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Abstract
Conflict-free Replicated Datatypes (CRDTs) are a class of distributed data structures that are
highly-available and weakly consistent. The CRDT taxonomy is further divided into two subclasses:
state-based and operation-based (op-based). Recent prior work showed how to use separation logic to
verify convergence and functional correctness of op-based CRDTs while (a) verifying implementations
(as opposed to high-level protocols), (b) giving high level specifications that abstract from low-level
implementation details, and (c) providing specifications that are modular (i.e. allow client code to
use the CRDT like an abstract data type). We extend this separation logic approach to verification
of CRDTs to handle state-based CRDTs, while respecting the desiderata (a)–(c). The key idea is to
track the state of a CRDT as a function of the set of operations that produced that state. Using
the observation that state-based CRDTs are automatically causally-consistent, we obtain CRDT
specifications that are agnostic to whether a CRDT is state- or op-based. When taken together with
prior work, our technique thus provides a unified approach to specification and verification of op-
and state-based CRDTs. We have tested our approach by verifying StateLib, a library for building
state-based CRDTs. Using StateLib, we have further verified convergence and functional correctness
of multiple example CRDTs from the literature. Our proofs are written in the Aneris distributed
separation logic and are mechanized in Coq.
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1 Introduction

Conflict-free Replicated Data Types (CRDTs) are a class of distributed data structures that
trade off strong consistency in favour of high availability. That is, local updates are not
blocked by inter-replica synchronization; instead, they are immediately applied locally, and
then propagated to other replicas. Because of the lack of synchronization, CRDTs need
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a mechanism for resolving conflicting updates: a typical strategy is to make all updates
commutative, so that they can be applied in any order.

There are two main implementation strategies for CRDTs, differing in how updates
are propagated. Operation-based (op-based) CRDTs propagate local updates by reifying
updates as operations, which are then transmitted to other nodes. Once these (now remote)
operations are received by other replicas, they can be applied to their local states so they can
“catch up”. By contrast, in state-based CRDTs, an update is first applied to the local state,
and then the state is propagated to other replicas. This is achieved by letting the state be an
element of a join-semilattice, constraining updates to be monotonic, and combining local and
remote states via the lattice’s join operator. The choice of implementation style for a CRDT
(op vs state-based) incurs several tradeoffs. Op-based based CRDTs are conceptually simpler,
but make assumptions about the underlying delivery mechanism (e.g. at most once delivery).
By contrast, the state-based approach can easily cope with duplicates and messages delivered
out of order, because the merge operation (modelled with joins) is idempotent, associative,
and commutative. On other hand, not only must the datatype semantics be encoded via
joins, but also sending the entire state across the network might be inefficient.

Figure 1 shows a grow-only counter (g-counter) CRDT implemented in both styles. A
g-counter is a datatype with two operations: it can be read and it can be incremented by a
non-negative number. The op-based implementation defines the counter’s initial state (0),
an effect function that adds the value we are incrementing by to the counter’s current state,
and a read function that is just the identity. An event is a tuple containing an operation
(the value to increment by) plus metadata, including the replica id where the operation
originated. The state-based g-counter is more complex. The counter’s state is kept as a list
of integers tracking each replica’s contribution to the counter’s value. The initial state is
the list of all zeroes with size numRep, the number of replicas. A mutator function takes the
current state and the increment value, and returns the updated list where the right entry, as
determined by the operation’s origin, was incremented. The merge function takes two states
and computes their join in the underlying lattice. For the g-counter, we take the pointwise
maximum of the two lists. Finally, to read the value of the g-counter we just sum all entries
in the state list. These purely functional implementations capture the g-counter’s core logic,
but do not show how events are propagated between replicas.

The standard consistency model for CRDTs is Strong Eventual Consistency (SEC). SEC
can, in turn, be divided into two sub-properties: convergence (two replicas that have processed
the same set of updates must be in the same state) and eventual delivery (any update sent
by a replica will eventually be delivered to all other replicas).

Additionally, the guarantees of SEC are sometimes strengthened to imply causal con-
sistency [2], meaning that the causal order of updates is respected. In other words, given
updates u and w, if u happened before w at a replica [12], then u must be processed before w

at all other replicas. Causal consistency captures programmer’s intuitions on how the order
of operations should be preserved; for example, it implies that reads are monotonic: a read
always returns data that is “fresher” than what previous reads have returned.

1.1 Denotational Specifications
Specifying CRDTs is tricky because of their replicated nature and relaxed consistency model.
Some works adopt SEC as the correctness criteria and do not provide functional correctness
specifications of CRDTs [18, 7, 17]. Eventual consistency is a key correctness property,
but this approach has at least two (related) shortcomings. First, given, e.g., a g-counter
implementation, proving SEC shows that different replicas eventually converge, but does
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(* op - based g- counter *)
let init = 0

let effect st e =
let (op , _, _) = e in
st + op

let read st = st

(* state - based g- counter *)
let init = List.init numRep (fun _ → 0)

let mutator st e =
let (op , src) = e in
List.mapi (fun i c →

if i = src then c + op else c)

let merge st1 st2 =
let max = fun p →

Int.max (fst p) (snd p) in
List.map max (List. combine st1 st2)

let read = List. fold_left (+) 0

Figure 1 Op-based and state-based OCaml implementations of a grow-only counter. numRep is
the number of replicas.

not tell us what they converge to. This means we cannot rule out bugs such as subtracting
instead of adding in the definition of effect in Figure 1. Another problem is that by focusing
on SEC we cannot abstract away from implementation details. For example, Figure 1 shows
two g-counter implementations that use different techniques, but we should be able to reason
about a g-counter as an abstract data type [15], without worrying about whether it is op-based
or state-based.

Burckhardt et al. [3] were the first to give functional correctness specifications of CRDTs.
Their key observation is that just like a sequential data type (e.g., a queue) can be specified
as a partial function from a list of operations to a (final) state, a replicated data type can
be specified as a partial function from a set of events to a state. As in Figure 1, an event
contains an operation plus additional metadata, including the id of the replica that created
the operation and a timestamp. The timestamps induce a partial or total order on the set of
events and, furthermore, that order is consistent with causality.1

We call this partial function from sets of events to the CRDT’s state after processing the
events a denotation.2 For example, the denotation for a g-counter is JsK =

∑
e∈s e.o, where s

is a set of events and e.o extracts e’s operation (the value to increment by). In this particular
case we do not use the event metadata to specify the g-counter, but we do so for other, more
complex, CRDTs where all operations do not naturally commute. Note that any CRDT
specification that uses denotations trivially satisfies the convergence part of SEC, because J·K
is insensitive to the order in which events arrive at different replicas: if they have received
the same set of events, then their states will be the same. Also notice that denotations are
by nature closer to the informal op-based specification in Figure 1 than to the state-based
one. This is because op-based CRDTs are framed in terms of individual operations.

1.2 Verifying with Denotations
The papers by Burckhardt et al. and Leinjse et al. [3, 13] are concerned with specifying
CRDTs, but there is still a need for a mechanism that ties the high-level specifications, given
in terms of denotations, to executable code written using features of a modern programming
language: e.g., mutation, node-local concurrency, and higher-order functions. The recent
work of Nieto et al. [20] connects denotations to low-level CRDT implementations using the

1 In Burckhardt et al. [3] a visibility relation is used to order events, instead of a timestamp.
2 The term is due to Leijnse et al. [13], who recast Burckhardt et al.’s formalism in a style more amenable

to specifying CRDT combinators.
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Aneris distributed separation logic [11]. Specifically, they show how to build separation logic
propositions that track the local state of a CRDT, where, e.g., the return value of a read is
then given by a denotation of the local state. Nieto et al. demonstrate their approach by
verifying a library for building op-based CRDTs: the library user (the CRDT implementer)
instantiates the library with a purely-functional implementation of the CRDT (similar to
the op-based example in Figure 1), and obtain in return a replicated data type. The library
handles network operations, concurrency control, and mutation of local state. Nieto et al.
exclusively reason about operation-based CRDTs. As future work, the authors include a
high-level sketch of how their techniques might be adapted to the state-based setting.

There is then, to the best of our knowledge, an unexplored gap in the literature for
verifying functional correctness of state-based CRDTs using modular specifications.

Related to the last point, existing approaches to verifying CRDTs target either op-
based [7, 16, 14, 17, 20] or state-based [23, 18, 24] CRDTs, but never both kinds. This is
important because it means that it is not possible to give the same specification to two
implementations of the same replicated data type, where each uses a different implementation
strategy (as in Figure 1). Having specifications that hide away implementation details is
something we take for granted for sequential data types (e.g. a set abstract data type can be
implemented both via a linked list and a hash table, but both implementations can be given
the same specifcation). It would be useful to have the same hold for CRDTs.

1.3 Contributions
We fill the gaps identified above through the following contributions:
1. We give the first modular specification of a general class of state-based CRDTs. Our

specifications are given in the Aneris distributed separation logic and our proofs are
mechanized in Coq.

2. Furthermore, when taken together with Nieto et al. [20], our work provides a unified
framework for the specification and verification of both kinds of CRDTs. This is because
our specifications of state-based CRDTs are compatible with Nieto et al.’s specifications
of op-based CRDTs. We emphasize this point by re-verifying the example client program
in Nieto et al. that uses a positive-negative counter CRDT, except we swap their op-
based counter by a state-based equivalent. Crucially, the client’s safety proof remains
virtually unchanged,3 showing that it is possible to specify CRDTs while hiding their
implementation strategy.

3. We give the first formal proof that state-based CRDTs are causally-consistent.
4. We evaluate our approach by verifying a set of example CRDTs from the literature. The

evaluation shows that our techniques can handle a variety of CRDTs, including counters,
sets, and higher-order combinators.

