
Verifying concurrent, crash-safe systems with Perennial

Tej Chajed
MIT CSAIL

Joseph Tassarotti
Boston College

M. Frans Kaashoek
MIT CSAIL

Nickolai Zeldovich
MIT CSAIL

Abstract
This paper introduces Perennial, a framework for verify-
ing concurrent, crash-safe systems. Perennial extends the
Iris concurrency framework with three techniques to enable
crash-safety reasoning: recovery leases, recovery helping,
and versioned memory. To ease development and deploy-
ment of applications, Perennial provides Goose, a subset of
Go and a translator from that subset to a model in Perennial
with support for reasoning about Go threads, data structures,
and file-system primitives. We implemented and verified a
crash-safe, concurrent mail server using Perennial and Goose
that achieves speedup on multiple cores. Both Perennial and
Iris use the Coq proof assistant, and the mail server and the
framework’s proofs are machine checked.

CCS Concepts • Software and its engineering → Soft-
ware verification; Concurrency control; Software fault toler-
ance.

Keywords Concurrency, Separation Logic, Crash Safety

1 Introduction
Making concurrent systems crash-safe is challenging be-
cause programmers must consider many interleavings of
threads in addition to the possibility of a crash at any time.
Testing interleavings and crash points is difficult, but formal
verification can prove that the system always follows its
specification, regardless of how threads interleave and even
if the system crashes.
Several existing verified storage systems address many

aspects of crash safety [5, 7, 10, 34], but they support only
sequential execution. There has also been great progress
in verifying concurrent systems [4, 13, 14, 20, 23, 41], but
none support crash safety reasoning. This paper develops
techniques for reasoning about crash safety in the presence
of concurrency and applies them to a verification system
called Iris [24].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6873-5/19/10.
https://doi.org/10.1145/3341301.3359632

Multithreaded Application

Replicated disk library

Disk 1 Disk 2

rd_write/rd_read rd_write/rd_read

write/read write/read

Figure 1. A concurrent, replicated disk library that tolerates
a single disk failure using two physical disks. The library
provides linearizable reads and writes, and transparently
recovers from crashes.

To understand why reasoning about the combination of
crash safety and concurrency is challenging, consider the
following example: a concurrent disk replication library (Fig-
ure 1) that sends writes to two physical disks and handles
read failures on the first disk by falling back to the second.
The informal specification for the library is simple: the two
disks should behave as a single disk. That is, reading a block
should return the last value written to that block, and con-
current reads/writes should be linearizable [19].

One way to implement this specification is with a lock per
block, which is held during writes and reads. This guarantees
that concurrent writes and reads of the same disk block are
linearizable. Intuitively, such an implementation is correct
because a write is durably stored on both disks before the
lock is released.

The lock provides linearizability, but a crash that happens
in the middle of a write leaves the disks out of sync. There-
fore, the implementation must run a recovery procedure on
reboot. Because we want writes to be durable when they
finish, recovery must not revert or corrupt completed writes.
For example, it would be wrong for recovery to make the
disks in sync by zeroing them both. A correct recovery pro-
cedure copies values from the first disk to the second. This
is safe because it logically completes write operations that
crashed during execution and only overwrites old data.
To prove that this justification is correct and that the de-

veloper has considered all interleavings and crash points cor-
rectly, we need to capture this reasoning using precise rules
that lend themselves to concise, machine-checked proofs.
Formalizing this argument is challenging and beyond the
scope of previous concurrency verification tools.

1

https://doi.org/10.1145/3341301.3359632


SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

This paper introduces Perennial, which extends the Iris
concurrency verification framework [24] to incorporate crash
safety reasoning. In order to explain Perennial’s contribu-
tions, we give some brief background on Iris itself. Proofs in
Iris are based on tracking capabilities owned by individual
threads. One proves that each thread manipulates local capa-
bilities correctly and then composes these proofs together to
reason about interacting threads. The notion of a capability
and how capabilities compose is highly flexible in Iris, which
allows encoding complex protocols and fine-grained sharing.
In this work we extend Iris with new capabilities for rea-

soning precisely about the interaction between concurrent
threads, crashes, and executing recovery, with three tech-
niques:

• Versioning: In a crash-safe system some data is persistent
while the rest is only in memory. We express this property
by attaching an execution version number to any capabili-
ties for volatile resources, like in-memory pointers. Only
capabilities for the current version are considered valid.

• Leases: Threads often need exclusive access to durable re-
sources while running, but this exclusive access should be
logically transferred to recovery in case of a crash. We im-
plement this behavior by splitting capabilities for durable
resources into two pieces: a “master” copy, which persists
across crashes, and a temporary “lease” which is restricted
to a particular version number.

• Helping: In some cases a thread crashes in the middle of
an operation, which recovery subsequently completes, a
pattern we call “helping” based on a similar concept in
lock-free programming [18]. We formalize that this pat-
tern is still linearizable by introducing a special capability
representing the on-going action of the crashed thread,
which gives recovery the right to complete the operation
on the thread’s behalf.

Although we developed Perennial and the above tech-
niques as an extension to Iris, we believe these ideas can be
adapted to other concurrency verification frameworks that
use capability reasoning.
To verify running systems, we write them in Goose, a

subset of the Go language. We implemented a translator to
convert this subset of Go to Coq, as well as a formal semantics
in Perennial. Developers can then run the Go code using the
standard Go toolchain, while writing proofs in Perennial.
Goose includes support for threads, pointers, slices, and a
subset of the POSIX file-system API.
We used Perennial and Goose to implement and verify

Mailboat, a mailserver that extends CMAIL [4] with crash
recovery. The proof shows that after recovery all delivered
messages are durably stored and that concurrent readers only
observe complete messages. To further evaluate whether
Perennial’s reasoning principles suffice for a variety of crash
safety patterns, we verified microbenchmark examples in-
volving write-ahead logging and shadow copies.

Our contributions are the following:
• Perennial, a system for machine-checked proofs of con-
current crash-safe systems that uses versioning, leases, and
helping to support crash-safety proofs on top of Iris’s sup-
port for concurrency reasoning.

• Goose, a subset of Go with a translator to Coq and a se-
mantics in Perennial for reasoning about Goose code.

• Mailboat, a mail server written in Goose with a proof of
atomicity and durability that demonstrates using Perennial
end-to-end, as well as smaller verified examples covering
more reasoning patterns.
Our prototypes of Perennial and Goose have some limita-

tions. Perennial does not currently support composing layers
of abstraction; we believe that extending multilayered frame-
works like CertiKOS [13] and Argosy [5] to the concurrent
crash setting is feasible. Perennial proofs only cover safety
properties and not liveness, as is typical in concurrent verifi-
cation. Goose does not include the entire Go language and
lacks support for interfaces or first-class functions. Goose’s
file-system model does not support deferred durability, but
we believe that this is not a fundamental limitation. While
Perennial can in principle reason about lower-level storage
systems like in-kernel file systems or flash translation layers,
this would require a replacement for Goose in a language
without a runtime.

2 Related Work
Verified crash safety. Recently several verification frame-
works have tackled the problem of crash safety of sequential
systems, including verified file systems [5, 7, 10, 34]. These
systems address many issues, including handling crashes dur-
ing recovery and giving an abstract specification that covers
non-crashing and crashing execution separately. None of
these systems support concurrency, and as the replicated
disk example of §1 illustrates, interactions between concur-
rency and crashes require new reasoning techniques.

Fault-Tolerant Concurrent Separation Logic (FTCSL) [31]
does support concurrency and crash safety. FTCSL is built on
top of a concurrency verification framework called Views [9],
similar to how Perennial is built on Iris. However, in contrast
to Perennial, FTCSL does not support fine-grained locking
or lock-free reasoning. Additionally, FTCSL does not provide
a way to prove linearizability. We developed the leasing and
helping techniques mentioned in §1 specifically to address
these challenges in Perennial. Finally, FTCSL and Views have
only been used for pen and paper proofs, while Perennial
supports machine-checked proofs about runnable code.

SMT-based verification. An approach to verification that
has been successfully applied to several systems is SMT-
based verification [30, 34, 35] and hybrids of SMT solving
and another verification tool [16, 17, 23, 32]. In these ap-
proaches, the verification tool translates a program and its
specification into verification conditions — if an SMT solver

2



Verifying concurrent, crash-safe systems with Perennial SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

(for example, Z3) can prove these verification conditions,
then the program meets its specification. In interactive theo-
rem proving, including this work, the verification conditions
are proven by a developer, but the framework proves that
the specification is correctly encoded into verification condi-
tions. It would be an interesting direction for future work to
combine aspects from SMT-based verification and interactive
theorem proving, similar to the approach of hybrid systems
like Nickel [35] and F⋆ [37], but extended to support crash
safety and concurrency.

