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Abstract. Building network-connected programs and distributed sys-
tems is a powerful way to provide scalability and availability in a digital,
always-connected era. However, with great power comes great complexity.
Reasoning about distributed systems is well-known to be difficult.
In this paper we present Aneris, a novel framework based on separation
logic supporting modular, node-local reasoning about concurrent and
distributed systems. The logic is higher-order, concurrent, with higher-
order store and network sockets, and is fully mechanized in the Coq proof
assistant. We use our framework to verify an implementation of a load
balancer that uses multi-threading to distribute load amongst multiple
servers and an implementation of the two-phase-commit protocol with
a replicated logging service as a client. The two examples certify that
Aneris is well-suited for both horizontal and vertical modular reasoning.
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1 Introduction

Reasoning about distributed systems is notoriously difficult due to their sheer
complexity. This is largely the reason why previous work has traditionally focused
on verification of protocols of core network components. In particular, in the
context of model checking, where safety and liveness assertions [29] are consid-
ered, tools such as SPIN [9], TLA+ [23], and Mace [17] have been developed.
More recently, significant contributions have been made in the field of formal
proofs of implementations of challenging protocols, such as two-phase-commit,
lease-based key-value stores, Paxos, and Raft [7, 25, 30, 35, 40]. All of these
developments define domain specific languages (DSLs) specialized for distributed
systems verification. Protocols and modules proven correct can be compiled to
an executable, often relying on some trusted code-base.

Formal reasoning about distributed systems has often been carried out by
giving an abstract model in the form of a state transition system or flow-chart in
the tradition of Floyd [5], Lamport [21, 22]. A state is normally taken to be a
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view of the global state and events are observable changes to this state. State
transition systems are quite versatile and have been used in other verification
applications. However, reasoning based on state transition systems often suffer
from a lack of modularity due to their very global. As a consequence, separate
nodes or components cannot be verified in isolation and the system has to be
verified as a whole.

IronFleet [7] is the first system that supports node-local reasoning for verifying
the implementation of programs that run on different nodes. In IronFleet, a
distributed system is modeled by a transition system. This transition system
is shown to be refined by the composition of a number of transition systems,
each pertaining to one of the nodes in the system. Each node in the distributed
system is shown to be correct and a refinement of its corresponding transition
system. Nevertheless, IronFleet does not allow you to reason compositionally; a
correctness proof for a distributed system cannot be used to show the correctness
of a larger system.

Higher-order concurrent separation logics (CSLs) [3, 4, 13, 15, 18, 26, 27,
28, 33, 34, 36, 39] simplify reasoning about higher-order imperative concurrent
programs by offering facilities for specifying and proving correctness of programs in
a modular way. Indeed, their support for modular reasoning (a.k.a. compositional
reasoning) is the key reason for their success. Disel [35] is a separation logic
that does support compositional reasoning about distributed systems, allowing
correctness proofs of distributed systems to be used for verifying larger systems.
However, Disel struggles with node-local reasoning in that it cannot hide node-
local usage of mutable state. That is, the use of internal state in nodes must be
exposed in the high-level protocol of the system and changes to the internal state
are only possible upon sending and receiving messages over the network.

Finally, both Disel and IronFleet restrict nodes to run only sequential programs
and no node-level concurrency is supported.

In this paper we present Aneris, a framework for implementing and reasoning
about functional correctness of distributed systems. Aneris is based on concurrent
separation logic and supports modular reasoning with respect to both nodes
(node-local reasoning) and threads within nodes (thread-local reasoning). The
Aneris framework consists of a programming language, AnerisLang, for writing
realistic, real-world distributed systems and a higher-order concurrent separation
logic for reasoning about these systems. AnerisLang is a concurrent ML-like
programming language with higher-order functions, local state, threads, and
network primitives. The operational semantics of the language, naturally, involves
multiple hosts (each with their own heap and multiple threads) running in a
network. The Aneris logic is build on top of the Iris framework [13, 15, 18]
and supports machine-verified formal proofs in the Coq proof assistant about
distributed systems written in AnerisLang.

Networking. There are several ways of adding network primitives to a program-
ming language. One approach is message-passing using first-class communication
channels á la the π-calculus or using an implementation of the actor model as
done in high-level languages like Erlang, Elixir, Go, and Scala. However, any
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such implementation is an abstraction built on top of network sockets where all
data has to be serialized, data packets may be dropped, and packet reception
may not follow the transmission order. Network sockets are a quintessential
part of building efficient, real-world distributed systems and all major operating
systems provide an application programming interface (API) to them. Likewise,
AnerisLang provides support for datagram-like sockets by directly exposing a
simple API with the core methods necessary for socket-based communication
using the User Datagram Protocol (UDP) with duplicate protection. This allows
for a wide range of real-world systems and protocols to be implemented (and
verified) using the Aneris framework.

Modular Reasoning in Aneris. In general, there are two different ways to support
modular reasoning about distributed systems corresponding to how components
can be composed. Aneris enables simultaneously both:

– Vertical composition: when reasoning about programs within each node, one
is able to compose proofs of different components to prove correctness of the
whole program. For instance, the specification of a verified data structure,
e.g. a concurrent queue, should suffice for verifying programs written against
that data structure, independently of its implementation.

– Horizontal composition: at each node, a verified thread is composable with
other verified threads. Similarly, a verified node is composable with other
verified nodes which potentially engage in different protocols. This naturally
aids implementing and verifying large-scale distributed systems.

Node-local variants of the standard rules of CSLs like, for example, the bind rule
and the frame rule (as explained in Sect. 2) enable vertical reasoning. Sect. 6
showcases vertical reasoning in Aneris using a replicated distributed logging
service that is implemented and verified using a separate implementation and
specification of the two-phase commit protocol.

Horizontal reasoning in Aneris is achieved through the Thread-par-rule and
the Node-par-rule (further explained in Sect. 2) which intuitively says that to
verify a distributed system, it suffices to verify each thread and each node in
isolation. This is analogous to how CSLs allow us to reason about multi-threaded
programs by considering individual threads in isolation; in Aneris we extend
this methodology to include both threads and nodes. Where most variants of
concurrent separation logic use some form of an invariant mechanism to reason
about shared-memory concurrency, we abstract the communication between nodes
over the network through socket protocols that restrict what can be sent and
received on a socket and allow us to share ownership of logical resources among
nodes. Sect. 5 showcases horizontal reasoning in Aneris using an implementation
and a correctness proof for a simple addition service that uses a load balancer to
distribute the workload among several addition servers. Each node is verified in
isolation and composed to form the final distributed system.

Contributions. In summary, we make the following contributions:
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– We present AnerisLang, a formalized higher-order functional programming
language for writing distributed systems. The language features higher-order
store, node-local concurrency, and network sockets, allowing for dynamic cre-
ation and binding of sockets to addresses with serialization and deserialization
primitives for encoding and parsing messages.

– We define the Aneris logic, the first higher-order concurrent separation logic
with support for network sockets and with support for both node-local and
thread-local reasoning.

– We introduce a simple and novel approach to specifying network protocols;
a mechanism that supports separation-logic-style modular specifications of
distributed systems.

– We conduct two case studies that showcase how our framework aids the
implementation and verification of real-world distributed systems using com-
positional reasoning:
• A replicated logging service that is implemented and verified using a sep-

arate implementation and specification of the two-phase commit protocol,
demonstrating vertical compositional reasoning.