2 Aneris Primer

Aneris [11] is a distributed separation logic built on top of the Iris program logic framework [9].
Aneris is designed to reason about safety properties of distributed systems written in Aneris-
Lang, which can be thought of as a subset of OCaml deeply embedded in Coq. This subset
includes support for higher-order functions, mutable state, node-local concurrency (including

3 Modulo some manual editing of Nieto et al.’s proof development, which could be further eliminated
with additional Coq engineering work that refactors some typeclasses
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P, Q ∈ iProp ::= True | False | P ∧ Q | P ⇒ Q | P ∨ Q | ∀x. P | ∃x. P | · · · higher-order logic
| P ∗ Q | P −∗ Q | ℓ 7→ip v | {P } ⟨ip; e⟩ {x. Q} separation logic
| P

N | a
γ invariants and resources

| □ P | |⇛E1 E2 modalities

Figure 2 Aneris fragment adapted from Nieto et al. [20].

the ability to fork new threads dynamically), as well as expressions for sending and receiving
messages over UDP-style sockets. The operational semantics models an unreliable network:
once sent, messages can be dropped, re-ordered, arbitrarily-delayed, and duplicated.

Figure 2 shows the fragment of Aneris most relevant to this paper. First, notice that the
logic includes the usual connectives of a higher-order logic. The separation logic connectives
include the separating conjunction P ∗ Q, indicating ownership of a resource that can be
split into two parts, one satisfying P and the other satisfying Q. The magic wand P −∗ Q

denotes resources that, when combined with a resource satisfying P then together satisfy
Q. The points-to proposition ℓ 7→ip v grants exclusive ownership of memory location ℓ on
the node with IP address ip alongside the knowledge that value v is stored in ℓ. In other
words, only the owner of this resource is allowed to read or modify ℓ’s contents. As usual,
the Hoare triple {P } ⟨ip; e⟩ {x. Q} is a partial correctness assertion for expression e running
on the node with IP address ip. Notice that in the postcondition we bind the return value of
e to x, whose scope extends over Q.

Aneris inherits from Iris a notion of invariant. An invariant P
N (N being the name

— see below), once established at a point in a proof, asserts that the proposition P hold
throughout the execution of the program from that point on and is respected by all threads
and nodes. This is enforced by the program logic and is reflected in the invariant opening
rule. The invariant opening rule allows invariants to be accessed around atomic expressions.
That is, it allows us to assume that the invariant holds before the atomic step and enforces
that after the atomic step executes, the invariant needs to be closed again, meaning that we
have to show that it holds again after the execution of the atomic step. The notation P

N

says that P is an invariant with namespace N . One can think of N as an identifier for the
invariant that helps the logic keep track of which invariants are open at any given point in
the proof: this is important because an invariant that is currently open cannot be re-opened.

The points-to proposition ℓ 7→ip v is but one example of the kind of resources that one
can assert ownership over. In fact, the user of the logic can define new kinds of resources by
creating partial-commutative monoids (PCMs): monoids where the product is commutative
and partial. Given a PCM M and a ∈ M the proposition a

γ asserts ownership of ghost state
a. Here, γ is the ghost name under which a is stored. Crucially, a

γ ∗ b
γ is equivalent to the

monoid product a · b
γ . The logic guarantees that the product of all resources stored under

the same ghost name is well-defined: hence by choosing appropriate monoids we can tweak
the properties of ghost state.

The proposition □P , read persistently P , tells us that P holds and it does not assert
ownership of any exclusive resources. We say that P is a persistent proposition if P ⊢ □P .
Persistent propositions are duplicable in the sense that □P ⊢ □P ∗ □P . Finally, the update
modality |⇛E1 E2 P says that P holds after updating (allocating or modifying) resources;
furthermore, we can assume that all invariants in the set E1 hold when establishing P but
must also (re)establish all invariants in the set E2. The notation |⇛E is shorthand for |⇛E E .

ECOOP 2023
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3 Main Ideas

The main idea of this paper is that, from a user’s perspective, whether a CRDT is op-
based or state-based is an implementation detail, and one that ought not affect the data
structure’s specification. To capture this idea formally we reach for two tools: separation
logic propositions for tracking the global and local states of the CRDT as a function of sets
of events (user operations), and high-level specifications for the CRDT based on denotations.

To track a CRDT’s state we construct propositions GlobSt(sg) and LocSt (i, sown, sfor)
for global and local states, respectively, as well as a global invariant GlobInv. Ownership
of the global state tells us that sg is exactly the set of all events issued by any replica. An
event is a triple (op, source, time) where op is the user-provided operation (e.g. inc(10) for
a g-counter), source is the id of the replica that issued the operation (ids are just natural
numbers), and time is a logical timestamp that allows us to order events according to the
usual happens-before relation. Ownership of the local state LocSt (i, sown, sfor) tells us that
replica i has issued exactly the events in sown, and that it has received at least the events
in sfor, which all originate outside of i (we only get an approximation of the events from
outside of i because in between two user interactions with the CRDT at replica i, new merge
operations might have taken place).

Once the above propositions have been defined, we prove a comprehensive suite of
“resource lemmas” that allow a client to reason about the state of the CRDT. For example,
we prove that if a user knows both GlobSt(sg) and LocSt (i, sown, sfor), and they can find
events e and e′ where e ∈ sown ∪ sfor (e is in the local state), e′ ∈ sg (e′ is in the global state)
and e′ happens before e, then e′ must have been received at replica i as well: e′ ∈ sown ∪ sfor.
This is an encoding of causality in separation logic [8, 20]. We do not claim this formulation
as a contribution; instead, our contribution is defining the above predicates in such a way
that they can track state-based CRDTs, and then proving existing lemma statements for our
definitions. In effect, we have re-implemented an existing interface. This is crucial because it
means that from a client’s perspective it does not matter what kind of CRDT (state-based
or op-based) they are working with: they all satisfy the same laws.

Technical Challenges

Resource lemmas like causality hold only in the presence of the global invariant GlobInv.
This invariant guarantees that at all times the state of the system is valid. The system state
is a tuple s⃗l of the local state at every replica. Defining a notion of validity suitable for
state-based CRDTs is one of the tricky technical parts of our proof. Two complications arise:
how to represent local states, and how to represent time.

Defining local state as an element of the lattice over which the CRDT is implemented
does not work, because we lose track of the individual events. For example, we might
remember that the state of the counter is [4, 5], but not that it resulted from three events:
two increments of 2 each at replica 0, and one increment of 5 at replica 1. Remembering
events is needed to show the resource lemmas. We therefore represent local states as sets
of events, but now we need a way to link these sets of events to the lattice element that is
computed at runtime. We do this with denotations, which are functions from sets of events
to lattice elements. In our proof, a local invariant ensures that, for every replica i, if s is the
set of tracked events for i and the runtime CRDT state at i is st, we must have JsK = st. The
definition of denotation for a state-based CRDT must then satisfy a number of coherence
properties with respect to the underlying lattice: for example, we require that, under certain
conditions, if JsK = st and Js′K = st′, then Js ∪ s′K = st ⊔ st′. In other words, our proof tracks
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the logical state with a free lattice of events, while the implementation computes using the
CRDT-specific lattice. The denotation is the homomorphism between the two.

For lemmas like causality we also need to be able to compare events according to time.
Prior work on op-based CRDTs implements a causal broadcast library that tags each event
with a (physical) vector clock 4 that serves as a timestamp [20]. In our setting, since state-
based CRDTs do not assume causal broadcast, we use a purely logical notion of time. Given
an event e, its timestamp is taken to be the set of events that e causally depends on. This
set is computed at the point e is created: if e was issued at replica i where the local state is
an event set s, then e causally depends on every element of s. This works because we can
show that local states are always dependency-closed: if e′ ∈ s and ed is a dependency of e′,
then ed ∈ s as well. Our definition of logical time allows us to give the first formal proof
that state-based CRDTs are causally-consistent.

Verified Examples

With the above in place we turn to the verification of different state-based CRDTs. We
implemented and verified five CRDTs from the literature [21]: a grow-only counter, a positive-
negative counter, an add-only set, a combinator for products of CRDTs, and a combinator
for maps from strings to an underlying CRDT type. We implemented these examples in two
steps: first, we implemented a StateLib library that factors out all the common elements
in different examples: network calls, merging of remote states, and concurrency control.
The library takes as input a purely-functional implementation of a state-based CRDT, in
the form of a triple (init_st, mutator, merge), where init_st is the CRDT’s initial (lattice
based) state, mutator is a function that takes a state and an operation and produces the next
state, and merge implements the lattice’s least upper bound operation. StateLib requires
that the CRDT implementer proves the aforementioned coherence properties (e.g., that
merging two states is the same as taking the denotation of the union of their corresponding
event sets) about their purely-functional implementation. Given this core logic, the library
returns a fully-fledged replicated data type and two functions, get_state and update, to query
and update the state of the data-structure. In the second step, we wrote purely-functional
implementations for each of the previously-mentioned examples and proved the relevant
coherence properties so the library can be instantiated with them. The modular design of
the library allows us to prove the library safe just once, and then re-use that proof to obtain
safety proofs for each of the CRDTs.

Finally, we wanted to validate our claim that a client need not know whether the CRDT
they are interacting with is state-based or not. We did this by using the example in Nieto et al.
where they verify a client program together with an op-based positive-negative counter [20].
We were able to swap their op-based counter with our state-based positive-negative counter
while leaving the proof virtually unmodified (small technical changes are required, but these
could be eliminated with further Coq engineering). This shows that CRDTs can be true
abstract data types, and can be specified while abstracting away implementation details.

The rest of the paper is structured as follows: Section 4 gives an overview of the CRDT
resource lemmas in Nieto et al. [20], which we re-prove in the state-based context. Sections 5,
6, and 7 present StateLib’s design, specification, and safety proof, respectively. Section 8
describes the verified example CRDTs, as well as the proof of the client program that is

4 A vector of integers, with one entry per node in the system. The ith entry tells us how many updates
have been done by replica i.
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agnostic to the CRDT class. Section 9 surveys related work and Section 10 concludes.

4 Background: CRDTs in Separation Logic

We give an overview of the separation logic approach to verification of op-based CRDTs in
Nieto et al. [20]. Specifically, they introduce abstract separation logic resources (abstract
predicates) for tracking the local and global states of a CRDT. The abstract resources are
later used in the specifications of CRDT operations. Nieto et al. reason only about op-based
CRDTs, but in this paper we show how to instantiate the abstract resources so that we can
verify state-based CRDT implementations as well. As we will later see, this allows clients to
reason about a CRDT while remaining agnostic of the CRDT’s implementation strategy.