Concurrent verification. There are many approaches to
verifying concurrent software [4, 9, 14, 23, 24, 33, 41]. None
of these approaches directly supports crash-safety reason-
ing. Incorporating crash safety into an existing verification
framework is not obvious because crash safety requires rea-
soning about a different mode of execution, where crashes
can occur at any time and recovery should run after any
crash. Additionally, crash safety requires a different spec-
ification that distinguishes what is allowed if the system
crashes versus if it does not. FTCSL’s design highlights this
difficulty: FTCSL [31] re-uses the Views framework [9], but
still require a new logic, an encoding into Views, and a proof
that the resulting theorems have the right meaning in the
context of recovery execution; any mistake in this on-paper
reasoning could render any proofs built on top of the frame-
work invalid. In contrast, Perennial introduces techniques to
encode crash safety into Iris and then has a machine-checked
proof that this encoding is correct.

Distributed Systems. Distributed systems face some of the
challenges of concurrency and crash safety. However, of
the existing verified distributed systems [17, 26, 40], only
Verdi [40] covers reasoning about replication to maintain the
consistency of nodes that crash and rejoin a system. Peren-
nial can be used to verify the kind of crash-safe, concurrent
node-storage system that Verdi assumes.

Connecting verification to runnable code. There are two
broad approaches to connecting a running system and its
proof. Extraction-based approaches take a model of the sys-
tem in a form the verification system understands, and trans-
form it into runnable code. Import-based approaches take
runnable code and then convert them into proof obligations
in the verification system. Both extracting and importing
have been explored extensively in prior work [1, 3, 6, 8, 15,
21, 22, 27, 29, 36]. The Goose translator takes the import
approach, starting from a subset of Go.

3 Overview
The components of Perennial are organized as shown in Fig-
ure 2. The developer fills in the green boxes: the code, the
spec, and the proof. The code is implemented Goose (§6), a
subset of Go equipped with a translator to a Perennial model.
Goose includes enough of Go to write useful code, yet is

Coq

Iris (§4)

Perennial (§5)

Goose

Coq translation
of Go (§6)

Spec
Proof

Go src

exe

go

Goose
translator

✓
coqc

semantics (§6)

Figure 2. Overview of Perennial. Blue boxes are provided by
Perennial, while green ones with dashed borders are written
by the developer. White boxes are inherited by Perennial.

simple enough to be represented in a concise model. For
example, the Goose model supports pointers and slices, but
not interfaces, which require function pointers to accurately
model. To implement systems that store data, and to rea-
son about crash safety, Goose includes a file-system library.
Finally, the code can be compiled using the standard Go com-
piler, and linked with unverified code written in ordinary
Go.

The proof is written inside Coq, reasoning about possible
executions of the Go code using Perennial’s model of Go.
The proof is machine-checked and, if correct, implies that
all possible code executions are allowed by the specification.

3.1 Defining correctness
Perennial defines correctness of a system using refinement
between a system’s code and its specification. Both the code
and the spec are transition systems: that is, a state that can
evolve over time through a sequence of well-defined atomic
steps. The spec transitions are calls to the system’s top-level
operations, whereas the code transitions at a finer granu-
larity for every primitive operation in the implementation.
Both transition systems include crash transitions and allow
interleaving operations from multiple threads. We introduce
the idea of concurrent recovery refinement for Perennial’s
particular form of refinement.
Concurrent recovery refinement requires that every se-

quence of code transitions must correspond to some inter-
leaving of spec transitions with the same external I/O (i.e.,
invocations and return values of top-level procedures). This
allows a user of the system to abstract away from the code
and reason purely about the spec, since the spec covers all
possible code executions. Concurrent recovery refinement
also requires that whenever the implementation crashes (fol-
lowed by recovery and perhaps some number of crashes dur-
ing recovery), the whole sequence should simulate a single
atomic crash step in the specification. A particular challenge
in reasoning about crashes in Perennial is that the implemen-
tation can crash in themiddle of many concurrent operations,

3



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

rather than just a single operation that was invoked before
the crash.

Towrite concise specifications, Perennial provides a domain-
specific language embedded in Coq for writing transition
systems. For example, consider the disk replication system
described in the introduction. We show a specification for
the replicated disk’s operations, rd_read and rd_write, in
Figure 3. The spec says that the replicated disk’s state is a
single logical disk, represented as a mapping from addresses
to disk blocks. The rd_read(a) specification looks up the
value of address a by reading from the state with the gets
primitive. If the address is out of bounds, the behavior is
undefined. The rd_write(a, v) specification first checks
that the address is in-bounds, then updates that address in
the state with the modify primitive.

Definition State := Map uint64 block.

Definition rd_read (a:uint64)
: transition State block :=
mv <- gets (fun σ => Map.lookup a σ);
match mv with
| Some v => ret v
| None => undefined
end.

Definition rd_write (a:uint64) (v:block)
: transition State unit :=
mv <- gets (fun σ => Map.lookup a σ);
match mv with
| Some _ => modify (fun σ => Map.insert a v σ)
| None => undefined
end.

Definition crash : transition State unit :=
ret tt.

Figure 3. Specification for the replicated-disk operations.
Callers observe the transitions in these definitions atomically
even if the system crashes, and the crash transition specifies
that no data is lost after recovery.

Perennial’s concurrent recovery refinement for the repli-
cated disk says these two operations are linearizable; that is,
they behave as if the transitions described in the spec occur
atomically when called from multiple threads.
Figure 4 shows a simple pseudo-code implementation of

rd_read and rd_write, which uses per-address locks to en-
sure linearizability. To handle crashes, which can interrupt
even critical sections, the implementation runs a recovery
procedure after a crash that repairs the state of the replicated
disks before accepting new rd_read and rd_write requests.
Suppose the system were to crash between the two calls to
disk_write(a, v) in rd_write, which would leave Disk1
with the value v but Disk2 with the old value. Without a re-
covery procedure, calling rd_read(a) after this crash would

return v from Disk1, but if Disk1 were to fail, subsequent
calls to rd_read(a)would fail over to Disk2 and then return
the old value from before v was written, which is disallowed
by the specification. A recovery procedure eliminates this
inconsistency; one possible implementation is shown in Fig-
ure 5, which copies the blocks from Disk1 to Disk2 to bring
the disks back into a consistent state.

1 func rd_read(a) []byte {
2 acquire_lock(a)
3 v, ok := disk_read(Disk1, a)
4 if !ok {
5 v, _ = disk_read(Disk2, a)
6 }
7 unlock(a)
8 return v
9 }
10

11 func rd_write(a uint64, v []byte) {
12 acquire_lock(a)
13 disk_write(Disk1, a, v)
14 disk_write(Disk2, a, v)
15 unlock(a)
16 }

Figure 4. Go pseudo-code for replicated-disk read and write.
These implement the specifications in Figure 3 atomically,
using a lock to protect each disk address.

1 func rd_recover() {
2 for a := 0; a < DiskSize; a++ {
3 v, ok := disk_read(Disk1, a)
4 if ok {
5 disk_write(Disk2, a, v)
6 }
7 }
8 }

Figure 5. Go pseudo-code for replicated-disk recovery. Re-
covery guarantees that writes are atomic and persistent even
after crashes, as specified by crash in Figure 3.

3.2 Proving correctness
To prove refinement for all possible executions, the developer
uses a standard technique called forward simulation [28].
The first step in using forward simulation is an abstraction
relation that connects the code and spec states and defines
which states are reachable to begin with. Forward simula-
tion requires the developer to show that, starting from any
pair of code and spec states connected by the abstraction
relation, any valid code-level transition results in a new code-
level state that is connected to the same spec-level state, or
another spec-level state that is the result of one or more
spec-level transitions. Any output from the code (including

4



Verifying concurrent, crash-safe systems with Perennial SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

S0 S1 S2

C0 C1 C2 C3 C4 C5 C6
lock write crash . . . write . . .

R R R

rd_write crash

Recovery helping

Figure 6. Refinement diagram for one executionwith a crash
in the middle of rd_write. Yellow states are spec states and
blue ones are code states. Right arrows in the top row are
spec transitions while those in the bottom row are code
transitions.

return values) should be allowed by the spec transition as
well. As mentioned above, forward simulation for concurrent
recovery refinement also requires relating a crash followed
by recovery to a crash transition at the abstract level.

