
1

Connectivity Graphs: A Method for Proving Deadlock
Freedom Based on Separation Logic

JULES JACOBS, Radboud University Nijmegen, The Netherlands

STEPHANIE BALZER, Carnegie Mellon University, USA

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

We introduce the notion of a connectivity graph—an abstract representation of the topology of concurrently

interacting entities, which allows us to encapsulate generic principles of reasoning about deadlock freedom.

Connectivity graphs are parametric in their vertices (representing entities like threads and channels) and

their edges (representing references between entities) with labels (representing interaction protocols). We

prove deadlock and memory leak freedom in the style of progress and preservation and use separation logic
as a meta theoretic tool to treat connectivity graph edges and labels substructurally. To prove preservation

locally, we distill generic separation logic rules for local graph transformations that preserve acyclicity of the

connectivity graph. To prove global progress locally, we introduce a waiting induction principle for acyclic

connectivity graphs. We mechanize our results in Coq, and instantiate our method with a higher-order binary

session-typed language to obtain the first mechanized proof of deadlock and leak freedom.

CCS Concepts: • Theory of computation → Separation logic; • Software and its engineering →
Concurrent programming languages.

Additional Key Words and Phrases: Message passing, concurrency, session types, separation logic, deadlock

freedom, graphs, Coq

ACM Reference Format:
Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Connectivity Graphs: A Method for Proving

Deadlock Freedom Based on Separation Logic. Proc. ACM Program. Lang. 6, POPL, Article 1 (January 2022),

33 pages. https://doi.org/10.1145/3498662

1 INTRODUCTION
Binary session types [Honda 1993; Honda et al. 1998] are a type discipline for specifying protocols of

interactions in message-passing concurrent programs. Session types have turned into an active area

of research that enjoys strong theoretical and practical foundations. The theoretical foundations

include a Curry-Howard correspondence between session-typed 𝜋-calculi and linear logic [Caires

and Pfenning 2010; Wadler 2012; Caires et al. 2013; Pérez et al. 2014; Toninho et al. 2013; Lindley and

Morris 2015; Toninho 2015] and session-typed _-calculi with mainstream programming language

features [Lindley and Morris 2016b, 2017; Igarashi et al. 2017; Fowler et al. 2019]. The practical

foundations include libraries for session types in mainstream programming languages [Dezani-

Ciancaglini et al. 2006; Pucella and Tov 2008; Imai et al. 2010; Jespersen et al. 2015; Lindley and

Morris 2016a; Scalas and Yoshida 2016; Padovani 2017; Imai et al. 2019; Kokke 2019; Chen and

Balzer 2020].

Authors’ addresses: Jules Jacobs, Radboud University Nijmegen, The Netherlands, j.jacobs@science.ru.nl; Stephanie Balzer,

Carnegie Mellon University, USA, balzers@cs.cmu.edu; Robbert Krebbers, Radboud University Nijmegen, The Netherlands,

mail@robbertkrebbers.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/1-ART1

https://doi.org/10.1145/3498662

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3498662
https://doi.org/10.1145/3498662

1:2 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Session-typed languages come with strong guarantees: they not only enjoy type safety (a.k.a.

session fidelity) but all well-typed programs also enjoy deadlock freedom (and consequently, global
progress). The proofs of deadlock freedom have to establish that the dependency structure among

the threads (or processes) and channels (or buffers) remains acyclic, even in the presence of dy-

namic thread spawning and higher-order channels [Carbone and Debois 2010]. Despite the active

developments in the mechanization of the meta-theory of binary session types [Thiemann 2019;

Rouvoet et al. 2020; Hinrichsen et al. 2021b; Tassarotti et al. 2017; Goto et al. 2016; Ciccone and

Padovani 2020; Castro-Perez et al. 2020; Gay and Vasconcelos 2010], a mechanized proof of deadlock

freedom for binary session types with dynamic thread and channel creation and a dynamically

changing communication topology (due to higher-order channels) is still outstanding because of

the intricacies of reasoning about graphs in a mechanized setting. While the semantics of global

and local types of multiparty session types has recently been mechanized [Castro-Perez et al. 2021],

and thus global properties such as deadlock freedom shown to hold, the result is confined to a

single session without dynamic thread and channel creation and without higher-order channels.

In this paper we develop a parametric proof method for deadlock freedom of concurrently

computing entities that interact via shared resources on a dynamically changing acyclic commu-

nication topology. We mechanize the proof method in the Coq proof assistant, and instantiate

it for a deadlock freedom proof for a variant of GV [Wadler 2012; Lindley and Morris 2015], a

functional language with higher-order binary linear session types. Proof mechanization has the

obvious benefit of providing the peace of mind of a machine-checked proof. Another—maybe even

more important—benefit of mechanization is that it encourages us to develop abstractions that

encapsulate the reasoning about the acyclic dependency structure of threads and channels, and

that shield us from the intricacies of a language’s operational semantics and type system.

The key ingredients that make our proof method parametric are our new notion of a connec-
tivity graph, to abstract over the dependency structure, and our meta theoretic use of separation
logic [O’Hearn et al. 2001], to link our abstract connectivity graph to the concrete language’s oper-

ational semantics and type system. A connectivity graph abstracts concurrent entities and shared

resources as vertices and their possible interactions as edges, which are labeled with protocol state.

When instantiating the connectivity graph for session types, threads and channels become vertices,

channel references become edges whose labels indicate the session type of the referenced channel.

By asserting acyclicity of the connectivity graph, circular dependencies among the concurrent

entities and shared resources are rendered impossible. This guarantees that at any moment at least

one interaction can happen (deadlock freedom) and that all channels are deallocated when the

program terminates (memory leak freedom).

Example. Before we explain the parametric aspects of our proof method, let us consider an

example program to see connectivity graphs for linear session types in action:

1 let c1 = fork (_ c1', // c1': ? (?N. End). !N. End
2 let (c1',c) = receive(c1') // c1': !N. End, c: ?N. End
3 let (c,n) = receive(c); . . .) // c1': !N. End, c: End
4

5 let c2 = fork (_ c2', // c1: ! (?N. End) . ?N. End, c2': ?N. End
6 let c1 = send(c1,c2'); // c1: ?N. End
7 let (c1,m) = receive(c1); . . .) // c1: End
8

9 // c2: !N. End
10 let c2 = send(c2,10); . . . // c2: End

T

T1

T2

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:3

After both forks:

TC1 C2

T1 T2

! (?N). ?N

!N

? (?N). !N ?N

After T2’s send:

TC1 C2

T1 T2

?N

!N

? (?N). !N

?N

After T1’s receive:

TC1 C2

T1 T2

?N

!N

!N

?N

Fig. 1. Connectivity graphs with run-time information for our example program (the End markers have
been elided from session types). Boxes depict threads (red boxes are blocked threads, green dotted boxes are
running threads). Blue cicles depict channels. Black edges indicate references to channel endpoints, labeled
with their session type. Red triangles reveal the waiting dependency for each reference to a channel endpoint:
either the owner of the endpoint is waiting to receive a message from the channel, or the channel is waiting
for the owner of the endpoint to initiate the next action (send or receive or close).

The main thread (T) uses the fork construct to spawn two threads (T1 and T2) with bidirectional

channels (C1 and C2) connecting them to the main thread. The endpoints c2 and c2' of channel C2

(created on Line 5) have session types (!N. End) and (?N. End), respectively. These dual session
types express that a number should be sent (!) over c2 and received (?) over c2'. The session types

of channel C1 (created on Line 1) are more interesting—they are higher-order. Endpoint c1 has

session type (! (?N. End). ?N. End), which expresses that first a channel of type (?N. End) should
be sent, after which a number can be received. The _-expression of thread T2 captures endpoint c1,

resulting in the ownership of c1 being transferred from thread T to thread T2.

The first picture in Figure 1 displays the connectivity graph after both forks have been executed,

but no other steps have been performed yet. The solid red boxes correspond to threads that are

blocked on a receive, while the dotted green boxes correspond to threads that can make progress.

The small black arrowheads on the edges indicate the direction of channel ownership: an edge from

a thread to a channel indicates that the thread owns an endpoint of that channel, and an edge from

a channel to a channel indicates that an endpoint of the latter channel is stored in one of the buffers

of the former channel (an edge between two threads is not possible—all references are to channels).
The red triangles denote the waiting dependency. A crucial property of the connectivity graph is

that the waiting dependency remains acyclic. Acyclicity enables us to find a thread that can make

progress by starting at any vertex and repeatedly following the red triangles. For example, when

starting at thread T1, which is blocked, we find that thread T2 can perform a step.

When we continue by letting thread T2 perform the send operation on Line 6, the send will

move the endpoint c2' into the buffer of C1. In general, the effect of the send operation on the

connectivity graph is as follows:

T C ?

𝑣
𝐶3𝐶2𝐶1

!𝜏 . 𝑠
T C ?

𝑣
𝐶3𝐶2𝐶1

𝑠

send(𝑐, 𝑣)

On the left, thread T has ownership of the transmitted value 𝑣 and the endpoint of carrier channel

C with session type !𝜏 . 𝑠 . The value 𝑣 could in general contain any number of channel references

(depicted as 𝐶1, 𝐶2, 𝐶3), for instance when it is a pair of channels or a closure that has captured

more than one channel. On the right, we have the resulting connectivity graph that we obtain after

the send operation has been performed. The session type changes to 𝑠 (i.e., the remainder of the

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:4 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

protocol) and the value 𝑣 gets transferred to the buffer of C, so the incoming edges of the channels

in 𝑣 are changed from T to C. Note that the red waiting triangles and the information about whether

a thread is blocked is not part of the connectivity graph because it can be derived from the run-time

configuration. We therefore depict the general transformation rule without waiting triangles and

use a neutral color for threads. In our running example, the thread is T2, the channel is C1, and the

value 𝑣 is the single channel C2. The second picture in Figure 1 displays the resulting connectivity

graph: the session type of T2 has advanced to (?N. End) and the incoming edge from C2 to T2 has

turned into an incoming edge from C2 to C1.

Next, we let thread T1 perform the recv operation on Line 2, which will move the endpoint out

of the buffer of channel C1 and bind it to variable c. The rule to transform the connectivity graph

for a receive operation is similar to send (the exact rule can be found in Figure 8 in §3.5). The third

picture in Figure 1 displays the resulting connectivity graph, where we see that the session type of

T1 advanced, and that the outgoing edge from C1 to C2 has turned into an outgoing edge from T1

to C2. Observe that the connectivity graph has a non-trivial structure—to find a thread that can

unblock T2, we need to follow multiple edges to end up in thread T.

Progress and preservation. As shown by the examples in Figure 1, connectivity graphs describe

the types and abstract reference topology of a program’s execution configuration, but not the

concrete expressions and values that constitute the threads and channels. To prove a property

about the operational semantics, we need to define a relation that expresses that a configuration 𝜌

is well-formed w.r.t. a connectivity graph𝐺 . With that relation at hand, we can carry out a proof in

the style of progress and preservation [Wright and Felleisen 1994; Harper 2016; Pierce 2002].

• Progress: If 𝜌 is well-formed w.r.t.𝐺 , then either 𝜌 is final (all threads have terminated and

all channels have been deallocated), or 𝜌 can step (deadlock freedom).

• Preservation: If 𝜌 is well-formed w.r.t. 𝐺 , and can take a step 𝜌 { 𝜌 ′ in the operational

semantics, then we can transform 𝐺 into 𝐺 ′ so that 𝜌 ′ is well-formed w.r.t. 𝐺 ′.

It is important to point out that connectivity graphs generalize heap typings from traditional

progress and preservation proofs for type systems with mutable references [Pierce 2002; Harper

2016]. Whereas heap typings are flat (they merely give the types of channels, which suffices for type

safety), connectivity graphs additionally describe the reference topology and ensure its acyclicity

(needed for deadlock and memory leak freedom).

Connectivity graphs as a parametric proof principle. When trying to formalize the above reasoning,

we encounter two problems:

(1) Due to linear types and concurrency, it is non-trivial to formalize the well-formedness relation

of configurations w.r.t. connectivity graphs. Definitions easily end up cluttered with details

about resource separation, which burdens mechanization in a proof assistant.

(2) Proving preservation and progress involves non-trivial reasoning about graphs. For preserva-

tion we need to transform graphs (to type a post-configuration), and for progress we need to

traverse graphs (to find a thread that can step). Reasoning about graphs is difficult in a proof

assistant because graphs are not inductively defined.

To address these problems, we use separation logic [O’Hearn et al. 2001] as a meta theoretic tool

to reason about graphs. Traditionally, separation logic is used as a specification language to write

pre- and postconditions for individual programs in Hoare-style logics. Inspired by recent work that

uses separation logic to establish type safety using logical relations [Krebbers et al. 2017; Jung et al.

2018a; Hinrichsen et al. 2021b] and intrinsically-typed interpreters and compilers [Rouvoet et al.

2020, 2021], we also use separation logic but in the context of a progress and preservation proof.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:5

Our version of separation logic makes it possible to define the well-formedness relation in a way

that is local (i.e., talks about threads in isolation) and that hides resources. To adopt separation

logic for our connectivity graph, we must decide on what to consider as a resource. The scenarios

in Figure 1 suggest that we should consider a vertex’s outgoing edges as resources, because then a

graph transformation, such as the one induced by moving endpoint c2' into C1’s buffer, simply

amounts to an ownership transfer. To prove preservation, we distill a set of separation logic rules

for reasoning about graph transformations by simply transferring ownership of resources. To prove

progress, we distill a form of waiting induction to perform induction on the connectivity graph to

find a vertex that can perform a step.

All ingredients of our method (the definition of connectivity graph, the separation logic, the

graph transformations, and waiting induction) are parametric in the vertices, edges and labels of

the connectivity graph. This is crucial for mechanization: we can encapsulate our proof method

as a library that is independent of the concrete programming language. We use our library in

combination with the Iris Proof Mode [Krebbers et al. 2017, 2018]—which provides tactics for

separation-logic based reasoning—to effectively hide reasoning about graphs and resources in Coq.

Contributions. We present a parametric method for proving deadlock and memory leak freedom

of binary linear session-typed languages. Concretely:

• We introduce connectivity graphs as a generalization of heap typings in progress and preser-

vation proofs. In addition to typing, connectivity graphs track the reference topology.

• We show how to use separation logic in a non-standard way as a language for linking our

abstract connectivity graphs to a concrete language’s operational semantics and type system.

• We implement connectivity graphs as a library in the Coq proof assistant that is parametric

in the type of vertices and edges. Our library includes graph transformations as separation
logic rules to aid proving preservation, and a principle of waiting induction over connectivity

graphs to aid proving progress.

• We use our connectivity graph library to obtain the first mechanized proof of deadlock and

leak freedom for a binary session-typed _-calculus with higher-order channels, recursive

types, and unrestricted types.

We start by introducing our language (§2), and explain our key ideas by proving deadlock freedom

for it (§3). Next, we present the parametric aspects of our proof method (§ 4 and 5). We then add

extensions to our language, and prove a stronger deadlock and memory leak freedom property than

the conventional formulation in terms of global progress (§6), and describe our Coq mechanization

(§7). We finish with related and future work (§ 8 and 9). An archive of the Coq mechanization can be

found at Jacobs et al. [2021], and the most recent version at https://github.com/julesjacobs/cgraphs.