4.1 Time, Events, and Denotations
We start by giving a few definitions that we will use throughout the paper.

Logical time allows us to order events in a distributed system using causal order. Time
is axiomatized by a triple (Time, ≤t, <t), where Time is a set of timestamps, ≤t is a partial
order on timestamps, and <t is the strict version of ≤t. For example, for working with
op-based CRDTs, Nieto et al. instantiate logical time by taking timestamps to be vector
clocks and ≤t to be the associated pointwise ordering.

Logical events represent operations that are executed by the CRDT, together with
metadata. A logical event is a triple (op, source, time) ∈ Event ≜ Op × N × Time. Here Op
is the type of operations on the CRDT (e.g. Op ≜ {inc(n) | n ∈ N} for a g-counter), source
is the id of the replica that generated the event, and time is a timestamp. For an event e we
write e.o, e.s, and e.t for the operation, source, and timestamp of e, respectively.

Given two event sets s and s′, we say that s is a causally-closed subset of s′, written
s ⊆cc s′, if s ⊆ s′ and

∀e e′, e ∈ s′ ⇒ e′ ∈ s′ ⇒ e.t ≤t e′.t ⇒ e′ ∈ s ⇒ e ∈ s

That is, if we start with two events from s′ and the later one e′ (according to timestamp
ordering) is in s, then e (its causal dependency) must be in s as well.

Finally, we use denotations to specify CRDTs. A denotation is a tuple (Op, St, sinit :
St, J·K : P(Event) ⇀ St). For example, as in Figure 1, for a g-counter we could have Op as
previously defined, St ≜ N, sinit ≜ 0, and JsK =

∑
e∈s unwrap(e.o) with unwrap(inc(n)) = n.

We could have also chosen St to be the set of lists of naturals of length N , where N is the
number of replicas. This latter denotation would be closer to the state-based implementation.

It is useful for denotations to be partial because we can avoid giving a meaning to
ill-formed sets of events. For example, suppose we have s = {a, b} with a.t = b.t but a ̸= b.
We might know that in practice events with equal timestamps must be equal, so s can never
arise during an execution. We might then choose JsK to be undefined.

4.2 Separation Logic Resources
So far we have not shown any Aneris definitions. We do so in Figure 3, which shows the types
of different abstract separation logic resources (predicates) that, together with associated
lemmas, can be used to reason about the state of CRDTs. Specifically, these resources
appear in the pre and post-conditions of functions that operate on a CRDT. The abstract
resources are designed to be generic so they can be used with multiple CRDTs. Indeed,
Nieto et al. verified multiple op-based example CRDTs using these resources [20], and we
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Resources (abstract predicates)

(Global invariant) GlobInv : iProp
(Global state) GlobSt : P(Event) → iProp

(Global snapshot) GlobSnap : P(Event) → iProp
(Local state) LocSt : N → P(Event) ⇒ P(Event) → iProp

(Local snapshot) LocSnap : N → P(Event) ⇒ P(Event) → iProp

Global state laws

(GlobStTakeSnap) ∀E s, N ↑ ⊆ E ⇒ GlobInv −∗ GlobSt(s) −∗ |⇛E GlobSt(s) ∗ GlobSnap(s)

(GlobSnapIncl) ∀E s s
′
, N ↑ ⊆ E ⇒ GlobInv −∗ GlobSnap(s) −∗ GlobSt(s

′) −∗ |⇛E s ⊆ s
′ ∗ GlobSt(s

′)

Local state laws

(LocSnapIncl) ∀E i sown sfor s
′
own s

′
for, N ↑ ⊆ E ⇒ GlobInv −∗ LocSnap(i, sown, sfor) −∗ LocSt

(
i, s

′
own, s

′
for

)
−∗

|⇛E sown ∪ sfor ⊆cc s
′
own ∪ s

′
for ∗ LocSt

(
i, s

′
own, s

′
for

)
(LocSnapExt) ∀E i i

′
sown sfor s

′
own s

′
for, LocSnap(i, sown, sfor) −∗ LocSnap(i

′
, s

′
own, s

′
for) −∗

|⇛E ∀e e
′
, e ∈ sown ∪ sfor ⇒ e

′ ∈ s
′
own ∪ s

′
for ⇒ e.t = e

′
.t ⇒ e = e

′

(LocSnapProv) ∀E i sown sfor e, N ↑ ⊆ E ⇒ e ∈ sown ∪ sfor −∗ GlobInv −∗ LocSnap(i, sown, sfor) −∗
|⇛E ∃sg, GlobSnap(sg) ∗ e ∈ sg

(GlobSnapProv) ∀E i sown sfor sg, N ↑ ⊆ E ⇒ GlobInv −∗ LocSt (i, sown, sfor) −∗ GlobSnap(sg) −∗
|⇛E LocSt (i, sown, sfor) ∗ ∀e, e ∈ sg ⇒ EV_Orig(e) = i ⇒ e ∈ sown

(Causality) ∀E i sown sfor sg, N ↑ ⊆ E ⇒ GlobInv −∗ LocSt (i, sown, sfor) −∗ GlobSnap(sg) −∗

|⇛E LocSt (i, sown, sfor) ∗ ∀e e
′
, e ∈ sg ⇒ e

′ ∈ sown ∪ sfor ⇒ e <t e
′ ⇒ e ∈ sown ∪ sfor

Figure 3 CRDT resources and selected lemmas, from Nieto et al. [20].

have also verified multiple state-based examples. Notice that Figure 3 does not show the
definition of the resources. The reader can think of Figure 3 as defining an interface in the
software engineering sense. Nieto et al. implement this interface for op-based CRDTs, while
we re-implement it for state-based CRDTs. For space reasons, we do not show the entire
interface; the full interface can be found in the accompanying Coq code.

The defined resources are as follows: there is a global invariant GlobInv that holds
throughout the CRDT’s existence. Then we define resources for tracking global (GlobSt)
and local (LocSt) states. The intuition is that if GlobSt(sg) holds, then we know that sg is
exactly the set of events issued by any CRDT replica in the system. Similarly, ownership
of LocSt (i, sown, sfor) tells us that replica i has processed exactly the events in sown and at
least the events in sfor. The events in sown (the “own” events) must have all originated at i,
while the ones in sfor (the “foreign” events) must all originate outside of i. This is because a
client of the CRDT knows exactly which events it has issued, but is potentially not aware of
all events that have been received “in the background” since the last interaction with the
CRDT.

Global and local states are exclusive (not shown in Figure 3), meaning that only one copy
of the resource (or one per replica in the case of local state) can exist: e.g., GlobSt(sg) −∗
GlobSt(s′

g) −∗ ⊥.
By contrast, the interface also declares global and local snapshots (GlobSnap and LocSnap),

which are persistent (duplicable) and give us a lower bound on global and local states,
respectively. Snapshots are useful as a “certificate” that an event was generated by a given
replica: this is the case if one can prove, e.g., that GlobSnap(sg) and e ∈ sg for an event e.
The use of global snapshots as certificates is validated by lemma GlobSnapIncl (Figure 3).
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The lemma says that under the global invariant, if we own GlobSnap(sg) and GlobSt(s′
g),

then we must have sg ⊆ s′
g. This conclusion holds under the update modality |⇛E , which

means that it holds possibly after opening (and closing) all invariants in the mask E. The
premise N ↑ ⊆ E tells us that the global invariant’s namespace N ↑ is part of E. This means
that GlobInv must not be open when the lemma is called (because the proof of the lemma
opens GlobInv). LocSnapIncl provides similar inclusion guarantees for local snapshots, but
note that we actually get the stronger causally-closed inclusion ⊆cc, as opposed to just ⊆.

GlobStTakeSnap allows us to take snapshots of global states. LocSnapExt says that if two
events in a local snapshot have equal timestamps, then the events must be equal.

Finally, we have three lemmas that tie together local and global states. LocSnapProv says
that if e is tracked locally, then there must exist some global snapshot GlobSnap(sg) such that
e ∈ sg. That is, all local events are also tracked globally. GlobSnapProv says that if an event
e ∈ sg has origin i and we know GlobSnap(sg) (e is tracked globally), then e must also be in the
local state for i. Finally, Causality is our definition of causality in separation logic. This take
on causality was originally developed for reasoning about a causally-consistent key value store
by Gondelman et al. [8], and later generalized by Nieto et al. [20] so it can apply to events in
an arbitrary CRDT. The lemma is as follows: suppose we have two events e and e′ such that
e′ was recorded locally at node i (that is, e′ ∈ sown ∪ sfor and we know LocSt (i, sown, sfor)).
Next suppose that e happened before e′, and e is a logically tracked event (which we can show
by presenting GlobSnap(sg) with e ∈ sg). Then causal delivery requires that e be observed
locally at i as well: i.e., e ∈ sown ∪ sfor. Gondelman et al. [8] show how this definition of
causality is strong enough to prove four session guarantees (monotonic reads, monotonic
writes, read your writes, and writes follow reads) that programmers intuitively expect when
interacting with a causally-consistent datatype.

Reasoning With Resources

To tie all the above together, Figure 4 shows how the previously-discussed resources can be
used to specify the inc operation on a g-counter CRDT. We assume that inc both increments
the counter and returns its current local value. The precondition for calling inc at replica i

requires knowledge of both LocSt (i, sown, sfor) and GlobSt(sg). This is because every single
increment must be tracked both locally at the replica where it is performed and globally.
In the postcondition we get back LocSt (i, sown ∪ {e} , s′

for), where e is the event generated
by the increment and sfor ⊆ s′

for. Notice that the “own events” grow by exactly one event,
e, but the “foreign events” grow to some superset s′

for of sfor. This is because since the
last time inc was called any number of new events could have been propagated from other
replicas to replica i. Notice how we connect the implementation to its functional correctness
specification by saying that the return value v is the denotation of the locally-observed
events sown ∪ {e} ∪ s′

for. Finally, observe that by using denotations we automatically obtain
convergence (the safety part of SEC), because the return value is a function of a set of events,
so two replicas that have seen the same set of events must return the same result.

