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we show that it handles Scala examples that could not be handled by previous versions of DOT, and prove

using our logical relations model that gDOT provides the desired data abstraction. The gDOT type system, its
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1 INTRODUCTION
The Scala language has an expressive type system that supports, among other features, first-class

recursive modules, path dependent types, impredicative type members, and subtyping, achieving

strong information hiding. Alas, Scala has struggled for years with type soundness issues and ad-hoc

fixes. To address these issues more rigorously, the compiler of the new Scala 3 language (called

Dotty) has been designed hand in hand with a new foundational type system— the Dependent Object
Types (DOT) calculus. This development led to a number of increasingly expressive versions of DOT

and type soundness proofs thereof [Amin et al. 2016; Kabir and Lhoták 2018; Rapoport et al. 2017;

Rapoport and Lhoták 2016; Rompf and Amin 2016], culminating in the pDOT calculus [Rapoport

and Lhoták 2019], and has helped to fix various soundness bugs in Scala 3 [Rompf and Amin 2016].
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Despite this exciting development, current DOT versions still lack features necessary to encode

full Scala, such as subtyping for recursive types (supported by Amin and Rompf [2017]; Rompf and

Amin [2016] but dropped in later work), distributive subtyping [Giarrusso 2019], higher-kinded

types [Odersky 2016; Odersky et al. 2016; Stucki 2016, 2017], and mutually recursive modules

that hide information from each other (which we dub mutual information hiding, and motivate in

Sec. 1.1). Worse, one of the core DOT features is support for abstract types and data abstraction,

but traditional syntactic type soundness proofs cannot show that abstract types behave correctly.

Supporting these features in pDOT poses the following questions:

(1) How to design a type system that soundly extends pDOT with these features?

(2) How to prove type soundness of such a type system?

(3) How to demonstrate proper support for data abstraction?

Question (1) is challenging because feature interaction in Scala 3 and (p)DOT is prone to unex-

pected type soundness issues. Question (2) is challenging because current syntactic type soundness

proofs for DOT are intricate, and thus hard to scale to new DOT variants. While Rapoport et al.

[2017] describe a recipe for syntactic proofs for DOT, applying this recipe to pDOT—one of the

most expressive versions of DOT to date— involves 7 carefully designed variants of pDOT’s typing

judgment [Rapoport and Lhoták 2019]. Moreover, subtyping for recursive types is not supported by

pDOT but, to date, only by the soundness proofs by Rompf and Amin [2016] and Amin and Rompf

[2017], which have not been extended in the published literature, and lack other crucial pDOT

features. Generally, syntactic type soundness proofs are known to be hard to scale to combinations

of (path) dependent types and subtyping [Hutchins 2010; Yang and d. S. Oliveira 2017]. Finally,

question (3) is challenging because it cannot be addressed through syntactic type soundness proofs.

To extend pDOT despite these challenges, we eschew traditional syntactic type soundness proofs,

and follow a semantics-first approach—first, we model each type and typing judgment semantically

via a logical relation, i.e., in terms of the program’s runtime behavior, instead of a fixed set of

syntactic rules. Such a semantic model immediately addresses question (2): only safe programs are

semantically typed. To address question (1), we then derive from the semantic model a sound type

system called guarded DOT (gDOT): we give modular soundness proofs of rules that either exist

in some DOT variant or are suggested by the model, such as those for mutual information hiding

(see Sec. 1.1 and Sec. 3 and 4). Some rules, such as subtyping for recursive types, become easier to

prove sound than in past work [Amin and Rompf 2017; Rompf and Amin 2016]. Other rules require

extending gDOT with a “later” type operator (⊲) [Nakano 2000], which enforces certain guardedness
restrictions obtained from the semantic model (Sec. 4). While these guardedness restrictions make a

straightforward translation from pDOT to gDOT impossible (we conjecture a translation exists, but

leave it for future work, see Sec. 9), we show that challenging examples from the DOT literature,

as well as new examples, can be typed in gDOT. Finally, as we demonstrate in Sec. 1.2 and 6.3,

semantic models like ours support proving data abstraction, answering question (3).

1.1 Example: Mutual Information Hiding
Before explaining how to reason formally about data abstraction (Sec. 1.2), the intuitive idea behind

semantic typing (Sec. 1.3), and our contributions (Sec. 1.4), we give a brief introduction to Scala

and DOT. As a running example we use a novel Scala feature (mutual information hiding) that is

supported by Scala compilers and gDOT, but not by prior DOT calculi.

Scala objects enable encoding a rich module system. Objects can contain not only value members

(such as fields and methods), but also type members, which enables using objects as modules. These

type members are translucent [Harper and Lillibridge 1994]. That is, their definition can be either

exposed or abstracted away from clients, supporting a strong form of information hiding. Moreover,
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1 object pcore {
2 object types {
3 abstract class Type
4 class TypeTop extends Type
5 class TypeRef(val symb: pcore.symbols.Symbol) extends Type {
6 assert(!symb.tpe.isEmpty) }
7 val typeFromTypeRefUnsafe = (t: types.TypeRef) =>
8 // relies on TypeRef's class invariant; only semantically well-typed.
9 t.symb.tpe.asInstanceOf[Some[types.Type]].get
10 }
11 object symbols {
12 class Symbol(val tpe: Option[pcore.types.Type], val id: Int)
13 // Encapsulation violation, and type error in Scala (but not pDOT)
14 // val fakeTypeRef : types.TypeRef =
15 // new { val symb = new Symbol(None, 0) }
16 }
17 }

Fig. 1. A (simplified) fragment of the Scala 3 compiler (Dotty), in Scala syntax, that makes use of mutual
information hiding and relies on Scala’s support for data abstraction for its soundness.

type members can be abstracted away after creation, through upcasting. Objects containing type
members are first-class values, avoiding the need for a separate module language. Notably, they can

be nested, thus supporting hierarchical modules, and they can be mutually recursive, thus enabling
mutually recursive modules. This combination of features enables in particular mutual information
hiding, that is, mutually recursive modules that hide information from each other.

To demonstrate usefulness of mutual information hiding, consider the example in Fig. 1, adapted

from Rapoport and Lhoták [2019], and inspired by the actual implementation of the Scala 3 compiler

(Dotty). The example models a system with mutually recursive modules types and symbols, encoded

as members of the object pcore and representing separate compilation units. The module types

represents the API for types. It uses nested classes to model an algebraic data type Type for types

of the object language,
1
which for simplicity can be either the top-type TypeTop, or a reference

TypeRef to a symbol symb. The module symbols represents the API for a symbol table, and defines a

nested class Symbol for symbols, which contain an (optional) type tpe and an identifier id. Optional

types are encoded through the standard type constructor Option, with constructors Some and None,

and methods isEmpty and get. We elaborate on the encoding of Option in DOT in Sec. 6.3.

The classes TypeRef and Symbol have value members (symb for TypeRef, and tpe and id for

Symbol) that are initialized by a corresponding constructor. For instance, after executing val s =

new Symbol(None, 0), field s.id has value 0. To achieve strong information hiding, Scala classes

are nominal, i.e., they can only be constructed through constructors. For instance, Scala rejects

fakeTypeRef, which creates an object of type TypeRef with all the right members (namely, a member

symb of the right type), because it sidesteps TypeRef’s constructor.

Nominality helps to enforce class invariants—constructors can validate parameters and initialize

objects correctly. For instance, TypeRef’s constructor ensures (using isEmpty) the invariant that

symb contains a type. The fakeTypeRef method would violate this invariant, but is rejected because

it sidesteps TypeRef’s constructor. Class invariants can be relied upon by clients. Thanks to the

invariants of Option and TypeRef, clients can assume that symb.tpe is never None. Indeed, the

unsafe cast tpe.asInstanceOf[Some[types.Type]] in typeFromTypeRefUnsafe relies on TypeRef’s

1
For our purposes, an abstract class is simply a class without constructors.
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let options = . . . in let pcore = 𝜈 pcore. {
types = 𝜈 types. {

Type >: ⊥ = ⊤
TypeTop >: ⊥ = types.Type
newTypeTop : ⊤ → types.TypeTop = 𝜆_. 𝜈_. {}
TypeRef >: ⊥ = types.Type ∧ {symb : pcore.symbols.Symbol}
newTypeRef : pcore.symbols.Symbol → types.TypeRef

= 𝜆𝑠. { 𝜈_. {symb = 𝑠} }
}
symbols = 𝜈 symbols. {

Symbol >: ⊥ = { tpe : options.Option ∧ {A >: ⊥ <: pcore.types.Type}; id : Nat }
newSymbol : (options.Option ∧ {A >: ⊥ <: pcore.types.Type}) → Nat → symbols.Symbol

= 𝜆𝑡 𝑖 . 𝜈_. {tpe = 𝑡 ; id = 𝑖}
}

} in . . .

Fig. 2. The (simplified) fragment of Dotty from Fig. 1, in pDOT syntax, minus typeFromTypeRefUnsafe and
the assertion. This code is not well-typed as-is in pDOT (see text).

class invariant to safely extract the Type nested inside symb. While such unsafe casts are not well-

typed, they are often used by programmers, who justify their safety by relying on the type system’s

support for data abstraction. Notably, programmers rely on the type system to reject methods

that break nominality (such as fakeTypeRef) so that class invariants (such as !symb.tpe.isEmpty)

are maintained. Moreover, even syntactically well-typed code often relies on class invariants for

functional correctness, as encouraged by standard object-oriented practice.

Although Scala can enforce the desired data abstraction in the example, and thus enables pro-

grammers to reason informally about their code via class invariants (e.g., to justify the use of unsafe
casts), pDOT cannot enforce that. To explain why, we show in Fig. 2 the translation of the example

(minus typeFromTypeRefUnsafe and the assert in TypeRef’s constructor, to which we come back in

Sec. 1.2) into pDOT syntax. As the translation is verbose, we focus on the key aspects.

First, we create objects through syntax 𝜈𝑥 . {𝑑}, where 𝑥 is the self variable that refers to the object
being created, and 𝑑 is a list of type and value member definitions. The definition of the top-level

object pcore uses the self variable pcore to create the mutual dependency between the subobjects

types and symbols, represented as value members. For brevity, we write the type declarations of
each member together with their definitions. In the core pDOT syntax, declarations would not

appear in object bodies, but in their types—we would write 𝜈𝑥 . {𝑑} : 𝜇𝑥 . {𝑇 }, where {𝑇 } contains
type declarations for all members in 𝑑 , which can refer to each other through self variable 𝑥 .

Second, while (p)DOT does not have native support for higher-kinded types, Option[𝑇] can be

encoded as options.Option ∧ {A >: ⊥ <:𝑇 }, exposing the type 𝑇 of elements as type member A.2

Third, while classes are native constructs in Scala, they are encoded through abstract types in

(p)DOT. To model that classes are nominal (i.e., that they can only be created through constructors),

only an upper bound on the abstract type is exposed. Hence, nominality and enforcement of class

invariants translate to proper data abstraction. As shorthand, we write A >: 𝐿 = 𝑈 for a type

member that is defined to be equal to𝑈 , but declared to have lower bound 𝐿 and upper bound𝑈 . For

example, the bounds on TypeRef are >: ⊥ <: pcore.types.Type ∧ {symb : pcore.symbols.Symbol}.
2
This encoding of higher-kinded types is insufficient for full Scala [Odersky et al. 2016], motivating the search for higher-

kinded DOT [Odersky 2016; Stucki 2016, 2017].
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Due to the lower bound (⊥, the empty type), clients of types cannot construct a TypeRef themselves.

The upper bound (pcore.types.Type ∧ {symb : pcore.symbols.Symbol}) exposes that TypeRef is a
subtype of Type, and that it has a value member symb.
The code in Fig. 2 properly models the desired information hiding between the recursively

defined subobjects types and symbols. Alas, pDOT cannot type this code, as pDOT requires that

all (recursive) objects 𝜈 (𝑥 : 𝑇 ). {𝑑} must have a precise self type 𝑇 [Rapoport and Lhoták 2019].

Informally, 𝑇 is precise if the bounds >: 𝐿 <:𝑈 of all type members that appear hereditarily in 𝑇

satisfy 𝐿 = 𝑈 — i.e., if the recursively defined object does not contain any abstract type members

(we define this notion formally in Fig. 4). In this case, the restriction implies that the object pcore
cannot be typed, for instance because type member TypeRef is imprecise.

3

The restrictions of pDOT to precise self types appear necessary: pDOT with imprecise self types

has known counterexamples to type soundness (see Sec. 3). To the best of our knowledge, the gDOT

system, as presented in this paper, is the first DOT variant that supports sound imprecise self types,

and thereby provides the desired data abstraction that Scala is supposed to ensure.

1.2 Formal Reasoning About Data Abstraction
As demonstrated in Sec. 1.1, programmers sometimes use the programming language’s support for

data abstraction to justify the safety of escape hatches such as unsafe casts. We exemplified that in

the method typeFromTypeRefUnsafe (Fig. 1), which contains an unsafe cast whose safety depends

on a class invariant expressing that field symb.tpe is never None. Inspired by the RustBelt project

on proving safety of Rust libraries that make use of unsafe code blocks [Jung et al. 2018a, 2020], we

use our semantic model to make the informal reasoning from Sec. 1.1 formal. Concretely, we show

that code that cannot be syntactically typed because it uses escape hatches whose safety depends

on class invariants, can be semantically typed using a manual proof in gDOT’s semantic model.

The ability to carry out such manual proofs demonstrates gDOT’s support for data abstraction.
4

1.3 The Semantics-First Approach
To formally investigate challenging Scala features (such as imprecise self types), to develop a

modular approach to prove type soundness, and to study Scala’s support for data abstraction, we

approach the problem of designing a suitable DOT calculus semantics-first. That is, we first design
a semantic model, and then derive from it a sound type system, namely gDOT.

Our model is based on an old idea going back to at least Milner [1978]: we formalize the meaning

of DOT types semantically (using logical relations) by mapping syntactic types 𝑇 to semantic
types VJ𝑇 K ∈ SemType. Semantic types SemType ≜ (Var → SemVal) → SemVal → Prop are

predicates on values (or equivalently, functions from values to propositions) that take as a parameter

an environment mapping variables to values (since types can contain variables that point to values).

We then show that if a closed term has a certain type 𝑇 , then any result of evaluating that term

satisfiesVJ𝑇 K∅ (the fundamental theorem). However, we need a novel idea to handle abstract types,

in particular because DOT type members are impredicative: that is, type members can describe

values containing in turn type members, without any stratification (see Sec. 8).