• A load balancer that distributes work on multiple servers by means of
node-local multi-threading. We use this to verify a simple addition service
that uses the load balancer to distribute its requests over multiple servers,
demonstrating horizontal compositional reasoning.

– We have formalized all of the theory and examples on top of Iris in the Coq
proof assistant using the MoSeL framework [19]. The Coq formalization can
be found online at https://iris-project.org/artifacts/2020-esop-aneris.tar.gz.

Outline. We start by describing the core concepts of the Aneris framework in
Sec. 2. We then describe the AnerisLang programming language (Sec. 3) before
presenting the Aneris logic proof rules and stating our adequacy theorem, i.e.,
soundness of Aneris, in Sec. 4. Subsequently, we use the logic to verify a load
balancer (Sec. 5) and a two-phase-commit implementation with a replicated
logging client (Sec. 6). We discuss related work in Sec. 7 and conclude in Sec. 8.

2 The Core Concepts of Aneris

In this section we present our methodology to modular verification of distributed
systems. We begin by recalling the ideas of thread-local reasoning and protocols
from concurrent separation logic and explain how we lift those ideas to node-
local reasoning. Finally, we illustrate the Aneris methodology for specifying,
implementing, and verifying distributed systems by developing a simple addition
service and a lock server. The distributed systems are composed of individually
verified concurrently running nodes communicating asynchronously by exchanging
messages that can be reordered or dropped.

2.1 Local and Thread-Local Reasoning

The most important feature of (concurrent) separation logic is, arguably, how
it enables scalable modular reasoning about pointer-manipulating programs.

https://iris-project.org/artifacts/2020-esop-aneris.tar.gz
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Separation logic is a resource logic, in the sense that propositions denote not only
facts about the state, but ownership of resources. Originally, separation logic [32]
was introduced for modular reasoning about the heap—i.e. the notion of resource
was fixed to be logical pieces of the heap. The essential idea is that we can give a
local specification {P } e {v.Q} to a program e involving only the footprint of e.
Hence, while verifying e, we need not consider the possibility that another piece
of code in the program might interfere with e; the program e can be verified
without concern for the environment in which e may occur. Local specifications
can then be lifted to more global specifications by framing and binding:

{P } e {v.Q}
{P ∗ R} e {v.Q ∗ R}

{P } e {v.Q} ∀v.{Q}K[v] {w.R}
{P }K[e] {w.R}

where K denotes an evaluation context. The symbol ∗ denotes separating con-
junction. Intuitively, P ∗ Q holds for a given resource (in this case a heap) if
it can be divided into two disjoint resources such that P holds for one and Q
holds for the other. Thus, the frame rule essentially says that executing e for
which we know {P } e {x.Q} cannot possibly affect parts of the heap that are
separate from its footprint. Another related separation logic connective is −∗, the
separating implication. Proposition P −∗ Q describes a resource that, combined
with a disjoint resource satisfying P , results in a resource satisfying Q.

Since its introduction, separation logic has been extended to resources be-
yond heaps and with more sophisticated mechanisms for modular control of
interference. Concurrent separation logics (CSLs) [28] allow reasoning about
concurrent programs and a preeminent feature of these program logics is again
the support for modular reasoning, in this case with respect to concurrency
through thread-local reasoning. When reasoning about a concurrent program we
consider threads one at a time and need not reason about interleavings of threads
explicitly. In a way, our frame here includes, in addition to the shared fragments
of the heap and other resources, the execution of other threads which can be
interleaved throughout the execution of the thread being verified. This can be
seen from the following disjoint concurrency rule:

Thread-par
{P1} 〈n; e1〉 {v.Q1} {P2} 〈n; e2〉 {v.Q2}

{P1 ∗ P2} 〈n; e1 || e2〉 {v.∃v1, v2.v = (v1, v2) ∗Q1[v1/v] ∗Q2[v2/v]}

where e1 || e2 denotes parallel composition of expressions e1 and e2 and we use
the notation 〈n; e〉 to denote an expression e running on a node with identifier
n.1

Inevitably, at some point threads typically have to communicate with one
another through some kind of shared state, an unavoidable form of interference.
The original CSL used a simple form of resource invariant in which ownership of
a shared resource can be transferred between threads.
1 In a language with fork-based concurrency, the parallel composition operator is an
easily defined construct and the rule is derivable from a more general fork-rule.
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A notable program logic in the family of concurrent separation logics is Iris
that is specifically designed for reasoning about programs written in concurrent
higher-order imperative programming languages. Iris has already proven to be
versatile for reasoning about a number of sophisticated properties of programming
languages [12, 16, 37]. In order to support modular reasoning about concurrent
programs Iris features (1) impredicative invariants for expressing protocols on
shared state among multiple threads and (2) allows for encoding of higher-order
ghost state using a form of partial commutative monoids for reasoning about
resources. We will give examples of these features and explain them in more
detail as needed.

2.2 Node-Local Reasoning

Programs written in AnerisLang are higher-order imperative concurrent programs
that run on multiple nodes in a distributed system. When reasoning about
distributed systems in Aneris, alongside heap-local and thread-local reasoning,
we also reason node-locally. When proving correctness of AnerisLang programs
we reason about each node of the system in isolation, akin to how we in CSLs
reason about each thread in isolation.

By virtue of building on Iris, reasoning in Aneris is naturally modular with
respect to separation logic frames and with respect to threads. What Aneris
adds on top of this is support for node-local reasoning about programs. This is
expressed by the following rule:

Node-par
{P1 ∗ IsNode(n1) ∗ FreePorts(ip1,P)} 〈n1; e1〉 {True}
{P2 ∗ IsNode(n2) ∗ FreePorts(ip2,P)} 〈n2; e2〉 {True}

{P1 ∗ P2 ∗ FreeIp(ip1) ∗ FreeIp(ip2)} 〈S; (n1; ip1; e1) ||| (n2; ip2; e2)〉 {True}

where ||| denotes parallel composition of two nodes with identifier n1 and n2

running expressions e1 and e2 with IP addresses ip1 and ip2.2 The set P =
{p | 0 ≤ p ≤ 65535} denotes a finite set of ports.

Note that only a distinguished system node S can start new nodes (as
elaborated on in Sect. 3). In Aneris, the execution of the distributed system
starts with the execution of S as the only node in the system. In order to start
a new node associated with ip address ip one provides the resource FreeIp(ip)
which indicates that ip is not used by other nodes. The node can then rely
on the fact that when it starts, all ports on ip are available. The resource
IsNode(n) indicates that the node n is a node in the system and keeps track of
abstract state related to our modeling of node n’s heap and allocated sockets.
To facilitate modular reasoning, free ports can be split: if A ∩ B = ∅ then
FreePorts(ip, A) ∗ FreePorts(ip, B) a` FreePorts(ip, A ∪ B) where a` denotes

2 In the same way as the parallel composition rule is derived from a more general
fork-based rule, this composition rule is also an instance of a more general rule for
spawning nodes shown in Sect. 3.
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logical equivalence of Aneris propositions (of type iProp). We will use FreePort(a)
as shorthand for FreePorts(ip, {p}) where a = (ip, p).