2 LANGUAGE AND OPERATIONAL SEMANTICS
We present the core of our session-typed _-calculus with concurrency and asynchronous bidirec-

tional channels (extensions with more features are described in §6). This language is inspired by

GV [Wadler 2012; Lindley and Morris 2015], but there are a couple of differences. First, we are more

liberal and allow both channel endpoints to be closed anytime, rather than only when a thread ter-

minates. For our proofs this extension poses no problem—it just means that our connectivity graphs

might become disconnected. Second, our operational semantics uses a flat thread pool and heap

rather than binders and structural congruences, resembling more closely a realistic implementation

of message passing. The syntax of expressions of our core language is:

𝑒 ∈ Expr ::= 𝑥 | () | 𝑛 | (𝑒, 𝑒) | _𝑥 . 𝑒 | 𝑐 | 𝑒 𝑒 | let 𝑥 = 𝑒 in 𝑒 | let () = 𝑒 in 𝑒 | let (𝑥1, 𝑥2) = 𝑒 in 𝑒 |
if 𝑒 then 𝑒 else 𝑒 | fork(𝑒) | send(𝑒, 𝑒) | receive(𝑒) | close(𝑒)

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

https://github.com/julesjacobs/cgraphs

1:6 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Pure reduction relation:

(_𝑥. 𝑒) 𝑣 {pure 𝑒 [𝑣/𝑥]
let 𝑥 = 𝑣 in 𝑒 {pure 𝑒 [𝑣/𝑥]

let () = () in 𝑒 {pure 𝑒

let (𝑥1, 𝑥2) = (𝑣1, 𝑣2) in 𝑒 {pure 𝑒 [𝑣1/𝑥1] [𝑣2/𝑥2]
if 𝑛 then 𝑒1 else 𝑒2 {pure 𝑒1 (if 𝑛 ≠ 0)

if 𝑛 then 𝑒1 else 𝑒2 {pure 𝑒2 (if 𝑛 = 0)

Head reduction relation:

(𝑒1, ℎ) {head (𝑒2, ℎ, 𝜖) (if 𝑒1 {pure 𝑒2)

(fork(𝑣), ℎ) {head (#(𝑎, 1), ℎ ⊎ {(𝑎, 0) ↦→ 𝜖, (𝑎, 1) ↦→ 𝜖}, [𝑣 #(𝑎, 0)])
(if (𝑎, 0), (𝑎, 1) ∉ dom(ℎ))

(send(𝑐, 𝑣), ℎ ⊎ {𝑐 ↦→ ®𝑣}) {head (𝑐, ℎ ⊎ {𝑐 ↦→ ®𝑣 ++ [𝑣]}, 𝜖)
(receive(𝑐), ℎ ⊎ {𝑐 ↦→ [𝑣] ++ ®𝑣}) {head ((𝑐, 𝑣), ℎ ⊎ {𝑐 ↦→ ®𝑣}, 𝜖)

(close(𝑐), ℎ ⊎ {𝑐 ↦→ 𝜖}) {head ((), ℎ, 𝜖)
Global reduction relation:

(®𝑒𝑎 ++ [𝐾 [𝑒]] ++ ®𝑒𝑏, ℎ) {global (®𝑒𝑎 ++ [𝐾 [𝑒 ′]] ++ ®𝑒𝑏 ++ ®𝑒, ℎ′) (if (𝑒, ℎ) {head (𝑒 ′, ℎ′, ®𝑒))

Evaluation contexts:

𝐾 ∈ Ctx ::= □ | (𝐾, 𝑒) | (𝑣, 𝐾) | 𝐾 𝑒 | 𝑣 𝐾 | let 𝑥 = 𝐾 in 𝑒 | let () = 𝐾 in 𝑒 | let (𝑥1, 𝑥2) = 𝐾 in 𝑒 |
if 𝐾 then 𝑒1 else 𝑒2 | fork(𝐾) | send(𝐾, 𝑒) | send(𝑣, 𝐾) | receive(𝐾) | close(𝐾)

Fig. 2. The operational semantics of our language.

The literals include the unit value (), numbers 𝑛 ∈ N, and channel endpoint references 𝑐 ∈ Chan
(these enter expressions at run time, see the operational semantics below). As usual in a linearly-

typed language, we consider let-binding constructs let () = 𝑒 in 𝑒 and let (𝑥1, 𝑥2) = 𝑒 in 𝑒 for pattern
matching on the unit value () and pairs (𝑒, 𝑒), respectively.

Operational semantics. We use an asynchronous semantics with two buffers per channel to

guarantee that sends in either direction are non-blocking.
1
This is formally modeled as:

𝑐 ∈ Chan ::= #(𝑎, 𝑡) ℎ ∈ Heap ≜ Chan fin−⇀ ListVal

𝑣 ∈Val ::= () | 𝑛 | (𝑣, 𝑣) | _𝑥. 𝑒 | 𝑐 𝜌 ∈ Cfg ≜ List Expr × Heap

A heap ℎ is a finite map from channel endpoint references to buffers (modeled as lists of values).

Channel endpoint references #(𝑎, 𝑡) consist of an address 𝑎 ∈ Addr and a tag 𝑡 ∈ {0, 1} denoting
the endpoint. The operation #(𝑛, 𝑡) ≜ #(𝑛, 1 − 𝑡) gives the opposite endpoint. Configurations (®𝑒, ℎ)
consist of a list of expressions ®𝑒 , modeling the threads, and a heap ℎ that is shared by these threads.

The semantics of most constructs is standard, so we focus on the message passing constructs:

1
Due to the session typing discipline, only one of the buffers is expected to be populated at any given time. The two buffers

are important to distinguish the origin of the messages, because otherwise an asynchronous send followed by a receive

creates a risk that the thread receives back its own message that it just sent.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:7

// no counter party

let c1 = fork(_ c1', ())

receive(c1)

T C1 T1

// protocol violation

let c1 = fork(_ c1', receive(c1'); . . .)

receive(c1)

T C1 T1

// circular dependency

let c1 = fork(_ c1', send(c1', c1'))

let (c1,c1') = receive(c1)

let c2 = fork(_ c2', receive(c2'); send(c1', 2). . .)

receive(c1); send(c2, 3)

T C1

T2C2

T1

// memory leak

let c1 = fork(_ c1', ()))

let c2 = fork(_ c2', ())

send(c2, c1)

send(c1, c2)

T C1 T1

T2 C2

Fig. 3. Examples of configurations that are deadlocked or have leaked.

fork(𝑣) Allocates a new channel with endpoints 𝑐left ≜ #(𝑎, 0) and 𝑐right ≜ #(𝑎, 1), where 𝑎 is a
fresh address. It starts a new thread running 𝑣 𝑐left (𝑣 should be a function) and returns 𝑐right.

send(𝑐, 𝑣) Places the message 𝑣 into the buffer of the opposite endpoint 𝑐 of 𝑐 and returns 𝑐 .2

This construct does not block.

receive(𝑐) Takes a message 𝑣 out of the buffer of endpoint 𝑐 and returns the pair (𝑐, 𝑣). If the
buffer is empty, it blocks until a message is available.

close(𝑐) Closes the endpoint 𝑐 and returns the unit value (). This construct does not block.
The formal definition of the semantics is given in Figure 2. It involves three reduction relations: (1)

pure reductions 𝑒 {pure 𝑒
′
, (2) head-reductions (𝑒, ℎ) {head (𝑒 ′, ℎ′, ®𝑒), where ®𝑒 is a list of spawned

threads (empty for all constructs but fork), and (3) global reductions 𝜌 {global 𝜌
′
. Global reductions

make use of standard call-by-value evaluation contexts 𝐾 ∈ Ctx.

Deadlocks and memory leaks. Untyped programs in our language can deadlock or have memory

leaks. A configuration (®𝑒, ℎ) is deadlocked if each expression 𝑒 ∈ ®𝑒 is a receive(𝑐) that is waiting
on an empty buffer 𝑐 in the heap ℎ. A configuration (®𝑒, ℎ) has leaked if each expression 𝑒 ∈ ®𝑒
is a value, but the heap ℎ is not empty, meaning not all channels have been closed. In Figure 3

we show examples of both. On the left we show the code, and on the right we show a graphical

representation of the resulting configuration. As in §1, boxes denote threads (i.e., expressions),
circles denote channels (i.e., buffer pairs), black arrows denote channel references, and red triangles
denote the waiting dependency. Concretely, a thread with a red triangle pointing to a channel is

waiting to receive a message from that channel, and a channel with a red triangle pointing to a

thread is waiting for the thread to send a message along that channel.

The simplest form of deadlock is a thread attempting to receive a message from a channel that

nobody else has a reference to (first program). If threads violate the usual protocol that one side

2
The reason why send returns the endpoint 𝑐 is the session type system, which gives the endpoint a new type, prescribing

the remainder of the protocol. The same applies to the receive operation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:8 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Γ = {𝑥 ↦→ 𝜏}
Γ ⊢ 𝑥 : 𝜏

.

∅ ⊢ () : 1

𝑛 ∈ N
∅ ⊢ 𝑛 : N

Γ1 ⊢ 𝑒1 : 𝜏1 Γ2 ⊢ 𝑒2 : 𝜏2

Γ1 ⊎ Γ2 ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

Γ ⊎ {𝑥 ↦→ 𝜏1} ⊢ 𝑒 : 𝜏2

Γ ⊢ _𝑥. 𝑒 : 𝜏1 −◦ 𝜏2

Γ1 ⊢ 𝑒1 : 𝜏1 −◦ 𝜏2 Γ2 ⊢ 𝑒2 : 𝜏1

Γ1 ⊎ Γ2 ⊢ 𝑒1 𝑒2 : 𝜏2

Γ1 ⊢ 𝑒1 : 𝜏1 Γ2 ⊎ {𝑥 ↦→ 𝜏1} ⊢ 𝑒2 : 𝜏2

Γ1 ⊎ Γ2 ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝜏2

Γ1 ⊢ 𝑒1 : 1 Γ2 ⊢ 𝑒2 : 𝜏

Γ1 ⊎ Γ2 ⊢ let () = 𝑒1 in 𝑒2 : 𝜏

Γ1 ⊢ 𝑒1 : 𝜏1 × 𝜏2 Γ2 ⊎ {𝑥1 ↦→ 𝜏1} ⊎ {𝑥2 ↦→ 𝜏2} ⊢ 𝑒2 : 𝜏

Γ1 ⊎ Γ2 ⊢ let (𝑥1, 𝑥2) = 𝑒1 in 𝑒2 : 𝜏

Γ1 ⊢ 𝑒1 : N Γ2 ⊢ 𝑒2 : 𝜏 Γ2 ⊢ 𝑒3 : 𝜏

Γ1 ⊎ Γ2 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏

Γ ⊢ 𝑒 : 𝑠 −◦ 1
Γ ⊢ fork(𝑒) : 𝑠

Γ1 ⊢ 𝑒1 : !𝜏 . 𝑠 Γ2 ⊢ 𝑒2 : 𝜏

Γ1 ⊎ Γ2 ⊢ send(𝑒1, 𝑒2) : 𝑠

Γ ⊢ 𝑒 : ?𝜏 . 𝑠

Γ ⊢ receive(𝑒) : 𝑠 × 𝜏
Γ ⊢ 𝑒 : End

Γ ⊢ close(𝑒) : 1

Fig. 4. The static type system of our language.

receives and the other side sends a message, then a deadlock can occur if both try to receive

(second program). A deadlock can occur even if all parties are locally well behaved, but cause a

cyclic dependency (third program). Note that even though the reference structure (black arrows)

of this example forms a directed acyclic graph, a deadlock occurs because the waiting direction

(red triangles) can be opposite of the reference direction (black arrows). Finally, memory leaks can

occur if channels are not properly closed (fourth program).

Session Typing. A linear type system with session types can be used to rule out deadlocks:
3

𝜏 ∈ Type ::= 1 | N | 𝜏 × 𝜏 | 𝜏 −◦ 𝜏 | 𝑠
𝑠 ∈ Session ::= End | ?𝜏 . 𝑠 | !𝜏 . 𝑠

A session type 𝑠 denotes a sequence of actions, with ?𝜏 indicating a receive, !𝜏 a send, and End
termination, where 𝜏 denotes the type of the message. The dual 𝑠 of a session type 𝑠 is defined by

flipping all sends (!) and receives (?):

End ≜ End !𝜏 . 𝑠 ≜ ?𝜏 . 𝑠 ?𝜏 . 𝑠 ≜ !𝜏 . 𝑠

The rules of the type system are shown in Figure 4. Note that the type system is higher-order
because it allows sending any value over a channel, including functions and channel endpoints.

Session types ensure deadlock and leak freedom by combining channel and thread creation

through the fork construct.4 Together with linear channel typing, this ensures that the resulting

reference structure is acyclic, even when viewed as an undirected graph, in which edges may be

traversed in either direction. Let us consider the deadlocked programs in Figure 3. The first one is

ruled out by ensuring that there always exists a counter party (due to the absence of weakening).

The second one is ruled out by ensuring that all threads adhere to protocols (due to session duality).

The third one is ruled out by ensuring that the reference structure is acyclic (due to the absence of

contraction). The memory leak in the last example is ruled out by a combination of these rules.

3
For simplicity we let even integers be linear; in §6 we extend the type system with support for unrestricted types.

4
If we had a new_chan : 1 −◦ (𝑠×𝑠) construct, then let (𝑐1, 𝑐2) = new_chan () in let 𝑥 = receive(𝑐1) in . . . would deadlock.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:9

3 KEY IDEAS
Before we detail the abstractions that make our proof method parametric (§4 and §5), we describe a

concrete instantiation of our method to our session-typed language (§2). To do so, we first discuss

the well-known method of progress and preservation and the challenges in applying it to prove

deadlock and resource leak freedom (§3.1). To address these challenges, we introduce connectivity

graphs (§3.2) and describe how we use separation logic to formalize run-time typing judgments for

individual expressions (§3.3) and a well-formedness predicate for configurations (§3.4). We finally

show how to use our proof method to prove preservation (§3.5) and progress (§3.6).

3.1 Generalizing The Progress and Preservation Method
Traditionally, a language is said to be type safe if well typed programs do not get stuck. For purely

functional languages, like the Simply Typed Lambda Calculus (STLC), this is stated as:

Theorem 3.1 (Type safety). If ∅ ⊢ 𝑒 : 𝜏 and 𝑒 {∗ 𝑒 ′, then either 𝑒 ′ is a value, or 𝑒 ′ can step further
(i.e., ∃𝑒 ′′. 𝑒 ′ { 𝑒 ′′).

Type safety is often proved using the method of progress and preservation [Wright and Felleisen

1994; Harper 2016; Pierce 2002], which decomposes type safety into two properties that imply it:

• Preservation: If ∅ ⊢ 𝑒 : 𝜏 and 𝑒 { 𝑒 ′, then ∅ ⊢ 𝑒 ′ : 𝜏 .

• Progress: If ∅ ⊢ 𝑒 : 𝜏 , then either 𝑒 is a value, or 𝑒 can step further (i.e., ∃𝑒 ′′. 𝑒 ′ { 𝑒 ′′).

For pure languages like STLC, the proofs of these properties are straightforward: both properties

are proved by induction on the structure of the typing judgment and/or the reduction relation.

For languages with mutable state or concurrency, the above properties must be generalized to

account for a program’s run-time configurations. In general, for a language with expressions Expr
we have a set 𝜌 ∈ Cfg of configurations, an initial configuration init ∈ Expr→ Cfg, and a predicate

final ∈ Cfg→ Prop of configurations that are considered to be safely terminated.

Theorem 3.2 (Generalized type safety). If ∅ ⊢ 𝑒 : () and init(𝑒) {∗ 𝜌 , then either final(𝜌) or 𝜌 can
step further (i.e., ∃𝜌 ′. 𝜌 { 𝜌 ′).

Recall that for our session-typed language we have Cfg ≜ List Expr × Heap. We let final select
configurations where all threads have terminated with a unit value, and the heap is empty:

init(𝑒) ≜ ([𝑒], ∅) final(®𝑒, ℎ) ≜ ℎ = ∅ ∧ ∀𝑖 . 𝑒𝑖 = ()

By defining final this way, the type safety theorem expresses deadlock and memory leak freedom.
5

To see why, consider a configuration 𝜌 = (®𝑒, ℎ) that does not satisfy final(𝜌) and cannot step any

further. It must either consist of threads ®𝑒 that have not terminated but cannot step (indicating a

deadlock), or of terminated threads ®𝑒 but a non-empty heap ℎ (indicating a memory leak).

For deadlock and resource leak freedom, we need to restrict expressions to have a ground type.

For example, an expression like fork(_𝑥. close(𝑥)) : End exhibits a trivial memory leak because

the channel endpoint returned by fork() is still active. For simplicity, we use the unit type () in
Theorem 3.2, but of course, other ground types like N would suffice too.

The method of progress and preservation can be generalized to prove our generalized type safety

theorem (Theorem 3.2) by choosing a well-formedness predicate wf ∈ Cfg→ Prop that satisfies:
• Initialization: If ∅ ⊢ 𝑒 : (), then wf (init(𝑒)).
• Generalized preservation: If wf (𝜌) and 𝜌 { 𝜌 ′, then wf (𝜌 ′).
• Generalized progress: If wf (𝜌), then either final(𝜌) or 𝜌 can step further (i.e., ∃𝜌 ′. 𝜌 { 𝜌 ′).

