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Verifying soundness of symbolic execution-based program verifiers is a significant challenge. This is especially
true if the resulting tool needs to be usable outside of the proof assistant, in which case we cannot rely on
shallowly embedded assertion logics and meta-programming. The tool needs to manipulate deeply embedded
assertions, and it is crucial for efficiency to eagerly prune unreachable paths and simplify intermediate
assertions in a way that can be justified towards the soundness proof. Only a few such tools exist in the
literature, and their soundness proofs are intricate and hard to generalize or reuse. We contribute a novel,
systematic approach for the construction and soundness proof of such a symbolic execution-based verifier. We
first implement a shallow verification condition generator as an object language interpreter in a specification
monad, using an abstract interface featuring angelic and demonic nondeterminism. Next, we build a symbolic
executor by implementing a similar interpreter, in a symbolic specification monad. This symbolic monad
lives in a universe that is Kripke-indexed by variables in scope and a path condition. Finally, we reduce the
soundness of the symbolic execution to the soundness of the shallow execution by relating both executors
using a Kripke logical relation. We report on the practical application of these techniques in Katamaran, a
tool for verifying security guarantees offered by instruction set architectures (ISAs). The tool is fully verified
by combining our symbolic execution machinery with a soundness proof of the shallow verification conditions
against an axiomatized separation logic, and an Iris-based implementation of the axioms, proven sound
against the operational semantics. Based on our experience with Katamaran, we can report good results on
practicality and efficiency of the tool, demonstrating practical viability of our symbolic execution approach.
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1 INTRODUCTION

Program logics based on Hoare logic and separation logic allow the modular verification of a
very general class of correctness properties of software, including memory safety, absence of race
conditions, functional correctness, termination [Gotsman et al. 2009] etc. However, derivations in
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such program logics take the form of large proof trees that are unrealistic to construct by hand.
Instead, verification tools are used that guarantee the existence of a Hoare logic proof on successful
verification. These tools use techniques like symbolic execution (SE) or weakest preconditions (WP)
to decide largely automatically whether a program satisfies the program logic rules. For many tools
like Dafny [Leino 2010], Frama-C [Kirchner et al. 2015], VeriFast [Jacobs et al. 2010] etc.[Ahrendt
et al. 2014; Cohen et al. 2009; Filliâtre and Marché 2007; Leino et al. 2009] this decision can be
trusted only if the tool is assumed to be bug-free.

Stronger assurance is provided by verified tools like VST [Cao et al. 2018] or Bedrock [Chlipala
2011]. These tools are implemented in a proof assistant like Coq or Isabelle and come with a
mechanically verified soundness proof. Such a proof guarantees that whenever the tool successfully
verifies a program, there must exist a valid program logic derivation proving the program correct.
However, implementing and proving the soundness of a verification tool is a challenging task.

Part of the complexity stems from the need to avoid combinatorial explosion. Naive implementa-
tions of both WP and SE lead to exponential blowup, which can be observed in practice [Flanagan
and Saxe 2001]. There are multi-stage approaches relying on program transformations to generate
WPs quadratic in size in terms of the input program [Flanagan and Saxe 2001; Leino 2005]. However,
there is only little work on verified implementations [Parthasarathy et al. 2021; Vogels et al. 2010],
the program transformation impairs the debugability of verification failures, and it is unclear how
this approach scales to other assertion logics like separation logic. Symbolic executors try to counter
the exponential explosion by explicitly manipulating assertions representing intermediate states
(path constraints, symbolic heaps etc.), symbolically simplifying states [Cadar et al. 2008; Visser
et al. 2012] and eagerly pruning unreachable states by calling into automated theorem provers
during execution to detect unsatisfiable constraints [Cadar et al. 2008; Jacobs et al. 2010].
Many verified tools address this challenge similar to the SE approach, by shallowly embedding

intermediate assertions as meta-logic properties and by making use of the meta-logic’s meta-
programming facilities to conveniently implement assertion simplification and pruning [Cao et al.
2018; Charguéraud 2010, 2011; Chlipala 2011; Chlipala et al. 2009]. However, this makes the tools
depend on meta-programming languages like Coq’s Ltac for their execution. Practically, this
precludes the use of meta-languages’ program extraction facilities, making it impossible to use the
verification tool outside of the proof assistant interpreter. This makes it hard to offer an easy-to-use
verification interface for users without experience with proof assistants, or to interface with external
tools like witness-producing SMT solvers. Additionally, executing a verifier in Coq’s interactive
interface can be significantly slower than executing an extracted version.
Implementing a sound verification tool without the use of meta-programming complicates an

already considerable challenge further. It requires a deep embedding of program logic assertions
and careful book-keeping of logic variables in scope, while preserving the guarantee that the
intermediate assertions accurately represent all possible program paths. Only two existing SE-based
tools have managed this: VeriSmall [Appel 2011] and Featherweight VeriFast [Jacobs et al. 2015].
However, the former features a restricted assertion language and the latter has a soundness proof
that is intricate and hard to generalize to other tools (see Section 7 for a more detailed comparison).

In this paper, we contribute a new, systematic approach for constructing a sound program logic
verifier, parametrized by a theory of user-implemented assertions and lemmas. In more detail, we
make the following contributions:

• We show how to implement symbolic verification condition (VC) generators (VCGs) by
writing interpreters in symbolic predicate transformer monads.
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• We define a Kripke frame of path constraints and logical variable contexts: a mathematical
structure that we use to make contextual information (path constraints and logical variables)
available to locally prune infeasible paths during symbolic execution.
• We demonstrate how eager solution of variable equalities and pruning of unreachable paths
can be implemented modularly, and combined with a postprocessing of the VC tree resulting
from symbolic execution to obtain simple VCs.
• We show how symbolic VC generation can be proved sound w.r.t. shallow VC generation by
means of a novel logical relation.
• We compare the efficiency of our implementation against related work and report some
measurements that provide more insight into the performance characteristics of our approach.
• We demonstrate the reusability of our approach by implementing VCGs for µSail. The
latter forms the basis for Katamaran, a mechanized tool for mechanized verification of
security guarantees offered by instruction set architectures, whose semantics is defined in a
programming language called Sail [Armstrong et al. 2019].

We explain our approach step by step, starting in Section 2 with a shallow VCG that translates a
statement to a Coq proposition. It is implemented as a monadic interpreter in a specification monad
and is proven sound against an axiomatized program logic. This shallow VCG is not an end result of
this paper, but we use it as a pedagogical tool that builds up towards the symbolic VCG in Section 3
and as a technical device for factoring the soundness proof of the symbolic VCG in Section 5. Next,
Section 3 presents a symbolic executor that produces a deeply embedded verification condition,
implemented as a very similar monadic interpreter in a symbolic specification monad. The section
also explains how the symbolic executor prunes unreachable paths and simplifies assertions during
execution. Section 4 extends the two executors to verify separation logic. Section 5 establishes the
soundness of the symbolic verification conditions relative to the shallow ones, by constructing a
Kripke-indexed logical relation between the two specification monads. Finally, Section 6 explains
Katamaran, a verified separation logic verifier based on the techniques of this paper, to verify
security properties of ISAs.
This presented work has been mechanized in the Coq proof assistant, and the development is

publically available [Keuchel et al. 2022a,b].

2 SHALLOW VC GENERATION

A verification condition is a formula whose validity is sufficient for the correctness of a program
w.r.t. its specification. The traditional way to generate VCs is based on Dijkstra’s WP calculus: we
reduce the validity of a Hoare triple to a first-order formula obtained by calculating the weakest
(liberal) precondition of the given postcondition:

{pre} s {post} ↔ (pre→ wp s post)

The wp operator maps a statement 𝑠 to a predicate transformer, which in turn is a mapping
from predicates on the output state (postcondition) to a predicate on the input state. Or, more
generally, for a computation with input 𝐼 and output 𝑂 , the wp 𝑠 predicate transformer is of type
Pred 𝑂 → Pred 𝐼 . An important realization is that hidden behind such predicate transformer types
are monads [Ahman et al. 2017; Jacobs 2014; Swamy et al. 2013].

Indeed, by using the continuation monad𝑊pure 𝑥 := (𝑥 → P) → P with result type P, also called
the backwards predicate transformer monad [Maillard et al. 2019], and defining Pred 𝑥 := 𝑥 → P the
type Pred 𝑂 → Pred 𝐼 becomes isomorphic to 𝐼 →𝑊pure 𝑂 .
This has been exploited in the F* language [Swamy et al. 2016] to index effectful monadic

computations with their semantics as predicate transformers, allowing the user to co-design
programs and specifications. Furthermore, [Maillard et al. 2019] generalize this to other effects like
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e ∈ exp ::= x | n | true | false | inl e | inr e | (e, e) | e :: e | [] | () | e; e | e op e

| let x := e in e | 𝑥 := 𝑒 | if e then e else e | call 𝑓 𝑒 | case e of (x, x) ⇒ 𝑒 | . . .

op ∈ binop ::= + | = | ≤ | . . . program ::= f x := e 𝑥 ∈ pvar

𝑣 ∈ val ::= n | true | false | inl 𝑣 | inr 𝑣 | (𝑣, 𝑣) | 𝑣 :: 𝑣 | [] | () 𝛿 ∈ store ::= x ↦→ 𝑣

Fig. 1. Object language syntax

state, exceptions and non-determinism simply by applying monad transformers to the base monad
𝑊pure. Since these monads are used to define the specification rather than the implementation of
functions, they are called specification monads.

Under this view, wp is a monadic interpreter [Liang et al. 1995] for our object language, and the
result of the interpreter is the WP semantics for an object language expression.

In the remainder of this section, we develop such a monadic interpreter for the object language
in Fig. 1, which is a simplified version of µSail, the language that Katamaran works with (see
Section 6). Our intention is to implement such interpreters in the internal language (our host
language) of a theorem prover, to yield a VCG for the object language that produces VCs represented
directly as propositions in the host language, i.e. a shallow embedding. The next section focuses on
deep embeddings, i.e. symbolic representations.
Fig. 1 defines the grammar of expressions (exp), arithmetic, relational and boolean operators

(binop), programs (program), program variables (pvar), and values (val). Local variable stores
(store) are mappings of program variables to values. We use an overline to denote a repetition, i.e.
a program is a list of definitions of functions f , which in turn each have a list of formal parameters
x. Otherwise, the grammar follows a standard presentation for boolean, integer, sum, product,
list and unit types. As a notational convention, we use case. . .of. . . to denote pattern matching
on structural types in the object language and match. . .with. . . for pattern matching in the host
language.

The particularmonad thatwe use for the interpreter is𝑊store 𝑥 := (𝑥 → store→ P) → store→ P,
which is obtained by transforming𝑊pure with the state transformer with state type store and un-
currying the result. In the following, we reserve wp for informal discussions about the general
notation of WPs, and define the specific interpreter exec : exp→𝑊store val.