To explain our gDOT model, we first sketch a naive semantics that is simple, but unsound because

of DOT impredicativity. We then explain how we can use step-indexing [Appel and McAllester

2001], a common technique to deal with circularities, to give a more refined but sound model.

3
In pDOT one can construct the top-level object pcore with a precise self type, and only after it is constructed use

subsumption to weaken the bounds on the type members. This way, one can achieve information hiding for clients of

pcore, but not information hiding between types and symbols. Hence, this is not a complete solution.

4
Beware we do not propose extending the Scala type checker to accept such programs. Instead, we propose a formal

foundation for the informal reasoning often used to review uses of escape hatches.
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In (g)DOT, ignoring both base values and paths, a value can be a variable, a function value (a

𝜆-abstraction), or an object (a finite map from member labels to semantic types or values). If we

think of semantic types as predicates (i.e., functions from values to propositions Prop), then we can

describe such values using a recursive domain equation of the following form:

SemType ≜ (Var → SemVal) → SemVal → Prop

SemVal � Var +
{
𝜆𝑥. 𝑒

}
+ (Label fin−⇀ (SemType + SemVal))

(Domain-Bad)

Intuitively, such a naive semantics would justify (p)DOT. But it would also be unsound, because
it is well-known that there are no solutions to the above recursive domain equation in ordinary set

theory due to the negative recursive occurrences of SemVal (visible after unfolding SemType).
Luckily, we can use the Iris logic [Jung et al. 2016, 2018b, 2015; Krebbers et al. 2017a] and an

abstract form of step-indexing [Appel et al. 2007; Birkedal et al. 2011] to stratify our definition and

build a sound version of this semantics. Our stratified equation is written as follows:

SemType ≜ (Var → SemVal) → SemVal → iProp

SemVal � Var +
{
𝜆𝑥 . 𝑒

}
+ (Label fin−⇀ (▶SemType + SemVal))

(Domain)

Here, iProp is the universe of Iris propositions. Now the negative occurrences of SemVal are guarded
by a “later” ▶, a contractive type operator that restricts how its argument can be manipulated.

Formally, this can be understood and solved as a recursive domain equation in the category of

complete ordered families of equivalences (COFEs) [America and Rutten 1989; Birkedal et al. 2010].

Using the solution to the recursive domain equation we obtain a sound model for gDOT. We

consider this model “canonical”, as we have taken a straightforward but naive semantics, and done

the smallest possible change to turn it into a sound semantics using step-indexing. Interestingly,

our model differs in a number of key points from prior work on step-indexed logical relations:

• Prior work focused mostly on modeling general references, and thus had to solve the so-called

“type-world circularity” [Ahmed 2004; Birkedal et al. 2011]. Since such type systems in prior

work do not support dependent types, values cannot contain types, and as such, the domain

of values was not recursively defined (it was simply the set of syntactic values).

• While Iris could in principle solve the aforementioned recursive domain equation, we actually

represent semantic values through an indirection, which we call stamping. This keeps the
syntax of values first-order (which aids mechanization in Coq), and enables reuse of Iris’s

support for saved predicates [Jung et al. 2016].
• Our logical relation combines non-termination (for terms) and termination (for paths).

Our model also differs from Wang and Rompf’s logical relations model [2017] for normalization

of a DOT subset (also discussed in Sec. 8). Their DOT subset excludes value members (so cannot

express the example from Fig. 1). While they also model impredicative type members, they define

an explicitly-stratified logical relation, instead of using Iris’s abstract form of step-indexing, which

is mathematically better behaved and enjoys all the Iris infrastructure.

1.4 Contributions
To sum up, we take a semantics-first approach to take a fresh look at several open problems of

Scala’s core calculus pDOT. Through the semantics-first approach we obtain the new guarded DOT
(gDOT) calculus, which enforces certain guardedness restrictions by extending the type system

with a “later” operator (⊲). This operator makes it possible to add a number of novel and provably

sound typing rules, e.g., to support imprecise self types and mutual information hiding, that were

unsound in prior versions of DOT. Unfortunately, gDOT’s guardedness restrictions come with a

price—many programs that were accepted by previous (p)DOT versions require additional uses
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of later. We conjecture all pDOT programs can be translated, but leave a proof for future work.

Instead, we demonstrate that we can encode many challenging examples from the Scala and (p)DOT

literature, as well as new examples that could not be handled before.

Concretely, this paper makes the following contributions:

• Wemotivate extending pDOTwith support for imprecise self types, to enable type abstractions
between mutually recursive objects, despite the known difficulties (Sec. 1.1 and Sec. 3).

• After summarizing the pDOT calculus (Sec. 2), we introduce our new gDOT calculus (Sec. 4).

• We present a novel technique, based on step-indexed logical relations in Iris, to give a semantic

model of impredicative type members, and use it to prove soundness of gDOT (Sec. 5).

• We demonstrate gDOT’s expressivity by encoding various examples, and demonstrate its

support for data abstraction by proving semantic typing of functions whose correctness relies

on gDOT’s ability to maintain class invariants (Sec. 6).

• We mechanize gDOT and all proofs in this paper in Coq using the Iris framework (Sec. 7).

The Coq mechanization can be found online [Giarrusso et al. 2020].

2 BACKGROUND: PDOT
Before we present gDOT in Sec. 4, we summarize pDOT [Rapoport and Lhoták 2019]— our starting

point. To simplify the comparison, we reformulate pDOT to be closer to gDOT, but preserving its

essence. Like all DOT calculi, pDOT and gDOT are neither intended for programming directly,

nor designed for decidable type checking, but rather as an elaboration target for type-preserving

translation from subsets of Scala.

2.1 Syntax and Operational Semantics
pDOT and gDOT share syntax and operational semantics, which are shown in Fig. 3 (ignoring

primitives like numerals and addition). Unlike in Sec. 1.3, we define syntactic values and types, not

semantic ones (we return to semantic types and values in Sec. 5.3). pDOT values are either variables

𝑥 , functions 𝜆𝑥. 𝑒 or objects 𝜈𝑥 . {𝑑} (where 𝜈 is distinct from 𝑣). An object contains a map from

labels to definitions 𝑑 , which can reference the whole object through the self variable 𝑥 , modeling

the this variable in Scala. A definition 𝑑 can be a type member {A = 𝑇 }, where A is a type label

and 𝑇 is a type, or a term member {a = 𝑝}, where a is a label and 𝑝 is a (pre)path. Though they are

central to the type system, type members do not affect the operational semantics. Type and term

members can be projected from objects using member selectors, respectively 𝑒.a and 𝑝.A. A path is

either a value 𝑣 or a selection 𝑝.a. Nonsensical paths such as (𝜆𝑥 . 𝑒).a are rejected by typing.

Like in storeless DOT [Amin 2016, Ch. 3], we use a conventional substitution-based call-by-value

semantics. Substitution of variables by values is written as 𝜒 [𝑥 ≔ 𝑣], where 𝜒 ranges over all

syntactic classes. We write 𝑒 →h 𝑒
′
for head reduction, and write 𝑒 →t 𝑒

′
for its closure under call-

by-value evaluation contexts 𝐾 . Head reduction has three rules: the usual call-by-value 𝛽-reduction

for function values, evaluation of member selectors, and evaluation of coercions coerce. As DOT
objects are recursive, the member lookup relation 𝑣 .𝑙 ↘ 𝑑 for an object 𝑣 = 𝜈𝑥 . {𝑑} substitutes the
self variable 𝑥 by 𝑣 before looking up 𝑙 in the substitution result. Last, coercions applied to values

simply reduce away in one evaluation step, which will become significant in Sec. 5.3. Coercions get

their name because they appear in gDOT’s subsumption rule (T-Sub) in Fig. 6.

2.2 Type System
We now present the pDOT (pre)types (Fig. 3) and type system (Fig. 4 and 5). We focus on the typing

rules that are essential to the rest of the paper, and defer to Rapoport and Lhoták [2019] for the

remaining ones. A term in pDOT can be typed either with a dependent function type ∀𝑥 : 𝑆.𝑇 ,
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Syntax

TyLabel ∋ A Type member labels

ValLabel ∋ a Term member labels

Label ∋ 𝑙 ::= a | A Member labels

Val ∋ 𝑣 ::= 𝑥 | 𝜆𝑥. 𝑒 | 𝜈𝑥 . {𝑑} Values

Term ∋ 𝑒 ::= 𝑣 | 𝑒 𝑒 | 𝑒.a | coerce 𝑒 Terms

Path ∋ 𝑝, 𝑞 ::= 𝑣 | 𝑝.a (Pre)paths

DefBody ∋ 𝑑 ::= 𝑝 | 𝑇 Definition bodies

DefList ∋ 𝑑 ::= 𝑙 = 𝑑 | 𝑑 ;𝑑 Definition lists

ECtx ∋ 𝐾 ::= [] | 𝐾 𝑒 | 𝑣 𝐾 | 𝐾.a | coerce 𝐾 Evaluation contexts

Type ∋ 𝐿, 𝑆,𝑇 ,𝑈 ,𝑉 ,𝑊 ::= ⊤ | ⊥ | 𝑇 ∧𝑈 | 𝑇 ∨𝑈 | ∀𝑥 : 𝑆.𝑇 (Pre)types

| {a : 𝑇 } | {A >: 𝐿 <:𝑈 } | 𝑝.A | 𝑝.type | 𝜇𝑥 .𝑇 | ⊲𝑇

TyCtx ∋ Γ ::= 𝜀 | Γ, 𝑥 : 𝑇 Typing contexts

Member selection (looking up label 𝑙 in value 𝑣 finds definition 𝑑)

𝑣 .𝑙 ↘ 𝑑 ≜ ∃ 𝑥, 𝑑. 𝑣 = 𝜈𝑥 . {𝑑} ∧ lookup 𝑙 (𝑑 [𝑥 := 𝑣]) = 𝑑
Operational semantics (call-by-value head reduction 𝑒 →h 𝑒

′
, and its closure 𝑒 →t 𝑒

′
over contexts)

(𝜆𝑥. 𝑒) 𝑣 →h 𝑒 [𝑥 ≔ 𝑣]
𝑣 .𝑎 ↘ 𝑝

𝑣.a →h 𝑝
coerce 𝑣 →h 𝑣

𝑒 →h 𝑒
′

𝐾 [𝑒] →t 𝐾 [𝑒 ′]

Fig. 3. pDOT/gDOT syntax and operational semantics. New gDOT constructs have a shaded background.
The original pDOT path syntax replaces values by variables.

where 𝑥 can appear in 𝑇 , a record type {a : 𝑇 } or {A >: 𝐿 <:𝑈 }, a path selection 𝑝.A, a singleton
type 𝑝.type, or an object type 𝜇𝑥 .𝑇 . In addition, pDOT features the usual top (⊤), bottom (⊥), and
intersection (∧) types.5 We use {𝑇 } as sugar for intersections, e.g., we let {A >: 𝐿 <:𝑈 ; a : 𝑇 } be
syntactic sugar for {A >: 𝐿 <:𝑈 } ∧ {a : 𝑇 }. Distinct members𝑇 of type 𝜇𝑥 . {𝑇 } cannot refer to each
other directly, but only through the self variable 𝑥 .

The typing judgments contain a context Γ, which is a list of mappings 𝑥 : 𝑇 from variables 𝑥 to

types 𝑇 . Contexts are dependently typed, but with non-standard scoping: in context Γ1, 𝑥 : 𝑇, Γ2,
the variable 𝑥 is bound not only in Γ2, but also in 𝑇 . Beyond correct scoping, DOT calculi do not

enforce any well-formedness requirement on either type members (in (D-Typ)), types or contexts.

The term typing judgment Γ ⊢ 𝑒 : 𝑇 (which also covers values), and subtyping judgment

Γ ⊢ 𝑇1 <: 𝑇2, as well as the subsumption rule (T-Sub), are standard. We write Γ ⊢ 𝑇1 <: 𝑇2 <: 𝑇3 for
having both Γ ⊢ 𝑇1 <: 𝑇2 and Γ ⊢ 𝑇2 <: 𝑇3. In our reference version of DOT, we follow WadlerFest

DOT [Amin et al. 2016] and pDOT by leaving out subtyping rules for recursive types, which we

will add back in gDOT in Sec. 4. Dependent function types ∀𝑥 : 𝑆.𝑇 support standard rules for

contravariant subtyping and introduction. Non-dependent functions can be applied to an arbitrary

argument term using (T-∀-E). Dependent functions can only be applied to a path 𝑝 using (T-∀-E𝑝 )
as we can only substitute paths into types using path substitution 𝑇 [𝑥 ≔ 𝑝].
Typing of object values 𝜈𝑥 . {𝑑} in rule (T-{}-I) depends on the definition typing judgment Γ | 𝑥 :

𝑉 ⊢ {𝑑} : 𝑇 . Here, the binding for the self variable 𝑥 : 𝑉 (which refers to the object being constructed)

is placed in a stoup (i.e., one-element context) instead of the context Γ because it has a special role

5
Some versions of DOT [Rompf and Amin 2016] have union (∨) types, but pDOT does not. We readd union types in gDOT.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 114. Publication date: August 2020.