5
This kind of deadlock freedom is also known as global progress in the session type literature. In §6.3 we prove a stronger

property that also rules out partial deadlocks.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:10 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

T1 C1

(0, 𝑠1)

C2

(1, 𝑠 ′
1
)

T2

(0, 𝑠2)

C5

(0, 𝑠3)

T5

(1, 𝑠 ′
3
)

T3

(1, 𝑠 ′
2
)

C3

C4 T4

T6

(0, 𝑠4)

(0, 𝑠 ′
4
)

(0, 𝑠5)

Fig. 5. An example of a connectivity graph. Brown boxes depict threads, and blue circles depict channels.

The primary challenge is to define a well-formedness predicate wf in such a way that these

properties can be proved. A naive definition of wf (®𝑒, ℎ) would simply demand each expression in

the thread pool ®𝑒 and each buffer in the heap ℎ to be well typed. Unfortunately, this naive definition

does not quite work:

(1) Channel references #(𝑎, 𝑡) enter the expressions ®𝑒 and heap ℎ throughout the execution of

the program. The typing judgment Γ ⊢ 𝑒 : 𝜏 of our type system (Figure 4) does not account

for channel references #(𝑎, 𝑡) because they cannot be written in source programs.

(2) Whenever a channel reference #(𝑎, 𝑡) appears in a thread or channel buffer, the type of #(𝑎, 𝑡)
should match up with the values in the buffers at address 𝑎 in the heap ℎ, and with the type

#(𝑎, 1 − 𝑡) of the other endpoint.
For the simpler case of proving type safety for the STLC with references, Harper [2016] and

Pierce [2002] remedy issue (1) by introducing a run-time typing judgment Γ; Σ ⊢ 𝑒 : 𝜏 . This judgment

extends the static typing judgment with a heap typing Σ, which assigns types to heap addresses.

Issue (2) is addressed because the heap typing makes sure that the typing of each reference is

consistent with the corresponding value in the heap.

Unfortunately, adapting this approach to prove deadlock and resource freedom is not as simple.

Conventional heap typings only capture the typing of addresses, not the acyclicity of the reference

topology. The latter is crucial to prove “generalized progress”, which states that the well-formedness

predicate wf indeed implies deadlock and resource leak freedom.

3.2 Generalizing Heap Typings to Connectivity Graphs
Our notion of connectivity graphs generalizes the notion of heap typings by simultaneously keeping

track of the types of channels in the heap, and providing an abstract representation of the reference

topology. In their full generality, connectivity graphs are represented as finite maps from pairs of

vertices V to the labels L on the edges between them:

𝐺 ∈ Cgraph(V, L) ≜ {𝐺 ∈ V × V fin−⇀ L |𝐺 has no undirected cycles}
To reason about our language defined in §2, we instantiate the vertices V and edge labels L of a

connectivity graph Cgraph(V, L) as follows:
a ∈ V ::= Thread(𝑖) | Chan(𝑎) 𝑙 ∈ L ≜ {0, 1} × Session

The vertices V are threads Thread(𝑖) (with position 𝑖 in the thread pool) or channels Chan(𝑎) (with
address 𝑎 in the heap). The edges are channel references and have a label (𝑡, 𝑠) ∈ L that consists of a

tag 𝑡 ∈ {0, 1}, indicating the channel endpoint pointed to, and a session type 𝑠 ∈ Session, indicating
the endpoint’s session type. An example of a connectivity graph is depicted in Figure 5. Note that

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:11

the red triangles that we used to depict the waiting directions in Figures 1 and 3 in §1 are not part

of the connectivity graph itself, because these can be derived from the run-time configuration. The

session types on the edges are part of the connectivity graph, because they cannot be derived from

the run-time configuration. In Definition 3.2 we formalize how the red triangles are derived.

Connectivity graphs corresponding to configurations in our language have a number of important

properties. First, vertices Thread(𝑖) can have an arbitrary number of outgoing edges, but have no

incoming edges. That is because threads can own channel endpoints, but threads can never be

owned. Second, vertices Chan(𝑎) can also have an arbitrary number of outgoing edges, but at most

two incoming edges. Outgoing edges are due to higher-order channels—a channel 𝑐1 can be sent

over another channel 𝑐2, resulting in an edge from 𝑐2 to 𝑐1 that models that 𝑐2 owns 𝑐1. Ingoing

edges correspond to a channel’s endpoints, which can be at most two. The number of incoming

edges is one in case one channel endpoint has been deallocated, but the other is still in use.

A key ingredient of connectivity graphs is the acyclicity restriction. They should be acyclic in the

undirected sense: there must be no cycles even if we disregard the direction of the edges. In other

words, a connectivity graph must be an unrooted undirected forest if we erase the direction of the

edges. The third example in Figure 3 shows why acyclicity in the undirected sense is important.

To formally reason about ownership, we introduce the following functions:

out(𝐺,a) ∈ V fin−⇀ L in(𝐺,a) ∈ Multiset L

The outgoing edges out(𝐺,a) determine which resources vertex a owns, whereas the incoming edges

in(𝐺,a) determine at which labels (i.e., types) the vertex a is owned. We use the above functions

in the definitions of the run-time typing judgment (§3.3) and the configuration well-formedness

predicate (§3.4). We represent the the outgoing edges out(𝐺,a) of a vertex a as a finite map from

vertices to labels to track which resources a vertex a owns and at which type. The incoming edges

in(𝐺,a) of a vertex a , however, we represent as a multiset of labels because it only matters at which
type a vertex a is owned, but not by whom (note that only channel endpoints can be owned).

What is parametric in this section. Connectivity graphs Cgraph(V, L) are parametric over the type

of vertices V and labels L. All theory about connectivity graphs (including the separation logic) that

we present throughout the rest of this section is parametric. Connectivity graphs and their theory

are thus modularly separated from the operational semantics and type system of the language,

which we found to be essential for keeping the complexity of the mechanization manageable.

3.3 Run-Time Typing Judgment Using Separation Logic
In the previous section, we developed the notion of a connectivity graph as a generalization of the

heap typing, known from type safety proofs of the STLC with references [Harper 2016; Pierce 2002].

We now make this generalization precise, develop a run-time typing judgment for our language,

and show how we can use separation logic to hide reasoning about linearity.

We start with the run-time judgment Γ; Σ ⊢ 𝑒 : 𝜏 , where Σ ∈ V fin−⇀ L provides the session types

of the free channel references in 𝑒 . Channel references amount to edges in our connectivity graph,

and thus Σ becomes the set of outgoing edges out(𝐺,a) associated with the threads and channels a

occurring in 𝑒 . Let us consider the typing rule for channel references and function application:

.

∅; {Chan(𝑎) ↦→ (𝑡, 𝑠)} ⊢ #(𝑎, 𝑡) : 𝑠

Γ1; Σ1 ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ2; Σ2 ⊢ 𝑒2 : 𝜏1

Γ1 ⊎ Γ2; Σ1 ⊎ Σ2 ⊢ 𝑒1 𝑒2 : 𝜏2

Because our language is linear, we insist that the Σ-context is a singleton in the rule for channel

references. In the rule for application, both contexts are split into disjoint parts for the subexpres-

sions. Unfortunately, this leads to a multiplication of contexts and disjointness side conditions,

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:12 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

(Emp) (Σ) ≜ (Σ = ∅) (𝑃,𝑄 ∈ oProp ≜ (V fin−⇀ L) → Prop)

(⌜𝜙⌝) (Σ) ≜ 𝜙 ∧ (Σ = ∅) (Σ ∈ V fin−⇀ L)

(𝑃 ∧𝑄) (Σ) ≜ 𝑃 (Σ) ∧𝑄 (Σ)
(∃𝑥 . 𝑃 (𝑥)) (Σ) ≜ ∃𝑥 . 𝑃 (𝑥) (Σ)
(own(Σ′)) (Σ) ≜ (Σ = Σ′)
(𝑃 ∗𝑄) (Σ) ≜ ∃Σ1Σ2. dom(Σ1) ∩ dom(Σ2) = ∅ ∧ Σ = Σ1 ⊎ Σ2 ∧ 𝑃 (Σ1) ∧𝑄 (Σ2)
(𝑃 −∗ 𝑄) (Σ) ≜ ∀Σ′.

(
dom(Σ) ∩ dom(Σ′) = ∅ ∧ 𝑃 (Σ′)

)
⇒ 𝑄 (Σ ⊎ Σ′)

Fig. 6. Semantics of separation logic.

because of the disjoint unions in the conclusion. These side conditions cannot be ignored because

we want to mechanize our results. This is not a big issue for the variable context Γ since we mostly

deal with closed expressions (i.e., with Γ = ∅) because the operational semantics operates on closed

expressions. The Σ-context, however, is in general non-empty for run-time expressions.

We use separation logic [O’Hearn et al. 2001] to hide the Σ-context and its disjointness conditions.
We work with separation logic propositions oProp ≜ (V fin−⇀ L) → Prop, which are predicates over a

context Σ ∈ V fin−⇀ L of outgoing edges. Our use of separation logic as an internal, meta theoretical

tool is inspired by Rouvoet et al. [2020] and contrasts with traditional uses which employ separation

logic as an external, user-visible tool when specifying programs in Hoare-style logics. The separation

logic connectives are defined in Figure 6. To assert that a separation logic proposition 𝑃 is true, is

to assert that 𝑃 (∅) is true. An important special case is that 𝑃 −∗ 𝑄 is true, if ∀Σ. 𝑃 (Σ) ⇒ 𝑄 (Σ).
Instead of the ordinary typing judgment (Γ; Σ ⊢ 𝑒 : 𝜏) ∈ Prop we define a separation-logic based

judgment (Γ ⊢ 𝑒 : 𝜏) ∈ oProp, so that (Γ; Σ ⊢ 𝑒 : 𝜏) iff (Γ ⊢ 𝑒 : 𝜏) (Σ). The preceding two rules are

then reformulated as follows:

own(Chan(𝑎) ↦→ (𝑡, 𝑠))
∅ ⊢ #(𝑎, 𝑡) : 𝑠

---∗
Γ1 ⊢ 𝑒1 : 𝜏1 −◦ 𝜏2 ∗ Γ2 ⊢ 𝑒2 : 𝜏1

Γ1 ⊎ Γ2 ⊢ 𝑒1 𝑒2 : 𝜏2

---∗

The Σ-contexts are hidden by the separation logic connectives, and the disjointness conditions

on Σ are taken care of by the separating conjunction (∗). At a channel reference, we use the own(Σ)
connective, which asserts that the separation logic resource is precisely Σ.
An exception to the rule that contexts are split up disjointly (with ∗) is the if 𝑒1 then 𝑒2 else 𝑒3

expression. Although the channel references occurring in 𝑒1 must be disjoint from those occurring

in 𝑒2 and 𝑒3, the same endpoint is allowed to occur in both 𝑒2 and 𝑒3, because only one of the

branches will be executed. This pattern too fits neatly in the separation logic methodology; we use

separating conjunction (∗) between 𝑒1 and 𝑒2, 𝑒3, but ordinary conjunction (∧) between 𝑒2 and 𝑒3:

Γ1 ⊢ 𝑒1 : N ∗ (Γ2 ⊢ 𝑒2 : 𝜏 ∧ Γ2 ⊢ 𝑒3 : 𝜏)
Γ1 ⊎ Γ2 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏

--∗

Figure 7 contains the full definition of our run-time type system using separation logic. Although

it is possible to define the meaning of general inductive separation logic inference rules via Tarski’s

fixed point theorem, this generality is not necessary here: the expressions in the premises of each

rule are strictly smaller than the expression in the conclusion, so the rules can be interpreted

as being defined by recursion on the expression. We use this approach in the Coq formalization,

because it has the additional benefit that we get the inversion rules for free.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:13

⌜Γ = {𝑥 ↦→ 𝜏}⌝
Γ ⊢ 𝑥 : 𝜏

--∗
Emp

∅ ⊢ () : 1
---∗

⌜𝑛 ∈ N⌝
∅ ⊢ 𝑛 : N
--∗

Γ1 ⊢ 𝑒1 : 𝜏1 ∗ Γ2 ⊢ 𝑒2 : 𝜏2

Γ1 ⊎ Γ2 ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

---∗

Γ1 ⊢ 𝑒1 : 𝜏1 −◦ 𝜏2 ∗ Γ2 ⊢ 𝑒2 : 𝜏1

Γ1 ⊎ Γ2 ⊢ 𝑒1 𝑒2 : 𝜏2

---∗
Γ ⊎ {𝑥 ↦→ 𝜏1} ⊢ 𝑒 : 𝜏2

Γ ⊢ _𝑥 . 𝑒 : 𝜏1 −◦ 𝜏2

---∗

Γ1 ⊢ 𝑒1 : 𝜏1 ∗ Γ2 ⊎ {𝑥 ↦→ 𝜏1} ⊢ 𝑒2 : 𝜏2

Γ1 ⊎ Γ2 ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝜏2

---∗
Γ1 ⊢ 𝑒1 : 1 ∗ Γ2 ⊢ 𝑒2 : 𝜏

Γ1 ⊎ Γ2 ⊢ let () = 𝑒1 in 𝑒2 : 𝜏
---∗

Γ1 ⊢ 𝑒1 : 𝜏1 × 𝜏2 ∗ Γ2 ⊎ {𝑥1 ↦→ 𝜏1} ⊎ {𝑥2 ↦→ 𝜏2} ⊢ 𝑒2 : 𝜏

Γ1 ⊎ Γ2 ⊢ let (𝑥1, 𝑥2) = 𝑒1 in 𝑒2 : 𝜏
---∗

Γ1 ⊢ 𝑒1 : N ∗ (Γ2 ⊢ 𝑒2 : 𝜏 ∧ Γ2 ⊢ 𝑒3 : 𝜏)
Γ1 ⊎ Γ2 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏

--∗
Γ1 ⊢ 𝑒1 : !𝜏 . 𝑠 ∗ Γ2 ⊢ 𝑒2 : 𝜏

Γ1 ⊎ Γ2 ⊢ send(𝑒1, 𝑒2) : 𝑠
--∗

Γ ⊢ 𝑒 : ?𝜏 . 𝑠

Γ ⊢ receive(𝑒) : 𝑠 × 𝜏
---∗

Γ ⊢ 𝑒 : 𝑠 −◦ 1

Γ ⊢ fork(𝑒) : 𝑠
---∗

Γ ⊢ 𝑒 : End

Γ ⊢ close(𝑒) : 1
---∗

own(Chan(𝑎) ↦→ (𝑡, 𝑠))
∅ ⊢ #(𝑎, 𝑡) : 𝑠

---∗

Fig. 7. The separation-logic based run-time type system of our language.

A key strength of separation logic is that we can prove assertions using the proof rules of the

logic of Bunched Implications (BI) [O’Hearn and Pym 1999]. For example, separating conjunction

(∗) is associative and commutative, separating conjunction (∗) has Emp as identity element, and

magic wand (−∗) is the adjoint of separating conjunction (∗). We use the Iris Proof Mode [Krebbers

et al. 2017, 2018] to reason abstractly using the rules of separation logic in Coq (see §7 for details).

What is parametric in this section. The definition of the separation logic connectives and the

proof rules for the separation logic are parametric in the types of vertices V and labels L.

3.4 Well-Formedness of Configurations Using Connectivity Graphs
Now that we have a run-time typing judgment for a single expression, we are in a position to define

which configurations are well-formed. Recall that a configuration is a pair (®𝑒, ℎ) where ®𝑒 : List Expr
is the thread pool and where ℎ : Chan fin−⇀ ListVal is the heap of channel buffers. We must certainly

insist that all threads ®𝑒 are well-typed expressions (of unit type), and that all the values inside the

heap ℎ are well-typed. For the latter we have to ensure that a channel’s endpoints are of dual types,

modulo the messages queued up in the buffer. This requires us to consider the incoming edges
in(𝐺,a) of a vertex a in addition to its outgoing edges out(𝐺,a). We can thus state well-formedness

of a configuration in terms of its connectivity graph.