As an example, consider Figure 6, which illustrates refine-
ment using R as the abstraction relation for one possible
execution of rd_write, with no concurrency but one crash
followed by running the recovery procedure rd_recover. In
this example, the system crashes after writing to Disk1 but
before writing to Disk2. The write has not yet logically com-
pleted, so in this example, the state inwhich rd_write(a, v)
crashed still corresponds to the original spec state; no spec
transitions have happened yet. Once the recovery code copies
the new value from Disk1 to Disk2, however, the spec takes
a transition and appears to have executed rd_write(a, v).
Finally, after recovery finishes, the spec itself appears to ex-
ecute a crash transition, to reflect the fact that even at the
spec level, the executing code crashed and restarted.

Refinement, especially between a concurrent program and
its atomic specification, is difficult to prove by direct forward
simulation for two reasons. First, even correctly stating the
abstraction relation is difficult, since it must capture all inter-
mediate states from partially executed operations in different
threads. Second, threads interact in complicated ways, and
the forward simulation proof must consider any transition,
including all interleavings of concurrent threads.

Tomake refinement proofs manageable we add some struc-
ture. The structure we use is to prove a per-operation Hoare
triple that summarizes each operation, separates the state
that each operation touches from other threads as much as
possible, and otherwise prescribes a protocol for concurrent
threads to follow. The summaries ensure that each thread
maintains a forward simulation. The Perennial framework
then provides a (difficult) proof showing that for any opera-
tions and summaries, as long as the summaries agree with
each other on a common protocol and abstraction relation,
the whole system satisfies refinement.

4 Background on Iris
Perennial is an extension to Iris, which is a variant of concur-
rent separation logic to reason about program correctness
and an implementation of this logic in Coq. There are two
aspects to separation logic: the assertion language, which
represents capabilities that threads logically own, and Hoare
triples, which describe what a piece of code does in terms of
capabilities. An example of a capability is the basic “a points
to v”, written a 7→ v . This points-to capability gives permis-
sion to read and write the memory address a and also asserts
that the value in memory at a is v . These capabilities are
all logical and expressed within the proof, with no runtime
enforcement; if the code does not follow the permissions,
the proof would not go through.
Hoare triples have the form {P } e {Q} , which we can

interpret as “the procedure e when run with capabilities P
(the precondition) returns capabilitiesQ (the postcondition)”.
For example, the a 7→ v capability is used in Hoare triples
such as:

{a 7→ v} write(a, v’) {a 7→ v ′}

This triple consumes the capabilitya 7→ v in the pre-condition,
and gives back the updated a 7→ v ′, reflecting the completed
write to a.

Separating conjunction. Separation logic introduces the
separating conjunction, P ∗Q , which represents ownership
of capabilities in P and Q , which are required to be disjoint,
meaning that the capabilities in P are compatible with the
capabilities in Q . For example, the assertion a 7→ v ∗ a 7→ v
never holds, because the left copy of the capability could be
used to carry out a write, thereby invalidating the value in
the right copy.
The separating conjunction is useful because it lets us

verify each thread of a concurrent system in isolation, and
then compose these proofs together to derive a theorem
about the whole system. The way this works is that a thread
with access to the capability P ∗Q can fork a child thread and
pass it the capability Q while retaining P . The proof for the
child can simply assume access to Q without any reference
to what the parent thread concurrently does with P , which is
why these proofs can be carried out separately. This process
of splitting resources and giving them to forked threads is
illustrated in Figure 7.
Preconditions in separation logic only need to mention

the capabilities the code uses to establish its postcondition,
not the global state of the system. More formally, {P } e {Q}

implies {P ∗ R} e {Q ∗ R} for any “extras” R. Intuitively this
so-called frame rule is true because the capabilities in R are
disjoint from the resources e uses and modifies.

Invariants. As we have described, it would seem threads
must operate on disjoint data for capabilities to partition
according to ∗. However, in many cases threads need to share
or transfer capabilities. For example, consider a scenario

5



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

tid0 tid1
σ1 : P ∗ Q

σ2 : P ′ ∗ Q

σ3 : P ′ ∗ (Q ′ ∗ R)
tid2

σ4 : P ′ ∗ Q ′ ∗ R

fork

Figure 7. Illustration of the relationship between capabili-
ties owned by all concurrent threads. At each step, the state
(the σi ) satisfies the separating conjunction of all threads’ as-
sertions. Because the threads’ capabilities are all compatible,
it suffices to prove separate Hoare triples about them.

where two threads should both be able to read from address
a. As mentioned above a 7→ v ∗ a 7→ v is not provable, so
it is not possible for both threads to simultaneously own
this capability. Instead, in order to share this capability, Iris
has a mechanism called invariants. Invariants are assertions
that are required to hold at every step of execution once
established. Iris defines a capability P indicating that the
capability P is an invariant. Proofs can use P by temporarily
opening the invariant, using the capabilities inside, and then
closing the invariant by showing that P still holds. To ensure
that the invariant is really preserved at all times, opened
invariants must be closed after an atomic step. The upshot
of preserving the invariant is that the capability P can be
shared among multiple threads — all threads in a system
agree on the invariant. Finally, when invariants are allocated,
the creating thread must provide the underlying capability.
We show an example of an invariant being created, shared,
and used in Figure 8.

Extensible capabilities. Classic separation logic has just
the basic capability a 7→ v for describing memory contents.
However, modern separation logics, like Iris, provide ways
for expert users to define new capabilities for different kinds
of state. For the replicated disk system, this mechanism can
be used to define capabilities di [a] 7→ v to mean that disk i
has valuev at address a if it has not failed. When defined cor-
rectly, this capability would have rules similar to the write
rule above for writing to the disks. We will not describe
how this extensibility works, because it is not necessary to
understand or use Perennial.
Reasoning about locks uses another user-defined capa-

bility. Each lock is associated with a lock invariant, an Iris
capability logically protected by the lock. The lock guaran-
tees that at most one thread (the lock owner) has access to
the capabilities in the invariant at any given time. Lock in-
variants are expressed with a capability is_lock(ℓ, I ), which

tid0 invariants

σ1 : (P ∗ R)

σ1 : (P ∗ R )
tid1

R

σ2 : (P ∗ R ) ∗ R R

σ2 : (P ∗ R ) ∗ (R ∗ R)

σ3 : (P ∗ R ) ∗ (R ∗ R)

σ3 : (P ∗ R ) ∗ R R

fork

atomic

Figure 8. Diagram showing how resources are transferred
between threads through invariants. Dotted lines indicate
steps in the proof, while solid lines are steps of execution.
Thread 0 initializes an invariant containing R. It then forks
a child and passes it knowledge of the invariant. The child
thread opens the invariant to obtain R, and then returns it
after taking a single atomic step.

asserts that ℓ is the in-memory location of a lock with in-
variant I . Acquiring the lock gives the owner access to all
the capabilities in I . To release the lock the lock owner must
return the resources I for the next owner. The capability
is_lock(ℓ, I ) can be freely shared by multiple threads since
it merely gives access to the lock—the protected resources
require first acquiring the lock.
Lock invariants are quite similar to Iris invariants with

the important difference that a thread can violate the lock
invariant for as many steps as they have the lock, unlike
invariants which must be returned after an atomic step.

Refinement. Iris can also support refinement reasoning us-
ing Hoare triples, following the approach in CaReSL [39]
(which has previously been implemented in Iris [25]). The
idea is to create new capabilities called specification resources
that represent a forward simulation proof up to the current
moment of execution, and then prove that the implemen-
tation advances this simulation proof by one step. A bit
more concretely, we introduce a capability source(σ ) that
says the abstract state is σ and j Z⇒ op that says thread
j in the specification transition system is about to run op.
These resources only have meaning in the proof, but their
encoding in Iris means they can only be manipulated by
simulating a step and producing the correct return value.
Specifically, when step(op,σ ,σ ′,v) is allowed by the spec-
ification (where v is some return value of the appropriate
type for op) then source(σ ) ∗ j Z⇒ op can be replaced with
source(σ ′) ∗ j Z⇒ retv . Finally, the abstraction relation is

6



Verifying concurrent, crash-safe systems with Perennial SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

encoded in Iris as an invariant that talks about source(σ )
and relates it to the code state.
As a result of these rules, we can prove the following

theorem:

Theorem 1 (concurrent forward simulation). If all of the
operations in an implementation satisfy

{j Z⇒ op ∗ AbsR }

op_impl()

{v . j Z⇒ retv}

then the implementation is a refinement of its specification
with abstraction relation AbsR; that is, any sequence of calls
to the operation implementation, starting from states that
are initially related by AbsR, will returns values that match
some interleaving of abstract operations.

In summary, Iris has a flexible notion of capabilities and
disjointness that lets us reason about each thread indepen-
dently. A core feature of Iris is invariants, which allow rea-
soning about threads sharing exclusive capabilities. Finally,
capabilities in Iris are extensible, which we take advantage
of in Perennial with extensions for reasoning about crashes
and refinement with recovery (§5).