Finally, observe that the node-local postconditions are simply True, in contrast
to the arbitrary thread-local postconditions in the Thread-par-rule that carry
over to the main thread. In the concurrent setting, shared memory provides
reliable communication and synchronization between the child threads and the
main thread; in the rule for parallel composition, the main thread will wait for
the two child processes to finish. In the distributed setting, there are no such
guarantees and nodes are separate entities that cannot synchronize with the
distinguished system node.

Socket Protocols. Similar to how classical CSLs introduce the concept of resource
invariants for expressing protocols on shared state among multiple threads, we
introduce the simple and novel concept of socket protocols for expressing protocols
among multiple nodes. With each socket address—a pair of an IP address and
a port—a protocol is associated, which restricts what can be communicated on
that socket.

A socket protocol is a predicate Φ : Message→ iProp on incoming messages
received on a particular socket. One can think of this as a form of rely-guarantee
reasoning since the socket protocol will be used to restrict the distributed en-
vironment’s interference with a node on a particular socket. In Aneris we write
a Z⇒ Φ to mean that socket address a is governed by the protocol Φ. In particular,
if a Z⇒ Φ and a Z⇒ Ψ then Φ and Ψ are equivalent.3 Moreover, the proposition is
duplicable: a Z⇒ Φ a` a Z⇒ Φ ∗ a Z⇒ Φ.

Conceptually, a socket is an abstract representation of a handle for a local
endpoint of some channel. We further restrict channels to use the User Datagram
Protocol (UDP) which is asynchronous, connectionless, and stateless. In accor-
dance with UDP, Aneris provides no guarantee of delivery or ordering although
we assume duplicate protection. We assume duplicate protection to simplify
our examples, as otherwise the code of all of our examples would have to be
adapted to cope with duplication of messages. One can think of sockets in Aneris
as open-ended multi-party communication channels without synchronization.

It is noteworthy that inter-process communication can happen in two ways.
Thread-concurrent programs can communicate both through the shared heap and
by sending messages through sockets. For memory-separated programs running
on different nodes all communication is by message-passing.

In the logic, we consider both static and dynamic socket addresses. This
distinction is entirely abstract and at the level of the logic. Static addresses come
with primordial protocols, agreed upon before starting the distributed system,
whereas dynamic addresses do not. Protocols on static addresses are primarily
intended for addresses pointing to nodes that offer a service.

To distinguish between static and dynamic addresses, we use a resource
Fixed(A) which denotes that the addresses in A are static and should have a fixed

3 The predicate equivalence is under a later modality in order to avoid self-referential
paradoxes. We omit it for the sake of presentation as this is an orthogonal issue.
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interpretation. This proposition expresses knowledge without asserting ownership
of resources and is duplicable: Fixed(A) a` Fixed(A) ∗ Fixed(A).

Corresponding to the two kinds of addresses we have two different rules,
Socketbind-static and Socketbind-dynamic, for binding an address to a socket
as seen below. Both rules consume an instance of Fixed(A) and FreePort(a) as well
as a resource z ↪→n None. The latter keeps track of the address associated with
the socket handle z on node n and ensures that the socket is bound only once as
further explained in Sect. 4. Notice that the protocol Φ in Socketbind-dynamic
can be freely chosen.

Socketbind-static
{Fixed(A) ∗ a ∈ A ∗ FreePort(a) ∗ z ↪→n None}
〈n; socketbind z a〉

{x. x = 0 ∗ z ↪→n Some a}

Socketbind-dynamic
{Fixed(A) ∗ a 6∈ A ∗ FreePort(a) ∗ z ↪→n None}
〈n; socketbind z a〉

{x. x = 0 ∗ z ↪→n Some a ∗ a Z⇒ Φ}

In the remainder of the paper we will use the following shorthands in order to
simplify the presentation of our specifications.

Static(a,A, Φ) , Fixed(A) ∗ a ∈ A ∗ FreePort(a) ∗ a Z⇒ Φ

Dynamic(a,A) , Fixed(A) ∗ a /∈ A ∗ FreePort(a)

2.3 Example: An Addition Service

To illustrate node-local reasoning, socket protocols, and the Aneris methodology
for specifying, implementing, and verifying distributed systems we develop a
simple addition service that offers to add numbers for clients.

Fig. 1 depicts an implementation of a server and a client written in AnerisLang.
Notice that the programs look as if they were written in a realistic functional
language with sockets like OCaml. Messages are strings to make programming
with sockets easier (similar to send_substring in the Unix module in OCaml).

The server is parameterized over an address on which it will listen for requests.
The server allocates a new socket and binds the address to the socket. Then the
server starts listening for an incoming message on the socket, calling a handler
function on the message, if any. The handler function will deserialize the message,
perform the addition, serialize the result, and return it to the sender before
recursively listening for new messages.

The client is parameterized over two numbers to compute on, a server address,
and a client address. The client allocates a new socket, binds the address to the
socket, and serializes the two numbers. In the end, it sends the serialized message
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rec server a =
let skt = socket () in
socketbind skt a;
listen skt (rec handler msg from =
let m = deserialize msg in
let res = serialize (π1 m + π2 m) in
sendto skt res from;
listen skt handler)

rec client x y srv a =
let skt = socket () in
socketbind skt a;
let m = serialize (x, y) in
sendto skt m srv;
let res = listenwait skt in
deserialize (π1 res)

Fig. 1. An implementation of an addition service and a client written in AnerisLang.
listen and listenwait are convenient helper functions to be found in the appendix [20].

to the server address using the socket and waits for a response, projecting out
the result of the addition on arrival and deserializing it.

In order to give the server code a specification we will fix a primordial socket
protocol that will govern the address given to the server. The protocol will spell
out how the server relies on the socket. We will use from(m) and body(m) for
projections of the sender and the message body, respectively, from the message
m. We define Φadd as follows:

Φadd(m) , ∃Ψ, x, y. from(m) Z⇒ Ψ ∗ body(m) = serialize(x, y) ∗
∀m′, body(m′) = serialize(x+ y) −∗ Ψ(m′)

Intuitively, the protocol demands that the sender of a message m is governed by
some protocol Ψ and that the message body body(m) must be the serialization
of two numbers x and y. Moreover, the sender’s protocol must be satisfied if the
serialization of x+ y is sent as a response.

Using Φadd as the socket protocol, we can give server the specification

{Static(a,A, Φadd) ∗ IsNode(n)} 〈n; server a〉 {False}.

The postcondition is allowed to be False as the program does not terminate. The
triple guarantees safety which, among others, means that if the server responds
to communication on address a it does so according to Φadd.

Similarly, using Φadd as a primordial protocol for the server address, we can
also give client a specification

{srv Z⇒ Φadd ∗ srv ∈ A ∗ Dynamic(a,A) ∗ IsNode(m)}
〈m; client x y srv a〉

{v.v = x+ y}

that showcases how the client is able to conclude that the response from the
server is the sum of the numbers it sent to it. In the proof, when binding a to
the socket using Socketbind-dynamic, we introduce the proposition a Z⇒ Φclient
where

Φclient(m) , body(m) = serialize(x+ y)

and use it to instantiate Ψ when satisfying Φadd. Using the two specifications
and the Node-par-rule it is straightforward to specify and verify a distributed
system composed of, e.g., a server and multiple clients.
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2.4 Example: A Lock Server

Mutual exclusion in distributed systems is often a necessity and there are many
different approaches for providing it. The simplest solution is a centralized
algorithm with a single node acting as the coordinator. We will develop this
example to showcase a more interesting protocol that relies on ownership transfer
of spatial resources between nodes to ensure correctness.