Resources for State-Based CRDTs

Two difficulties arise when instantiating the resource interface for state-based CRDTs.
1. How should we track local state? The replica state in an implementation of a state-

based CRDT is a lattice element. By contrast, the resource interface logically tracks replica
states as sets of events (operations). The solution is to link the two representations via
a denotation: if the logical state is LocSt (i, sown, sfor), then the physical state must be
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IncSpec
{LocSt (i, sown, sfor) ∗ GlobSt(sg)}

⟨ipi; inc(n)⟩

{v. ∃e s′
for. s′

for ⊇ sfor ∗ e /∈ sg ∗ e.o = n ∗ e.s = i

Jsown ∪ {e} ∪ s′
forK = v ∗ LocSt

(
i, sown ∪ {e}, s′

for
)

∗ GlobSt(sg ∪ {e})}
Figure 4 Simplified spec of an increment operation, which returns the counter’s current value.

Jsown ∪ sforK, which in turn must be drawn from the appropriate lattice. The link is also
needed when propagating a replica’s state to other replicas. In the implementation, a replica
sends a message containing its entire state e, so others can merge it. Logically, we require
that the sent state be paired with a local snapshot whose denotation is e.

2. How do we track time to prove causal consistency? For their treatment of op-based
CRDTs, Nieto et al. [20] implemented a causal broadcast algorithm that ensures that every
message sent by a CRDT replica is delivered in causal order. This is achieved via vector
clocks in the standard way. But state-based CRDTs should not rely on causal broadcast; in
fact, one of the main advantages of the state-based approach is that messages can be delivered
out-of-order and re-delivered without causing issues (because of the properties of least upper
bound). It is not immediately clear why the state-based design satisfies causal delivery. The
first key observation is that if we start with a replica state st and look at the event set s that
produced it, i.e., JsK = st, then s “has no holes” with respect to causality. That is, if we take
an event e ∈ s and e′ is another event that happened before e, then it must be the case that
e′ ∈ s as well. This is formalized via the notion of dependency-closure (Section 7.1). The
second observation is that when a new operation o is applied to a local state st with JsK = st,
it (logically) generates a new event e′ with e′.o = o. e′’s causal dependencies are exactly the
events in s. This is important because it means that we can track an event’s dependencies
purely logically, without the need for vector clocks. Using these ideas we are able to prove
that the (Causality) lemma holds for state-based CRDTs (Lemma 5). To our knowledge, this
is the first formal proof that state-based CRDTs are causally-consistent.

5 StateLib : a Library for Implementing State-Based CRDTs

We have structured our CRDT implementations so that common functionality is factored
out into a separate library, which can then be instantiated as needed by different CRDT
examples. The library, called StateLib, is responsible for maintaining the CRDT’s internal
state and inter-replica propagation. The library’s code is shown in Figure 5, together with
an abridged example instantiating a grow-only set (g-set) CRDT, a set to which we can add
elements, but from which we cannot remove them [21].

We start by describing the init function, which is the library’s entry point. A CRDT
implementer calls init with the following arguments: serialization and de-serialization
functions, a list of all replica addresses, the current replica id, and a crdt parameter that
describes how the specific CRDT being instantiated should behave. The serialization functions
have the expected types: type ’s serT = ’s → string and type ’s deserT = string → ’s. The
crdt argument has type (’o,’s) crdT, parametrized on operations and states:
type ’s mergeT = ’s → ’s → ’s
type (’o,’s) mutT = int → ’s → ’o → ’s
type (’o,’s) crdtT = ((’s * (’o,’s) mutT) * ’s mergeT )

That is, a value of type (’o, ’s) crdtT is a triple (init_st, mutator, merge) containing an initial
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let get_state lock st () =
acquire lock;
let res = !st in (* LP *)
release lock;
res

let rec loop_forever thunk =
thunk ();
loop_forever thunk

let apply deser lk sh st merge : =
loop_forever (fun () →

let msg =
unSOME ( receiveFrom sh) in

let st ’ = deser (fst msg) in
acquire lk;
st := merge !st st ’;
release lk)

let update lk mut i st op =
acquire lk;
st := mut i !st op; (* LP *)
release lk

let sendToAll sh dstl i msg =
let j = ref 0 in
let rec aux () =

if !j < list_length dstl then
if i = j then (j := !j +1; aux ())
else begin

let dst =
unSOME ( list_nth dstl !j) in

sendTo sh msg dst;
j := !j + 1
aux ()

end
else ()

in aux ()

let broadcast ser lk sh st dstl i =
loop_forever (fun () →

Unix. sleepf 2.0;
acquire lk;
let s = !st in
release lk;
let msg = ser s in
sendToAll sh dstl i msg)

let init ser deser addrs rid crdt =
let (( init_st , mut), merge ) = crdt in
let st = ref ( init_st ()) in
let lk = newlock () in
let sh = socket () in
let addr = unSOME ( list_nth addrs rid) in
socketBind sh addr;
fork ( apply deser lk sh st merge );
fork ( broadcast ser lk sh st addrs rid );
let get = get_state lk st in
let upd = update lk mut rid st in
(get , upd)

(* G-Set instantiation *)

let mutator i st op = set_add op st
let merge st1 st2 = set_union st1 st2
let init_st = set_empty
let gset_crdt = (( init_st , mutator ), merge )

(* Instantiate via *)
let (get , upd) = init ... gset_crdt

Figure 5 StateLib implementation and a G-Set example. Linearization points are marked with
an LP comment.

state, a mutator function, and a merge function. The mutator takes a replica id, the current
state, and a new operation, and returns the state that results after applying the operation
locally. The merge function takes two states and returns their least upper bound.

Back to the body of init, we see that it unpacks the crdt argument. It then allocates
a local reference to hold the current state of the CRDT, a lock to control updates to the
state, and a socket over which it can communicate with other replicas. The function then
spawns two concurrent threads, apply and broadcast, in charge of receiving updates from other
replicas and propagating local updates, respectively. Finally, init returns a pair of functions
get_state and update allowing the library user to query and update the CRDT state.

Both get_state and update have simple implementations. The former just dereferences the
local state, while the latter uses the user-provided mutator to compute the CRDT’s next
state. Both operations are guarded by a lock.5

The apply function, which is spawned off as a separate thread from init, is responsible
for receiving updates from other replicas and then merging them with the local state, using
the user-provided merge function. The call to receiveFrom blocks until a message is available
at the given socket handle. The function unSOME : ’a option → ’a unwraps a value of an
option type, crashing if the argument is None. Notice that the received message needs to be

5 In the case of get_state, loads in AnerisLang are atomic, so the lock is not strictly needed; however,
dereferences are not atomic in OCaml [6], which we use to run our code, so we use a lock.
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deserialized via the user-provided deser function. Also notice that apply does not terminate,
but mutates the CRDT’s state.

The dual of apply is broadcast, which is tasked with propagating the local state to other
replicas. This function also runs on a separate thread, and loops forever, working solely via
side effects. The broadcast function retrieves a copy of the local state, serializes it, and then
calls a helper function sendToAll. This helper takes a list of IP addresses dstl, the current
replica id i and the message (state) to be sent. It then loops over the elements of dstl and
sends the message to each of them (taking care to not send a message to itself).

Finally, Figure 5 sketches how one might implement a g-set via the library. We represent
the state with a sequential set. The mutator is just set insertion, merge is implemented via set
union, and the initial state is the empty set. We can then package these three components
into a tuple gset_crdt, and provide the latter as an argument to init (together with the
serialization functions and replica IP addresses). From init we get back a pair functions for
querying the current value of the set and updating it.

6 Specifying StateLib

The StateLib library has two interfaces: an internal interface used by the CRDT implementer,
consisting of the init function, and an external interface used by the CRDT client, consisting
of get_state and update.

6.1 Internal Interface
Recall that StateLib is initialized by the CRDT implementer through an init function,
taking in (de-) serialization functions for the CRDT state, a list of replica IP addresses,
and finally a crdt argument describing the lattice being implemented (Figure 5). This
last parameter is a triple crdt = (initSt, mut, merge) consisting of the CRDT’s initial state
initSt ∈ LatSt, a mutator function mut : LatSt → Event → LatSt, and a merge function
merge : LatSt → LatSt → LatSt.

The CRDT implementer first defines a poset (LatSt, ≤L) and then proves that it is a
lattice. Because our tracking of replica states is defined in terms of event sets (Figure 3) we
need a way to connect said events to the physical CRDT state, which is a lattice element.
Intuitively, we would like to guarantee that the CRDT’s physical state is the denotation of
the set of events received so far. For this to be true, we need certain coherence properties
between event sets, their denotations, and lattice elements. These are shown in Figure 6 and
consist of specifications for initSt, mut and merge.

InitStSpec says that the denotation of the empty set of events must be the initial state.
MutatorSpec says that if we start in a state st = JsK and through a mutation get to

a state st′ = mut(st, op), then we can also arrive at st′ by taking the denotation Js ∪ {e}K,
where e is the event containing op. We also need to show that the mutator is monotonic: we
must have st ≤L st′ in the lattice order. In proving these goals we get to make additional
assumptions about s and e. Specifically, we can assume that s is a set of events that is valid
with respect to coherence (we explain validity in Section 7.1); additionally, we know that e is
the maximum element with respect to timestamp ordering in the set s ∪ {e}. Intuitively, this
is because e is a new event being added, so it has every event in s as a causal dependency.