5 Proving concurrent recovery refinement
Perennial extends Iris with techniques for reasoning about
crashes and provides a theorem that connects Hoare triples
in Iris to concurrent recovery refinement. We summarize
all of these techniques in Table 1. We first describe how to
reason about crashes and recovery by connecting a Hoare
triple for a procedure with a Hoare triple for recovery. This
connection is based on a crash invariant (§5.1) and uses two
extensions to Iris’s capabilities, versioned state (§5.2) and re-
covery leases (§5.3). Next, we describe howPerennial supports
concurrent recovery refinement with recovery helping (§5.4)
and Theorem 2 (§5.5). All of the techniques we describe here
are formalized and proven correct in Coq.

5.1 Crash Invariants
The first idea is to adapt the notion of crash invariants from
Crash Hoare Logic (CHL) [7] to this concurrent setting. As
the name suggests, a crash invariant in CHL is an invari-
ant that must be shown to hold at every step of execution.
Whenever a crash occurs, a special recovery procedure will
run after the computer reboots. To ensure that the recovery
procedure is safe to run, the crash invariant must imply the
precondition of the recovery procedure.
Perennial uses Iris invariants to implement support for

crash invariants. When a crash occurs, the recovery proce-
dure starts with the capabilities from the distinguished crash
invariant C . Any other capabilities owned by the executing
threads are lost. This process is illustrated in Figure 9. Since
the recovery procedure could immediately crash again, it

Technique Rules for using it

crash
invariant (§5.1)

distinguished invariant C which re-
covery starts with access to

versioned
memory (§5.2)

{p 7→n v} read, write {. . .}n
(Hoare triples are at a version num-
ber and only allow capabilities at the
current version)

recovery
leases (§5.3)

{d[a] 7→n v ∗ leasen(d[a],v)}
read, write

{. . .}n
(both capabilities are required to use
master copy)

d[a] 7→n v =⇒

d[a] 7→n+1 v ∗ leasen+1(d[a],v)
(can synthesize new lease after a
crash using master copy)

refinement (§4) when step(op,σ ,σ ′,v),
source(σ ) ∗ j Z⇒ op =⇒
source(σ ′) ∗ j Z⇒ retv

(simulate an abstract operation step)

crash
refinement (§5.5)

when crash(σ ,σ ′),
source(σ ) ∗ Z⇒Crashing =⇒

source(σ ′) ∗ Z⇒Done
(simulate an abstract crash step)

recovery
helping (§5.4)

operation stores j Z⇒ op in crash in-
variant, recovery simulates it

Table 1. Summary of techniques in Perennial.

tid0 tid1 invariants

σ1 : P ∗ Q Cn

σ2 : initMn+1 ∗Cn

σ2 : R Cn+1

recover crash

Figure 9. Illustration of how resources are passed from a
crash invariant to the recovery thread. Recovery obtains the
crash invariant Cn from the crashed execution, along with
capabilities for the fresh memory at the new version number.
It uses these capabilities to establish fresh leases for durable
state, and then re-establishes the crash invariant for the new
version number.

re-allocates the crash invariant and maintains it throughout
recovery.

7



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

5.2 Versioned state
Crash invariants allow Perennial to handle transferring ca-
pabilities across a crash. However, Perennial also needs to
account for the fact that crashes invalidate capabilities for
volatile memory; for example, a 7→ v no longer holds after a
crash since all memory contents are lost.

Iris has no built-in notion of invalidating capabilities. We
use version numbers to encode the same idea without modi-
fying the underlying framework. Perennial versions all in-
memory capabilities with a generation number, for which
we use the variable n. For example, we write p 7→n v for the
basic points-to capability that says p points to a value v and
gives ownership over that address, now with version number
n. Every Hoare triple is for a particular version number, and
any capabilities for old versions are invalid while proving a
triple. The following Hoare triple describes the basic pointer
store operation:

{p 7→n v0} p := v {p 7→n v}n

Note that the entire Hoare triple now has a version subscript,
and if the capability’s version does not match this triple does
not apply.
When we connect Hoare triples across a crash, recovery

begins with all capabilities in the crash invariant. However,
we invalidate any in-memory capabilities by connecting a
Hoare triple for a procedure at version n to a recovery Hoare
triple at version n + 1. Thus recovery must transform the
resources from the crash invariant Cn into a new crash in-
variant Cn+1 at the new version number.

5.3 Recovery leases
In contrast to volatile state like memory, capabilities for
durable state are still meaningful after a crash. The crash
invariant gives us a way to prove that threads preserve some
invariant about durable state throughout execution, so that
recovery can rely on that invariant. On the other hand, locks
protect some capabilities in an invariant from concurrent
modification by other threads. However, these two types
of invariants are incompatible: the same capability cannot
appear in both.
For a concrete example of this issue, consider the repli-

cated disk example. Recovery needs access to disk blocks
to copy between the disks in case of a crash, so the crash
invariant must store address capabilities. In addition, a lock
protects each address so that a writer can modify the blocks
in both disks without interference from another thread. The
natural way to encode how the lock provides isolation would
be to store the block capabilities in an Iris lock invariant, as
described in §4, to enforce that a thread can only modify the
blocks if it holds the lock. But we cannot store the d1[a] 7→ v
capability in both the lock invariant and the crash invariant,
because capabilities cannot be duplicated.
We solve this problem using recovery leases. We split ev-

ery durable capability d[a] 7→ v into a new lease capability

leasen(d[a],v) and a master copy d[a] 7→n v . The lease rep-
resents the permission to modify the state for the current
version number only, while themaster copy records the value
of the state so that recovery can use it after a crash. The lease
has three important features. First, both the master copy and
lease are required to update the value, via the following rule:

{d[a] 7→n v0 ∗ leasen(d[a],v0)}
write(a, v)

{d[a] 7→n v ∗ leasen(d[a],v)}n

Second, only one thread can hold the lease at any time; and
finally, both capabilities are tied to the current version num-
ber and are invalidated on crash. These three features encode
all of the properties needed to accurately model exclusive
access to durable resources.
To give recovery access to the resource, the master copy

d[a] 7→n v is stored in the crash invariant. To give running
threads exclusive access, we use locks to protect the logical
capability leasen(d[a],v) and borrow d[a] 7→n v from the
crash invariant to write to disk whenever necessary. Finally,
recovery can take an old master copy d[a] 7→n v and syn-
thesize a new lease/master pair for the new version number,
d[a] 7→n+1 v ∗ leasen+1(d[a],v), keeping the master copy in a
new crash invariant and handing out the lease to application
code after recovery finishes. As a notational convenience we
write d[a] 7→ v for the master copy at the current version,
leaving implicit that this capability has been leased out. The
code must track the difference to prevent duplicate leases,
but the difference is not important to understand Perennial.

In the replicated disk example, we use a lock for each ad-
dress a to protect recovery leases ford1[a] 7→n andd2[a] 7→n ,
as well as ensure that their values agree when the lock is
free. While the lock is held, the system might crash, in which
case recovery can use the master capabilities to copy from
the first to the second disk.

5.4 Recovery helping
In the replicated disk example, after a crash, the recovery
code synchronizes the contents of disk 1 onto disk 2. If the
disks differ in any location, this needs to be justified with a
spec-level transition. Informally, the justification is that if
the disks differed at a before a crash, there must have been
a thread writing to a, and recovery simulates its operation
when it updates disk 2.

To formalize this intuition, Perennial introduces the no-
tion of recovery helping, where recovery completes the oper-
ation of a thread running prior to the crash. We borrow the
term “helping” from a similar concept in lock-free program-
ming [18] where one thread completes another’s operation.
We found that Iris reasoning techniques for verifying concur-
rency helping could be adapted to handle recovery helping.

The implementation of recovery helping uses techniques
we have already described. Recall that Iris refinement proofs

8



Verifying concurrent, crash-safe systems with Perennial SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

use a j Z⇒ op assertion to represent a pending source-level
operation in a forward simulation proof. Because this is
just another capability, we can use it in any invariant — in
recovery helping, we store a j Z⇒ op assertion in the crash
invariant temporarily, and if the system crashes, the recovery
proof uses the stored assertion to justify completing the high-
level operation from before the crash.

The replicated disk recovery procedure uses helping when
it copies from the first disk to the second. The crash invariant
says that for every disk address a where disk 1 has value v1
and disk 2 has value v2, if v1 , v2, then j Z⇒ Write(a, v1).
Ordinarily the two values agree and the implication is vacu-
ously true, but in the middle of an update the values on disk
differ. Concurrent threads do not observe this difference due
to locks, which protect leases on the two di [a] capabilities,
but recovery might due to a crash. If the system does crash
in the middle of a write, recovery uses the helping assertion
to simulate a write from just before the crash. Note that this
helping assertion is per address, so recovery might simulate
many operations, in any order; this is still a forward simu-
lation, since those writes were concurrent and thus can be
simulated in any order.