2.1 Control-flow Branching

The interpreter exec can be written in different ways, and it is important to consider the conse-
quences of different styles. For example, we could implement the interpretation of an if expression
as follows:

exec (if 𝑒 then 𝑒1 else 𝑒2) = 𝑣 ← exec 𝑒; if 𝑣 then exec 𝑒1 else exec 𝑒2

Such a definition yields a semantically adequate predicate transformer, but it results in WPs that
use host language pattern matching (hidden in the host language if-statement). In anticipation
of implementing a symbolic interpreter, which cannot use host language features, we interpret
control-flow branching in the shallow executor using propositional features. Using this propositional
translationmakes sure that the symbolic counterpart is definable using the same primitives. Consider
the traditional WP rule for if-conditionals, of which there are two variants

wp (if 𝑒 then 𝑒1 else 𝑒2) post ↔ wp 𝑒 (𝜆𝑣. (𝑣 = true→ wp 𝑒1 post) ∧ (𝑣 = false→ wp 𝑒2 post))

↔ wp 𝑒 (𝜆𝑣. (𝑣 = true ∧wp 𝑒1 post) ∨ (𝑣 = false ∧wp 𝑒2 post))
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ret (𝑎 : 𝐴) :𝑊store 𝐴 := 𝜆post 𝛿. post 𝑎 𝛿

angelic :𝑊store val := 𝜆post 𝛿. ∃𝑣 . post 𝑣 𝛿

demonic :𝑊store val := 𝜆post 𝛿.∀𝑣 . post 𝑣 𝛿

𝑚1 ⊕𝑚2 :𝑊store 𝐴 := 𝜆post 𝛿.𝑚1 post 𝛿 ∨𝑚2 post 𝛿

𝑚1 ⊗𝑚2 :𝑊store 𝐴 := 𝜆post 𝛿.𝑚1 post 𝛿 ∧𝑚2 post 𝛿

assert (𝑝 : P) :𝑊store () := 𝜆post 𝛿. 𝑝 ∧ post () 𝛿

assume (𝑝 : P) :𝑊store () := 𝜆post 𝛿. 𝑝 → post () 𝛿

push (𝑥 : pvar) (𝑣 : val) :𝑊store () := 𝜆post 𝛿. post 𝑎 (𝛿, 𝑥 ↦→ 𝑣))

pop :𝑊store () := 𝜆post (𝛿, _). post 𝑎 𝛿

Fig. 2. Primitives for angelic and demonic non-determinism, assumptions and assertions, and local variable

store in the specification monad with State.

matchbool⊗ 𝑣 (𝑚1 𝑚2 :𝑊store 𝐴) :𝑊store 𝐴 :=

(assume (𝑣 = true);𝑚1) ⊗ (assume (𝑣 = false);𝑚2)

matchbool⊕ 𝑣 (𝑚1 𝑚2 :𝑊store 𝐴) :𝑊store 𝐴 :=

(assert (𝑣 = true);𝑚1) ⊕ (assert (𝑣 = false);𝑚2)

matchsum⊗ 𝑣 (𝑓 𝑔 : val→𝑊store 𝐴) :𝑊store 𝐴 :=

(𝑣𝑙 ← demonic; assume (𝑣 = inl 𝑣𝑙 ); 𝑓 𝑣𝑙 )

⊗(𝑣𝑟 ← demonic; assume (𝑣 = inr 𝑣𝑟 );𝑔 𝑣𝑟 )

exec (if 𝑒1 then 𝑒2 else 𝑒3) := 𝑏 ← exec 𝑒1;

matchbool⊗ 𝑏 (exec 𝑒2) (exec 𝑒3)

exec (case 𝑒 of inl 𝑥 → el | inr 𝑦 → er ) :=

𝑣 ← exec 𝑒; matchsum⊗ 𝑣

(𝜆𝑣𝑙 . push 𝑥 vl ; 𝑟 ← exec el ; pop; ret 𝑟 )

(𝜆𝑣𝑟 . push 𝑦 vr ; 𝑟 ← exec er ; pop; ret 𝑟 )

Fig. 3. Weakest precondition for control-flow branches

that use conjunction and implication resp. disjunction and conjunction. 1

In Fig. 2, we express the logical connectives at a higher-level of abstraction to hide the plumbing:
they correspond to angelic and demonic non-determinism features of the monad and guards for
local assumptions and assertions [Dijkstra 1975; Jacobs et al. 2015; Nelson 1989]. The guard assume

indicates that subsequent computations may assume the validity of a given proposition. Conversely,
assert indicates that a given proposition is required to hold. The binary angelic choice𝑚1 ⊕𝑚2

non-deterministically chooses between two subcomputations, but it is sufficient for one of them
to succeed in order for the combined computation to succeed. Binary demonic choice𝑚1 ⊗𝑚2

works similarly, but both subcomputations must succeed in order for the combined computation to
succeed. The terminology is based on the intuition that the non-deterministic choice is made by
a sympathetic resp. adversarial party. The same distinction exists between operators angelic and
demonic which non-deterministically produce a value val.

1We will mainly use the former but both are equivalent. In practice, for simplifying the resulting VC (cf. Section 3.6), the
former translation is beneficial when the wp (if ...) subcomputation is surrounded by a universal quantification, which is
commonly the case when interpreting expressions. Dually the latter works best for an existential quantification, which
usually comes up when interpreting asserted pre- or postconditions that contain structured ifs.
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exec (𝑥 := 𝑒) :𝑊store () := exec 𝑒 >>= assign 𝑥

assign (𝑥 : 𝑝𝑣𝑎𝑟 ) (𝑣 : val) :𝑊store () := 𝜆post 𝛿. post () (update 𝛿 𝑥 𝑣)

Fig. 4. Weakest precondition for mutable variable assignments

The primitives in Fig. 2 allow us to elegantly define our interpreter but at the same time avoid
host language pattern matching in the resulting WPs. Consider, for example, Fig. 3, where we
show the interpretation of if-expressions and pattern matching for sum types. The definition uses
a function matchbool⊗ which uses ⊗ and assume to implement pattern matching on booleans.
Pattern matching on sum types is implemented similarly, except that we additionally use demonic

to choose values for the program variables 𝑥 and𝑦 in the branches. Modification of the local variable
store is implemented using the primitives push, which adds a new binding to the store, potentially
shadowing an existing one, and pop, which removes the last binding. We leave it as an exercise
to the reader to verify that this definition of WPs for if-expressions unfolds to one of the more
traditional definitions mentioned above.

Note that traditionally, computing the𝑤𝑝 for a statement 𝑠 is regarded as executing 𝑠 backwards
starting from the postcondition. This view is understandable when we choose a first-order represen-
tation of predicates and choose a call by value evaluation strategy, i.e. when calculating𝑤𝑝 𝑠 𝑄 , the
postcondition 𝑄 is normalized first before continuing the recursion over the statement 𝑠 . However,
due to the higher-order representation of predicates in𝑊store, recursion over the expression is
happening first in exec 𝑒 . This predicate transformer will not syntactically edit the postcondition
and pass edited results backwards. Instead, it will construct the WP in a forward fashion from the
root and use the postcondition at the leaves of exec 𝑒 , instantiated with an appropriate environment
(see, e.g., Figs. 3 and 4). Such use of continuations to construct trees from the root is an old trick
[Hinze 2012; Hughes 1986; Hutton et al. 2010; Voigtländer 2008].

2.2 Assignment

For verifying assignments to mutable variables, we work in a specification monad with a mutable
environment. Mutable variable assignments can be implemented as defined in Fig. 4. This replaces
the traditional substitution 𝑝𝑜𝑠𝑡 [𝑥 ↦→ 𝑒] in the𝑤𝑝 rule for assignments. In essence, we build up an
explicit substitution [Abadi et al. 1991] that is lazily accumulated and forced once over 𝑝𝑜𝑠𝑡 , i.e.
when applying 𝑝𝑜𝑠𝑡 to the store. This happens here implicitly, but can also be modelled explicitly
in an implementation strategy, as for example in the KeY project [Ahrendt et al. 2014]. Importantly,
the execution of assignments also proceeds in a forward fashion, instead of being dependent on the
result of a backwards running𝑤𝑝 sub-calculation.
The definition in Fig. 4 can result in a size explosion. For example, a sequence of assignments

like 𝑥 := 𝑥 + 𝑥 ;𝑥 := 𝑥 + 𝑥 ;𝑥 := 𝑥 + 𝑥 will produce 8 copies of the initial contents of the program
variable 𝑥 . For this paper, we ignore this issue, but a usual trick is to introduce abbreviations
using quantification, i.e. assign′ 𝑥 𝑣 := 𝑣 ′ ← angelic; assert (𝑣 = 𝑣 ′); assign 𝑥 𝑣 ′ or to algebraically
simplify terms during symbolic execution.

2.3 Functions

To verify functions, we need a way to declare their specifications. For this, we define a form of
contracts with pre- and postconditions. In anticipation of moving to deep embeddings in the next
section, we already define parts of contracts in a symbolic way.
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𝑉 ∈ Val ::= ℓ | n | true | false | (𝑉 ,𝑉 )

| inl 𝑉 | inr 𝑉 | () | 𝑉 op 𝑉

| 𝑉 :: 𝑉 | [] ℓ ∈ LVar

Σ ∈ LCtx ::= ℓ 𝜁 ∈ Sub ::= ℓ ↦→ 𝑉

𝜄 ∈ Valuation : LCtx→ Type ::= 𝜆ℓ. ℓ ↦→ v

Fig. 5. Symbolic values

summaxlen (xs : list int) : (int ∗ int) ∗ int :=

case xs of

| [] → ((0, 0), 0)

| y :: ys→ let sml := call summaxlen ys in

case sml of | (sm, l) → case sm of | (s,m) →

((s + y, if𝑚 < 𝑦 then 𝑦 else𝑚), 𝑙 + 1)

Fig. 6. Calculate sum, max and length of a list

Fig. 5 contains the basic definitions of our symbolic representation. To distinguish the definitions
from their shallow counterparts, we use capital letters. Values Val now contain a production
for a logic variable LVar that represents an abstract concrete value, introduced, for instance, by
quantification. The namespace of logic variables is entirely separate from program variables pvar.
Moreover, Val contains all productions of exp that are not translated into predicates, such as the
operator production. All control flow productions, like pattern matches, are translated and are
therefore not included. We will interchangeably refer to Val as symbolic values, or symbolic terms.
Furthermore, Fig. 5 defines logic contexts LCtx, substitutions Sub (mappings from LVars to symbolic
values Val), and Valuations (mappings from LVars to concrete values val). We treat valuations as a
family indexed by logic contexts, where the index of the family forms the domain of the valuation.
We will indicate this domain using a subscript, i.e. (𝜄Σ : Valuation Σ). We denote the instantiation
of a symbolic value to a concrete one by 𝑉 [𝜄] and the application of a substitution by 𝑉 [𝜁 ].

For functions 𝑓 𝑥 , we support contracts of the following form:

∀(𝜄Σ : Valuation Σ). {req 𝜄Σ} 𝑓 𝑉 [𝜄Σ] {𝑣 . ens (𝜄Σ, ℓ ↦→ 𝑣)},

Such a contract is universally quantified over a given logic context Σ and specifies a Hoare triple for
calling 𝑓 . Function arguments are specified by patterns 𝑥 ↦→ 𝑉 (one for each formal parameter 𝑥 ),
which are themselves symbolic terms with free variables in Σ. This scheme avoids conflating logic
and program variables, which would be necessary to specify contracts with program variables and
ghost variables. It also gives us more flexibility in the form of non-linear patterns, i.e. logic variables
can occur more than once in patterns. Usually, the pattern for a program variable is simply a logic
variable. The precondition (req : 𝜄Σ → P) is a predicate on Σ-valuations, and the postcondition
(ens : 𝜄Σ,ℓ → P) is a predicate on (Σ, ℓ)-valuations, binding the result value of the function call to
logic variable ℓ . In the following, we will skip the repetition of the formal parameters 𝑥 and also
refer to a contract more succinctly as being a 5-tuple (Σ,𝑉 , req, ℓ, ens).
As an example, consider the function summaxlen in Fig. 6 that computes the sum, max and

length of a list, adapted from the first Verified Software Competition [Klebanov et al. 2011]. For
readability, we include a type signature. The following contract for summaxlen expresses that the
computed sum is less than or equal to the product of the computed maximum and length:

∀(xs : list int). {⊤} summaxlen xs

{
res.

match res with (sm, 𝑙) →

match sm with (𝑠,𝑚) → 𝑠 ≤ 𝑚 ∗ 𝑙 ∧ 0 ≤ 𝑙

}

Execution of a function call in exec uses the function’s contract in place of its body. Since this
effectively eliminates the only source of general recursion, our shallow and symbolic executors
always terminate. The contract is interpreted as a specification statement [Morgan 1988], as defined
in Fig. 7. First, we angelically choose values for the logic variables in the contract’s logic scope Σ.
Next, we assert that the passed arguments instantiate the patterns for the formal parameters of the
function and also assert that the precondition of the called function holds. Finally, we can assume
the postcondition for a result value 𝑣res .
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𝑒𝑥𝑒𝑐 (call 𝑓 𝑣) := let (Σ,V , req, res, ens) := contract 𝑓 in

𝜄Σ ← angelic
Σ

; assert (𝑣 = V [𝜄Σ])
𝑥
; assert (req 𝜄Σ);

𝑣res ← demonic; assume (ens (𝜄Σ, res ↦→ 𝑣res)); ret 𝑣res

Fig. 7. Weakest precondition for function calls

2.4 Verification Condition Generation

Using the executor exec for expression as a building block, we can now implement a VCG. A
function 𝑓 𝑥 := 𝑒 satisfies (Σ,V , req, res, ens) when the specified triple holds for the body:

∀(𝜄Σ : Valuation Σ). req 𝜄Σ → exec 𝑒 (𝜆_ 𝑣 res . ens(𝜄Σ, res ↦→ 𝑣res)) (𝑥 ↦→ V [𝜄Σ])

The construction is dual to the execution of function calls from Section 2.3. This VC quantifies
universally over a valuation 𝜄Σ for the logic variables Σ of the contract. Next, we assert that the
instantiated precondition req 𝜄Σ implies the WP of the body as calculated by exec. The input store

contains the formal parameters 𝑥 mapping to the instantiated patterns V [𝜄Σ]. We ignore the output
store and pass the extended valuation to the postcondition ens.

