
Reasoning about Monotonicity in Separation Logic
Amin Timany

timany@cs.au.dk
Aarhus University

Aarhus, Denmark

Lars Birkedal

birkedal@cs.au.dk
Aarhus University

Aarhus, Denmark

Abstract
Reasoning about monotonicity is of key importance in con-

current separation logics. For instance, one needs to reason

about monotonicity to show that the value of a concurrent

counter with an increment operation only grows over time.

Modern concurrent separation logics, such as VST, FCSL,

and Iris, are based on resource models defined using partial

commutative monoids. For any partial commutative monoid,

there is a canonical ordering relation, the so-called extension

order, and in a sense the logics are designed to reason about

monotonicity wrt. the extension ordering.

Thus a natural question is: given an arbitrary preorder,

can we construct a partial commutative monoid, where the

extension order captures the given preorder.

In this paper, we answer this question in the affirmative

and show that there is a canonical construction, which given

any preorder produces a partial commutative monoid for

which the extension order, restricted to the elements of the

preorder, is exactly the given preorder. We prove that our

construction is a free construction in the category-theoretic

sense.

We demonstrate, using examples, that the general con-

struction is useful. We have formalized the construction and

its properties in Coq. Moreover, we have integrated it in the

Iris program logic framework and used that to formalize our

examples.

CCS Concepts: • Theory of computation → Program
specifications; Program verification; Invariants; Hoare
logic; Separation logic; Programming logic.

Keywords: monotonicity, separation logic, partial commu-

tative monoids, program verification

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CPP ’21, January 18–19, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8299-1/21/01. . . $15.00

https://doi.org/10.1145/3437992.3439931

ACM Reference Format:
Amin Timany and Lars Birkedal. 2021. Reasoning about Monotonic-

ity in Separation Logic. In Proceedings of the 10th ACM SIGPLAN

International Conference on Certified Programs and Proofs (CPP ’21),

January 18–19, 2021, Virtual, Denmark. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3437992.3439931

1 Introduction
Shared memory concurrent programs are notoriously hard

to reason about due to intricate interactions between threads.

The concurrent separation logic methodology used in cur-

rent state-of-the-art mechanizations such as Iris, VST, and

FCSL [3, 10, 14] has proven to be successful in taming the

complexity of shared memory concurrency reasoning. Ar-

guably, the main reason for this success ismodular reasoning.

By modular reasoning we here mean that program modules,

i.e., threads, functions, etc., are verified in isolation. A cor-

rectness proof of a compound program is then obtained by

composing proofs of correctness of its individual modules.

The methodology supports modular reasoning because each

program module is verified under certain assumptions about

the other modules. In many cases the assumptions on other

modules are phrased as some kind of monotonicity with

respect to some relation, e.g., a module may assume that all

other modules only change shared state in some monotone

way. In other words, each program module gets to know that

the computations performed on the shared memory by other

modules always amounts to progress in the algorithm that is

being carried out by the program, i.e., no other thread intro-

duces a regression. As an oversimplified and contrived, yet,

still illustrative example consider the program in Figure 1.

This program allocates a counter and forks a thread that

repeatedly increments it. The main program then repeatedly

checks that the counter’s value does not decrease. It makes

two consecutive reads and crashes if the most recent value

is smaller than the value read before. Proving that the main

program is safe and does not crash relies on the knowledge

that the value of the counter is monotonically increasing.

We do not include the exact code of the counter implementa-

tion in this paper; it is entirely standard and uses an atomic

increment operation.

In separation logic the assumptions that a module makes

about other modules are usually represented using invari-

ants and ghost state. Invariants, or invariant enforcing mech-

anisms, e.g., concurroids in Nanevski et al. [14], are used to

https://doi.org/10.1145/3437992.3439931
https://doi.org/10.1145/3437992.3439931

CPP ’21, January 18–19, 2021, Virtual, Denmark Amin Timany and Lars Birkedal

let 𝑐 = mkCounter () in
let incrloop () = while(true){increment 𝑐} in
let checkmonotone () =

let 𝑥 = read 𝑐 in

let𝑦 = read 𝑐 in

if𝑦 < 𝑥 then () () else ()
in

fork {incrloop ()} ;
while(true){checkmonotone ()}

Figure 1. A simple monotonic counter: this program should

not crash, i.e., the first branch of the conditional which ap-

plies the unit value, (), to itself is never executed.

express protocols on shared resources. Most modern sep-

aration logics [3, 10, 14] use partial commutative monoids

(PCM’s) to represent resources that model their ghost state.

Each PCM is naturally equipped with a so-called extension

order. As we will see, in cases where the monotonicity re-

lation that we wish to reason about arises as the extension

order of a PCM, e.g., the monotone counter example above,

reasoning about that relation is straightforward. The ques-

tion then is whether there is a systematic way of finding

“the right PCM” for reasoning with respect to a particular

monotonicity relation. In this paper we answer this question

by giving a general construction that given any preorder

relation 𝑅 constructs a PCM Monotone(𝑅) such that the ex-

tension order of Monotone(𝑅) suitably embeds the preorder

𝑅. We furthermore show that our construction of the mono-

tone PCM is canonical, in the sense that it arises as a free

construction in the category-theoretic sense.

We demonstrate the usefulness of our construction by

giving three interesting examples. The first example is for

references: we show that an arbitrary preorder relation (on

any set) can be used to track the monotonic evolution of

the contents of a reference. The second example shows how

monotonicity with respect to a simple relation defined by a

transition system can allow us to conclude that certain paths

in a program’s execution are unreachable. The third example

concerns (aspects of) a more serious verification challenge.

In order to verify a causally consistent replicated database

one needs to reason about observations that each replica

makes relative to the rest of the system. It is crucial to be

able to conclude that if a replica observes an event, it must

also have observed all events that it depends on. In our third

example we consider a program that captures the essence

of such a scenario and use the monotone construction to

reason about observation of events.

All the results presented in this paper have been formal-

ized in the Coq proof assistant; partly on top of the Iris

program logic and partly on top of a category theory li-

brary for Coq. These formalizations are available at: https:
//github.com/amintimany/monotone.

Structure of the Paper. In Section 2 we present a basic

separation logic that we use throughout the paper. We also

specify the monotone counter example without giving the

definition of some propositions that are based on ghost re-

sources. We use these specs to prove the correctness of the

program in Figure 1. In Section 3 we present PCM’s and

how they are used as ghost state in our separation logic.

Afterwards, we see a few interesting examples of PCM’s and

introduce invariants in our separation logic. We use invari-

ants and the PCM’s we introduce in this section to define

the propositions that we used in Section 2 for specifying

the monotone counter and show that the monotone counter

indeed satisfies the specs that we had ascribed it. In Section 4

we present our construction of the monotone PCM and prove

the interesting properties that make it useful. We present

three interesting and motivating example use cases of the

monotone PCM in Section 5. Section 6 presents the category-

theoretic arguments why our construction is canonical. In

Section 7 we remark on some technical aspects of our Coq

formalization of the results presented in this paper. We dis-

cuss related work in Section 8, and finish the paper with

some concluding remarks in Section 9.

2 Separation Logic
In this section we present a separation logic and see a simple

application of it to the code in Figure 1. The system that we

consider here is very close to Iris and can be thought of as a

simplified version of it. In particular, we gloss over the step-

indexing features of Iris including the fact that in Iris resource

algebras are more general than partial commutative monoids;

they can be thought of as step-indexed partial commutative

monoids.
1
We use this system to present our ideas, however,

our ideas should be applicable to any PCM-based separation

logic.

2.1 Programming Language
Weuse a simple call-by-value untyped lambda calculus with a

unit value, which we write as (), sums (disjoint unions), prod-

ucts, Booleans, concurrency (a fork command), and higher-

order references. We do not present this language formally

in all details and use a standard ML-like syntax for writing

programs. The following is an excerpt of expressions, values,

and evaluation contexts.

𝑒 ::= () | 𝑛 | true | false | ℓ | rec 𝑓 𝑥 = 𝑒 | 𝑒 𝑒 | (𝑒, 𝑒) | 𝜋1 𝑒 |
inj

1
𝑒 | match 𝑒 with inj

1
𝑥 ⇒ 𝑒 | inj

2
𝑥 ⇒ 𝑒 end |

ref 𝑒 | ! 𝑒 | 𝑒 ← 𝑒 | · · ·
𝑣 ::= () | 𝑛 | true | false | ℓ | rec 𝑓 𝑥 = 𝑒 | (𝑣, 𝑣) | · · ·

1
In Iris resources algebras are essentially step-indexed PCM’s so as to allow

encoding of impredicative invariants as special resources. Interested readers

can find more details in Jung et al. [9, 10].

https://github.com/amintimany/monotone
https://github.com/amintimany/monotone

Reasoning about Monotonicity in Separation Logic CPP ’21, January 18–19, 2021, Virtual, Denmark

𝐾 ::= [] | 𝐾 𝑒 | (𝐾, 𝑒) | (𝑣, 𝐾) | 𝜋1 𝐾 | inj1 𝐾 |
match 𝑒 with inj

1
𝑥 ⇒ 𝑒 | inj

2
𝑥 ⇒ 𝑒 end |

ref𝐾 | !𝐾 | 𝐾 ← 𝑒 | 𝑣 ← 𝐾 | · · ·

Here 𝑛 ∈ Z is a number, ℓ is a memory location, and

rec 𝑓 𝑥 = 𝑒 is a recursive function with name 𝑓 , argument 𝑥 ,

and body 𝑒 . We write Loc for the set of all memory locations.

Notice how the evaluation contexts reflect the call-by-value

nature of the language, e.g., in an application first the term

in the function position is evaluated to a value and only then

the argument is evaluated.