MergeSpec shows coherence of merges. Here we start with two states st and st′ that
we want to merge to get a third state st′′. We know that JsK = st and Js′K = st′, and we
would like to conclude that Js ∪ s′K = st′′ and also that merge is in fact computing the least
upper bound, so st ⊔ st′ = st′′. Once again we get to assume validity of the relevant event
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InitStSpec: J∅K = initSt

MutatorSpec

{JsK = st ∧ e.o = op ∧ e.s = i ∧ e /∈ s

∧ CohVal(s ∪ {e}) ∧ maximum(e, s ∪ {e})}
⟨ipi; mut(st, op)⟩

{st′. Js ∪ {e}K = st′ ∧ st ≤L st′ }

MergeSpec

{Js1K = st1 ∧ Js2K = st2 ∧ SectIncl(s1, s2)

∧ CohVal(s1) ∧ CohVal(s2) ∧ CohVal(s1 ∪ s2)}
⟨ipi; merge(st1, st2)⟩

{st′. st1 ⊔ st2 = st′ ∧ Js1 ∪ s2K = st′ }

sect(s, i) ≜ {e ∈ s | e.s = i}
SectIncl(s, s′) ≜ ∀i. sect(s, i) ⊆ sect(s′, i) ∨ sect(s′, i) ⊆ sect(s, i)
CohVal(s) is a version of “local state validity” (Section 7.1) that does not imply depclosed(s).
CrdtSpec((initSt, mut, merge)) ≜ InitStSpec(initSt) ∗ MutatorSpec(mut) ∗ MergeSpec(merge)

InitSpec
{ . . . ∗ CrdtSpec(crdt) }

⟨ipi; init(addrs, repId, crdt)⟩

{(get_state, update). LocSt (i, ∅, ∅) ∗ GetStateSpec(get_state) ∗ UpdateSpec(update) }
Figure 6 Internal specifications. GetStateSpec and UpdateSpec are defined in Figure 7.

sets, and now additionally we know an inclusion property of sections (a section is a subset of
events that originates at a specific replica). The proposition SectIncl(s, s′) tells us that if we
look at any particular section, say section i, then either sect(s, i) is a subset of sect(s′, i), or
the other way around. Intuitively, this is because sections are always “complete”: if a replica
has received event (6, 5), it must have also received all events in the range (6, 1), . . . , (6, 4).

We package the three specifications in the assertion CrdtSpec(crdt), which asserts that
each of the components of the crdt tuple satisfies the corresponding spec above. Finally we
have specification for the init function. In the precondition of InitSpec, we assert that the
crdt argument satisfies CrdtSpec. In the postcondition, we learn that init returns a pair
of functions get_state and update that satisfy the same-named specifications (described in
the next section). We also gain ownership of the resource LocSt (i, ∅, ∅), indicating that the
local replica has yet to receive any events (because it has just been initialized).

6.2 External Interface

StateLib’s external interface consists of two functions: get_state, which takes no arguments
and returns the local state of the CRDT, and update, which takes an operation, updates
the local state, and returns a Unit. Figure 7 shows specifications for both functions; these
specifications are identical to the ones for the same-named functions in Nieto et al.’s library
for op-based CRDTs [20]. This is by design: by proving that our library meets the same
specification as the equivalent library for op-based CRDTs we then make it possible for client
programs to use (and reason about) a replicated data type without knowledge of whether
the data type is op-based or state-based. That is, we hide implementation details to turn
CRDTs into true abstract data types.

Looking at Figure 7, the reader will notice that the specifications use angle brackets
instead of braces: i.e. we write ⟨P ⟩e⟨Q⟩N , instead of the usual Hoare triple {P}e{Q}.
The former is a logically-atomic triple [10]. The motivation for these triples is that Aneris
invariants can only be opened around atomic steps (otherwise concurrent threads might
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GetStateSpec
⟨LocSt (i, sown, sfor)⟩

⟨ipi; get_state()⟩

⟨v. ∃s′
for w. s′

for ⊇ sfor ∗ StCoh(w, v) ∗

LocSt
(
i, sown, s′

for
)

∗ Jsown ∪ s′
forK = w⟩

N

UpdateSpec
⟨LocSt (i, sown, sfor) ∗ GlobSt(sg)⟩

⟨ipi; update(v)⟩

⟨(). ∃e s′
for. s′

for ⊇ sfor ∗ e /∈ sown ∗ e /∈ sg ∗ e.o = v ∗

e.s = i ∗ e ∈ maximals(sg ∪ {e}) ∗

maximum(e, sown ∪ s′
for ∪ {e}) ∗

LocSt
(
i, sown ∪ {e}, s′

for
)

∗ GlobSt(sg ∪ {e})
⟩N

Figure 7 External specifications. N is any invariant namespace that includes GlobInv’s name.
Adapted from Nieto et al. [20].

observe invariant violations); this means we cannot use a specification {P}e{Q} if we need
to open an invariant to prove P , provided e is not atomic, as is the case for both get_state
and update. In particular, the precondition of update requires the global state GlobSt(sg),
which a client is likely to keep in an invariant because it is shared by all (concurrent) replicas.
Logically-atomic triples solve this problem by allowing us to open invariants when proving
the pre-condition. Their informal semantics are as follows: if we know ⟨P ⟩e⟨Q⟩N , then we
know that e executes without crashing (although it might not terminate) provided that P

holds. When proving P we are allowed to use any invariants that are not in namespace N . 6

We also need to show that if Q holds we can close any invariants that were open when
proving P . Another point of view is that P and Q hold around a linearization point in e;
the linearization points for get_state and update are marked with an LP comment in Figure 5.

The specification of get_state can be read as follows. Before calling get_state we should
know the local state at replica i: LocSt (i, sown, sfor); afterwards, the function returns a phys-
ical state v which is coherent with a logical state w, 7 the local state is now LocSt (i, sown, s′

for)
where s′

for ⊇ sfor (reflecting the fact the set of local events is unchanged, but additional
remote events might have been received), and the returned value w is the denotation of
sown ∪ s′

for. Notice that the fact that the returned value is a function of the set of received
events automatically gives us the safety part of eventual consistency (convergence): if two
replicas have received the same set of events, then they are in the same state.

The specification of update says that we need to know both the local state LocSt (i, sown, sfor)
at replica i and the global state GlobSt(sg). This is because every event needs to be tracked
both locally and globally. The function does not return any meaningful value, but we
do get (logical) knowledge that the set of events has expanded: locally we now know
LocSt (i, sown ∪ {e}, s′

for) with sfor ⊆ s′
for, and globally we have GlobSt(sg ∪ {e}). The new

event e (e /∈ sg) has the value we are updating by as its payload (e.o = v) and it originates at
replica i. Finally, we know that this new event is more recent than any other locally-received
event (maximum(e, sown ∪ s′

for ∪ {e})), and we also know that no other event (even globally)
has the new event as its dependency: e ∈ maximals(sg ∪ {e}).

6 This is to prevent a user of StateLib from opening the global invariant, which is needed by StateLib.
Invariants cannot be reopened, to preserve soundness of the logic.

7 The state coherence predicate StCoh(w, v) links the physical and logical states. This is useful when the
physical state has a more involved representation due to limitations of AnerisLang: for example, v might
be a pair of pairs while w is a 3-tuple, because AnerisLang only supports pairs.
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7 Verifying StateLib

To prove that StateLib meets its external specification we follow a proof methodology
inspired by previous Aneris developments [8, 20]:

1. We first model the CRDT as a state-transition system (STS), where the STS states
are tuples detailing the state of the CRDT both globally and at each replica (Section 7.1).
Transitions correspond to mutations and merges. Crucially, we show that transitions preserve
state validity, a safety invariant from which we can derive properties of interest (e.g., causality).
This is done in the meta-logic (i.e., Coq) and outside of separation logic.

2. We then embed the STS model inside Aneris via a combination of invariants and ghost
state (defined via PCMs, see Section 7.3). We use state validity and the properties of the
relevant PCMs to show that the resource interface from Section 4 holds.

3. Finally, using the separation logic resources defined in the previous step, we prove that
StateLib’s implementation meets its external specification (Section 7.4).

The rest of Section 7 is technical in nature, so the reader interested in an overview of our
work can skip to Section 8. We highlight Lemmas 4 and 5, which, to our knowledge, are the
first formal proofs that state-based CRDTs are causally-consistent.

7.1 State-Transition System Model

We model the execution of a CRDT via an STS that keeps track of the per-replica state,
as well as the global state. We then show a number of safety invariants that hold for any
execution of the STS. In later sections we show how the AnerisLang implementation simulates
the STS, therefore inheriting its safety properties. We use the simulation to prove the
resource laws in Figure 3.

The reader might wonder why we develop this STS model when state-based CRDTs
already have a well-understood model that is lattice-based. We do this because our goal is to
prove that StateLib satisfies general functional correctness specifications that apply to both
state-based CRTDs and op-based CRDTs. To this end we write our high-level specifications
in terms of denotations, which talk about sets of events instead of lattice elements. This is
why we need the STS model below. At an operational level, the STS model is needed to
define the ghost state in Section 7.3 and as such is not directly exposed to the user.

We start by defining a purely logical notion of time that allows us to reason about
causality in the absence of vector clocks. Logical time for state-based CRDTs is a triple
LogTimest ≜ (P(EvId), ⊆, ⊂), where EvId ≜ N × N. Here EvId is the set of event ids, which
are pairs (r, n) of a replica id and a sequence number, respectively. We show that LogTimest
satisfies the requirements on logical time from Section 4.1.

Given a set d ∈ P(EvId) of event ids we can extract the subset that originates at a given
replica id via a section: sect(d, i) ≜ {(i, n) | (i, n) ∈ d}. We can also compare event ids, but
only if they are in the same section: (s, n) ≤ (s, n′) ≜ n ≤ n′.

We define logical events as triples (op, src, time) ∈ Op ×N× P(EvId). We tag each event e

with the set of event ids of its causal dependencies e.t and are then able to sort events according
to causal order. For example, if e.t = {(1, 1)} and e′.t = {(1, 1), (2, 1)}, then e.t <t e′.t. Let
s ∈ P(Event). We lift causal dependencies to sets of events: deps(s) ≜

⋃
e∈s e.t.

The id of an event e can be computed by counting the number of dependencies that
originate at e’s origin: id(e) = (e.s, |sect(e.t, e.s)|). This way of computing event ids makes
sense only if we assume that sequence numbers (a) start at 1 and (b) there are no “holes” in
the ids stored in e.t. In our proof we maintain an invariant that implies these two properties.
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To ensure causal consistency, we care about event sets that are closed with respect to
causal dependencies. Let s be a set of events, then s is dep-closed, written depclosed(s), if
∀e ∈ s, id ∈ e.t, ∃e′ ∈ s, id(e′) = id. For example, if e ∈ s and (1, 2) ∈ e.t, then we must have
e′ ∈ s with id(e′) = (1, 2). Dep-closure is preserved by set union, which is key because it will
allow us to link logical and physical states when we take least upper bounds of the latter.