However, for the purpose of automatically discharging proof obligation in the symbolic executor,
we use the following equivalent formulation of VCs in terms of assume and assert.

vc (𝑓 𝑥 := 𝑒) : P := let (Σ, 𝑥 ↦→V , req, res, ens) := contract 𝑓 in

∀(𝜄Σ : Valuation Σ). let m :𝑊store () :=



assume (req 𝜄Σ);

𝑣 ← exec 𝑒;

assert (ens (𝜄Σ, res ↦→ 𝑣))

in m (𝜆_ _.⊤) (𝑥 ↦→ V [𝜄Σ])

This allows us to add constraints from the precondition to the path constraints before executing
the body and thereby prune more paths. This technique is also known as preconditioned symbolic

execution [Baldoni et al. 2018]. Similarly, this lets the executor try to solve obligations resulting
from the postcondition automatically.

2.5 Soundness

The verification conditions that we describe in this section can be proven sound with respect to
an axiomatised program logic with judgements on configurations of the form {𝑝} 𝑒;𝛿 {𝑞}, where
𝛿 is a store that assigns values to program variables. We make the store explicit and use regular
propositions P instead of lifting all logical connectives to store predicates 𝛿 → P, since that makes
the development of the program logic much shorter. This is not a problem since it is primarily used
as part of the proof and is not intended to be used directly. 𝑝 and 𝑞 are the pre- resp. postcondition,
the latter taking the result of 𝑠 and the updated local store as an argument. The program logic is
assumed to satisfy a number of axioms.
An excerpt of the axioms is depicted in Fig. 8, including a standard triple for if statements, a

standard consequence rule, a structural rule for eliminating an existentially quantified precondition
and standard triples for assignments. We do not go into much detail on these axioms because they
are standard and uncontroversial, and in fact, we have proven them sound using an Iris [Jung et al.
2018] model against the operational semantics of µSail.
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{𝑝} 𝑒;𝛿 {𝑟 }
∀𝛿 ′ . {𝑟 true 𝛿 ′} 𝑒1;𝛿 ′ {𝑞}
∀𝛿 ′ . {𝑟 false 𝛿 ′} 𝑒2;𝛿 ′ {𝑞}

{𝑝} if 𝑒 then 𝑒1 else 𝑒2;𝛿 {𝑞}

contract 𝑓 = (Σ,𝑉 , req, res, ens) 𝑝 ⊢ req 𝜄Σ

v = V [𝜄Σ] ∀𝑣 res . ens (𝜄Σ, res ↦→ 𝑣 res) ⊢ 𝑞 𝑣 res

{𝑝} call 𝑓 𝑣 ;𝛿 {𝜆𝑣res 𝛿
′ . 𝑞 𝑣res ∧ (𝛿 = 𝛿 ′)}

𝑝 ⊢ 𝑝′ ∀𝑣, 𝛿 ′ . 𝑞′ 𝑣 𝛿 ′ ⊢ 𝑞 𝑣 𝛿 ′ {𝑝′} 𝑠;𝛿 {𝑞′}

{𝑝} 𝑠;𝛿 {𝑞}

∀𝑎. {𝑝 𝑎} 𝑒;𝛿 {𝑞}

{∃𝑎. 𝑝 𝑎} 𝑒;𝛿 {𝑞}

{𝑝} 𝑒;𝛿 {𝜆𝑣 𝛿 ′ . 𝑞 𝑣 (𝛿 ′ [𝑥 ↦→ 𝑣])}

{𝑝} 𝑥 := 𝑒;𝛿 {𝑞}

Fig. 8. An excerpt of the program logic axioms that we prove our concrete executor sound against.

In terms of this program logic, we prove the soundness of shallowly executing program ex-
pressions in the following lemma and derive the soundness of shallow verification condition
generation.

Lemma 2.1 (Soundness of shallow execution). If 𝑒𝑥𝑒𝑐 𝑒 post 𝛿 holds for an expression 𝑒 ,

postcondition post and local store 𝛿 , then the following program logic triple holds:

{⊤} 𝑒;𝛿 {post}.

Alternatively phrased, the following triple always holds:

{𝑒𝑥𝑒𝑐 𝑒 post 𝛿} 𝑒;𝛿 {post}.

Corollary 2.2 (Soundness of shallow verification condition generation). If the verifi-

cation conditions 𝑣𝑐 𝑓 holds for a function 𝑓 𝑥 := 𝑒 with contract (Σ,𝑉 , req, ℓ, ens), then the contract

encodes a valid triple for the body of 𝑓 , i.e. the following holds:

𝑣𝑐 𝑓 → ∀(𝜄Σ : Valuation Σ). {req 𝜄Σ} 𝑒;𝑉 [𝜄Σ] {𝜆𝑣 _. ens (𝜄Σ, ℓ ↦→ 𝑣)}.

An important lemma that needs to be proved first is that all predicate transformers generated
by the interpreter are monotonic, i.e. they map stronger postconditions to stronger preconditions.
The soundness result is important, but despite the higher-order encoding of exec, it is proven
similarly to existing textbook proofs for the soundness of weakest preconditions [see, e.g., Nielson
and Nielson 2007]. Moreover, FVF [Jacobs et al. 2015] shows a similar proof of the soundness of a
shallow executor written in an intensional specification monad against a concrete interpreter. So,
we do not go into it in much detail. Instead, in the next sections, we focus on our novel approach
to proving symbolic execution soundness. We connect the axiomatic program logic to a concrete
operational semantic in Sec. 6.1, where we discuss our Iris model.

3 SYMBOLIC SPECIFICATION MONADS

The VC generated by the interpreter of the last section reflects the recursive structure of the execu-
tion and can be seen as a (symbolic) execution tree in which we only kept control-flow constraints,
and assumptions and assertions coming from specifications, but removed transient execution state
like the local variable store etc. Fundamentally, we cannot inspect shallow propositions in the
interpreter itself. As a consequence, the shallow VCG will explore all execution paths through
a function without regard if this execution path is feasible given the precondition and the con-
straints imposed by control-flow branches. This is exacerbated in Section 4, where we implement
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𝐹 ∈ F ::= P 𝑉 | 𝑉 = 𝑉 𝐶 ∈ C ::= 𝐹

𝑃,𝑄 ∈ S ::= ⊤ | ⊥ | 𝐹 → 𝑃 | 𝐹 ∧ 𝑃 | 𝑃 ∧ 𝑃 | 𝑃 ∨ 𝑃 | ∃ℓ .𝑃 | ∀ℓ .𝑃

| debug𝐷 𝑃 | (ℓ ↦→ 𝑡) → 𝑃 | (ℓ ↦→ 𝑡) ∧ 𝑃

Fig. 9. Deeply-embedded formulas and propositions

a Smallfoot-style symbolic execution for separation logic, which makes heavy use of additional
angelic non-determinism, but also adds new constraints during execution.

Ideally, we want to detect during the calculation of the weakest precondition when the execution
paths become infeasible and discard this path entirely. For this, symbolic executors keep track of a
path condition, the set of constraints leading to the current execution path, and use an automatic
solver to detect when this path condition becomes inconsistent. This mitigates but does not rule
out path explosion. In this section, we develop an alternative implementation of our interpreter
based on symbolic representations (deep embeddings) that achieves this. The result of running
this interpreter is a symbolic proposition with some sub-trees removed. More specifically, during
execution, the path condition changes duringAssume andAssert statements. If an assumed formula
is inconsistent with the current path condition, we can prune the path by emitting a true proposition
⊤. If an asserted formula is inconsistent with the path condition, we emit a false proposition ⊥.

We will use the same machinery to automatically discharge proof obligations. These come from
the postcondition of the function for which we calculate the VC and from the preconditions of
called functions. This is achieved by developing a deeply-embedded assertion language for pre-
and postconditions, which is then also interpreted in our monad.

Technically, our symbolic interpreter is similar to the concrete interpreter from Section 2, except
for three main changes. First, we use a specification monad that generates propositions in a symbolic
universe of propositions S rather than meta-language propositions in P. Additionally, the use of
symbolic propositions requires careful bookkeeping of contextual information: the logic variables
in scope and the path constraints. As we will see in this section, this contextual information defines
the worlds of a Kripke frame. This means that we index values and computations with the world in
which they are meaningful, allowing us to deal with this bookkeeping in a principled manner. This
also enforces monotonicity of path constraints during execution by construction. Finally, thanks to
the indexing, the current path constraints are always available during symbolic execution, and we
interact with a constraint solver in order to eagerly simplify path conditions and prune unreachable
paths.

In this section, we begin by defining a deep embedding of terms and formulas for path constraints
in Section 3.1, an interface for a constraint solver in Section 3.2, and the mentioned Kripke frame in
Section 3.3. Next, we combine these components in Section 3.4 in a symbolic specification monad
to obtain a symbolic version of the VC generator from Section 2. We discuss the production of
debugging information in Section 3.5 and an additional simplification phase that in particular tries
to instantiate quantifiers in Section 3.6. Finally, we finish with an example in Section 3.7.

3.1 Symbolic Terms and Constraints

In Section 2, we implemented angelic and demonic choice shallowly using existential and universal
quantification from the meta-language. As a result, we could not programmatically inspect values
or propositions during execution, for instance, for semi-automatic simplification or solving. In this
section, we develop a deep embedding instead.
Fig. 9 contains definitions of different kinds of deeply-embedded propositions. Basic symbolic

formulas F represent exactly the propositions that are assumed or asserted during execution. There
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solver : C→ F→ option (Sub, F)

solver 𝐶 𝐹 = Some (ℓ ↦→ 𝑉 , 𝐹 ′) ↔ (𝐶 ⊢ 𝐹 ↔ 𝐶 ⊢ ℓ = 𝑉 ∧ 𝐹 ′)

solver 𝐶 𝐹 = None ↔ 𝐶 ⊢ ¬𝐹

Fig. 10. Solver interface

are two cases: first, all constraints introduced by control-flow branches are equalities between
values, and second, pre- and postconditions that we consider to belong to an application-specific
theory. We model these by parameterizing over a set P of application-specific predicates.
The result of our symbolic executor is a symbolic proposition S that contains all the necessary

logical connectives: 𝐹 → 𝑃 resp. 𝐹 ∧ 𝑃 are used for assume resp. assert, 𝑃 ∧𝑄 and 𝑃 ∨𝑄 for binary
choice, and ∃ℓ .𝑃 and ∀ℓ .𝑃 for arbitrary choice. We discuss the debug production in Section 3.5 and
the last two productions at the end of the next section.