A configuration is well-formed if there exists a connectivity graph such that each thread
and channel is locally well-formed with respect to its vertex in the graph:

wf (®𝑒, ℎ) ≜ ∃𝐺 : Cgraph(V, L). ∀a ∈ 𝑉 . wflocal(®𝑒,ℎ) (a, in(𝐺,a)) (out(𝐺,a))

Here, wflocal(®𝑒,ℎ) : V ×Multiset L→ oProp gives the local well-formedness condition for each vertex. It

has two explicit arguments (the vertex a ∈ V and its incoming edges in(𝐺,a) ∈ Multiset L), and an

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:14 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

extra argument out(𝐺,a) ∈ V fin−⇀ L that will form the vertex’ local Σ-context, which is implicit in

the type signature of wflocal because oProp ≜ (V fin−⇀ L) → Prop.
A thread is locally well-formed if it is well-typed (with the implicit Σ-context given by its outgoing

edges), and has no incoming edges (because threads cannot be owned):

wflocal(®𝑒,ℎ) (Thread(𝑖),Δ) ≜
{
⌜Δ = ∅⌝ ∗ ∅ ⊢ 𝑒𝑖 : 1 if 𝑖 < |®𝑒 |
⌜Δ = ∅⌝ otherwise

Note that wf quantifies over any vertex a ∈ V, and we thus have to consider any thread index

𝑖 , including those 𝑖 ≥ |®𝑒 | that are not yet in use. For such indexes, we use the separation logic

proposition ⌜Δ = ∅⌝ to assert that both the incoming and outgoing edges are empty. The latter is

implicit by the semantics of ⌜Δ = ∅⌝ (see Figure 6).
A channel is locally well-formed if the buffers are well-typed (with the implicit Σ-context given

by its outgoing edges), and have matching incoming edges match the types of the endpoints:

wflocal(®𝑒,ℎ) (Chan(𝑎),Δ) ≜

∃𝑠0, 𝑠1, 𝑠 . ⌜Δ = {(0, 𝑠0), (1, 𝑠1)}⌝ ∗
⊢buf ℎ(𝑎, 0) : (𝑠0, 𝑠) ∗
⊢buf ℎ(𝑎, 1) : (𝑠1, 𝑠)

if #(𝑎, 0), #(𝑎, 1) ∈ dom(ℎ)

∃𝑏, 𝑠 . ⌜Δ = {(𝑡, 𝑠)}⌝ ∗
⊢buf ℎ(𝑎, 𝑡) : (𝑠, End)

if #(𝑎, 𝑡) ∈ dom(ℎ)
and #(𝑎, 1 − 𝑡) ∉ dom(ℎ)

⌜Δ = ∅⌝ otherwise

In this definition we have to consider three cases. The first case corresponds to the situation in

which both buffers are still in use. In that case, there must be two incoming edges in the connectivity

graph, labeled with session types that are dual modulo the values in the buffers. For instance, if the

left endpoint has session type ?𝜏1. ?𝜏2 . 𝑠 and the right endpoint has session type 𝑠 , then the buffer

of the left endpoint must be [𝑣1, 𝑣2] with ⊢ 𝑣1 : 𝜏1 and ⊢ 𝑣2 : 𝜏2. The second case corresponds to the

situation in which one buffer has been deallocated. The third case corresponds to the situation in

which the channel is not allocated (or both buffers have been deallocated).

The buffer typing judgment ⊢buf ®𝑣 : (𝑠1, 𝑠2) is inductively defined by the following rules:

Emp

⊢buf 𝜖 : (𝑠, 𝑠)
--∗

∅ ⊢ 𝑣 : 𝜏 ∗ ⊢buf ®𝑣 : (𝑠1, 𝑠2)
⊢buf ([𝑣] ++ ®𝑣) : (?𝜏 . 𝑠1, 𝑠2)

--∗

These rules express that ⊢buf ®𝑣 : (𝑠1, 𝑠2) holds if 𝑠1 is equal to prefixing 𝑠2 with the types of the

values ®𝑣 in the buffer. Note that similar to the other run-time judgments, the buffer typing judgment

is defined in separation logic, which implicitly ensures that the Σ-environment is distributed

disjointly over the values in the buffer.

What is parametric in this section. The definition of wf is parametric in the type of vertices V and

labels L, but also a local well-formedness predicate wflocal that captures the language-specific infor-
mation by linking the incoming and outgoing edges of each vertex to their run-time counterpart.

3.5 Proving Preservation Using Local Connectivity Graph Transformations
Now that we have defined the well-formedness predicatewf (®𝑒, ℎ), we must prove that it is preserved

by the operational semantics: if (®𝑒, ℎ) {global (®𝑒 ′, ℎ′), then wf (®𝑒, ℎ) implies wf (®𝑒 ′, ℎ′). Recall that
the well-formedness predicate wf (®𝑒, ℎ) intuitively means “there exists a connectivity graph 𝐺

describing the configuration (®𝑒, ℎ)”, so when the configuration steps to a new configuration (®𝑒 ′, ℎ′),
we must show that there exists a new connectivity graph 𝐺 ′ that describes (®𝑒 ′, ℎ′).

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:15

T1 C ?

𝑣
𝐶3𝐶2𝐶1

!𝜏 . 𝑠
T1 C ?

𝑣
𝐶3𝐶2𝐶1

𝑠

send(𝑐, 𝑣)

? C T2

𝑣
𝐶3𝐶2𝐶1

?𝜏 . 𝑠
? C T2

𝑣
𝐶3𝐶2𝐶1

𝑠

receive(𝑐)

T1

𝑣
𝐶3𝐶2𝐶1

T1 C T2

𝑣
𝐶3𝐶2𝐶1

𝑠 𝑠

fork(𝑣)

T1 C ?

End
T1 C ?

close(𝑐)

Fig. 8. The operational steps and the corresponding connectivity graph transformations.

If the head step is a pure step, then the new connectivity graph is exactly the same as the old

one, and the preservation of the well-formedness predicate follows by a standard case analysis of

the possible pure steps, because the heap does not change and no new threads are spawned.

Operational steps that involve channel operations are the interesting cases because they may

alter the connectivity graph. Figure 8 provides a schematic overview. We focus on the send(𝑐, 𝑣)
operation, which moves the value 𝑣 from the thread into the buffer of channel 𝑐 . The session type in

the label on the edge corresponding to 𝑐 itself must change from !𝜏 . 𝑠 to 𝑠 . Additionally, if the value
𝑣 contains channel references, the connectivity graph must change to reflect this. The changes to

the connectivity graph for send and the other channel operations are depicted in Figure 8.

Once we have chosen the appropriate new connectivity graph 𝐺 ′, we have to prove that this

graph indeed describes the new configuration (®𝑒 ′, ℎ′). This amounts to showing that the local

well-formedness condition wflocal(®𝑒′,ℎ′) (a, in(𝐺
′, a)) (out(𝐺 ′, a)) is re-established for every vertex a .

For send(𝑐, 𝑣) the relevant parts of the (®𝑒, ℎ)-configuration and (®𝑒 ′, ℎ′)-configuration are:

𝑒𝑖 = 𝐾 [send(𝑐, 𝑣)] ℎ(𝑐) = ®𝑣
𝑒 ′𝑖 = 𝐾 [𝑐] ℎ′(𝑐) = ®𝑣 ++ [𝑣]

The thread pool and heap do not change at other locations. After this change to the configuration

and the corresponding change to the connectivity graph (as depicted in Figure 8), we classify the

vertices into three types and explain how the local well-formedness wflocal(®𝑒′,ℎ′) is restored.

(1) For the vertices a ′where neither the corresponding part of the configuration nor the incoming

and outgoing edges change, wflocal(®𝑒,ℎ) (a
′, in(𝐺,a ′)) (out(𝐺,a ′)) remains valid.

(2) For the vertices a ′ that correspond to channels referenced inside the message 𝑣 , the owner
changes from Thread(𝑖) to Chan(𝑐.1) (corresponding to T1 and C in the figure). These

vertices are not affected either, because in(𝐺,a ′) = in(𝐺 ′, a ′). Since in(𝐺,a ′) and in(𝐺 ′, a ′)
are multisets of labels, they are thus not affected by the change of owner.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:16 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

(3) The vertices a1 = Thread(𝑖) and a2 = Chan(𝑐.1) (corresponding to T1 and C in the figure) are

the vertices that are truly affected. Re-establishing theirwflocal(®𝑒′,ℎ′) (a12, in(𝐺 ′, a12)) (out(𝐺 ′, a12))
requires some language-specific reasoning, because both their part of the configuration and

their incoming and outgoing edges change.

There is another proof obligation that we need to meet: the connectivity graph has to remain

acyclic when we do these local transformations.

Even though Figure 8 looks hopelessly language specific, we show that we can use our separation

logic to distill abstract rules for local graph transformations (§5). These rules involve the transfer of
resources between the old local well-formedness predicates wflocal(®𝑒,ℎ) (a, in(𝐺,a)) and the new local

well-formedness predicates wflocal(®𝑒′,ℎ′) (a, in(𝐺
′, a)) (for the affected vertices a in question). To distill

these rules, it is crucial that the local well-formedness predicate is a separation logic proposition,

which enables reasoning using the abstract proof rules of separation logic, without explicitly

having to reference the graph, nor having to explicitly establish acyclicity, nor having to deal with

disjointness conditions. The reasoning left to the user of the rule is purely local and precisely the

language-specific reasoning that cannot be done generically. The result is that the preservation

proof appears to perform no graph reasoning at all: at no point in the preservation proof is there

any value of type 𝐺,𝐺 ′ : Cgraph(V, L) in the proof context.

What is parametric in this section. The separation-logic based rules for local graph transformations
(§5) are parametric in the type of vertices V and labels L, and the local well-formedness predicate.

3.6 Proving Progress Using Waiting Induction
To prove progress, we have to show that if wf (®𝑒, ℎ) holds, then either final(®𝑒, ℎ) holds (i.e., 𝑒𝑖 = ()
for all 𝑖 and ℎ = ∅), or the configuration can step. This is equivalent to saying that:

wf (®𝑒, ℎ) and active(®𝑒, ℎ) ≠ ∅ implies that (®𝑒, ℎ) can step

Here, active(®𝑒, ℎ) is the set of threads and channels that have not yet terminated and not yet been

fully deallocated, respectively.

Definition 3.1 (Active). The set of active vertices in configuration (®𝑒, ℎ) is formally defined as

active(®𝑒, ℎ) ≜ {Thread(𝑖) | 𝑒𝑖 ≠ ()} ∪ {Chan(𝑎) | ℎ(𝑎, 0) ≠ ⊥ ∨ ℎ(𝑎, 1) ≠ ⊥}
If active(®𝑒, ℎ) ≠ ∅, then there exists a vertex a ∈ active(®𝑒, ℎ) for which we must find a thread

that can step. If the vertex a is a thread that can step, we are done. The difficulty is that a may be a

thread that is blocked on a receive(𝑐), where the corresponding buffer of 𝑐 in heap ℎ is empty. If

the configuration is well-formed, then we will presumably be able to find a non-blocked thread

connected to the other endpoint of 𝑐 , since that side will eventually be responsible for sending a

message to 𝑐 . However, the thread holding the other endpoint of 𝑐 may be blocked itself, waiting

on a receive on a different channel. Also, the endpoint 𝑐 may not even be held by another thread; it

could be stored in the buffer of some other channel 𝑐 ′.
Our way out is to use the connectivity graph: starting from vertex a , we search for another thread

that can step. To organize this search process, we annotate edges of the connectivity graph with a

waiting direction (as also done in §1), depicted as red triangles in Figure 9. The waiting direction is

formalized using the notion of being blocked.

Definition 3.2 (Blocked). A vertex a1 is blocked on vertex a2 in configuration (®𝑒, ℎ) if a1 is a thread

that is trying to receive from channel a2 whose buffer is empty. Formally:

blocked(®𝑒,ℎ) (a1, a2) ≜ ∃𝑖, 𝑎, 𝑡, 𝐾 . a1 = Thread(𝑖) ∧ a2 = Chan(𝑎) ∧
𝑒𝑖 = 𝐾 [receive(#(𝑎, 𝑡))] ∧ ℎ(𝑎, 𝑡) = 𝜖

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:17

T1 C1

(0, 𝑠1)

C2

(1, 𝑠 ′
1
)

T2

(0, 𝑠2)

C5

(0, 𝑠3)

T5

(1, 𝑠 ′
3
)

T3

(1, 𝑠 ′
2
)

C3

C4 T4

T6

(0, 𝑠4)

(0, 𝑠 ′
4
)

(0, 𝑠5)

Threads: Channels:

Thread T1 has a reference

to C1 and is blocked on C1:

Thread T1 has a reference to

C1 but is not blocked on C1:

(but could be blocked

on another channel)

Channel C1 has a refer-

ence to C2 in its buffers:

T1 T1 T1

Blocked Running Terminated

C1

T1 C1

T1 C1

T1 C1

C1 C2

Fig. 9. The connectivity graph from Figure 5 annotated with red triangles for the waiting direction.

The waiting direction (red triangle) a1 →𝑙
𝐺
a2 of an edge coincides with its ownership direction

(black arrowhead) if a1 is blocked on a2. Otherwise, it is opposite to the ownership direction.

To find a thread that can step from a ∈ active(®𝑒, ℎ), we follow edges in the waiting direction

until we arrive at a vertex that has no outgoing waiting edges. As one can see in Figure 9, if we

follow the waiting direction (red triangles) from any start vertex a , we always end up in a thread

that can step (green dotted square). To prove that we can always find a thread that can step by

simply following the waiting edges from any starting vertex, we have to show that:

(1) If the current vertex a is a thread, it can either step, or it has an outgoing waiting edge.

(2) If the current vertex a is a channel, it always has an outgoing waiting edge.

(3) The search process terminates, because the graph is acyclic as an undirected graph.

To show (1): We show that active threads a can step or have an outgoing waiting arrow by

induction on typing. The interesting cases are the channel operations, and receive in particular,

so suppose that the thread’s expression is 𝐾 [receive(𝑣)]. By run-time typing, we know that 𝑣

is a channel reference #(𝑎, 𝑡), and the typing rule for receive(𝑣) gives us the separation logic

resource own({Chan(𝑎) ↦→ (𝑡, ?𝜏 . 𝑠)}). From this it follows that the thread has an outgoing edge

to Chan(𝑎), and hence Chan(𝑎) has an incoming edge with the label (𝑡, ?𝜏 . 𝑠). From the channel’s

local well-formedness predicate, it follows that the required buffer exists in the heap. If the buffer

is non-empty, then the receive can proceed, so the configuration can step. If the buffer is empty, we

have an outgoing waiting arrow from the thread to the channel, so the search process can continue.

To show (2): The channel a is active, so it has a buffer, so it must have a corresponding incoming

edge in the graph by the definition of the local well-formedness predicate for channels. If that

incoming edge comes from a vertex a ′, and that vertex a ′ is not blocked on a , we are done. That is

because then the waiting direction is pointing from a to a ′, and we can continue the search process

from a ′. If a ′ is a thread currently blocked on a , then the session type on that edge must be a receive.
It follows from the channel’s local well-formedness predicate that the other endpoint has not yet

been closed, and thus there is another incoming edge. It cannot be the case that both buffers are

empty and the other edge is also a receive, because that would violate duality. Thus, the other edge

is coming from a vertex a ′′ that is not a thread currently blocked on us. So there is a waiting edge

from a to a ′′, and we can continue the search process from a ′′.

To show (3): Although (3) is intuitively obvious if one looks at a picture such as Figure 9, one has

two difficulties in a formal setting. Firstly, showing that such a search process actually terminates

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:18 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

requires formally reasoning about the (undirected) acyclicity of graphs. We refer the interested

reader to our appendix and Coq mechanization for details [Jacobs et al. 2021]. Secondly, one has

to restructure the argument in order to even formally state what it means that “the search process

terminates”. Our key idea is that the progress proof can be proved with an inductive argument, with
a non-standard graph induction principle.

We call this induction principle for connectivity graphswaiting induction. The induction principle
says that in order to prove 𝑃 (a) for all vertices a ∈ V, we can assume that 𝑃 (a ′) already holds for

all vertices a ′ that a is waiting for. Note the similarity with strong induction on natural numbers:

in order to prove 𝑃 (𝑛) for all 𝑛 ∈ N, we can assume that 𝑃 (𝑛′) already holds for all 𝑛′ < 𝑛.
We restructure the progress proof by applying our waiting induction principle at the start.

Whenever we said “continue the search process” in the argument above, we can apply the inductive

hypothesis. The induction principle is formally stated and discussed in more detail in §4.