Scala Step-by-Step 114:9

Term typing Γ ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑒 : 𝑇1 Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ 𝑒 : 𝑇2
(T-Sub)

Γ ⊢P 𝑝 : 𝑇

Γ ⊢ 𝑝 : 𝑇
(T-Path)

Γ | 𝑥 : 𝑇 ⊢ {𝑑} : 𝑇
Γ ⊢ 𝜈𝑥 . {𝑑} : 𝜇𝑥 .𝑇

(T-{}-I)

Γ ⊢ 𝑒 : {a : 𝑇 }
Γ ⊢ 𝑒.a : 𝑇

(T-{}-E)
Γ, 𝑥 : 𝑆 ⊢ 𝑒 : 𝑇 𝑥 ∉ FV(𝑆)

Γ ⊢ 𝜆𝑥. 𝑒 : ∀𝑥 : 𝑆.𝑇
(T-∀-I)

Γ ⊢ 𝑒1 : 𝑆 → 𝑇 Γ ⊢ 𝑒2 : 𝑆
Γ ⊢ 𝑒1 𝑒2 : 𝑇

(T-∀-E)
Γ ⊢ 𝑒 : ∀𝑧 : 𝑆.𝑇 Γ ⊢P 𝑝 : 𝑆

Γ ⊢ 𝑒 𝑝 : 𝑇 [𝑧 ≔ 𝑝]
(T-∀-E𝑝 )

Path typing Γ ⊢P 𝑝 : 𝑇

𝑥 : 𝑇 ∈ Γ

Γ ⊢P 𝑥 : 𝑇
(P-Var)

Γ ⊢P 𝑝 : 𝑇 [𝑥 ≔ 𝑝]
Γ ⊢P 𝑝 : 𝜇𝑥 .𝑇

(P-𝜇-I)
Γ ⊢P 𝑝 : 𝜇𝑥 .𝑇

Γ ⊢P 𝑝 : 𝑇 [𝑥 ≔ 𝑝]
(P-𝜇-E)

Γ ⊢P 𝑝 : 𝑇1 Γ ⊢P 𝑝 : 𝑇2

Γ ⊢P 𝑝 : 𝑇1 ∧𝑇2
(P-∧-I)

Γ ⊢P 𝑝 : 𝑇 Γ ⊢ 𝑇 <: 𝑈

Γ ⊢P 𝑝 : 𝑈
(P-Sub)

Γ ⊢P 𝑝 : {a : 𝑇 }
Γ ⊢P 𝑝.a : 𝑇

(P-Fld-E)
Γ ⊢P 𝑝.a : 𝑇

Γ ⊢P 𝑝 : {a : 𝑇 }
(P-Fld-I)

Γ ⊢P 𝑝 : 𝑞.type Γ ⊢P 𝑞 : 𝑇

Γ ⊢P 𝑝 : 𝑇
(P-Sngl-Trans)

Γ ⊢P 𝑝 : 𝑞.type Γ ⊢P 𝑞.a : 𝑇

Γ ⊢P 𝑝.a : 𝑞.a.type
(P-Sngl-E)

Definition typing Γ | 𝑥 : 𝑉 ⊢ {𝑑} : 𝑇

Γ, 𝑥 : 𝑉 ⊢ 𝑣 : 𝑇 tight 𝑇
Γ | 𝑥 : 𝑉 ⊢ {a = 𝑣} : {a : 𝑇 }

(D-Val)
Γ, 𝑥 : 𝑉 | 𝑧 : 𝑥 .a.type ∧𝑇 ⊢ {𝑑} : 𝑇 tight 𝑇

Γ | 𝑥 : 𝑉 ⊢ {a = 𝜈𝑧. {𝑑}} : {a : 𝜇𝑧.𝑇 }
(D-Val-New)

Γ | 𝑥 : 𝑉 ⊢ {A = 𝑇 } : {A >:𝑇 <:𝑇 }
(D-Typ)

Γ, 𝑥 : 𝑉 ⊢P 𝑝 : 𝑇

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑝.type}
(D-Path-Sngl)

Γ | 𝑥 : 𝑉 ⊢ {𝑑1} : 𝑇1 Γ | 𝑥 : 𝑉 ⊢ {𝑑2} : 𝑇2 dom𝑑1, dom(𝑑2) disjoint
Γ | 𝑥 : 𝑉 ⊢ {𝑑1;𝑑2} : 𝑇1 ∧𝑇2

(D-And)

Tight (or precise) types tight 𝑇

tight 𝑇 =


𝐿 = 𝑈 if 𝑇 = {A >: 𝐿 <:𝑈 }
tight 𝑈 if 𝑇 = 𝜇 (𝑥 : 𝑈 ) or 𝑇 = {a : 𝑈 }
tight 𝑈 and tight 𝑉 if 𝑇 = 𝑈 ∧𝑉
True otherwise

Fig. 4. pDOT rules for term typing, path typing, and definition typing. Path typing is a special case of term
typing in (p)DOT, but not in our presentation or in gDOT.

in rules (D-Val) and (D-Val-New) to type value definitions. These rules require constructed objects

to have precise self types by using Rapoport and Lhoták’s predicate tight 𝑇 [2019].

Paths 𝑝 are the only terms that can appear in types, through selections 𝑝.A and singleton types

𝑝.type. Paths 𝑝 that appear in types always start with a variable, i.e., they do not contain values.

Paths are typed using the path typing judgment Γ ⊢P 𝑝 : 𝑇 , which, unlike term typing, also

guarantees that 𝑝 terminates. Intuitively, a type selection 𝑝.A refers to the type definition for

member A in the result of 𝑝 . However, rules (Sel-<:) and (<:-Sel) relate 𝑝.A only to the upper and
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Top, bottom, and intersection types Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ 𝑇 <: ⊤ (<:-⊤) Γ ⊢ 𝑇1 ∧𝑇2 <: 𝑇1 (∧1-<:) Γ ⊢ 𝑇1 ∧𝑇2 <: 𝑇2 (∧2-<:) Γ ⊢ ⊥ <: 𝑇 (⊥-<:)

Γ ⊢ 𝑇 <: 𝑈1 Γ ⊢ 𝑇 <: 𝑈2

Γ ⊢ 𝑇 <: 𝑈1 ∧𝑈2

(<:-∧) Γ ⊢ 𝑇 <: 𝑇 (<:-Refl)
Γ ⊢ 𝑆 <: 𝑇 Γ ⊢ 𝑇 <: 𝑈

Γ ⊢ 𝑆 <: 𝑈
(<:-Trans)

Type members
Γ ⊢P 𝑝 : {A >: 𝐿 <:𝑈 }

Γ ⊢ 𝐿 <: 𝑝.A
(<:-Sel)

Γ ⊢P 𝑝 : {A >: 𝐿 <:𝑈 }
Γ ⊢ 𝑝.A <: 𝑈

(Sel-<:)

Co/contra-variant subtyping
Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ {a : 𝑇1} <: {a : 𝑇2}
(Fld-<:-Fld)

Γ ⊢ 𝐿2 <: 𝐿1 Γ ⊢ 𝑈1 <: 𝑈2

Γ ⊢ {A >: 𝐿1 <:𝑈1} <: {A >: 𝐿2 <:𝑈2}
(Typ-<:-Typ)

Γ ⊢ 𝑆2 <: 𝑆1 Γ, 𝑥 : 𝑇2 ⊢ 𝑇1 <: 𝑇2

Γ ⊢ ∀𝑥 : 𝑆1 .𝑇1 <: ∀𝑥 : 𝑆2 .𝑇2
(∀-<:-∀)

Singleton types
Γ ⊢P 𝑝 : 𝑞.type 𝑇1 �

∗
𝑝≔𝑞 𝑇2

Γ ⊢ 𝑇1 <: 𝑇2
(Sngl𝑝𝑞 -<:)

Γ ⊢P 𝑝 : 𝑞.type 𝑇1 �
∗
𝑝≔𝑞 𝑇2

Γ ⊢ 𝑇2 <: 𝑇1
(Sngl𝑞𝑝 -<:)

Fig. 5. pDOT rules for subtyping.

lower bound of A in the type of 𝑝 , not the definition of A: this ensures that abstract types are indeed
abstract. Finally, (Typ-<:-Typ) enables making a type member of 𝑝 (more) abstract, by upcasting 𝑝 .

Intuitively, the singleton type 𝑝.type contains a value 𝑣 if path 𝑝 is statically guaranteed to

evaluate to 𝑣 . We say that two paths 𝑝 and 𝑞 alias each other when Γ ⊢P 𝑝 : 𝑞.type is derivable,

which guarantees that both 𝑝 and 𝑞 evaluate to the same value. Aliases can be created among

others using rule (D-Val-New), which combines (D-Val) and (T-{}-I), but also records that 𝑧 and

𝑥 .a are aliases. Aliasing can be hidden through (P-Sngl-Trans): if 𝑥 is initialized with 𝑝 , but 𝑥 ’s

type is not a subtype of 𝑝.type, then 𝑥 will not alias 𝑝 . The rules (Sngl𝑝𝑞-<:) and (Sngl𝑞𝑝 -<:) use

the relation 𝑇 �∗𝑝≔𝑞 𝑈 , which is the reflexive transitive closure of Rapoport and Lhoták’s path

replacement [2019]. Informally, 𝑇 �∗𝑝≔𝑞 𝑈 means that zero or more occurrences of 𝑝 in 𝑇 are

replaced by 𝑞 in𝑈 , with the rest of 𝑇 , including any other occurrence of 𝑝 , left unchanged.

3 UNSOUNDNESS OF DOTWITH IMPRECISE SELF TYPES
As discussed in Sec. 1.1, imprecise self types are useful to support certain forms of information

hiding, but current versions of DOT do not support them soundly. In this section we indicate why

the restriction to tight (or precise) types (see Fig. 4) excludes the example in Fig. 2 from Sec. 1.1, but

is necessary for soundness of current versions of DOT.

To construct a typing derivation for the example in Fig. 2 we initially give type members such as

{TypeRef = (pcore.types.Type ∧ {symb : pcore.symbols.Symbol})} a concrete type, i.e., we give
them exact lower and upper bounds. This is needed to type constructors such as newTypeRef, as
their bodies need to know the concrete types of the objects they construct. The bodies of types
and symbols are then typed using (T-{}-I). Since these bodies still contain concrete types, we upcast

them using subsumption (T-Sub) to types𝑇 and 𝑆 such that type members like TypeRef are abstract,
i.e., given the correct lower and upper bound. Finally, we need (D-Val) to type {types : 𝑇 } and
{symbols : 𝑆}, but this is impossible — since𝑇 and 𝑆 contain abstract types, they violate the tight 𝑇
side-condition on (D-Val), which prevents typing this example.
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Unfortunately, as shown by Rapoport and Lhoták [2019], removing this side-condition is unsound,

similarly to other desirable generalizations of DOT rules. We discuss two such generalizations:

• Seemingly, to type our example, one could type {types : 𝑇 ′} and {symbols : 𝑆 ′} with tight

types 𝑆 ′ and 𝑇 ′
using (D-Val), and upcast them via subsumption to non-tight types 𝑆 and 𝑇 .

But this attempt fails, because DOT lacks the following subsumption rule for term members:

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇1} Γ, 𝑥 : 𝑉 ⊢ 𝑇1 <: 𝑇2
Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇2}

(D-Path-Sub-Bad)

Amin [2016, Sec. 3.5.5] showed that such a rule is unsound.

• The rule (D-Typ) restricts type members {A = 𝑇 } to have tight types {A >:𝑇 <:𝑇 }. One may

wonder if this rule could be generalized to non-tight bounds as follows:

Γ, 𝑥 : 𝑉 ⊢ 𝐿 <: 𝑇 Γ, 𝑥 : 𝑉 ⊢ 𝑇 <: 𝑈

Γ | 𝑥 : 𝑉 ⊢ {A = 𝑇 } : {A >: 𝐿 <:𝑈 }
(D-Typ-Abs-Bad)

Amin [2016, Sec. 3.5.5] showed that such a rule is unsound as well.

All these rules break type soundness similarly. A closed value with type {A>:𝐿 <:𝑈 } is a witness
that 𝐿 <: 𝑈 , and allows upcasting 𝐿 to 𝑈 . Closed values with bad bounds [Amin 2016], such as

>: ⊤ <: ⊥, enable casting values across arbitrary types, and thus break type soundness. All of the

aforementioned rules enable constructing closed values with type 𝜇_. {A>:⊤<:⊥}, from which one

can deduce the inconsistent subtyping ⊤ <: ⊥. For example, using unsound rule (D-Typ-Abs-Bad)

displayed above, one can show that (for any type 𝑆) value 𝜈𝑥 . {A = 𝑆} has said type:

𝑥 : {A >: ⊤ <: ⊥} ⊢ ⊤ <: 𝑆 <: ⊥
(D-Typ-Abs-Bad)

𝜀 | 𝑥 : {A >: ⊤ <: ⊥} ⊢ {A = 𝑆} : {A >: ⊤ <: ⊥}
(T-{}-I)

𝜀 ⊢ 𝜈𝑥 . {A = 𝑆} : 𝜇𝑥 . {A >: ⊤ <: ⊥}
The premise of (T-{}-I) extends the context with an unsound subtyping witness, the self variable 𝑥 ,

which enables proving ⊤ <: ⊥ and (unsoundly) that type definition {A = 𝑆} is between its bounds.

To rule out such unsound circular derivations, all previous calculi in the DOT family use the

same solution— they restrict object creation to tight (i.e., precise) self types, so that rule (T-{}-I)

becomes sound. If𝑇 is a precise self type, it can only carry proofs for subtypings of the form𝑈 <: 𝑈 ,

which are always true. To enforce this restriction, DOT puts the tight 𝑇 side-condition on (D-Val),

and eschews rules like (D-Path-Sub-Bad) and (D-Typ-Abs-Bad). While this ensures soundness, it

rules out imprecise self types, and therefore useful forms of data abstraction.

Our gDOT calculus takes a different route— it imposes a guardedness condition on the self

variable to ensure it is not used in circular way. Hence, we can soundly support imprecise self types,

i.e., allow variants of rules like (D-Val) without the tight 𝑇 side-condition, and (D-Path-Sub-Bad)

and (D-Typ-Abs-Bad). To realize such a guardedness condition, we give the self variable a different

and weaker type. Since DOT provides no suitable candidate, we will extend the language of DOT

types. These changes enable us to type examples including the one in Fig. 2 from Sec. 1.1.

