keys (which need not correspond
to a data type in common programming languages) and can store multiple values for
each key. The first implementation is a classic implementation for sequential use only.
It automatically increases the number of buckets when the number of entries grow large
and supports iteration through two higher-order operations: fold and cascade. The
second implementation is a concurrent implementation. The specifications describes
hash tables using a higher-order predicate, that asserts no ownership by itself and can
be freely shared. We also showed how ownership of part of the table can be obtained by
choosing the right parameter for the predicate.

4.4 Future work
The implementation of concurrent hash tables used here is very minimal and leaves out
several features that would often be present in implementations used in actual systems.
The first missing feature is automatic resizing of the array of buckets as the number
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of elements grow. The challenge here is to transfer all elements in the table to a new
array, while making sure that all changes performed concurrently with the transfer are
preserved. Creating an implementation that does this is not trivial and verifying cor-
rectness may be even less so.

Another missing feature is operations for iteration. The question here would be what
the specifications would look like. In the special case where the client has full ownership
of the table, the specification would be similar to what we have for the sequential hash
table, however, in the general case this is not so. In particular, it may not be certain
which elements are visited if the table is modified while iteration occurs.

Both implementations use functional lists as buckets, however, other data structures
(e.g. mutable lists and trees) could be used as well. Da Rocha Pinto et al. [7] argue that
the type of data structure used for buckets can be abstract in the definition of a hash
table. The implementation of hash tables would thus be parameterised with another type
of tables. All operations on the tables would make use of the corresponding operations
of the buckets provided by the table interface.

Future development of Iris may lead to the possibility of simpler specifications for
concurrent hash tables than what we have shown. Xiong et al. [22] propose simple
specifications that use atomic triples. Like regular Hoare triples, an atomic triple specifies
a precondition, which must hold before an operation is performed, and a postcondition,
which will hold after the operation. However, in addition, it states that the operation will
be logically atomic, which means that to all other threads it will look like the operation
was performed in a single step. In other words, the program will, for all purposes, never
be in an intermediary state where neither the precondition nor the postcondition holds.
Atomic triples were in fact part of Iris 1.0 [15], however, Iris 3.0 included changes that
resulted in atomic triples, as defined previously, no longer working. If atomic triples
return to Iris in the future, then it might be possible to prove specifications similar to
those proposed by Xiong et al.
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