2.2 Higher-Order Concurrent Separation Logic
The propositions of separation logic are as follows:

2

𝑃 ::= True | False | 𝑃 → 𝑃 | (higher-order logic)

𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 |
𝑃 ∗ 𝑃 | 𝑃 −∗ 𝑃 | ⌈𝜙⌉ | (basic separation logic)

ℓ ↦→ 𝑣 | {𝑃 } 𝑒 {𝑥 . 𝑃 } (program logic)

Following Iris jargon, we refer to the universe of these propo-

sitions as iProp. Propositions includes ordinary (dependent)

higher-order logic.

Separation Logic. The separating conjunction, ∗, is where
the name separation logic is derived from. Intuitively, 𝑃 ∗𝑄
holds for a resource if it can be split into two disjoint parts

such that one satisfies 𝑃 and one satisfies 𝑄 . The connective

−∗, pronounced wand, or magic wand, is the separating im-

plication. Intuitively, 𝑃 −∗ 𝑄 holds for a resource 𝑎 if for any

resource 𝑏, disjoint from 𝑎, that satisfies 𝑃 the combination

of 𝑎 and 𝑏 satisfies𝑄 . As we will see below partial commuta-

tive monoids are used to make the notions of “disjoint” and

“combination” formal. The following are some of the proof

rules for reasoning about separating conjunction and magic

wands:

sep-comm

𝑃 ∗𝑄 ⊣⊢ 𝑄 ∗ 𝑃
sep-assoc

𝑃 ∗ (𝑄 ∗ 𝑅) ⊣⊢ (𝑃 ∗𝑄) ∗ 𝑅

wand-intro

𝑃 ∗𝑄 ⊢ 𝑅
𝑃 ⊢ 𝑄 −∗ 𝑅

wand-elim

𝑃 ⊢ 𝑄 −∗ 𝑅
𝑃 ∗𝑄 ⊢ 𝑅

where ⊢ is the logical entailment relation and ⊣⊢ is the logical
equivalence relation.

The proposition ⌈𝜙⌉ asserts that the pure proposition 𝜙
holds. The proposition 𝜙 in ⌈𝜙⌉ is a proposition from the

meta logic, e.g., in the Coq formalization of separation logic

this would be a Coq proposition. Whether a pure proposition

holds or not does not depend on resources.

2
Higher-order logic, or impredicative invariants are not strictly speaking

necessary for our development. Nonetheless, we include them so that we

can present our proofs in the style of Iris.

Separation Logic Inference Rules. So far we have used

the entailment relation explicitly in writing proof rules. How-

ever, in addition to this style of proof rules, we sometimes

write proof rules where antecedents and the consequent

are all separation logic formulae. Such an inference rule

should be understood as follows: the separating conjunc-

tion of the antecedents entails the consequent. Moreover, we

sometimes present inference rules without antecedents, i.e.

a single proposition 𝑃 . This is to be understood as ⊢ 𝑃 .

Program Logic. The points-to proposition, ℓ ↦→ 𝑣 , as-

serts that the location ℓ in memory (heap) has value 𝑣 . This

proposition asserts exclusive ownership over location ℓ :

points-to-exclusive

ℓ ↦→ 𝑣 ∗ ℓ ↦→ 𝑣 ′ ⊢ False
Points-to propositions are not a primitive propositions of the

system and are defined in terms of ghost resources, however,

we do not present how points-to propositions are defined in

this paper.

The proposition {𝑃 } 𝑒 {𝑥 . 𝑄} is a Hoare triple where the
result of computation can appear in the postcondition. This

is represented using the binder 𝑥 in the postcondition of

the triple. Intuitively, if the Hoare triple {𝑃 } 𝑒 {𝑥 . 𝑄} holds,
then whenever the precondition 𝑃 holds the program 𝑒 is

safe to execute, i.e., it does not get stuck, and whenever it

terminates with a value 𝑣 the postcondition 𝑄 [𝑣/𝑥] holds.
The proof rules for reasoning about Hoare triples correspond

very closely to the steps in the operational semantics of the

programming language, e.g., rules hoare-alloc and hoare-

load below, and some rules that allow manipulation of ghost

state and invariants. Some of the interesting proof rules for

Hoare triples are as follows:

hoare-alloc

{True} ref 𝑣 {𝑥 . ∃ℓ . ⌈𝑥 = ℓ⌉ ∗ ℓ ↦→ 𝑣}

hoare-load

{ℓ ↦→ 𝑣} ! ℓ {𝑥 . ⌈𝑥 = 𝑣⌉ ∗ ℓ ↦→ 𝑣}

hoare-rec

{𝑃 ∗ {𝑃 } (rec 𝑓 𝑥 = 𝑒) 𝑣 {𝑥 . 𝑄}}
𝑒 [𝑣/𝑥] [rec 𝑓 𝑥 = 𝑒/𝑓]
{𝑥 . 𝑄}
{𝑃 } (rec 𝑓 𝑥 = 𝑒) 𝑣 {𝑥 . 𝑄}

hoare-bind

{𝑃 } 𝑒 {𝑦. 𝑅} ∀𝑣 . {𝑅 [𝑣/𝑦]} 𝑒 {𝑥 . 𝑄}
{𝑃 }𝐾 [𝑒] {𝑥 . 𝑄}

The rule hoare-bind states that in order to prove correct-

ness of the program 𝑒 under the evaluation context 𝐾 , it

suffices to prove that for any value 𝑣 that satisfies the post-

condition of 𝑒 , 𝐾 [𝑣] is correct.

Persistent Propositions. In our separation logic certain

propositions assert ownership over exclusive resources while

CPP ’21, January 18–19, 2021, Virtual, Denmark Amin Timany and Lars Birkedal

some other propositions only assert knowledge. We say the

former kind of proposition is ephemeral while we call the

latter kind of proposition persistent, i.e., duplicable.
3
The

quintessential examples of ephemeral and persistent propo-

sitions are points-to propositions and pure propositions, re-

spectively. This is evidenced by the rule points-to-exclusive

for points-to propositions and the following rule for pure

propositions:

pure-duplicable

⌈𝜙⌉ ⊣⊢ ⌈𝜙⌉ ∗ ⌈𝜙⌉
As we will discuss later on, invariants and ownership of

certain ghost resources are also persistent.

2.3 Monotone Counter: High-Level Specs
In this section we give a high level specification of the mono-

tone counter and use it to verify the code in Figure 1. The

specifications that we give here are very simple specifica-

tions that only allow us to reason about monotonicity of the

counter. See Birkedal and Bizjak [4] for different ways of giv-

ing (much stronger) specifications to concurrent counters. In

order to express the specifications for the monotone counter,

we assume that we have two predicates (which will define

later on in Section 3):

isCounter : Loc→ Names→ iProp

CounterAtLeast : Names→ N→ iProp

The predicate isCounter takes a location and a ghost name,

while the predicate CounterAtLeast takes a ghost name and

a natural number. Intuitively, the predicate isCounter(ℓ, 𝛾)
states that ℓ is a counter and its value is tracked by the ghost

state named 𝛾 . The predicate CounterAtLeast(𝛾, 𝑛) indicates
that the value of the counter being tracked by ghost state 𝛾

is at least 𝑛. Both of these predicates are persistent:

isCounter(ℓ, 𝛾)
isCounter(ℓ, 𝛾) ∗ isCounter(ℓ, 𝛾)

CounterAtLeast(𝛾, 𝑛)
CounterAtLeast(𝛾, 𝑛) ∗ CounterAtLeast(𝛾, 𝑛)

The specifications for the counter are as follows:

{True}
mkCounter ()

{𝑥 . ∃ℓ, 𝛾 . ⌈𝑥 = ℓ⌉ ∗ isCounter(ℓ, 𝛾) ∗ CounterAtLeast(𝛾, 0)}
(mkCounter-spec)

3
In practice Iris defines persistent propositions by endowing resource al-

gebras which a special operation that removes all ephemeral parts of the

resource, and a persistently modality defined in terms of this operation.

In this paper, we conflate duplicability and persistence as the difference is

orthogonal to what we are presenting in this paper. For a theoretical discus-

sion on the difference between the two concepts see Bizjak and Birkedal

[5].

{isCounter(ℓ, 𝛾)} increment ℓ {𝑥 . ⌈𝑥 = ()⌉}
(counter-increment-spec)

{isCounter(ℓ, 𝛾) ∗ CounterAtLeast(𝛾, 𝑛)}
read ℓ

{𝑥 . ∃𝑚. ⌈𝑥 =𝑚 ∧ 𝑛 ≤ 𝑚⌉ ∗ CounterAtLeast(𝛾,𝑚)}
(counter-read-spec)

The functionmkCounter returns a new counter whose value

is at least 0. Incrementing the counter does not have any

observable effect. Reading the counter, on the other hand,

gives us two important pieces of information: (1) the value

of the counter is at least as big as the returned value, and (2)

the value returned is greater than any previously observed

value that we pick.

Given these specs we can prove that the program in Fig-

ure 1 does not crash. We first show the following two Hoare-

triples:

{isCounter(ℓ, 𝛾)} incrloop ℓ {𝑥 . True} (incrloop-spec)

{isCounter(ℓ, 𝛾) ∗ CounterAtLeast(𝛾, 0)}
checkmonotone ℓ

{𝑥 . True}
(checkmonotone-spec)

To see that spec (incrloop-spec) holds, note that the propo-

sition isCounter(ℓ, 𝛾) is an invariant for the loop in this func-
tion. That is, since isCounter(ℓ, 𝛾) is persistent, we can du-

plicate it and use one copy to establish the precondition

for (counter-increment-spec). We use the other copy to es-

tablish the loop invariant at the end of execution of the

increment function. For proving (checkmonotone-spec), we

use isCounter(ℓ, 𝛾) and CounterAtLeast(𝛾, 0) as the precon-
dition of the (counter-read-spec) specs. Notice that we re-

tain isCounter(ℓ, 𝛾) and CounterAtLeast(𝛾, 0) as they are

persistent. Moreover, we obtain CounterAtLeast(𝛾, 𝑥) for
the read value, 𝑥 . We use the specs (counter-read-spec) to-

gether with isCounter(ℓ, 𝛾) and CounterAtLeast(𝛾, 𝑥) as the
precondition, this time for reading 𝑦. As a result, we obtain

CounterAtLeast(𝛾,𝑦) together with a proof that 𝑥 ≤ 𝑦. The
latter suffices to show that the subsequent conditional will

necessarily take the else branch and hence does not crash.