Does this make Scala unsound? One might wonder if the aforementioned counterexamples to

type soundness affect Scala’s support for imprecise self types; but we are unable to encode the

counterexamples in Scala. To the best of our understanding, that is because counterexamples, like

𝜈𝑥 . {A = 𝑆} from this section, rely on transitivity of subtyping to deduce 𝑥 : {A >: 𝐿 <:𝑈 } ⊢ 𝐿 <: 𝑈

from 𝑥 : {A>:𝐿<:𝑈 } ⊢ 𝐿 <: 𝑥 .A <: 𝑈 . This use of transitivity is not admissible the Scala compiler’s

(i.e., Dotty’s) algorithmic type system [Hu and Lhoták 2020; Nieto 2017]. Nevertheless, it is not

at all clear that all such counterexamples are forbidden by Dotty, nor how to prove soundness of

imprecise self types by relying on the absence of transitivity.
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4 THE GDOT TYPE SYSTEM
The typing rules and subtyping rules of gDOT are displayed in Fig. 6 and 7, and discussed in this

section. To support imprecise self types while avoiding the soundness problems from Sec. 3, our

guarded DOT (gDOT) calculus imposes a guardedness condition that ensures that the self variable 𝑥

in recursive objects 𝜈 (𝑥 : 𝑇 ). {𝑑} is not used in a cyclic way. We enforce this condition by extending

DOT with a “later” type operator (⊲), so that 𝑥 can be given type ⊲𝑇 instead of 𝑇 . The type ⊲𝑇 is

weaker than 𝑇 , in the sense that it cannot be used directly in the construction of the object’s body

𝑑 . Instead, one needs to take a program step to eliminate the later, i.e., to turn ⊲𝑇 into 𝑇 . Some of

the most prominent places where the later type (⊲) appears in gDOT are:

Γ | 𝑥 : ⊲𝑇 ⊢ {𝑑} : 𝑇
Γ ⊢ 𝜈𝑥 . {𝑑} : 𝜇𝑥 .𝑇

Γ, 𝑥 : 𝑉 , 𝑧 : 𝑆 ⊢ 𝑡 : 𝑇 𝑧 ∉ FV(𝑆)
Γ | 𝑥 : ⊲𝑉 ⊢ {a = 𝜆𝑧. 𝑡} : {a : ∀𝑧 : 𝑆.𝑇 }

Γ ⊢ 𝑒 : ⊲𝑇
Γ ⊢ coerce 𝑒 : 𝑇

The first rule is gDOT version of the introduction rule for recursive objects (T-{}-I), which puts

𝑥 : ⊲𝑉 instead of 𝑥 : 𝑉 in the context. The later can be eliminated using the other rules— either by

constructing a function, or by taking an explicit step using gDOT’s coerce construct.
Our later type operator (⊲) reflects into gDOT Iris’s later modality (⊲) (see Sec. 5.3), which can be

eliminated by taking a program step. We also rely on the principle of Löb induction, which allows

proving proposition 𝑃 under induction hypothesis ⊲ 𝑃 , and enables proving (T-{}-I) sound.

By ensuring that self variables are only used in a guarded way, we can remove the tight 𝑇 side-

condition of rules (D-Val) and (D-Val-New), generalize (D-Path-Sngl) to (D-Path), and add sound

versions of (D-Typ-Abs-Bad) and (D-Path-Sub-Bad) to gDOT. Such rules become sound because

rule (T-{}-I) only types the self variable as ⊲𝑉 , and thereby prevents unsound circular derivations.

Notably, the counterexamples from Sec. 3 are ruled out because it is impossible to deduce ⊤ <: ⊥
from 𝑥 : ⊲ {A >: ⊤ <: ⊥}, just like one cannot deduce False from ⊲ False in step-indexed logics.

gDOT’s (D-Val-New) enables typing the example in Fig. 2 without changes: imprecise self types

enable mutual information hiding between the definitions of TypeRef and Symbol.
This section continues as follows. To deal with laters in types of paths, we generalize the

subtyping and path typing judgments to their delayed variants (Sec. 4.1). We explain the guardedness

restrictions gDOT imposes on type selectors (Sec. 4.2), and how laters can be eliminated through

function introduction (Sec. 4.3). We show that in addition to aforementioned new rules, gDOT also

supports a number of other rules that prior versions of DOT did not support (Sec. 4.4).

4.1 Delayed Path Judgments
Laters can be eliminated from terms using rule (T-Coerce), which says that Γ ⊢ 𝑒 : ⊲𝑇 implies

Γ ⊢ coerce 𝑒 : 𝑇 . Since paths are required to terminate, they do not have a corresponding coerce
construct— as we will explain in Sec. 5.2.3, the concept of eliminating a later is incompatible with

termination. Instead, we extend path typing Γ ⊢𝑖P 𝑝 : 𝑇 with a so called delay 𝑖 ∈ N that allows

to accumulate laters. This idea becomes evident by rule (P-Later), which says that Γ ⊢𝑖P 𝑝 : ⊲𝑇

implies Γ ⊢𝑖+1P 𝑝 : 𝑇 . In Sec. 4.2 we see how laters arise in paths, and why this rule is useful.

Similar to path typing, we also equip subtyping Γ ⊢𝑖 𝑆 <: 𝑇 with a delay 𝑖 ∈ N. Most of the delayed

subtyping rules are generalizations of pDOT rules to arbitrary delays, except for a guardedness

restriction in (Sel-<:), which we discuss in Sec. 4.2. As such, delayed subtyping Γ ⊢𝑖 𝑆 <: 𝑇 with

𝑖 = 0 corresponds to ordinary subtyping Γ ⊢ 𝑆 <: 𝑇 . In addition, the rules (Later-<:), (<:-Later)

make it possible to push laters into the delay, and (<:-Add-Later) ensures that ⊲𝑇 is a supertype

of 𝑇 . While laters commute with intersection, union, and recursive types (as witnessed by the

rules for type equality), pushing a later into the delay is needed in case rules like (Fld-<:-Fld),

(Typ-<:-Typ) or (∀-<:-∀) are blocked by a later.
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Term typing (rules (T-{}-E), (T-∀-E) are unchanged and elided) Γ ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑒 : 𝑇1 Γ ⊢0 𝑇1 <: 𝑇2

Γ ⊢ 𝑒 : 𝑇2
(T-Sub)

Γ ⊢ 𝑒 : ⊲𝑇
Γ ⊢ coerce 𝑒 : 𝑇

(T-Coerce)

Γ ⊢0P 𝑝 : 𝑇

Γ ⊢ 𝑝 : 𝑇
(T-Path)

Γ | 𝑥 : ⊲ 𝑇 ⊢ {𝑑} : 𝑇
Γ ⊢ 𝜈𝑥 . {𝑑} : 𝜇𝑥 .𝑇

(T-{}-I)

Γ1 ≫⊲ Γ2 Γ2, 𝑥 : 𝑆 ⊢ 𝑒 : 𝑇 𝑥 ∉ FV(𝑆)
Γ1 ⊢ 𝜆𝑥 . 𝑒 : ∀𝑥 : 𝑆.𝑇

(T-∀-I-Strong)
Γ ⊢ 𝑒 : ∀𝑧 : 𝑆.𝑇 Γ ⊢0P 𝑝 : 𝑆

Γ ⊢ 𝑒 𝑝 : 𝑇 [𝑧 ≔ 𝑝]
(T-∀-E𝑝 )

Path typing (rule (P-∧-I) is derivable) Γ ⊢ 𝑖P 𝑝 : 𝑇

𝑥 : 𝑇 ∈ Γ

Γ ⊢0P 𝑥 : 𝑇
(P-Var)

Γ ⊢𝑖P 𝑝 : 𝑇 [𝑧 ≔ 𝑝]
Γ ⊢𝑖P 𝑝 : 𝜇𝑧.𝑇

(P-𝜇-I)
Γ ⊢𝑖P 𝑝 : 𝜇𝑧.𝑇

Γ ⊢𝑖P 𝑝 : 𝑇 [𝑧 ≔ 𝑝]
(P-𝜇-E)

Γ ⊢𝑖P 𝑝 : 𝑇 Γ ⊢𝑖 𝑇 <: 𝑈

Γ ⊢𝑖P 𝑝 : 𝑈
(P-Sub)

Γ ⊢𝑖P 𝑝 : {a : 𝑇 }
Γ ⊢𝑖P 𝑝.a : 𝑇

(P-Fld-E)
Γ ⊢𝑖P 𝑝.a : 𝑇

Γ ⊢𝑖P 𝑝 : {a : 𝑇 }
(P-Fld-I)

Γ ⊢𝑖P 𝑝 : 𝑞.type Γ ⊢𝑖P 𝑞 : 𝑇

Γ ⊢𝑖P 𝑝 : 𝑇
(P-Sngl-Trans)

Γ ⊢𝑖P 𝑝 : 𝑞.type Γ ⊢𝑖P 𝑞.a : 𝑇

Γ ⊢𝑖P 𝑝.a : 𝑞.a.type
(P-Sngl-E)

Γ ⊢𝑖P 𝑝 : 𝑇

Γ ⊢𝑖P 𝑝 : 𝑝.type
(P-Sngl-Refl)

Γ ⊢𝑖P 𝑝 : 𝑞.type

Γ ⊢𝑖P 𝑞 : ⊤
(P-Sngl-Inv)

Γ ⊢𝑖P 𝑝 : ⊲𝑇

Γ ⊢𝑖+1P 𝑝 : 𝑇
(P-Later)

Definition typing (rule (D-Path-Sngl) is derivable, (D-And) unchanged and elided) Γ | 𝑥 : 𝑉 ⊢ {𝑑} : 𝑇

Γ, 𝑥 : 𝑉 ⊢ 𝑣 : 𝑇
Γ | 𝑥 : 𝑉 ⊢ {a = 𝑣} : {a : 𝑇 }

(D-Val)
Γ, 𝑥 : 𝑉 | 𝑧 : 𝑥 .a.type ∧ ⊲ 𝑇 ⊢ {𝑑} : 𝑇
Γ | 𝑥 : 𝑉 ⊢ {a = 𝜈𝑧. {𝑑}} : {a : 𝜇𝑧.𝑇 }

(D-Val-New)

Γ, 𝑥 : 𝑉 ⊢0 ⊲ 𝐿 <: ⊲𝑇 Γ, 𝑥 : 𝑉 ⊢0 ⊲𝑇 <: ⊲𝑈

Γ | 𝑥 : 𝑉 ⊢ {A = 𝑇 } : {A >: 𝐿 <:𝑈 }
(D-Typ-Abs)

Γ, 𝑥 : 𝑉 ⊢0P 𝑝 : 𝑇

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇 }
(D-Path)

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇1} Γ, 𝑥 : 𝑉 ⊢0 𝑇1 <: 𝑇2

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇2}
(D-Path-Sub)

Notable derivable typing rules

Γ ⊢ 𝑒 : 𝑝.A Γ ⊢𝑖P 𝑝 : {A >: 𝐿 <:𝑈 }
Γ ⊢ coerce 𝑖+1 𝑒 : 𝑈

(T-Sel-Unfold)
Γ, 𝑥 : 𝑆 ⊢ 𝑒 : 𝑇 𝑥 ∉ FV(𝑆)

Γ ⊢ 𝜆𝑥. 𝑒 : ∀𝑥 : 𝑆.𝑇
(T-∀-I)

Γ ⊢𝑖P 𝑝 : 𝑇1 Γ ⊢𝑖P 𝑝 : 𝑇2

Γ ⊢𝑖P 𝑝 : 𝑇1 ∧𝑇2
(P-∧-I)

Γ ⊢𝑖P 𝑝 : 𝑞.type

Γ ⊢𝑖P 𝑞 : 𝑝.type
(P-Sngl-Sym)

Γ, 𝑥 : 𝑉 ⊢P 𝑝 : 𝑇

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑝.type}
(D-Path-Sngl)

Γ, 𝑥 : 𝑉 , 𝑧 : 𝑆 ⊢ 𝑡 : 𝑇 𝑧 ∉ FV(𝑆)
Γ | 𝑥 : ⊲ 𝑉 ⊢ {a = 𝜆𝑧. 𝑡} : {a : ∀𝑧 : 𝑆.𝑇 }

(D-∀)

Fig. 6. gDOT rules for term typing, path typing, and definition typing.
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Type equality (equivalence and congruence rules are omitted) 𝑇1 ≡ 𝑇2
⊲ (𝑇1 ∧𝑇2) ≡ ⊲𝑇1 ∧ ⊲𝑇2 ⊲ (𝑇1 ∨𝑇2) ≡ ⊲𝑇1 ∨ ⊲𝑇2 ⊲ (𝜇𝑥 .𝑇 ) ≡ 𝜇𝑥 . ⊲𝑇

Bounded, distributive subtyping lattice Γ ⊢ 𝑖 𝑇1 <: 𝑇2

Γ ⊢𝑖 𝑇 <: ⊤ (<:-⊤) Γ ⊢𝑖 𝑇1 ∧𝑇2 <: 𝑇1 (∧1-<:) Γ ⊢𝑖 𝑇1 ∧𝑇2 <: 𝑇2 (∧2-<:) Γ ⊢𝑖 ⊥ <: 𝑇 (⊥-<:)

Γ ⊢𝑖 𝑇 <: 𝑈1 Γ ⊢𝑖 𝑇 <: 𝑈2

Γ ⊢𝑖 𝑇 <: 𝑈1 ∧𝑈2

(<:-∧) Γ ⊢𝑖 𝑇 <: 𝑇 (<:-Refl)
Γ ⊢𝑖 𝑆 <: 𝑇 Γ ⊢𝑖 𝑇 <: 𝑈

Γ ⊢𝑖 𝑆 <: 𝑈
(<:-Trans)

Γ ⊢𝑖 𝑇1 <: 𝑇1 ∨𝑇2 (<:-∨1) Γ ⊢𝑖 𝑇2 <: 𝑇1 ∨𝑇2 (<:-∨2)
Γ ⊢𝑖 𝑇1 <: 𝑈 Γ ⊢𝑖 𝑇2 <: 𝑈

Γ ⊢𝑖 𝑇1 ∨𝑇2 <: 𝑈
(∨-<:)

Γ ⊢𝑖 (𝑆 ∨𝑇 ) ∧𝑈 <: (𝑆 ∧𝑈 ) ∨ (𝑇 ∧𝑈 ) (Distr-∧-∨-<:)
𝑇1 ≡ 𝑇2

Γ ⊢𝑖 𝑇1 <: 𝑇2
(<:-Eq)

Later types

Γ ⊢𝑖+1 𝑇 <: 𝑈

Γ ⊢𝑖 ⊲𝑇 <: ⊲𝑈
(Later-<:)

Γ ⊢𝑖 ⊲𝑇 <: ⊲𝑈

Γ ⊢𝑖+1 𝑇 <: 𝑈
(<:-Later) Γ ⊢𝑖 𝑇 <: ⊲𝑇 (<:-Add-Later)

Type members
Γ ⊢𝑖P 𝑝 : {A >: 𝐿 <:𝑈 }

Γ ⊢𝑖 ⊲ 𝐿 <: 𝑝.A
(<:-Sel)

Γ ⊢𝑖P 𝑝 : {A >: 𝐿 <:𝑈 }
Γ ⊢𝑖 𝑝.A <: ⊲ 𝑈

(Sel-<:)