We now define local states, which track the state of the CRDT at a given replica. Unlike
in the implementation the replica state will not be a lattice element, but a set of events:
Lst = P(Event). We lift sections to local states: if s ∈ Lst then sect(s, i) ≜ {e | e.s = i}.

Recall that numRep ∈ N denotes the number of replicas. We define global states Gst ≜
P(Event)×LstnumRep. The intuition for a global state (sg, s⃗l) ∈ Gst is that the first component
sg gives us a global view of the system (we will ensure that sg equals the union of all sl, i).
The second component s⃗l is a vector of length numRep containing the local state at each replica.

▶ Definition 1 (State-transition system model). The state-transition system model is S =
(Gst, initS , →S). STS states are elements of Gst and initS ≜ (∅, ∅⃗) is the initial state. The
transition relation →S∈ Gst × Gst is defined by the following two inference rules:8

sl, i = s d = deps(s) n = |sect(d, i)| + 1 t = {(i, n)} ∪ d e = (op, i, t)
TUpdate

(sg, s⃗l) →S (sg ∪ {e}, s⃗l[i 7→ s ∪ {e}])

s ⊆ sl, j depclosed(s)
TMerge

(sg, l⃗) →S (sg, l⃗[i 7→ sl, i ∪ s])

The TUpdate rule models the execution of a new operation at a particular replica. The
premises say that the local state at replica i is s and d is the set of dependencies of all events
in s. Then we compute the sequence number for the new event: since it originates in i this
needs to be exactly one larger than the number of dependencies in d that come from i, hence
n = |sect(d, i)| + 1. Then we build a timestamp for the new event: every (old) event in s

should be a causal dependency of the new event, plus the new event’s id is also a dependency,
so t = {(i, n)} ∪ d. Finally we build the new event e = (op, i, t). Given all the above, we can
take a step in the STS from a state (sg, s⃗l) to a state that includes the new event e. Because
e is new, it should be added both to the global state and the local state for i. The notation
s⃗l[i 7→ s′] stands for the vector that is like s⃗l except that the i’th entry is now s′.

The TMerge rule models merge operations where a replica updates its state by receiving
and merging a (potentially old) state that was sent by another replica. In the rule, we start
with some subset s of the local state at replica j. It is crucial that said subset be dep-closed
so that we can preserve causality. In the rule’s conclusion, we merge s with the state at
replica i. That is, we can think of this rule as saying that replica j transmitted its state to
replica i, which subsequently merged it. Finally, notice that the fact that s is a subset of
sl, j and not exactly sl, j allows us to model the delay imposed by the network on message
transmission — the fact that s is a dep-closed subset of sl, j means that s is a version of the
state of the jth replica from the past.

8 As usual →∗
S denotes the reflexive transitive closure of →S .
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7.2 Safety Invariants
The goal of the STS model is to allow us to show a number of safety invariants about the
execution of the system. We do this through the notions of local and global state validity.
Let s ∈ Lst. Then s is a valid local state, written LocStValid(s), if all the following hold:

(DepClosed) depclosed(s)
(SameOrigComp) ∀i, ∀e e′ ∈ sect(s, i), e.t <t e′.t ∨ e.t = e′.t ∨ e′.t <t e.t

(ExtId) ∀e e′ ∈ s, id(e) = id(e′) ⇒ e = e′

(ExtTime) ∀e e′ ∈ s, e.t = e′.t ⇒ e = e′

(OrigRange) ∀e ∈ s, e.s < numRep

(SeqIdComplete) ∀e ∈ s, n ∈ N, 0 < (e.s, n) ≤ id(e) ⇒ (e.s, n) ∈ e.t

(SeqIdNon0) ∀e ∈ s, r n ∈ N, id(e) = (r, n) ⇒ 0 < n

(EvIdMon) ∀e e′ ∈ s, e.s = e′.s ⇒ e.t ≤t e′.t ⇒ id(e) ≤ id(e′)
(EvIdIncl) ∀e ∈ s, id(e) ∈ e.t

(EvIdTime) ∀e e′ ∈ s, id(e) ∈ e′.t ⇒ e.t ≤t e′.t

The different requirements on valid local states are as follows. (DepClosed) requires that a
valid state s be also dep-closed. (SameOrigComp) says that events with the same origin can
be totally ordered by timestamp ordering. (ExtId) and (ExtTime) say that events with equal
id, resp. timestamp, must be equal. (OrigRange) ensures that replica ids are in the expected
range. (SeqIdComplete) says that if e ∈ s and e’s id is e.g. (4, 10), then all timestamps in
the range (4, 1) . . . (4, 9) must also be in e’s dependencies. (SeqIdNon0) says that all event
ids have a sequence number that starts at 1. (EvIdMon) requires that timestamps ordering
and event id ordering agree. (EvIdIncl) says that an event id must be included in the event’s
dependencies. Finally, (EvIdTime) requires that if e’s id is in the dependencies of e′ then e

must have in fact happened before e′ according to timestamp ordering. The definition of
local state validity has been simplified with respect to prior developments [8, 20]. This is
because these works use vector clocks as their notion of logical and physical time, whereas
we only track time logically via sets of dependencies.

From local state validity we obtain a number of derived lemmas. For example, we can
relate dep-closed and causally-closed subsets:

▶ Lemma 2. Let s ⊆ sg where depclosed(s) and LocStValid(sg). Then s ⊆cc sg.

Now we define validity of global states. Let q = (sg, s⃗l) ∈ Gst. Then q is a valid global
state, written GlobStValid(q), if all the following hold:

(InclLocal) sg =
⋃

1≤i≤numRep sl, i

(InclOrig) ∀e ∈ sg, e ∈ sl, e.s

(GlobValid) LocStValid(sg)
(LocValid) ∀1 ≤ i ≤ numRep, LocStValid(sl, i)

Given a global state (sg, s⃗l), global state validity amounts to requiring that sg be the
union of the sl, i (InclLocal), that events be present in the local state from which they
putatively originate (InclOrig), that the global state sg itself be valid if treated as a local
state (GlobValid) and that each local state be valid (LocValid). The definition of global state
validity is essentially unchanged from prior work [8, 20].

The definitions of local and global state validity are motivated by two desiderata: they
must be invariants, i.e. hold for all reachable states (including the initial state); and they
must imply the CRDT resource lemmas from Figure 3 “at the model level”.
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▶ Theorem 3 (Validity invariant). Let q ∈ Gst such that initS →∗
S q. Then GlobStValid(q).

We use validity to show model-level counterparts of the lemmas in Figure 3. Intuit-
ively, ownership of GlobSt(sg) tells us that the global state is (sg, s⃗l), whereas if we know
GlobSnap(s′

g) all we can say is that s′
g ⊆ sg. Similarly, ownership of LocSt (i, sown, sfor)

corresponds to knowing that the local state sl, i (which we can assume to be valid) equals
sown∪̇s′

for (disjoint union), with sfor ⊆ s′
for. The local snapshot LocSnap(i, sown, sfor) give us

sown∪̇sfor ⊆ sl, i. With this analogy in mind, here is the model-level version of causality.

▶ Lemma 4 (Model-level causality). Let q = (sg, s⃗l) and GlobStValid(q). Also let e ∈ s ⊆cc sl, i

and e′ ∈ sg, with e′.t <t e.t. Then e′ ∈ s.

Proof. From GlobStValid(q) we can conclude LocStValid(sl, i), which in turn gives us depclosed(sl, i).
Since sl, i ⊆ sg, by Lemma 2 we get sl, i ⊆cc sg. Since we assumed s ⊆cc sl, i, we can use
transitivity of ⊆cc to conclude s ⊆cc sg. This implies the conclusion. ◀

7.3 Separation Logic Encoding
The next step in the proof is to encode the validity invariant using separation logic. We do
this using a combination of Iris invariants and resources [9]. Recall that Iris invariants are
propositions that hold throughout the execution of the operational semantics and resources
are elements of partial commutative monoids (PCMs).

Here we use resources whose ownership reveals what state the system is partially in
(e.g. the set of events received by a specific replica). In particular, we use three main PCM
constructions, which we review below: 9

1. The authoritative PCM Auth(M), where M is itself a PCM. Given a PCM X, we
can define the extension order on elements of the carrier as follows: x ≤X y ≜ ∃z, x · z = y.
The authoritative construction gives us two kinds of resources: a full part •M g and one or
more fragmental parts ◦M s, where g, s ∈ M. Ownership of the full part is exclusive, while
ownership of a fragment ◦M s is exclusive or persistent depending on whether ownership of
s is exclusive or persistent in M. The fragmental parts are guaranteed to be smaller than
the full part according to extension order, so that if we own •M g

γ ∗ ◦M s
γ we can conclude

s ≤M g. We also have that ◦M g · ◦M s = ◦M (g · s).
2. The fractional PCM Frac(X), where X is a carrier set. Elements of this monoid are

of the form sp, where s ∈ X and p ∈ Q(0,1]. This PCM allows us to split and re-combine
fractions of a resource: sp+q = sp · sq. We also know that if we own multiple fractions
then they must add to less than 1. This is useful to e.g. make a proposition exclusive
(non-duplicable) by defining it as a fraction greater than 1

2 as no two copies of such a resource
can be owned separately. We also know that all fractions agree on the underlying element:
sp γ ∗ rq γ implies s = r.

3. The monotone PCM Mono(R), where R ⊆ X × X is a pre-order on a carrier
set X [22]. This PCM allows us to lift R to the extension order of Mono(R): any
x ∈ X can be injected into Mono(R) via a principalR function such that xRy ⇐⇒
principalR(x) ≤Mono(R) principalR(y). Combining this with the authoritative PCM gives
us a monoid Auth(Mono(R)) where if we know •M principalR(g) γ ∗ ◦M principalR(s) γ we
can conlude sRg. We instantiate this construction with R =⊆cc.