To complete the proof it suffices to show that both the

forked thread and the subsequent while loop do not crash.

The former is what we established in previous paragraph.

The latter follows from the fact that

isCounter(ℓ, 𝛾) ∗ CounterAtLeast(𝛾, 0)

is an invariant for the loop. This follows in an argument

similar to the proof of (incrloop-spec) above.

Reasoning about Monotonicity in Separation Logic CPP ’21, January 18–19, 2021, Virtual, Denmark

3 Resources and Partial Commutative
Monoids

In this section we discuss partial commutative monoid (PCM)

based resources in our separation logic.Wewill thereafter see

some useful examples of partial commutative monoids and

discuss invariants. We will then use these concepts to prove

correctness of the specifications that we gave to mkCounter ,

read, and increment, in section 2.

3.1 Partial Commutative Monoids
Following Iris’s practice we represent PCM’s as ordinary

commutative monoids with a validity predicate.

Definition 3.1 (PCM). A PCM is an algebraic structure

(𝑀,≡𝑀 , ·𝑀 , Y𝑀 ,✓𝑀) where 𝑀 is the carrier set, ≡𝑀 is the

an equivalence relation on𝑀 , ·𝑀 : 𝑀 ×𝑀 → 𝑀 is a binary

operation, ✓𝑀 is the validity predicate, and the following

conditions hold:

𝑎 ·𝑀 𝑏 ≡𝑀 𝑏 ·𝑀 𝑎 (commutativity)

𝑎 ·𝑀 (𝑏 ·𝑀 𝑐) ≡𝑀 (𝑎 ·𝑀 𝑏) ·𝑀 𝑐 (associativity)

𝑎 ·𝑀 Y𝑀 ≡𝑀 𝑎 (unit element)

𝑎 ≡𝑀 𝑎′ ∧ 𝑏 ≡𝑀 𝑏 ′⇒
𝑎 ·𝑀 𝑏 ≡𝑀 𝑎′ ·𝑀 𝑏 ′

(respect equiv)

✓𝑀Y𝑀 (unit validity)

𝑎 ≡𝑀 𝑏 ∧ ✓𝑀𝑎 ⇒ ✓𝑀𝑏 (validity respects)

✓𝑀 (𝑎 ·𝑀 𝑏) ⇒ ✓𝑀𝑎 (validity-op)

Each PCM 𝑀 comes equipped with a notion of equality

≡𝑀 . This is useful for defining PCM’s without having to use

quotients. We will discuss this in more details later on. We

drop the subscript𝑀 in ≡𝑀 , ·𝑀 , Y𝑀 , and ✓𝑀 whenever it is

clear from the context what𝑀 is.

Resource Ownership. There are two forms of proposi-

tions in our separation logic related to resources.

𝑃 ::= · · · | 𝑎 𝛾 | |⇛𝑃 | · · · (resources)

The proposition 𝑎
𝛾
asserts that we own the resource 𝑎. Here,

𝑎 is an element of some PCM. There can bemultiple instances

of the same PCM used as different resources. We use names,

𝛾 ∈ Names, to distinguish these different instances. If neces-

sary, we write 𝑎 : 𝑀
𝛾
to clarify that the owned element 𝑎

belongs to the PCM 𝑀 . The main idea in embedding own-

ership of elements of a PCM in the logic is that the PCM

operation models the separating conjunction. Note how the

separating conjunction is commutative (rule sep-comm) and

associative (rule sep-assoc). Moreover, in some cases separat-

ing conjunction of two propositions is contradictory while

those propositions are not contradictory on their own, e.g., in

rule points-to-exclusive. This is captured by the partiality of

PCM’s. The following facts about the ownership proposition

reflect these concepts:

own-op

𝑎 ·𝑀 𝑏
𝛾 ⊣⊢ 𝑎 𝛾 ∗ 𝑏 𝛾

own-valid

𝑎 : 𝑀
𝛾 ⊢ ⌈✓𝑀𝑎⌉

These rules allow us to split and combine resources and to

exclude ownership of certain resources, i.e., those that are

invalid. For instance, these two rules are used to derive the

rule points-to-exclusive.

As the rules own-op and own-valid suggest, the combina-

tion of all resources owned in the system under an instance 𝛾

is always valid. This is indeed an important property for the

soundness of our system in the presence of these rules. In

order to maintain this property, updating of ghost resources

is restricted to frame preserving updates [10]. We say that

there is a frame preserving update from 𝑎 to a 𝑏, written

𝑎⇝𝑀 𝑏, if

∀𝑎𝑓 . ✓(𝑎 · 𝑎𝑓) ⇒ ✓(𝑏 · 𝑎𝑓) (frame-preserving update)

The definition (frame-preserving update) above states that

ownership of 𝑎 can be updated to ownership of 𝑏 if for any

other resource (frame) 𝑎𝑓 that is compatible with 𝑎, 𝑎𝑓 is

also compatible with 𝑏. In such a case, updating from 𝑎 to 𝑏

may never invalidates the frame.

Update Modality. The update modality |⇛ enables al-

location and updating of resources. We write 𝑃≡∗𝑄 as a

shorthand for 𝑃 −∗ |⇛𝑄 .
The relevant proof rules for the update modality are the

following:

own-alloc

✓𝑀𝑎

⊢ |⇛∃𝛾 . 𝑎 𝛾

own-update

𝑎⇝𝑀 𝑏

𝑎
𝛾 ⊢ |⇛𝑏

𝛾

own-respects

𝑎 ≡𝑀 𝑏

𝑎
𝛾 ⊣⊢ 𝑏 𝛾

hoare-upd

{𝑃 } 𝑒 {𝑦. |⇛𝑄}
{𝑃 } 𝑒 {𝑦. 𝑄}

upd-hoare

|⇛{𝑃 } 𝑒 {𝑦. 𝑄}
{𝑃 } 𝑒 {𝑦. 𝑄}

The rule own-alloc states that any valid element of any

PCM 𝑀 can be allocated. Note that allocating an instance

of a resource creates a fresh name 𝛾 . The rule own-update

allows us to update a 𝑎 ∈ 𝑀 to an element 𝑏 if there is a

frame-preserving update from 𝑎 to 𝑏 in𝑀 . The rules hoare-

upd and upd-hoare allow us to allocate and update resources

throughout the proofs of correctness of programs.

3.2 The Order of a Partial Commutative Monoid
Each PCM𝑀 induces an extension order ⪯𝑀 defined by:

𝑎 ⪯𝑀 𝑏 ≜ ∃𝑐. 𝑏 ≡ 𝑎 · 𝑐 (extension order)

It is easy to see that the extension order ⪯𝑀 is always a pre-

order relation, i.e., it is reflexive and transitive. When clear

from the context we might drop the subscript𝑀 in ⪯𝑀 . The

extension order plays a crucial role in our PCM-based sepa-

ration logic. Indeed, in a sense, the whole logic is monotonic

with respect to this preorder. Ownership of 𝑎 : 𝑀
𝛾
allows

us to conclude that the collection 𝑐 of all the resources in the

system under the name 𝛾 is in the extension order relation

CPP ’21, January 18–19, 2021, Virtual, Denmark Amin Timany and Lars Birkedal

with 𝑎, i.e., 𝑎 ⪯𝑀 𝑐 . In fact, the key to many proofs in PCM-

based separation logics it to find the right (combination of)

PCM’s so that the extension-order reasoning provides the

necessary information for the proofs; for an example, see

the proof of the monotone counter below.

We can now formally state the main question that this

paper answers as follows: given a preorder relation 𝑅 :

P (A × A), can we construct a PCM Monotone(𝑅) and a

function 𝑓 : A → Monotone(𝑅) such that 𝑓 (𝑥) ⪯Monotone (𝑅)
𝑓 (𝑦) if and only if 𝑅(𝑥,𝑦)? We answer this question in Sec-

tion 4.

3.3 Some Useful PCM’s
A very simple example of a PCM is the PCM of natural

numbers together with 0 as the unit element and maximum

as the operation, which we write as Nmax. For this PCM we

take the equivalence relation to be the equality relation on

natural numbers. This PCM is a total PCM, i.e., the validity

predicate holds for all elements. It is easy to check that all

the axioms of a PCM defined earlier are satisfied by this

construction, e.g., max is commutative and associative, etc.

Note that as max is an idempotent operation, ownership of

the elements of Nmax is persistent.

All elements of the Nmax are valid. As a result, there is

a frame preserving update from any element to any other

element. In other words, owning 𝑛
𝛾
, we can update our

resources to own 𝑚
𝛾
for any arbitrary𝑚. Hence, this PCM

is not very useful for tracking the state of a program. As we

will shortly discuss, though, this PCM is very useful when

combined with the Authoritative PCM, which we will now

describe.

Note that the extension order in Nmax coincides with the

≤ order on natural numbers.