5.5 Verifying Refinement
With these extensions for reasoning about crashes in the
middle of concurrent code, we are now ready to explain how
Perennial can be used to prove a concurrent refinement by
applying the following general theorem:

Theorem 2 (recovery forward simulation). If a system’s
implementation satisfies the following properties:
• operation triples: for all operations op and their imple-
mentations op_impl,

{j Z⇒ op ∗ AbsRn }

op_impl()

{v . j Z⇒ retv}n
• recovery triple: the recovery procedure satisfies

{ Z⇒Crashing ∗ CrashInvn+1 }

recover()

{_. Z⇒Done ∗AbsRn+1 }n+1

• crash invariance: for all n, AbsRn =⇒ CrashInvn+1
• idempotence: for all n, CrashInvn+1 =⇒ CrashInvn+2

then the implementation is a concurrent recovery refine-
ment.

Compared to Theorem 1, the main difference is the addi-
tion of a recovery triple and side conditions that relate the
abstraction relation and the crash invariant; the only other
difference is that Hoare triples in Perennial are parameter-
ized by a current version n. Note that in the Coq formalism,
initial conditions are part of the specification of the system.

In this informal presentation of the theorem we omit pre-
conditions related to initial conditions, which establish the
abstraction relation in the first place.
This theorem introduces two new capabilities we have

not yet explained: Z⇒Crashing and Z⇒Done . These are ca-
pabilities to express progress in a recovery refinement proof;
they are analogous to j Z⇒ op and j Z⇒ retv , except they rep-
resent a spec-level crash transition rather than an operation
transition. The rules for these capabilities permit replacing
source(σ ) ∗ Z⇒Crashing with source(σ ′) ∗ Z⇒Done when
the specification allows a crash transition from σ to σ ′.
The recovery triple proof demonstrates that recovery re-

stores the abstraction relation AbsR following a crash. If the
system halts at any time, the operation crash-refinement
triples guarantee that CrashInv holds. If this invariant uses
memory version n, then after a crash the new memory ver-
sion isn+1. The developer must design the crash invariant to
hold even after a crash by only referring to durable resources,
which is enforced by the crash-invariance property. Due to
the possibility of crashes during recovery, the recovery triple
must also preserve the crash invariant in the same way all
regular operations do. This requirement is enforced in two
ways: first, the crash invariant is also a crash invariant for
recovery, as specified by CrashInv ; and second, the idem-
potence condition requires that the crash invariant be itself
crash invariant by only referring to durable resources. The
requirement that recovery maintain a crash invariant corre-
sponds to the idempotence principle identified in previous
sequential verification systems [5, 7, 31, 34].

In the case of the replicated disk, recovery copies data from
the first disk to the second. The abstraction relation includes
lock invariants that require that the values on both disks
agree. This property can be violated by a crash in the middle
of a critical section — the lock invariant is not guaranteed to
hold at all times, but the crash invariant is. Recovery uses a
recovery helping assertion in the crash invariant to justify
completing any in-progress writes, restoring the synchrony
of the disks and establishing all the lock invariants and thus
the abstraction relation. The proof also synthesizes the re-
covery leases for the abstraction relation corresponding to
the new memory version number n + 1.

6 Verifying Go code with Goose
To verify real, runnable systems we developed Goose, a sub-
set of Go amenable to reasoning in Perennial. Goose includes
the core of the Go language, including slices, maps, structs,
and goroutines (lightweight threads). The developer can di-
rectly compile and run this source code using the standard
Go compiler toolchain. The most relevant part of Goose for
this paper are the capabilities we implemented to model Go
data in Iris, including pointers, files, and OS file descriptors.

9



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

6.1 Modeling shared memory
Goose needs a semantics for operations on pointers and
slices since these are fundamental components of writing
Go code. Modeling Go’s shared memory support requires
care: the Go memory model [11] specifies that accessing
data simultaneously from multiple goroutines (lightweight
threads) requires serialization, for example using locks. This
requirement is important to ensure that on real hardware
with weak memory (for example, x86-TSO for the Intel x86
architecture) Go can use efficient loads and stores yet ensure
threads observe a sequentially consistent view of memory.

Goose enforces serialized access to shared data (pointers,
slice, and maps) by making racy access to the same data un-
defined behavior. A race is formally defined as any instance
of unordered accesses to the same object where at least one
is a write. Perennial disallows systems that encounter this
racy behavior by modeling writes, such as a store *p = v,
as two atomic operations, a start and an end, and making
it undefined behavior in Perennial for a procedure to ever
overlap a write with another operation on the same pointer.
All refinement proofs must show the code never triggers
undefined behavior. This is easy to do in Iris since the ca-
pability for accessing pointers, written p 7→n v , represents
exclusive access to the pointerp; threads obtain this exclusive
access either by allocating a new pointer and not sharing it,
or by mediating access with locks. Because this resource is
in memory, it refers to the current memory version number
n (as described in §5.2). We use a variant of the same idea to
model hashmap iteration, which has a similar problem with
iterator invalidation.

Goose does not currently support Go’s sync/atomic pack-
age that can be used to build synchronization primitives or
do lock-free programming. Our examples did not require
these operations, but Goose could be extended to include
them. Goose also doesn’t support Go’s interfaces and first-
class functions, because these features are difficult to model
and weren’t necessary in the examples we wrote.

6.2 Modeling the file system
Goose also includes a subset of the POSIX file-system API.
The API is mostly a thin wrapper around a selection of sys-
tem calls, which for simplicity only provides access to a
subdirectory of the operating system’s file system with a
fixed layout since directories cannot be renamed or created
within that subdirectory. To reason about the file system,
Goose logically represents the file system with a four dif-
ferent capabilities, described below. These capabilities are
deliberately low-level to accurately model features like hard
links and the difference between paths and file descriptors.

• Directories: dir 7→ N states that the directory dir contains
the set of file names N . This capability is needed to list the
contents of dir and to add/delete files.

• Directory entries: (dir, name) 7→ i states that the contents
of file name in directory dir are in the inode i . We use this
to open name or when creating a new hard link to it.

• File descriptors: fd 7→n (i,md) states that the file descrip-
tor fd points to the inode i , with amodemd (corresponding
to flags passed to open; we support read and append). It
references the current memory version number n since
file descriptors are lost on crash.

• Inode contents: i 7→ bs states that the inode i contains the
bytes bs. This is used with a file descriptor to access a file.
The Goose semantics includes a crash model, which de-

scribes the effects of a process crashing. As expected, on
crash all data structures on the heap are lost. All file data
is persisted (this is true for process crashes since the data
is stored safely in the kernel), but open file descriptors are
lost. Goose’s semantics model every file-system operation as
atomic with respect to other threads. Because file descriptors
are lost on crash, they are tied to the current memory version,
as in §5.2. As with all durable resources, recovery can create
leases (as described in §5.3) for directories, directory entries,
and inodes. It would be possible to reason about buffered
data in the file system to model whole machine crashes, but
our prototype does not do so.

7 Implementation
We implemented Perennial using the Coq proof assistant [38],
and implemented Goose using a combination of Go for the
translator and Coq for the semantics and Iris resources.1 A
breakdown of lines of code is given in Table 2. The frame-
work consists of around 8,900 lines of code, including the
transition-system domain-specific language used to write
specs. The Go semantics Goose uses is around 2,000 lines
of code in Perennial, which includes both a model of Go
operations as well as the Iris resources to prove Go code
correct.

Component Lines of code

Transition system language 1,710
Core framework 7,220
Perennial total 8,930

Goose translator (Go) 1,790
Goose library (Go) 220
Go semantics 2,020
Table 2. Lines of code for Perennial and Goose.

The Goose translator is an executable called goose that
translates Go to Coq and links with the Goose semantics. The
translator is written in around 1,800 lines of Go. Running
goose on supported Go code produces a Coq representation
1The framework and examples are at https://github.com/mit-pdos/perennial
while the Goose translator is at https://github.com/tchajed/goose.

10

https://github.com/mit-pdos/perennial
https://github.com/tchajed/goose


Verifying concurrent, crash-safe systems with Perennial SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

ready to import into Perennial that represents the Go code.
Goose uses Go’s built-in go/ast and go/types packages
to parse and analyze source code: relying on these official
tools helps reduce the chance of a mismatch between the
translator and the Go compiler, which is important since
the translator is a trusted tool. Furthermore, the Coq code
must type check, which rejects unhandled code that would
be difficult to detect with the translator alone. Finally, as
a practical matter, goose produces human-readable output
that is easy to audit.

