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1 INTRODUCTION
Haskell is often considered a pure functional programming language because effectful computations

are encapsulated using monads. To preserve purity, values usually cannot escape from those monads.

One notable exception is the ST monad, introduced by Launchbury and Peyton Jones [1994]. The

ST monad comes equipped with a function runST : (∀β , ST β τ ) → τ that allows a value to escape

from the monad: runST runs a stateful computation of the monadic type ST β τ and then returns

the resulting value of type τ . In the original paper [Launchbury and Peyton Jones 1994], the authors

argued informally that the ST monad is “safe”, in the sense that stateful computations are properly

encapsulated and therefore the purity of the functional language is preserved.
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In this paper we present a logical relations model of STLang, a call-by-value higher-order

functional programming language with impredicative polymorphism, recursive types, and a Haskell-

style ST monad type with runST. In contrast to earlier work, the operational semantics of STLang
uses a single global mutable heap, capturing how the language would be implemented in reality. We

use our logical relations model to show for the first time that runST provides proper encapsulation of
state. Concretely, we state a number of contextual refinements and equivalences that are expected

to hold for pure computations and we then use our logical relations model to prove that they

indeed hold for STLang, i.e., in the presence of stateful computations encapsulated using runST.
Moreover, we show a State-Independence theorem that intuitively expresses that, for any well-typed

expression e of type τ , the evaluation of e in a heap h is independent of the choice of h, i.e., e
cannot read from or write to locations in h but may allocate new locations (via encapsulated stateful

computations). Note that this is the strong result one really wishes to have since it is proved for a

standard operational semantics using a single global mutable heap allowing for updates in-place, not

an abstract semantics partitioning memory into disjoint regions as some earlier work [Launchbury

and Peyton Jones 1995; Moggi and Sabry 2001].

In STLang, values of any type can be stored in the heap, and thus it is an example of a language

with so-called higher-order store. It is well-known that it is challenging to construct logical relations

for languages with higher-order store. We define our logical relations model in Iris, a state-of-

the-art higher-order separation logic [Jung et al. 2016, 2015; Krebbers et al. 2017a]. Iris’s base

logic [Krebbers et al. 2017a] comes equipped with certain modalities which we use to simplify the

construction of the logical relation. Logical relations for other type systems have recently been

defined in Iris [Krebbers et al. 2017b; Krogh-Jespersen et al. 2017], but to make our logical relations

model powerful enough to prove the contextual equivalences for purity, we use a new approach to

defining logical relations in Iris, which involves several new technical innovations, described in §3

and §5.

Another reason for using Iris is that the newly developed powerful proof mode for Iris [Krebbers

et al. 2017b] makes it possible to conduct interactive proofs in the Iris logic in Coq, much in the

same way as one normally reasons in the Coq logic itself. Indeed, we have used the Iris proof mode

to formalize all the technical results in this paper in Iris in Coq.

In the remainder of this Introduction, we briefly recap the Haskell ST monad and recall why

runST intuitively encapsulates state. We emphasize that STLang, unlike Haskell, is call-by-value;
we show Haskell code to make the examples easier to understand. Finally, we give an overview of

the technical development and our new results.

1.1 A Recap of the Haskell ST Monad
The ST monad, as described in [Launchbury and Peyton Jones 1994] and implemented in the

standard Haskell library, is actually a family ST β of monads, where β ranges over types, which

satisfy the following interface. The first two functions

return :: α → ST β α
(>>=) :: ST β α → (α → ST β α ') → ST β α'

are the standard Kleisli arrow interface of monads in Haskell; >>= is pronounced “bind”. Recall

that in Haskell, free type variables (α , α ′, and β above) are implicitly universally quantified.
1

The next three functions

newSTRef :: α → ST β (STRef β α)
readSTRef :: STRef β α → ST β α
writeSTRef :: STRef β α → α → ST β ()

1
In STLang, we use capital letters, e.g. X , for type variables and use ρ for the index type in ST ρ τ and STRef ρ τ .
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fibST :: Integer → Integer

fibST n =

let fibST ' 0 x _ = readSTRef x

fibST ' n x y = do

x' <- readSTRef x

y' <- readSTRef y

writeSTRef x y'

writeSTRef y (x'+y')

fibST ' (n-1) x y

in

if n < 2 then n else

runST $ do

x <- newSTRef 0

y <- newSTRef 1

fibST ' n x y

let fibST : Z -> Z =

let rec fibST ' n x y =

if n = 0 then !x

else bind !x in λ x' ->

bind !y in λ y' ->

bind x := y' in λ () ->

bind y := (x'+y') in λ () ->

fibST ' (n-1) x y

in

if n < 2 then n else

runST {

bind (ref 0) in λ x ->

bind (ref 1) in λ y ->

fibST ' n x y }

Fig. 1. Computing Fibonacci numbers using the ST monad in Haskell (left) and in STLang (right). Haskell code
adapted from https://wiki.haskell.org/Monad/ST. do is syntactic sugar for wrapping bind around a sequence
of expressions.

are used to create, read from and write into references, respectively. Notice that the reference type
STRef β τ , contains the type of the contents of the reference cells, τ , but also another type parameter,

β , which, intuitively, indicates which (logical) region of the heap this reference belongs to. The

interesting part of the interface is the interaction of this type parameter with the following function

runST :: (∀ β. ST β α) → α

The runST function runs effectful computations and extracts the result from the ST monad. Notice

the impredicative quantification of the type variable of runST.
Finally, equality on references is decidable:

(==) :: STRef β α → STRef β α → bool

Notice that equality is an ordinary function, since it returns a boolean value directly, not a value of

type ST β bool.
Figure 1 shows how to compute the n-th term of the Fibonacci sequence in Haskell using the ST

monad and, for comparison, in our model language STLang. Haskell programmers will notice that

the STLang program on the right is essentially the same as the one on the left after the do-notation

has been expanded. The inner function fibST’ can be typed as follows:

fibST ' :: Integer → STRef β Integer → STRef β Integer → ST β Integer

Hence, the argument of runST has type (∀ β. STRef β Integer) and thus fibST indeed has return type

Integer.

1.2 Encapsulation of State Using runST: What is the Challenge?
The operational semantics of the newSTRef, readSTRef, writeSTRef operations is intended to

be the same as for ML-style references. In particular, an implementation should be able to use a

global heap and in-place update for the stateful operations. The ingenious idea of Launchbury and

Peyton Jones [1994] is that the parametric polymorphism in the type for runST should still ensure

that stateful computations are properly encapsulated and thus that ordinary functions remain pure.

The intuition behind this intended property is that the first type variable parameter of ST, denoted

β above, actually denotes a region of the heap, and that we can imagine that the heap consists of a
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collection of disjoint regions, named by types. A computation e of type ST β τ can then read, write,

and allocate in the region named β , and then produce a value of type τ .
Moreover, if e has type ∀β . ST β τ , with β not free in τ , the intuition is that runST e can allocate

a fresh region, which e may use and then, since β is not free in τ , the resulting value of type τ
cannot involve references in the region β . It is therefore safe to discard the region β and return the

value of type τ . Since stateful computations intuitively are encapsulated in this way, this should

also entail that the rest of the “pure” language indeed remains pure. For example, it should still be

the case that for an expression e of type τ , running e twice should be the same as running it once.

More precisely, we would expect the following contextual equivalence to hold for any expression e
of type τ :

letx = e in (x ,x) ≈ctx (e, e) (∗)

Note that, of course, this contextual equivalence would not hold in the presence of unrestricted

side effects as in ML: if e is the expression y := !y + 1, which increments the reference y, then the

reference would be incremented by 1 on the left hand-side of (∗) and by 2 on the right.

Similar kinds of contextual equivalences and refinements that we expect should hold for a pure

language should also continue to hold. Moreover, we also expect that the State-Independence

theorem described above should hold.

Notice that this intuitive explanation is just a conceptual model — the real implementation of the
language uses a standard global heap with in-place update and the challenge is to prove that the type
system still enforces this intended proper encapsulation of effects.
In this paper, we provide a solution to this challenge: we define a higher-order functional

programming language, called STLang, with impredicative polymorphism, recursive types, and a

Haskell-style ST monad type with runST. The operational semantics uses a global mutable heap

for stateful operations. We develop a logical relations model which we use to prove contextual

refinements and equivalences that one expects should hold for a pure language in the presence of

stateful computations encapsulated using runST.
Earlier work has focused on simpler variations of this challenge; specifically, it has focused

on type safety, and none of the earlier formal models can be used to show expected contextual

equivalences for the pure part of the language relative to an operational semantics with a single

global mutable heap. In particular, the semantics and parametricity results of Launchbury and

Peyton Jones [1995] is denotational and does not use a global mutable heap with in-place update,

and they state [Launchbury and Peyton Jones 1995, Section 9.1] that proving that the remaining

part of the language remains pure for an implementation with in-place update “would necessarily

involve some operational semantics.” We discuss other related work in §7.

1.3 Overview of Results and the Technical Development
In §2 we present the operational semantics and the type system for our language STLang. In this

paper, we focus on the encapsulation properties of a Haskell-style monadic type system for stateful

computations. The choice of evaluation order is an orthogonal issue and, for simplicity (to avoid

having to formalize a lazy operational semantics), we use call-by-value left-to-right evaluation

order. Typing judgments take the standard form Ξ | Γ ⊢ e : τ , where Ξ is an environment of type

variables, Γ an environment associating types to variables, e is an expression, and τ is a type. For

well-typed expressions e and e ′ we define contextual refinement, denoted Ξ | Γ ⊨ e ⪯ctx e ′ : τ . As
usual, e and e ′ are contextually equivalent, denoted Ξ | Γ ⊨ e ≈ctx e ′ : τ , if e contextually refines e ′

and vice versa. With this in place, we can explain which contextual refinements and equivalences

we prove for STLang. The soundness of these refinements and equivalences means, of course, that

one can use them when reasoning about program equivalences.
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The contextual refinements and equivalences that we prove for pure computations are given in

Figure 2. To simplify the notation, we have omitted environments Ξ and Γ in the refinements and

equivalences in the Figure. Moreover, we do not include assumptions on typing of subexpressions

in the Figure; precise formal results are stated in §4.

Refinement (Neutrality) expresses that a computation of unit type either diverges or produces

the unit value. The contextual equivalence in (Commutativity) says that the order of evaluation

e ⪯ctx () : 1 (Neutrality)

letx = e2 in (e1,x) ≈ctx (e1, e2) : τ1 × τ2 (Commutativity)

letx = e in (x ,x) ≈ctx (e, e) : τ × τ (Idempotency)

lety = e1 in rec f (x) = e2 ⪯ctx rec f (x) = lety = e1 in e2 : τ1 → τ2 (Rec hoisting)

lety = e1 inΛ e2 ⪯ctx Λ (lety = e1 in e2) : ∀X . τ (Λ hoisting)

e ⪯ctx rec f (x) = (e x) : τ1 → τ2 (η expansion for rec)

e ⪯ctx Λ (e _) : ∀X . τ (η expansion for Λ)

(rec f (x) = e1) e2 ⪯ctx e1[e2, (rec f (x) = e1)/x , f ] : τ (β reduction for rec)

(Λ e) _ ≈ctx e : τ [τ
′/X ] (β reduction for Λ)

Fig. 2. Contextual Refinements and Equivalences for Pure Computations

for pure computations does not matter: the computation on the left first evaluates e2 and then

e1, on the right we first evaluate e1 and then e2. The contextual equivalence in (Idempotency)

expresses the idempotency of pure computations: it does not matter whether we evaluate an

expression once, as done on the left, or twice, as done on the right. The contextual refinements

in (Rec hoisting) and (Λ hoisting) formulate the soundness of λ-hoisting for ordinary recur-

sive functions and for type functions. The contextual refinements (η expansion for rec) and

(η expansion for Λ) express η-rules for ordinary recursive functions and for type functions. The

contextual refinements (β reduction for rec) and (β reduction for Λ) express the soundness
of β-rules for ordinary recursive functions and for type functions.