3.2 Path Constraints and Entailment

To prune infeasible execution paths, we keep track of all basic formulas that are assumed or asserted
in a path constraint 𝐶 ∈ C. Each time a new formula 𝐹 ∈ F is added, we check for consistency
and otherwise prune the path. Solving path constraints is an orthogonal problem to generating
and keeping track of constraints. Therefore, we discuss an interface to a constraints solver but
otherwise assume it to be provided. More specifically, we want to call a solver with entailment
queries of the form 𝐶 ⊢ 𝐹 . Instead of a coarse satisfiability answer distinguishing three cases ś yes,
no, or undecided ś we allow the solver to give back more information. Even in the undecided case,
we can expect the solver to have made some progress, but eventually halted at a sub-problem 𝐹 ′,
s.t. 𝐶 ⊢ 𝐹 ↔ 𝐶 ⊢ 𝐹 ′. We could therefore replace the original problem 𝐹 with the sub-problem 𝐹 ′

when recording it in the final VC. This is useful since unsolved asserts are eventually presented
to the user as proof obligations. Any simplification that we can already make fully automatically
should be applied to aid the user in proving the VC or debugging verification failures.

The execution of pattern matches introduces a lot of new logic variables and equality constraints.
Ideally, we would like to simplify those automatically as well. To this end, we allow the solver also
to report on possible unifications. We will use these later to instantiate existential quantifiers in
Section 3.6. The resulting interface is in Fig. 10. The solver maps a list of formulas 𝐹 to a list of
single variable substitutions 𝜁 = ℓ ↦→ 𝑉 , i.e. a substitution in triangular form [Baader et al. 2001],
and a list of residual formulas 𝐹 ′ such that the entailment of the substitution 𝜁 , seen as a system of
equations, and the residual formulas is equivalent to the entailment of the original formula. We
record such unifications in symbolic propositions S using the special forms of assume (ℓ ↦→ 𝑉 ) → 𝑃

and assert (ℓ ↦→ 𝑉 ) ∧ 𝑃 productions. In both cases, the executor can eliminate the variable from
further consideration by applying the substitution to all other data, e.g. the program variable store.
A unification marks the end-of-scope [Hendriks and van Oostrom 2003] of the logic variable ℓ , i.e.
we require 𝑃 to be well-formed in Σ − ℓ in both productions.

3.3 Kripke Frame and Modal Types

Implementing a symbolic executor poses some consistency challenges: an intermediate result, such
as a symbolic term, formula or proposition, cannot be readily used under any path constraints
other than the one they have been computed in. Using a value in a subset or a different set of
constraints (ancestor or sibling in the execution tree) is unsound, but even using it under a larger
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𝑤 ∈ World := {(Σ,𝐶) ∈ LCtx × C | fv(𝐶) ⊆ Σ}

(Σ1,𝐶1) ⊒ (Σ2,𝐶2) := {𝜁 ∈ Sub[Σ1, Σ2] | 𝐶2 ⊢ 𝐶1 [𝜁 ]}

⊢ 𝐴 := ∀𝑤,𝐴 𝑤

𝐴→ 𝐵 := 𝜆𝑤.𝐴 𝑤 → 𝐵 𝑤

□𝐴 := 𝜆𝑤.∀𝑤 ′,𝑤 ⊒ 𝑤 ′ → 𝐴 𝑤 ′

T : ⊢ □𝐴→ 𝐴 := 𝜆𝑤 𝑎.𝑎 𝑤 id⊒
4 : ⊢ □𝐴→ □□𝐴 := 𝜆𝑤0 𝑎 𝑤1 (𝜔1 : 𝑤0 ⊒ 𝑤1) 𝑤2 (𝜔2 : 𝑤1 ⊒ 𝑤2).𝑎 𝑤2 (𝜔2 ◦⊒ 𝜔1)

K : ⊢ □(𝐴→ 𝐵) → □𝐴→ □𝐵 := 𝜆𝑤 𝑓 𝑎 𝑤 ′ (𝜔 : 𝑤 ⊒ 𝑤 ′).𝑓 𝑤 ′ 𝜔 (𝑎 𝑤 ′ 𝜔)

_[_] : ⊢ 𝐴→ □𝐴 𝐴 persistent

Fig. 11. Kripke frame, modal types, and S4 axioms

set of constraints is not possible without further ado since logic variables may have gone out of
scope due to unifications. In this case, we have to apply the recorded substitutions first. To enforce
consistent handling, we classify all values and computations with a set of logic variables and path
constraints under which they are meaningful. This also helps us to structure the soundness proof
in the next section.
Formally, Fig. 11 (top) defines a set of Worlds consisting of pairs of logic variable contexts

Σ ∈ LCtx and path constraints𝐶 ∈ C that are well-formed under the given Σ. Worlds can be loosely
identified with positions in the execution tree. The contained variable context Σ accumulates all
existential and universal quantifiers on the path from that position to the root minus the variables
that have been unified, and the path constraints collect all the assumed and asserted formulas with
the unifications applied. To achieve the aforementioned classification, we work in the category of
world indexed familiesWorld→ Type rather than Type.

We will freely regard symbolic terms, stores, formulas, propositions, etc. as belonging to that
universe by restricting them to the subset that is well-formed in the given world, e.g.

Val : World→ Type := 𝜆(Σ,𝐶).{𝑉 | fv(𝑉 ) ⊆ Σ}.

Similarly, the specification monad we define in this section will be a monad on World→ Type.
Fig. 11 also defines a preorder𝑤1 ⊒ 𝑤2 between worlds, called the accessibility relation. Visually

this (over)approximates the ancestor-descendant relationship in the execution tree, i.e. a world𝑤2

is accessible from a base world 𝑤1 iff𝑤2 is a descendant of (appears below)𝑤1 in the execution tree.
Formally, we define that (Σ2,𝐶2) is accessible from (Σ1,𝐶1) iff there is a simultaneous substitution
𝜁 for all logic variables in Σ1 with symbolic terms in Σ2, and under this substitution𝐶2 represents a
stronger set of constraints than𝐶1. The simultaneous substitution is used for both weakening (when
introducing new logic variables) and substitution (for unifying variables). When moving values
down to an accessible world, this substitution needs to be applied. Consequently, the substitutions
are non-trivial computational contents of the accessibility relation, and therefore accessibility is
proof-relevant.
The pair (World, ⊒) defines a Kripke frame and, because of reflexivity and transitivity of the

accessibility relation, forms a Kripke model of the S4 modal logic [Blackburn et al. 2001; Simpson
1994], with World→ Type denoting propositions and satisfiability defined as function application
𝑤 |= 𝐴 :⇔ 𝐴 𝑤 . In the remainder, we will use modal logic notation and terminology to structure
our expositions, but otherwise not explore the logical interpretation further. We will explain all the
necessary concepts as we go, so readers need not be familiar with these concepts already. We will
refer to objects inWorld→ Type as being modal types or Kripke-indexed types.
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𝑆pure 𝐴 := □(𝐴→ S) → S

𝑆store 𝐴 := □(𝐴→ Store→ S) → (Store→ S)

Ret : ⊢ 𝐴→ 𝑆pure 𝐴 :=

𝜆𝑤 (𝑎 : 𝐴 𝑤) (Post : □(𝐴→ S) 𝑤).T𝑤 Post 𝑎

>>= : ⊢ 𝑆pure 𝐴→ □(𝐴→ 𝑆pure 𝐵) → 𝑆pure 𝐵 :=

𝜆𝑤 (𝑚 : 𝑆pure 𝐴 𝑤) (𝑓 : □(𝐴→ 𝑆pure 𝐵) 𝑤) (Post : □(𝐵 → S) 𝑤).

𝑚 (𝜆𝑤 ′ (𝜔 : 𝑤 ⊒ 𝑤 ′) (𝑎 : 𝐴 𝑤 ′).𝑓 𝑤 ′ 𝜔 𝑎 (4𝑤 Post 𝑤 ′ 𝜔))

Assume : ⊢ F→ 𝑆pure () :=

𝜆𝑤 𝐹 (Post : □(() → S) 𝑤).

match solver𝑤 𝐹 with

| Some (ℓ ↦→ 𝑉 , 𝐹 ′) ⇒

let 𝑤 ′ := 𝑤 [ℓ ↦→ 𝑉 ], 𝐹 ′ in

let 𝜔 : 𝑤 ⊒ 𝑤 ′ := . . . in

ℓ ↦→ 𝑉 → 𝐹 ′ → Post 𝑤 ′ 𝜔 ()

| None⇒ ⊤

Demonic : ⊢ 𝑆pure Val :=

𝜆𝑤 (Post : □(Val→ S) 𝑤).

let ℓ := fresh𝑤 in

let 𝑤 ′ := 𝑤, ℓ in

let 𝜔 : 𝑤 ⊒ 𝑤 ′ := . . . in

∀ℓ .Post 𝑤 ′ 𝜔 ℓ

Fig. 12. Symbolic specification monad

Fig. 11 (middle) contains some basic constructions. Validity ⊢ 𝐴 means that a computation of
the given type 𝐴 can be used without restriction in any world. We define a type for functions
as point-wise functions of families. The box operator □𝐴 denotes that a value (or computation)
of type 𝐴 can be used in any world accessible from a base world, i.e. at a node in the execution
tree and all its descendants. A boxed value can be immediately used in the base world via the T
combinator as defined in Fig. 11 (bottom). It uses the reflexivity of the accessibility relation given
by the identity substitution and reflexivity of constraint entailment. The 4 combinator allows us
to move a boxed value further down the execution tree without losing the box. It relies on the
transitivity of accessibility which is implemented by composition of substitutions and transitivity
of constraint entailment. The K combinator witnesses the semimonoidal (applicative [McBride and
Paterson 2008] without pure) structure of the box operator □. It allows us to apply a boxed function
to a boxed value without losing the box. We include it for completeness, but it is not used in the
remainder. The combinators K,T and 4 are the implementation of the S4 axioms in our model.
We say that a type 𝐴 is persistent if its values can always be used in all worlds accessible from

a base, i.e. there is a designated function ⊢ 𝐴→ □𝐴. For first-order data, such as symbolic terms,
persistence amounts to the definition of a substitution function. In general, function types 𝐴→ 𝐵

are not persistent, but boxed function types□(𝐴→ 𝐵) are, because all boxed types□𝐴 are persistent
via the 4 combinator. We denote the application of the persistence function for modal type 𝐴 to a
value 𝑎 : 𝐴 𝑤0 and accessibility witness 𝜔 : 𝑤0 ⊒ 𝑤1 as 𝑎[𝜔].