The code for a centralized lock server implementation is shown in Fig. 2.

rec lockserver a =
let lock = ref NONE in
let skt = socket () in
socketbind skt a;
listen skt (rec handler msg from =
if (msg = "LOCK") then
match !lock with
NONE => lock←SOME (); sendto skt "YES" from

| SOME __ => sendto skt "NO" from
end

else lock←NONE; sendto skt "RELEASED" from
listen skt handler)

Fig. 2. A lock server in AnerisLang.

The lock server declares a node-local variable lock to keep track of whether
the lock is taken or not. It allocates a socket, binds the input address to the
socket and continuously listens for incoming messages. When a "LOCK" message
arrives and the lock is available, the lock gets taken and the server responds
"YES". If the lock was already taken, the server will respond "NO". Finally, if
the message was not "LOCK", the lock is released and the server responds with
"RELEASED".

Our specification of the lock server will be inspired by how a lock can
be specified in concurrent separation logic. Thus we first recall how such a
specification usually looks like.

Conceptually, a lock can either be unlocked or locked, as described by a
two-state labeled transition system.

unlocked locked

K

In concurrent separation logic, the lock specification does not describe this
transition system directly, but instead focuses on the resources needed for the
transitions to take place. In the case of the lock, the resources are simply a
non-duplicable resource K, which is needed in order to call the lock’s release
method. Intuitively, this resource corresponds to the key of the lock.
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A typical concurrent separation logic specification for a spin lock module
looks roughly like the following:

∃ isLock .
∧ ∀v,K. isLock(v,K) a` isLock(v,K) ∗ isLock(v,K)

∧ ∀v,K. isLock(v,K) ` K ∗ K ⇒ False
∧ {True} newLock () {v. ∃K. isLock(v,K)}
∧ ∀v. {isLock(v,K)} acquire v {v.K}
∧ ∀v. {isLock(v,K) ∗ K} release v {True}

The intuitive reading of such a specification is:

– Calling newLock will lead to the duplicable knowledge of the return value v
being a lock.

– Knowing that a value is a lock, a thread can try to acquire the lock and when
it eventually succeeds it will get the key K.

– Only a thread holding this key is allowed to call release.

Sharing of the lock among several threads is achieved by the isLock predicate
being duplicable. Mutual exclusion is ensured by the last bullet point together
with the requirement of K being non-duplicable whenever we have isLock(v,K).
For a leisurely introduction to such specifications, the reader may consult Birkedal
and Bizjak [1].

Let us now return to the distributed lock synchronization. To give clients
the possibility of interacting with the lock server as they would with such a
concurrent lock module, the specification for the lock server will look like follows.

{K ∗ Static(a,A, Φlock)} 〈n; lockserver a〉 {False}.

This specification simply states that a lock server should have a primordial
protocol Φlock and that it needs the key resource to begin with. To allow for the
desired interaction with the server, we define the socket protocol Φlock as follows:

acq(m,Ψ) , (body(m) = ”LOCK”) ∗
∀m′. (body(m′) = ”NO”) ∨ (body(m′) = ”YES” ∗ K) −∗ Ψ(m′)

rel(m,Ψ) , (body(m) = ”RELEASE”) ∗ K ∗
∀m′. (body(m′) = ”RELEASED”) −∗ Ψ(m′)

Φlock(m) ,∃Ψ. from(m) Z⇒ Ψ ∗ (acq(m,Ψ) ∨ rel(m,Ψ))

The protocol Φlock demands that a client of the lock has to be bound to some
protocol Ψ and that the server can receive two types of messages fulfilling either
acq(m,Ψ) or rel(m,Ψ). These correspond to the module’s two methods acquire
and release respectively. In the case of a "LOCK" message, the server will answer
either "NO" or "YES" along with the key resource. In either case, the answer should
suffice for fulfilling the client protocol Ψ .
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Receiving a ”RELEASE” request is similar, but the important part is that we
require a client to send the key resource K along with the message, which ensures
that only the current holder can release the lock.

One difference between the distributed and the concurrent specification is
that we allow for the distributed lock to directly deny access. The client can use
a simple loop, asking for the lock until it is acquired, if it wishes to wait until
the lock can be acquired.

There are several interesting observations one can make about the lock server
example: (1) The lock server can allocate, read, and write node-local references
but these are hidden in the specification. (2) There are no channel descriptors
or assertions on the socket in the code. (3) The lock server provides mutual
exclusion by requiring clients to satisfy a sufficient protocol.

3 AnerisLang

AnerisLang is an untyped functional language with higher-order functions, fork-
based concurrency, higher-order mutable references, and primitives for communi-
cating over network sockets. The syntax is as follows:

v ∈ Val ::= () | b | i | s | ` | z | rec f x = e | . . .
e ∈ Expr ::= v | x | rec f x = e | e1 e2 | ref e | ! e | e1 ← e2 | cas e1 e2 e3

| find e1 e2 e3 | substring e1 e2 e3 | i2s e | s2i e
| fork {e} | start {n; ip; e} | makeaddress e1 e2

| socket e | socketbind e1 e2 | sendto e1 e2 e3 | receivefrom e | . . .

We omit the usual operations on pairs, sums, booleans b ∈ B, and integers
i ∈ Z which are all standard. We introduce the following syntactic sugar: lambda
abstractions λx. e defined as rec_x = e, let-bindings letx = e1 in e2 defined as
(λx. e2)(e1), and sequencing e1; e2 defined as let_ = e1 in e2.

We have the usual operations on locations ` ∈ Loc in the heap: ref v for
allocating a new reference, ! ` for dereferencing, and ` ← v for assignment.
cas ` v1 v2 is an atomic compare-and-set operation used to achieve synchronization
between threads on a specific memory location `. Operationally, it tests whether `
has value v1 and if so, updates the location to v2, returning a boolean indicating
whether the swap succeeded or not.

The operation find finds the index of a particular substring in a string s ∈
String and substring splits a string at given indices, producing the corresponding
substring. i2s and s2i convert between integers and strings. These operations
are mainly used for serialization and deserialization purposes.

The expression fork {e} forks off a new (node-local) thread and start {n; ip; e}
will spawn a new node n ∈ Node with ip address ip ∈ Ip running the program e.
Note that it is only at the bootstrapping phase of a distributed system that a
special system-node S will be able to spawn nodes.

We use z ∈ Handle to range over socket handles created by the socket

operation. makeaddress constructs an address given an ip address and a port,
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and the network primitives socketbind, sendto, and receivefrom correspond to
the similar BSD-socket API methods.

Operational Semantics. We define the operational semantics of AnerisLang in
three stages.

We first define a node-local, thread-local, head step reduction (e, h) (e′, h′)

for e, e′ ∈ Expr and h, h′ ∈ Loc fin−⇀ Val that handles all pure and heap-related
node-local reductions. All rules of the relation are standard.

Next, the node-local head step reduction induces a network-aware head step
reduction (〈n; e〉, Σ)→ (〈n; e′〉, Σ′).

(e, h) (e′, h′)

〈n; e〉, (H[n 7→ h],S,P,M)→ 〈n; e′〉, (H[n 7→ h′],S,P,M)
.