9 We use a few additional PCMs in the Coq formalization but elide those additional structures here for
the sake of brevity.
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We use the defined invariants and resources to prove the interface described in Figure 3.
In this section, we sketch out proofs for some of the interface lemmas.

The global invariant uses the predicate GI below. The predicate states that there exists
a (model-level) global state h which is valid. Furthermore, it asserts ownership of global and
local resources defined by the predicates GR(sg) and LR(i, sl, i), respectively.

GI ≜ ∃h ∈ Gst.h = (sg, s⃗l) ∗ GlobStValid(h) ∗ GR(sg) ∗
numRep∗

i=1
LR(i, sl, i)

Given the above definition and an invariant name ι, we can instantiate the GlobInv predicate
from Figure 3 by allocating an Aneris invariant stating that GI holds after every execution
step: GlobInv ≜ GI ι.

The global resource predicate GR(sg) asserts ownership of two pieces of ghost state, both

of which precisely track the value of sg: GR(sg) ≜ s
1
3g

γgst

∗ •S sg
γgsnap .

The ghost state s
1
3g is drawn from the Frac(Gst) PCM. Its purpose is to track the global

set of events. The remaining 2
3 fraction is kept outside of the invariant as the user-facing

resource GlobSt from Figure 3: GlobSt(sg) ≜ s
2
3g

γgst

. Because the fraction in GlobSt is greater
than a half, we can prove that GlobSt(sg) is exclusive (GlobStExcl, Figure 3).

The second part of GR(sg) asserts ownership of •S sg. Here, S is the PCM of finite sets
of events, with set union as composition. This means that p ≤S q iff p ⊆ q. Consequently,
•S sg

γgsnap ∗ ◦S s′
g

γgsnap implies s′
g ⊆ sg. We keep the full part in the invariant and use the

fragmental part to define global snapshots: GlobSnap(s) ≜ ◦S s′
g

γgsnap . Note that these
fragmental parts are persistent (duplicable) as the set union operation is idempotent.

The next step is to define the local resources predicate LR(i, s) which tracks in the
invariant the local resources for replica i:

LR(i, s) ≜ ∃sown sfor ssub, s = sown ∪ sfor ∗ sown ∪ ssub ⊆cc sown ∪ sfor

∗ LocEv(i, sown) ∗ ForEv(i, sfor) ∗ ForEv(i, ssub) ∗ s
1
3own

γowni

∗ s
1
2
for

γfori
∗ s

1
3
sub

γsubi

∗ •M principal⊆cc(sown ∪ sfor)
γccfori ∗ •M principal⊆cc(sown ∪ ssub) γccsubi

The predicate LR(i, s) says that s can be broken up into two (disjoint) sets sown and sfor. The
sets are disjoint because every event in sown originates at replica i, whereas all events in sfor
originate outside of replica i. This is expressed by the predicates LocEv(i, p) = ∀e ∈ p.e.s = i

and ForEv(i, p) = ∀e ∈ p. e.s ≠ i, respectively. Additionally, there is a third set ssub which is
a subset of sfor (this is implied by sown ∪ ssub ⊆cc sown ∪ sfor). The intuition for sown and sfor is
that they precisely track the set of events that have been delivered at replica i and originate
at i or outside of i, respectively. However, the user at replica i is not aware of all those events:
specifically, while the user is aware of (the effects of) all its local events, it might not have
observed all events that originate outside of i. The set ssub precisely tracks the set of remote
events, ForEv(i, ssub), that replica i has observed and is aware of. The tracking of all these

event sets is precise because of the ownership of the fractions s
1
3own

γowni

∗ s
1
2
for

γfori
∗ s

1
3
sub

γsubi

.
Additionally, the invariant has “read-only” access to the three pieces of ghost state because
it does not possess the full fractions. Before pressing on with the definition of LR(i, s), let
us look at the definition of local state and snapshot from Figure 3:

LocSt (i, sown, ssub) ≜ s
1
3own

γowni

∗ s
2
3
sub

γsubi

∗ LocSnap(i, sown, ssub)

LocSnap(i, sown, ssub) ≜ LocEv(i, sown) ∗ ForEv(i, ssub) ∗ ◦M principal⊆cc(sown ∪ ssub) γccsubi
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Notice that ownership of the local state resource gives us knowledge of some but not
all of the missing fractions for sown and ssub: s

1
3own

γowni

∗ s
2
3
sub

γsubi

. This corresponds to our
intuition that ssub tracks the set of events the user is aware of. Notice that local state does
not contain a fraction of sfor, because otherwise the library could not accept remote updates
in a background thread.

We next explain the use of the PCM M ≜ Mono(⊆cc), where ⊆cc: Event × Event. We use
two instances of this PCM, each under a different family of ghost names: γccsubi

and γccfori
.

The local state contains just γccsubi and the invariant contains both γccsubi and γccfori . The
intuition for holding the fragmental part ◦M principal⊆cc(sown ∪ ssub) is to allow us to prove
inclusion of local snapshots (LocSnapIncl, Figure 3).

We can now sketch the proof of the causality lemma. This proof is representative of our
methodology: use the properties of the different PCMs to identify parts of a (valid) global
state we are currently in, and then rely on a model-level lemma to get the result we want.

▶ Lemma 5 (Causality, Figure 3). GlobInv −∗ LocSt (i, o, s) −∗ GlobSnap(h) −∗ |⇛ι LocSt (i, o, s)∗
∀e e′, e ∈ h ⇒ e′ ∈ o ∪ s ⇒ e <t e′ ⇒ e ∈ o ∪ s.

Proof. We open the global invariant and learn that the current global state (sg, s⃗l) is valid.

We also obtain global resources s
1
3g

γgst

∗ •S sg
γgsnap and local resources s

1
3own

γowni

∗ s
1
3
sub

γsubi

,
where sown ∪ ssub ⊆cc sown ∪ sfor = sl, i. From LocSt (i, o, s) we get o

1
3

γowni ∗ s
2
3

γsubi , which
tells us that o = sown and s = ssub. From GlobSnap(h) we get ◦S h

γgsnap , which tells us that
h ⊆ sg. This means we have e ∈ sg and e′ is in a causally-closed subset of sl, i, so we can
finish by applying Lemma 4. ◀

There are additional two resources in the definition of LR(i, s): s
1
2
for

γfori
and

•M principal⊆cc(sown ∪ sfor)
γccfori . These are used in the definition of the lock invariant and

socket protocol, respectively. We explain them in the next section.
In addition to proving the resource lemmas from Figure 3, we also need to show that

the PCMs we have chosen can make frame-preserving updates that are compatible with the
two transitions (TUpdate and TMerge) from Definition 1. We refer to reader to our Coq
formalization for details.

7.4 Safety Proof
StateLib’s init function allocates a reference with the CRDT’s initial state and spawns
two concurrent threads: apply receives states from other replicas and merges them with the
current state, and broadcast regularly sends the current state to all other replicas. Access
to the (shared) local state is coordinated via a spinlock. The associated lock invariant [1],
defined by the predicate LI(i, ℓ) below, is the key ingredient of the library’s safety proof (ℓ is
the memory location holding the CRDT’s state). When a thread acquires the lock, it gets to
assume LI(i, ℓ); unlike a regular invariant, which needs to be restored after a single atomic
step, a lock invariant need not be restored until the thread releases the lock.

LI(i, ℓ) ≜ ∃st sown sfor. LocEv(i, sown) ∗ ForEv(i, sfor) ∗ ℓ 7→ip st

∗ Jsown ∪ sforK = st ∗ s
1
3own

γowni

∗ s
1
2
for

γfori

The lock invariant says that the CRDT’s state is always the denotation of some set of events
sown ∪ sfor (ip is the IP address of replica i). Additionally, the invariant holds resources
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s
1
3own

γowni

∗ s
1
2
for

γfori
which guarantee that the we are “in sync” with the logical state recorded

for replica i in the global invariant GlobInv. Notice the lock invariant keeps γfori
and not γsubi

because the library knows exactly the set of foreign events that have been processed so far.
The table below summarizes where the different fractions of γowni

, γfori
and γsubi

are kept:

γowni γfori γsubi

Global invariant 1
3

1
2

1
3

Lock invariant 1
3

1
2

Local state 1
3

2
3

As part of the proof we also need to define StateLib’s socket protocol SP(i, st); i.e.
a predicate that holds for all states st received by a replica (which dually creates a proof
obligation whenever a replica messages others). The abridged version below assumes that st

is already deserialized and that i is the replica id of the message’s sender:

SP(i, st) ≜∃s′
own s′

for. LocEv(i, s′
own) ∗ ForEv(i, s′

for) ∗ Js′
own ∪ s′

forK = st

∗ LocStValid(s′
own ∪ s′

for) ∗ ◦M principal⊆cc(s
′
own ∪ s′

for)
γccfori

The socket protocol assumes that the received state st is the denotation of the union
s′

own ∪ s′
for, where s′

own and s′
for are event sets that are local and foreign, respectively, relative

to the message’s sender (not relative to the receiver). Additionally, we know that s′
own ∪ s′

for
is a causally closed subset of the events recorded at replica i (in particular, we know the
sender is not accidentally including events that have not been previously recorded).

Since both apply and broadcast recurse forever, their specifications are not very interesting:
in particular, we do not care about their post-conditions. We do care about preserving the
lock and global invariants as they execute. We briefly sketch the proof of apply. Before apply

updates the CRDT state via st := merge !st st’, we know that all the following hold: the
global invariant GlobInv, the lock invariant LI(i, st), and the socket protocol SP(j, st′), where
i and j are the ids of the local and sender replicas, respectively, and i ≠ j. We open the lock
invariant and get !st = Jsown ∪ sforK ∗ s

1
3own

γowni

∗ s
1
2
for

γfori
. Similarly, from the socket protocol

we know that st’ = Js′
own ∪ s′

forK∗ LocStValid(s′
own ∪ s′

for) ∗ ◦M principal⊆cc(s
′
own ∪ s′

for)
γccfori . We

would like to apply the coherence lemma (MergeCoh), which tells us that merging two states
is the same as (1) merging the corresponding events that generated those states, and (2)
then taking the denotation of the union of the event sets. The premises of (MergeCoh) all
follow from local state validity after opening the global invariant, and from the fact that
◦M principal⊆cc(s

′
own ∪ s′

for)
γccfori proves that the events we are merging have been previously

recorded. The resulting logical state is s
1
3own

γowni

∗ (sfor ∪ s′
own ∪ {e ∈ s′

for|e.s ̸= i}) 1
2

γfori .
The proof of get_state uses the lock invariant to conclude that the returned state is the

denotation of the set of events received so far. It then uses the global invariant: specifically
the relation sown ∪ ssub ⊆cc sown ∪ sfor in the definition of LR(i, s) to update the local state
to LocSt (i, o, f ′). The proof of update uses the preservation of global validity under a
TUpdate transition (Theorem 3) to show that GlobInv is preserved. We refer the reader to
our formalization for additional details.