3.4 Symbolic Specification Monads

We define the backward predicate monad transformer 𝑆pure on modal types in Fig. 12 and then use it
for the implementation of an interpreter. Similar to the shallow one𝑊pure from Section 2, it is defined
as a continuation monad. The postcondition is wrapped in a □ since different execution branches, i.e.
different worlds, will use it. Fig. 12 also defines some basic combinators for 𝑆pure. For presentation,
we gray out the technical details around explicit handling of worlds and accessibility, and non-
expert readers may choose to ignore these parts. Ret implements a return and >>= implements a
bind operator for 𝑆pure. As for the postcondition in the definition of the monad, the continuation in
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the bind is wrapped in a □ 2. To write monadic code, we use the do-notation

[𝜔]𝑥 ←𝑚;𝑘 :=𝑚 >>= 𝜆 _ 𝜔 𝑥. 𝑘

that makes the world passing implicit but keeps the proof-relevant accessibility witness explicit.
For demonic non-deterministic choice of a term, we use a function fresh : World→ LVar that

picks a locally fresh name ℓ . We construct a new world𝑤 ′, which is𝑤 extended with ℓ , and also
an accessibility witness 𝜔 : 𝑤 ⊒ 𝑤 ′, for which we omit the details. Next, we universally quantify
over ℓ using the deeply-embedded quantifier of the symbolic proposition. Finally, we invoke the
continuation Post in the world𝑤 ′ on ℓ (as a symbolic term). In the implementation of the Assume

guard we call the solver on the given formulas 𝐹 . In the successful case, the simplifications ś
unifications and residual formulas 𝐹 ′ ś are used to construct the symbolic proposition. Furthermore,
we need to construct a new world 𝑤 ′ in which the unified variables are removed, the unifying
substitution is applied to the old constraints, and the new residual formulas are added. In the failure
case, the original formulas 𝐹 are inconsistent with the path condition. Consequently, we prune this
execution path by emitting ⊤. The Assert guard and Angelic choice are implemented analogously.
Effects can be added to the pure specification monad by means of monad transformers. Fig. 12

shows the result 𝑆store of applying the state transformer with a symbolic store and uncurrying the
result. The choice and guard operators can then be lifted to transformed monads like 𝑆store.

Equipped with these definitions, we can reimplement the interpreter of Section 2 in the symbolic
specification monad. Where necessary, types have to be wrapped in □ and values and computa-
tions persisted, but otherwise, the structure of the interpreter does not change. For instance, our
combinator for pattern matching on sums becomes

Matchsum⊗ : ⊢ Val→ □(Val→ 𝑆pure 𝐴) → □(Val→ 𝑆pure 𝐴) → 𝑆pure 𝐴 := 𝜆𝑤 𝑉 𝑘𝑙 𝑘𝑟 .

©­«
[𝜔1]𝑉𝑙 ← Demonic;

[𝜔2]_ ← Assume (𝑉 [𝜔1] = inl 𝑉𝑙 );
𝑇 (𝑘𝑙 [𝜔1 ◦ 𝜔2] 𝑉𝑙 [𝜔2])

ª®¬
⊗
©­«
[𝜔1]𝑉𝑟 ← Demonic;

[𝜔2]_ ← Assume (𝑉 [𝜔1] = inr 𝑉𝑟 );
𝑇 (𝑘𝑟 [𝜔1 ◦ 𝜔2] 𝑉𝑟 [𝜔2])

ª®¬
and the main verification condition function

VC (𝑓 𝑥 := 𝑒) : S := let (ℓ, 𝑥 ↦→ 𝑉 , req, res, ens) := contract 𝑓 in

let w : World := (ℓ, []) in

let m : 𝑆store () 𝑤 :=



[𝜔1]_ ← Assume req;
[𝜔2]V res ← Exec 𝑒;

Assert ens[𝜔1 ◦ 𝜔2, res ↦→ 𝑉res];

in ∀ℓ .m (𝜆𝑤 ′ 𝜔 () 𝛿 ′ .⊤) 𝛿

3.5 Debug Information

The debug production of S can be used to record information for any persistent type 𝐷 during
execution. For instance, this can include the path constraints that led to the executed branch and
the program variable store at that point.

Our implementation in Section 6will record such debug information automatically for all potential
proof obligations, i.e. all assert (𝐹 ∧ 𝑃 | (ℓ ↦→ 𝑉 ) ∧ 𝑃) and false (⊥) nodes. Furthermore, the user
can request debug nodes explicitly via ghost commands in the programs and in the contracts or

2The 𝑆pure monad is not a strong monad, which prevents us from defining a bind with the usual type. However, it is an

L-strong monad [Kobayashi 1997] which ultimately results in a bind with the given type.
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automatically for all calls of a particular function. We discuss examples of this debug information
in Section 3.7 and in Section 4.1.

3.6 Postprocessing

To finalize the verification, we can submit the generated verification conditions to an automated or
alternatively to an interactive theorem prover. Multiple cases may necessitate human interaction.
For instance, unsatisfiable VCs due to bugs in the program or the specification, or alternatively the
absence of a sufficiently complete solver, because the application-specific theory is undecidable
or because a solver cannot be integrated without enlarging the trusted code base. In any case,
we want to make it as easy as possible for a user to pinpoint the source of a problem or prove
VCs manually. To that end, we implement a postprocessing phase that simplifies the output of the
symbolic executor. By implementing this phase ourselves instead of relying on an automated solver,
we can, in particular, pay attention to not disturbing the control-flow structure encoded in the VC.
More importantly, we can ensure that the recorded debug information stays consistent through
this transformation.
In particular, we want to remove parts that correspond to explored execution paths with fully

solved proof obligations, and to instantiate quantifiers by using the unifications provided by the
solver. Consider the summaxlen example. At the node where the postcondition of the recursive call
is assumed, the output of the symbolic executor contains a formula of the form

∀sml sm l.(sml ↦→ (sm, l)) → ∀s m.(sm ↦→ (s,m)) → . . .

which can be simplified to (∀l s m. . . .), essentially fusing two one-level pattern matches into a
single multi-level one.
This can be implemented by the following transformation

(∀Σ.𝐹 → (ℓ ↦→ 𝑉 ) → 𝑃) { (∀(Σ − ℓ).𝐹 [ℓ ↦→ 𝑉 ] → 𝑃) ℓ ∈ Σ

which also allows for assumed formulas between the quantifier and the unification. Dually, we
instantiate existentials with asserted formulas and unifications. Transformations such as

∀ℓ .⊥ { ⊥ ∃ℓ .⊤ { ⊤

are sound and complete for languages that have only inhabited types. Otherwise, the universal
transformation is sound but can lead to incompleteness bugs, and the existential one is unsound.
The separation logic extension that we describe in Section 4 uses a heuristic that makes heavy

use of angelic non-determinism to try different chunks of a symbolic heap. For this, we found it
helpful to be more aggressive and distribute existentials over the disjunction

∃Σ.𝐹 ∧ (𝑃 ∨𝑄) { (∃Σ.𝐹 ∧ 𝑃) ∨ (∃Σ.𝐹 ∧𝑄)

3.7 Example

Running our symbolic executor on the summaxlen example with a solver that performs unification
modulo the constructor theories of products and list, but without support for arithmetic, yields the
following verification condition

∀(y : int) (ys : list int). ∀(l s m : int).s ≤ m ∗ l→ 0 ≤ l→
(m < y→ s + y ≤ y ∗ (l + 1) ∧ 0 ≤ l + 1 ∧ ⊤)∧
(m ≥ y→ s + y ≤ m ∗ (l + 1) ∧ 0 ≤ l + 1 ∧ ⊤)
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∀(xs : list int), true = true→
(nil = xs→ ∃(sm : int ∗ int) (l : int), (sm, l) = (0, 0, 0)∧

∃(s m : int), (s,m) = sm ∧ s ≤ m ∗ l ∧ 0 ≤ l ∧ ⊤)∧

(∀(y : int) (ys : list int), y :: ys = xs→ ∃(𝑦𝑠′ : list int), 𝑦𝑠′ = 𝑦𝑠 ∧ true = true∧
∀(𝑠𝑚𝑙 : int ∗ int ∗ int) (𝑠𝑚 : int ∗ int) (𝑙 : int), (𝑠𝑚, 𝑙) = 𝑠𝑚𝑙 →

∀(𝑠𝑚 : int), (𝑠,𝑚) = 𝑠𝑚 → 𝑠 ≤ 𝑚 ∗ 𝑙 → 0 ≤ 𝑙 →

∀(𝑠𝑚′ : int ∗ int) (𝑙 ′ : int), (𝑠𝑚′, 𝑙 ′) = 𝑠𝑚𝑙 → ∀(𝑠′𝑚′ : int), (𝑠′,𝑚′) = 𝑠𝑚′ →

(𝑚′ < 𝑦 → ∃(𝑠𝑚′′ : int ∗ int) (𝑙 ′′ : int), (𝑠𝑚′′, 𝑙 ′′) = (𝑠′ + 𝑦,𝑦, 𝑙 ′ + 1)∧
∃(𝑠′′𝑚′′ : int), (𝑠′′,𝑚′′) = 𝑠𝑚′′ ∧ 𝑠′′ ≤ 𝑚′′ ∗ 𝑙 ′′ ∧ 0 ≤ 𝑙 ′′ ∧ ⊤)∧

(𝑚′ ≥ 𝑦 → ∃(𝑠𝑚′′ : int ∗ int) (𝑙 ′′ : int), (𝑠𝑚′′, 𝑙 ′′) = (𝑠′ + 𝑦,𝑚′, 𝑙 ′ + 1)∧
∃(𝑠′′𝑚′′ : int), (𝑠′′,𝑚′′) = 𝑠𝑚′′ ∧ 𝑠′′ ≤ 𝑚′′ ∗ 𝑙 ′′ ∧ 0 ≤ 𝑙 ′′ ∧ ⊤)) .

Fig. 13. The VC for summaxlen generated with the shallow executor.

In the nil case (𝑥𝑠 = []), the postcondition 0 ≤ 0 ∗ 0 ∧ 0 ≤ 0 can be proved automatically by
partial evaluation, or in this case, even concrete evaluation. The part of the VC related to that
branch has been fully removed. For the cons case (xs = y :: ys) the logic variable 𝑥𝑠 of the contract ś
which is also the initial value of the program variable 𝑥𝑠 ś is substituted by y :: ys and the quantifier
removed by the postprocessing phase. The second part of the first line of the VC contains the result
of assuming the postcondition from the recursive call, simplified as described in Section 3.6. The last
two lines contain obligations for proving the postcondition for both branches. The postprocessing
phase removed translated pattern matches on products here as well. This VC can then be solved
automatically by a solver with support for non-linear arithmetic.

Compare this to the VC generated with shallow execution in Fig. 13, which retains the proposi-
tional translation of the pattern matches and has not solved the nil case automatically. In particular,
this clutter impairs a user to debug verification failures.
Asking for debug information using a ghost statement3 on the last line of summaxlen will

result in two debug nodes for both outcomes of the if-statement. The second of which contains
the following information: the logic variables in scope are y, ys, l, s,m, and the path constraints
are m ≥ y ∧ 0 ≤ l ∧ s ≤ m ∗ l. Furthermore, the symbolic variable store contains the following
mappings of program variables to symbolic terms:

xs ↦→ y :: ys ys ↦→ ys s ↦→ s sml ↦→ ((s,m), l)
y ↦→ y l ↦→ l m ↦→ m sm ↦→ (s,m)

In particular, in this case, the mapping for the formal parameter xs shows the call pattern that,
together with the path constraints, determines the execution path. For functions that assign new
values to the formal parameter variables, the initial contents need to be copied for the same effect.

4 SYMBOLIC HEAP SEPARATION LOGIC

Smallfoot [Berdine et al. 2005b] is a tool for checking program specifications that only describe the
shape of pointer data structures rather than their contents. It works on a decidable fragment [Berdine
et al. 2005a] of separation logic where all assertions are of the form 𝑃 ∧ 𝑄 , where 𝑃 is a pure
proposition (the path condition), and 𝑄 is a separating conjunction of spatial heap predicates (the
symbolic heap). In particular, the separating implication (magic wand) or septraction connective,

3The variable store in the debug information for proof obligations arising from the postcondition only contains the final
state of the formal parameters of the function, since all other program variables are not in scope anymore.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 97. Publication date: August 2022.