In addition, we prove the expected contextual equivalences for monadic computations, shown in

Figure 3.

bind e in (λ x . returnx) ≈ctx e : ST ρ τ (Left Identity)

e2 e1 ⪯ctx bind (return e1) in e2 : ST ρ τ (Right Identity)

bind (bind e1 in e2) in e3 ⪯ctx bind e1 in (λ x . bind (e2 x) in e3) : ST ρ τ ′ (Associativity)

Fig. 3. Contextual Equivalences for Stateful Computations

The results in Figure 2 are the kind of results one would expect for pure computations in a call-

by-value language; the challenge is, of course, to show that they hold in the full STLang language,

that is, also when subexpressions may involve arbitrary (possibly nested) stateful computations

encapsulated using runST. That is the purpose of our logical relation, which we present in §3. We

further use our logical relation to show the following State-Independence theorem:
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Theorem 1.1 (State Independence).

· | x : STRef ρ τ ′ ⊢ e : τ ∧ (∃h1, ℓ,h2,v . ⟨h1, e[ℓ/x]⟩ →∗ ⟨h2,v⟩) =⇒
∀h′

1
, ℓ′. ∃h′

2
,v ′.

〈
h′
1
, e[ℓ′/x]

〉
→∗

〈
h′
2
,v ′

〉
∧ h′

1
⊆ h′

2
.

This theorem expresses that, if the execution of a well-typed expression e , when x is substituted

by some location, in some heap h1 terminates, then running e , when x is substituted by any location,

in any heap h′
1
will also terminate in some heap h′

2
which is an extension of h′

1
, i.e., the execution

cannot have modified h′
1
but it can have allocated new state, via encapsulated stateful computations.

Note that this implies that e never reads from or writes to x .

Summary of contributions. To sum up, the main contributions of this paper are as follows:

• We present a logical relation for a programming language STLang featuring a parallel to

Haskell’s ST monad with a construct, runST, to encapsulate stateful computations. We use

our logical relation to prove that runST provides proper encapsulation of state, by showing (1)

that contextual refinements and equivalences that are expected to hold for pure computations

do indeed hold in the presence of stateful computations encapsulated via runST and (2) that

the State-Independence theorem holds. This is the first time that these results have been

established for a programming language with an operational semantics that uses a single

global higher-order heap with in-place destructive updates.

• We define our logical relation in Iris, a state-of-the-art higher-order separation logic designed

for program verification, using a new approach involving novel predicates defined in Iris,

which we explain in §5.

• We have formalized the whole technical development, including all proofs of the equations

above and the State-Independence theorem, in the Iris implementation in Coq.

The paper is organized as follows.We begin by formally defining STLang, its semantics and typing

rules in §2. There, we also formally state our definition of contextual refinement and contextual

equivalence. In §3, we present our logical relation after briefly introducing the parts of Iris needed

for a conceptual understanding of the logical relation. We devote §4 to the precise statement and

proof sketches of the refinements in Figure 2 and Figure 3. In §5, we recall some further concepts

of Iris and explain how they are used to give a complete technical definition of the logical relation.

Readers only interested in the ideas behind the logical relation can skip this section. We describe

our formalization of the technical development in the Iris implementation in Coq in §6. We discuss

related work in §7 and conclude in §8.

2 THE STLang LANGUAGE
In this section, we present STLang, a higher-order functional programming language with impred-

icative polymorphism, recursive types, higher-order store and a ST-like type.

Syntax. The syntax of STLang is mostly standard and presented in Figure 4. Note that there are

no types in the terms; following [Ahmed 2006] we write Λ e for type abstraction and e _ for type

application / instantiation. For the stateful part of the language, we use return and bind for the
return and bind operations of the ST monad, and ref(e) creates a new reference, !e reads from

one and e← e writes into one. Finally, runST runs effectful computations. Note that we treat the

stateful operations as constructs in the language rather than as special constants.

Typing. Typing judgments are of the form Ξ | Γ ⊢ e : τ , where Ξ is a set of type variables, and

Γ is a finite partial function from variables to types. An excerpt of the typing rules are shown in

Figure 5.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 64. Publication date: January 2018.



A Logical Relation for Monadic Encapsulation of State 64:7

⊚ ::= + | − | ∗ | = | <

e ::= x | () | true | false | n | ℓ | (e, e) | inji e | rec f (x) = e | Λ e | fold e | unfold e | e e

| e _ | πi e | match e with inji x ⇒ ei end | if e then e else e | e ⊚ e

| ref(e) | ! e | e ← e | e == e | bind e in e | return e | runST {e}

v ::= () | true | false | n | ℓ | (v,v) | inji v

| rec f (x) = e | Λ e | foldv | ref(v) | !v | v ← v | bindv inv | returnv

τ ::= X | ρ | 1 | B | Z | τ × τ | τ + τ | τ → τ | ∀X . τ | µX . τ | ref(τ ) | ST ρ τ

Fig. 4. The syntax of STLang.

Ξ | Γ ⊢ e : τ

Tvar

Ξ | Γ,x : τ ⊢ x : τ

Trec

Ξ | Γ,x : τ1, f : τ1 → τ2 ⊢ e : τ2

Ξ | Γ ⊢ rec f (x) = e : τ1 → τ2

Tabs

Ξ,X | Γ ⊢ e : τ

Ξ | Γ ⊢ Λ e : ∀X . τ
Tfold

Ξ | Γ ⊢ e : τ [µX . τ/X ]

Ξ | Γ ⊢ fold e : µX . τ

Tinst

Ξ | Γ ⊢ e : ∀X . τ Ξ ⊢ τ ′

Ξ | Γ ⊢ e _ : τ [τ ′/X ]

Tnew

Ξ | Γ ⊢ e : τ Ξ ⊢ ρ

Ξ | Γ ⊢ ref(e) : ST ρ (STRef ρ τ )

Tderef

Ξ | Γ ⊢ e : STRef ρ τ

Ξ | Γ ⊢ ! e : ST ρ τ

Tgets

Ξ | Γ ⊢ e : STRef ρ τ Ξ | Γ ⊢ e ′ : τ

Ξ | Γ ⊢ e ← e ′ : ST ρ 1

Trefeq

Ξ | Γ ⊢ e : STRef ρ τ Ξ | Γ ⊢ e ′ : STRef ρ τ

Ξ | Γ ⊢ e == e ′ : B

Treturn

Ξ | Γ ⊢ e : τ Ξ ⊢ ρ

Ξ | Γ ⊢ return e : ST ρ τ

Tbind

Ξ | Γ ⊢ e : ST ρ τ Ξ | Γ ⊢ e ′ : τ → (ST ρ τ ′)

Ξ | Γ ⊢ bind e in e ′ : ST ρ τ ′

Trunst

Ξ,X | Γ ⊢ e : ST X τ Ξ ⊢ τ

Ξ | Γ ⊢ runST {e} : τ

Fig. 5. An excerpt of the typing rules for STLang.

Operational semantics. We present a small-step call-by-value operational semantics for STLang,
using a transition system ⟨h, e⟩ → ⟨h′, e ′⟩ whose nodes are configurations consisting of a heap h
and an expression e . A heap h ∈ Loc⇀fin Val is a finite partial function that associates values to

locations, which we suppose are positive integers (Loc ≜ Z+)2.
The semantics, shown in Figure 6, is presented in the Felleisen-Hieb style [Felleisen and Hieb

1992], using evaluation contexts K : the reduction relation→ is the closure by evaluation context of

the head reduction relation→h . Notice that even the “pure” reductions steps, such as β-reduction,
mention the heap. The more subtle part of the operational semantics is how the ST monad is

handled, indeed, we only want the stateful computations to run when they are wrapped inside

2
This choice is due to the fact that Iris library in Coq provides extensive support for the type of positive integers.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 64. Publication date: January 2018.



64:8 Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal

Reduction: ⟨h, e⟩ → ⟨h′, e ′⟩ and head step: ⟨h, e⟩ →h ⟨h
′, e ′⟩

Evaluation contexts:

K ::=[] | (K , e) | (v,K) | inji K | foldK | unfoldK | K e | v K | K _ | K ⊚ e | v ⊚ K

| πi K | matchK with inji x ⇒ ei end | ifK then e else e | ref(K) | !K | K ← e

| v ← K | K == e | v == K | bindK in e | bindv inK | returnK | runST {K}

⟨h, e⟩ →h ⟨h
′, e ′⟩

⟨h,K[e]⟩ → ⟨h′,K[e ′]⟩
⟨h, unfold (foldv)⟩ →h ⟨h,v⟩ ⟨h, (Λ e) _⟩ →h ⟨h, e⟩

⟨h, (rec f (x) = e) v⟩ →h ⟨h, e[v, rec f (x) = e/x , f ]⟩
ℓ = ℓ′

⟨h, ℓ == ℓ′⟩ →h ⟨h, true⟩

⟨h, match inji v with inji x ⇒ ei end⟩ →h ⟨h, ei [v/x]⟩
ℓ , ℓ′

⟨h, ℓ == ℓ′⟩ →h ⟨h, false⟩

⟨h,v⟩ { ⟨h′, e⟩

⟨h, runST {v}⟩ →h ⟨h
′, runST {e}⟩

⟨h, runST {returnv}⟩ →h ⟨h,v⟩

Effectful reduction: ⟨h,v⟩ { ⟨h′, e⟩ and effectful head step: ⟨h,v⟩ {h ⟨h
′, e⟩

Effectful evaluation contexts: K ::= [] | bindK inv

⟨h,v⟩ {h ⟨h
′, e⟩

⟨h,K[v]⟩ { ⟨h′,K[e]⟩
⟨h, bind (returnv) inv ′⟩ {h ⟨h,v

′ v⟩

Alloc

ℓ < dom(h)

⟨h, ref(v)⟩ {h ⟨h ⊎ {ℓ 7→ v} , return ℓ⟩ ⟨h ⊎ {ℓ 7→ v} , ! ℓ⟩ {h ⟨h ⊎ {ℓ 7→ v} , returnv⟩

⟨h ⊎ {ℓ 7→ v ′} , ℓ ← v⟩ {h ⟨h ⊎ {ℓ 7→ v} , return ()⟩

If⇀ is a relation, we note⇀n
its iterated self-composition and⇀∗ its reflexive and transitive

closure.

Fig. 6. An excerpt of the dynamics of STLang, a call-by-value, small-step operational semantics.

runST. This is why we define an auxiliary reduction relation, ⟨h, e⟩ { ⟨h′, e ′⟩. This auxiliary
relation is also defined using a head reduction and evaluation contexts K, which are distinct from

the evaluation contexts for the main reduction relation. This auxiliary relation in “embedded” in

the main one by the rule

⟨h,v⟩ { ⟨h′, e⟩

⟨h, runST {v}⟩ →h ⟨h
′, runST {e}⟩

Notice that{ always reduces from a value: this is because values of type ST can be seen as “frozen”

computations, until they appear inside a runST. The expression e on the right hand-side of the rule

above can be a reducible expression, which is reduced by using K = runST{[]} as a context for the
main reduction rule→.
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This operational semantics is new, therefore we include an example of how a simple program

reduces. The program initializes a reference r to 3, then writes 7 into r and finally reads r .