Authoritative PCM. The authoritative PCM [11] over

a PCM 𝑀 , Auth(𝑀), is a PCM that allows us to give an

instance-wide upper bound on the ownership of elements

of 𝑀 . Intuitively, elements of the PCM are of the form ◦𝑎,
meaning that we own 𝑎, or •𝑎 meaning that 𝑎 is the upper

bound on all resources owned in the ownership instance. We

call elements of the form ◦𝑎 fragment parts and the elements

of the form •𝑎 full parts.
The authoritative PCM is defined as follows:

Auth(𝑀) ≜ {◦𝑎 |𝑎 ∈ 𝑀} ∪ {•𝑎 |𝑎 ∈ 𝑀} ∪
{•◦ (𝑎, 𝑏) |𝑎, 𝑏 ∈ 𝑀} ∪

{
⊥
Auth(𝑀)

}

𝑎 ≡
Auth(𝑀) 𝑏 ≜

𝑎′ ≡𝑀 𝑏 ′ if 𝑎 = ◦𝑎′ and 𝑏 = ◦𝑏 ′

𝑎′ ≡𝑀 𝑏 ′ if 𝑎 = •𝑎′ and 𝑏 = •𝑏 ′

𝑎′
1
≡𝑀 𝑏 ′

1
∧ 𝑎′

2
≡𝑀 𝑏 ′

2
if 𝑎 = •◦ (𝑎′

1
, 𝑎′

2
) and

𝑏 = •◦ (𝑏 ′
1
, 𝑏 ′

2
)

True if 𝑎 = ⊥
Auth(𝑀) and

𝑏 = ⊥
Auth(𝑀)

False otherwise

𝑎 ·
Auth(𝑀) 𝑏 ≜

◦ (𝑎′ ·𝑀 𝑏 ′) if 𝑎 = ◦𝑎′ and 𝑏 = ◦𝑏 ′

•◦ (𝑎′, 𝑏 ′) if 𝑎 = •𝑎′ and 𝑏 = ◦𝑏 ′

•◦ (𝑏 ′, 𝑎′) if 𝑎 = ◦𝑎′ and 𝑏 = •𝑏 ′

•◦ (𝑎1, 𝑎′
2
·𝑀 𝑏 ′) if 𝑎 = •◦ (𝑎′

1
, 𝑎′

2
) and

𝑏 = ◦𝑏 ′

•◦ (𝑏1, 𝑎′ ·𝑀 𝑏 ′
2
) if 𝑎 = ◦𝑎′ and

𝑏 = •◦ (𝑏 ′
1
, 𝑏 ′

2
)

⊥
Auth(𝑀) otherwise

Y
Auth(𝑀) ≜ ◦ Y𝑀

✓
Auth(𝑀)𝑎 ≜

✓𝑀𝑎 if 𝑎 = ◦𝑎′

✓𝑀𝑎 if 𝑎 = •𝑎′

✓𝑀𝑎1 ∧ 𝑎2 ⪯𝑀 𝑎1 if 𝑎 = •◦ (𝑎′
1
, 𝑎′

2
)

False otherwise

Note how this definition, apart from the full parts and frag-

ments, also includes elements that are a combination of both.

The PCM operation is defined in such a way that the op-

eration is ⊥Auth(𝑀) (which is an invalid element) as soon

as more than one operand includes a full part. Therefore,

there can always be at most a unique full part owned in any

instance.

auth-full-exclusive

•𝑎 𝛾 ∗ •𝑏 𝛾 ⊢ False
The operation on the fragments, on the other hand, is defined

pointwise. Hence, we have that ◦𝑎 𝛾
is persistent whenever

𝑎
𝛾
is persistent. Importantly, if an element •◦ (𝑎, 𝑏) is valid,

then 𝑏 ⪯ 𝑎 holds. This fact, together with the rules own-op

and own-valid, allows us to derive the following:

auth-included

•𝑎 : Auth(𝑀) 𝛾 ∗ ◦𝑏 : Auth(𝑀) 𝛾 ⊢ ⌈𝑏 ⪯𝑀 𝑎⌉
The frame preserving updates of the authoritative PCM

Auth(𝑀) depend on𝑀 . Therefore, we will not discuss it in

general and only look at specific examples.

Authoritative PCM over Nmax. As expected, the PCM

Auth(Nmax) inherits most of its properties from𝑀 and the

authoritative PCM. For instance, the authoritative part is

exclusive while the fragment part is persistent. Moreover,

by auth-included we have that if we own •𝑛 𝛾
and ◦𝑚 𝛾

,

we can conclude𝑚 ≤ 𝑛. The more interesting aspect of the

Auth(Nmax) is the following frame-preserving update auth-

nat-max-fp-upd and its consequence auth-nat-max-own-upd:

auth-nat-max-fp-upd

𝑛 ≤ 𝑚 𝑘 ≤ 𝑚
•𝑛⇝𝑀 •◦ (𝑚,𝑘)

auth-nat-max-own-upd

𝑛 ≤ 𝑚 𝑘 ≤ 𝑚
•𝑛 𝛾 ⊢ |⇛ •𝑚 𝛾 ∗ ◦𝑘 𝛾

Note that the number tracked in the full part •𝑛 can never

decrease through a frame-preserving update because the

element ◦𝑛 is a possible frame for •𝑛.

3.4 Invariants
Before we give more details about the monotone counter, we

present invariants, which we will use to verify the monotone

Reasoning about Monotonicity in Separation Logic CPP ’21, January 18–19, 2021, Virtual, Denmark

counter:

𝑃 ::= · · · | 𝑃 (invariants)

The proposition 𝑃 asserts that 𝑃 holds at all times, i.e., 𝑃 is

an invariant.
4

inv-alloc

𝑃 ⊢ |⇛ 𝑃

hoare-atomic

{𝑃 ∗ 𝑅} 𝑒 {𝑦. 𝑄 ∗ 𝑅} 𝑅 𝑒 is physically atomic

{𝑃 } 𝑒 {𝑦. 𝑄}

The rule inv-alloc states that if 𝑃 holds, we can assert it

as an invariant, i.e., we can assert that from now on 𝑃 should

always hold. An invariant proposition 𝑃 only asserts the

knowledge that 𝑃 should hold invariantly. Hence, invariants

are persistent, i.e., duplicable:

inv-duplicable

𝑃 ⊣⊢ 𝑃 ∗ 𝑃

3.5 Verifying the Monotone Counter Impl.
Wenow define the predicates isCounter andCounterAtLeast
and briefly discuss how they are used to derive the specs:

mkCounter-spec, counter-increment-spec, counter-read-spec.

The predicates are defined as follows:

isCounter(ℓ, 𝛾) ≜ ∃𝑛. ℓ ↦→ 𝑛 ∗ •𝑛 : Auth(Nmax)
𝛾

CounterAtLeast(𝛾, 𝑛) ≜ ◦𝑛 : Auth(Nmax)
𝛾

Both of these predicates are persistent. In the following we

briefly discuss the proofs that the specs for the counter op-

erations hold.

Proof of mkCounter-spec. Creating the counter simply

consists of allocating a reference ℓ with value 0 which gives

us ℓ ↦→ 0. We use the rule own-alloc to allocate a fresh

instance 𝛾 of the ghost state •◦ (0, 0) 𝛾 , which is a valid ele-

ment of Auth(Nmax). Hence, we obtain • 0
𝛾
and ◦ 0 𝛾

. We

use the latter to establish CounterAtLeast(𝛾, 𝑛), and the for-

mer together with ℓ ↦→ 0 and the rule inv-alloc to establish

isCounter(ℓ, 𝛾).

Proof of counter-increment-spec. At the atomic point

of incrementing the counter we use the hoare-atomic to

access the invariant. Thus we get that there is a number 𝑛

for which we have ℓ ↦→ 𝑛 and •𝑛 𝛾
. The atomic increment

operation updates ℓ ↦→ 𝑛 + 1. In order to reestablish the

invariant we use the rule auth-nat-max-own-upd to obtain

4
In Iris, Invariants have a names which we omit in this paper as they only

clutter the presentation. These names are used for ensuring that invari-

ants are not accessed multiple times in a nested fashion which is generally

unsound. For the same reason, in Iris the update modality, weakest precon-

ditions, and Hoare triples are also indexed with masks (sets of invariant

names) to track which invariants are available to access.

•𝑛 + 1 𝛾
and ◦𝑛 + 1 𝛾

. We use the former to reestablish the

invariant and simply ignore the latter.
5

Proof of counter-read-spec. The precondition gives us

CounterAtLeast(𝛾, 𝑛). When we perform the atomic read

operation we access the invariant using the hoare-atomic. At

this point we get that there is a number 𝑘 for which we have

ℓ ↦→ 𝑘 and •𝑘 𝛾
. We use the rule auth-included together

with •𝑘 𝛾
and CounterAtLeast(𝛾, 𝑛) to establish that 𝑛 ≤ 𝑘 .

We then use the rule auth-nat-max-own-upd with •𝑘 𝛾
to

get •𝑘 𝛾
and ◦𝑘 𝛾

. without actually increasing the value of

the ghost state. We then reestablish the invariant and use

the freshly created ◦𝑘 𝛾
to establish the postcondition.

Discussion. Observe the high-level picture of the specifi-
cation and verification of the monotone counter: we needed

to reason about monotonicity with respect to the ≤ relation

on natural numbers and for this purpose we picked the Nmax

PCM whose extension order corresponds to the ≤ relation.

4 The Monotone PCM
In this section we present our general construction of the

PCM Monotone(𝑅) for a given preorder 𝑅 ⊆ A × A with

an injection function principal𝑅 : A → Monotone(𝑅) such
that:

principal𝑅 (𝑥) ⪯Monotone (𝑅) principal𝑅 (𝑦) ⇔ 𝑅(𝑥,𝑦)
(monotone-order)

The first observation we make is that if the preorder rela-

tion 𝑅 is join-semilattice with a bottom (least) element then

such a construction becomes trivial. A join-semilattice with a

bottom element is a structure (A, 𝑅,∨∨,⊥) where 𝑅 ⊆ A×A
is a partial order relation, ∨∨ is the join operation (least upper

boundwith respect to𝑅), and⊥ is the least element ofA with

respect to 𝑅. Any join-semilattice is a PCM with the trivial

equality relation as its equivalence relation where every ele-

ment is valid: take ∨∨ as the PCM operation and ⊥ as the unit

element. Indeed, we can easily check that monotone-order

holds by taking the principal𝑅 function to be the identity

function:

(∃𝑧. 𝑦 = 𝑥 ∨∨ 𝑧) ⇔ 𝑅(𝑥,𝑦)
Our general construction is based on this observation in

that it essentially constructs a join-semilattice with a bottom

element out of 𝑅.