What is parametric in this section. The waiting induction principle is parametric in the types of

vertices V and labels L. This induction principle encapsulates the acyclicity reasoning, so that the

progress proof can focus on the language-specific reasoning.

4 CONNECTIVITY GRAPHS ANDWAITING INDUCTION IN DETAIL
Reasoning about graphs in a progress and preservation proof is non-standard, and reasoning about

graphs in a proof assistant is more involved than reasoning about inductively-defined types like

lists or maps that are normally used to define heap typings. We therefore factor graph reasoning

out into a connectivity graph library that is parametric in vertices V and labels L. In this section we

explain the foundations of this library by presenting the formal definition of acyclicity, a selected

set of primitive rules (which are used to prove soundness of our separation-logic based graph

transformations in §5 for proving preservation), as well as our principle of waiting induction (for

proving progress). We hope to convince the reader that our graph-based approach is feasible—even

in a mechanized setting in a proof assistant.

Recall the informal definition of connectivity graphs Cgraph from §3.2:

Cgraph(V, L) ≜ {𝐺 ∈ V × V fin−⇀ L |𝐺 has no undirected cycles}
To define “𝐺 has no undirected cycles” formally, we need to introduce some basic notions about

graphs. We let graph(V, L) ≜ V × V fin−⇀ L be graphs without the acyclicity restriction. The notation

a1 →𝑙
𝐺
a2 expresses that there is an edge from vertex a1 to a2 with label 𝑙 (i.e.,we have𝐺 (a1, a2) = 𝑙).

The notation a1 ↔𝐺 a2 expresses that there is an edge from a1 to a2 or from a2 to a1. The notation

a1 ↔∗𝐺 a2 expresses that vertices a1 and a2 are connected by a (possibly empty) path from a1 to a2

where we may follow edges in either direction, and a1 /↔∗𝐺 a2 expresses that there is no such path.

Definition 4.1 (Undirected acyclicity). A graph 𝐺 ∈ graph(V, L) has no undirected cycles if:

(1) The undirected erasure 𝐺 = {{a1, a2} | a1 ↔𝐺 a2}, where we forget the labels and directions

of the edges, is acyclic. See Jacobs et al. [2021] for details about the formalization of acyclicity

of undirected graphs and the undirected erasure.

(2) There are no short loops, i.e., we do not both have a1 →𝑙
𝐺
a2 and a2 →𝑙 ′

𝐺
a1.

Our reasoning about the acyclicity of graphs rests on two primitive lemmas:

Lemma 4.1 (Graph insertion). If𝐺 ∈ graph(V, L) is a graph with no undirected cycles and a1 /↔∗𝐺 a2,
then 𝐺 ∪ {a1 →𝑙 a2} has no undirected cycles.

Lemma 4.2 (Graph deletion). If𝐺 ∈ graph(V, L) is a graph with no undirected cycles and a1 →𝑙
𝐺
a2,

then a1 /↔∗𝐻 a2 in the graph 𝐻 ≜ 𝐺 \ {a1 →𝑙 a2}.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:19

We build a library of derived lemmas on top of these two primitive lemmas. A lemma that is

crucial for proving the correctness of our separation logic rules in §5 is the exchange lemma, which

is used to exchange separation logic resources between vertices of the graph:

Lemma 4.3 (Graph exchange). Let 𝐺,𝐻 ∈ graph(V, L) be graphs and let a1, a2 ∈ V be vertices. If
(1) 𝐺 has no undirected cycles,
(2) a1 /↔∗𝐺 a2,
(3) out(𝐺,a1) ⊎ out(𝐺,a2) = out(𝐻,a1) ⊎ out(𝐻,a2), and
(4) out(𝐺,a) = out(𝐻,a) for all a ∈ V \ {a1, a2}.

Then:
(1) 𝐻 has no undirected cycles,
(2) a1 /↔∗𝐻 a2, and
(3) in(𝐺,a) = in(𝐻,a) for all a ∈ V.

This lemma is quite a mouthful, so let us go over it step by step. We start with a graph𝐺 and we

want to exchange outgoing edges between two unconnected vertices a1 and a2 to obtain a graph 𝐻

in which the union of the outgoing edges of a1 and a2 stays the same. The lemma tells us that this

operation maintains undirected acyclicity and that a1 and a2 are unconnected. Furthermore, the

labels of incoming edges stay the same for all vertices.

Note that this property only holds because in(𝐺,a) is a multiset rather than a map that stores

the vertices, like we did for out(𝐺,a). The fact that the local invariants are unaware of the vertices
of origin of the incoming edges is what enables local reasoning: exchange of edges only affects the

local invariants of a1 and a2. In particular, for a channel it does not matter if its owner changes due

to an exchange of resources, because it only matters at which type the channel is owned.

A typical pattern is to compose the lemma for exchange with with lemma for insertion and

deletion. For instance, given an edge a1 →𝑙
𝐺
a2, we can first delete the edge using Lemma 4.1 to

obtain a1 /↔∗𝐻 a2. Then we can apply Lemma 4.3 to exchange some of the outgoing edges of a1 and

a2, and then we can re-insert a new edge a1 →𝑙 ′ a2 with a new label 𝑙 using Lemma 4.1.

The lemmas for insertion and deletion (Lemmas 4.1 and 4.2) can not only be used to prove the

acyclicity of modified connectivity graphs, but also to prove structural properties of connectivity

graphs. The simplest example is a lemma that connectivity graphs have no self loops, which we

give here as an illustration that the lemmas for insertion and deletion suffice.
6

Lemma 4.4 (No self loops). A connectivity graph 𝐺 ∈ Cgraph(V, L) has no self loops a →𝑙
𝐺
a .

Proof. Suppose that a →𝑙
𝐺
a . By Lemma 4.2, a /↔∗𝐺′ a in the connectivity graph𝐺 ′ ≜ 𝐺 \ {a →𝑙

a}. Since every vertex is connected to itself (by definition), we have a contradiction. □

Another example of a structural property that follows from the lemmas for insertion and deletion

is the separation lemma. In § 5 this lemma will play an important role in enabling our use of

separation logic, where the separating conjunction requires that resources are disjoint.

Lemma 4.5 (Separation). If 𝐺 ∈ Cgraph(V, L) and a1 /↔∗𝐺 a2 or a1 ↔𝐺 a2, then the outgoing edges
of a1 and a2 are disjoint, i.e., dom(out(𝐺,a1)) ∩ dom(out(𝐺,a2)) = ∅.

Lastly, we have our generic principle of waiting induction that is key to our progress proof.

Lemma 4.6 (Waiting induction). Let 𝐺 ∈ Cgraph(V, L) be a connectivity graph, 𝑃 ∈ V→ Prop a
predicate over V, and 𝑅 : V × V→ Prop a binary relation over V.

6
We do actually need this lemma at various points in the Coq proofs of the lemmas in §5.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:20 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Then in order to prove ∀a ∈ V. 𝑃 (a) it suffices to prove:

∀a ∈ V.
(
∀a ′ ∈ V. (a →𝑙

𝐺 a
′ ∧ 𝑅(a, a ′)) ⇒ 𝑃 (a ′)

)
⇒(

∀a ′ ∈ V. (a ′→𝑙
𝐺 a ∧ ¬𝑅(a

′, a)) ⇒ 𝑃 (a ′)
)
⇒ 𝑃 (a)

In other words, to prove 𝑃 (a), we can assume that 𝑃 (a ′) already holds for outgoing neighbors of

a ′ of a that are in relation 𝑅(a, a ′), and we can also assume that 𝑃 (a ′) holds for incoming neighbors

a ′ of a that are not in relation 𝑅(a ′, a).
Thus, for neighbors a →𝑙 a ′, either the proof of 𝑃 (a) can assume 𝑃 (a ′), or vice versa, but not

both, and the relation 𝑅(a, a ′) determines which. This induction principle is well founded due to

the acyclicity of connectivity graphs. We prove this lemma using a similar lemma for undirected

graphs, which we detail in Jacobs et al. [2021].

We call the lemma waiting induction because (1) we choose 𝑅 ≜ blocked(®𝑒,ℎ) from §3.6 and thus

𝑅 is the waiting relation in our application, and (2) because of the similarity to induction on natural

numbers: in order to prove 𝑃 (𝑛) we can assume that 𝑃 (𝑛 − 1) already holds, if 𝑛 ≠ 0.

5 LOCAL GRAPH TRANSFORMATION RULES IN SEPARATION LOGIC
We now generalize the well-formedness predicatewf from §3.4 to become parametric in the vertices

V and labels L, which involves making it parametric in the local well-formedness predicate to

abstract from language-specific aspects. We state separation-logic based rules for the parametric

well-formedness predicate so that preservation can be proved using local reasoning. After an initial

attempt at a monolithic proof of preservation, we found our approach of separating the graph

reasoning from the local language-specific reasoning to be indispensable for mechanization.

Given a local well-formedness predicate 𝑃 : V×Multiset L→ oProp, we define the generic global
well-formedness predicate wf (𝑃) as follows:

wf (𝑃) ≜ ∃𝐺 : Cgraph(V, L). ∀a ∈ V. 𝑃 (a, in(𝐺,a)) (out(𝐺,a))

We can instantiate the above definition with 𝑃 ≜ wflocal(®𝑒,ℎ) to obtain the well-formedness predicate

from §3.4 that was tied to our concrete language.

Recall from § 3.5 that preservation means: if (®𝑒, ℎ) {global (®𝑒 ′, ℎ′), then wf (wflocal(®𝑒,ℎ)) implies

wf (wflocal(®𝑒′,ℎ′)). We now present a set of graph transformation rules for proving results “wf (𝑃) implies

wf (𝑃 ′)” where 𝑃 and 𝑃 ′ are arbitrary local well-formedness predicates, instead of a concrete local

well-formedness predicate. These graph transformation rules perform a transformation of the graph

under the hood, but the graphs are encapsulated by the definition of wf, and the rules thus do not

mention any graphs. Instead, the premises of these graph transformation rules ask the user of the

rule to prove local separation logic entailments involving 𝑃 and 𝑃 ′.
The first of these graph transformation rules allows the user to exchange separation logic

resources between two vertices a1, a2 ∈ V in order to prove that wf (𝑃) implies wf (𝑃 ′):

Lemma 5.1 (Exchange). Let a1, a2 ∈ V. To prove wf (𝑃) implies wf (𝑃 ′), it suffices to prove:7

(1) 𝑃 (a,Δ) −∗ 𝑃 ′(a,Δ) for all a ∈ V \ {a1, a2} and Δ ∈ Multiset L
(2) 𝑃 (a1,Δ1) −∗ ∃𝑙 . own(a2 ↦→ 𝑙) ∗ ∀Δ2 ∈ Multiset L.
(𝑃 (a2, {𝑙} ⊎ Δ2) −∗ ∃𝑙 ′. (own(a2 ↦→ 𝑙 ′) −∗ 𝑃 ′(a1,Δ1)) ∗ 𝑃 ′(a2, {𝑙 ′} ⊎ Δ2)) for Δ1 ∈ Multiset L

This rule generalizes the transformations for send and receive from Figure 8 where resources

are exchanged between two vertices. We go over the premises of the rule in detail:

7
Recall that proving 𝑃 ∈ oProp means proving 𝑃 (∅) (see §3.3), but in practice (and in Coq) this is done using the proof

rules of separation logic.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:21

(1) The first premise asks the user of the rule to prove the local implication 𝑃 (a,Δ) −∗ 𝑃 ′(a,Δ)
for the vertices a ∈ V \ {a1, a2} that are not involved in the exchange.

(2) The second premise first gives the user access to the local resources 𝑃 (a1,Δ1) of vertex
a1. The rule then asks the user to prove that there exists an edge a1 →𝑙

𝐺
a2, by showing

that ∃𝑙 . own(a2 ↦→ 𝑙) ∗ · · · follows from the local resources of a1. The rule then gives the

user access to the local resources 𝑃 (a2, {𝑙} ⊎ Δ2) of vertex a2, where we have obtained the

information that the label {𝑙} is part of the incoming edge label multiset of a2. The rule then

allows the user to pick a new label 𝑙 ′ for the edge a1 →𝑙 ′ a2. Subsequently, the user has

to restore the local resources of a1 and a2 for the new 𝑃 ′. For restoring the local resources
𝑃 ′(a1,Δ1), the user additionally gets the own(a2 ↦→ 𝑙 ′) of the new edge. For restoring the

local resources 𝑃 ′(a2, {𝑙 ′} ⊎ Δ2), we get the new label in the incoming edge label multiset.

It may seem like this rule only allows us to change the label on the edge a1 →𝑙
𝐺
a2 from 𝑙 to 𝑙 ′,

but the rule in fact allows us to arbitrarily exchange separation logic resources (i.e., outgoing edges)
between a1 and a2. The way this works is that the rule gives us access to the old local resources of

both a1 and a2, and it asks us to prove the separating conjunction of the new local resources of

both a1 and a2. The proof rules of separation logic allow us to use resources stored in the old local

resources of a1 to prove the new local resources of a2, and vice versa. Thus, the graph transformation

that is applied internally in the rule depends on which proof of the separation logic entailment is

provided by the user of the rule.

A note on the proof of the transformation rule. That the transformation rule is able to offer us

access to both local resources simultaneously relies crucially on the acyclicity of the graph. The

acyclicity, and the existence of an edge between the two vertices, is what allows us to apply the

separation lemma (Lemma 4.5) that allows us to construct the separating conjunction of the two

local resources. In the proof of the rule we re-establish the validity of the resources and the acyclicity

of the graph using the exchange lemma (Lemma 4.3).

In addition to the preceding transformation rule for changing the label on an edge (and exchanging

resources), we have a transformation rule for removing an edge (after exchanging resources). This

rule is used in the close case of the preservation proof:

Lemma 5.2 (Deallocation). Let a1, a2 ∈ V. To prove wf (𝑃) implies wf (𝑃 ′), it suffices to prove:
(1) 𝑃 (a,Δ) −∗ 𝑃 ′(a,Δ) for all a ∈ V \ {a1, a2} and Δ ∈ Multiset L
(2) 𝑃 (a1,Δ1) −∗ ∃𝑙 . own(a2 ↦→ 𝑙) ∗ ∀Δ2 ∈ Multiset L.

(𝑃 (a2, {𝑙} ⊎ Δ2) −∗ 𝑃 ′(a1,Δ1) ∗ 𝑃 ′(a2,Δ2)) for Δ1 ∈ Multiset L

Wehave the following two transformation rules for inserting an outgoing/incoming edge between

a1 and a2, respectively. To maintain acyclicity, we have to show that a2 has no existing outgoing

edges. Like the preceding rules, these rules also allow us to transfer resources to a2.

Lemma 5.3 (Allocation out). Let a1, a2 ∈ V. To prove wf (𝑃) implies wf (𝑃 ′), it suffices to prove:
(1) 𝑃 (a,Δ) −∗ 𝑃 ′(a,Δ) for all a ∈ V \ {a1, a2} and Δ ∈ Multiset L
(2) 𝑃 (a2,Δ2) −∗ ⌜Δ2 = ∅⌝ for all Δ2 ∈ Multiset L
(3) 𝑃 (a1,Δ1) −∗ ∃𝑙 ′. (own(a2 ↦→ 𝑙 ′) −∗ 𝑃 ′(a1,Δ1)) ∗ 𝑃 ′(a2, {𝑙 ′}) for all Δ1 ∈ Multiset L

Lemma 5.4 (Allocation in). Let a1, a2 ∈ V. To prove wf (𝑃) implies wf (𝑃 ′), it suffices to prove:
(1) 𝑃 (a,Δ) −∗ 𝑃 ′(a,Δ) for all a ∈ V \ {a1, a2} and Δ ∈ Multiset L
(2) 𝑃 (a2,Δ2) −∗ ⌜Δ2 = ∅⌝ for all Δ2 ∈ Multiset L
(3) 𝑃 (a1,Δ1) −∗ ∃𝑙 ′. 𝑃 ′(a1,Δ1 ⊎ {𝑙 ′}) ∗ (own(a1 ↦→ 𝑙 ′) −∗ 𝑃 ′(a2, ∅)) for all Δ1 ∈ Multiset L

Lastly, we have a derived transformation rule that adds two new edges a1 →𝑙 ′
1 a2 and a2 ←𝑙 ′

2 a3.