⟨∅, runST {bind ref(3) in (λ r . bind (r ← 7) in (λ _. bind ! r in (λ x . returnx)))}⟩

The contents of the runST is a value, so we can use the rule above, and the contextK = bind [] in · · ·
to reduce ⟨∅, ref(3)⟩ {h ⟨[l 7→ 3], return l⟩ (for some arbitrary l ) and get:

⟨[l 7→ 3], runST {bind (return l) in (λ r . bind (r ← 7) in (λ _. bind ! r in (λ x . returnx)))}⟩

The contents of runST is still a value, and this time we use the empty context K = [] and the rule

for the bind of a return, ⟨[l 7→ 3], bind (return l) in (λ r . · · · )⟩ {h ⟨[l 7→ 3], (λ r . · · · ) l⟩ to get:

⟨[l 7→ 3], runST {(λ r . bind (r ← 7) in (λ _. bind ! r in (λ x . returnx))) l}⟩

This time we use the context K = runST {[]} and the rule for β-reduction to get:

⟨[l 7→ 3], runST {bind (l ← 7) in (λ _. bind ! l in (λ x . returnx))}⟩

The situation is now the same as for the first two reduction steps and we reduce further to:

⟨[l 7→ 7], runST {bind (return ()) in (λ _. bind ! l in (λ x . returnx))}⟩

and then, in two steps (rule for bind and return, then β-reduction):

⟨[l 7→ 7], runST {bind ! l in (λ x . returnx)}⟩

Finally we get:

⟨[l 7→ 7], runST {return 7}⟩

and, from the rule for runST and return v:

⟨[l 7→ 7], 7⟩.

Having defined the operational semantics and the typing rules we can now define contextual

refinement and equivalence. In this definition we write C : (Ξ | Γ;τ )⇝ (· | ·; 1) to express that C is

a well-typed closing context (the remaining rules for this relation are completely standard).

Definition 2.1 (Contextual refinement and equivalence). We define contextual refinement ⪯ctx and

contextual equivalence ≈ctx as follows.

Ξ | Γ ⊨ e ⪯ctx e
′
: τ ≜ Ξ | Γ ⊢ e : τ ∧ Ξ | Γ ⊢ e ′ : τ ∧

∀h,h′,C . C : (Ξ | Γ;τ )⇝ (· | ·; 1) ∧ (h,C[e])↓ =⇒ (h′,C[e ′])↓

Ξ | Γ ⊨ e ≈ctx e
′
: τ ≜ Ξ | Γ ⊨ e ⪯ctx e

′
: τ ∧ Ξ | Γ ⊨ e ′ ⪯ctx e : τ .

where (h, e)↓ ≜ ∃h′,v . (h, e) →∗ (h′,v)
3 LOGICAL RELATION
It is well-known that it is challenging to construct logical relations for languages with higher-order

store because of the so-called type-world circularity [Ahmed 2004; Ahmed et al. 2002; Birkedal et al.

2011]. Other recent work has shown how this challenge can be addressed by using the original

Iris logic to define logical relations for languages with higher-order store [Krebbers et al. 2017b;

Krogh-Jespersen et al. 2017]. In fact, a key point is that Iris has enough logical features to give a

direct inductive interpretation of the programming language types into Iris predicates.

The binary relations in [Krebbers et al. 2017b; Krogh-Jespersen et al. 2017] were defined using

Iris’s built-in notion of Hoare triple and weakest precondition. This approach is, however, too
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abstract for our purposes: to prove the contextual refinements and equivalences for pure com-

putations mentioned in the Introduction, we need to have more fine-grained control over how

computations are related.

In this section we start by giving a gentle introduction to the base logic of Iris. Hereafter, we use

the Iris base logic to define two new logical connectives called future modality and If-Convergent.

We use these, instead of the weakest precondition used in [Krebbers et al. 2017b; Krogh-Jespersen

et al. 2017], when defining our binary logical relation.

We focus on properties that are necessary for understanding the key ideas of the definition of

the logical relation; more technical details, including definitions and lemmas required for proving

properties of the logical relation, are deferred until §5.

3.1 An Iris Primer
Iris was originally presented as a framework for higher-order (concurrent) separation logic, with

built-in notions of physical state (in our case heaps), ghost-state (monoids) invariants and weakest

preconditions, useful for Hoare-style reasoning about higher-order concurrent imperative pro-

grams [Jung et al. 2015]. Subsequently, Iris was extended with a notion of higher-order ghost

state [Jung et al. 2016], i.e., the ability to store arbitrary higher-order separation-logic predicates in

ghost variables. Recently, a simpler Iris base logic was defined, and it was shown how that base

logic suffices for defining the earlier built-in concepts of invariants, weakest preconditions, and

higher-order ghost state [Krebbers et al. 2017a].

In Iris one can quantify over the Iris types κ:

κ ::= 1 |κ × κ |κ → κ |Expr |Val |Z |B |κ
fin

−⇀ κ | finset(κ) |Monoid |Names | iProp | . . .

Here Expr and Val are the types of syntactic expressions and values of STLang, Z is the type of
integers, B is the type of booleans, κ ⇀fin κ is the type of partial functions with finite support,

finset(κ) is the type of finite sets, Monoid is the type of monoids, Names is the type of ghost names,

and iProp is the type of Iris propositions. A basic grammar for Iris propositions P is:

P ::= ⊤ | ⊥ | P ∗ P | P −∗ P | P ∧ P | P ⇒ P | P ∨ P | ∀x : κ . Φ | ∃x : κ . Φ

| ▷ P | µr .P | □ P | |⇛P

The grammar includes the usual connectives of higher-order separation logic (⊤, ⊥, ∧, ∨,⇒, ∗,

−∗, ∀ and ∃). In this grammarΦ is an Iris predicate, i.e., a term of type κ → iProp (for appropriate
κ). The intuition is that the propositions denote sets of resources and, as usual in separation logic,

P ∗ P ′ holds for those resources which can be split into two disjoint parts, with one satisfying P and

the other satisfying P ′. Likewise, the proposition P −∗ P ′ describes those resources which satisfy

that, if we combine it with a disjoint resource satisfied by P we get a resource satisfied by P ′. In
addition to these standard connectives there are some other interesting connectives, which we now

explain.

The ▷ is a modality, pronounced “later”. It is used to guard recursively defined propositions: µr .P
is a well-defined guarded-recursive predicate only if r appears under a ▷ in P . The ▷ modality is

an abstraction of step-indexing [Appel and McAllester 2001; Appel et al. 2007; Dreyer et al. 2011].

In terms of step-indexing ▷ P holds if P holds a step later; hence the name. In Iris it can be used

to define weakest preconditions and to guard impredicative invariants to avoid self-referential

paradoxes [Krebbers et al. 2017a]. Here we simply use it to take a guarded fixed point when we

give the interpretation of recursive types, similarly to what was done in [Dreyer et al. 2011]. For

any proposition P , we have that P ⊢ ▷ P . The later modality commutes with all of the connectives

of higher-order separation logic, including quantifiers.
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Another modality of the Iris logic is the “persistence” modality (□). This modality is used in

Iris to capture a sublogic of knowledge (as opposed to resources) that obeys standard rules for

intuitionistic higher-order logic. We say that P is persistent if P ⊢ □ P . Intuitively, □ P holds if P
holds without asserting any exclusive ownership. Hence □ P is a duplicable assertion, i.e., we have

(□ P) ∗ (□ P) ⊣⊢ □ P , where ⊣⊢ is the logical equivalence of formulas. Hence persistent propositions

are therefore duplicable. The persistence modality is idempotent, □ P ⊢ □□ P , and also satisfies

□ P ⊢ P . It (and by extension persistence) also commutes with all of the connectives of higher-order

separation logic, including quantifiers.

The final modality we present in this section is the “update” modality
3
(|⇛). Intuitively, the

proposition |⇛P holds for resources that can be updated (through allocation, deallocation, or

alteration) to resources that satisfy P , without violating the environment’s knowledge or ownership

of resources. We write P ≡∗ Q as a shorthand for P −∗ |⇛Q . The update modality is idempotent,

|⇛(|⇛P) ⊣⊢ |⇛P .

3.2 Future Modality and If-Convergent
In this subsection we define two new constructs in Iris, which we will use to define the logical

relation. The first construct, the future modality, will allow us to reason about what will happen in

a “future world”. The second construct, the If-Convergent predicate, will be used instead of weakest

preconditions to reason about properties of computations.

Future Modality. We define the future modality |≫{·}≡▷ as follows:

|≫{n}≡▷P ≜ (|⇛ ▷)n |⇛P

where (|⇛ ▷)n isn times repetition of |⇛ ▷. Intuitively, |≫{n}≡▷P expresses thatn steps into the future,
we can update our resources to satisfy P . We write P≫{n}≡∗Q as a shorthand for P −∗ |≫{n}≡▷Q .

If-Convergent (IC). We define the If-Convergent (IC) predicate in Iris as follows:

ICγ e {|v . Q |} ≜ ∀h1,h2,v,n. ⟨h1, e⟩ →n ⟨h2,v⟩ ∗ heapγ (h1) ≫{n}≡∗ heapγ (h2) ∗Q v

In general the number of steps, n, can also appear in Q but here we only present this slightly

simpler version. The ICγ e {|v . Q |} predicate expresses that, for any heap h1, if (e,h1) can reduce

to (v,h2) in n steps, and if we have ownership over h1, then, n steps into the future, we will have

ownership over the heap h2, and the postcondition Q will hold.

A crucial feature of the IC predicate is that it allows us to use a ghost state name γ to keep track

of the contents of the heap during the execution of e . This allows us to abstract away from the

concrete heaps when reasoning about IC predicates
4
. Note that the IC predicate does not require

that it is safe to execute the expression e : in particular, if e gets stuck (or diverges) in all heaps, then

ICγ e {|v . Q |} holds trivially.
The predicate heapγ (h1) is a ghost state predicate stating ownership of a logical heap identified

by the ghost state name γ (one can think of this as the usual ownership of a heap in separation

logic). Ownership of a logical heap cell l is written as ℓ 7→γ v , and says that the heap identified by

γ stores the value v at location ℓ. We show the precise definition of heapγh (h) and ℓ 7→γ v in §5;

3
In [Krebbers et al. 2017a] this modality is called the fancy update modality. Technically, this modality comes equipped

with certain “masks” but we do not discuss those here.

4
This is related to the way the definition of weakest preconditions in Iris hides state [Krebbers et al. 2017a].
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here we just highlight the properties that these abstract predicates enjoy:

heapγ (h) ∗ ℓ 7→γ v ⇒ h(l) = v (1)

heapγ (h) ∧ l < dom(h) ≡∗ heapγ (h[l 7→ v]) ∗ ℓ 7→γ v (2)

heapγ (h) ∗ ℓ 7→γ v ≡∗ heapγ (h[l 7→ v ′]) ∗ ℓ 7→γ v ′ (3)

ℓ 7→γ v ∗ ℓ 7→γ v ′ ⇒ ⊥ (4)

Property (1) says that if we have ownership of a heap h and a location l pointing to v , both with the

same ghost name γ , then we know that h(l) = v . Property (2) expresses that we can allocate a new

location l in h, if l is not already in the domain of h. Finally, Property (3) says that we can update

the value at location l , if we have both heapγ (h) and ℓ 7→γ v . Property (4) expresses exclusivity of

the ownership of locations.