Recursive types

Γ, 𝑥 : ⊲𝑖 𝑇1 ⊢𝑖 𝑇1 <: 𝑇2

Γ ⊢𝑖 𝜇𝑥 .𝑇1 <: 𝜇𝑥 .𝑇2
(𝜇-<:-𝜇)

𝑥 ∉ 𝑇

Γ ⊢𝑖 𝜇𝑥 .𝑇 <: 𝑇
(𝜇-<:)

𝑥 ∉ 𝑇

Γ ⊢𝑖 𝑇 <: 𝜇𝑥 .𝑇
(<:-𝜇)

Co/contra-variant subtyping
Γ ⊢𝑖 𝑇1 <: 𝑇2

Γ ⊢𝑖 {a : 𝑇1} <: {a : 𝑇2}
(Fld-<:-Fld)

Γ ⊢𝑖 ⊲ 𝐿2 <: ⊲ 𝐿1 Γ ⊢𝑖 ⊲𝑈1 <: ⊲𝑈2

Γ ⊢𝑖 {A >: 𝐿1 <:𝑈1} <: {A >: 𝐿2 <:𝑈2}
(Typ-<:-Typ)

Γ ⊢𝑖 ⊲ 𝑆2 <: ⊲ 𝑆1 Γ, 𝑥 : ⊲𝑖+1𝑇2 ⊢𝑖 ⊲𝑇1 <: ⊲𝑇2

Γ ⊢𝑖 ∀𝑥 : 𝑆1 .𝑇1 <: ∀𝑥 : 𝑆2 .𝑇2
(∀-<:-∀)

Singleton types (rule (Sngl𝑞𝑝 -<:) is derivable and thus elided)

Γ ⊢𝑖P 𝑝 : 𝑞.type 𝑇1 �
∗
𝑝≔𝑞 𝑇2

Γ ⊢𝑖 𝑇1 <: 𝑇2
(Sngl𝑝𝑞 -<:)

Γ ⊢𝑖P 𝑝 : 𝑇 Γ ⊢𝑖 𝑝.type <: 𝑞.type

Γ ⊢𝑖 𝑞.type <: 𝑝.type
(Sngl-<:-Sym)

Γ ⊢𝑖P 𝑝 : 𝑇

Γ ⊢𝑖 𝑝.type <: 𝑇
(Sngl-<:-Self)

Notable derivable subtyping rules

Γ, 𝑥 : ⊲𝑖 𝑇1 ⊢𝑖 𝑇1 <: 𝑇2

Γ ⊢𝑖 𝜇𝑥 .𝑇1 <: 𝑇2
(Bind-1)

Γ, 𝑥 : ⊲𝑖 𝑇1 ⊢𝑖 𝑇1 <: 𝑇2

Γ ⊢𝑖 𝑇1 <: 𝜇𝑥 .𝑇2
(Bind-2)

Fig. 7. gDOT rules for type equality and subtyping.
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4.2 Type Selections
The rules (<:-Sel) and (Sel-<:) for selectors derive Γ ⊢𝑖 ⊲ 𝐿 <: 𝑝.A and Γ ⊢𝑖 𝑝.A <: ⊲𝑈 from

Γ ⊢𝑖P 𝑝 : {A >: 𝐿 <: 𝑈 }. These rules include a guardedness restriction in the form of a later, as

imposed by our semantic model. Intuitively, the model imposes this restriction because semantic

types occur under a later operator (▶) in the recursive domain equation (Sec. 1.3).

The presence of the later makes rule (Sel-<:) of gDOT weaker than the corresponding rule

in pDOT, but luckily we we can adapt programs by inserting laters. The way to eliminate them

depends on whether we consider the path or term judgment. In path typing, laters are eliminated

by increasing the path-typing delay, e.g.:

Γ ⊢𝑖P 𝑝 : 𝑦.B Γ ⊢𝑖P 𝑦 : {B >: ⊥ <: {A >: 𝐿 <:𝑈 }}
(Sel-<:,P-Sub)

Γ ⊢𝑖P 𝑝 : ⊲ {A >: 𝐿 <:𝑈 }
(P-Later)

Γ ⊢𝑖+1P 𝑝 : {A >: 𝐿 <:𝑈 }
Delayed path typings can be used as premises of subtyping judgments for path selections with

rules (<:-Sel,Sel-<:), which in turn can be used for subsumption of both paths and terms with rules

(P-Sub,T-Sub), resulting in the accumulation of delays. One can also defer eliminating laters, and

use rule (T-Path) to obtain a term typing judgment whose type involves laters.

In term typing, laters are eliminated using coercions, thanks to rule (T-Coerce) and derived rule

(T-Sel-Unfold). Continuing our derivation above, and inlining the derivation of (T-Sel-Unfold),

we have the following derivation:

Γ ⊢ 𝑒 : 𝑝.A

(<:-Add-Later)

Γ ⊢0 𝑝.A <: ⊲𝑖+1 𝑝.A

Γ ⊢𝑖+1P 𝑝 : {A >: 𝐿 <:𝑈 }
(Sel-<:)

Γ ⊢𝑖+1 𝑝.A <: ⊲𝑈
(Later-<:)

Γ ⊢0 ⊲𝑖+1 𝑝.A <: ⊲𝑖+2𝑈
(<:-Trans)

Γ ⊢0 𝑝.A <: ⊲𝑖+2𝑈
(T-Sub, T-Coerce)

Γ ⊢ coerce𝑖+2 𝑒 : 𝑈
We believe all pDOT programs can be adapted to gDOT in this fashion, as discussed in Sec. 9.

Dual to the rules (<:-Sel) and (Sel-<:), which only give the bounds 𝐿 and𝑈 of 𝑝 : {A >: 𝐿 <:𝑈 }
under a later, the rule (D-Typ-Abs) for introduction of type members {A = 𝑇 } : {A >: 𝐿 <:𝑈 } only
requires subtyping of 𝑇 with respect to bounds 𝐿 and𝑈 under a later.

4.3 Function Introduction
The rule (T-∀-I-Strong) enables eliminating a later from each variable in the context when in-

troducing a function. At the core of this rule we find the judgment Γ1 ≫⊲ Γ2, which is defined as

the element-wise reflexive congruence closure under ⊲, ∧ and ∨ of ⊲𝑇 ≫⊲ 𝑇 . While rule (D-∀) is
a common special case of (T-∀-I-Strong), stripping a later from the typing contexts created by

(D-Val-New) requires the additional generality of (T-∀-I-Strong).

4.4 Other Typing Rules
Distributivity. Rule (Distr-∧-∨-<:), together with derived rules, e.g., the dual of (Distr-∧-∨-<:),

make gDOT’s subtyping lattice distributive, helping to deal with the interaction of intersection and

union types. This rule revealed itself necessary in Sec. 6.3. Other typing rules, which help distribute

certain type constructors over each other, are left to our appendix [Giarrusso et al. 2020].

Recursive Types. gDOT supports subtyping for recursive types [Rompf and Amin 2016], via rule

(𝜇-<:-𝜇) (cf. Rompf and Amin’s rule (BindX)), and allows one to drop unused 𝜇 binders via rules

(𝜇-<:) and (<:-𝜇). The latter rules enable one to derive Rompf and Amin’s rule (Bind1) and their
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conjectured rule (Bind2). These rules are absent from WadlerFest DOT and pDOT, requiring the

insertion of redundant let bindings in some programs.

Singleton Types. gDOT has various rules on path aliasing that are supported by Scala compilers

but not derivable (to the best of our knowledge) in pDOT:

• Aliasing is reflexive, i.e., any well-typed path aliases itself (P-Sngl-Refl),

• Aliasing is symmetric (Sngl-<:-Sym).

• If 𝑝 aliases 𝑞, i.e., Γ ⊢𝑖P 𝑝 : 𝑞.type, then 𝑞 is well-typed (P-Sngl-Inv).

• Singleton type 𝑝.type is a subtype of any type 𝑇 of 𝑝 (Sngl-<:-Self).

Rules (P-Sngl-Refl) and (Sngl-<:-Self) enable deriving pDOT’s primitive rule (P-∧-I). Using all
four rules we derive (P-Sngl-Sym), and in turn pDOT’s primitive rule (Sngl𝑞𝑝 -<:).

5 SEMANTIC SOUNDNESS
We define a semantic model using the technique of logical relations to prove type soundness of

gDOT—well-typed terms do not go wrong, i.e., they are safe in the following sense:

Definition 5.1 (Safety). A term 𝑒 is safe if, for all 𝑒 ′ such that 𝑒 →∗
t 𝑒

′, term 𝑒 ′ is not stuck, that
is, either 𝑒 ′ is a value or 𝑒 ′ can reduce.

Theorem 5.2 (Type soundness). If 𝜀 ⊢ 𝑒 : 𝑇 , then 𝑒 is safe.

The main ingredient of a semantic soundness proof is the semantic typing judgment Γ ⊨ 𝑒 : 𝑇 ,
which expresses what programs are safe in terms of their behavior. The semantic typing judgment

is different from and more flexible than the syntactic typing judgment Γ ⊢ 𝑒 : 𝑇 , which is defined

inductively and dictates what programs are safe using a fixed set of rules. First, we can prove each

typing rule as a lemma. For example, the rule (D-Val) becomes the lemma:

Γ, 𝑥 : 𝑉 ⊨ 𝑣 : 𝑇 implies Γ | 𝑥 : 𝑉 ⊨ {a = 𝑣} : {a : 𝑇 }
Stating typing rules as lemmas on a semantic model has a tangible benefit— it enables varying

existing rules and experimenting with new rules. The semantic model will suggest necessary

restrictions or generalizations to make these rules sound. This is how we designed many of the

new typing rules of gDOT in Sec. 4.

Second, beyond proving typing lemmas, we can prove semantic typing judgments for programs

that are not syntactically well-typed, e.g., for programs that make use of unsafe casts whose

correctness relies on (g)DOT’s support for data abstraction. In Sec. 6 we give examples of proofs

for such programs, including the function typeFromTypeRefUnsafe from Sec. 1.1.

As explained in Sec. 1.3, to define the semantic typing judgment Γ ⊨ 𝑒 : 𝑇 , one needs to define a

mapping from syntactic types 𝑇 to semantic types VJ𝑇 K ∈ SemType, which express what values

are safe for a given type 𝑇 . And to do that, we must define the semantic domain of types SemType.
To model impredicative type members in (g)DOT, our SemType is defined using step-indexing as

the solution to the recursive domain equation Eq. (Domain) (ignoring paths and primitives):

SemType ≜ (Var → SemVal) → SemVal → iProp

SemVal � Var +
{
𝜆𝑥 . 𝑒

}
+ (Label fin−⇀ (▶SemType + SemVal))

This recursive domain equation could in principle be solved directly in Iris. However, we will solve

it indirectly. Instead of letting values contain semantic types, we let values contain so-called stamps.
In turn, stamps are mapped to semantic types through Iris’s machinery for saved predicates [Jung
et al. 2016]. As an additional benefit, this allows us to keep the syntax of values first-order, which

aids mechanization in Coq. In the rest of this section, we describe gDOT with stamps— called

stamped gDOT — in Sec. 5.1, the Iris logic in Sec. 5.2, and finally our semantic model in Sec. 5.3.
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⊲-Intro

𝑃 ⊢I ⊲ 𝑃

⊲-Mono

𝑃 ⊢I 𝑄
⊲ 𝑃 ⊢I ⊲𝑄

⊲-Impl

⊲(𝑃 ⇒ 𝑄) ⊢I (⊲ 𝑃 ⇒ ⊲𝑄)
Impl-⊲

(⊲ 𝑃 ⇒ ⊲𝑄) ⊢I ⊲(𝑃 ⇒ 𝑄)

Löb

(⊲ 𝑃 ⇒ 𝑃) ⊢I 𝑃

¤|⇛-mono

𝑃 ⊢I 𝑄
¤|⇛𝑃 ⊢I ¤|⇛𝑄

¤|⇛-intro

𝑃 ⊢I ¤|⇛𝑃
¤|⇛-trans

¤|⇛ ¤|⇛𝑃 ⊢I ¤|⇛𝑃
¤|⇛-frame

𝑄 ∧ ¤|⇛𝑃 ⊢I ¤|⇛(𝑄 ∧ 𝑃)

Saved-Pred-Alloc

True ⊢I ¤|⇛∃ 𝑠 . (𝑠 { 𝜑)
Saved-Pred-Agree

(𝑠 { 𝜑1) ∧ (𝑠 { 𝜑2) ⊢I ⊲(𝜑1 = 𝜑2)

Fig. 8. A selection of proof rules of the considered fragment of Iris.

5.1 Stamped gDOT
We introduce stamped gDOT, in which values refer to semantic types indirectly through stamps, as

discussed in Sec. 5. To disambiguate between unstamped gDOT (which we have used until now)

and stamped gDOT, in this section we color the syntax of unstamped gDOT in blue, while keeping

that of stamped gDOT in black (or red for emphasis). Unstamped and stamped gDOT share their

syntax except for definition bodies, which are respectively:

DefBody ∋ 𝑑 ::= 𝑝 | 𝑇 DefBody ∋ 𝑑 ::= 𝑝 | 𝜎, 𝑠
Unstamped and stamped types coincide, because types cannot contain definitions. In stamped

gDOT, stamps 𝑠 ∈ Stamp are simply identifiers, while deferred substitutions 𝜎 ∈ Subst ≜ Var
fin−⇀ Val

start as identity substitutions and accumulate substitutions applied to the surrounding value.

The operational semantics of stamped gDOT also resembles that of unstamped gDOT. While

type members do not affect the operational semantics of either gDOT version, substitutions affect

type members— either directly, in unstamped gDOT, or indirectly though the deferred substitution

𝜎 , in stamped gDOT. This becomes particularly relevant in gDOT’s semantic model (Sec. 5.3).

To relate unstamped and stamped gDOT, we define the relation 𝑒 ≈ 𝑒 ′, which expresses that an

unstamped gDOT term 𝑒 and a stamped gDOT term 𝑒 ′ are equal modulo type members. Since type

members do not affect the operational semantics, 𝑒 ≈ 𝑒 ′ implies that 𝑒 is safe if and only if 𝑒 ′ is
safe. This property is crucial to prove adequacy of semantic typing (Theorem 5.4).