Here n ∈ Node denotes a node identifier and Σ,Σ′ ∈ NetworkState the global
network state. Elements of NetworkState are tuples (H,S,P,M) tracking heaps
H ∈ Node fin−⇀ Heap and sockets S ∈ Node fin−⇀ Handle fin−⇀ Option Address for all
nodes, ports in use P ∈ Ip fin−⇀ ℘fin(Port), and messages sentM∈ Id fin−⇀ Message.
The induced network-aware reduction is furthermore extended with rules for
the network primitives as seen in Fig. 3. The socket operation allocates a new

z 6∈ dom(S(n)) S ′ = S[n 7→ S(n)[z 7→ None]]
〈n; socket ()〉, (H,S,P,M)→ 〈n; z〉, (H,S ′,P,M)

S(n)(z) = None
p 6∈ P(ip) S ′ = S[n 7→ S(n)[z 7→ Some (ip, p)]] P ′ = P[ip 7→ P(ip) ∪ {p}]

〈n; socketbind z (ip, p)〉, (H,S,P,M)→ 〈n; 0〉, (H,S ′,P ′,M)

S(n)(z) = Some from i /∈ dom(M) M′ =M[i 7→ (from, to,msg,Sent)]

〈n; sendto z msg to〉, (H,S,P,M)→ 〈n; |msg|〉, (H,S,P,M′)

S(n)(z) = Some to
M(i) = (from, to,msg,Sent) M′ =M[i 7→ (from, to,msg,Received)]

〈n; receivefrom z〉, (H,S,P,M)→ 〈n; Some (msg, from)〉, (H,S,P,M′)

S(n)(z) = Some to

〈n; receivefrom z〉, (H,S,P,M)→ 〈n; None〉, (H,S,P,M)

Fig. 3. An excerpt of the rules for network-aware head reduction.

unbound socket using a fresh handle z for a node n and socketbind binds a
socket address a to an unbound socket z if the address and port p is not already
in use. Hereafter, the port is no longer available in P ′(ip). For bound sockets,
sendto sends a message msg to a destination address to from the sender’s address
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from found in the bound socket. The message is assigned a unique identifier and
tagged with a status flag Sent indicating that the message has been sent and
not received. The operation returns the number of characters sent.

To model possibly dropped or delayed messages we introduce two rules for
receiving messages using the receivefrom operation that on a bound socket either
returns a previously unreceived message or nothing. If a message is received the
status flag of the message is updated to Received

Third and finally, using standard call-by-value right-to-left evaluation contexts
K ∈ Ectx we lift the node-local head reduction to a distributed systems reduction
� shown below. We write �∗ for its reflexive-transitive closure. The distributed
systems relation reduces by picking a thread on any node or forking off a new
thread on a node.

(〈n; e〉, Σ)→ (〈n; e′〉, Σ′)
(T 1 ++ [〈n;K[e]〉] ++ T 2, Σ)� (T 1 ++ [〈n;K[e′]〉] ++ T 2;Σ

′)

(T 1 ++ [〈n;K[fork {e}]〉] ++ T 2, Σ)� (T 1 ++ [〈n;K[()]〉] ++ T 2 ++ [〈n; e〉], Σ)

4 The Aneris Logic

As a consequence of building on the Iris framework, the Aneris logic features all
the usual connectives and rules of higher-order separation logic, some of which
are shown in the grammar below.4 The full expressiveness of the logic can be
exploited when giving specifications to programs or stating protocols.

P,Q ∈ iProp ::= True | False | P ∧Q | P ∨Q | P ⇒ Q |
∀x. P | ∃x. P | P ∗ Q | P −∗ Q | t = u |

` 7→n v | P | a
γ | {P } 〈n; e〉 {x. Q} | . . .

Note that in Aneris the usual points-to connective about the heap, ` 7→n v, is
indexed by a node identifier n ∈ Node, asserting ownership of the singleton heap
mapping ` to v on node n.

The logic features (impredicative) invariants P and user-definable ghost state
via the proposition a

γ
, which asserts ownership of a piece of ghost state a at

ghost location γ. The logical support for user-defined invariants and ghost state
allows one to relate (ghost and physical) resources to each other; this is vital for
our specifications as will become evident in Sect. 5 and Sect. 6. We refer to Jung
et al. [14] for a more thorough treatment of user-defined ghost state.

To reason about AnerisLang programs, the logic features Hoare triples.5 The
intuitive reading of the Hoare triple {P } 〈n; e〉 {x. Q} is that if the program e on
4 To avoid the issue of reentrancy, invariants are annotated with a namespace and
Hoare triples with a mask. We omit both for the sake of presentation as they are
orthogonal issues.

5 In both Iris and Aneris the notion of a Hoare triple is defined in terms of a weakest
precondition but this will not be important for the remainder of this paper.
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node n is run in a distributed system s satisfying P , then the computation does
not get stuck and, moreover, if it terminates with a value v and in a system s′,
then s′ satisfies Q[v/x]. In other words, a Hoare triple implies safety and states
that all spatial resources that are used by e are contained in the precondition P .

In contrast to spatial propositions that express ownership, e.g., ` 7→n v,
propositions like P and {P } 〈n; e〉 {x. Q} express knowledge of properties that,
once true, hold true forever. We call this class of propositions persistent. Persistent
propositions P can be freely duplicated: P a` P ∗ P .

4.1 The Program Logic

The Aneris proof rules include the usual rules of concurrent separation logic for
Hoare triples, allowing formal reasoning about node-local pure computations,
manipulations of the the heap, and forking of threads. Expressions e are annotated
with a node identifier n, but the rules are otherwise standard.

To reason about individual nodes in a distributed system in isolation, Aneris
introduces the following rule:

Start
{P ∗ IsNode(n) ∗ FreePorts(ip,P)} 〈n; e〉 {True}
{P ∗ FreeIp(ip)} 〈S; start {n; ip; e}〉 {x. x = ()}

where P = {p | 0 ≤ p ≤ 65535}. This rule is the key rule allowing node-local
reasoning; the rule expresses exactly that to reason about a distributed system it
suffices to reason about each node in isolation.

As described in Sect. 3, only the distinguished system node S can start new
nodes—this is also reflected in the Start-rule. In order to start a new node
associated with IP address ip, the resource FreeIp(ip) is provided. This indicates
that ip is not used by other nodes. When reasoning about the node n, the proof
can rely on all ports on ip being available. The resource IsNode(n) indicates that
the node n is a valid node in the system and keeps track of abstract state related
to the modeling of node n’s heap and sockets. IsNode(n) is persistent and hence
duplicable.

Network Communication. To reason about network communication in a dis-
tributed system, the logic includes a series of rules for reasoning about socket
manipulation: allocation of sockets, binding of addresses to sockets, sending via
sockets, and receiving from sockets.

To allocate a socket it suffices to prove that the node n is valid by providing
the IsNode(n) resource. In return, an unbound socket resource z ↪→n None is
given.

Socket
{IsNode(n)} 〈n; socket ()〉 {z. z ↪→n None}

The socket resource z ↪→n o keeps track of the address associated with the
socket handle z on node n and takes part in ensuring that the socket is bound
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only once. It behaves similarly to the points-to connective for the heap, e.g.,
z ↪→n o ∗ z ↪→n o

′ ⇒ False.
As briefly touched upon in Sect. 2, the logic offers two different rules for

binding an address to a socket depending on whether or not the address has a (at
the level of the logic) primordial, agreed upon protocol. To distinguish between
such static and dynamic addresses, we use a persistent resource Fixed(A) to keep
track of the set of addresses that have a fixed socket protocol.