Akin to the way Hoare triples are defined in Iris using the weakest precondition, we define a

new notion called IC triple as follows:

{|P |} e {|v . Q |}γ ≜ □(P −∗ IC
γ e {|v . Q |})

The IC triple says, that given resources described by P , if e reduces in a heap identified by γ , then
the post-condition Q will hold. Notice that the IC triple is a persistent predicate and is not allowed

to own any exclusive resources.

3.3 Definition of the Logical Relation
We now have enough logical machinery to describe the logical relation (pedantically, it is a family

of logical relations) shown in Figure 7. The logical relation is a binary relation, which allows us to

relate pairs of expressions and pairs of values to each other. We will show that if two expressions

are related in the logical relation, then the left hand side expression contextually approximates

the right hand side expression. Therefore, we sometimes refer to the the left hand side as the

implementation and the right hand side as the specification.

The value relation JΞ ⊢ τ K∆ is an Iris relation of type (Val × Val) → iProp and, intuitively, it

relates STLang values of type τ . The value relation is defined by induction on the type τ . Here, Ξ is

an environment of type variables, and ∆ is a semantic environment for these type variables, as is

usual for languages with parametric polymorphism [Reynolds 1983].

If τ is a ground type like 1,B or Z, two values are related at type τ if and only if they are equal

(and compatible with the type). For instance, if τ is Z, then JΞ ⊢ ZK∆(v,v ′) ≜ v = v ′ ∈ Z.
For a product type of the form τ × τ ′, two values v and v ′ are related if and only if they both are

pairs, and the corresponding components are related at their respective types:

JΞ ⊢ τ × τ ′K∆(v,v ′) ≜ ∃w1,w2,w
′
1
,w ′

2
. v = (w1,w2) ∧v

′ = (w ′
1
,w ′

2
) ∧

JΞ ⊢ τ K∆(w1,w
′
1
) ∧ JΞ ⊢ τ ′K∆(w2,w

′
2
)

Note that the formula on the right hand side of ≜ is simply a formula in (the first order fragment

of) Iris. The case of sum types is handled in a very similar fashion.

Two values v and v ′ are related at a function type τ → τ ′ if, given any two related valuesw and

w ′ at type τ , the applicationsv w andv ′w ′ are related at type τ ′. Notice that those latter two terms

are expressions, not values; thus they have to be related under the expression relation E JΞ ⊢ τ ′K∆ ,
which we will define later. Using Iris, the case for function types is defined as follows:

JΞ ⊢ τ → τ ′K∆(v,v ′) ≜ □
(
∀(w,w ′). JΞ ⊢ τ K∆(w,w ′) ⇒ E JΞ ⊢ τ K∆ (v w,v ′ w ′)

)
.

The □ modality is used to ensure that JΞ ⊢ τ → τ ′K∆(v,v ′) is persistent and hence duplicable. In

fact, we will make sure that all predicates JΞ ⊢ τ K∆(v,v ′) are persistent. The intuition behind this is

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 64. Publication date: January 2018.



A Logical Relation for Monadic Encapsulation of State 64:13

Value relations:

JΞ ⊢ X K∆ ≜ (∆(X )).1

JΞ ⊢ 1K∆(v,v ′) ≜ v = v ′ = ()

JΞ ⊢ BK∆(v,v ′) ≜ v = v ′ ∈ {true, false}

JΞ ⊢ ZK∆(v,v ′) ≜ v = v ′ ∈ Z

JΞ ⊢ τ × τ ′K∆(v,v ′) ≜ ∃w1,w2,w
′
1
,w ′

2
. v = (w1,w2) ∧v

′ = (w ′
1
,w ′

2
)∧

JΞ ⊢ τ K∆(w1,w
′
1
) ∧ JΞ ⊢ τ ′K∆(w2,w

′
2
)

JΞ ⊢ τ + τ ′K∆(v,v ′) ≜ (∃w,w ′. v = inj
1
w ∧v ′ = inj

1
w ′ ∧ JΞ ⊢ τ K∆(w,w ′))∨

(∃w,w ′. v = inj
2
w ∧v ′ = inj

2
w ′ ∧ JΞ ⊢ τ ′K∆(w,w ′))

JΞ ⊢ τ → τ ′K∆(v,v ′) ≜ □
(
∀(w,w ′). JΞ ⊢ τ K∆(w,w ′) ⇒ E JΞ ⊢ τ K∆ (v w,v ′ w ′)

)
JΞ ⊢ ∀X . τ K∆(v,v ′) ≜ □

(
∀f , r ∈ R. persistent(f ) ⇒ E JΞ,X ⊢ τ K∆,X 7→(f ,r ) (v _,v ′ _)

)
JΞ ⊢ µX . τ K∆(v,v ′) ≜ µ f . ∃w,w ′. v = foldw ∧v ′ = foldw ′∧

▷JΞ,X ⊢ τ K∆,X 7→(f ,toRgn(∆,µX . τ ))(w,w
′)

JΞ ⊢ STRef ρ τ K∆(v,v ′) ≜ ∃ℓ, ℓ′, r . v = ℓ ∧v ′ = ℓ′ ∧ isRgn(toRgn(∆, ρ), r ) ∗ bij(r , ℓ, ℓ′) ∗
rel(r , ℓ, ℓ′, JΞ ⊢ τ K∆)

JΞ ⊢ ST ρ τ K∆(v,v ′) ≜ ∀γh ,γ ′h ,h′1.{���heapγ ′h (h′1) ∗ regions ∗ region(toRgn(∆, ρ),γh ,γ ′h)���}
runST {v}{���w . (h′

1
, runST {v ′}) ⇓

γ ′h
JΞ⊢τ K∆(w, ·)

∗region(toRgn(∆, ρ),γh ,γ ′h)
���}
γh

Expression relation:

EΦ (e, e ′) ≜ ∀γh ,γ ′h ,h′1.
{���heapγ ′h (h′1) ∗ regions���} e {���w . (h′1, e ′) ⇓γ ′hΦ(w, ·)

���}
γh

Environment relation:

GJΞ ⊢ ·K∆(®v, ®v ′) ≜ ⊤

GJΞ ⊢ Γ,x : τ K∆(w ®v,w ′ ®v ′) ≜ JΞ ⊢ τ K∆(w,w ′) ∗ GJΞ ⊢ ΓK∆(®v, ®v ′)
Logical relatedness:

Ξ | Γ ⊨ e ⪯log e
′
: τ ≜ ∀∆, ®v, ®v ′. GJΞ ⊢ ΓK∆(®v, ®v ′) ⇒ E JΞ ⊢ τ K∆ (e[®v/®x], e ′[ ®v ′/®x])

toRgn(∆,τ ) ≜
{
∆(X ).2 if τ = X is a type variable

1 otherwise

Fig. 7. Binary logical relation
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that the types of STLang just express duplicable knowledge (the type system is not a substructural

type system involving resources).

Let us now discuss the case of polymorphic types. We use the semantic environment ∆, which
maps type variables to pairs consisting of an Iris relation on values (the semantic value relation

interpreting the type variable) and a region name (we use positive integers, Z+, to identify regions):

∆ : Tvar→ (((Val × Val) → iProp) × Z+)

Thus, we simply define JΞ ⊢ X K∆ ≜ ∆(X ).1.
For type abstraction, two values v and v ′ are related at ∀X . τ when v _ and v ′ _ are related at τ ,

where the environments (Ξ and ∆) have been extended with X , and any persistent binary value

relation f . (Recall that v _ is the syntax for type application).

JΞ ⊢ ∀X . τ K∆(v,v ′) ≜ □
(
∀f . persistent(f ) ⇒ E JΞ,X ⊢ τ K∆,X 7→f (v _,v ′ _)

)
The last case, before we get to the types associated to the ST monad, is the case of recursive types:

two values are related at type µX . τ if they are of the form foldw and foldw ′ and, moreover,w
andw ′ are related at τ , where the type variable X is added to the environments, and mapped in ∆
to (JΞ ⊢ µX . τ K∆, toRgn(∆, µX . τ )) (ignore toRgn(∆, µX . τ ) for now):

JΞ ⊢ µX . τ K∆(v,v ′) ≜ µ f .
(
∃w,w ′. v = foldw ∧v ′ = foldw ′∧

▷JΞ,X ⊢ τ K∆,X 7→(f ,toRgn(∆,µX . τ )) (w,w
′)

)
Notice that we use a guarded recursive predicate in Iris, which is well-defined because the occurrence

of f is guarded by the later modality ▷.
Before describing the cases for STRef ρ τ and ST ρ τ we touch upon the expression relation,

which is defined independently of the value relation and has the following type:

E · : ((Val × Val) → iProp) → (Expr × Expr) → iProp

Intuitively, the expression relation EΦ (e, e ′) holds for two expressions e and e ′ if e (the implemen-

tation) refines, or approximates, e ′ (the specification). That is, reduction steps taken by e can be

simulated by zero or more steps in e ′. We use IC triples to define the expression relation. The IC

triples are unary and are used to express a property of the implementation expression e . We use

the following Iris assertion in the postcondition of the IC triple to talk about the reductions in the

specification expression e ′:

(h′
1
, e ′) ⇓

γ
Φ ≜ ∃h′

2
,v ′.

〈
h′
1
, e ′

〉
→∗d

〈
h′
2
,v ′

〉
∗ heapγ (h

′
2
) ∗ Φ(v ′)

This assertion says that there exists a deterministic reduction from (h′
1
, e ′) to (h′

2
,v ′), that the

resulting heap h′
2
is owned and the value satisfiesΦ. The deterministic reduction relations,→d and

{d , are defined by the same inference rules as→ and{, except that the only non-deterministic

rule, Alloc, is replaced by a deterministic one:

det-Alloc

ℓ = min(Loc \ dom(h))

⟨h, ref(v)⟩ {h ⟨h ⊎ {ℓ 7→ v} , return ℓ⟩

The requirement that the reduction on the specification side is deterministic is used crucially in the

proofs of the purity properties in §4. We emphasize that even with this requirement, we can still

prove that logical relatedness implies contextual refinement (without requiring that STLang use
deterministic reductions), essentially since we only require determinism on the specification side.
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Thus, in more detail, the expression relation EΦ (e, e ′) says that, when given full ownership

of a heap h′
1
for the specification side (heapγ ′(h

′
1
)), if e reduces to a value w when given some

heap h (quantified in IC), then a deterministic reduction on the specification side exists, and the

resulting values are related. Notice that the heaps used for the implementation and specification

side reductions are universally quantified, because we quantify over the ghost names γh , and γ
′
h ,

and that we do not require any explicit relationship between them. The persistent Iris assertion

regions is responsible for keeping track of all allocated regions; it will be explained later.

For the value interpretation of STRef ρ τ and ST ρ τ , the key idea is to tie each type ρ in an

ST monad type (ρ in ST ρ τ ) to a semantic region name r ∈ Z+. The association can be looked up

using the function toRgn. Intuitively, a region r contains a collection of pairs of locations (one

for the implementation side and one for the specification side) in one-to-one correspondence,

together with a semantic predicate ϕ for each pair of locations in the region. The idea is that an

implementation-side heap h and a specification-side heap h′ satisfies a region r if, for any pair

of locations (ℓ, ℓ′) in r , we have values v and v ′, such that h(ℓ) = v and h′(ℓ′) = v ′ and ϕ(v,v ′).
All this information is contained in the predicate region(r ,γh ,γ ′h), where γh and γ ′h are the ghost

names for the implementation and specification heap, respectively.