5.2 The Iris Logic
The Iris framework provides a programming-language-independent step-indexed separation logic,

which we instantiate with the stamped gDOT language. Since (stamped) gDOT is a pure language,

we do not use Iris’s separating conjunction (∗) and magic wand (−∗), but use ordinary conjunction

(∧) and implication (⇒) everywhere.
6
Concretely, we use the following fragment of Iris:

𝜏 ::= 0 | 1 | iProp | ▶𝜏 | 𝜏 + 𝜏 | 𝜏 × 𝜏 | 𝜏 → 𝜏 | Term | Val | . . .
𝑡, 𝑢, 𝑃,𝑄, 𝜑 ::= 𝑥 | 𝜆𝑥 : 𝜏 . 𝑡 | 𝑡 (𝑢) | False | True | 𝑡 =𝜏 𝑢 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄

| ∃ 𝑥 : 𝜏 . 𝑃 | ∀𝑥 : 𝜏 . 𝑃 | ⊲ 𝑃 | 𝜇 𝑥 : 𝜏 . 𝑡 | 𝑠 { 𝜑 | ¤|⇛𝑃 | . . .
Since Iris is a higher-order logic, its grammar includes the simply-typed lambda-calculus with a

number of primitive types and terms operating on these types. Most important is the type iProp of

6
By restricting Iris’s ghost state mechanism to saved predicates, all Iris propositions we consider are persistent. Hence, no

persistence modality is needed, and separating conjunction/magic wand and ordinary conjunction/implication coincide.
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Iris propositions, and the types for all syntactical categories of gDOT (e.g., Term and Val). The Iris
typing judgment is mostly standard and can be derived from the use of meta variables—𝜏 ranges

over Iris types, 𝑃 and 𝑄 range over Iris propositions, and 𝑡 and 𝑢 range over Iris terms of any type.

The fragment of Iris we consider includes:

• The higher-order and impredicative quantifiers ∃ 𝑥 : 𝜏 . 𝑃 and ∀𝑥 : 𝜏 . 𝑃 , which allow us to

quantify over semantic types (i.e., Iris predicates) in our semantic model.

• The later modality ⊲ for step-indexing and the guarded fixpoint operator 𝜇 𝑥 : 𝜏 . 𝑡 (Sec. 5.2.1).

• The connective for saved predicates 𝑠 { 𝜑 and the update modality ¤|⇛, which are used to

assign semantic types to stamps (Sec. 5.2.4).

We write 𝑃 ⊢I 𝑄 when 𝑃 entails𝑄 in Iris. Selected Iris rules are shown in Fig. 8. Our Iris fragment

(with saved predicates, not arbitrary ghost state) enjoys the rule (Impl-⊲), which does not hold in

full Iris. We need this rule to prove (among others) the semantic typing lemmas for contravariant

subtyping rules (Typ-<:-Typ) and (∀-<:-∀).

5.2.1 Abstract Step-Indexing. The purpose of step-indexing is to stratify circular definitions using a
natural number, called the step-index. While circular definitions are indexed by an explicit step-index

in traditional step-indexed models [Ahmed 2004; Appel and McAllester 2001], Iris hides step-indices

using an abstract form of step-indexing [Appel et al. 2007; Birkedal et al. 2011], which implicitly

indexes logical propositions with a step-index. The later modality (⊲) [Nakano 2000] can then be

used to reason about step-indexing internally— ⊲ 𝑃 asserts that 𝑃 holds when the step-index is

decremented (i.e., it holds one step later). As we will see in Sec. 5.2.4, the later modality is crucial to

soundly support saved predicates. In addition, it gives rise to Löb induction (Löb), which says that

to prove 𝑃 , we can prove 𝑃 under the assumption ⊲ 𝑃 . Löb induction implicitly performs induction

on the number of steps. Moreover, the guarded fixpoint operator 𝜇 𝑥 : 𝜏 . 𝑡 can be used to construct

recursive definitions with no restrictions on the variance of the recursive occurrence 𝑥 in 𝑡 , but

requires 𝑥 to be guarded, i.e., to appear under a later.

5.2.2 Term Weakest Preconditions. Support for reasoning about programs (using weakest precon-

ditions) is not hard-wired into Iris. Instead, one can define custom reasoning principles for any

chosen programming language [Krebbers et al. 2017a]. Since gDOT is pure and deterministic, we

define a custom notion of pure weakest preconditions for stamped gDOT terms:

wp 𝑒 {𝜑} ≜
{
𝜑 (𝑒) if 𝑒 ∈ Val
∃ 𝑒 ′. (𝑒 →t 𝑒

′) ∧ ⊲wp 𝑒 ′ {𝜑} otherwise

Intuitively, wp 𝑒 {𝜑} asserts that 𝑒 is safe, and any resulting value 𝑣 of 𝑒 satisfies 𝜑 (𝑣). We write

wp 𝑒 {𝑣 . 𝑃} as shorthand for wp 𝑒 {𝜆 𝑣. 𝑃}.
Like Iris’s standard weakest precondition for stateful languages, we use Iris’s guarded fixpoint

operator 𝜇𝑥 : 𝜏 . 𝑡 . The later modality in the inductive case connects Iris’s abstract step-indexing to

the physical computation steps of the program— it introduces a later for each computation step. For

example, this is crucial for proving partial program correctness using (Löb) induction, which allows

proving 𝑃 while assuming the induction hypothesis ⊲ 𝑃 . By unfolding the weakest precondition for

one computation step, one can turn the induction hypothesis ⊲ 𝑃 into just 𝑃 using (⊲-Mono).

5.2.3 Path Weakest Preconditions. While weakest preconditions for terms ensure partial correct-

ness, weakest preconditions for paths ensure total correctness (i.e., normalization):

wpP 𝑝 {𝜑} ≜
{
𝜑 (𝑝) if 𝑝 ∈ Val
∃ 𝑣𝑞, 𝑞′. wpP 𝑞 {𝑣 . 𝑣 = 𝑣𝑞} ∧ 𝑣𝑞 .a ↘ 𝑞′ ∧ wpP 𝑞

′ {𝜑} if 𝑝 = 𝑞.a
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Intuitively,wpP 𝑝 {𝜑} asserts that 𝑝 normalizes to a value 𝑣 satisfying𝜑 (𝑣).WewritewpP 𝑝 {𝑣 . 𝑃}
as shorthand for wpP 𝑝 {𝜆 𝑣. 𝑃}.

The connective for path weakest preconditions is rather different from the version for terms— it

does not include a later modality (⊲), and it is thus formalized as a least fixpoint instead of a guarded

fixpoint. The absence of the later modality ensures that paths normalize. This is crucial because

types in DOT can depend on paths, and thus each path is required to denote a unique value. While

dropping the later modality is essential for normalization, it comes at a price. Unlike term weakest

preconditions, path weakest preconditions do not introduce a later (and thereby strip off a later

of each hypotheses) when performing a step of computation. Hence, adding a coerce construct
to paths would not be helpful, as it would not allow stripping off laters. This restriction explains

why we index the path typing judgment with a delay instead. The definition of path weakest

preconditions is inspired by the definition of total weakest preconditions in Iris. However, while

Iris’s definition is tailored to a stateful language, ours is tailored to paths, which are pure and

deterministic.

5.2.4 Saved Predicates. To represent the mapping from stamps to semantic types in our semantic

model (Sec. 5.3), we use saved predicates, which are an instance of Iris’s machinery for higher-order

ghost state [Jung et al. 2016]. The saved predicate connective 𝑠 { 𝜑 assert that stamp identifier 𝑠

points to Iris predicate 𝜑 . They enjoy the rule (Saved-Pred-Agree): if an identifier maps to two

predicates, they are equal. This equality appears under a later modality (⊲) because saved predicates

can refer to themselves, and such self-references must be guarded through a later modality (⊲) to

be sound [Jung et al. 2018b, Sec. 3.3].

Saved predicates are allocated via rule (Saved-Pred-Alloc), which allows one to obtain 𝑠 { 𝜑

for a given Iris predicate 𝜑 . The allocation rule involves Iris’s basic update modality ¤|⇛𝑃 , a strong
monad that is used to modify Iris’s ghost state. Readers that are unfamiliar with Iris can gloss over

this modality.

In our semantic model, we instantiate Iris’s generic saved predicate construction with semantic

types SemType, i.e., predicates over stamped gDOT environments and stamped gDOT values:

SemType ≜ (Var → Val) → Val → iProp

To see how the use of saved predicates relates to the explicit model as a solution of the recursive

domain equation Eq. (Domain) at page 6, let us unfold the model of Iris. The type of propositions

of (our fragment of) Iris is the solution to the following recursive domain equation:

iProp � (Stamp
fin−⇀ Ag(▶SemType)) → siProp

Here, siProp is the type of step-indexed propositions, and Ag is Iris’s agreement camera, used to

ensure that saved predicates are persistent. Most of these details can be ignored; what matters is

that SemType, which contains a recursive occurrence of iProp, appears under a later type former

(▶). As such, the model of Iris with saved predicates is isomorphic (modulo the indirection via

stamps) to a direct model of gDOT as described by Eq. (Domain). Moreover, the later type (▶) in
this equation explains the later modality (⊲) in the conclusion of rule (Saved-Pred-Agree).

5.3 The Semantic Model of gDOT
We now put Iris and stamped gDOT to work by proving type soundness of gDOT (Theorem 5.2).

In Sec. 5.3.1 we define a semantic typing judgment Γ ⊨ 𝑒 : 𝑇 for stamped gDOT, which we lift in

Sec. 5.3.2 to a semantic typing judgment Γ ⊨ 𝑒 : 𝑇 for unstamped gDOT. In Sec. 5.3.3 we prove that

syntactically well-typed unstamped gDOT terms are also semantically well-typed:

Theorem 5.3 (Fundamental). If Γ ⊢ 𝑒 : 𝑇 , then Γ ⊨ 𝑒 : 𝑇 .
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Finally, in Sec. 5.3.4 we prove adequacy of semantic typing for unstamped gDOT:

Theorem 5.4 (Adeqacy). If 𝜀 ⊨ 𝑒 : 𝑇 , then 𝑒 is safe.

Combining these theorems shows type soundness (Theorem 5.2), i.e., if 𝜀 ⊢ 𝑒 : 𝑇 , then 𝑒 is safe.

5.3.1 Stamped Semantic Typing Judgments. Fig. 9 shows our semantic model for stamped gDOT. Its

definition follows the conventional setup of a logical relations model. First we define interpretation

relations DJ𝑇 K𝜌 (𝑑),VJ𝑇 K𝜌 (𝑣), and EJ𝑇 K𝜌 (𝑒) that describe the closed definition lists 𝑑 , closed

values 𝑣 , and closed terms 𝑒 that safety inhabit a type𝑇 , under an environment 𝜌 ∈ Env ≜ Var → Val
that gives the interpretation of the variables in 𝑇 . These interpretation relations are defined

by structural recursion on types 𝑇 . Second, we lift these interpretation relations using closing

substitutions to the various semantic typing judgments for open terms.

The value interpretations of the basic types are standard for a logical relations model. The

interpretations of ⊥, ⊤, ∧, ∨ and ⊲ use the corresponding logical connectives of Iris.

The value interpretation of function typesVJ∀ (𝑥 : 𝑆).𝑇 K𝜌 (𝑣) expresses that 𝑣 is 𝛼-equivalent to
a function 𝜆𝑥. 𝑒 that maps values𝑤 of type 𝑆 into terms 𝑒 [𝑥 ≔ 𝑤] of type𝑇 . The latter is expressed
by the term interpretation EJ𝑇 K(𝜌,𝑥 :=𝑤) (𝑒 [𝑥 ≔ 𝑤]), which is defined using weakest preconditions

as is standard for logical relations in Iris. However, since gDOT supports dependent functions

(where the argument 𝑥 is in scope in type 𝑇 ), we interpret 𝑇 in the extended context 𝜌, 𝑥 := 𝑤 .

Moreover, we use the later modality (⊲), like in step-indexed logical relations for equi-recursive types,
where type constructors must be contractive rather than non-expansive [Appel and McAllester

2001]. This choice provides stronger typing rules, and is for instance the reason why (T-∀-I-Strong)
can strip a later (⊲) from gDOT’s typing context.

The value interpretation of record types VJ {a : 𝑈 } K𝜌 (𝑣) and VJ {A >: 𝐿 <:𝑈 } K𝜌 (𝑣) expresses
that 𝑣 is 𝛼-equivalent to an object 𝜈𝑥 . {𝑑} with value member a (or type member A) that enjoys the
right property. The latter is expressed using the interpretation DJ _ K𝜌 (𝑑) for definition lists 𝑑 .

To define the interpretation of type members, we first define the auxiliary definition 𝑠 {𝜎 𝜓 ,

which uses Iris’s saved predicates to express that stamp 𝑠 and deferred substitution 𝜎 map to closed
semantic type 𝜓 ∈ Val → iProp. The interpretation of type members itself DJ {A >: 𝐿 <:𝑈 } K𝜌 (𝑑)
says that when looking up the label A in 𝑑 we obtain a stamp 𝑠 and deferred substitution 𝜎 that map

to (closed) semantic type𝜓 , which is bound byVJ𝐿 K𝜌 andVJ𝑈 K𝜌 . Since semantic types𝜓 stored

in values are guarded through saved predicates, we only refer to 𝜓 under the later modality (⊲).

This definition prevents bad bounds by ensuring that𝜓 respects its bounds 𝐿 and𝑈 . For instance,

VJ {A >: ⊤ <: ⊥} K𝜌 (𝑣) is false. Therefore, objects with bad bounds cannot be typed in the empty

context, and unsound subtyping evidence cannot be constructed.

The value interpretation of abstract types VJ𝑝.A K𝜌 (𝑣) states that 𝑝 normalizes to object 𝑤 ,

which in field A holds stamp 𝑠 and deferred substitution 𝜎 , that together refer to closed semantic type

𝜓 . Further, it asserts that 𝑣 , under the later modality (⊲), satisfies the semantic type𝜓 . Since (paths

in) types can contain variables, this definition substitutes 𝜌 in 𝑝 , and then uses the path weakest

precondition to reason about the resulting object𝑤 . Similarly, the interpretation of singleton types

VJ𝑝 .typeK𝜌 (𝑣) normalizes 𝑝 to𝑤 , and checks that 𝑣 and𝑤 coincide.

The value interpretation of 𝜇-types VJ 𝜇 (𝑥 : 𝑇 ) K𝜌 (𝑣) interprets 𝑇 in the extended environment

𝜌, 𝑥 := 𝑣 , matching the informal semantics.