To reason about a static address binding to a socket z it suffices to show that
the address a being bound has a fixed interpretation (by being in the “fixed” set),
that the port of the address is free, and that the socket is not bound.

Socketbind-static
{Fixed(A) ∗ a ∈ A ∗ FreePort(a) ∗ z ↪→n None}
〈n; socketbind z a〉

{x. x = 0 ∗ z ↪→n Some a}

In accordance with the BSD-socket API, the bind operation returns the integer 0
and the socket resource gets updated, reflecting the fact that the binding took
place.

The rule for dynamic address binding is similar but the address a should not
have a fixed interpretation. Moreover, the user of the logic is free to pick the
socket protocol Φ to govern address a.

Socketbind-dynamic
{Fixed(A) ∗ a 6∈ A ∗ FreePort(a) ∗ z ↪→n None}
〈n; socketbind z a〉

{x. x = 0 ∗ z ↪→n Some a ∗ a Z⇒ Φ}

To reason about sending a message on a socket z it suffices to show that z is
bound, that the destination of the message is governed by a protocol Φ, and that
the message satisfies the protocol.

Sendto
{z ↪→n Some from ∗ to Z⇒ Φ ∗ Φ((from, to,msg,Sent))}
〈n; sendto z msg to〉

{x. x = |msg| ∗ z ↪→n Some from}

Finally, to reason about receiving a message on a socket z the socket must be
bound to an address governed by a protocol Φ.

Receivefrom
{z ↪→n Some to ∗ to Z⇒ Φ}
〈n; receivefrom z〉

{x. z ↪→n Some to ∗(
x = None ∨

(
∃m.x = Some (body(m), from(m)) ∗ Φ(m) ∗ R(m)

)) }
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When trying to receive a message on a socket, either a message will be received
or no message is available. This is reflected directly in the logic: if no message
was received, no resources are obtained. If a message m is received, the resources
prescribed by Φ(m) are transferred together with an unmodifiable certificate R(m)
accounting logically for the fact that message m was received. This certificate
can in the logic be used to talk about messages that has actually been received
in contrast to arbitrary messages. In our specification of the two-phase commit
protocol presented in Sect. 6, the notion of a vote denotes not just a message
with the right content but only one that has been sent by a participant and
received by the coordinator.

4.2 Adequacy for Aneris

We now state a formal adequacy theorem, which expresses that Aneris guarantees
both safety, and, that all protocols are adhered to.

To state our theorem we introduce a notion of initial state coherence: A
set of addresses A ⊆ Address = Ip × Port and a map P : Ip fin−⇀ ℘fin(Port) are
said to satisfy initial state coherence if the following hold: (1) if (i, p) ∈ A then
i ∈ dom(P), and (2) if i ∈ dom(P) then P(i) = ∅.

Theorem 1 (Adequacy). Let ϕ be a first-order predicate over values, i.e.,
a meta logic predicate (as opposed to Iris predicates), let P be a map Ip fin−⇀
℘fin(Port), and A ⊆ Address such that A and P satisfy initial state coherence.
Given a primordial socket protocol Φa for each a ∈ A, suppose that the Hoare
triple

{Fixed(A) ∗∗
a∈A

a Z⇒ Φa ∗ ∗
i∈dom(P)

FreeIp(i)} 〈n1; e〉 {v.ϕ(v)}

is derivable in Aneris.
If we have

(〈n1; e〉, (∅, ∅,P, ∅))�∗ ([〈n1; e1〉, 〈n2; e2〉, . . . 〈nm; em〉], Σ)

then the following properties hold:

1. If e1 is a value, then ϕ(e1) holds at the meta-level.
2. Each ei that is not a value can make a node-local, thread-local reduction step.

Given predefined socket protocols for all primordial protocols and the necessary
free IP addresses, this theorem provides the normal adequacy guarantees of Iris-
like logics, namely safety, i.e., that nodes and threads on nodes cannot get stuck
and that the postcondition holds for the resulting value. Notice, however, that
this theorem also implies that all nodes adhere to the agreed upon protocols;
otherwise, a node not adhering to a protocol would be able to cause another
node to get stuck, which the adequacy theorem explicitly guarantees against.
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5 Case Study 1: A Load Balancer

AnerisLang supports concurrent execution of threads on nodes through the
fork {e} primitive. We will illustrate the benefits of node-local concurrency
by presenting an example of server-side load balancing.

Load balancer

C1

...

Cn

Clients

z0

z1T1 : serve

z2T2 : serve

S1

S2

Servers

socket node
communication thread

Fig. 4. The architecture of a distributed system with a load balancer and two servers.

Implementation. In the case of server-side load balancing, the work distribution
is implemented by a program listening on a socket that clients send their requests
to. The program forwards the requests to an available server, waits for the
response from the server, and sends the answer back to the client. In order to
handle requests from several clients simultaneously, the load balancer can employ
concurrency by forking off a new thread for every available server in the system
that is capable of handling such requests. Each of these threads will then listen
for and forward requests. The architecture of such a system with two servers and
n clients is illustrated in Fig. 4.

An implementation of a load balancer is shown in Fig. 5. The load balancer is
parameterized over an IP address, a port, and a list of servers. It creates a socket
(corresponding to z0 in Fig. 4), binds the address, and folds a function over the
list of servers. This function forks off a new thread (corresponding to T1 and T2

in Fig. 4) for each server that runs the serve function with the newly-created
socket, the given IP address, a fresh port number, and a server as arguments.

The serve function creates a new socket (corresponding to z1 and z2 in Fig. 4),
binds the given address to the socket, and continuously tries to receive a client
request on the main socket (z0) given as input. If a request is received, it forwards
the request to its server and waits for an answer. The answer is passed on to
the client via the main socket. In this way, the entire load balancing process is
transparent to the client, whose view will be the same as if it was communicating
with just a single server handling all requests itself as the load balancer is simply
relaying requests and responses.

Specification and Protocols. To provide a general, reusable specification of the
load balancer, we will parameterize its socket protocol by two predicates Pin

and Pout that are both predicates on a message m and a meta-language value
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rec load__balancer ip port servers =
let skt = socket () in
let a = makeaddress ip port in
socketbind skt a;
listfold (λ server, acc.
fork { serve skt ip acc server };
acc + 1) 1100 servers

rec serve main ip port srv =
let skt = socket () in
let a = makeaddress ip port in
socketbind skt a;
(rec loop () =
match receivefrom main with
SOME m =>
sendto skt (π1 m) srv;
let res = π1 (listenwait skt) in
sendto main res (π2 m); loop ()

| NONE => loop ()
end) ()

Fig. 5. An implementation of a load balancer in AnerisLang. listfold and listenwait
are convenient helper functions available in the appendix [20].

v. The two predicates are application specific and used to give logical accounts
of the client requests and the server responses, respectively. Furthermore, we
parameterize the protocol by a predicate Pval on a meta-language value that
will allows us to maintain ghost state between the request and response as will
become evident in following.