Definition 4.1 (Monotone PCM). Given a preorder 𝑅 ⊆
A × A, the monotone PCM, Monotone(𝑅), is defined as the

PCM (Pfin (A),≡Monotone (𝑅) ,∪,∅,✓Monotone (𝑅)) where
𝐴 ≡Monotone (𝑅) 𝐵 ≜ ∀𝑥 ∈ A . Below(𝑥,𝐴) ⇔ Below(𝑥, 𝐵)

(monotone-equiv)

5
We can do this because our separation logic is affine (as opposed to linear).

However, we stress that our development here does not rely on the logic

being affine; a small variation of the proof could have been used in case the

logic had been linear.

CPP ’21, January 18–19, 2021, Virtual, Denmark Amin Timany and Lars Birkedal

Below(𝑥,𝐴) ≜ (∃𝑦. 𝑦 ∈ 𝐴 ∧ 𝑅(𝑥,𝑦))
✓Monotone (𝑅)𝐴 ≜ True

Here, Pfin (A) is the set of all finite subsets of A. We define

the principal𝑅 function as follows:

principal𝑅 (𝑥) ≜ {𝑥}

It is easy to check that the relation ≡Monotone (𝑅) is an equiv-

alence relation, and that the definition above satisfies all the

axioms of PCM in Definition 3.1. The only non-trivial axiom

is respect equiv which, however, immediately follows from

Below-union below.

Lemma 4.2. The predicate Below satisfies the following prop-

erties:

Below(𝑥,𝐴 ∪ 𝐵) ⇔ Below(𝑥,𝐴) ∨ Below(𝑥, 𝐵)
(Below-union)

Below(𝑥, principal𝑅 (𝑦)) ⇔ 𝑅(𝑥,𝑦) (Below-principal)

The monotone PCM as defined above satisfies monotone-

order.

Theorem 4.3. The monotone PCM reflects the order of the

preorder relation 𝑅, i.e., monotone-order holds.

Proof. We prove the two directions separately.

(⇒). We know that there is a set 𝐴 ⊆ A for which

principal𝑅 (𝑦) ≡ principal𝑅 (𝑥) ∪ 𝐴. We need to show that

𝑅(𝑥,𝑦) holds. By Below-principal above it suffices to show

thatBelow(𝑥, principal𝑅 (𝑦)). However, since principal𝑅 (𝑦) ≡
principal𝑅 (𝑥) ∪𝐴 holds, this is equivalent to showing that

Below(𝑥, principal𝑅 (𝑥) ∪ 𝐴). This, however, holds trivially
by Below-union and Below-principal.

(⇐). We know that 𝑅(𝑥,𝑦) and we need to show that

principal𝑅 (𝑥) ⪯ principal𝑅 (𝑦).We prove that principal𝑅 (𝑦) ≡
principal𝑅 (𝑥)∪principal𝑅 (𝑦) holds, or equivalently, by Below-
union, Below(𝑧, principal𝑅 (𝑦)) ⇔ Below(𝑧, principal𝑅 (𝑥)) ∨
Below(𝑧, principal𝑅 (𝑦)). The forward direction holds triv-

ially. For backward direction we only need to show that

Below(𝑧, principal𝑅 (𝑥)) impliesBelow(𝑧, principal𝑅 (𝑦)). This
follows by Below-principal and transitivity of 𝑅, because we

know 𝑅(𝑥,𝑦). □

Corollary 4.4. The following inference rule holds for owner-
ship of Auth(Monotone(𝑅)) elements.

auth-monotone-order

• principal𝑅 (𝑦)
𝛾 ∗ ◦ principal𝑅 (𝑥)

𝛾 ⊢ ⌈𝑅(𝑥,𝑦)⌉

Similarly to Nmax, Monotone(𝑅) is a total PCM and hence

there is a frame-preserving update from any element to any

element in this PCM. The following theorem gives a useful

frame-preserving update for Auth(Monotone(𝑅)).

Lemma 4.5. The following frame-preserving update and up-

date rule hold for the monotone PCM:

auth-monotone-fp-upd

𝑅(𝑥,𝑦) 𝑅(𝑧,𝑦)
• principal𝑅 (𝑥) ⇝𝑀 •◦ (principal𝑅 (𝑦), principal𝑅 (𝑧))

auth-monotone-own-upd

𝑅(𝑥,𝑦) 𝑅(𝑧,𝑦)
• principal𝑅 (𝑥)

𝛾 ⊢ |⇛ • principal𝑅 (𝑦)
𝛾 ∗ ◦ principal𝑅 (𝑧)

𝛾

5 Example Use Cases
In this section we present three illustrative examples of how

the monotone PCM can be used in reasoning about programs.

5.1 General Monotonic References
Given a set A and a preorder relation 𝑅 ⊆ A × A, and a

partial functionV from values to A, we construct a mech-

anism for tracking the value of a reference and updating it

monotonically according to 𝑅. In particular, this construction

provides two propositions, a monotone points-to proposition

ℓ
mon↦→𝛾 𝑣 , and a proposition AtLeast (𝛾, 𝑣) which indicates that

the monotone reference whose state is tracked by the ghost

state 𝛾 has a value that is at least 𝑣 . Notice that the AtLeast

predicate uses the value of the reference and not an element

in A that corresponds to it. This construction is designed

in such a way that any points-to predicate with a suitable

value can be turned into a monotone reference and back.

We define the following predicates to reason about the

value stored in the monotone reference:

AtLeast (𝛾, 𝑣) ≜ ∃𝑥 . ⌈V(𝑣) = 𝑥⌉ ∗ ◦ principal𝑅 (𝑥)
𝛾

ℓ
mon↦→𝛾 𝑣 ≜ ℓ ↦→ 𝑣 ∗ Exact (𝛾, 𝑣)

Exact (𝛾, 𝑣) ≜ ∃𝑥 . ⌈V(𝑣) = 𝑥⌉ ∗ • principal𝑅 (𝑥)
𝛾

The monotone reference construction satisfies the follow-

ing rules:

mon-ref-alloc

⌈V(𝑣) = 𝑥⌉ ℓ ↦→ 𝑣

|⇛∃𝛾 . ℓ mon↦→𝛾 𝑣

mon-ref-snapshot

ℓ
mon↦→𝛾 𝑣

|⇛ℓ mon↦→𝛾 𝑣 ∗ AtLeast (𝛾, 𝑣)

mon-ref-recall

ℓ
mon↦→𝛾 𝑣 AtLeast (𝛾,𝑤)
⌈𝑅(V(𝑤),V(𝑣))⌉

mon-ref-cancel

ℓ
mon↦→𝛾 𝑣

ℓ ↦→ 𝑣 ∗ ∀𝑤. ⌈𝑅(V(𝑣),V(𝑤))⌉ ∗ ℓ ↦→ 𝑤 ≡∗ ℓ mon↦→𝛾 𝑤

mon-ref-load

{ℓ mon↦→𝛾 𝑣} ! ℓ {𝑥 . ⌈𝑥 = 𝑣⌉ ∗ ℓ mon↦→𝛾 𝑣}
mon-ref-store

{ℓ mon↦→𝛾 𝑣 ∗ ⌈𝑅(V(𝑣),V(𝑤))⌉} ℓ ← 𝑤 {𝑥 . ℓ mon↦→𝛾 𝑤 }
The arguments for why these rules are sound are very close

to the verification of the monotone counter we presented

Reasoning about Monotonicity in Separation Logic CPP ’21, January 18–19, 2021, Virtual, Denmark

earlier. For instance, to validate mon-ref-alloc we simply

allocate •◦ (principal𝑅 (𝑥), principal𝑅 (𝑥)) to obtain a name

𝛾 and establish Exact (𝛾, 𝑣) and AtLeast (𝛾, 𝑣). Note how the

rule mon-ref-cancel cancels the monotone reference but

gives us a way back: if at some point the value 𝑤 of ℓ is

greater than 𝑣 (according to 𝑅), then we can reestablish the

monotone reference.

5.2 Excluding Unreachable Execution Paths
Consider the following program, excl_path:

let 𝑥 = ref 0 in

let𝑦 = ref 0 in

(𝑥 ← 1; !𝑦) | | (𝑦 ← 1; !𝑥)
Here, the parallel composition operation 𝑒1 | | 𝑒2 runs 𝑒1 and
𝑒2 concurrently and returns (𝑣1, 𝑣2) where 𝑣𝑖 is the resulting
value of 𝑒𝑖 . This program may return (0, 1), (1, 0), or (1, 1),
but never (0, 0). We prove this by showing that the following

specs hold:

{True} excl_path {𝑥 . ⌈𝑥 ∈ {(1, 0), (0, 1), (1, 1)}⌉}
(excl-path-spec)

To prove this property we show that the state of the val-

ues stored in 𝑥 and 𝑦 evolves monotonically according to a

preorder relation Reach. We define Reach as the reachability

relation of the following graph:

(0, 0)

(1,0)

(0,1)

(1,0);(1,1)

(0,1);(1,1)

The main idea of the proof is to use the graph above to

track the order of writes. If the left thread returns 0, then it

must have read 𝑦 when the write to 𝑥 had already happened

but the write to 𝑦 had not, i.e., the program must be in state

(1, 0) at the time of reading 𝑦. Similarly, if the right thread

returns 0, it must be the case that it has read 𝑥 when pro-

gram was in the state (0, 1). However, it is impossible for the

execution to have taken such a path as it does not exists in

the graph above.