8 Using Perennial to verify Mailboat
To demonstrate Perennial’s usefulness, we developed Mail-
boat, a mail server that supports users reading and deleting
their mail concurrently with mail delivery and uses a Maildir-
like format to store messages using the file system. Mailboat
is functionally similar to the CMAIL mail server verified us-
ing CSPEC [4], but Mailboat’s proof includes a crash-safety
guarantee and the implementation is lower level, using Go
instead of extracted Haskell.

8.1 Specification
The verified Mailboat library implements the core operations
to store, read, and delete usermail. The Go signatures of these
functions are shown in Figure 10. In this section we infor-
mally describe the behavior of these operations; the Mailboat
proof shows the implementation meets a more rigorously
defined specification. Before executing any operations, the
library requires that the caller run Init to initialize internal
state in the library, or run Recover to restore the system
following a shutdown or crash.

1 type Message struct {
2 ID string
3 Contents string
4 }
5

6 func Init() { /* ... */ }
7 func Pickup(user uint64) []Message { /* ... */ }
8 func Deliver(user uint64, msg []byte) { /* ... */ }
9 func Delete(user uint64, id string) { /* ... */ }
10 func Unlock(user uint64) { /* ... */ }
11

12 func Recover() { /* ... */ }

Figure 10. Go signatures for the Mailboat API.

The abstract state maintained by the Mailboat library is
that of a set of users’ mailboxes (one per user ID), where a
mailbox is a mapping from message IDs to contents.
To read and delete mail, Mailboat requires holding a per-

user lock to prevent messages from being deleted while the
user is reading their mail. This lock is implicitly acquired
as part of initially listing mail with Pickup and released
with the Unlock operation. In practice the SMTP server calls

Pickup when a user connects and Unlock when they dis-
connect. For simplicity the library assumes that users only
attempt to delete message IDs that were returned by Pickup.
Mailboat supports mail delivery concurrently at any time,
without acquiring locks.

The signatures include mutable slices. To prove the im-
plementation correct, the specification states precisely how
the caller can use these slices. For example, for delivery to
be atomic, the caller must not concurrently modify the slice
passed to Deliver. On the other hand, the slice returned
from Pickup is not retained by the mail library, so the caller
can freely mutate it. The formal specification makes the
restriction on Deliver precise by making concurrent modi-
fication to the slice undefined behavior, while allowing the
caller to use the returned slice from Pickup arbitrarily.

8.2 Implementation
Mailboat stores each user’s mailbox as a directory with a
file per message. For crash safety, messages are spooled in
a separate directory before being atomically stored in the
user’s mailbox. The library supports concurrent operations
and guarantees that delivered mail is not lost on crash, which
is achieved with the following mechanisms:

Pickup/Delete: Pickup reads a list of files in the user’s mail-
box directory, and then reads each file. To avoid a file being
deleted between listing the files and reading them, pickup
and delete acquire a common lock per user.

Pickup/Deliver: Concurrent deliveries are permitted dur-
ing a pickup, even for the same user. To prevent reading
partially written messages, Deliver first writes the message
to a separate spool directory. It then atomically links the
file into the user’s mailbox and deletes the temporary file.

Deliver/Deliver: Multiple threads can concurrently deliver.
To avoid file-name conflicts within the spool and mailbox
directories, threads randomly generate IDs, retrying if the
name is already taken.

Recovery: If the mail server crashes, the spool directory
may contain temporary files that are no longer needed. Thus,
Recover deletes all of the files in spool/. While the specifi-
cation does not mandate this cleanup, doing so frees space.

UsingMailboat: Weused the library to implement an SMTP
and POP3-compatible mail server by implementing these
protocols and interfacing with the network using Go’s stan-
dard library. The protocol implementation is unverified, but
works with the Postal mail server benchmarking library’s
postal tool, which delivers messages rapidly, and rabid,
which tests retrieval by checking each message against a
hash in an email header.

8.3 Proof
We highlight interesting aspects of the Mailboat proof here.

11



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

Leasing strategy. There are two types of durable state in
Mailboat: the users’ message files and the spool files. We
use Perennial’s leasing technique in order to handle the
capabilities for these pieces of state.

For the messages, after a crash we need to know that all of
the users’ delivered message files have the right contents and
are in the correct directories. Therefore, the master capabili-
ties for mailbox directories and message files must reside in
the crash invariant, just as the master permission for blocks
did in the replicated disk. We store a lease on directory con-
tents in each mailbox’s lock invariant. However, the mailbox
lock only prevents concurrent deletes, not concurrent de-
livery, so the set of files in the directory can be modified
while the lock is held. Rather than locking the capability
lease(dir,N ), the Mailboat proof accounts for concurrent de-
livery using a lower-bound lease, written lease(dir, ⊇N ), that
guarantees dir contains at least the files in N . The holder of
the lock can use this lease to delete files, while other threads
may only create new ones.
For the temporary files, recovery needs the capability to

delete these files, but their contents are irrelevant after a
crash. Therefore, we store the master permissions for the
temporary directory in the abstraction relation, but not the
inode content permission, i 7→ bs, since the contents of
the inode are unnecessary to unlink the corresponding file.
Recall that there are no locks protecting the temporary files.
Instead, deliveries allocate a name for a temporary file in
the spool directory by trying random numbers until one
succeeds. The create(fname) system call can either fail
and do nothing (if the destination exists), or succeed and
return a master permission and lease for the newly created
file’s directory entry and corresponding inode. Upon success,
the master permission for the directory entry is transferred
to the crash invariant, and the delivery thread retains the
rest.

Abstraction relation. Following the leasing strategy just
described, the high-level structure of the abstraction relation
has the form:

CrashInv(σ ) ≜ source(σ ) ∗MsgsInv(σ ) ∗ TmpInv

AbsR ≜ ∃σ .CrashInv(σ ) ∗ HeapInv(σ ) ∗
MailboxLocks

These assertions correspond to the different parts of the state
maintained by the mail server:

• MsgsInv(σ ): This assertion connects the files representing
user mailboxes to the abstract state σ of the specification,
which does not mention inodes or file names. It includes
capabilities for accessing the files that hold each user’s
mail.

• TmpInv: This tracks the temporary files in the spool/
directory, so that recovery can clean them up after a crash.

Example Lines of code

Two-disk semantics 1,350
Replicated disk 1,180

Single-disk semantics 1,310
Shadow copy 390
Write-ahead logging 930
Group commit 1,410

Table 3. Lines of code for each crash-safety pattern we veri-
fied.

• HeapInv(σ ): This assertion tracks when a message slice
is being used by Deliver to exploit the specification’s
assumption that the caller will not concurrently modify it.

• MailboxLocks: Recall that eachmailbox has a pickup/delete
lock to prevent a race between reading a user’s message
and deleting it.MailboxLocks includes capabilities for these
locks with their respective lock invariants.

Exploitingundefined behavior. The proof exploits the fact
that the refinement specification only applies to clients that
do not trigger undefined behavior. For example, asmentioned
above, clients may not concurrently mutate a message slice
during a call to Deliver. Because the code writes out the
file 4KB at a time, delivery only appears atomic in the ab-
sence of such races. Concretely, HeapInv tracks whether a
message slice is being read from. Then, during the proof for
Deliver(user, msg)we argue that msg remains unchanged
while writing the temporary file, since any modification
would trigger undefined behavior in the specification.

Recovery. Mailboat’s Recover does not involve helping, be-
cause it just cleans up the temporary files in the spool/ di-
rectory. With the use of leases, the proof is therefore compar-
atively straightforward. Recover takes ownership of these
files via the TmpInv part of AbsR and deletes them.

9 Evaluation
To evaluate Perennial, we consider four questions:
1. Can Perennial be used to verify a variety of crash-safety

patterns in concurrent systems? (§9.1)
2. What assumptions do Perennial’s proofs rely on? (§9.2)
3. Does Mailboat’s scale with more cores? (§9.3)
4. How does Perennial compare in terms of effort with

CSPEC? (§9.4)
5. What bugs did we encounter while implementing and

verifying Mailboat? (§9.5)

9.1 Crash-safety patterns
Storage systems broadly speaking use one of three patterns
for crash safety: replication, shadow copies, and write-ahead
logging [12]. We used Perennial to implement and verify
small examples illustrating the reasoning that goes into each

12



Verifying concurrent, crash-safe systems with Perennial SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

of these patterns; Table 3 shows a breakdown of the lines of
proof for each verified example. These examples are built us-
ing an alternate set of simpler primitives and are not compat-
ible with Goose — the intention is to demonstrate reasoning
principles rather than more reasoning about running code.
We implemented and verified a version of the replicated-

disk example described throughout this paper. It demon-
strates proving that failover works correctly in a simple
replication system.