Verified Symbolic Execution with Kripke Specification Monads (and No Meta-programming) 97:17

𝑐 ∈ chunk ::= H 𝑣 ℎ ∈ heap ::= 𝑐 𝐶 ∈ Chunk ::= H 𝑉 𝐻 ∈ Heap ::= 𝐶

Fig. 14. Shallow and deep heaps and chunks

producechunk (𝑐 : chunk) : Wheap () := ℎ ← getheap; putheap (𝑐 :: ℎ)

consumechunk (𝑐 : chunk) : Wheap () := (𝑐1..𝑐𝑛) ← getheap; 𝑖 ← 𝑎𝑛𝑔𝑒𝑙𝑖𝑐 ;

assert (𝑐 = 𝑐𝑖 ); putheap (𝑐1 . . . 𝑐𝑖−1, 𝑐𝑖+1 . . . 𝑐𝑛)

Fig. 15. Producing and consuming chunks

which are generally used for spatial WP rules, is absent. Furthermore, Berdine et al. [2005c] present
a symbolic execution method for automatically proving Hoare triples in this fragment.
Many verifiers [Distefano and Parkinson J 2008; Jacobs et al. 2010; Müller et al. 2016] adopted

this approach, but also extended it to reason about the contents of data structures. In this section,
we present how such a symbolic heap can be integrated into our method. Essentially, we extend
our shallow and symbolic specification monads with an additional piece of state: a shallow and
symbolic separation logic heap, respectively:

𝑊heap 𝑥 := (𝑥 → store→ heap→ P) → store→ heap→ P

𝑆heap 𝑥 := □(𝑥 → Store→ Heap→ S) → Store→ Heap→ S

These heaps have the syntax depicted in Fig. 14: a list of chunks, which themselves are abstract spatial
predicate constructors applied to concrete or symbolic arguments. Similarly to pure predicates, we
allow these spatial predicates to be custom-defined by the user and manipulated with user-provided
lemmas, provided that both are backed up by implementations in the underlying model. In this
way, we can support arbitrary separation logic assertions, even though non-trivial manipulations
of custom assertions require user annotations in the form of lemma invocations.
In terms of this additional state, we can then define producechunk and consumechunk functions,

the shallow versions of which are shown in Fig. 15. The naming of these functions stems from the
resource interpretation of separation logic. producechunk adds a single spatial predicate to the heap,
and consumechunk implements a heuristic for removing one by angelically choosing an element
from the heap and asserting equality. Instead of the simple equality 𝑐 = 𝑐𝑖 in Fig. 15, the shallow
executor could do better and decide equality of the predicate names first, which never results in a
blocked meta-computation since these are always specified concretely by the user. However, in
general, it cannot inspect the arguments without blocking. The symbolic version can improve upon
this by looking at the arguments as well, and avoiding the backtracking semantics of the heuristic
when the arguments already match a chunk on the heap exactly, and for precise predicates [O’Hearn
et al. 2009] when only the “inputž arguments match exactly.

Using chunks as a building block, we define the syntax for arbitrary structured assertions to be
used in pre- and postconditions and more general produce and consume functions that interpret
them in a specification monad. However, for space reasons, we do not go into this further. The
definitions are generally similar to those of FVF [Jacobs et al. 2015] and 𝜇VeriFast [Devriese 2019].

4.1 Example: Linked Lists

To give you an idea of the practical use of our separation logic solver, we develop predicates and
functions for dynamically heap-allocated singly linked lists [Reynolds 2000], implemented in our
object language. We represent pointers ptr to the heap as integers, and linked lists llist as nullable
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∀x : int, q : llist. {⊤} mkcons x q {p. p ↦→𝑝 (x, q)}

∀p : ptr, x : int, q : llist. {p ↦→𝑝 (x, q)} fst p {r . r = x ∗ p ↦→𝑝 (x, q)}

∀p : ptr, x : int, q : llist. {∃y : int. p ↦→𝑝 (y, q)} setfst p x {_. p ↦→𝑝 (x, q)}

∀p : ptr, x : int, q : llist. {p ↦→𝑝 (x, q)} snd p {r . r = q ∗ p ↦→𝑝 (x, q)}

∀p : ptr, x : int, q : llist. {∃q′ : llist. p ↦→𝑝 (x, q
′)} setsnd p q {_. p ↦→𝑝 (x, q)}

Fig. 16. Contracts for linked lists primitives

{⊤} open_nil {inr () ↦→𝑙 []}

∀z : (), xs : list int. {inr z ↦→𝑙 xs} close_nil {z = () ∗ xs = []}

∀p : ptr, xs : list int. {inl p ↦→𝑙 xs} open_cons p




match xs with������
[] ↦→ ⊥

y :: ys ↦→ ∃n : llist. p ↦→𝑝 (y, n)∗
n ↦→𝑙 ys




∀
p : ptr, x : int,
xs : list int, 𝑛 : llist.

{
p ↦→𝑝 (x, n)∗

n ↦→𝑙 xs

}
close_cons p {inl p ↦→𝑙 x :: xs}

Fig. 17. Lemmas about linked list heap predicates

pointers

ptr := int llist := ptr + () .

We implement linked lists in terms of heap-allocated pairs, consisting of a single element and a
tail pointer, for which we use the following primitive procedures: mkcons to allocate a new pair
on the heap, fst and snd to access the components of a heap-allocated pair, and setfst and setsnd
to update the components. The signatures and contracts of these primitives are shown in Fig. 16.
In our implementation (Section 6), we instantiate the memory of the Iris model as a finite map of
pointers to pairs:

mem := ptr→fin (int, llist)

and implement the primitives directly in Coq. For the separation logic contracts, we use two spatial
points-to predicates, one for a single heap-allocated pair and one for a heap-allocated list:

p ↦→𝑝 (x, q) p : ptr, x : int, q : llist
q ↦→𝑙 xs q : llist, xs : list int

The definition of these predicates is part of the model, with the list predicate defined recursively
in terms of the pair predicate [Reynolds 2000]:

q ↦→𝑙 [] := 𝑞 = inr ()

q ↦→𝑙 (x :: xs) := ∃(p : ptr) (𝑛 : llist), (𝑞 = inl 𝑝) ∗ (p ↦→𝑝 (x, n)) ∗ (n ↦→𝑙 xs)

We do not expose the recursive definition to the VCGs. Instead, we declare and use lemmas for
the folding/unfolding of the recursion, which are defined in Fig. 17. Such lemmas can generally be
inserted to aid the verifier in making non-trivial reasoning steps and need to be proven sound by
the user in the underlying model. Currently, we require the user to give hints to the VCGs when
a lemma needs to be used to transform the proof state, which the user provides through ghost
statements in the code. In the future, we are planning to support user-provided heuristics which
automatically invoke such lemmas where needed.
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{p ↦→𝑙 xs ∗ q ↦→𝑙 ys}

append(p : llist, q : llist) : llist :=

case p of inl n⇒ call appendloop n q; p

inr z ⇒ lemma close_nil z; q

{r . r ↦→𝑙 xs ++ ys}

{inl p ↦→𝑙 xs ∗ q ↦→𝑙 ys}

appendloop (p : ptr, q : llist) : () :=

lemma open_cons p;

let t := foreign snd p in

case t of inl n⇒ call appendloop n q

inr z ⇒ lemma close_nil 𝑧;

foreign setsnd 𝑝 𝑞;

lemma close_cons 𝑝

{_. p ↦→𝑙 xs ++ ys}

Fig. 18. Appending two linked lists

Fig. 18 shows the two functions append and appendloop with their contracts. Together, they
implement an in-place append for linked lists. appendloop follows the chain of the first linked list till
the end and updates the (null) tail pointer to point to the second list instead. At each step, it unfolds
one level of the recursive list predicate using open_cons to reveal the cons cell. After returning
from a recursive call, the predicate needs to be folded again using close_cons. Spatial predicates for
the empty list, which hence do not contain any cons cells, can be discarded using close_nil.
Omission of any of the lemma ghost statements in the code will result in a verification failure:

the consumption of some chunk will fail if nothing suitable is found on the heap. For instance,
removing the first ghost lemma statement that invoked open_cons in appendloop will result in the
following failure for the foreign call to snd, for which we can again record debugging information.
The chunk to be consumed is

p ↦→𝑝 (x
′, q′)

which comes from the precondition of snd with x′ and q′ being existential variables. However,
the heap only contains the incompatible chunks

inl p ↦→𝑙 xs q ↦→𝑙 ys

and hence execution fails. We can of course record the state again. The local variable store will still
contain its initial mapping

p ↦→ p q ↦→ q

since no unifications have been performed yet.

4.2 Discussion

The separation logic primitives of the shallowWheap monad defined in this section are not repre-
sentative. In particular, the backtracking heuristic of consumechunk produces many unnecessary
branches, and the reasoning steps performed by explicit user-provided ghost statements are usually
implicitly performed as part of a proof script or even hold trivially by definitional equality.

For our purposes, the shallow VCG serves primarily as a means to factorize the soundness proof
of the symbolic VCG for which it defines the allowed behavior. More realistically, a shallow VCG
would be implemented using a specification monad (e.g.𝑊pure) defined on top of proper separation
logic propositions.
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R≲JA, 𝑎K ⊆ {(𝑤, 𝜄𝑤, 𝐴, 𝑎)}

R≲JVal, valK = {(𝑤, 𝜄𝑤,𝑉 , 𝑣) | 𝑣 = 𝑉 [𝜄𝑤]}

R≲JS, PK = {(𝑤, 𝜄𝑤, 𝑃, 𝑝) | (𝜄𝑤 |= 𝑃) → 𝑝}

R≲J□A, aK = {(𝑤, 𝜄𝑤, 𝑥,𝑦) |
∀𝑤 ′ (𝜔 : 𝑤 ⊒ 𝑤 ′) 𝜄𝑤′ . 𝜄𝑤 = 𝜄𝑤′ ◦ 𝜔 →

(𝑤 ′, 𝜄𝑤′ , 𝑥 𝑤 ′ 𝜔,𝑦) ∈ R≲JA, 𝑎K}

R≲JA→ B, 𝑎 → 𝑏K = {(𝑤, 𝜄𝑤, 𝑓 , 𝑔) | ∀𝑥 𝑦. (𝑤, 𝜄𝑤, 𝑥,𝑦) ∈ R≲JA, 𝑎K→ (𝑤, 𝜄𝑤, 𝑓 𝑥, 𝑔 𝑦) ∈ R≲JB, 𝑏K}

Fig. 19. Refinement relation to prove soundness of symbolic execution ś selected rules

In such a monad, producechunk and consumechunk are the spatial equivalents of assume and assert.
Indeed, given an interpretation J_K of chunks as separation logic propositions, we can use the
definitions:

producechunk (𝑐 : chunk) :𝑊pure () := 𝜆 𝑘. J𝑐K −∗ 𝑘 ()
consumechunk (𝑐 : chunk) :𝑊pure () := 𝜆 𝑘. J𝑐K ∗ 𝑘 ()

5 REFINEMENT

The two executors that we described in Sections 2 and 3 are essentially the same program, albeit
implemented in two different languages. The question arises in what way these two implementations
are equivalent, and how we can establish that fact formally. Ultimately, the property we want for
their outputs is dictated by our soundness requirement, which is expressed by the following lemma.

Lemma 5.1 (Soundness of symbolic execution). Given a program, if the symbolic verification

condition holds for a function, then so does the shallow one, i.e.

∀𝑓 , (𝜖 |= VC f ) → 𝑣𝑐 𝑓 .

We have to generalize this in two ways. First, we need to consider other moments of the execution
instead of just the final closed result. That means we are in a world 𝑤 and want to consider the
implication (𝜄𝑤 |= 𝑃) → 𝑝 for valuations (𝜄𝑤 : Valuation 𝑤) of that world, i.e. valuations for the
contained logic variables that also respect the path constraints:

Valuation : World→ Type := 𝜆(Σ,𝐶).{𝜄Σ ∈ Valuation Σ | 𝜄Σ |= 𝐶}

Second, we need to generalize this to other types, which we do in a logical relation [Tait 1967] R≲
that we discuss shortly. In particular, we can relate predicate transformer monads, e.g. 𝑆pure and
𝑊pure. For these types, R≲ encodes a notion of refinement [Back and Wright 1998; Morgan 1994].