We define two predicates for tracking the state of the

graph:

ExactST (𝛾, 𝑠) ≜•𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 (𝑠) 𝛾

ObsST (𝛾, 𝑠) ≜◦𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 (𝑠) 𝛾

Using the rule auth-included we can prove the following

rule:

state-reachable

ExactST (𝛾, 𝑠) ∗ ObsST (𝛾, 𝑠 ′) ⊢ ⌈Reach(𝑠 ′, 𝑠)⌉
Before presenting more details, we briefly present frac-

tional points-to propositions. Fractional permissions are a

well-known technique frequently used in separation logic.

Given a points-to proposition, we can split it into fractions

which can be later combined to obtain back the whole. In

fact, the points-to proposition ℓ ↦→ 𝑣 is a fractional points-to

proposition where the fraction is 1, i.e., ℓ ↦→ 𝑣 = ℓ ↦→1 𝑣 .

points-to-split

ℓ ↦→𝑞 𝑣

ℓ ↦→𝑞/2 𝑣 ∗ ℓ ↦→𝑞/2 𝑣

points-to-agree

ℓ ↦→𝑞 𝑣 ℓ ↦→𝑞′ 𝑤

⌈𝑣 = 𝑤⌉

points-to-merge

ℓ ↦→𝑞/2 𝑣 ℓ ↦→𝑞/2 𝑣

ℓ ↦→𝑞 𝑣

The intuitive idea is that fractional points-to propositions

can be used to share ownership of a location in a safe way:

having a fraction allows one to read the location but not to

write to that location. In other words, the hoare-load rule

also works with a fractional (with any fraction) points-to.

To prove (excl-path-spec) abovewe establish the following

invariant, after the two references have been allocated as ℓ𝑥
and ℓ𝑦 , by letting the existentially quantified 𝑠 be the state

(0, 0):
invST ≜

∃𝑠 . ℓ𝑥 ↦→1/2 val𝑥 (𝑠) ∗ ℓ𝑦 ↦→1/2 val𝑦 (𝑠) ∗ ExactST (𝛾, 𝑠)

Given a state 𝑠 , the val𝑥 (𝑠) returns the value of ℓ𝑥 in that

state (i.e., if 𝑠 = (0, 0), then it returns 0, if 𝑠 = (1, 0) then it

returns 1, if 𝑠 = (0, 1); (1, 1), then it returns 1, etc.). Likewise

val𝑦 (𝑠) returns the value of ℓ𝑦 in state 𝑠 .

After this, we prove that each thread satisfies the following

specs:

{ℓ𝑥 ↦→1/2 0 ∗ invST }
ℓ𝑥 ← 1; ! ℓ𝑦

{𝑧. (⌈𝑧 = 0⌉ ∗
ObsST (𝛾, (1, 0))

)
∨

©«
⌈𝑧 = 1⌉ ∗
ObsST (𝛾, (1, 0); (1, 1)) ∨
ObsST (𝛾, (0, 1); (1, 1))

ª®®¬}
{ℓ𝑦 ↦→1/2 0 ∗ invST }
ℓ𝑦 ← 1; ! ℓ𝑥

{𝑧. (⌈𝑧 = 0⌉ ∗
ObsST (𝛾, (0, 1))

)
∨

©«
⌈𝑧 = 1⌉ ∗
ObsST (𝛾, (1, 0); (1, 1)) ∨
ObsST (𝛾, (0, 1); (1, 1))

ª®®¬}
Each thread combines the fractional points-to proposition

it is given together with its counterpart in the invariant to

perform its write. The fractional permissions in the invariant

suffice for reading. If the program were to return (0, 0) then
it must be the case that both threads return 0 and, according

to the specs above, that is only possible if we have both

ObsST (𝛾, (1, 0)) and ObsST (𝛾, (0, 1)). But combining these

two propositions with the fact (obtained from the invariant)

that there is some state 𝑠 for which we have ExactST (𝛾, 𝑠), we
would then get Reach((1, 0), 𝑠) and Reach((0, 1), 𝑠) by rule

state-reachable. However, by the definition of the graph

there is no state 𝑠 that satisfies these criteria. Hence, the

postcondition of excl-path-spec holds.

5.3 The Causal Closure Relation
This example is inspired by causally consistent distributed

key-value stores, e.g., Ahamad et al. [1]. In such a system

CPP ’21, January 18–19, 2021, Virtual, Denmark Amin Timany and Lars Birkedal

a database is replicated and replicas use messages over the

network to keep one another up to date. However, network

messages are not guaranteed to arrive in the exact order of

the events that caused those messages to be sent. Therefore,

these algorithms [1] use some mechanism, e.g., logical vector

clocks, to reflect the causal order between events. A replica

only observes (registers) an event if it has already observed

all the events that it causally depends on.

Since on each replica multiple threads interact with the

database, no single thread can have exclusive authority over

observed events — in an actual implementation a separate

thread (or threads) receives messages over the network and

applies them. In order to verify programs in such a setting we

introduce two predicates: Observed• and Observed◦ to track

the authoritative and the fragment part of the information on

the set of observed events. The idea is that an invariant would

use Observed• to express, through resources, what events

have been observed, and threads would use ownership of

Observed◦ to express a lower bound on the set of observed

events. However, it is not sufficient to have that the set of

observed events tracked by the fragment is a subset of the

set of all observed events. Indeed, as we will see through a

simple example, one needs to know that the fragment is a

causally-closed subset of the set of all observed events. That

is, if we have an event in the fragment, then any other event

in the set of all observed events that this event depends on

should also be in the fragment.

In order to demonstrate the ideas above we fix a set of

events Events. We consider two particular events ev0 and

ev1 in Events for which we know ev0.time < ev1 .time, i.e.,

the logical time of ev0 is smaller than that of ev1, or, ev1

causally depends on ev0. Crucially, ev0 is the only event that

ev1 depends on, and ev0 itself has no dependencies. We verify

the following program, i.e., we show it does not crash:

let db = empty_DB () in
let dbp = ref db in

let wait_for = _𝑥. while(¬ (is_observed dbp 𝑥)){} in
fork {simulate_receive dbp ev0} ;
fork {simulate_receive dbp ev1} ;
wait_for ev1;

if is_observed dbp ev0 then () else () ()

Since our programming language does not support network-

ing, we simply fork functions that simulate receiving events.

Notice that the order at which the events are received de-

pends on scheduling of threads and thus is non-deterministic.

The function simulate_receive simply adds events to the data-

base dbp which is simply a collection of all received events,

whether they are observed or not. For simplicity we have

used a reference, dbp, to an algebraic list, db, to model the

database. The function is_observed checks if the given event

is observed, i.e., that the event itself as well as all its dependen-

cies are in the database. This program waits for observation

of the event ev1 and then asserts that the event ev0 is also

observed, i.e., it crashes if this is not the case.

We define the predicates Observed• and Observed◦ as fol-
lows:

Observed• (𝛾, 𝐸) ≜ • principalCCS𝐸
𝛾

Observed◦ (𝛾, 𝐸) ≜ ◦ principalCCS𝐸
𝛾

where the causally-closed-subset relation, CCS is defined as

follows:

CCS(𝐸, 𝐹) ≜ 𝐸 ⊆ 𝐹 ∧
∀ev, ev ′ ∈ 𝐹 . ev.time ≤ ev

′.time ∧ ev ′ ∈ 𝐸 ⇒ ev ∈ 𝐸

It is easy to see that this relation is both reflexive and transi-

tive, and hence a preorder. We use the following invariant

to verify the program above:

isDB(𝛾, dbp) ≜ ∃𝑣, 𝐸. dbp ↦→ 𝑣 ∗ DBcontents(𝑣, 𝐸) ∗
⌈𝐸 ⊆ {ev0, ev1}⌉ ∗
Observed• (𝛾,ObservedSubset (𝐸))

Here, the predicateDBcontents(𝑣, 𝐸) asserts that the contents
of the database 𝑣 is exactly the set of events 𝐸. Initially, we

establish the invariant above by picking 𝐸 to be the empty

set and 𝑣 to be the newly created empty database. Further-

more, we instantiate resources so that next to initializing the

invariant we also obtain Observed◦ (𝛾,∅).
Given this invariant we can verify adding ev0 and ev1

in the two forks — we might have to update the resource

Observed• as adding events can grow the set of observed

events in the database, ObservedSubset (𝐸).
We ascribe the following specifications to the is_observed

function:

{isDB(𝛾, dbp) ∗ Observed◦ (𝛾, 𝐸)}
is_observed dbp ev

{𝑥 . ∃𝑏 ∈ {true, false} , 𝐹 . ⌈𝑥 = 𝑏⌉ ∗ ⌈𝐸 ⊆ 𝐹 ⌉ ∗
Observed◦ (𝛾, 𝐹) ∗
((⌈𝑏 = true ∧ ev ∈ 𝐹 ⌉) ∨ (⌈𝑏 = false ∧ ev ∉ 𝐹 ⌉))}

(is_observed-spec)

Given is_observed-spec above we can verify the call to the

wait_for function with the following specs:

{isDB(𝛾, dbp) ∗ Observed◦ (𝛾,∅)}
wait_for dbp ev1

{𝑥 . ∃𝐹 . Observed◦ (𝛾, 𝐹) ∗ ev1 ∈ 𝐹 }

That is, after wait_for dbp ev1 we know Observed◦ (𝛾, 𝐹) for
some set 𝐹 for which ev1 ∈ 𝐹 . On the other hand, since 𝐹

must be a causally-closed subset of the set of events in the

invariant we also know that ev0 ∈ 𝐹 . At this point, we can

Reasoning about Monotonicity in Separation Logic CPP ’21, January 18–19, 2021, Virtual, Denmark

verify the last line of the code. We appeal to the is_observed-

spec above and use Observed◦ (𝛾, 𝐹) obtained from the post-

condition of wait_for dbp ev1 to satisfy the precondition of

the call to is_observed dbp ev0. This time we obtain a set

Observed◦ (𝛾,𝐺) for some set 𝐺 such that 𝐹 ⊆ 𝐺 . Moreover,

we are guaranteed that if this call returns false, ev0 ∉ 𝐺

which is a contradiction. Hence, the crashing else branch

is not reachable.