In our specification, the sockets where the load balancer and the servers
receive requests (the blue sockets in Fig. 4) will all be governed by the same
socket protocol Φrel such that the load balancer may seamlessly relay requests
and responses between the main socket and the servers, without invalidating any
socket protocols. We define the generic relay socket protocol Φrel as follows:

Φrel(Pval , Pin , Pout)(m) , ∃Ψ, v. from(m) Z⇒ Ψ ∗ Pin(m, v) ∗ Pval(v) ∗
(∀m′. Pval(v) ∗ Pout(m

′, v) −∗ Ψ(m′))

When verifying a request, this protocol demands that the sender (corresponding
to the red sockets in Fig. 4) is governed by some protocol Ψ , that the request
fulfills the Pin and Pval predicates, and that Ψ is satisfied given a response that
maintains Pval and satisfies Pout .

When verifying the load balancer receiving a request m from a client, we
obtain the resources Pin(m, v) and Pval(v) for some v according to Φrel . This
suffices for passing the request along to a server. However, to forward the server’s
response to the client we must know that the server behaves faithfully and
gave us the response to the right request value v. Φrel does not give us this
immediately as the v is existentially quantified. Hence we define a ghost resource
LB(π, s, v) that provides fractional ownership for π ∈ (0, 1], which satisfies
LB(1, s, v) a` LB( 1

2 , s, v) ∗ LB(
1
2 , s, v), and for which v can only get updated if

π = 1 and in particular LB(π, s, v) ∗ LB(π, s, v′) =⇒ v = v′ for any π. Using
this resource, the server with address s will have PLB(s) as its instantiation of
Pval where

PLB(s)(v) , LB( 1
2 , s, v).

When verifying the load balancer, we will update this resource to the request
value v when receiving a request (as we have the full fraction) and transfer
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LB( 1
2 , s, v) to the server with address s handling the request and, according to

Φrel , it will be required to send it back along with the result. Since the server
logically only gets half ownership, the value cannot be changed. Together with
the fact that v is also an argument to Pin and Pout , this ensures that the server
fulfills Pout for the same value as it received Pin for. The socket protocol for the
serve function’s socket (z1 and z2 in Fig. 4) that communicates with a server
with address s can now be stated as follows.

Φserve(s, Pout)(m) , ∃v. LB( 1
2 , s, v) ∗ Pout(m, v)

Since all calls to the serve function need access to the main socket in order to
receive requests, we will keep the socket resource required in an invariant ILB
which is shared among all the threads:

ILB(n, z, a) , z ↪→n Some a

The specification for the serve function becomes:

{ILB(n,main, amain) ∗ Dynamic((ip, p), A) ∗ IsNode(n) ∗ LB(1, s, v) ∗
amain Z⇒ Φrel(λ_.True, Pin , Pout) ∗ s Z⇒ Φrel(PLB(s), Pin , Pout) }
〈n; serve main ip p s〉

{False}

The specification requires the address amain of the socket main to be governed
by Φrel with a trivial instantiation of Pval and the address s of the server to
be governed by Φrel with Pval instantiated by PLB . The specification moreover
expects resources for a dynamic setup, the invariant that owns the resource
needed to verify use of the main socket, and a full instance of the LB(1, s, v)
resource for some arbitrary v.

With this specification in place the complete specification of our load balancer
is immediate (note that it is parameterized by Pin and Pout):

{Static((ip, p), A, φrel(λ_.True, Pin , Pout)) ∗ IsNode(n) ∗ ∗
p′∈ports

Dynamic((ip, p′), A)

 ∗
(∗
s∈srvs

∃v. LB(1, s, v) ∗ s Z⇒ φrel(PLB(s), Pin , Pout)

) }
〈n; load_balancer ip p srvs〉

{True}

where ports = [1100, · · · , 1100 + |srvs|]. In addition to the protocol setup for
each server as just described, for each port p′ ∈ ports which will become the
endpoint for a corresponding server, we need the resources for a dynamic setup,
and we need the resource for a static setup on the main input address (ip, p).
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In the accompanying Coq development we provide an implementation of
the addition service from Sect. 2.3, both in the single server case and in a load
balanced case. For this particular proof we let the meta-language value v be a
pair of integers corresponding to the expected arguments. In order to instantiate
the load balancer specification we choose

P addin (m, (v1, v2)) , body(m) = serialize(v1, v2)

P addout (m, (v1, v2)) , body(m) = serialize(v1 + v2)

with serialize being the same serialization function from Sect. 2.3. We build and
verify two distributed systems, (1) one consisting of two clients and an addition
server and (2) one including two clients, a load balancer and three addition servers.
We prove both of these systems safe and the proofs utilize the specifications we
have given for the individual components. Notice that Φrel(λ_.True, P addin , P addout )
and Φadd from Sect. 2.3 are the same. This is why we can use the same client
specification in both system proofs. Hence, we have demonstrated Aneris’ ability
and support for horizontal composition of the same modules in different systems.

While the load balancer demonstrates the use of node-local concurrency, its
implementation does not involve shared memory concurrency, i.e., synchronization
among the node-local threads. The appendix [20] includes an example of a
distributed system, where clients interact with a server that implements a bag.
The server uses multiple threads to handle client requests concurrently and
the threads use a shared bag data structure governed by a lock. This example
demonstrates Aneris’ ability to support both shared-memory concurrency and
distributed networking.

6 Case Study 2: Two-Phase Commit

A typical problem in distributed systems is that of consensus and distributed
commit; an operation should be performed by all participants in a system or none
at all. The two-phase commit protocol (TPC) by Gray [6] is a classic solution
to this problem. We study this protocol in Aneris as (1) it is widely used in
the real-world, (2) it is a complex network protocol and thus serves as a decent
benchmark for reasoning in Aneris, and (3) to show how an implementation can
be given a specification that is usable for a client that abstractly relies on some
consensus protocol.

The two-phase commit protocol consists of the following two phases, each
involving two steps:

1. (a) The coordinator sends out a vote request to each participant.
(b) A participant that receives a vote request replies with a vote for either

commit or abort.
2. (a) The coordinator collects all votes and determines a result. If all par-

ticipants voted commit, the coordinator sends a global commit to all.
Otherwise, the coordinator sends a global abort to all.
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(b) All participants that voted for a commit wait for the final verdict from
the coordinator. If the participant receives a global commit it locally
commits the transaction, otherwise the transaction is locally aborted. All
participants must acknowledge.

Our implementation and specification details can be found in the appendix [20]
and in the accompanying Coq development, but we will emphasize a few key
points.

To provide general, reusable implementations and specifications of the coordi-
nator and participants implementing TPC, we do not define how requests, votes,
nor decisions look like. We leave it to a user of the module to provide decidable
predicates matching the application specific needs and to define the logical, local
pre- and postconditions, P and Q, of participants for the operation in question.

Our specifications use fractional ghost resources to keep track of coordinator
and participant state w.r.t. the coordinator and participant transition systems
indicated in the protocol description above. Similar to our previous case study, we
exploit partial ownership to limit when transitions can be made. When verifying
a participant, we keep track of their state and the coordinator’s state and require
all participants’ view of the coordinator state to be in agreement through an
invariant.