The refinement relation is defined in Fig. 19. R≲JA, 𝑎K relates symbolic computations of type
𝐴 with pure computations of type 𝑎 at a given world 𝑤 and valuation 𝜄𝑤 . For propositions and
formulas, the relation is as just discussed. For first-order data like symbolic terms, stores, heaps, etc.
it is equality after instantiation. As usual, related functions map related inputs to related outputs.
The most interesting case is that of a boxed typed □𝐴. It requires that in every accessible world
𝜔 : 𝑤 ⊒ 𝑤 ′, the symbolic computation is related to the pure one. However, we also need to consider
valuations in the new world; we require relatedness for every valuation 𝜄𝑤′ that is compatible with
(that extends) the old one, which is expressed by composition with the substitution that witnesses
the accessibility.

Proof sketch of Lemma 5.1. Unfolding the definition of the logical refinement relation on
propositions R≲JS, PK, we can see that the soundness statement is equivalent to the inclusion in
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the relation in the empty (initial) world:

(∅, 𝜖,VC 𝑓 , vc 𝑓 ) ∈ R≲JS, PK

To prove this, we show that all constituent functions and monadic operators are related, e.g.

(𝑤, 𝜄𝑤, Exec 𝑒, exec 𝑒) ∈ R≲J𝑆store Val,𝑊store valK

(𝑤, 𝜄𝑤, >>=, >>=) ∈ R≲J𝑆 𝐴→ □(𝐴→ 𝑆 𝐵) → 𝑆 𝐵, . . .K

This is mostly mechanical, since the two implementations have the same structure. The only
meaningful difference is in the 𝐴𝑠𝑠𝑢𝑚𝑒 and 𝐴𝑠𝑠𝑒𝑟𝑡 commands that call the solver, e.g.

(𝑤, 𝜄𝑤,Assume, assume) ∈ R≲JF→ 𝑆pure (), P→𝑊pure ()K

This property is established by reducing it to the correctness of the solver. □

Example: demonic choice. As an example of a relatedness proof, consider the demonic choice
combinators (shown in Figures 2 and 12). After inlining the definitions, applying them to two
related postconditions

(𝑤, 𝜄𝑤, Post, post) ∈ R≲J□(Val→ S), val→ PK

and using ℓ := fresh𝑤 the logical relation becomes

(𝜄𝑤 |= ∀ℓ .Post (𝑤, ℓ) 𝜔 ℓ) → ∀𝑣 .post 𝑣

where 𝜔 : 𝑤 ⊑ (𝑤, ℓ). After introducing the quantified value 𝑣 on the right and instantiating the
left quantifier it simplifies further to

((𝜄𝑤, ℓ ↦→ 𝑣) |= Post (𝑤, ℓ) 𝜔 ℓ) → post 𝑣

Using relatedness of the postconditions it remains to show

((𝑤, ℓ), (𝜄𝑤, ℓ ↦→ 𝑣), ℓ, 𝑣) ∈ R≲JVal, valK,

i.e. that the logic variable ℓ is related to 𝑣 in (𝑤, ℓ), which is immediate.

Discussion. An alternative approach would be to prove the soundness of the symbolic VC against
the program logic directly. As briefly discussed at the end of Sec. 2.5 this proceeds in two steps:
first, show the monotonicity of the predicate transformers and then their soundness.
The monotonicity statement for symbolic predicate transformers 𝑇 : □(𝐴→ S) → S has to be

properly generalized to account for world changes. In particular, we have to generalize the order
relation on predicates 𝑃,𝑄 : □(𝐴→ S) to account for using them in two different but accessible
worlds. More precisely, in a base world 𝑤0, we may want to use 𝑃 in 𝑤1 with 𝜔1 : 𝑤0 ⊒ 𝑤1 and
𝑄 in𝑤2 with 𝜔2 : 𝑤1 ⊒ 𝑤2 and apply them to different but related values 𝑎1 : 𝐴 𝑤1 and 𝑎2 : 𝐴 𝑤2.
Consequently, defining the monotonicity of predicate transformers precisely seems to require
another custom-built logical relation. We attempted a direct proof using these ideas, which we
ultimately gave up on, but we still think that the discussed generalization is sufficient to carry out
this proof.

Factorizing the proof through the shallow vc also splits up the monotonicity proof. Specifically,
the universal quantification over the witness in the logical relation for boxed types in Fig.19 takes
care of the world change, and the remaining monotonicity proof for shallow predicate transformers
can use equal values of a result type 𝐴.
Establishing (relative) completeness of our symbolic VCG is not a goal of this paper. In fact,

our shallow and symbolic VCGs are currently not complete because they make use of incomplete
heuristics. If those heuristics were removed or replaced with complete ones, we believe the re-
finement proof between the symbolic and shallow VCG should be relatively easy to adapt to also
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Fig. 20. Structure of Katamaran

establish completeness. Essentially, the R≲JS, PK case in the logical relation in Figure 19 would
need to be changed from an implication into an equivalence. We don’t expect problems adapting
the relatedness proofs of the functions used in the VCGs and the VCGs themselves. Relative com-
pleteness of the VCG as a whole can then be reduced to (relative) completeness of the shallow
executor w.r.t. a program logic and the program logic w.r.t. an operational semantics.

6 KATAMARAN

Katamaran is a verifier for Sail [Armstrong et al. 2019] that implements the techniques described
in this paper. It is fully mechanized in Coq and axiom-free. Sail is a domain-specific language for
executable specifications of instruction set architectures, and Katamaran implements a variant of
Sail called µSail, which is deeply embedded in the Coq theorem prover. Like Sail, µSail features
structured types such as lists, enums, records unions and bit-vectors4, but omits some of Sail’s
advanced type system features such as dependent types and flow-sensitive refinement types, and
imperative features like rich l-value assignments that are compiled away by the Sail tool. The goal
of Katamaran is to support semi-automatic proofs of ISA security properties, something we will
report in more detail elsewhere.
The structure of Katamaran is depicted in Fig. 20. The semantics of µSail is defined both in

terms of a small-step operational semantics and an axiomatic program logic interface based on
separation logic Hoare triples. Specifications of programs consist of triples for all declared functions.
The implementation of Katamaran’s shallow and symbolic executors is essentially as described in
Sections 2 and 3, and the soundness of the symbolic executor is established and mechanized using
the logical relation approach of Section 5.

The framework is abstracted over an underlying separation logic, and any logic implementing the
defined interfaces can serve as a model. The library comes with a pre-defined model that uses the
Iris separation logic framework [Jung et al. 2018] together with an adequacy theorem that links the
Iris model with the operational semantic. It treats registers (global variables) and machine memory
as resources. A user-provided runtime system defines what constitutes a machine’s memory and
provides access to it via foreign functions, i.e. functions callable from µSail but implemented in
Coq. On top, we have a symbolic VC generator that is proved sound w.r.t. a shallow one, which in
turn is proved sound to the program logic.
For the symbolic executor, Katamaran includes a simple but inherently incomplete solver. It

implements, among other things, unificationmodulo the constructor theory for structured datatypes
using datatype generic programming and proving techniques [Altenkirch and Mcbride 2003; Hinze
2000], a rudimentary tautology solver, and an algebraic simplifier. The user can hook his own
solver into the symbolic executor, to augment the generic one, and in this way, provide automation
for application-specific predicates P (cf. Sec. 3.1). Instead of being too idealistic and striving for

4Katamaran is still in early development and does not yet support proof automation for bit-vectors.
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completeness, we are practical and only include enough proof strength and adhoc cases in both,
the generic and application-specific solvers, for the automation of our case studies.

As outlined in Section 4, µSail allows the invocation of lemmas (sometimes referred to as ghost
statements), which instructs the verifier to take a proof step, which is currently the only form of
non-trivial spatial reasoning in the VC gens. The user has to prove these lemmas in the underlying
model, which can be done using Iris Proof Mode [Krebbers et al. 2018] for the included model.
The implementation uses an intrinsically-typed representation [Altenkirch and Reus 1999;

Bach Poulsen et al. 2017; Benton et al. 2012], which means that all values, variables, expressions,
statements, symbolic terms, stores, predicates etc. are constrained to be well-scoped and well-typed,
and all operations on them are type-preserving by construction. In particular, the generic solver,
the symbolic executor and the program logic can ignore cases that are impossible due to typing.
Dodds and Appel [Dodds and Appel 2013] report on similar benefits of integrating a type checker
in a verifier. Katamaran makes heavy use of the Eqations [Sozeau and Mangin 2019] package
for dependent pattern matching on typed terms.
The proof obligations for the user are the verification conditions, the lemmas used in ghost

statements, and the verification of the foreign functions. These proofs are inputs to the various
soundness theorems of the framework.

6.1 Iris Model

We have developed a small-step operational semantics for µSail with a step relation of the form

(𝛾, 𝜇, 𝛿, 𝑒) =⇒ (𝛾 ′, 𝜇′, 𝛿 ′, 𝑒′)

with global state for registers 𝛾,𝛾 ′ and memory 𝜇, 𝜇′, local variable store 𝛿, 𝛿 ′ and expressions
𝑒, 𝑒′. We instantiated the Iris separation logic framework [Jung et al. 2018] with our operational
semantics to obtain a model for our axiomatic program logic and proved that all rules of our program
logic are admissible in the model. This contains a catch-22: the program logic and executors are
parameterized over a set of given contracts, and thus, the verification conditions express the validity
of a contract for a function body under the assumption that all contracts hold for recursive calls.
The guarded recursion machinery of Iris provides the means to tie this knot. Moreover, Iris provides
the necessary adequacy lemmas to connect the specified contracts to the operational semantics
for which we state a special case for functions with pure contracts that can be expressed without
referring to the program logic or another abstraction.

Lemma 6.1 (Adeqacy of pure contract). Assuming the generated VCs hold for all functions,

then for any function 𝑓 with a pure (non-spatial) contract (Σ,V , req, res, ens) the following holds

∀𝜄Σ 𝛿 𝛿
′ 𝛾 𝛾 ′ 𝜇 𝜇′ 𝑣 . req 𝜄Σ → (𝛾, 𝜇, 𝛿, 𝑐𝑎𝑙𝑙 𝑓 𝑉 [𝜄Σ]) =⇒

∗ (𝛾 ′, 𝜇′, 𝛿 ′, 𝑣) → ens (𝜄Σ, res ↦→ 𝑣)

This demonstrates that the implementation, soundness proofs and Iris model of Katamaran can
be combined to obtain end-to-end results stated purely in terms of the operational semantics of the
language. Note that this expresses a partial correctness result, the default for Iris models, but Iris
also includes a more restricted variant for total correctness. Using this variant, or any other total
correctness program logic and model, requires additional termination proofs to be carried out.

6.2 Singly Linked Lists

An important contribution of this paper is a principled way to support simplifying path constraints
and pruning unreachable paths. Table 1 illustrates this by showing the number of execution paths
explored in shallow and symbolic VC generation for the linked list examples of Section 4. The table
shows the number of execution branches explored by both the shallow and the symbolic executor,
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Table 1. Linked list comparison.

Katamaran Bedr. VST SLF

Shallow VC Symbolic VC Solver

Branches Pruned Branches Pruned Time Time Time Time Time

append 4 0 2 0 0.009
31.5 2.61

appendloop 34 26 3 1 0.034 0.99
copy 33 15 3 1 0.026 0.95
length 5 3 3 1 0.027 0.22 16.8 0.78
reverse 2 0 1 0 0.004

20.0 2.34
reverseloop 24 14 3 1 0.028 0.26
summaxlen 3 0 3 0 0.094

Lemmas 0.28 1.05 0.33

and the number of branches that have been pruned early, i.e. executions that did not reach the end
of a function or, more precisely, the end of the postcondition of a function. For the listed functions,
the pruning of the branches in the symbolic executor comes solely from the ⊥ assertion in the
postcondition of the open_cons lemma.