The shadow-copy technique implements atomic writes to
storage by first performing the write on a new copy of the
object, then atomically installing the new object (replacing
the old version). If the system crashes, the shadow copy is
invisible and its storage is reclaimed. The “Shadow copy”
example in Table 3 implements atomic update of a pair of
disk blocks this way. Mailboat also uses this technique with
the temporary messages files that are linked atomically.
The final pattern is write-ahead logging, in which trans-

actions are written to a log before being applied to some
other storage. After a crash, the recovery procedure uses
the log to delete incomplete transactions and finish apply-
ing committed transactions. We implemented a simple form
of write-ahead logging to atomically update a pair of disk
blocks. The proof uses recovery helping to justify completing
a committed but unapplied transaction.
For better performance, logging systems buffer writes in

memory before committing them; this enables an optimiza-
tion called group commit in which multiple transactions are
combined, amortizing the cost of committing but potentially
losing buffered transactions on crash. We separately wrote
and verified a simple group-commit system that does this
buffering and specifies when transactions can be lost.

9.2 Trusted computing base
The proofs in Perennial rely on a number of assumptions to
hold of the implementation running in the real world. The
Coq proof assistant must correctly check the proofs. The
Goose model should accurately reflect Go primitives and the
running file system, and we trust the Go compiler to produce
correct code. The Goose translator should faithfully repre-
sent the source Go code within Perennial. We assume the
code does not trigger integer overflow, which Goose does not
model. Finally, as usual in verification, the user must confirm
that the theorem corresponds to their expected guarantees
from the system. In particular, Perennial’s refinement theo-
rems apply to code that does not trigger undefined behavior
in the specification; for example, the Mailboat proof assumes
that Delete is called on messages that were previously listed.

9.3 Mailboat’s performance
To show that Mailboat’s throughput increases with more
cores, we replicate the experiment for CMAIL described by
Chajed et al. [4]. We use the same mixed workload of SMTP
deliveries (i.e., Deliver in Mailboat) and POP3 pickups (i.e.,

0
20k
40k
60k
80k
100k
120k
140k
160k
180k
200k

1 2 3 4 5 6 7 8 9 10 11 12

re
qu

es
ts
/s
ec

# cores

Mailboat
GoMail
CMAIL

Figure 11. Throughput of Mailboat with a varying number
of cores.

Pickup followed by Delete in Mailboat), with an equal ratio
of each. Each request chooses one of 100 users uniformly
at random. The experiments were run on a server with two
6-core Intel Xeon CPUs running at 3.47 GHz, with the total
requests fixed as we varied the number of cores used. Each
core operates in a closed loop, issuing a new request as soon
as the previous finishes, and we measure how long all the
requests take to complete across all cores. Like CMAIL, Mail-
boat supports SMTP and POP3 over the network, but we
simulated requests on the same machine to measure scala-
bility without network overhead. Similarly, we ran the ex-
periments on tmpfs, Linux’s in-memory file system, to keep
disk performance from being the limiting factor.
Figure 11 shows the performance in total requests per

second for different numbers of cores. Mailboat achieves
higher performance than CMAIL on a single core for three
reasons. First, Mailboat is multithreaded and uses Go locks
to protect mailboxes, while CMAIL runs as several processes
and uses file locks. Acquiring and releasing a file lock uses
several file-system calls (including opening and closing the
file), which is more expensive than using in-memory locks.
Second, Mailboat uses the Goose file-system library, which
caches a directory file descriptors and performs all lookups
relative to that root, which speeds up lookups. Third, Mail-
boat is written in Go while CMAIL extracts to Haskell.
To analyze the impact of each reason, we also measure

the performance of GoMail, the unverified comparison from
the CMAIL paper. GoMail is a mailserver written in Go in a
similar style to CMAIL using file locks. Mailboat is 81% faster
than GoMail on a single core because it uses in-memory Go
locks instead of file locks and uses relative lookups, while
GoMail is in turn 34% faster than CMAIL on a single core,
which we attribute to using Go instead of Haskell. Thus,
Perennial’s Goose translator enables significant performance
benefits.

13



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

Component Mailboat LOC CMAIL LOC

Implementation 159 (Go) 215 (Coq)
Proof 3,360 4,050
Framework 8,900 (Perennial) 9,600 (CSPEC)
Table 4. Lines of code for Mailboat and CMAIL.

All three mail servers scale in a similar way: throughput
increases with cores, but not perfectly. All three achieve
speedup because tmpfs can execute the file-system calls in
parallel. Mailboat’s scalability is limited by lock contention
in the runtime during garbage collection.

9.4 Effort
Perennial and the Goose translator took two people 5 months
to develop, and Mailboat took one person 2 weeks to ver-
ify. We compare lines of code for Mailboat and CMAIL in
Table 4. Mailboat has a more concise implementation and
proof, despite verifying crash safety and reasoning about
mutable memory in Go.
Perennial is relatively concise compared to CSPEC for a

few reasons. The main difference is that Mailboat is verified
in a flattened style rather than using multiple layers of refine-
ment. CMAIL’s proof requires specifying 11 intermediate
interfaces that are only used for the proof and five abstraction
relations, while Mailboat’s proof uses a single abstraction
relation that directly connects the code to a high-level spec-
ification. The many layers in the CMAIL proof served two
purposes. First, each layer applies one of CSPEC’s patterns,
and the CMAIL proof uses the abstraction, movers (for rea-
soning about concurrency), and loop patterns, each multiple
times. Second, separate abstraction relations factor out the
proof into modular pieces.
Perennial does not need layers to solve these problems

because separation logic in Iris gives a powerful way to com-
bine multiple reasoning patterns in a modular way. Hoare
logic allows a natural decomposition of a subproof for each
helper procedure. Loops are proven using a standard loop
invariant approach. The single abstraction relation can be
factored into different components that are connected by the
separating conjunction ∗, as depicted in §8.3. Importantly,
Perennial supports these three patterns using Iris rather than
implementing them from scratch, so the framework itself
(omitting Iris) is also fewer lines of code than CSPEC (which
implements these patterns with no external support).

9.5 Bug discussion
This section highlights a few interesting bugs we encoun-
tered while developing Mailboat. One bug was that if a mes-
sage was larger than 512 bytes, Pickup would loop infinitely.
While we do not prove loops terminate, we nevertheless
caught this bug while doing the proof.

A bug we did not catch during the proofs was a resource
leak where a file was opened but not closed. Perennial’s
proofs do not cover these kind of guarantees. However, there
is research on precise reasoning about resources in Iris [2].

One subtlety that the proof highlighted was that for deliv-
ery to be correct, the caller must not concurrently modify
the message passed to it. While our mail server did not ex-
hibit this bug, the proof helped us notice this requirement.
We were only able to observe this because we verified and
modeled Mailboat at a low level, including modeling that
Deliver might run concurrently with arbitrary Go code.

10 Conclusion
We introduce Perennial, the first framework for verifying
concurrent, crash-safe systemswithmachine-checked proofs.
The framework is implemented using Iris, inheriting its
support for reasoning about concurrency using capabilities.
Perennial extends Iris with three techniques that introduce
new capabilities for crash and recovery reasoning: recov-
ery leases allow threads to coordinate on recovery-owned,
durable resources; versioned memory allows the developer
to precisely reason about volatile memory clearing on crash;
and finally recovery helping allows forward-simulation proofs
to reason about recovery completing operations that started
prior to a crash.
To reason about systems using Perennial we introduce

Goose, a subset of Go, for which we implemented a translator
to Coq and a semantics in Perennial. Using Perennial we
were able to verify Mailboat, a mail server written in Goose
that achieves feature parity with a similar prior verified
mail server, includes a proof of crash safety, yet takes fewer
lines of code by leveraging features of Iris to handle the
concurrency aspects of the proof. Mailboat also achieves
better performance due to its lower-level implementation,
thanks to the Goose approach.

Acknowledgments
We’d like to thank Butler Lampson, Jay Lorch, the anony-
mous reviewers, and our shepherd, Gernot Heiser, who pro-
vided comments that helped improve this paper. This re-
search was supported by NSF awards CNS-1563763 and CCF-
1836712, Google, and Oracle Labs. Tej Chajed is supported by
an SOSP 2019 student scholarship from the National Science
Foundation.

References
[1] S. Amani, J. Andronick, M. Bortin, C. Lewis, C. Rizkallah, and J. Tuong.

Complx: A verification framework for concurrent imperative programs.
In Proceedings of the 6th International Conference on Certified Programs
and Proofs, pages 138–150, Paris, France, Jan. 2017.