Using the interpretation relations, we define the semantic typing judgments. For instance, the

semantic term typing judgment Γ ⊨S 𝑒 : 𝑇 asserts that 𝑒 runs safely in any environment 𝜌 matching

Γ, and results in a value satisfyingVJ𝑇 K. The semantic path typing judgment Γ ⊨𝑖P 𝑝 : 𝑇 is defined

using path weakest preconditions, so it asserts that path 𝑝 normalizes to a value satisfying VJ𝑇 K.
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Auxiliary definitions

𝑠 {𝜎 𝜓 ≜ ∃𝜑. (𝑠 { 𝜑) ∧ ⊲(𝜓 = 𝜑 (𝜎))

Definition interpretation DJ _ K_ (_) : Type → Env → DefList → iProp

DJ⊤ K𝜌 (𝑑) ≜ True

DJ 𝑆 ∧𝑇 K𝜌 (𝑑) ≜ DJ 𝑆 K𝜌 (𝑑) ∧ DJ𝑇 K𝜌 (𝑑)

DJ {a : 𝑇 } K𝜌 (𝑑) ≜ ∃ 𝑝. lookup(a, 𝑑) = 𝑝 ∧ wpP 𝑝 {VJ𝑇 K𝜌 }

DJ {A >: 𝐿 <:𝑈 } K𝜌 (𝑑) ≜ ∃𝜎, 𝑠,𝜓 . lookup(A, 𝑑) = (𝜎, 𝑠) ∧ (𝑠 {𝜎 𝜓 ) ∧(
∀ 𝑣 . ⊲VJ𝐿 K𝜌 (𝑣) ⇒ ⊲𝜓 (𝑣)

)
∧
(
∀ 𝑣 . ⊲𝜓 (𝑣) ⇒ ⊲VJ𝑈 K𝜌 (𝑣)

)
DJ𝑇 K𝜌 (𝑑) ≜ False (if 𝑇 is not ⊤, 𝑆 ∧𝑇 , {A >: 𝐿 <:𝑈 }, or {a : 𝑇 })

Value interpretation VJ _ K_ (_) : Type → Env → Val → iProp

VJ⊤ K𝜌 (𝑣) ≜ True

VJ⊥ K𝜌 (𝑣) ≜ False

VJ 𝑆 ∧𝑇 K𝜌 (𝑣) ≜ VJ 𝑆 K𝜌 (𝑣) ∧ VJ𝑇 K𝜌 (𝑣)
VJ 𝑆 ∨𝑇 K𝜌 (𝑣) ≜ VJ 𝑆 K𝜌 (𝑣) ∨ VJ𝑇 K𝜌 (𝑣)

VJ∀𝑥 : 𝑆.𝑇 K𝜌 (𝑣) ≜ ∃ 𝑒. (𝑣 =𝛼 𝜆𝑥. 𝑒) ∧ ∀𝑤. ⊲VJ 𝑆 K𝜌 (𝑤) ⇒ ⊲ EJ𝑇 K(𝜌,𝑥 :=𝑤) (𝑒 [𝑥 ≔ 𝑤])

VJ {a : 𝑇 } K𝜌 (𝑣) ≜ ∃ 𝑥, 𝑑. (𝑣 =𝛼 𝜈𝑥 . {𝑑}) ∧ DJ {a : 𝑇 } K𝜌 (𝑑 [𝑥 := 𝑣])

VJ {A >: 𝐿 <:𝑈 } K𝜌 (𝑣) ≜ ∃ 𝑥, 𝑑. (𝑣 =𝛼 𝜈𝑥 . {𝑑}) ∧ DJ {A >: 𝐿 <:𝑈 } K𝜌 (𝑑 [𝑥 := 𝑣])
VJ𝑝.A K𝜌 (𝑣) ≜ wpP 𝑝 [𝜌] {𝑤. ∃𝜎, 𝑠,𝜓 . (𝑤.A ↘ (𝜎, 𝑠)) ∧ (𝑠 {𝜎 𝜓 ) ∧ ⊲𝜓 (𝑣)}

VJ𝑝.type K𝜌 (𝑣) ≜ wpP 𝑝 [𝜌] {𝑤. 𝑣 =𝛼 𝑤}
VJ 𝜇𝑥 .𝑇 K𝜌 (𝑣) ≜ VJ𝑇 K(𝜌,𝑥 :=𝑣) (𝑣)
VJ ⊲𝑇 K𝜌 (𝑣) ≜ ⊲VJ𝑇 K𝜌 (𝑣)

Term interpretation EJ _ K_ (_) : Type → Env → Term → iProp

EJ𝑇 K𝜌 (𝑒) ≜ wp 𝑒 {VJ𝑇 K𝜌 }

Environment interpretation GJ _ K(_) : TyCtx → Env → iProp

GJ 𝜀 K(𝜌) ≜ True

GJ Γ, 𝑥 : 𝑇 K(𝜌) ≜ GJ Γ K(𝜌 |Γ) ∧ VJ𝑇 K𝜌 (𝜌 (𝑥))
Semantic typing judgments

Γ ⊨𝑖P 𝑝 : 𝑇 ≜ ∀ 𝜌. GJ Γ K(𝜌) ⇒ ⊲𝑖 wpP 𝑝 [𝜌] {VJ𝑇 K𝜌 }
Γ ⊨S 𝑒 : 𝑇 ≜ ∀ 𝜌. GJ Γ K(𝜌) ⇒ EJ𝑇 K𝜌 (𝑒 [𝜌])

Γ | 𝑥 : 𝑉 ⊨S {𝑑} : 𝑇 ≜ wf 𝑑 ∧ ∀ 𝜌, 𝑑𝑣 . wf 𝑑𝑣 ⇒ (𝑑 ⊆ 𝑑𝑣 [𝑥 := 𝜈𝑥 . {𝑑𝑣}]) ⇒
GJ Γ, 𝑥 : 𝑉 K(𝜌, 𝑥 := 𝜈𝑥 . {𝑑𝑣}) ⇒ DJ𝑇 K𝜌 (𝑑 [𝜌])

Γ ⊨𝑖 𝑇1 <: 𝑇2 ≜ ∀ 𝜌, 𝑣 . GJ Γ K(𝜌) ⇒ ⊲𝑖
(
VJ𝑇1 K𝜌 (𝑣) ⇒ VJ𝑇2 K𝜌 (𝑣)

)
Γ ⊨ 𝑒 : 𝑇 ≜ ¤|⇛ (∃ 𝑒 ′. 𝑒 ≈ 𝑒 ′ ∧ Γ ⊨S 𝑒

′
: 𝑇 )

Γ | 𝑥 : 𝑉 ⊨ {𝑑} : 𝑇 ≜ ¤|⇛ (∃𝑑 ′. 𝑑 ≈ 𝑑 ′ ∧ Γ | 𝑥 : 𝑉 ⊨S {𝑑 ′} : 𝑇 )

Fig. 9. The semantic model of gDOT. Relation wf 𝑑 asserts that 𝑑 contains no duplicate labels. Environment
restriction 𝜌 |Γ restricts 𝜌 to entries in Γ.
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Unlike term typing, path typing thus does not allow its subject to diverge (unlike in pDOT, paths

in gDOT cannot loop; see Sec. 8 for further discussion).

5.3.2 Unstamped Semantic Typing Judgments. The unstamped semantic typing judgment Γ ⊨ 𝑒 : 𝑇
for terms is defined by lifting the stamped typing judgment Γ ⊨S 𝑒 : 𝑇 . It simply says that there

exists a stamped term 𝑒 that satisfies Γ ⊨S 𝑒 : 𝑇 and equals 𝑒 modulo type members. The update

modality ¤|⇛ is needed to allocate saved predicates for type members.

Similarly, we define an unstamped semantic typing judgment Γ | 𝑥 : 𝑉 ⊨ {𝑑} : 𝑇 for definition

lists. We do not need to lift the judgments for path typing and subtyping, because (1) there is no

distinction between unstamped and stamped types (2) while stamped paths exist, subjects of path

typing do not contain values, so they do not differ in unstamped and stamped gDOT either.

5.3.3 Semantic Typing Lemmas and Fundamental Theorem. After having defined the semantic

typing judgments, we can prove the semantic typing lemmas. Basically, for each typing rule, we

replace ⊢ with ⊨. In fact, while designing gDOT, what we did was exactly the opposite—we first

proved the semantic typing lemmas before turning gDOT into a syntactic type system.

The proofs of the bulk of the semantic type lemmas are fairly straightforward— the majority of

the work was in devising the right interpretations of types. All proofs proceed by first proving a

version of the typing lemma for the stamped semantic typing judgment, which we subsequently lift

to the unstamped judgment; lifting is trivial except for (D-Typ-Abs). Typing rules with interesting

proofs include (T-{}-I) and (Sel-<:). The proof of rule (T-{}-I) relies on (Löb) induction: to prove

that the object 𝑣 ≜ 𝜈𝑥 . {𝑑} satisfies VJ 𝜇𝑥 .𝑇 K𝜌 (𝑣), we can assume it satisfies ⊲(VJ 𝜇𝑥 .𝑇 K𝜌 (𝑣)).
The proof of rule (Sel-<:) uses Iris’s proof rule (Saved-Pred-Agree) for saved propositions. This

proof also explains the ⊲ in the rule (Sel-<:) — it appears in rule (Sel-<:) because it appears in

(Saved-Pred-Agree). In general, the proofs of the semantic typing rules explain that types and

function bodies only contain information later, hence introduction and elimination rules only

require information under a later type former.

As expected for a semantic model based on logical relation, putting together the semantic typing

lemmas, we prove the fundamental theorem (Theorem 5.3), i.e., if Γ ⊢ 𝑒 : 𝑇 , then Γ ⊨ 𝑒 : 𝑇 .

Proof of Theorem 5.3. The theorem is proved by induction on term and definition typing

judgments (after similar theorems on other judgments). Each case of the proof corresponds to a

syntactic typing rule and follows from the corresponding semantic typing lemma. □

5.3.4 Adequacy. We outline the proof of adequacy (Theorem 5.4), i.e., if ⊨ 𝑒 : 𝑇 , then 𝑒 is safe.

Proof of Theorem 5.4. We must show that any reduction 𝑒 →𝑛
t 𝑒𝑟 produces a non-stuck term

𝑒𝑟 . By definition of the unstamped judgment ⊨ 𝑒 : 𝑇 , we obtain a stamped term 𝑒 ′ with ⊨S 𝑒 ′ : 𝑇 and

𝑒 ≈ 𝑒 ′. By definition of the stamped judgment and term interpretation, this gives wp 𝑒 ′ {VJ𝑇 K𝜌 },
so any reduction 𝑒 ′ →𝑛

t 𝑒
′
𝑟 produces a non-stuck term 𝑒 ′𝑟 , and by 𝑒 ≈ 𝑒 ′, term 𝑒𝑟 is not stuck either.

The above reasoning is performed internally in Iris. Thus, we actually obtain non-stuckness of

𝑒𝑟 under 𝑛 laters, as laters are accumulated each time the definition of weakest preconditions is

unfolded. Since non-stuckness is a meta theoretical (i.e., Coq) proposition, we can eliminate the

laters using Iris’s soundness theorem and obtain non-stuckness of 𝑒𝑟 at the meta-level. This proof

resembles the adequacy proof of weakest preconditions in Iris [Krebbers et al. 2017a]. □

6 EXPRESSIVITY EVALUATION
We show that, despite gDOT’s guardedness restrictions, we can encode both existing examples from

the literature and new ones. All examples presented in this section, and additional ones, including

all examples in Sec. 1-5 of the WadlerFest DOT paper [Amin et al. 2016], are mechanized in Coq.
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let bools = . . . in let lists = 𝜈 lists. {
List >: ⊥ = 𝜇 list .

{A >: ⊥ <: ⊤; isEmpty : ⊤ → bools.Bool; head : ⊤ → list .A; tail : ⊤ → lists.List ∧ {A <: list .A}}
nil : ⊲ lists.List ∧ {A = ⊥}

= 𝜈 _. {A = ⊥; isEmpty = 𝜆_. bools.true; head = 𝜆_. diverge; tail = 𝜆_. diverge}
cons : ∀ (𝑥 : {S <: ⊤}). 𝑥 .S → (lists.List ∧ {A <: 𝑥 .S}) → lists.List ∧ {A <: 𝑥 .S}

= 𝜆 𝑥 hd tl. 𝜈 _. {A = 𝑥 .S; isEmpty = 𝜆_. bools.false; head = 𝜆_. hd; tail = 𝜆_. tl}
} in . . .

Fig. 10. Covariant lists in gDOT using (elided for space) Church-encoded Booleans [Amin et al. 2016].

In Sec. 6.1 we describe the syntactic typing of an encoding of covariant lists, a highly recursive

benchmark from the DOT literature. In Sec. 6.2 and Sec. 6.3 we show that our semantic model

can be used beyond proving type soundness—we use it to demonstrate that gDOT enforces data

abstraction, and apply that to our motivating example from the introduction (Sec. 1.1).

6.1 Covariant Lists
As it is standard in the DOT literature [Amin et al. 2016; Rapoport and Lhoták 2019; Rompf and

Amin 2016], we encode the Scala type List[𝑇] of lists, together with its core methods. Our encoding,

which is shown in Fig. 10, is mostly standard in DOT (except for the shaded parts, to which we

return in a moment), but we summarize a few features of this encoding. Object lists defines an
abstract type of lists List, together with constructors nil and cons. The type of lists defines a type
member A representing the type of elements, together with accessor methods. The definition of

lists.List is highly recursive: it uses self variables lists and list to refer to both itself and its own type

member list .A. Since gDOT (like all DOT calculi) lacks exceptions, here and in later examples we let

failing methods invoke an infinite loop diverge with type ⊥, like in other DOT papers [Amin et al.

2016; Rapoport and Lhoták 2019; Rompf and Amin 2016]. We encode List[𝑇] as lists.List∧{A <: 𝑇 }.
Similarly to lists in Scala, this encoding is covariant, i.e., if 𝑇1 <: 𝑇2 then List[𝑇 1] <: List[𝑇2].

Type checking the body of cons relies on gDOT’s rules (𝜇-<:) and (<:-𝜇) for subtyping of recursive
types [Rompf and Amin 2016]. Since most other DOT variants [Amin et al. 2016; Rapoport et al.

2017; Rapoport and Lhoták 2019] do not support those rules, they require instead modifying the

source code and inserting a spurious let-binding, to then use variants of (P-𝜇-I) and (P-𝜇-E).