We use this rule in the fork case of the preservation proof.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:22 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Γ unrestricted

{𝑥 ↦→ 𝜏} ⊎ Γ ⊢ 𝑥 : 𝜏

𝑛 ∈ N Γ unrestricted

Γ ⊢ 𝑛 : N

Γ1 ⊥ Γ2 Γ1 ⊢ 𝑒1 : 𝜏1 Γ2 ⊢ 𝑒2 : 𝜏2

Γ1 ∪ Γ2 ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

Γ ⊎ {𝑥 ↦→ 𝜏1} ⊢ 𝑒 : 𝜏2 Γ unrestricted

Γ ⊢ _𝑥 . 𝑒 : 𝜏1 → 𝜏2

Γ1 ⊥ Γ2 Γ1 ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ2 ⊢ 𝑒2 : 𝜏1

Γ1 ∪ Γ2 ⊢ 𝑒1 𝑒2 : 𝜏2

Fig. 10. Selected typing rules for unrestricted types.

Lemma 5.5 (Allocation out and in). Let a1, a2, a3 ∈ V. To prove wf (𝑃) implies wf (𝑃 ′), it suffices to
prove:

(1) 𝑃 (a,Δ) −∗ 𝑃 ′(a,Δ) for all a ∈ V \ {a1, a2, a3} and Δ ∈ Multiset L
(2) 𝑃 (a,Δ) −∗ ⌜Δ = ∅⌝ for all a ∈ {a2, a3} and Δ ∈ Multiset L
(3) 𝑃 (a1,Δ1) −∗ ∃𝑙 ′1, 𝑙 ′2 . (own(a2 ↦→ 𝑙 ′

1
) −∗ 𝑃 ′(a1,Δ1 ⊎ {𝑙 ′})) ∗ 𝑃 ′(a2, {𝑙 ′1, 𝑙 ′2}) ∗

(own(a2 ↦→ 𝑙 ′
2
) −∗ 𝑃 ′(a3, ∅))

for all Δ1 ∈ Multiset L

This rule can be proved by applying both allocation out and allocation in. It pays off to prove

this in the generic setting, because the intermediate state (in which the channel has been allocated

but not yet the thread that will hold the other endpoint) is not well-formed according to our wflocal .
Instead, we prove wf (𝑃) =⇒ wf (𝑃 ′) by carefully choosing 𝑄 and proving wf (𝑃) =⇒ wf (𝑄)
using Lemma 5.3, and wf (𝑄) =⇒ wf (𝑃 ′) using Lemma 5.4.

6 EXTENSIONS
The programming language for which we have mechanized deadlock and memory leak freedom in

Coq [Jacobs et al. 2021] supports more features than described in §2. First, it has more standard

features such as sum types, which we do not describe because their rules are standard and the

modification of the proof is straightforward. Second, it has unrestricted (non-linear) types, including

unrestricted products and sums, and an unrestricted function type (§6.1) and general equi-recursive

functional types (which can encode algebraic data types) and equi-recursive recursive session types

(which can encode infinite protocols) (§6.2). Furthermore, we prove a deadlock freedom property

that is stronger than global progress and also rules out partial deadlock (§6.3).

6.1 Unrestricted Types
We make the types used for conventional functional programming (such as product, sum, and func-

tion types) unrestricted (i.e., non-linear) if their components are unrestricted. Instead of introducing

separate linear and non-linear products and sums, we introduce the judgment “𝜏 unrestricted” on
types 𝜏 , which holds if all the components of 𝜏 are unrestricted. Formally, the base types 0, 1 and
N are unrestricted, and 𝜏1 × 𝜏2 and 𝜏1 + 𝜏2 are unrestricted if 𝜏1 and 𝜏2 are unrestricted. The type

𝜏1 −◦ 𝜏2 is always linear (i.e., not unrestricted), even if 𝜏1 and 𝜏2 are unrestricted, because the closure

may capture linear variables. We introduce the type 𝜏1 → 𝜏2 of unrestricted functions, which is

always unrestricted (even if 𝜏1 and 𝜏2 are linear), and whose closures are only allowed to capture

unrestricted variables. Selected typing rules are shown in Figure 10. The typing rules involve the

disjointness relation Γ1 ⊥ Γ2, which expresses that Γ1 and Γ2 might share unrestricted variables, but

otherwise do not overlap. Formally:

Γ1 ⊥ Γ2 ≜ ∀𝑥 ∈ dom(Γ1) ∩ dom(Γ2). Γ1 (𝑥) = Γ2 (𝑥) ∧ Γ1 (𝑥) unrestricted

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:23

Changes to the proof. In order to reason about unrestricted values in the separation logic, we add

a standard box modality � 𝑃 , defined as (� 𝑃) (Σ) ≜ 𝑃 (∅) ∧ Σ = ∅. The box modality asserts that 𝑃

does not use any linear resources, which allows it to support proof rules for deletion (� 𝑃 −∗ Emp)
and duplication (� 𝑃 −∗ � 𝑃 ∗� 𝑃). Lastly, we have the rule � 𝑃 −∗ 𝑃 to open the box. We use the

box modality in the run-time typing rule for the unrestricted function type:

� (Γ ⊎ {𝑥 ↦→ 𝜏1} ⊢ 𝑒 : 𝜏2) ∗ ⌜Γ unrestricted⌝

Γ ⊢ _𝑥 . 𝑒 : 𝜏1 → 𝜏2

---∗

The box modality makes sure that the closure cannot capture any channels at run-time.

We prove (Γ ⊢ 𝑒 : 𝜏) −∗ � (Γ ⊢ 𝑒 : 𝜏) if 𝜏 unrestricted. This entailment says that run-time typing

judgments for expressions 𝑒 of unrestricted type 𝜏 can be freely deleted and duplicated in the

separation logic sense. This is crucial for the main change to our proof—the substitution lemma—in

which we now have to consider the case that the type is unrestricted, and that a variable could be

substituted in multiple or zero places. We use the preceding entailment and the laws of the box

modality to adapt the proof of the substitution lemma.

6.2 Equi-Recursive Types
We extend our type system with equi-recursive functional (`𝛼.𝜏) and session types (`𝛼.𝑠), in order

to be able to encode algebraic data types and infinite protocols, respectively. We extend the type

system with the following rule for unfolding recursive types:

Γ ⊢ 𝑒 : 𝜏1 𝜏1 ≡ 𝜏2

Γ ⊢ 𝑒 : 𝜏2

The congruence relation (≡) relates types up to unfolding of `𝛼.𝜏 ≡ 𝜏 [`𝛼.𝜏/𝛼]. Our mechanization

(§7) is somewhat more general: we use a coinductive definition of types to allow mutual recursion

and recursion through the message type as well as the tail. We also extend unrestricted types to

allow recursive types to be unrestricted. We can encode algebraic data types such as lists by using

sums and products and recursive types.

Changes to the proof. We do not add a rule for unfolding recursive types to the run-time type

system. Rather, we define the run-time type system in a syntax directed way so that all constructors

respect the congruence relation (≡), and then prove a version of the unfolding rule:

Lemma 6.1. If Γ1 ≡ Γ2 and 𝜏1 ≡ 𝜏2, then (Γ1 ⊢ 𝑒 : 𝜏1) −∗ (Γ2 ⊢ 𝑒 : 𝜏2).

Example. The combination of equi-recursive and unrestricted types allows us to type check the

call-by-value Y-combinator for constructing recursive functions of type 𝜏1 → 𝜏2. Defining recursive

functions in terms of a self-referential type is standard [Harper 2016]:

𝑌 : ((𝜏1 → 𝜏2) → (𝜏1 → 𝜏2)) → (𝜏1 → 𝜏2)
𝑌 ≜ _𝑓 . (_𝑥 . 𝑓 (_𝑦. 𝑥 𝑥 𝑦)) (_𝑥. 𝑓 (_𝑦. 𝑥 𝑥 𝑦))

We use the recursive type `𝛼.(𝛼 → (𝜏1 → 𝜏2)) for 𝑥 and the type (𝜏1 → 𝜏2) → (𝜏1 → 𝜏2) for 𝑓 .
Note that while 𝜏1 and 𝜏2 can be restricted (linear) types, we must use an unrestricted function type

for 𝑓 and 𝑥 in order to type check the multiple uses of 𝑓 and 𝑥 . In fact, a fixed-point combinator for

constructing functions 𝜏1 −◦ 𝜏2 with linear function type would violate type safety. Intuitively, a

recursive function is allowed to manipulate both linear and non-linear resources, but the definition
of a recursive function is not allowed to capture linear resources in its closure because this closure

will be invoked multiple times.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:24 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

6.3 Partial Deadlock and Memory Leak Freedom via Reachability
In the context of session-typed languages with non-termination (e.g., due to recursive types),

deadlock freedom is typically stated as global progress, which we prove in §3.6. Global progress

guarantees that the configuration can either take a step, or is in a final state where all threads have

successfully terminated and all channels have been deallocated. Although global progress rules out

whole-program deadlocks, as well as memory leaks when all threads have terminated, it admits

partial deadlocks as long there is still a thread that can step (e.g., is in an infinite loop). Linear

session types actually rule out partial deadlocks and memory leaks even when some threads are still

running. Although deadlock freedom and memory leak freedom may seem like separate properties,

we state two properties that simultaneously generalize both, namely partial deadlock/leak freedom
(Definition 6.3) and full reachability (Definition 6.5). We prove that these properties are equivalent

(Theorem 6.2) and show that full reachability can be proven using the waiting induction principle

of our proof method (Theorem 6.3). Finally, we show that they imply global progress.

In order to arrive at a simultaneous generalization of deadlock and memory leak freedom,

consider pure memory leaks and pure deadlocks:

• A pure memory leak is one in which we have a set 𝑆 of channels, such that all endpoints of

the channels in 𝑆 are held by the buffers of channels in the same set 𝑆 .

• A pure deadlock is a set 𝑆 of both threads and channels with empty buffers, such that all

threads in 𝑆 are blocked on one of the channels in the set 𝑆 , and all of the endpoints of the

channels in 𝑆 are held by threads in the set 𝑆 .

In general, we can have a mixed partial deadlock/leak situation that is neither a pure memory

leak nor a pure deadlock. Intuitively, a partial deadlock and memory leak is a set 𝑆 of threads and

channels such that all threads in 𝑆 are blocked on one of the channels in 𝑆 , and all endpoints of

channels in 𝑆 are held by threads and channels in 𝑆 . To make this formal, we define the set of

vertices refs(®𝑒,ℎ) (a) ⊆ V that a vertex a references.

Definition 6.1. We let refs(®𝑒,ℎ) (Thread(𝑖)) ≜ {Chan(𝑎′) | channel literal #(𝑎′, 𝑡) occurs in 𝑒𝑖 },
and refs(®𝑒,ℎ) (Chan(𝑎)) ≜ {Chan(𝑎′) | channel literal #(𝑎′, 𝑡) occurs in ℎ(#(𝑎, 0)) or ℎ(#(𝑎, 1))}.
With this function at hand, we can define partial deadlock and memory leak freedom.

Definition 6.2 (Partial deadlock/leak). Given a configuration (®𝑒, ℎ), a subset 𝑆 ⊆ V of the threads

and channels is in a partial deadlock/leak if the following conditions hold:

(1) We have ∅ ⊂ 𝑆 ⊆ active(®𝑒, ℎ) (see Definition 3.1 for the definition of active).
(2) For all threads Thread(𝑖) ∈ 𝑆 , the expression 𝑒𝑖 cannot step in the heap ℎ.

(3) If Thread(𝑖) ∈ 𝑆 and blocked(®𝑒,ℎ) (Thread(𝑖),Chan(𝑎)), then Chan(𝑎) ∈ 𝑆 (see Definition 3.2

for the definition of blocked).
(4) If Chan(𝑎) ∈ 𝑆 and Chan(𝑎) ∈ refs(®𝑒,ℎ) (a), then a ∈ 𝑆 .

Definition 6.3 (Partial deadlock/leak freedom). A configuration (®𝑒, ℎ) is deadlock/leak free if no
𝑆 ⊆ V is in a partial deadlock/leak in (®𝑒, ℎ).

In order to prove that well-formed configurations have no partial deadlock/leak, we prove another

property that we call full reachability, which we show to be equivalent to partial deadlock/leak

freedom. Full reachability has the advantage that it can be proved directly using waiting induction.

It takes inspiration from the notion of reachability used in garbage collection and memory manage-

ment, namely that data is said to be reachable if it can be reached by transitively following pointers,

starting from any thread’s stack frames. Memory leak freedom can then be stated as: all data in the

configuration is reachable, i.e., there is never any leaked memory. To incorporate deadlock freedom

into this, we strengthen the definition of reachability to only start from stack frames of threads that

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:25

can step. However, if a thread T1 is blocked on channel C, and the other endpoint of C is held by

still running thread T2, then data held by T1 should also be considered transitively reachable: even

though this data is held by a thread that (currently) cannot step, further interaction of T2 with the

channel C may unblock T1. We formalize this using the following inductive definition:

Definition 6.4 (Reachability). We inductively define the vertices that are reachable in (®𝑒, ℎ):
(1) Thread(𝑖) is reachable if either
• the expression 𝑒𝑖 can step in the heap ℎ, or

• there exists an 𝑎 such that blocked(®𝑒,ℎ) (Thread(𝑖),Chan(𝑎)) and Chan(𝑎) is reachable.
(2) Chan(𝑎) is reachable if there exists a reachable a such that Chan(𝑎) ∈ refs(®𝑒,ℎ) (a).

It is important that reachability is an inductive definition—a coinductive definition would trivially

consider all cycles to be reachable.

Definition 6.5 (Full reachability). A configuration (®𝑒, ℎ) is fully reachable if all a ∈ active(®𝑒, ℎ) are
reachable in (®𝑒, ℎ).
We show equivalence of partial deadlock/leak freedom and full reachability:

Theorem 6.2. A configuration (®𝑒, ℎ) is deadlock/leak free if and only if it is fully reachable.

For (⇒), we show that none of the objects in a deadlock/leak are reachable, and for (⇐), we
show that the set of all non-reachable objects is a deadlock/leak.

Theorem 6.3 (Full reachability). If wf (®𝑒, ℎ), then (®𝑒, ℎ) is fully reachable.

This proof goes by waiting induction and closely resembles the global progress proof in §3.6. By

using the equivalence between full reachability and partial deadlock/leak freedom, we also obtain

that a partial deadlock/leak cannot occur, and can re-prove global progress using reachability.

Corollary 6.3.1 (Partial deadlock/leak freedom). If wf (®𝑒, ℎ), then (®𝑒, ℎ) is deadlock/leak free.

Corollary 6.3.2 (Global progress’). If wf (®𝑒, ℎ) and active(®𝑒, ℎ) ≠ ∅, then (®𝑒, ℎ) can step.

The proof of Corollary 6.3.2 uses Theorem 6.3, which gives that active objects are reachable.

We then find a thread that can step by straightforward induction on the reachability predicate.

Alternatively, we can go via Corollary 6.3.1: if none of the threads can step, then the set of all active

threads and channels is a deadlock/leak.

Combined with the proofs that the initial configuration 𝜌 of well-typed program satisfies wf (𝜌),
and that wf (𝜌) is preserved by the operational semantics (§3.5), we obtain partial deadlock/leak

freedom, full reachability, and global progress for any well-typed program.

7 MECHANIZATION IN COQ
Using the Coq proof assistant [Coq Team 2021] we have mechanized the generic connectivity

graph method and its concrete instantiation to our session-typed language. Our mechanization

starts with a library for undirected graphs and their acyclicity described in Jacobs et al. [2021].

On top of this, we build a library for connectivity graphs and waiting induction (§4). We combine

connectivity graphs with separation logic (§3.3) to define the generic well-formedness predicate

and the separation logic local transformation lemmas (§5). We instantiate our library by formalizing

the language from §2 with its extensions from §6. This involves defining the syntax, type system,

and operational semantics. For the language-specific parts of our deadlock and leak freedom proof,

we define the run-time type system (§3.3) and the local well-formedness condition (§3.4). We then

prove preservation using our local transformation rules in separation logic (§3.5), and progress

using our principle of waiting induction (§3.6). We have also mechanized all the extensions (§6),

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:26 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

including unrestricted types (§6.1), equi-recursive types (§6.2), and the theorems about reachability

and partial deadlock/leak freedom (§6.3).