In short, our specification of TPC

– ensures the participants and coordinator act according to the protocol, i.e.,
• the coordinator decides based on all the participant votes,
• participants act according to the global decision,
• if the decision was to commit, we obtain the resources described by Q

for all participants,
• if the decision was to abort, we still have the resources described by P

for all participants,
– does not require the coordinator to be primordial, so the coordinator could

change from round to round.

6.1 A Replicated Log

In a distributed replicated logging system, a log is stored on several databases
distributed across several nodes where the system ensures consistency among the
logs through a consensus protocol. We have verified such a system implemented
on top of the TPC coordinator and participant modules to showcase vertical
composition of complex protocols in Aneris as illustrated in Fig. 6. The blue
parts of the diagram constitute node-local instantiations of the TPC modules
invoked by the nodes to handle the consensus process. As noted by Sergey et al.
[35], clients of core consensus protocols have not received much focus from other
major verification efforts [7, 30, 40].

Our specification of a replicated logging system draws on the generality of the
TPC specification. In this case, we use fractional ghost state to keep track of two
related pieces of information. The first keeps a logical account of the log l already
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Fig. 6. The architecture of a replicated logging system implemented using the TPC
modules (the blue parts of the diagram) with a coordinator and two databases (S1 and
S2) each storing a copy of the log.

stored in the database at a node at address a, LOG(π, a, l). The second one keeps
track of what the log should be updated to, if the pending round of consensus
succeeds. This is a pair of the existing log l and the (pending) change s proposed
in this round, PEND(π, a, (l, s)). We exploit fractional resource ownership by
letting the coordinator, logically, keep half of the pending log resources at all
times. Together with suitable local pre- and postconditions for the databases,
this prevents the databases from doing arbitrary changes to the log. Concretely,
we instantiate P and Q of the TPC module as follows:

Prep(p)(m) , ∃l, s. (m = "REQUEST_"@ s) ∗ LOG( 1
2 , p, l) ∗ PEND(

1
2 , p, (l, s))

Qrep(p)(n) , ∃l, s. LOG( 1
2 , p, l@s) ∗ PEND(

1
2 , p, (l, s))

where @ denotes string concatenation. Note how the request message specifies the
proposed change (since the string that we would like to add to the log is appended
to the requests message) and how we ensure consistency by making sure the two
ghost assertions hold for the same log. Even though l and s are existentially
quantified, we know the logs cannot be inconsistent since the coordinator retains
partial knowledge of the log. Due to the guarantees given by TPC specification,
this implies that if the global decision was to commit a change this change
will have happened locally on all databases, cf. LOG( 1

2 , p, l@s) in Qrep, and if
the decision was to abort, then the log remains unchanged on all databases,
cf. LOG( 1

2 , p, l) in Prep. We refer to the appendix [20] or the Coq development
for further details.

7 Related Work

Verification of distributed systems has received a fair amount of attention. In
order to give a better overview, we have divided related work into four categories.
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Model-Checking of Distributed Protocols. Previous work on verification of dis-
tributed systems has mainly focused on verification of protocols or core network
components through model-checking. Frameworks for showing safety and liveness
properties, such as SPIN [9], and TLA+ [23], have had great success. A benefit
of using model-checking frameworks is that they allow to state both safety and
liveness assertions as LTL assertions [29]. Mace [17] provides a suite for building
and model-checking distributed systems with asynchronous protocols, includ-
ing liveness conditions. Chapar [25] allows for model-checking of programs that
use causally consistent distributed key-value stores. Neither of these languages
provide higher-order functions or thread-based concurrency.

Session Types for Giving Types to Protocols. Session types have been studied for
a wide range of process calculi, in particular, typed π-calculus. The idea is to
describe two-party communication protocols as a type to ensure communication
safety and progress [10]. This has been extended to multi-party asynchronous
channels [11], multi-role types [2] which informally model topics of actor-based
message-passing and dependent session types allowing quantification over mes-
sages [38]. Our socket protocol definitions are quite similar to the multi-party
asynchronous session types with progress encoded by having suitable ghost-
assertions and using the magic wand. Actris [8] is a logic for session-type based
reasoning about message-passing in actor-based languages.

Hoare Style Reasoning About Distributed Systems. Disel [35] is a Hoare Type
Theory for distributed program verification in Coq with ideas from separation
logic. It provides the novel protocol-tailored rules WithInv and Frame which
allow for modularity of proofs under the condition of an inductive invariant
and distributed systems composition. In Disel, programs can be extracted into
runnable OCaml programs, which is on our agenda for future work.

IronFleet [7] allows for building provably correct distributed systems by
combining TLA-style state-machine refinement with Hoare-logic verification in a
layered approach, all embedded in Dafny [24]. IronFleet also allows for liveness
assertions. For a comparison of Disel and IronFleet to Aneris from a modularity
point of view we refer to the Introduction section.

Other Distributed Verification Efforts. Verdi [40] is a framework for writing and
verifying implementations of distributed algorithms in Coq, providing a novel
approach to network semantics and fault models. To achieve compositionality, the
authors introduced verified system transformers, that is, a function that trans-
forms one implementation to another implementation with different assumptions
about its environment. This makes vertical composition difficult for clients of
proven protocols and in comparison AnerisLang seems more expressive.

EventML [30, 31] is a functional language in the ML family that can be used
for coding distributed protocols using high-level combinators from the Logic of
Events, and verify them in the Nuprl interactive theorem prover. It is not quite
clear how modular reasoning works, since one works within the model, however,
the notion of a central main observer is akin to our distinguished system node.



Aneris: A Logic for Modular Reasoning about Distributed Systems 25

8 Conclusion

Distributed systems are ubiquitous and hence it is essential to be able to verify
them. In this paper we presented Aneris, a framework for writing and verifying
distributed systems in Coq built on top of the Iris framework. From a programming
point of view, the important aspect of AnerisLang is that it is feature-rich: it is a
concurrent ML-like programming language with network primitives. This allows
individual nodes to internally use higher-order heap and concurrency to write
efficient programs.

The Aneris logic provides node-local reasoning through socket protocols. That
is, we can reason about individual nodes in isolation as we reason about indi-
vidual threads. We demonstrate the versatility of Aneris by studying interesting
distributed systems both implemented and verified within Aneris. The adequacy
theorem of Aneris implies that these programs are safe to run.

Table 1. Sizes of implementations, specifications, and proofs in lines of code. When
proving adequacy, the system must be closed.

Module Implementation Specification Proofs
Load Balancer (Sect. 5)

Load balancer 18 78 95
Addition Service

Server 11 15 38
Client 9 14 26
Adequacy (1 server, 2 clients) 5 12 62
Adequacy w. Load Balancing 16 28 175
(3 servers, 2 clients)

Two-phase commit (Sect. 6)
Coordinator 18 181 265
Participant 11 280

Replicated logging (Sect. 6 + appendix [20])
Instantiation of TPC - 85 -
Logger 22 19 95
Database 24 20 190
Adequacy 13 - 137
(2 dbs, 1 coordinator, 2 clients)

Relating the verification sizes of the modules from Table 1 to other formal
verification efforts in Coq indicates that it is easier to specify and verify systems
in Aneris. The total work required to prove two-phase commit with replicated
logging is 1,272 lines which is just half of the lines needed for proving the inductive
invariant for TPC in other works [35]. However, extensive work has gone into
Iris Proof Mode thus it is hard to conclude that Aneris requires less verification
effort and does not just have richer tactics.
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