As previously explained, the simplification of constraints is crucial for preventing path explosion
in practically viable symbolic execution tools. In particular, in these examples, the eager unification
of variables helps the symbolic execution, because it helps the heuristics of deterministically instead
of angelically selecting a chunk from the symbolic heap that we briefly described in Sec. 4. In
fact, all consumed chunks in the examples are selected deterministically by the symbolic executor
and angelically by the shallow one. The table shows that simplifying path conditions and pruning
unreachable paths in the symbolic VCG strongly reduces the number of execution paths compared
to the shallow VCG, even in these relatively simple examples. While solving these shallow VCs is
still tractable, it quickly becomes intractable for larger examples.

Table 1 also shows a comparison of total verification time in seconds for the example functions
of our symbolic execution and similar functions in related work. The Bedrock framework [Chlipala
2011] works with a custom low-level imperative language, and the Separation Logic Founda-
tions [Charguéraud 2020] on a custom ML-like language. The Verified Software Toolchain [Cao
et al. 2018] operates on C programs. All three of these systems use meta-programming for reasoning
about a shallowly-embedded logic. We omit the entries when the function or its verification is not
available as part of the systems’ codebases. The Lemmas line shows the verification time of the
lemmas listed in Figure 17 in Iris Proof Mode, and similar definitions for the other systems.

While the symbolic executor is, in principle, extractable we have not done so. The numbers show
the time to generate the VC by evaluation in Coq’s type checker and subsequent proving of the
VC. For the length and reverseloop functions, we needed to define pure predicates that encode the
functional correctness specification, and the Solver column shows the time to prove a user-defined
solver for these predicates correct. The other systems have to perform similar reasoning steps
during their verifications.

The measurements were taken using Coq 8.15.2 on an AMD Ryzen 9 5950X with the exception
of the Bedrock column, for which we used Coq 8.4.6. For all the linked list functions simplification
and postprocessing resulted in a trivial VC. Hence, these verification problems are fully solved by
computational reflection [Barendregt and Barendsen 2002; Beeson 2016; Boutin 1997], which is
more performant than proof term construction. As a result, Katamaran is more than an order of
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{(∃𝑐. 𝑝𝑐 ↦→ 𝑐 ∗ V(𝑐)) ∗ (∀𝑟 ∈ GPR. ∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤))}

𝑠𝑡𝑜𝑟𝑒 (rs : GPR, rb : GPR, immediate : int) : bool :=

let base_cap := call 𝑟𝑒𝑎𝑑_𝑟𝑒𝑔_𝑐𝑎𝑝 𝑟𝑏 in

let (perm, beg, end, cursor) := base_cap in

let 𝑐 := (perm, beg, end, cursor + immediate) in

let𝑤 := call 𝑟𝑒𝑎𝑑_𝑟𝑒𝑔 𝑟𝑠 in

lemma𝑚𝑜𝑣𝑒_𝑐𝑢𝑟𝑠𝑜𝑟 𝑏𝑎𝑠𝑒_𝑐𝑎𝑝 𝑐;

call𝑤𝑟𝑖𝑡𝑒_𝑚𝑒𝑚 𝑐 𝑤 ;

call 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑐 ;

true

{(∃𝑐. 𝑝𝑐 ↦→ 𝑐 ∗ V(𝑐)) ∗ (∀𝑟 ∈ GPR. ∃𝑤. 𝑟 ↦→ 𝑤 ∗ V(𝑤))}

Fig. 21. Capability safety for the store instruction.

magnitude faster. For the summaxlen, the generated VC is the one we discussed in Sec. 3.7, which
is proved with the help of Coq’s nia tactic.

6.3 MinimalCaps

We have instantiated our approach in our capability machine case study, called MinimalCaps
[Huyghebaert et al. 2022; Keuchel et al. 2022b], for which we prove that the capability safety
property [Devriese et al. 2016; Georges et al. 2021; Swasey et al. 2017; Van Strydonck et al. 2019]
holds. The MinimalCaps case study exemplifies the intended usage of Katamaran, the verification
of security guarantees offered by ISAs. However, we limit the discussion of our case study to the
evaluation of Katamaran in verifying that the capability safety property holds.
In the case study, we have defined contracts for each available instruction, as well as the fetch-

decode-execute loop. The contract for the store instruction is shown in Fig. 21 as a separation
logic Hoare triple around the definition of the instruction. The meaning of the shown pre- and
postcondition can be summarized as: if we start with a capability safe configuration, we will end
(upon successful execution) with a capability safe configuration. In other words, the instructions
of the MinimalCaps case study cannot break the capability safety property. The store instruction
has 3 parameters, a register containing the value to be stored in memory, a register containing a
capability as a basis for the memory location and an immediate value that will be added to the
cursor of the capability to get the exact location for the memory store (which needs to be within the
bounds of the capability). The body of the store instruction consists of 4 let bindings that will read
the argument registers and derive a capability based on the one in the rb register. Furthermore, we
have a lemma invocation to aid Katamaran in the verification of this construct, and some function
calls to perform the actual write to memory and increment the program counter. The boolean at the
end of the store definition indicates that the fetch-decode-execute loop should continue looping.
The verification of the store contract starts with the precondition stating that all accessible

registers and memory locations contain safe values. Throughout the let bindings, Katamaran will
learn more about the contents of some of these registers. For example, by invoking read_reg_cap,
we learn that the register rb has to contain a capability (the contract for read_reg_cap states this,
otherwise, the machine will go into a failed state). The binding for w corresponds to the contents of
register rs, and from the precondition we know that this value will be safe. The only missing piece
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of information that Katamaran still needs to verify this contract is that the capability to perform
the write with, i.e., c, needs to be safe. This information is learned with the lemma move_cursor,
which will derive the safety of a capability that is derived from a safe capability. At the end of the
store instruction, Katamaran will be able to verify that the postcondition holds.
The MinimalCaps case study consists 444 LoC for 48 µSail functions and 12 LoC for 3 foreign

functions. We define 8 lemmas to guide the spatial reasoning, which are used in a total of 34
invocations. Moreover, we define one pure predicate for a simple permission lattice and include
a solver for it. The interesting and complicated part of the development is the verification of the
lemmas and safety of the foreign functions that provide access to the machine’s memory. This
verification is done directly in the Iris model using Iris Proof Mode. The functions implemented in
µSail like the store instruction in Fig. 21 are much simpler to verify but represent the majority of
the code. In fact, a large subset does not even touch memory. Katamaran’s goal is to automate
this boring bulk of security property verification.
The time to verify all 48 µSail functions with the symbolic executor is 0.56s, meaning it is fast

enough to allow us to interactively experiment with definitions in our case study, continuously
expand it and immediately verify the corresponding contracts. In total, the symbolic executor
explores 117 execution paths, of which it prunes 17 early, while the shallow executor explores
57867 paths with 42686 pruned paths.

7 RELATED WORK

The literature on the topics we touch in this paper is vast. For the discussion, we focus on related
work with a high degree of assurance.

Certified verifications. The ecosystem of verifiers, solvers, and theorem provers is evolving to the
extent that we can formally establish program verification results with machine-checked proofs.
One approach, the one promoted in this paper, is to verify the implementation of a verifier itself, so
that we can automagically trust each run. This is sometimes called the autarkic style [Barendregt
and Barendsen 2002; Beeson 2016] or proof by computational reflection [Boutin 1997].
Existing work has already mechanized various subsets of the pipeline of verifiers. For instance,

[Vogels et al. 2009] contains a mechanized formalization of an intermediate verification language
(IVL), together with a proof of the soundness of its VCG, and [Vogels et al. 2010] goes even further to
mechanize an algorithm for compact VCs [Flanagan and Saxe 2001; Leino 2005]. To boost confidence
in tools, we would ideally integrate verified implementations in their code. Unfortunately, this is
not common practice, since mechanized implementations are usually not built for performance.
But it is also not unheard of. For instance, [Appel 2011] reports competitive performance of an
extracted version of VeriSmall versus the original Smallfoot implementation.

A more common approach is to verify individual runs of a verifier, the skeptical style. For instance,
we can instrument the implementation of a verifier [Parthasarathy et al. 2021] to produce certificates
that can then be checked in a theorem prover, to mechanically verify that it indeed witnesses a
valid derivation in the program logic. A second variation is to autarkically verify a checker that
validates certificates, but we are not aware of such a system for the purpose of program verification.
Another option is to integrate the tool with a theorem prover, by embedding the program logic in
the logic of the prover and interacting with it to build a proof term for the derivation, by interactive,
semi-automatic, or mostly-automated [Cao et al. 2018; Chlipala 2011; Krebbers et al. 2018; Tuerk
2009] means. This approach has been used to support large subsets of realistic programming
languages, e.g. in the VST [Cao et al. 2018] and CFML [Charguéraud 2010] frameworks.

Specification and Dijkstra monads. As we have shown in this paper, there are clearly variations
possible in the definition of specification monads. We believe that other variations are possible, such
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as using the propositions of other domain-specific logics, be they shallowly or deeply embedded.
VeriSmall [Appel 2011] also uses a continuationmonad tomodel non-determinism, but since it works
on a decidable fragment of separation logic, it can even use a boolean result type. Featherweight
VeriFast (FVF) [Jacobs et al. 2015] uses an intensional specification monad that supports angelic
and demonic choice, which is not based on continuation monads.

Dijkstra monads [Ahman et al. 2017; Jacobs 2014; Maillard et al. 2019; Swamy et al. 2013] can be
constructed by indexing a computation monad with a specification monad, to co-design programs
and specifications, and verify correctness. We believe we could similarly index the specification
monad 𝑆 with the monad𝑊 , and implement the symbolic executor with the concrete one as the
specification. This would essentially fuse the implementation of the symbolic executor with the
refinement proofs of Section 5.

Verified symbolic execution. Although other tools do not make them as explicit as we do, Kripke
frames naturally arise in the implementation of symbolic executors and can clearly be seen in the
proofs. For instance, VeriSmall [Appel 2011] represents variables as numbers and keeps track of an
upper bound of used variables to allocate fresh ones. The upper bound with the path constraints
form the worlds, and the proof irrelevant accessibility is the inequality ≤ and constraint entailment.
Similarly, FVF [Jacobs et al. 2015] uses sets of variables and proof irrelevant set inclusion.
The main soundness theorem of VeriSmall uses an intricate induction scheme, that involves

the treatment of fresh variables, including a number ghost that separates numbers representing
program variables from logic variables. In our mechanization, we only used standard structural
induction. We believe that the difficulty in VeriSmall arises during induction over assertions or
statements that contain logic variables for which we needed to add another □-operator to account
for the fact that the world can change during traversal. Since accessibility in VeriSmall is proof
irrelevant, this additional □ would be invisible in the implementation of the symbolic executor but,
in our experience, needs to be accounted for in the proof.

Our approach draws many inspirations from FVF, but also improves on the method and system-
atizes it in several ways. FVF defines an approximation relation which is roughly equivalent to our
logic relation for the specification monad types. However, FVF does not generalize this to other
types, but defines the needed soundness statement adhoc as needed. Our logical relation system-
atically calculates the soundness theorem for every type. While FVF works with an intensional
specification monad, the soundness theorem of FVF applies a CPS on top. When trying to use their
specification monad without CPS we found that we needed additional proof obligations that encode
a notion of stability: postcondition continue to hold under accessibility. Furthermore, FVF does not
prove a general refinement relation for the monadic bind operator, but instead relies on the monad
laws to reassociate operations and then use a CPS transformed refinement on the first operation.
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