8 Verified CRDTs

To test StateLib we verified five example CRDTs from the literature: grow-only counter
(g-counter), grow-only set, product combinator, map combinator, and positive-negative
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counter (pn-counter). We also verified a closed program consisting of client code that uses
the pn-counter. This closed program appears in Nieto et al. [20], and we were able to swap
out their op-based pn-counter for our state-based version without modifying their safety
proof.10 We used the closed example as a case study in giving our state-based CRDT the
same specification as its op-based counterpart, hiding implementation details in the process.

In this section we focus on describing the pn-counter and the closed program. A pn-
counter is a data structure that supports two operations: add(z) adds the integer z, which
may be negative, to the counter, and get_value returns the counter’s current value. The
initial value is 0. The denotation for pn-counter used in Nieto et al. [20] is JsK =

∑
e∈s e.o.

We implemented the counter as a wrapper over the product prod(g-counter, g-counter). We
now explain how g-counter and prod work.

The g-counter is a simpler version of pn-counter where we can only add non-negative
numbers. Operations are of the form add(n) with n ∈ N. If N is the number of CRDT
replicas, the lattice state is a vector c⃗ with N entries. The ith entry tracks the contribution
of replica i to the counter’s state. The initial value is the 0-vector of length N . The mutator
is defined as mut(c⃗, e) = s[e.s 7→ c⃗e.s + e.o], and merges are done by taking the maximum of
two vectors pointwise. The denotation JsK is the pointwise sum of all the vectors in s.

Given two CRDTs CA = (OpA, StA, initA, mutA, mergeA) and CB = (OpB , StB , initB ,

mutB , mergeB), their product is CA×B = (OpA × OpB , StA × StB , initA × initB , mutA×B ,

mergeA×B). Both the mutator and merge function operate in a component-wise fashion. The
denotation JsK splits s into two sets sA and sB of A-events and B-events, respectively. It
then computes the pair (JsAKA, JsBKB).

We then implement the pn-counter as a wrapper over the product prod(g-counter, g-counter).
Specifically, we wrap the product’s get_state and update as follows (sum_entries is the function
that sums all the entries of a vector):

let pncounter_add z =
if z >= 0 then prod_update ((z, 0))

else prod_update ((0 , -z))

let pncounter_get_value () =
let (v1 , v2) = prod_get_state () in
( sum_entries v1) - ( sum_entries v2)

Finally, we describe the closed program we verified. This example shows client code
interacting with a pn-counter. The relevant snippet is shown below: we have two replicas,
A and B, each of which increments the counter, reads it, and then asserts that the read
returns one of two possible values. In A the possible values are 1 and 3, depending on
whether the remote operation add 2 has been propagated from B to A by the time the read
happens. In either case, the add 1 must be visible by the subsequent read because the latter
happened later according to program order: this is the so-called reads-follow-writes session
guarantee [8]. An analogous situation happens for replica B.

(* replica A *)
add 1;
let r = get_value () in
assert (r = 1 || r = 3)

(* replica B *)
add 2;
let r = get_value () in
assert (r = 2 || r = 3)

The reader can consult Nieto et al. [20] for more details on the proof that the assertions
in the example above do not fail, but the important part is that we were able to swap out
the op-based counter implementation by our state-based counter, while (almost) keeping the
proof intact. The two implementations are quite different: the op-based implementation relies

10 We have added one additional property to the common CRDT resource interface (an excerpt of which
was shown in Figure 3), and thus we extended the proof of Nieto et al. [20] such that this additional
property is also proved for their op-based library.
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on a causal broadcast algorithm, while ours does not and instead relies on lattice properties,
as well as on applications of the product combinator. The fact that both implementations
meet the same specification is good evidence that the denotation-based separation logic
specifications are general, flexible, and can hide implementation details.

9 Related Work

As previously mentioned, the idea of specifying CRDTs as a partial function from event
histories (including causality metadata) to the data type’s state comes from Burckhardt
et al. [3]. We also learned from their paper that state-based CRDTs can be thought of as
transitively delivering (the effects of) events when states are merged, which in turn makes it
possible to prove, as we have done, that state-based CRDTs are causally-consistent. 11

Leijnse et al. [13] reformulate the above specification style so it can be better applied
to higher-order combinators, coining the term CRDT denotation. They work solely with
specifications, and do not implement these combinators nor verify an implementation.

The idea of tracking the state of a concurrent data structure via a logical set of operations
that is divided into contributions by the current thread and those originating from other
threads, as in our LocSt (i, o, f) resource, has previously appeared in the context of the
FCSL logic (where they are termed “self” and “other” contributions, respectively) [19, 5].

The Compass separation logic framework [4] (also Iris-based) can be used to specify and
verify functional correctness of concurrent data structures in a relaxed memory model. There
are a number of commonalities with our work: their specs are also given as logically-atomic
triples that track the state of a data structure as a function of the set of writes that are
visible by a given thread. They develop a notion of logical views that is similar to our
local snapshots LocSnap(i, o, f) (without the distinction between own and foreign events):
ownership of a view provides a lower bound on the set of observed events, and the views
contain logical metadata that tracks the happens-before relation between writes. The main
difference with our work is that we operate at the intersection of weak consistency and
message passing, whereas their work is in the context of shared memory.

Zeller et al. [24] implement and formally verify multiple state-based CRDTs in Isa-
belle/HOL. To our knowledge, they are the first to explicitly link denotation-style specific-
ations to their lattice-based implementations. Like us, they prove both convergence and
functional correctness. There are two main differences with our work: their system model is
an STS where the states map each replica id to the replica state (this is very similar to our
STS model from Section 7.1). By contrast, in our work the system model is the operational
semantics of AnerisLang, with support for mutation, node-local concurrency, higher-order
functions, etc. This means that while their technique can only be used to reason about
a CRDT in isolation, ours can verify a system where the CRDT and a client (or a larger
distributed system of which the CRDT is a small part) are executing together, and where
both of these are implemented in a realistic programming language. The second difference
is that in Zeller et al.’s work one needs to come up with a different invariant that implies
coherence between the denotation and the lattice for each implemented CRDT, as well as
proving for each example that the invariant is preserved by the different transitions. In our
work, we prove just one invariant, global state validity, and the CRDT implementer then
needs to prove coherence given that global validity holds.

11 They do mention that state-based CRDTs are causally-consistent, but there is no formal proof, or even
a precise lemma statement.
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Nair et al. [18] verify several state-based CRDTs. These are not “pure” CRDTs in the
sense that some of data structure’s operations are at times disabled. For example, they show
how to verify a distributed lock implemented as a CRDT (the release-the-lock operation can
only be enabled if the local replica owns the lock). Proof wise, this means that sometimes
it is useful to enforce example-specific invariants on the CRDT being verified: it would be
interesting to modify StateLib so it can support these user-defined invariants and so can
tackle the examples presented in their paper.

Gondelman et al. [8] verify functional correctness of a causally-consistent key-value store
using Aneris. Their work introduces the encoding of causality in separation logic that we use.
However, their key-value store is not a CRDT because it violates convergence. Additionally,
their work is closer to op-based CRDTs because writes are propagated individually.

Timany et al. [23] develop an extension of Aneris called Trillium where one simultaneously
proves both safety and also that the program being verified refines an STS model. Unlike in
our work, where the STS is used just to prove safety, their refinement is history-preserving,
which allows them to prove liveness properties as well. As one case study, they show
that a state-based G-Counter CRDT is eventually consistent. They do not tackle any
other (more complex) CRDTs, and their specification of the G-Counter relies on the fact
that the G-Counter is monotonic. It would be interesting to recast our work using the
Trillium methodology with the goal of showing that any CRDT implemented via StateLib
is eventually-consistency (that is, additionally showing eventual delivery).

The closest related work is Nieto et al. [20], from which we inherit the CRDT resource
interface from Figure 3, the modular structure of the implementation (a core library that can
be instantiated for different CRDT examples), as well as the general structure of the proof: a
state-transition system model that is embedded in the logic, as well as a lock invariant that
ties the denotation-style specification to the lattice-based state. The main difference is that
their paper deals exclusively with op-based CRDTs: as mentioned in Section 4.2 adapting
their technique to the state-based setting leads to a number of technical challenges we had
to solve in our approach.

10 Conclusions

We have shown how to give modular specifications to realistic state-based CRDT imple-
mentations using the Aneris separation logic. Our specifications show both convergence and
functional correctness relative to an abstract denotational model of the CRDT.

We have explored our approach by implementing and verifying a library, StateLib, for
building state-based CRDTs. Our library takes as input a purely-functional implementation
of a state-based CRDT’s core logic, together with coherence proofs between the CRDT’s
lattice-based and denotation-based models. The library then produces as output a fully-
fledged CRDT that is replicated over multiple nodes. Using the library we implemented and
verified multiple example CRDTs from the literature.

When taken together with Nieto et al. [20], our work presents a unified framework for the
specification and verification of op- and state-based CRDTs. To show that we can abstract
away from the fact that a CRDT is state-based, we re-prove Nieto et al.’s interface for
resources tracking CRDT state using a new definition of resources that is compatible with
state-based CRDTs. We test this approach by showing that one can start with a client
program that uses an op-based counter CRDT, swap out the counter’s implementation by
our state-based implementation, and recover the safety proof for the entire closed program
while making minimal changes to the original proof.
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