[2] A. Bizjak, D. Gratzer, R. Krebbers, and L. Birkedal. Iron: Managing
obligations in higher-order concurrent separation logic. Proceedings
of the ACM on Programming Languages, 3(POPL):65:1–65:30, Jan. 2019.

14



Verifying concurrent, crash-safe systems with Perennial SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

[3] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel. VST-Floyd:
A separation logic tool to verify correctness of c programs. Journal of
Automated Reasoning, 61(1-4):367–422, June 2018.

[4] T. Chajed, M. F. Kaashoek, B. Lampson, and N. Zeldovich. Verifying
concurrent software using movers in CSPEC. In Proceedings of the
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 307–322, Carlsbad, CA, Oct. 2018.

[5] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zeldovich. Argosy: Veri-
fying layered storage systems with recovery refinement. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 1037–1051, Phoenix, AZ, June
2019.

[6] A. Charguéraud. Characteristic formulae for the verification of imper-
ative programs. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 418–430, Tokyo,
Japan, Sept. 2011.

[7] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zel-
dovich. Using Crash Hoare Logic for certifying the FSCQ file system.
In Proceedings of the 25th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 18–37, Monterey, CA, Oct. 2015.

[8] A. Chlipala. Mostly-automated verification of low-level programs
in computational separation logic. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 234–245, San Jose, CA, June 2011.

[9] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang.
Views: Compositional reasoning for concurrent programs. In Pro-
ceedings of the 40th ACM Symposium on Principles of Programming
Languages (POPL), pages 287–300, Rome, Italy, Jan. 2013.

[10] G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Modular, crash-safe
refinement for ASMs with submachines. Science of Computer Program-
ming, 131:3–21, 2016.

[11] Google. The Go memory model, May 2014. URL https://golang.org/
ref/mem.

[12] J. Gray. Notes on data base operating systems. In R. Bayer, R. M.
Graham, and G. Seegmüller, editors, Operating Systems: An Advanced
Course, pages 393–481. Springer-Verlag, 1978.

[13] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent
OS kernels. In Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 653–669, Savannah,
GA, Nov. 2016.

[14] R. Gu, Z. Shao, J. Kim, X. Wu, J. Koenig, V. Sjöberg, H. Chen,
D. Costanzo, and T. Ramananandro. Certified concurrent abstraction
layers. In Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 646–661,
Philadelphia, PA, June 2018.

[15] A. Guéneau, M. O. Myreen, R. Kumar, and M. Norrish. Verified char-
acteristic formulae for CakeML. In Proceedings of the 26th European
Symposium on Programming Languages and Systems, pages 584–610,
Uppsala, Sweden, Apr. 2017.

[16] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad Apps: End-to-end security via automated full-
system verification. In Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 165–181,
Broomfield, CO, Oct. 2014.

[17] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill. IronFleet: Proving practical distributed
systems correct. In Proceedings of the 25th ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 1–17, Monterey, CA, Oct. 2015.

[18] M. Herlihy. Wait-free synchronization. ACM Transactions on Program-
ming Languages and Systems, 13(1):124–149, Jan. 1991.

[19] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Transactions on Programming Languages
Systems, 12(3):463–492, 1990.

[20] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. RustBelt: Securing
the foundations of the Rust programming language. Proceedings of the
ACM on Programming Languages, 2(POPL):66:1–34, Dec. 2017.

[21] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski,
and G. Heiser. Comprehensive formal verification of an OS micro-
kernel. ACM Transactions on Computer Systems, 32(1):2:1–70, Feb.
2014.

[22] N. Koh, Y. Li, Y. Li, L.-y. Xia, L. Beringer, W. Honoré, W. Mansky, B. C.
Pierce, and S. Zdancewic. From C to interaction trees: Specifying,
verifying, and testing a networked server. In Proceedings of the 8th
International Conference on Certified Programs and Proofs, pages 234–
248, Cascais, Portugal, Jan. 2019.

[23] B. Kragl and S. Qadeer. Layered concurrent programs. In Proceedings of
the 30th International Conference on Computer Aided Verification (CAV),
pages 79–102, Oxford, United Kingdom, July 2018.

[24] R. Krebbers, R. Jung, A. Bizjak, J.-H. Jourdan, D. Dreyer, and L. Birkedal.
The essence of higher-order concurrent separation logic. In Proceed-
ings of the 26th European Symposium on Programming Languages and
Systems, pages 696–723, Uppsala, Sweden, Apr. 2017.

[25] M. Krogh-Jespersen, K. Svendsen, and L. Birkedal. A relational model
of types-and-effects in higher-order concurrent separation logic. In
Proceedings of the 44th ACM Symposium on Principles of Programming
Languages (POPL), Paris, France, Jan. 2017.

[26] M. Lesani, C. J. Bell, and A. Chlipala. Chapar: Certified causally con-
sistent distributed key-value stores. In Proceedings of the 43rd ACM
Symposium on Principles of Programming Languages (POPL), pages
357–370, St. Petersburg, FL, Jan. 2016.

[27] P. Letouzey. Extraction in Coq: An overview. In Proceedings of the 4th
Conference on Computability in Europe, pages 359–369, Athens, Greece,
June 2008.

[28] N. Lynch and F. Vaandrager. Forward and backward simulations –
Part I: Untimed systems. Information and Computation, 121(2):214–233,
Sept. 1995.

[29] M. O. Myreen and S. Owens. Proof-producing synthesis of ML from
higher-order logic. In Proceedings of the 17th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP), pages 115–126,
Copenhagen, Denmark, Sept. 2012.

[30] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang.
Scaling symbolic evaluation for automated verification of systems code
with Serval. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), Huntsville, Ontario, Canada, Oct. 2019.

[31] G. Ntzik, P. da Rocha Pinto, and P. Gardner. Fault-tolerant resource
reasoning. In Proceedings of the 13th Asian Symposium on Programming
Languages and Systems (APLAS), pages 169–188, Pohang, South Korea,
Nov.–Dec. 2015.

[32] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hritcu, K. Bhar-
gavan, C. Fournet, and N. Swamy. Verified low-level programming
embedded in F*. Proceedings of the ACM on Programming Languages,
1(ICFP):17:1–29, Sept. 2017.

[33] I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of
fine-grained concurrent programs. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 77–87, Portland, OR, June 2015.

[34] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button
verification of file systems via crash refinement. In Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 1–16, Savannah, GA, Nov. 2016.

[35] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak,
and X. Wang. Nickel: A framework for design and verification of
information flow control systems. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 287–306, Carlsbad, CA, Oct. 2018.

15

https://golang.org/ref/mem
https://golang.org/ref/mem


SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada T. Chajed, J. Tassarotti, M. F. Kaashoek, N. Zeldovich

[36] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and S. Weirich. Total
Haskell is reasonable Coq. In Proceedings of the 7th International
Conference on Certified Programs and Proofs, pages 14–27, Los Angeles,
CA, Jan. 2018.

[37] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzindohoué,
and S. Zanella-Béguelin. Dependent types and multi-monadic effects
in F*. In Proceedings of the 43rd ACM Symposium on Principles of
Programming Languages (POPL), pages 256–270, St. Petersburg, FL,
Jan. 2016.

[38] The Coq Development Team. The Coq Proof Assistant, version 8.9.0,
Jan. 2019. URL https://doi.org/10.5281/zenodo.2554024.

[39] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In Proceedings
of the 18th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), pages 377–390, Boston, MA, Sept. 2013.

[40] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. Anderson. Verdi: A framework for implementing and for-
mally verifying distributed systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 357–368, Portland, OR, June 2015.

[41] M. Zou, H. Ding, D. Du, M. Fu, R. Gu, and H. Chen. Using concurrent
relational logic with helper for verifying the AtomFS file system. In
Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples (SOSP), Huntsville, Ontario, Canada, Oct. 2019.

16

https://doi.org/10.5281/zenodo.2554024

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Defining correctness
	3.2 Proving correctness

	4 Background on Iris
	5 Proving concurrent recovery refinement
	5.1 Crash Invariants
	5.2 Versioned state
	5.3 Recovery leases
	5.4 Recovery helping
	5.5 Verifying Refinement

	6 Verifying Go code with Goose
	6.1 Modeling shared memory
	6.2 Modeling the file system

	7 Implementation
	8 Using Perennial to verify Mailboat
	8.1 Specification
	8.2 Implementation
	8.3 Proof

	9 Evaluation
	9.1 Crash-safety patterns
	9.2 Trusted computing base
	9.3 Mailboat's performance
	9.4 Effort
	9.5 Bug discussion

	10 Conclusion
	Acknowledgments
	References