Line counts. The parametric connectivity graph library is 4999 LOC, the language definition is

451 LOC, and the language-specific deadlock and leak freedom proofs are 1688 LOC.

External dependencies and Coq features that we use. We use the std++ extended standard library for

its results on data structures like lists and finite maps [Coq-std++ Team 2021]. We use the Iris Proof

Mode for tactics-based separation logic proofs [Krebbers et al. 2017, 2018]. To represent recursive

types (§6.2), we use the technique by Gay et al. [2020] based on coinductive types combined with

Coq’s generalized rewriting mechanism to reason up to the congruence ≡ [Sozeau 2009].

Archive and GitHub repository. An archive of the Coq mechanization can be found at Jacobs et al.

[2021], and the most recent version at https://github.com/julesjacobs/cgraphs.

8 RELATEDWORK
Session types. The line of works most closely related to ours are derivatives of Wadler [2012]’s GV,

a linear functional language with session types inspired by Gay and Vasconcelos [2010]. Whereas

Gay and Vasconcelos’s calculus does not enjoy the property of deadlock freedom, Wadler’s GV and

its derivatives [Lindley and Morris 2015, 2016b, 2017; Fowler et al. 2019, 2021] do. For Wadler’s

GV, deadlock freedom follows from its translation to CP (Classical Processes) Wadler [2012], for

which deadlock freedom holds by cut elimination. Lindley and Morris [2015] then concretize

the progress statement by introducing the definition of a deadlocked configuration and proving

deadlock freedom using a small-step operational semantics. They also give translations between

GV and CP and show that both directions of the translation preserve reductions, unlike previous

translations from GV to CP. Subsequently, Lindley and Morris [2015]’s GV has been extended

to support least and greatest fixed points [Lindley and Morris 2016b], exceptions [Fowler et al.

2019], and polymorphism [Lindley and Morris 2017]. A recent extension of GV [Fowler et al.

2021] moreover simplifies GV’s meta theory by making process equivalence type preserving. The

extension adopts the idea of a hypersequent [Avron 1991] from [Montesi and Peressotti 2018; Kokke

et al. 2019], yielding Hypersequent GV (HGV).

Like the GV derivatives, our language is a functional language with session-typed channels.

Our notion of a connectivity graph moreover bears a resemblance to HGV’s abstract process

structure (APS), introduced to reason about the acyclic forest structure of a process configuration.

However, whereas abstract process structures are defined over hyperenvironments and channel

names, our connectivity graph is parametric in its vertices, labels, and edges. More importantly, our

connectivity graph is at the core of a proof method for deadlock freedom, fully mechanized in Coq,

that uses separation logic and is parametric in its key results. Besides these conceptual differences,

there are various technical differences between our formalization and GV formalizations, and even

among the different GV variants (such as a synchronous versus an asynchronous semantics). Our

formalization uses a standard operational semantics whereas many GV variants use structural

congruences and binders for channnel names. In our graph, not only the threads but also channels

are vertices, and the edges are directed. Since reasoning about syntax up to equivalence (e.g.,
structural congruence or 𝛼-equivalence) is cumbersome in a proof assistant like Coq, we believe

that our operational semantics is better suited for mechanization (and perhaps closer to how these

structures are represented on real computers). Orthogonally, we do not tie channel closing to thread

termination and allow close everywhere. As a result our language readily accommodates a forest

topology without the need for a special connective, such as mix as used by Fowler et al. [2021].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

https://github.com/julesjacobs/cgraphs

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:27

Earlier non-mechanized work has proved deadlock freedom for a 𝜋-calculus using a graphical

approach [Carbone and Debois 2010]. This is the earliest work that we are aware of that describes an

explicit connection between deadlock freedom and acyclicity of a graph. Their graphical represen-

tation is, however, an undirected graph between processes, whereas our connectivity graphs (when

instantiated for our language) are directed graphs between threads and channels. Furthermore,

their graphs are unlabeled, whereas our connectivity graphs are labeled with session types.

More distantly, our language is related to Toninho et al. [2013]; Toninho [2015]’s language SILL,

which embeds session-typed processes into a functional core language via a contextual monad. The

language is based on the Curry-Howard correspondence established by Caires and Pfenning [2010]

between intuitionistic linear logic and session-typed 𝜋-calculus. Deadlock freedom of SILL follows

thus as a consequence. Due to its modal separation, SILL does not allow mixing of functional

and session terms freely, in contrast to GV and our language. The seminal paper by Caires and

Pfenning [2010] and Toninho [2015]’s thesis spurred a series of derivatives, similarly to Wadler’s

CP and GV, accommodating, for example, polymorphism [Caires et al. 2013; Pérez et al. 2014],

work analysis [Das et al. 2018], and information flow control [Derakhshan et al. 2021]. Due to their

connection to intuitionistic linear logic, all these works guarantee deadlock freedom. However,

unlike ours, none of these deadlock freedom proofs have been mechanized in a proof assistant.

A derivative of SILL, SILL𝑆 [Balzer and Pfenning 2017], introduces a controlled form of aliasing

through a stratification of linear and shared session types with adjoint modalities [Pfenning

and Griffith 2015; Benton 1994; Reed 2009b] to support multiple-client scenarios. Whereas the

resulting language reclaims the expressiveness of the untyped asynchronous 𝜋-calculus for session-

typed languages [Balzer et al. 2018], it also sacrifices deadlock freedom (which is rectified by

its successor SILL
+
𝑆
[Balzer et al. 2019]). Recent extensions of classical linear logic session types

contribute another approach to softening the rigidity of linear session types to support multiple

client sessions and nondeterminism [Qian et al. 2021] and memory cells and nondeterministic

updates [Rocha and Caires 2021], respectively. Whereas neither of these recent approaches reclaim

the full expressiveness of unrestricted sharing, they keep the logical foundation intact and thus

uphold deadlock freedom. However, none of these works have been mechanized in a proof assistant.

Prior to the development of logic-based session types [Caires and Pfenning 2010; Wadler 2012],

deadlock freedom in session-typed calculi [Vasconcelos 2012] was guaranteed only for processes

interacting on a single session—interleaving of blocking actions on different sessions could easily

result in deadlocks. To address limitations of classical binary session types, Honda et al. [2008]

introduced multiparty session types, where sessions are described by so-called global types that

capture the interactions between an arbitrary number of session participants. Given some well-

formedness constraints, global types can ensure that a collection of processes correctly implement

the global behavior in a deadlock-free way. However, these global type-based approaches do not

ensure deadlock freedom in the presence of higher-order channels, interleaved sessions, dynamic

channel creation, or dynamic thread creation. To remedy the deficiency various extensions at

increasing degrees of complexity were introduced. For example, Bettini et al. [2008] and Coppo et al.

[2016] track usage orders among interleaved multiparty sessions, ruling out cyclic dependencies but

also restricting recursion. Our approach instead supports higher-order channels, general recursion,

and deadlock freedom solely using a linear type system, by restricting to binary sessions.

Separation logic. Separation logic [O’Hearn et al. 2001] is conventionally used in Hoare-style

program logics for proving functional correctness, while we use it to define and reason about

(run-time) typing judgments. In conventional separation logic, propositions are predicates over

heaps (possibly extended with permissions, ghost state, etc.), whereas we consider predicates over
the outgoing edges of a connectivity graph (which contain types instead of values). The idea of using

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:28 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

separation logic to define typing judgments for linear languages has been explored by Rouvoet et al.

[2020, 2021] in the context of intrinsically-typed programming in Agda. They present separation-

logic based programming abstractions to hide types of references in intrinsically-typed interpreters,

and to hide types of labels in intrinsically-typed compilers. As a case study, Rouvoet et al. [2020]

use their abstractions to define an intrinsically-typed interpreter for a small session-typed language

that guarantees type safety by construction (but not deadlock or resource leak freedom).

Separation logic has also been used to define logical relation models of affine type systems. For

example, logical relations in the Iris separation logic [Jung et al. 2015, 2018b] have been used for

proving memory safety and data race freedom of Rust [Jung et al. 2018a], as well as type safety of

session types [Hinrichsen et al. 2021b]. To extend the logical-relations based approach to prove

deadlock freedom, a full-fledged separation logic that is capable of proving deadlock freedom is

needed. While separation logics and Hoare logics with support for deadlock freedom exist, e.g.,
[Hamin and Jacobs 2018; Le et al. 2013; Zhang et al. 2016], they use lock-orders, whose logical

expressivity is different from session types. Some separation logics have support for pointed-by

assertions [Kassios and Kritikos 2013], which can be used to reason about memory leak freedom.

Various extensions of separation logic that incorporate session-type based mechanisms to reason

about message-passing programs have been developed, e.g., Francalanza et al. [2011]; Lozes and
Villard [2012]; Craciun et al. [2015]; Oortwijn et al. [2016]; Hinrichsen et al. [2020, 2021a]. The

goal of these logics is different from ours—they are full-fledged Hoare logics aimed at proving

functional correctness instead of deadlock freedom. On the other hand, we use the assertion layer

of separation to hide bookkeeping in the definition of run-time typing judgments, and to describe

connectivity graph transformations in an abstract and generic way.

Mechanized results of session types. Thiemann [2019] proves type safety of a linear _-calculus

with session types that is inspired by GV. They do not prove deadlock or memory leak freedom.

Their mechanization involves an extensive amount of bookkeeping to keep track of resources.

Rouvoet et al. [2020] streamlined this approach via separation logic (see discussion above).

Hinrichsen et al. [2021b] prove type safety for a comprehensive session-typed language with

locks, subtyping and polymorphism using Iris in Coq. Their type system is affine, which means

that deadlocks are considered safe (their receive operation will spin if the buffer is empty). Their

proof is based is on logical relations instead of progress and preservation (see discussion above).

Tassarotti et al. [2017] prove correctness of a compiler for an affine session-typed language using

Iris in Coq. The operational semantics of their source language is similar to ours, while channels

are compiled to an implementation involving linked lists in the target. Their compiler is proved to

be termination preserving, so a target program deadlocks iff the source deadlocks.

More distantly, there also exist various mechanized results involving 𝜋-calculus. Goto et al. [2016]

prove type safety for a 𝜋-calculus with a polymorphic session type system in Coq. Their type system

allows dropping channels, and hence does not enjoy deadlock nor memory leak freedom. Ciccone

and Padovani [2020] mechanize dependent binary session session types by embedding them into a

𝜋-calculus in Agda. They prove subject reduction (i.e., preservation) and that typing is preserved

by structural congruence. Neither deadlock freedom nor leak freedom is proved. Castro-Perez

et al. [2020] present a framework for locally-nameless representations of 𝜋-calculus in Coq. They

use their framework to prove subject reduction (i.e., preservation) of a type system for binary

session types. Neither deadlock freedom nor leak freedom is proved. Their framework is used

by Castro-Perez et al. [2021] to mechanize a DSL for multiparty communication in Coq based on

asynchronous multiparty session types. They prove deadlock freedom w.r.t. a global type, but do

not prove deadlock freedom in the presence of higher-order channels, interleaved sessions, dynamic

channel creation, or dynamic thread creation.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:29

Gay et al. [2020] study various notions of duality in Agda, and show that distribution laws for

duality over the recursion operator are unsound. Unlike the other mechanized results discussed

so far, they focus on the static instead of dynamic semantics of session types. We have adapted

their approach of using coinductive types for mechanizing general recursive session types (see §7).

Keizer et al. [2021] use coalgebras to model session types in a non-mechanized setting.

More distantly related are mechanized versions of cut elimination of linear logic [Reed 2009a;

Chaudhuri et al. 2019], which by Curry-Howard relates to deadlock freedom of intuitionistic

session types. The authors were incentivized by mistakes in various existing, non-mechanized

proofs. However, whereas a cut elimination proof concerns a logical inference system only, our

proof of deadlock freedom encompasses a typed programming language with operational semantics,

requiring us to reason not only about its statics but also it execution semantics. Moreover, our

language includes features such as recursive types (§6.2) that break cut elimination.

Mechanization results, lastly, also exist for choreographic languages [Montesi 2021]. Cruz-Filipe

et al. [2021a] mechanize choreography compilation in Coq for the choreographic language Core

Choreographies (CC) introduced by Cruz-Filipe et al. [2021b]. CC supports recursion and its

semantics has been formalized in Coq by Cruz-Filipe et al. [2021b]. Key results of the formalization

include determinism, confluence, and deadlock-freedom by design as well as Turing completeness.

Process calculi. The addition of channel usage information to types in a concurrent, message-

passing setting was pioneered by Kobayashi [1997]; Igarashi and Kobayashi [1997]; Kobayashi

et al. [1999], who applied the idea to deadlock prevention in the 𝜋-calculus and later to more

general properties [Igarashi and Kobayashi 2001, 2004], giving rise to a generic system that can be

instantiated to produce a variety of concrete typing disciplines for the 𝜋-calculus. Typically, types

are augmented with the relative ordering of channel actions, with the type system ensuring that

the transitive closure of such orderings forms a strict partial order, ensuring deadlock-freedom.

Building on this, Kobayashi [2002] proposed type systems that ensure a stronger property, dubbed

lock freedom, and variants that are amenable to type inference [Kobayashi et al. 2000]. Kobayashi

[2006] extended this to account for recursive processes and type inference. Kobayashi-style systems

have also been adopted for session-typed languages [Dardha and Gay 2018; Balzer et al. 2019].

9 FUTUREWORK
We have used our connectivity graph method to give a mechanized proof of deadlock and memory-

leak freedom for binary session types. Since connectivity graphs are not restricted to two incoming

edges per channel, we would like to explore language designs with a version of multiparty session

types that supports dynamic thread and channel creation, and higher order channels, but still

enjoys global progress from typing in a manner similar to binary session types (i.e., without
additional mechanisms such as orders or priorities). Second, we would like to explore whether

other concurrency mechanisms such as locks and barriers could be handled by our method.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feedback, and especially for the criticism that

global progress is a very weak property if one thread is in an infinite loop, which is what led us to

develop §6.3. We are grateful to Herman Geuvers, Fabrizio Montesi, Ike Mulder, Arjen Rouvoet,

Bernardo Toninho, and Jorge Pérez for discussions about this paper and related work. The second

author (Stephanie Balzer) was supported by National Science Foundation Award No. CCF-1718267.

The third author (Robbert Krebbers) was supported by the Dutch Research Council (NWO), project

016.Veni.192.259.

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

1:30 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

REFERENCES
Arnon Avron. 1991. Hypersequents, Logical Consequence and Intermediate Logics for Concurrency. Annals of Mathematics

and Artificial Intelligence 4 (1991), 225–248. https://doi.org/10.1007/BF01531058

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. PACMPL 1, ICFP (2017), 37:1–37:29.

https://doi.org/10.1145/3110281

Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. 2018. A Universal Session Type for Untyped Asynchronous

Communication. In CONCUR (LIPIcs, Vol. 118). 30:1–30:18. https://doi.org/10.4230/LIPIcs.CONCUR.2018.30

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-Freedom for Shared Session Types. In

ESOP (LNCS, Vol. 11423). 611–639. https://doi.org/10.1007/978-3-030-17184-1_22

Nick Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract). In CSL (LNCS).
121–135. https://doi.org/10.1007/BFb0022251

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.

2008. Global Progress in Dynamically Interleaved Multiparty Sessions. In CONCUR (LNCS, Vol. 5201). 418–433. https:

//doi.org/10.1007/978-3-540-85361-9_33

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral Polymorphism and Parametricity in

Session-Based Communication. In ESOP. 330–349. https://doi.org/10.1007/978-3-642-37036-6_19

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR (LNCS, Vol. 6269).
222–236. https://doi.org/10.1007/978-3-642-15375-4_16

Marco Carbone and Søren Debois. 2010. A Graphical Approach to Progress for Structured Communication in Web Services.

In ICE (EPTCS, Vol. 38). 13–27. https://doi.org/10.4204/EPTCS.38.4

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. 2021. Zooid: A DSL for Certified Multiparty

Computation: From Mechanised Metatheory to Certified Multiparty Processes. In PLDI. 237–251. https://doi.org/10.

1145/3453483.3454041

David Castro-Perez, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST: Engineering the Meta-theory of Session Types.