We have to maintain a one-to-one correspondence between locations because the operational

semantics allows for comparison of locations. Given the one-to-one correspondence, we know that

two locations on the implementation side are equal if and only if their two related counterparts on

the specification side are.

We write isRgn(r , ρ) to say that r is the semantic region tied to ρ. We keep track of all regions

by the regions assertion, which allows us to allocate new regions, as so:

regions ≡∗ ∃r . region(r ,γh ,γ ′h) (5)

Notice that (5) gives back a fresh semantic region r . The region(r ,γh ,γ ′h) predicate allows for local
reasoning about relatedness of two locations in a region r . We use a predicate bij(r , ℓ, ℓ′), which in

conjunction with region captures that ℓ and ℓ′ are related by the one-to-one correspondence in r .
Similarly, we use a predicate rel(r , ℓ, ℓ′,ϕ) in conjunction with region for local reasoning about the

fact that values at locations ℓ and ℓ′ in region r are related by predicate ϕ.
With this in mind, the definition of the value relation for STRef ρ τ is that there exists a semantic

region r and locations ℓ and ℓ′ in a bijection, bij(r , ℓ, ℓ′), such that values pointed to by these

locations are related by the relation corresponding to the type τ , asserted by rel(r , ℓ, ℓ′, JΞ ⊢ τ K∆).
Finally, (v,v ′) are related by JΞ ⊢ ST ρ τ K∆ if, for any h1 and h′

1
related in r (region(r ,γh ,γ ′h))

along with some h2 andw such that ⟨h1, runST {v}⟩ →
∗ ⟨h2,w⟩, then there is a heap h′

2
and a value

w ′ such that we afterwards have
〈
h′
1
, runST {v ′}

〉
→∗d

〈
h′
2
,w ′

〉
and region(r ,γh ,γ ′h) still holds.

The intuitive meaning of the word afterwards refers to an application of the future modality (in

the IC triple). Note that it is important that the semantic region r still holds after runST {v} and
runST {v ′} have been evaluated. This captures that encapsulated computations cannot modify the

values of existing locations, but may allocate new locations (in new regions).

We have now completed the explanation of the value and expression relation for closed values

and expressions. As usual for logical relations, we then relate open terms by closing them by related

substitutions, as specified according the environment relation G, and finally relate them in the

expression relation for closed terms, see the definition of Ξ | Γ ⊨ e ⪯log e ′ : τ in Figure 7.

3.4 Properties of the Logical Relation
To show the fundamental theorem and the soundness of the logical relation wrt. contextual approx-

imation, we prove compatibility lemmas for all typing rules. Instead of working with the explicit

definition of the IC triple, we make use of the following properties of IC:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 64. Publication date: January 2018.



64:16 Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal

Lemma 3.1 (Properties of IC).

(1) ICγ e {|v . Q |} ∗ (∀w . (Q w) −∗ ICγ K[w] {|v . Q ′ v |}) ⊢ ICγ K[e] {|v . Q ′ |}
(2) |⇛(Q w) ⊢ ICγ w {|v . Q |}
(3) (∀v . (P v) ≡∗ (Q v)) ∗ ICγ e {|v . P |} ⊢ ICγ e {|v . Q |}
(4) |⇛ICγ e {|v . Q |} ⊢ ICγ e {|v . Q |}
(5) ICγ e {|v . |⇛Q |} ⊢ ICγ e {|v . Q |}
(6) (∀h. ⟨h, e⟩ → ⟨h, e ′⟩) ∗ ▷ ICγ e ′ {|v . Q |} ⊢ ICγ e {|v . Q |}
(7) ▷(∀ℓ. ℓ 7→γ v ≡∗ Q ℓ) ⊢ ICγ runST {ref(v)} {|w . Q |}
(8) ▷ ℓ 7→γ v ∗ ▷(ℓ 7→γ v ≡∗ Q v) ⊢ ICγ runST {! ℓ} {|w . Q |}
(9) ▷ ℓ 7→γ v ′ ∗ ▷(ℓ 7→γ v ≡∗ Q ()) ⊢ ICγ runST {ℓ ← v} {|w . Q |}

(10) ICγ runST {e} {|v . Q |} ∗
(
∀w . (Q w) −∗

ICγ runST {K[returnw]} {|v . Q ′ w |}
)
⊢ ICγ runST {K[e]} {|v . Q ′ |}

Items (1) and (2) above show that IC is a monad in the same way that weakest precondition is a

monad, known as the Dijkstra monad. Item (3) allows one to strengthen the post-condition. Items

(4) and (5) says that we can dispense with the update modality |⇛ for IC since the update modality

is idempotent and IC is based on the update modality. Item (6) says that if a pure reduction from e
to e ′ exists and later the postcondition Q will hold when reducing e ′, then Q will also hold when

reducing e . Items (7),(8) and (9) are properties that allow to allocate, read and modify the heap, all

expressing, that the post-condition Q will hold, if the resources needed are given and Q holds for

the updated resources. Finally, (10) captures the “bind” property for the RunST monad.

All the compatibility lemmas have been proved in the Coq formalization; here we just sketch the

proof of the compatibility lemma for runST :

Lemma 3.2 (Compatibility for runST). Suppose Ξ,X | Γ ⊨ e ⪯log e ′ : ST X τ and Ξ ⊢ τ . Then

Ξ | Γ ⊨ runST {e} ⪯log runST {e
′} : τ

Proof Sketch. We prove that for any f and r that JΞ,X ⊢ ST X τ K∆,X 7→(f ,r )(v,v ′) implies

E JΞ ⊢ τ K∆ (runST {v} , runST {v ′}). The lemma follows from the assumption that e and e ′ are
suitably related. Assume we have regions, ghost names for the implementation and specification

side, γh and γ ′h , and heapγ ′h (h
′
1
) for some h′

1
. We are to show:

ICγh runST {v}
{���w . ∃h′

2
,w ′.

〈
h′
1
, runST {v ′}

〉
→∗d

〈
h′
2
,w ′

〉
∗ heapγ ′h (h

′
2
) ∗ JΞ ⊢ τ K∆(w,w ′)

���}
Using (5) with regions we know there exists a fresh semantic region r and that the predicate

region(r ,γh ,γ ′h) holds for r . We then instantiate our assumption by the unit relation JΞ ⊢ 1K∆ and r
to get JΞ,X ⊢ ST X τ K∆,X 7→(JΞ⊢1K∆,r )(v,v

′).

By the definition of the value relation for the type ST X τ , we get that if we give a starting

specification heap heapγ ′h (h
′
1
) and region(r ,γh ,γ ′h), then we have runST {v} reduces to a valuew ,

and there exist a reduction on the specification side producingw ′ such thatw andw ′ are related
by JΞ,X ⊢ τ K∆,X 7→(JΞ⊢1K, ρ). Moreover, we also get the ownership of the resulting specification heap

heapγh (h
′
2
).

By Lemma 3.1 (3), it suffices to show: |⇛∃h′
2
,w ′.

〈
h′
1
, runST {v ′}

〉
→∗d

〈
h′
2
,w ′

〉
∗ heapγ ′h (h

′
2
) ∗

JΞ ⊢ τ K∆(w,w ′). The only thing that we do not immediately have from our assumption is JΞ ⊢
τ K∆(w,w ′), we only have that w and w ′ are related in a larger environment. However since X
does not appear free in τ (which follows from Ξ ⊢ τ ) it follows by induction on τ that JΞ,X ⊢
τ K∆,X 7→(JΞ⊢1K, r )(w,w

′) ⊣⊢ JΞ ⊢ τ K∆(w,w ′) which concludes the proof. □
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Notice that in the above proof we start out with two completely unrelated heaps for the spec-

ification and the implementation side since these are universally quantified inside the IC triple.

We then establish a trivial relation between them by creating a new empty region. We extend and

maintain this relation during the simulation of the stateful expressions on both sides. This is in

essence the reason why our expression relations need not assume (or guarantee at the end) any

relation between the heaps on the implementation and specification sides.

Using the compatibility lemmas, we can prove the following two theorems.

Theorem 3.3 (Fundamental theorem). Ξ | Γ ⊢ e : τ ⇒ Ξ | Γ ⊨ e ⪯log e : τ

Theorem 3.4 (Soundness of logical relation).

Ξ | Γ ⊢ e : τ ∧ Ξ | Γ ⊢ e ′ : τ ∧ Ξ | Γ ⊨ e ⪯log e
′
: τ ⇒ Ξ | Γ ⊨ e ⪯ctx e

′
: τ

4 PROVING CONTEXTUAL REFINEMENTS AND EQUIVALENCES
In this section we show how to prove the contextual refinements and equivalences mentioned in

the Introduction. For the sake of illustration we present the proofs of Neutrality and one side of

the Commutativity theorems in moderate detail — the proofs of these two cases demonstrate the

key techniques that are also used to show the remaining contextual refinements and equivalences

from the Introduction. For the remaining theorems, we only sketch their proofs at a higher level of

abstraction. Readers who are eager to see all proofs in all their details are thus referred to our Coq

formalization.

Theorem 4.1 (Neutrality). If Ξ | Γ ⊢ e : 1 then Ξ | Γ ⊨ e ⪯ctx () : 1

Proof Sketch. By the fundamental theorem we have Ξ | Γ ⊨ e ⪯log e : 1. We show that this

implies Ξ | Γ ⊨ e ⪯log () : 1. The final result follows from the soundness theorem.

By unfolding the IC predicate, we get the assumption that ⟨h1, e⟩ →
∗ ⟨h2,v⟩, including the

ownership of heapγh (h1) and heapγ ′h (h
′
1
), and have to prove that

5

〈
h′
1
, ()

〉
reduces deterministically

to a valuew (and some heap) and that (v,w) are in the value relation for the unit type. We proceed

by allocating a copy of h′
1
, obtaining heapγ (h

′
1
) for some fresh γ . We use this together with our

assumptions, notably Ξ | Γ ⊨ e ⪯log e : 1, to get that

〈
h′
1
, e
〉
→∗d

〈
h′
2
,v ′

〉
for some v ′ and h′

2

such that (v,v ′) are related in the value relation for the unit type, i.e., v = v ′ = (), heapγh (h2)
and heapγ (h

′
2
). Notice that we have, crucially, retained the ownership of heapγ ′h (h

′
1
) and have only

updated the freshly allocated copy of h′
1
with the fresh name γ . We are allowed to do this because

the relatedness of expressions, as in Ξ | Γ ⊨ e ⪯log e : 1, universally quantifies over ghost names

for the specification and implementation side heaps. We conclude the proof by noting that since ()

is a value, we have, trivially,

〈
h′
1
, ()

〉
→∗d

〈
h′
1
, ()

〉
and that (v, ()) are related at the unit type. □

Theorem 4.2 (Commutativity). If Ξ | Γ ⊢ e1 : τ1 and Ξ | Γ ⊢ e2 : τ2 then

Ξ | Γ ⊨ letx = e2 in (e1,x) ≈ctx (e1, e2) : τ1 × τ2

Proof Sketch. We only show Ξ | Γ ⊨ letx = e2 in (e1,x) ⪯log (e1, e2) : τ1×τ2, the other direc-
tion is similar. Unfolding the IC predicate we get the assumption that ⟨h1, letx = e2 in (e1,x)⟩ →

∗

⟨h2,v⟩ for some h2 and v , the ownership of heapγh (h1) and heapγ ′h (h
′
1
) and we have to prove that〈

h′
1
, (e1, e2)

〉
→∗d

〈
h′
2
,v ′

〉
for some h′

2
and v ′, and that (v,v ′) are in the value relation for τ × τ ′.