The only unusual guardedness restriction of gDOT is the use of a later in front of the type of

nil. Since nil is defined as a value member, we cannot use coercions; and since the type of self

variable lists is guarded during construction, we cannot derive bounds for lists.List but only for

⊲ lists.List. This restriction could be avoided by thunking nil (i.e., making it a method). In the

present encoding, the later can be removed at the client side via a coerce.

6.2 Positive Numbers
In this and next section, we demonstrate gDOT’s support for data abstraction through two examples

that use escape hatches, such as unsafe casts. These examples’ safety depends on gDOT’s ability to

maintain class invariants. While such examples cannot be typed syntactically, we show they satisfy

our model’s semantic typing judgment, by dropping down to the definition of semantic typing

in Iris, similarly to the RustBelt model of Rust [Jung et al. 2018a, 2020]. Since semantic typing

judgments can be combined with any syntactically well-typed code, this means that the examples

can be used safely in any well-typed context.
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posSemT ∈ SemType ≜ 𝜆 𝜌, 𝑣 . ∃𝑛 : Z. 𝑣 = n ∧ 𝑛 > 0

let positives = 𝜈 positives. {
Pos >: ⊥ <: Int = posSemT
mkPos : Int → positives.Pos = 𝜆𝑚. if 𝑚 > 0 then𝑚 else diverge
div : Int → positives.Pos → Int = 𝜆𝑚 𝑛. 𝑚/

(
coerce 𝑛

)
} in . . .

Fig. 11. A module for positive numbers and safe division using abstract types.

As a warm-up, and to demonstrate the use of semantic types, we show that object positives in
Fig. 11 is semantically well-typed. This object defines a type member Pos of positive numbers,

and methods to create (mkPos) and consume them (div). The method mkPos represents a “smart

constructor”: it returns the input number𝑚 if positive, and fails by looping otherwise. The method

div uses an unsafe division operator, which gets stuck when applied to the divisor 0.
7
This method

(hence, object positives) cannot be typed in the syntactic type system of (g)DOT, because its safety

relies on functional correctness (i.e., the argument being non-zero).

Yet, we can prove that positives is semantically typed. While the class invariant of Pos cannot be
expressed through a syntactic type, we can express it as the logical predicate posSemT . To prove

semantic typing of positives, we unfold the semantic typing judgment of our gDOT model and

perform a manual proof in Iris. Let us walk through that proof. First, we need to prove that Pos
respects its type bounds ⊥ and Int. This holds trivially because positive integers are integers.

Next, we should prove semantic typing of mkPos. For that, we need to show that if the conditional

succeeds, the argument satisfies posSemT . Finally, we should prove semantic typing of div. Since
its argument 𝑛 has abstract type positives.Pos, it satisfies semantic type posSemT . Note that since
type members are modeled using saved predicates in Iris, method div uses a coercion, allowing us

to strip a later when acquiring the semantic type posSemT of type member positives.Pos.
Thanks to the Iris framework, we do not have to deal with explicit step-indexing. All proofs are

carried out using Iris’s support for abstract step-indexing. Moreover, to streamline semantic typing

proofs such as the above, we have generalized semantic typing judgments to semantic types in our

Coq mechanization, which enable us to reuse our typing lemmas both here and in Sec. 6.3.

6.3 Mutual Information Hiding
We now return to our motivating example from the introduction (Sec. 1.1). As discussed in Sec. 4,

we have shown in Coq that the gDOT version (Fig. 2) of the Scala code (Fig. 1) is syntactically

well-typed. However, method typeFromTypeRefUnsafe (which is present in the Scala version, but not

in the DOT version), cannot be shown to be syntactically well-typed in any DOT calculus— it uses

an unsafe cast whose safety crucially relies on (g)DOT’s support for data abstraction. Using gDOT’s

semantic model we show that this example is in fact semantically well-typed. This demonstrates

the flexibility of semantic typing, and shows that gDOT enforces the data abstraction that mutual

information hiding should provide.

Method typeFromTypeRefUnsafe in Fig. 1 retrieves an actual types.Type by invoking the get

method on t.symb.tpe, which has type Option[types.Type]. In Scala, invoking Option[𝑇 ]’s method

get on None will trigger an exception. However, since gDOT lacks exceptions, and to show gDOT’s

support for data abstraction, we model (unlike the Scala standard library) get as a function from

Some[𝑇 ] to 𝑇 , where Some[𝑇 ] is a subtype of Option[𝑇 ] that has a get function. Hence, to call get,

7
Whereas we used Church encoded Booleans in Sec. 6.1, the version of gDOT that we mechanized in Coq in fact has

primitive support for Booleans and integers, which we use in this section.
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assert 𝑐 ≜ if 𝑐 then 0 else diverge;
None ≜ {isEmpty : true.type; . . .}
Some ≜ 𝜇 some. {

A >: ⊥ <: ⊤
isEmpty : false.type // The only value in singleton type false.type is false.
pmatch : ∀ (𝑥 : {U <: ⊤}). 𝑥 .U → (some.A → 𝑥 .U) → 𝑥 .U
get : ⊲ some.A

}
let options : {Option <: None ∨ Some; . . .} = . . . in
let pcore = 𝜈 pcore. {
types = 𝜈 types. {

Type >: ⊥ = ⊤
TypeTop >: ⊥ = types.Type
newTypeTop : ⊤ → types.TypeTop = 𝜆_. 𝜈_. {}
TypeRef >: ⊥ <: types.Type ∧ {symb : pcore.symbols.Symbol}

= types.Type ∧ {symb : (pcore.symbols.Symbol ∧ {tpe : Some})}
newTypeRef : pcore.symbols.Symbol → types.TypeRef

= 𝜆𝑠. { assert(¬( coerce 𝑠) .tpe.isEmpty); 𝜈_. {symb = 𝑠} }
typeFromTypeRef : types.TypeRef → types.Type =

= 𝜆𝑡 . { coerce ( coerce ( coerce ( coerce 𝑡).symb).tpe.get) }
} // symbols is unchanged

} in . . .

Fig. 12. The (simplified) fragment of Dotty from Fig. 1 in gDOT (assert, None, and Some are abbreviations).

we first must unsafely cast tpe via tpe.asInstanceOf[Some[types.Type]] to get a value of type

Some[types.Type]. Although this cast cannot be typed syntactically, it is safe due to the assert in

constructor TypeRef. In turn, safety of this assert relies on Option’s class invariant: isEmpty only

returns false on instances of the Some constructor.

We encode the Scala example from Fig. 1 in gDOT as shown in Fig. 12. As usual in gDOT, we

use coercions when unfolding abstract types to ensure guardedness. More importantly, we express

the class invariants of types options.Option and pcore.types.TypeRef by defining them to stricter

types than in Scala. In particular, the upper bound of Option formalizes the informal invariants

of options’s public API using union and singleton types. An instance of Option is then either an

instance ofNone, exposing an isEmptymethod that returns true, or an instance of Some, exposing
an isEmpty method that returns false and a get method that returns the contained value.

Thanks to gDOT’s support for mutual information hiding, one can also expose class invariants

locally, and hide them by using subsumption. This is used for TypeRef, whose class invariant

guarantees that symb.tpe has type Some containing method get, but this is hidden outside types.
The more precise definition of TypeRef makes typeFromTypeRef syntactically well-typed (hence

the change of name), but makes newTypeRef syntactically ill-typed, so we prove it well-typed

semantically. In this proof, we take the result 𝑣 of (coerce 𝑠).tpe, show it has type None ∨ Some,
and reason by cases on this union type. If 𝑣 has typeNone, newTypeRef diverges and is thus safe. If
𝑣 has type Some, the return value of newTypeRefwill have the correct type TypeRef. This concludes
our informal proof sketch, which we have mechanized in Coq. Parts of the typing derivation are

constructed syntactically; in those parts, we needed various distributivity rules, including rule

(Distr-∧-∨-<:) (see Sec. 4.4) to distribute intersections over union and show (None ∨ Some) ∧
{A >: ⊥ <: pcore.types.Type} <: None ∨ (Some ∧ {A >: ⊥ <: pcore.types.Type}).
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7 COQMECHANIZATION
We mechanized gDOT and its semantic soundness proof in Coq, using the Iris framework. The

mechanization helped us gain confidence in our ideas, and to evolve our definitions and proofs. Our

mechanization crucially relies on the MoSeL tactic language [Krebbers et al. 2018, 2017b], which

provides tactics for reasoning at the level of abstract step-indexing with Iris’s modalities.

We mechanized binding through de Bruijn indexes and parallel substitution, using the Autosubst

1 library [Schäfer et al. 2015]. While DOT binding does not fit perfectly with Autosubst 1 (unlike

Autosubst 2 [Stark et al. 2019]), we were able to use Autosubst 1 by defining substitution by hand,

while reusing Autosubst 1’s tactics for deciding binding lemmas. Due to Autosubst 1’s limitations,

path substitution is defined separately. The only axiom we use is functional extensionality (needed

by Autosubst).

Overall, our gDOT mechanization currently consists of 14.774 lines of Coq code, of which 5.610

lines are for examples and support code (including derived typing rules) and 9.164 for the actual

soundness proof. It includes some language-generic components (2.761 lines). The mechanization of

the gDOT semantic model (5.555 lines) consists of the definition of the gDOT language, operational

semantics and bisimulation (2.562 lines), and the logical relation, semantic typing lemmas and

adequacy theorem (2.993 lines). The mechanization of the gDOT syntactic type system defines the

syntactic type system, some derived rules, and proves the fundamental theorem (848 lines).

8 RELATEDWORK
pDOT. The variant of the DOT calculus that is closest to gDOT is pDOT, introduced by Rapoport

and Lhoták [2019]. The rule (D-Val-New) of gDOT is an “alternative design” they considered for

pDOT [Rapoport and Lhoták 2019, Sec. 4.2.2]. Unlike Scala, pDOT considers paths as normal forms.

Instead, gDOT lets paths reduce, but ensures they have a normal form.

Normalization for 𝐷<:. We were inspired by Wang and Rompf [2017], who use logical relations

to prove normalization of a DOT subset including 𝐷<:. They prove normalization (in a way that

implies type safety), which they argue is important for paths. However, for proving type safety of

Scala (which in itself is not normalizing), it is sufficient to prove normalization of paths only. Indeed,

our path typing judgment implies normalization through the use of total weakest preconditions

in Iris (see Sec. 5.2.3). Moreover, their model imposes guardedness restrictions on 𝜇-types instead

of abstract types. Those guardedness restrictions are more severe than gDOT’s— they only allow

for a weak elimination rule for 𝜇-types, reminiscent of System F-style weak existentials. While

their results also imply type safety for the language they study, it is unclear how to adapt their

technique to prove type safety of a Turing-complete (i.e., non-normalizing) variant of the language.

Coinductive Type Systems. Brandt and Henglein [1998] define subtyping for recursive types using

a coinductive formulation of subtyping, which resembles our typing rule for object creation, and

our use of Löb induction. That is, to prove a judgment 𝐽 (such as type equality or subtyping),

they allow using 𝐽 as an assumption, but forbid using 𝐽 immediately. One might suspect that a

coinductive formulation of DOT, and of rule (T-{}-I) in particular, might allow making (D-Typ-Abs)

sound without using later. However, DOT’s 𝜇-types (and Amin et al.’s refinements [2012]) differ

from standard recursive types, and resemble more closely recursively defined signatures [Crary

et al. 1999], Cedille’s 𝜄-types [Fu and Stump 2014], and dependent intersections [Kopylov 2003].

Logical relations for Predicative Type Members. Logical relation models are available for other type

systems with features similar to Scala type members, such as ML modules [Crary 2017] and type

theory. However, such type systems avoid the challenges we face because they feature a universe

hierarchy and predicative/stratified type members/Σ-types: if a value 𝑣 contain a type in a certain
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universe, the type of 𝑣 lives in a larger universe [Harper and Mitchell 1993], eschewing the need

for stratification via step-indexing.

Logical Relations in Iris. Logical relations have been studied extensively in the context of Iris —

for type soundness [Jung et al. 2018a; Krebbers et al. 2017b], program refinements [Frumin et al.

2018; Krebbers et al. 2017b; Krogh-Jespersen et al. 2017; Tassarotti et al. 2017; Timany et al. 2018],

robust safety [Swasey et al. 2017], and non-interference [Frumin et al. 2020]. This paper studied a

number of novel features that are have not been studied in the Iris context before: dependent types,

impredicative type members, union and intersection types, and the combination of non-termination

(for terms) and termination (for paths). To support these features, we developed novel techniques,

such as stamping, and combine weakest preconditions for partial and total correctness.

Virtual Classes and Impredicative Type Members. Type members in DOT and Scala eschew the

sort of universe hierarchy described in the previous paragraph: we say they feature impredicative
type members. Impredicative type members also feature in other type systems with path-dependent

types or virtual classes [Clarke et al. 2007; Ernst et al. 2006].

9 FUTUREWORK
Annotation inference and type checking. DOT calculi are not meant to be programmed in directly,

but should be considered as an elaboration target for type-preserving translation from subsets

of Scala. Type checking of DOT is conjectured to be undecidable, like 𝐷<: [Hu and Lhoták 2020].

gDOT additionally requires inserting later (⊲) and coercion (coerce) annotations. Future work could
investigate inference of these annotations, either directly [Severi 2019], or by translating from a

Scala subset with decidable type checking [Cremet et al. 2006] into gDOT or a suitable variant.

Expressivity. The programs we prove safe are decorated by no-op coercions (coerce). We conjec-

ture that removing these coercions preserves safety, but we leave a proof for future work.

Amin et al. [2016] prove that all 𝐹<: programs can be translated into DOT. Due to the presence

of the ⊲ operator and the coerce annotations, it is unclear how to create a translation from either

(p)DOT or 𝐹<: into gDOT. However, we have been able to translate many given 𝐹<: and DOT

examples into gDOT by hand by adding a sufficient number of ⊲ and coerce annotations. We thus

conjecture that there exists a whole-program encoding of 𝐹<: programs into gDOT.

Additional features. We are investigating support for higher-kinded types, by modeling type

arguments as values. The latest work in this direction [Stucki 2016, 2017] ran into strong challenges

and a counterexample to soundness (luckily, not affecting Scala). We conjecture that our techniques

scale directly to this form of higher kinds, and that gDOT’s existing guardedness restrictions already

rule out this counterexample.
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