In TACAS (2) (LNCS, Vol. 12079). 278–285. https://doi.org/10.1007/978-3-030-45237-7_17

Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. 2019. Formalized Meta-Theory of Sequent Calculi for Linear Logics.

Theoretical Computer Science 781 (2019), 24–38. https://doi.org/10.1016/j.tcs.2019.02.023

Ruofei Chen and Stephanie Balzer. 2020. Ferrite: A Judgmental Embedding of Session Types in Rust. CoRR abs/2009.13619

(2020). arXiv:2009.13619 https://arxiv.org/abs/2009.13619

Luca Ciccone and Luca Padovani. 2020. A Dependently Typed Linear 𝜋-Calculus in Agda. In PPDP. 8:1–8:14. https:

//doi.org/10.1145/3414080.3414109

Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. 2016. Global Progress for Dynamically

Interleaved Multiparty Sessions. MSCS 26, 2 (2016), 238–302. https://doi.org/10.1017/S0960129514000188

The Coq-std++ Team. 2021. An extended “standard library” for Coq. Available online at https://gitlab.mpi-sws.org/iris/stdpp.

The Coq Team. 2021. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.4501022

Florin Craciun, Tibor Kiss, and Andreea Costea. 2015. Towards a Session Logic for Communication Protocols. In ICECCS.
140–149. https://doi.org/10.1109/ICECCS.2015.33

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021a. Certifying Choreography Compilation. In ICTAC (LNCS,
Vol. 12819). 115–133. https://doi.org/10.1007/978-3-030-85315-0_8

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021b. Formalising a Turing-Complete Choreographic Language

in Coq. In ITP (LIPIcs, Vol. 193). 15:1–15:18. https://doi.org/10.4230/LIPIcs.ITP.2021.15

Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for Deadlock-Free Session-Typed Processes. In FOSSACS (LNCS,
Vol. 10803). 91–109. https://doi.org/10.1007/978-3-319-89366-2_5

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Work Analysis with Resource-Aware Session Types. In LICS. 305–314.
https://doi.org/10.1145/3209108.3209146

Farzaneh Derakhshan, Stephanie Balzer, and Limin Jia. 2021. Session Logical Relations for Noninterference. In LICS. 1–14.
https://doi.org/10.1109/LICS52264.2021.9470654

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou. 2006. Session Types for

Object-Oriented Languages. In ESOP (LNCS, Vol. 4067). 328–352. https://doi.org/10.1007/11785477_20

Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. 2021. Separating Sessions Smoothly. CoRR
abs/2105.08996 (2021). arXiv:2105.08996 https://arxiv.org/abs/2105.08996

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional Asynchronous Session Types: Session

Types Without Tiers. PACMPL 3, POPL (2019), 28:1–28:29. https://doi.org/10.1145/3290341

Adrian Francalanza, Julian Rathke, and Vladimiro Sassone. 2011. Permission-Based Separation Logic for Message-Passing

Concurrency. LMCS 7, 3 (2011). https://doi.org/10.2168/LMCS-7(3:7)2011

Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality of Session Types: The Final Cut. In PLACES (EPTCS,
Vol. 314). 23–33. https://doi.org/10.4204/EPTCS.314.3

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

https://doi.org/10.1007/BF01531058
https://doi.org/10.1145/3110281
https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1016/j.tcs.2019.02.023
https://arxiv.org/abs/2009.13619
https://arxiv.org/abs/2009.13619
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1017/S0960129514000188
https://gitlab.mpi-sws.org/iris/stdpp
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.1109/ICECCS.2015.33
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.1109/LICS52264.2021.9470654
https://doi.org/10.1007/11785477_20
https://arxiv.org/abs/2105.08996
https://arxiv.org/abs/2105.08996
https://doi.org/10.1145/3290341
https://doi.org/10.2168/LMCS-7(3:7)2011
https://doi.org/10.4204/EPTCS.314.3

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:31

Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear Type Theory for Asynchronous Session Types. JFP 20, 1

(2010), 19–50. https://doi.org/10.1017/S0956796809990268

Matthew A. Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2016. An Extensible Approach to Session

Polymorphism. MSCS 26, 3 (2016), 465–509. https://doi.org/10.1017/S0960129514000231

Jafar Hamin and Bart Jacobs. 2018. Deadlock-Free Monitors. In ESOP (LNCS, Vol. 10801). 415–441. https://doi.org/10.1007/978-
3-319-89884-1_15

Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.). Cambridge University Press. https:

//doi.org/10.5555/3002812

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: Session-Type Based Reasoning in Separation

Logic. PACMPL 4, POPL, Article 6 (Dec. 2020), 30 pages. https://doi.org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2021a. Actris 2.0: Asynchronous Session-Type Based

Reasoning in Separation Logic. (2021). https://arxiv.org/abs/2010.15030v1 Manuscript.

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. 2021b. Machine-checked semantic

session typing. In CPP. 178–198. https://doi.org/10.1145/3437992.3439914

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (LNCS, Vol. 715). 509–523. https://doi.org/10.1007/3-540-

57208-2_35

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In ESOP (LNCS, Vol. 1381). 122–138. https://doi.org/10.1007/BFb0053567
Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In POPL. 273–284.

https://doi.org/10.1145/1328438.1328472

Atsushi Igarashi and Naoki Kobayashi. 1997. Type-Based Analysis of Communication for Concurrent Programming

Languages. In SAS (LNCS, Vol. 1302). 187–201. https://doi.org/10.1007/BFb0032742

Atsushi Igarashi and Naoki Kobayashi. 2001. A Generic Type System for the Pi-calculus. In POPL. 128–141. https:

//doi.org/10.1145/360204.360215

Atsushi Igarashi and Naoki Kobayashi. 2004. A Generic Type System for the Pi-calculus. Theoretical Computer Science 311,
1-3 (2004), 121–163. https://doi.org/10.1016/S0304-3975(03)00325-6

Atsushi Igarashi, Peter Thiemann, Vasco T. Vasconcelos, and Philip Wadler. 2017. Gradual session types. PACMPL 1, ICFP

(2017), 38:1–38:28. https://doi.org/10.1145/3110282

Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2019. Session-Ocaml: A Session-Based Library with Polarities and Lenses.

Science of Computer Programming 172 (2019), 135–159. https://doi.org/10.1016/j.scico.2018.08.005

Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. 2010. Session Type Inference in Haskell. In PLACES (EPTCS, Vol. 69). 74–91.
https://doi.org/10.4204/EPTCS.69.6

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2021. Appendix and Coq mechanization of “Connectivity Graphs: A

Method for Proving Deadlock Freedom Based on Separation Logic”. The most recent version is at https://github.com/

julesjacobs/cgraphs.

Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015. Session Types for Rust. In WGP. 13–22.
https://doi.org/10.1145/2808098.2808100

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of the

Rust Programming Language. PACMPL 2, POPL (2018), 66:1–66:34. https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris From

the Ground Up: A Modular Foundation for Higher-Order Concurrent Separation Logic. JFP 28 (2018), e20. https:

//doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. 637–650. https://doi.org/10.1145/

2676726.2676980

Ioannis T. Kassios and Eleftherios Kritikos. 2013. A Discipline for Program Verification Based on Backpointers and Its Use

in Observational Disjointness. In ESOP (LNCS, Vol. 7792). 149–168. https://doi.org/10.1007/978-3-642-37036-6_10

Alex C. Keizer, Henning Basold, and Jorge A. Pérez. 2021. Session Coalgebras: A Coalgebraic View on Session Types and

Communication Protocols. In ESOP (LNCS, Vol. 12648). 375–403. https://doi.org/10.1007/978-3-030-72019-3_14

Naoki Kobayashi. 1997. A Partially Deadlock-Free Typed Process Calculus. In LICS. 128–139. https://doi.org/10.1109/LICS.

1997.614941

Naoki Kobayashi. 2002. A Type System for Lock-Free Processes. I&C 177, 2 (2002), 122–159. https://doi.org/10.1006/inco.

2002.3171

Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In CONCUR (LNCS, Vol. 4137). 233–247. https:

//doi.org/10.1007/11817949_16

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the pi-calculus. TOPLAS 21, 5 (1999),

914–947. https://doi.org/10.1145/330249.330251

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1007/978-3-319-89884-1_15
https://doi.org/10.1007/978-3-319-89884-1_15
https://doi.org/10.5555/3002812
https://doi.org/10.5555/3002812
https://doi.org/10.1145/3371074
https://arxiv.org/abs/2010.15030v1
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/BFb0032742
https://doi.org/10.1145/360204.360215
https://doi.org/10.1145/360204.360215
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1145/3110282
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.4204/EPTCS.69.6
https://github.com/julesjacobs/cgraphs
https://github.com/julesjacobs/cgraphs
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-642-37036-6_10
https://doi.org/10.1007/978-3-030-72019-3_14
https://doi.org/10.1109/LICS.1997.614941
https://doi.org/10.1109/LICS.1997.614941
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1007/11817949_16
https://doi.org/10.1007/11817949_16
https://doi.org/10.1145/330249.330251

1:32 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

Naoki Kobayashi, Shin Saito, and Eijiro Sumii. 2000. An Implicitly-Typed Deadlock-Free Process Calculus. In CONCUR
(LNCS, Vol. 1877). 489–503. https://doi.org/10.1007/3-540-44618-4_35

Wen Kokke. 2019. Rusty Variation: Deadlock-free Sessions with Failure in Rust. In ICE (EPTCS, Vol. 304). 48–60. https:

//doi.org/10.4204/EPTCS.304.4

Wen Kokke, Fabrizio Montesi, and Marco Peressotti. 2019. Better Late Than Never: a Fully-Abstract Semantics for Classical

Processes. PACMPL 3, POPL (2019), 24:1–24:29. https://doi.org/10.1145/3290337

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.

PACMPL 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236772

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-Order Concurrent Separation Logic.

In POPL. 205–217. https://doi.org/10.1145/3009837.3009855

Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo. 2013. An Expressive Framework for Verifying Deadlock Freedom. In

ATVA (LNCS, Vol. 8172). 287–302. https://doi.org/10.1007/978-3-319-02444-8_21

Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In ESOP (LNCS, Vol. 9032). 560–584.
https://doi.org/10.1007/978-3-662-46669-8_23

Sam Lindley and J. Garrett Morris. 2016a. Embedding Session Types in Haskell. In Haskell Symposium. 133–145. https:

//doi.org/10.1145/2976002.2976018

Sam Lindley and J. Garrett Morris. 2016b. Talking Bananas: Structural Recursion For Session Types. In ICFP. 434–447.
https://doi.org/10.1145/2951913.2951921

Sam Lindley and J. Garrett Morris. 2017. Lightweight Functional Session Types. In Behavioural Types: from Theory to Tools.
Étienne Lozes and Jules Villard. 2012. Shared Contract-Obedient Endpoints. In ICE (EPTCS, Vol. 104). 17–31. https:

//doi.org/10.4204/EPTCS.104.3

Fabrizio Montesi. 2021. Introduction to Choreographies. (2021). Accepted for publication by Cambridge University Press.

Fabrizio Montesi and Marco Peressotti. 2018. Classical Transitions. CoRR abs/1803.01049 (2018). arXiv:1803.01049

http://arxiv.org/abs/1803.01049

Peter W. O’Hearn and David J. Pym. 1999. The Logic Of Bunched Implications. Bulletin of Symbolic Logic 5, 2 (1999), 215–244.
https://doi.org/10.2307/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In CSL (LNCS, Vol. 2142). 1–19. https://doi.org/10.1007/3-540-44802-0_1

Wytse Oortwijn, Stefan Blom, and Marieke Huisman. 2016. Future-based Static Analysis of Message Passing Programs. In

PLACES (EPTCS, Vol. 211). 65–72. https://doi.org/10.4204/EPTCS.211.7

Luca Padovani. 2017. A Simple Library Implementation of Binary Sessions. JFP 27 (2017), e4. https://doi.org/10.1017/

S0956796816000289

Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2014. Linear Logical Relations and Observational

Equivalences for Session-Based Concurrency. I&C 239 (2014), 254–302. https://doi.org/10.1016/j.ic.2014.08.001

Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In FoSSaCS (LNCS, Vol. 9034). 3–22.
https://doi.org/10.1007/978-3-662-46678-0_1

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT Press. https://doi.org/10.5555/509043

Riccardo Pucella and Jesse A. Tov. 2008. Haskell Session Types with (Almost) No Class. In Haskell Symposium. 25–36.

https://doi.org/10.1145/1411286.1411290

Zesen Qian, G. A. Kavvos, and Lars Birkedal. 2021. Client-Server Sessions in Linear Logic. PACMPL 5, ICFP (2021), 1–31.

https://doi.org/10.1145/3473567

Jason Reed. 2009a. A Hybrid Logical Framework. Ph.D. Dissertation. Carnegie Mellon University.

Jason Reed. 2009b. A Judgmental Deconstruction of Modal Logic. (2009). http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf

Unpublished manuscript.

Pedro Rocha and Luís Caires. 2021. Propositions-as-Types and Shared State. Technical Report. NOVA LINCS.

Arjen Rouvoet, Robbert Krebbers, and Eelco Visser. 2021. Intrinsically Typed Compilation With Nameless Labels. PACMPL
5, POPL (2021), 1–28. https://doi.org/10.1145/3434303

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020. Intrinsically-Typed Definitional Interpreters

for Linear, Session-Typed Languages. In CPP. 284–298. https://doi.org/10.1145/3372885.3373818

Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in Scala. In ECOOP (LIPIcs, 56). 21:1–21:28.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21

Matthieu Sozeau. 2009. A New Look at Generalized Rewriting in Type Theory. JFR 2, 1 (2009), 41–62. https://doi.org/10.

6092/issn.1972-5787/1574

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In ESOP (LNCS, Vol. 10201). 909–936. https://doi.org/10.1007/978-3-662-54434-1_34

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

https://doi.org/10.1007/3-540-44618-4_35
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.4204/EPTCS.304.4
https://doi.org/10.1145/3290337
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-319-02444-8_21
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.4204/EPTCS.104.3
https://doi.org/10.4204/EPTCS.104.3
https://arxiv.org/abs/1803.01049
http://arxiv.org/abs/1803.01049
https://doi.org/10.2307/421090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.5555/509043
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/3473567
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://doi.org/10.1145/3434303
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.1007/978-3-662-54434-1_34

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:33

Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types. In PPDP. 19:1–19:15. https://doi.org/10.

1145/3354166.3354184

Bernardo Toninho. 2015. A Logical Foundation for Session-Based Concurrent Computation. Ph.D. Dissertation. Carnegie
Mellon University and New University of Lisbon.

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In ESOP (LNCS, Vol. 7792). 350–369. https://doi.org/10.1007/978-3-642-37036-6_20

Vasco T. Vasconcelos. 2012. Fundamentals of Session Types. I&C 217 (2012), 52–70. https://doi.org/10.1016/j.ic.2012.05.002

Philip Wadler. 2012. Propositions as Sessions. In ICFP. 273–286. https://doi.org/10.1145/2364527.2364568

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. I&C 115, 1 (1994), 38–94.

https://doi.org/10.1006/inco.1994.1093

Dan Zhang, Dragan Bosnacki, Mark van den Brand, Cornelis Huizing, Bart Jacobs, Ruurd Kuiper, and Anton Wijs. 2016.

Verifying Atomicity Preservation and Deadlock Freedom of a Generic Shared Variable Mechanism Used in Model-To-Code

Transformations. In MODELSWARD (CCIS, Vol. 692). 249–273. https://doi.org/10.1007/978-3-319-66302-9_13

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1007/978-3-319-66302-9_13

	Abstract
	1 Introduction
	2 Language and Operational Semantics
	3 Key Ideas
	3.1 Generalizing The Progress and Preservation Method
	3.2 Generalizing Heap Typings to Connectivity Graphs
	3.3 Run-Time Typing Judgment Using Separation Logic
	3.4 Well-Formedness of Configurations Using Connectivity Graphs
	3.5 Proving Preservation Using Local Connectivity Graph Transformations
	3.6 Proving Progress Using Waiting Induction

	4 Connectivity Graphs and Waiting Induction in Detail
	5 Local Graph Transformation Rules in Separation Logic
	6 Extensions
	6.1 Unrestricted Types
	6.2 Equi-Recursive Types
	6.3 Partial Deadlock and Memory Leak Freedom via Reachability

	7 Mechanization in Coq
	8 Related Work
	9 Future Work
	Acknowledgments
	References