From the first assumption, we can conclude that ⟨h1, e2⟩ →
∗ ⟨h3,v2⟩, ⟨h3, e1⟩ →

∗ ⟨h2,v1⟩ and that

v = (v1,v2).
We proceed by allocating a fresh copy of h3 (the heap in the middle of execution of the implemen-

tation side) with the fresh name γ , heapγ (h3) and also a fresh heapγ ′(h
′
1
) (the heap at the beginning

5
We ignore the future modality for the sake of simplicity.
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of execution of the specification side). Notice that these are heaps (on either side) immediately

before executing e1. We use these freshly allocated heaps together with Ξ | Γ ⊨ e1 ⪯log e1 : τ1
(which follows from the fundamental theorem) to conclude

6

〈
h′
1
, e1

〉
→∗d

〈
h′
3
,v ′

1

〉
for some v ′

1
and

h′
3
.

Now we have the information about the starting heap for execution of e2 on the specification side.

Thus, we are ready to simulate the execution of e2 on both sides. Note that the order of simulations

is dictated by the order on the implementation side as we have to prove that the implementation

side is simulated by the specification side.

To simulate e2 we proceed by allocating a fresh copy ofh
′
3
(the heap immediately before executing

e2 on the specification side) with a fresh name γ ′′, heapγ ′′(h
′
3
). We use this, together with heapγh (h1)

(which we originally got by unfolding the IC predicate) and Ξ | Γ ⊨ e2 ⪯log e2 : τ2 (which we know

from the fundamental theorem). We can do this as we know ⟨h1, e2⟩ →
∗ ⟨h3,v2⟩. This allows us to

conclude that

〈
h′
3
, e2

〉
→∗d

〈
h′
2
,v ′

2

〉
for some h′

2
and v ′

2
, the ownership of heapγ ′′(h

′
2
) and heapγh (h3)

together with the fact that (v2,v
′
2
) are related at type τ2.

Now we are ready to simulate e1 on both sides. We use Ξ | Γ ⊨ e1 ⪯log e1 : τ1 (which we

know from the fundamental theorem) together with heapγh (h3) (from simulating e2) and heapγ ′h (h
′
1
)

(which we had as an assumption from the definition relatedness). We can do this because we know

that ⟨h3, e1⟩ →
∗ ⟨h2,v1⟩. This allows us to conclude that

〈
h′
1
, e1

〉
→∗d

〈
h′′
3
,v ′′

1

〉
for some h′′

3
and v ′′

1
,

the ownership of heapγ ′h (h
′′
3
) and heapγh (h2) together with the fact that (v1,v

′′
1
) are related at type

τ1. It follows from the determinism of reduction on the specification side that h′
3
= h′′

3
and v ′

1
= v ′′

1
.

The only thing we need to conclude the proof is the ownership of heapγ ′h (h2) (the heap at the

end of execution of the specification side) whereas we own heapγ ′h (h
′′
3
) which is the heap of the

specification side after execution of e1 and before execution of e2. However, using some resource

reasoning (which depends on details explained in §5), we can conclude that h′′
3
⊆ h2. This in turn

allows us to update our heap resource to get heapγ ′h (h2), which concludes the proof. □

The proof sketches of the two theorems above show that the true expressiveness of our logical

relation comes from the fact that the expression relation quantifies over the names of resources

used for the heaps on the specification and implementation sides. This allows us to allocate fresh

instances of ghost resources corresponding to the heaps (for any of the two sides) and simulate

the desired part of the program. This is the reason why we can prove such strong equations as

Commutativity, Idempotency, Hoisting, etc. The proof of Commutativity above also elucidates the

use of deterministic reduction for the specification side.

Theorem 4.3 (Idempotency). If Ξ | Γ ⊢ e : τ then Ξ | Γ ⊨ letx = e in (x ,x) ≈ctx (e, e) : τ × τ

Proof Sketch. We show the contextual equivalence, by proving logical relatedness in both

directions. For the left-to-right direction, we allocate a fresh heap and simply simulate twice on the

specification side using the same reduction on the implementation side. For the other direction, we

simulate the same reduction on the specification side twice for the two different reductions on the

implementation side. For the latter we conclude, by determinism of reduction on the specification

side, that the two reductions coincide. □

Theorem 4.4 (Rec Hoisting). If Ξ | Γ ⊢ e1 : τ and Ξ | Γ,y : τ ,x : τ1, f : τ1 → τ2 ⊢ e2 : τ2 then

Ξ | Γ ⊨ lety = e1 in rec f (x) = e2 ⪯ctx rec f (x) = lety = e1 in e2 : τ1 → τ2

Proof Sketch. The proof of this theorem is quite tricky, in particular because the the number of

operational steps do not match up for the function bodies on the implementation and specification

6
For simplicity, we are ignoring some manipulations involving the future modality.
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sides. We do not delve into those issues here, but concentrate instead on the high-level structure of

the proof.

We prove three different contextual refinements, such that their composition gives us the desired

contextual refinement in the theorem. These three contextual refinements are:

(a) lety = e1 in rec f (x) = e2 ⪯ctx lety = e1 in rec f (x) = let z = e1 in e2 : τ1 → τ2
(b) lety = e1 in rec f (x) = let z = e1 in e2 ⪯ctx let z = e1 in rec f (x) = lety = e1 in e2 :

τ1 → τ2
(c) let z = e1 in rec f (x) = lety = e1 in e2 ⪯ctx rec f (x) = lety = e1 in e2 : τ1 → τ2 where z

is a fresh variable.

We prove (a) by proving the corresponding logical relatedness. Since e1 reduces to a value we

know that it will reduce deterministically to some value under any heap on the specification side.

We prove (c) also by the corresponding logical relatedness which is rather trivial to prove.

To prove (b) we show the corresponding logical relatedness for a slightly stronger logical relation;

⪯NN
log . The NN-logical relation is defined entirely similarly to the primary logical relation above

except that the specification side is required to deterministically reduce to a value in the same
number of steps as the implementation side. Notice that the proofs of the fundamental theorem and

soundness for NN-logical relation are very similar to those of the primary logical relation.

Formally, for (b) we show

lety = e1 in rec f (x) = let z = e1 in e2

⪯NN
log let z = e1 in rec f (x) = lety = e1 in e2 : τ

′→ τ ′′

This logical relatedness is in fact rather easy to show if we know that all reductions of e1 (on either

side) take the same number of steps. This is precisely why we use the NN-logical relation: By the

fundamental theorem of the NN-logical relation we know that e1 ⪯
NN
log e1 : τ

′ → τ ′′ and hence

we can conclude that both outer reductions (on either side) take the same number of steps, say n.
Similarly we know that both reductions of e1 inside the functions also take the same number of

steps, saym. Hence, by allocating appropriate heaps, we can show that the outer reduction of e1
on the implementation side takes the same number steps as that of the reduction of the inner one

on the specification side. This shows, by determinism of reduction on the specification side, that

n =m, which allows us to conclude the proof. □

Theorem 4.5 (η expansion for Rec). If Ξ | Γ ⊢ e : τ1 → τ2 then Ξ | Γ ⊨ e ⪯ctx rec f (x) = e x :

τ1 → τ2

Proof Sketch. We prove this theorem by proving the following three contextual refinements.

(a) Ξ | Γ ⊨ e ⪯ctx lety = e in rec f (x) = (y x) : τ → τ ′

(b) Ξ | Γ ⊨ lety = e in rec f (x) = (y x) ⪯ctx rec f (x) = lety = e in (y x) : τ → τ ′

(c) Ξ | Γ ⊨ rec f (x) = lety = e in (y x) ⪯ctx rec f (x) = (e x) : τ → τ ′

Refinements (a) and (c) follow rather easily from their corresponding logical relatedness while

case (b) is an instance of rec Hoisting above. For (c) notice that f does not appear free in e . □

Theorem 4.6 (β reduction for λ). If Ξ | Γ,x : τ1 ⊢ e1 : τ2 and Ξ | Γ ⊢ e2 : τ1 then

(λ x . e1) e2 ⪯ctx e1[e2/x] : τ

Proof Sketch. By induction on the typing derivation of e1; for each case we use appropriate

contextual refinements proven by (using the induction hypothesis if necessary) some of the contex-

tual refinement theorems stated above and some instances of logical relatedness. We only present a

couple cases here.
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Case e1 = inji e . The induction hypothesis tells us that Ξ | Γ ⊨ (λ x . e) e2 ⪯ctx e[e2/x] : τi and
we have to show that Ξ | Γ ⊨ (λ x . inji e) e2 ⪯ctx (inji e)[e2/x] : τ1 + τ2. Notice that it is easy to

prove (using the fundamental theorem) that Ξ | Γ ⊨ (λ x . inji e) e2 ⪯log inji ((λ x . e) e2) : τ1 + τ2
The final result follows by the induction hypothesis, transitivity of contextual refinement and the

fact that contextual refinement is a congruence relation.

Case e1 = rec f (y) = e . The induction hypothesis tells us that Ξ | Γ,y : τ1, f : τ1 → τ2 ⊨
(λ x . e) e2 ⪯ctx e[e2/x] : τ2 and we have to show that Ξ | Γ ⊨ (λ x . (rec f (y) = e)) e2 ⪯ctx
(rec f (y) = e)[e2/x] : τ1 → τ2 or equivalently (by simply massaging the terms) Ξ | Γ ⊨ letx =
e2 in (rec f (y) = e) ⪯ctx (rec f (y) = e[e2/x]) : τ1 → τ2. By rec Hoisting and transitivity of

contextual refinement, it suffices to show Ξ | Γ ⊨ (rec f (y) = letx = e2 in e) ⪯ctx (rec f (y) =
e[e2/x]) : τ1 → τ2 which easily follows from the induction hypothesis and the fact that contextual

refinement is a congruence relation. □

We omit the theorems of hoisting and η-expansion for polymorphic terms as they are fairly

similar in statement and proof to their counterparts for recursive functions. We also omit β-
reduction for polymorphic terms and recursive functions. The former follows directly from the

corresponding logical relatedness and the latter follows from β-reduction for λ’s and rec-unfolding:

if Ξ | Γ,x : τ1, f : τ1 → τ2 ⊢ e : τ2, then

Ξ | Γ ⊨ rec f (x) = e ⪯ctx λ x . e ′[(rec f (x) = e ′)/f ] : τ1 → τ2,

which is a consequence of the corresponding logical relatedness.

Theorem 4.7 (Eqations for stateful computations). See Figure 3.