The approach presented here for reasoning about causal

closure is exactly how Gondelman et al. [7] reason about

casual closure in Iris using the monotone resource algebra.

6 Canonicity of Construction
In this section we show that the construction of the mono-

tone PCM that we presented is canonical in the sense that it

arises as a free functor in the category-theoretic sense, i.e.,

it is the left adjoint to a forgetful functor.

Before we continue, let us make precise what we mean by

the category PCM of PCM’s. The objects of this category are

PCM’s and its morphisms are PCM-morphisms defined as

follows:

Definition 6.1. Let (𝑀,≡𝑀 , ·𝑀 , Y𝑀 ,✓𝑀) and (𝑀 ′,≡𝑀′, ·𝑀′,
Y𝑀′,✓𝑀′) be two PCM’s. A PCM-morphism from𝑀 to𝑀 ′ is
a function 𝑓 : 𝑀 → 𝑀 ′ such that the following hold:

𝑎 ≡𝑀 𝑏 ⇒ 𝑓 (𝑎) ≡𝑀′ 𝑓 (𝑏) (respect-equiv)

𝑓 (𝑎 ·𝑀 𝑏) ≡𝑀′ 𝑓 (𝑎) ·𝑀′ 𝑓 (𝑏) (respec-op)

𝑓 (Y𝑀) ≡𝑀′ Y𝑀′ (respec-unit)

✓𝑀𝑎 ⇒ ✓𝑀′ 𝑓 (𝑎) (respec-validity)

Perhaps the first thought that comes to mind is that there

should be an adjunction between the functors Monotone :

PreOrder→ PCM and Extension : PCM→ PreOrder. How-
ever, this is not the case. Both the monotone construction

and the extension order (as the forgetful functor) form func-

tors between the categories. However, they do not constitute

an adjunction. To see why, consider the co-unit of the ad-

junction, which should be a natural transformation from

Monotone ◦ Extension to the identity functor 1PCM. This nat-

ural transformation should produce PCM morphisms of the

form Monotone(⪯𝑀) → 𝑀 for any PCM𝑀 . In other words,

given a finite set of elements of a PCM𝑀 , the natural trans-

formation should produce an element of𝑀 . Intuitively, such

an element should be the join (least upper bound) of the

elements of the given finite set with respect to the extension

order of the𝑀 . But such an element may simply not exist.

Instead we consider a more refined situation: First recall

that themonotone construction is inspired by join-semilattices

with a bottom element. Hence, we consider the category JSL
whose objects are join-semilattices with a bottom element

and whose morphisms are monotone functions that preserve

both the join operation and the bottom element. This cate-

gory can be seen as a full subcategory of the category PCM

Poset JSL

PCMPreOrder

Monotone

Forgetful

⊣
fully-faithful

inclusion

fully-faithful

inclusion

anitsymmetric

closure
⊣

Extension

Figure 2. The category-theoretic results establishing that

the monotone construction forms a free functor.

of PCM’s because the inclusion functor JSL ↩→ PCM is fully-

faithful. And indeed, the monotone construction that we

have presented constructs join-semilattices with a bottom

element, with a small caveat: the notion of join is only well-

defined for partial order relations, not for arbitrary preorders.

The problem is that in a preorder relation a set may have

multiple least upper bounds. However, when applied to a

partial order, the monotone construction that we have pre-

sented does in fact construct a join-semilattice with a bottom

element. Moreover, we can verify that the monotone con-

struction is indeed the left adjoint to the forgetful functor

that maps join-semilattices with bottom elements to their

underlying partial orders. Furthermore, we note the well-

known fact that the category of partial orders and monotone

functions, Poset, is a reflective subcategory of the category of
preorders and monotone functions, PreOrder. The diagram
in Fig. 2 summarizes these results.

The unit of the adjunction between the two categories

Poset and JSL, of type ∀(A, 𝑅) : Poset. A → Monotone(𝑅),
sends an element of the given poset to the singleton set

containing that element (as an element of the monotone con-

struction). The co-unit of the adjunction, of type ∀(A, 𝑅,∨∨,
⊥) : JSL. Monotone(𝑅) → A, sends a finite set of elements

of A to the join of this set.

7 Coq Formalization
All the results presented in this paper are machine checked

by the Coq proof assistant. In particular, the monotone con-

struction and all the examples presented in Section 5 are for-

malized on top of the Iris program logic and the Iris [10, 11]

proof mode [12, 13]. Moreover, all the category-theoretic

results presented in Figure 2 are formalized on top of the

category theory library of Timany and Jacobs [16]. This cat-

egory theory library provides all the basic concepts that

CPP ’21, January 18–19, 2021, Virtual, Denmark Amin Timany and Lars Birkedal

we need: categories, functors, adjunctions, etc.. Below, we

discuss some technical aspects of these formalizations.

Axioms in Coq Formalizations. The formalization on

top of Iris does not make use of any Coq axioms. The formal-

ization of our categorical constructions, however, do make

use of axioms, as the category theory library that we use

for our formalization does. In particular, the category theory

library makes extensive use of function extensionality and

proof irrelevance throughout the entire library. It also uses

the axiom of choice and propositional extensionality in order

to construct quotient types which we use as explained below.

7.1 Formalization on top of Iris
Iris uses resource algebras for modeling resources. Resource

algebras are very close to PCM’s with one main difference:

Resource algebras are step-indexed PCM’s in the sense that

the equivalence relations and the validity predicates of re-

source algebras are indexed by natural numbers. Moreover,

these relations are expected to be downwards closed, i.e.,

if they hold for 𝑛 they should hold for any 𝑚 ≤ 𝑛. In our

formalization of the monotone construction on top of Iris the

equivalence relation and the validity relations are constant

with respect to the step-index and hence trivially downwards

closed. Another minor difference is that resource algebras

in Iris are equipped with a core, a partial function which de-

termines the duplicable part of each element of the resource

algebra. The notion of persistence in Iris is defined using the

core function. In practice, in any total PCM, e.g. the mono-

tone construction, the core function can be taken to be the

identity function, i.e., the duplicable part of any element is

the element itself. This way, ownership of all the elements

are persistent just as we discussed in our construction of the

monotone PCM and our examples. In the Coq formalization

of the monotone construction we use lists to represent finite

sets of elements.

All the examples presented in Section 5 are implemented

on top of HeapLang, the programming language shipped

with Iris. HeapLang is an untyped lambda-calculus with first-

class concurrency primitives i.e., a fork command, an atomic

compare-and-set (CAS) operation, and an atomic fetch-and-

add (FAA) operation (on integer references).

The formalization of the code and verification of all the

examples presented in this paper are almost exactly as ex-

plained above. For instance, each of the rules for general

monotonic references is formalized as a Coq lemma, with

a statement that very closely resembles what we have pre-

sented in the paper. The only slight deviation is due to the

fact that the partial function V in Coq is represented as a

function to an optional type and hence some of the state-

ments are cluttered with side conditions in order to express

what is presented in the paper.

One detail that we did not explicate in the causal closure

example is what we hid in the definition of the empty_DB

function. As we discussed in the example, for simplicity we

use algebraic lists to represent the “database”. However, the

database dbp is accessed and updated concurrently. These

concurrent accesses should somehow be synchronized. In

our implementation we opted to use the atomic CAS opera-

tion in a CAS-loop for synchronization purposes; a standard

technique in fine-grained concurrent separation logic. Al-

ternatively, one could have used a lock for synchronization.

Since the CAS operation in HeapLang only works on refer-

ences to base values or other references, the implementation

of the empty_DB function in fact returns a reference to a list

and dbp is then a reference to a reference to a list on which

we can perform the CAS operation.

7.2 Formalization of Canonicity
In our Coq formalization we construct all the categories,

functors and adjunctions presented in Figure 2. In this for-

malization we define the monotone construction as a con-

struction that from a partially ordered set constructs a join-

semilattice with a bottom element, just as in the figure. The

category theory library that we work with does not support

setoids, i.e., user-defined equivalence relations, for objects

and morphisms. It uses the definition of equality from the

standard library of Coq. Hence, we use the classical theory

of quotients used by this library for the monotone construc-

tion. The category theory library uses the axiom of choice

(the axiom ConstructiveIndefiniteDescription__on in Coq’s

standard library) together with functional and propositional

extensionality axioms to construct quotients; this construc-

tion of quotients is the only place where we use classical

axioms in our formalization.

We define the monotone construction using lists to rep-

resent finite sets of elements. We show that the relation

monotone-equiv is an equivalence relation which allows us

to use the quotient construction provided by the category

theory library. We also use this quotient construction for

constructing the antisymmetric closure of preorders.

8 Related Work
The only works directly related to our work are the work

of Pilkiewicz and Pottier [15] and Ahman et al. [2], which

also support a form of reasoning about monotonicity with

respect to a general preorder relation.

Pilkiewicz and Pottier [15] introduce the notions of fates

and predictions for arbitrary preorder relations to reason

about monotonicity in a type system with capabilities. In-

tuitively, a fate {𝜙 : 𝑖}, where 𝜙 is the name of the fate and

𝑖 is the exact value of the fate, corresponds to ownership

of • principal𝑅𝜙 (𝑖) in our system, where 𝑅𝜙 is the preorder

relation of fate 𝜙 . On the other hand, a prediction ⟨𝜙 : 𝑖⟩
intuitively corresponds to the ownership of ◦ principal𝑅𝜙 (𝑖).
The axioms governing fates and predictions in the system of

Pilkiewicz and Pottier resemble closely the rules that we have

Reasoning about Monotonicity in Separation Logic CPP ’21, January 18–19, 2021, Virtual, Denmark

derived for the combination of the authoritative and mono-

tone PCM’s, e.g., having {𝜙 : 𝑖} and ⟨𝜙 : 𝑗⟩ implies 𝑗 ≤ 𝑖 .