Proof. Left identity follows by proving both logical relatednesses. Right identity is proven as

follows using equational reasoning:

e2 e1 ⪯ctx letx = e2 in lety = e1 in bind (returny) in let z = x y in (λ _. z)

⪯ctx letx = e2 in lety = e1 in bind (returny) in (λ_. let z = x y in z)

⪯ctx letx = e2 in lety = e1 in bind (returny) inx

⪯ctx lety = e1 in letx = e2 in bind (returny) inx

⪯ctx bind (return e1) in e2 : ST ρ τ

Here the second equation is by rec Hoisting and the fourth by a variant of commutativity. The rest

follow by proving the corresponding logical relatedness. Associativity is proven as follows using

equational reasoning:

bind (bind e1 in e2) in e3

⪯ctx lety = e1 in bindy in let z = (e2, e3) in (λ x . bind (π1 z) x inπ2 z)

⪯ctx lety = e1 in bindy in (λ x . let z = (e2, e3) in bind (π1 z) x inπ2 z)

⪯ctx lety = e1 in bindy in (λ x . let z1 = e2 in let z2 = e3 in let z3 = (z1 x) in bind z3 in z2)

⪯ctx lety = e1 in bindy in (λ x . let z1 = e2 in let z3 = (z1 x) in let z2 = e3 in bind z3 in z2)

⪯ctx bind e1 in (λ x . bind (e2 x) in e3) : ST ρ τ

Here the second equation is by rec Hoisting and the fourth by a variant of commutativity. The rest

follow by proving the corresponding logical relatedness. □
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5 IRIS DEFINITIONS OF PREDICATES USED IN THE LOGICAL RELATION
In this section we detail how the abstract predicates (regions, region(r ,γh ,γ ′h), isRgn(α , r ),heapγh (h)
and ℓ 7→γ v) used in the definition of the logical relation are precisely defined in the Iris logic. To

this end, we first introduce three more concepts from the Iris logic: invariants, saved predicates

and ghost-state.

5.1 Invariants, Saved Predicates and Ghost State
We extend the grammar for Iris propositions P , presented in §3 with syntax for invariants, saved

predicates and ghost-resources:

P ::= · · · | P | γ Z⇒ Φ | ✓(a) | a :M
γ

Invariants in Iris, P , are typically used to enforce that a proposition P holds for some shared

state. In this paper we use a certain kind of invariants for which we can use the following rules for

allocating and opening invariants
7
:

Inv-alloc

P

|⇛ P

Inv-open

P ≡∗ P ∗Q

P ≡∗ Q

Notice that these are not the general rules for allocating and opening invariants in Iris. In general,

the rule Inv-open should involve a ▷ to ensure soundness of the logic. However, the above rules do

hold for the invariants we use in this paper.
8
Invariants are persistent, P ⊣⊢ P ∗ P .

For storing of Iris propositions we use a mechanism called saved predicates, γ Z⇒ Φ. This
is simply a convenient way of assigning a name γ to a predicate Φ. There are only three rules

governing the use of saved propositions. We can allocate them (rule SavedPred-Alloc), they are

persistent (rule SavedPred-Persistent) and the association of names to predicates is functional

(rule SavedPred-Eqiv).

SavedPred-Alloc

|⇛E ∃γ . γ Z⇒ Φ
SavedPred-Persistent

γ Z⇒ Φ ⊣⊢ γ Z⇒ Φ ∗ γ Z⇒ Φ

SavedPred-Eqiv

γ Z⇒ Φ ∗ γ Z⇒ Ψ

▷Φ(a) ⊢ ▷Ψ(a)

The later modality is used in rule SavedPred-Eqiv as a guard to avoid self referential para-

doxes [Krebbers et al. 2017a], which is not so surprising, after all, since saved propositions essen-

tially allow us to store a predicate (something of type κ → iProp) inside a proposition (something

of type iProp).
Resources in Iris are described using a kind of partial commutative monoids, and the user of

the logic can introduce new monoids. For instance, in the case of finite partial maps, the partiality

comes from the fact that disjoint union of finite maps is partial. Undefinedness is treated by means

of a validity predicate ✓ : M → iProp, which expresses which elements of the monoidM are

valid/defined.

We write a :M
γ
to assert that a monoid instance named γ , of typeM has contents a. Often,

we disregard the type if it is obvious from the context. We think of this assertion as a ghost variable

γ with contents a.

Ghost-Alloc

✓a ⊢ |⇛∃γ . a γ
Own-Valid

a
γ
⊢ ✓(a)

Sharing

a
γ
∗ b

γ
⊣⊢ a · b

γ

7
Technically,⇛ has masks⇛E where E keeps track of already opened invariants, preventing the same invariant being

opened twice in a nested fashion, which would be unsound. In this paper we omit the masks for the sake of simplicity.

8
The rules hold for invariants P where P is timeless. For details see [Krebbers et al. 2017a].
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Auth-Included

•a · ◦b ⊢ b ⊆ a
Fpfn-valid

✓(a) ⊣⊢ ∀x ∈ dom(a). ✓(a(x))
Agreement-Valid

✓(ag(a) · ag(b)) ⊣⊢ a = b
Exclusive

✓\ (ex(a) · b)

Frag-distributes

◦a · ◦b = ◦ (a · b)
Full-Exclusive

✓\ (•a · •b)

Auth-Alloc-Finset

h ∩ a = ∅

•h
γ
≡∗ • (h ⊎ a) · ◦a

γ

Auth-Alloc-Fpfn

dom(h) ∩ dom(a) = ∅

•h
γ
≡∗ • (h ⊎ a) · ◦a

γ

Agree

ag(a) · ag(a) = ag(a)

Fpfn-operation-success

(a · b)(x) =


a(x) if x ∈ dom(a) ∧ x < dom(b)

a(x) · b(x) if x ∈ dom(a) ∩ dom(b)

b(x) if x ∈ dom(b) ∧ x < dom(a)

Auth-Update-Fpfn

• (h ⊎ (ℓ 7→ ex(v1))) · ◦ ℓ 7→ ex(v1)
γ
≡∗ • (h ⊎ (ℓ 7→ ex(v2))) · ◦ ℓ 7→ ex(v2)

γ

Fig. 8. Rules for selected monoid resources in Iris

Some Useful Monoids. In this paragraph, we describe a few monoids which are particularly useful

and which we will use in the following. We do not give the full definitions of the monoids (those

can be found in [Krebbers et al. 2017a]), but focus instead on the properties which the elements of

the monoids satisfy, shown in Figure 8. These rules stated are only for monoids that we use in this

work and not in Iris in its generality. For instance, in the rule Auth-Included, ⊆ is a set relation

and is defined for finite set and finite partial function monoids and not in general.

The figure depicts the rules necessary for allocating and updating finite set monoids, finset(A),
and finite partial function monoids, A ⇀fin M . In these monoids, the monoid operation x ·y is

disjoint union. The notation a 7→ b : A⇀fin B ≜ {(a,b)} is a singleton finite partial function.

The constructs • and ◦ are constructors of the so-called authoritative monoid Auth(M). We

read •a as full a and ◦a as fragment a. We use the authoritative monoid to distribute ownership of

fragments of a resource. The intuition is that •a is the authoritative knowledge of the full resource,

think of it as being kept track of in a central location. This central location is the full part of the

resource (see rule Auth-Included). The fragments, ◦a, can be shared (rule Frag-distributes)

while the full part (the central location) should always remain unique (rule Full-Exclusive).

In addition to authoritative monoids, we also use the agreement monoid Ag(M) and exclusive

monoid Ex(M). As the name suggests, the operation of the agreement monoid guarantees that

ag(a) · ag(b) is invalid whenever a , b (and otherwise it is idempotent; see rules Agree and

Agreement-Valid). From the rule Agree it follows that the ownership of elements of Ag(M) is
persistent.

ag(a)
γ
⊣⊢ ag(a) · ag(a)

γ
⊣⊢ ag(a)

γ
∗ ag(a)

γ

The operation of the exclusive monoid never results in a valid element (rule Exclusive), enforcing

that there can only be one instance of it owned. We can now give meaning to the heap-specific

predicates used in the earlier sections, by presenting the canonical example of a Heap monoid:

Heap ≜ Auth(Loc
fin

−⇀ (Ex(Val))) heapγ (h) ≜ •h
γ

ℓ 7→γ v ≜ ◦ [l 7→ ex(v)]
γ

Notice here that Heap is build from nesting Ex in the finite partial functions monoid, which again

is nested in the Auth monoid. Therefore, to allocate and update and in the Heap monoid, we can

use Auth-Alloc-Fpfn and Auth-Update-Fpfn respectively.
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5.2 Encoding of Regions by Ghost Resources
In order to concretely represent bijections and relatedness between locations, we use a pair of

monoids, one for the bijection (one-to-one correspondence) and one for the semantic interpretation,

i.e., a name to a saved predicate:

Rel ≜ Auth((Loc × Loc)
fin

−⇀ (Ag(Names))) Bij ≜ Auth(P(Loc × Loc))

Both are defined as authorative monoids which allow for having a global and a local part. To tie

the two monoids together with a semantic region r (the name r is simply a positive integer) we use

a third monoid:

Region ≜ Auth(Z+
fin

−⇀ (Ag(Names × Names)))

We fix a global ghost name γreg for an instance of this last monoid. For Region, ownership of

◦ r 7→ ag(γbij,γrel)
γreg

indicates that the semantic region r is represented by two ghost variables

named γbij and γrel, for Bij and Rel respectively. Notice that this ownership of ◦ r 7→ ag(γbij,γrel)
γreg

is duplicable and also, due to the properties of the agreement monoid, we have that the semantic

region tied to r is uniquely defined. Formally,

◦ r 7→ ag(γbij,γrel)
γreg
∗ ◦ r 7→ ag(γ ′bij,γ

′
rel)

γreg
⊢ γbij = γ

′
bij ∧ γrel = γ

′
rel (6)

We can now present the region(r ,γh ,γ ′h) predicate in detail:

region(r ,γh ,γ ′h) ≜ ∃R,γbij,γrel. ◦ r 7→ ag(γbij,γrel) : Region
γreg
∗ •R : Rel

γrel
∗

∗
(ℓ,ℓ′)7→ag(γpred)∈R

(
∃Φ : (Val × Val) → iProp),v,v ′. ℓ 7→γh v ∗

ℓ′ 7→γ ′h
v ′ ∗ γpred Z⇒ Φ ∗ ▷Φ(v,v ′)

)
The predicate asserts that the semantic region r is associated with two ghost names, γbij and γrel,

by ◦ r 7→ ag(γbij,γrel)
γreg

, and full authoritative ownership of R, which is a mapping of pairs of

locations to ghost names. Further, for each element (ℓ, ℓ′) 7→ ag(γpred) ∈ R we have ownership of

the points-to predicates ℓ 7→γh v and ℓ′ 7→γ ′h
v ′ and the knowledge about a saved predicate Φ,

named by γpred, that holds later for v and v ′.
The regions predicate keeps track of all the allocated regions by having the full authoritative

part •M : Reg
γreg

:

regions ≜

∃M . •M : Region
γreg
∗

∗
r 7→ag(γbij,γrel)∈M

©«∃д : finset(Loc × Loc),R : (Loc × Loc)
fin

−⇀ (Ag(Names)).

•д
γbij
∗ bijection(д) ∗ ◦R

γrel
∗ д = dom(R)

ª®¬
For each element r 7→ ag(γbij,γrel) in M , regions have full authoritative ownership of a bijection

д and fragment ownership of R, which maps each pairs of locations to a ghost name for saved

predicates. Here, д and the domain of R is forced to be equal, ensuring that all pairs that are related

in the bijection are also related in the region. Notice that since the regions predicate is an invariant,

it is also persistent.

Notice here as well that individual regions are tied to the regions predicate, regions, by hav-

ing the fragment ownership of ◦ r 7→ ag(γbij,γrel) : Region
γreg

since the authoritative element

•M : Region
γreg

is owned by regions. Similarly, the regions predicate is tied to all regions by

asserting ownership of the fragment ◦R
γrel
. This illustrates how ghost resources are important to

enforce relations in and out of invariants.
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We can now give meaning to the abstract predicates used in the definition of STRef ρ τ 9:

isRgn(α , r ) ≜ ∃γbij,γrel,γpred. α = r ∗ ◦ r 7→ ag(γbij,γrel)
γreg

bij(r , ℓ, ℓ′) ≜ ∃γbij,γrel. ◦ r 7→ ag(γbij,γrel)
γreg
∗ ◦ (ℓ, ℓ′)

γbij

rel(r , ℓ, ℓ′,Φ) ≜ ∃γbij,γrel,γpred. ◦ r 7→ ag(γbij,γrel)
γreg
∗ ◦ [(ℓ, ℓ′) 7→ ag(γpred)]

γbij
∗ γpred Z⇒ Φ

Each of the predicates owns the ghost resource suggested by its name. For instance, Property (5)

from §3 can now be shown:

regions ≡∗ ∃r . region(r ,γh ,γ ′h)

First, we open the invariant using Inv-open to obtain •M : Region
γreg

. By Ghost-Allocwe obtain

• ∅ · ◦ ∅ : Rel
γrel

and •д
γbij
, for fresh ghost names γrel and γbij. Now, by Auth-Alloc-Fpfn we can

extend M with r 7→ ag(γbij,γrel), to obtain ◦ r 7→ ag(γbij,γrel)
γreg

, for some r not in dom(M), since

M is finite. region(r ,γh ,γ ′h) now holds trivially, since there are no locations allocated in • ∅
γrel
.

Similarly, bijection(∅) and dom(∅) = ∅ hold trivially, so we have reestablished the body of the

invariant.

6 FORMALIZATION IN COQ
We have formalized our technical development and proofs in the Iris implementation in Coq [Kreb-

bers et al. 2017a,b]. The Iris implementation in Coq [Krebbers et al. 2017a] includes a model of Iris

and proof of soundness of the Iris logic itself. The Iris Proof Mode (IPM) [Krebbers et al. 2017b]

allows users to carry out proofs inside Iris in much the same way as in Coq itself by providing

facilities for working with the substructural contexts and modalities of Iris. We have used Iris

and IPM to formalize the future modality, the IC predicates, our logical relation and to prove the

state-independence theorem and all the refinements presented in this paper.

The Trusted Computing Base. Even though our logical relation has been defined inside the Iris

logic, the soundness theorem of Iris [Krebbers et al. 2017a] allows us to prove the soundness of our

logical relation:

Theorem binary__soundness Γ e e' τ : typed Γ e τ → typed Γ e' τ →
(∀ Σ `{ICG__ST Σ} `{LogRelG Σ}, Γ ⊨ e ≤log≤ e' : τ) → Γ ⊨ e ≤ctx≤ e' : τ.

This statement says that whenever Ξ | Γ ⊢ e : τ and Ξ | Γ ⊢ e ′ : τ and we can prove in the Iris

logic (notice the quantification of Iris parameters, Σ `{ICG__ST Σ} `{LogRelG Σ})10 that e and e ′ are
logically related, then e contextually refines e ′. Notice that Ξ does not appear in the Coq code as

we are using de Bruijn indices to represent type variables and hence need no type level context.

The definition of contextual refinement and well-typedness are in turn normal Coq statements,

independent of Iris.

All lemmas and theorems in this paper are type checked by Coq without any assumptions or

axioms apart from the use of functional extensionality which is used for the de Bruijn indices. It is

used by the Autosubst library.

9
The predicate ◦ r 7→ ag(γbij, γrel)

γreg
appears in all the abstract predicates to obtain γbij and γrel. This is to keep the initial

description of the predicates simple. The redundancy does not exist in the actual implementation.

10Σ is the set of Iris resources and the other two parameters express that resources necessary for IC and our logical relations

are present in Σ
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Extending Iris and IPM and instantiating them with STLang. The implementations of Iris and IPM
in Coq are almost entirely independent of the choice of programming language. In practice, the

only definitions that are parameterized by a language are the definitions of weakest-precondition

and Hoare triples. To use these with a particular programming language, one needs to instantiate a

data structure in Coq that represents the language. Basically, one is required to instantiate this data

structure with the language’s set of states (heaps in our case), expressions, values and reduction

relation, together with proofs that they behave as expected (e.g., values do not reduce any further).

In this work we use IC predicates and IC triples instead of the weakest precondition and Hoare

triples used in earlier work. Therefore, we have also parameterized IC predicates and IC triples by

a data structure representing the programming language. We instantiate these with STLang.
The formalization of Iris in Coq is a shallow embedding. That is, the model of the Iris logic is

formalized in Coq, and terms of the type iProp (propositions of Iris) are defined as well-behaved

predicates over the elements of that model. The advantage of shallow embeddings is that one can

easily introduce new connectives and modalities to the logic by defining another function with

iProp as co-domain. For instance, our IC predicate is defined as follows in Coq.

Definition ic__def {Λ Σ} `{ICState Λ, ICG Λ Σ} γ E e Φ : iProp Σ :=
(∀ σ1 σ2 v n, (⌜nsteps pstep n (e, σ1) (of__val v, σ2)⌝ ∗ ownP__full γ σ1)

−∗ |≫{E}=[n]=> Φ v n ∗ ownP__full γ σ2)%I.

Here, ⌜ · ⌝ embeds Coq propositions into Iris and ownP__full γ σ is the full ownership of the physical

state of the language (parameter Λ), equivalent to our heapγ (σ ). The %I at the end instructs Coq to

parse connectives (e.g., the universal quantification) as Iris connectives and not those of Coq.

As discussed in [Krebbers et al. 2017b], IPM tactics, like the iMod tactic for elimination ofmodalities,

simply apply lemmas with side conditions that are discharged with the help of Coq’s type class

inference mechanism. Extending IPM with support for the future modality and IC predicates

essentially boils down to instantiating some of these type classes appropriately.

Representing binders. We use de Bruijn indices to represent variables both at the term level and

the type level; in particular, we use the Autosubst library [Schäfer et al. 2015]. It provides excellent

support for manipulating and simplifying terms with de Bruijn indices in Coq. The simplification

procedure, however, seems to be non-linear in the size of the term. This is the main reason for the

slowness of Coq’s processing of our proofs.
11

7 RELATEDWORK
The most closely related work is the original seminal work of Launchbury and Peyton Jones [1994],

which we discussed and related to in the Introduction. In this section we discuss other related work.

Moggi and Sabry [2001] showed type soundness of calculi with runST-like constructs, both for a

call-by-value language (as we consider here) and for a lazy language. The type soundness results

were shown with respect to operational semantics in which memory is divided into regions: a

runST-encapsulated computation always start out in an empty heap and the final heap of such a

computation is thrown away. Thus their type soundness result does capture some aspects of encap-

sulation. However, the models in loc. cit. are not relational and therefore not suitable for proving

relational statements such as our theorems above. The authors write: “Indeed substantially more
work is needed to establish soundness of equational reasoning with respect to our dynamic semantics
(even for something as unsurprising as β-equivalence)” [Moggi and Sabry 2001].

In contrast to Moggi and Sabry [2001], who also considered type soundness for a call-by-need

language, we only develop our model for a call-by-value language. For call-by-need one would

11
About 17 minutes on a laptop using “make -j4” to compile our Coq formalization of about 12,500 lines.
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need to keep track of the dependencies between effectful operations in the operational semantics

and only evaluate them if they contribute to the end result. These dependencies would also have to

be reflected in the logical relations model. It is not clear how difficult that would be and we believe

it deserves further investigation.

It was pointed out already in [Launchbury and Peyton Jones 1994] that there seems to be a

connection between encapsulation using runST and effect masking in type-and-effect systems à la

Gifford and Lucassen [1986]. This connection was formalized by Semmelroth and Sabry [1999],

who showed how a language with a simplified type-and-effect system with effect masking can be

translated into a language with runST. Moreover, they showed type soundness on their language

with runSTwith respect to an operational semantics. In contrast to our work, they did not investigate

relational properties such as contextual refinement or equivalence.

Benton et al. have investigated contextual refinement and equivalence for type-and-effect systems

in a series of papers [Benton and Buchlovsky 2007; Benton et al. 2007, 2009, 2006] and their work

was extended by Thamsborg and Birkedal [2011] to a language with higher-order store, dynamic

allocation and effect masking. These papers considered soundness of some of the contextual

refinements and equivalences for pure computations that we have also considered in this paper, but,

of course, with very different assumptions, since the type systems in loc. cit. were type-and-effect
systems. Thus, as an alternative to the approach taken in this paper, one could also imagine trying

to prove contextual equivalences in the presence of runST by translating the type system into the

language with type-and-effects used in [Thamsborg and Birkedal 2011] and then appeal to the

equivalences proved there. We doubt, however, that such an alternative approach would be easier

or better in any way. The logical relation that we define in this paper uses an abstraction of regions

and relates regions to the concrete global heap used in the operational semantics. At a very high

level, this is similar to the way regions are used as an abstraction in the models for type-and-effect

systems, e.g., in [Thamsborg and Birkedal 2011]. However, since the models are for different type

systems, they are, of course, very different in detail. One notable advance of the current work over

the models for type-and-effect systems, e.g., the concrete step-indexed model used in [Thamsborg

and Birkedal 2011], is that our use of Iris allows us to give more abstract proofs of the fundamental

lemma for contextual refinements than a more low-level concrete step-indexed model would.

Recently Iris has been used in other works to define logical relations for different type systems

than the one we consider here [Krebbers et al. 2017b; Krogh-Jespersen et al. 2017]. The definitions of

logical relations in those works have used Iris’s weakest preconditions wp e {v . P} to reason about

computations. Here, instead, we use our if-convergence predicate, ICγ e {|v . P |}. One of the key
technical differences between the weakest precondition predicate and the if convergence predicate

is that the latter keeps explicit track of the ghost variable γ used for heap. This allows us to reason

about different (hypothetical) runs of the same expression, a property we exploit in the proofs of

contextual refinements in §4.

8 CONCLUSION AND FUTUREWORK
We have presented a logical relations model of STLang, a higher-order functional programming

language with impredicative polymorphism, recursive types, and a Haskell-style ST monad type

with runST. To the best of our knowledge, this is the first model which can be used to show that

runST provides proper encapsulation of state, in the sense that a number of contextual refinements

and equivalences that are expected to hold for pure computations do indeed hold in the presence of

stateful computations encapsulated using runST. We defined our logical relation in Iris, a state-of-

the-art program logic. This greatly simplified the construction of the logical relation, e.g., because we

could use Iris’s features to deal with the well-known type-world circularity. Moreover, it provided

us with a powerful logic to reason in the model. Our logical relation and our proofs of contextual
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refinements used several new technical ideas: in the logical relation, e.g., the linking of the region

abstraction to concrete heaps and the use of determinacy of evaluation on the specification side;

and, in the proof of contextual refinements, e.g., the use of a helper-logical relation for reasoning

about equivalence of programs using the same number of steps on the implementation side and the

specification side. Finally, we have used and extended the Iris implementation in Coq to formalize

our technical development and proofs in Coq.

Future work. Future work includes developing a model for a call-by-need variant of STLang. In
the original paper [Launchbury and Peyton Jones 1994], Launchbury and Peyton Jones argue that

it would be useful to have a combinator for parallel composition of stateful programs, as opposed

to the sequential composition provided by the monadic bind combinator. One possible direction for

future work is to investigate the addition of concurrency primitives in the presence of encapsulation

of state. It is not immediately clear what the necessary adaptations are for keeping the functional

language pure. It would be interesting to investigate whether a variation of the parallelization

theorem studied for type-and-effect systems in [Krogh-Jespersen et al. 2017] would hold for such a

language.
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