Pilkiewicz and Pottier [15] use the so-called anti-frame rule,

a mechanism for enforcing invariants in sequential settings,

to tie internal states of data structures to fates. This is anal-

ogous to how we use invariants to tie the physical state of

the program to ghost state constructed using the authori-

tative and monotone PCM’s, e.g., in the monotone counter

example.

Ahman et al. [2] essentially provide a variant of F★’s state
monad called MST where the put operation of the monad is

restricted so that the state may only evolve according to the

given preorder relation. This allows the MST monad also to

provide a witness operation, which gives a witness that some

property 𝑝 holds, as long as 𝑝 is stable under the preorder

of MST. The MST monad also has a recall operation that

proves that the current state satisfies a property that was

witnessed in the past. The MST construction is useful for

reasoning about programs written in a monadic style in a

higher-order dependently typed language such as F★ which

can express the MST monad. In contrast, our construction

is useful for reasoning in a (concurrent) separation logic

about programs written in whatever untyped programming

language the separation logic is developed for, e.g., Iris’s

HeapLang. A weakness of the approach of Ahman et al. [2]

is that it restricts the evolution of the state to the given pre-

order. For instance, in their section “Discussion: Temporarily

Escaping the Preorder” Ahman et al. [2] discuss that in order

to escape the preorder they need to change the type of the

state and preorder relation. In contrast, our construction is

more flexible. For instance, our general monotonic references

can be temporarily canceled and reestablished using the rule

mon-ref-cancel.

FCSL [14] uses so-called concurroids, in addition to PCM’s,

to encode protocols on shared resources. A concurroid is

equipped with a state transition system (STS) and the pro-

tocol is then only allowed to evolve according to that STS.

Hence, concurroids can be used to enforce monotonicity

with respecct to an STS. This is, for instance, how Delbianco

et al. [6] reason about monotonicity of the history of events

in a system. Our construction of the monotone resource al-

gebra suggests that it might be possible to simplify FCSL’s

concurroids so that they are expressed entirely in terms of

PCM’s.

Iris includes a so-called STS resource algebra, which en-

codes an STS whose states are associated with a collection

of tokens [11]. The STS resource algebra is defined in such

a way that owning certain tokens allows one to conclude

that certain states have not yet been reached. We have very

recently observed that, given a preorder 𝑅, one may define

an instance of the STS resource algebra, with 𝑅 as step rela-

tion of the STS and without any tokens, which can be used

to encode most of the functionalities of the resource alge-

bra Auth(Monotone(𝑅)) presented in this paper. The STS

resource algebra formalized in the Coq formalization of Iris

is almost never used in practise because it is too difficult

to use in practice in Coq formalizations. This difficulty is

mostly due to the fact that in virtually all operations on this

resource algebra one needs to reason about tokens and how

they are exchanged between different components of the re-

sources algebra. In contrast, our monotone resource algebra

construction has proved to be very useable in practise, also

in connection with the authoritative resource algebra.

Gordon et al. [8] restrict individual references with an

arbitrary preorder in the types of their respective program-

ming languages. Our work differs from this work in that we

do not tie preorders to individual references. We embed the

preorder relation into the ghost state which can freely be

tied to the state of the program, directly or indirectly.

9 Conclusion
We presented a general construction Monotone(𝑅) to reason

about monotonicity, with respect to an arbitrary preorder

relation 𝑅, in concurrent separation logics. We established its

utility by presenting three illustrative examples and showed

its canonicity by establishing that our construction is a free

functor in the category-theoretic sense.

Acknowledgments
We thank the anonymous reviewers for their helpful com-

ments and suggestions.

Amin Timany was a postdoctoral fellow of the Flemish re-

search fund (FWO) during parts of this project. This research

was supported in part by a Villum Investigator grant (no.

25804), Center for Basic Research in Program Verification

(CPV), from the VILLUM Foundation.

References
[1] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and

Phillip W. Hutto. 1995. Causal Memory: Definitions, Implementation,

and Programming. Distributed Comput. 9, 1 (1995), 37–49. https:
//doi.org/10.1007/BF01784241

[2] Danel Ahman, Cédric Fournet, Catalin Hritcu, Kenji Maillard, Aseem

Rastogi, and Nikhil Swamy. 2018. Recalling a witness: foundations and

applications of monotonic state. Proc. ACM Program. Lang. 2, POPL

(2018), 65:1–65:30. https://doi.org/10.1145/3158153
[3] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer,

Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014.

Program Logics for Certified Compilers. Cambridge University Press,

USA.

[4] Lars Birkedal and Aleš Bizjak. 2017. Lecture Notes on Iris: Higher-

Order Concurrent Separation Log. (2017). http://iris-project.org/
tutorial-pdfs/iris-lecture-notes.pdf

[5] Ales Bizjak and Lars Birkedal. 2018. On Models of Higher-Order

Separation Logic. In Proceedings of the Thirty-Fourth Conference on

the Mathematical Foundations of Programming Semantics, MFPS 2018,

Dalhousie University, Halifax, Canada, June 6-9, 2018 (Electronic Notes

in Theoretical Computer Science, Vol. 341), Sam Staton (Ed.). Elsevier,

57–78. https://doi.org/10.1016/j.entcs.2018.03.016
[6] Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and

Anindya Banerjee. 2017. Concurrent Data Structures Linked in Time

https://doi.org/10.1007/BF01784241
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/3158153
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
http://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1016/j.entcs.2018.03.016

CPP ’21, January 18–19, 2021, Virtual, Denmark Amin Timany and Lars Birkedal

(Artifact). Dagstuhl Artifacts Series 3, 2 (2017), 4:1–4:4. https://doi.
org/10.4230/DARTS.3.2.4

[7] Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin

Timany, and Lars Birkedal. 2021. Distributed Causal Memory: Modular

Specification and Verification in Higher-Order Distributed Separation

Logic. Proc. ACM Program. Lang. POPL (2021). To appear.

[8] Colin S. Gordon, Michael D. Ernst, and Dan Grossman. 2013. Rely-

guarantee references for refinement types over aliased mutable data.

In ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-

Juergen Boehm and Cormac Flanagan (Eds.). ACM, 73–84. https:
//doi.org/10.1145/2491956.2462160

[9] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.

Higher-order ghost state. In Proceedings of the 21st ACM SIGPLAN

International Conference on Functional Programming, ICFP 2016, Nara,

Japan, September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and

Eijiro Sumii (Eds.). ACM, 256–269. https://doi.org/10.1145/2951913.
2951943

[10] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular

foundation for higher-order concurrent separation logic. J. Funct.

Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151
[11] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, Mumbai, India, January 15-17,

2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 637–650.

https://doi.org/10.1145/2676726.2676980

[12] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek

Dreyer. 2018. MoSeL: a general, extensible modal framework for

interactive proofs in separation logic. Proc. ACM Program. Lang. 2,

ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236772
[13] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

proofs in higher-order concurrent separation logic. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming

Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe

Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. http://dl.acm.
org/citation.cfm?id=3009855

[14] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán An-

drés Delbianco. 2014. Communicating State Transition Systems for

Fine-Grained Concurrent Resources. In Programming Languages and

Systems - 23rd European Symposium on Programming, ESOP 2014, Held

as Part of the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings (Lec-

ture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer,

290–310. https://doi.org/10.1007/978-3-642-54833-8_16
[15] Alexandre Pilkiewicz and François Pottier. 2011. The essence of mono-

tonic state. In Proceedings of TLDI 2011: 2011 ACM SIGPLAN Interna-

tional Workshop on Types in Languages Design and Implementation,

Austin, TX, USA, January 25, 2011, StephanieWeirich and Derek Dreyer

(Eds.). ACM, 73–86. https://doi.org/10.1145/1929553.1929565
[16] Amin Timany and Bart Jacobs. 2016. Category Theory in Coq 8.5.

In 1st International Conference on Formal Structures for Computation

and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal (LIPIcs,

Vol. 52), Delia Kesner and Brigitte Pientka (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 30:1–30:18. https://doi.org/10.4230/
LIPIcs.FSCD.2016.30

https://doi.org/10.4230/DARTS.3.2.4
https://doi.org/10.4230/DARTS.3.2.4
https://doi.org/10.1145/2491956.2462160
https://doi.org/10.1145/2491956.2462160
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3236772
http://dl.acm.org/citation.cfm?id=3009855
http://dl.acm.org/citation.cfm?id=3009855
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/1929553.1929565
https://doi.org/10.4230/LIPIcs.FSCD.2016.30
https://doi.org/10.4230/LIPIcs.FSCD.2016.30

	Abstract
	1 Introduction
	2 Separation Logic
	2.1 Programming Language
	2.2 Higher-Order Concurrent Separation Logic
	2.3 Monotone Counter: High-Level Specs

	3 Resources and Partial Commutative Monoids
	3.1 Partial Commutative Monoids
	3.2 The Order of a Partial Commutative Monoid
	3.3 Some Useful PCM's
	3.4 Invariants
	3.5 Verifying the Monotone Counter Impl.

	4 The Monotone PCM
	5 Example Use Cases
	5.1 General Monotonic References
	5.2 Excluding Unreachable Execution Paths
	5.3 The Causal Closure Relation

	6 Canonicity of Construction
	7 Coq Formalization
	7.1 Formalization on top of Iris
	7.2 Formalization of Canonicity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

