
217

Verifying Reliable Network Components in a Distributed

Separation Logic with Dependent Separation Protocols

LÉON GONDELMAN, Aarhus University, Denmark

JONAS KASTBERG HINRICHSEN, Aarhus University, Denmark

MÁRIO PEREIRA, NOVA LINCS, NOVA School of Science and Technology, Portugal

AMIN TIMANY, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

We present a foundationally verified implementation of a reliable communication library for asynchronous

client-server communication, and a stack of formally verified components on top thereof. Our library is imple-

mented in an OCaml-like language on top of UDP and features characteristic traits of existing protocols, such

as a simple handshaking protocol, bidirectional channels, and retransmission/acknowledgement mechanisms.

We verify the library in the Aneris distributed separation logic using a novel proof pattern—dubbed the session

escrow pattern—based on the existing escrow proof pattern and the so-called dependent separation protocols,

which hitherto have only been used in a non-distributed concurrent setting. We demonstrate how our specifi-

cation of the reliable communication library simplifies formal reasoning about applications, such as a remote

procedure call library, which we in turn use to verify a lazily replicated key-value store with leader-followers

and clients thereof. Our development is highly modular—each component is verified relative to specifications

of the components it uses (not the implementation). All our results are formalized in the Coq proof assistant.

CCS Concepts: • Theory of computation → Logic and verification; Separation logic; Hoare logic;

Higher order logic; Program verification; Program specifications.

Additional Key Words and Phrases: Distributed systems, separation logic, refinement, higher-order logic,

concurrency, formal verification

ACM Reference Format:

Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal. 2023. Verifying

Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols. Proc.

ACM Program. Lang. 7, ICFP, Article 217 (August 2023), 31 pages. https://doi.org/10.1145/3607859

1 INTRODUCTION

Distributed programming is in some respect similar to message-passing concurrency where threads
coordinate through the exchange of messages. However, contrary to communication between
threads, network communication is unreliable (messages can be dropped, reordered, or duplicated)
and asynchronous (messages arrive with a delay, which, in the presence of network partitions, is in
general indistinguishable from a connection loss, e.g., due to a remote machine crash).
Implementations of distributed applications therefore often rely on a transport layer, such as

TCP or SCTP, to provide reliable communication channels among network servers and clients.
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Here “reliable” refers to the requirement that a server must process client requests in the order
they are issued (FIFO order) and should not process any request more than once.1 Such transport
layer libraries often share two common traits: (1) they provide a high-level API which hides the
implementation details by means of which reliable communication is achieved, and (2) the API
they provide is stated in terms of BSD (Berkeley Software Distribution) socket-like API primitives
connect, listen, accept, send, and recv that allow establishing asynchronous client-server connections
and to transmit data via bidirectional channels.

It is well-known that the implementation and use of a transport layer library is challenging and
error-prone [Guo et al. 2013] and thus it is a good target for formal verification. In recent years there
has been much research progress on tools for analysis and verification of distributed systems using
various techniques, ranging from model checking to mechanised verification in proof assistants.
However, most of this research is situated on one of two ends of a spectrum, regarding how the
reliable communication (when it is required) is treated.

On one end, existing work focuses on high-level properties of distributed applications assuming

reliability, e.g., assuming that the underlying transport layer of the verification framework is
(partially) reliable [Gondelman et al. 2021; Krogh-Jespersen et al. 2020; Sergey et al. 2018], or that
the shim connecting the analysis framework to executable code is reliable [Lesani et al. 2016;
Wilcox et al. 2015]. This approach can limit the verified guarantees and lead to discrepancies
between the specification, verification tool, and shim of such verified distributed systems [Fonseca
et al. 2017]. On the other end of the spectrum, existing work focuses on verifying reliability and
correctness properties of protocols for reliable communication, e.g., formalization of the TCP protocol
implementations [Bishop et al. 2006; Smith 1996], sliding window protocol verification in `CRL
[Badban et al. 2005], or Stenning’s protocol verified in Isabelle [Compton 2005]. This line of wok
does not capture the reliability guarantees in a logic in a modular way that facilitates reasoning
about clients of those protocols.

The purpose of the work presented in this paper is to show how we can tie these two loose ends
of the spectrum. Concretely, in this paper we present the first modularly specified and verified im-
plementation of a reliable communication library (RCLib), verified on top of an unreliable network.
Our specifications enable modular verification of full functional correctness properties of distributed
applications implemented on top of the reliable communication library. In the rest of this section
we discuss the implementation (Section 1.1), specifications (Section 1.2), and verification methodol-
ogy (Section 1.3) of RCLib, and the examples we have verified on top of the library (Section 1.4).
We conclude with a list of the concrete contributions made by the paper (Section 1.5).

1.1 Formally Verifiable Implementation of a Reliable Communication Library

Our implementation of the reliable communication library aims at a high level of realism by employ-
ing realistic features such as asynchronous asymmetric channel creation (using 4-way handshake à
la SCTP) and uses standard techniques such as sequence identifiers, retransmissions/acknowledg-
ments, and channel descriptors for bidirectional data transmission. The channel descriptors consist
of a local physical state containing send and receive buffers that is mutated both by user calls to
the send/receive operations and the internal protocol procedures (running as concurrent threads)
that enable reliable data transmission. Using buffers allows us to implement the user layer in a
network-agnostic way, which is thus identical for the client and server, thus simplifying verification.
Section 4 covers those implementation aspects and how they are verified in more detail.

1Because of network asynchrony it is very difficult to achieve exactly-once processing [Fekete et al. 1993; Gray 1979; Halpern

1987]. See [Ivaki et al. 2018] for a detailed survey of reliability notions in distributed systems.
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let client clt srv =

let s =

mk_client_skt str_ser int_ser clt in

let c = connect s srv in

send c "Carpe";

send c "Diem";

let m1 = recv c in

let m2 = recv c in

assert (m1 = 5 && m2 = 4)

let rec serve_loop c' =

let req = recv c' in

send c' (strlen req); serve_loop c'

let rec accept_loop s' =

let c' = fst (accept s') in

fork serve_loop c'; accept_loop s'

let server srv =

let s' = mk_server_skt int_ser str_ser srv

in

server_listen s'; accept_loop s'

Fig. 1. Example: server returning the length of incoming strings.

In Figure 1 we present a simple example of how RCLib can simplify implementations of distributed
programs. The example consists of a server that returns the length of incoming strings, and a simple
client that connects to and communicates with the server. The right-hand side of Figure 1 shows
the server implementation. The server is initialised calling mk_server_skt int_ser str_ser srv,
where int_ser str_ser are serializers and srv is the server address. The function then returns a
new socket s', which is then put into listening mode with server_listen s'. Once the server is
initialised, it starts an “accept” loop. The accept s' operation blocks until a new client connects,
after which a channel descriptor 2 ′ (along with the client address, which we throw away), used to
communicate with the client, is returned. The server serves each client on separate threads using
a “serve” loop. The serve loop receives incoming strings, computes their length, and sends the
results back. The left-hand side of Figure 1 shows the code for a particular client. The client first
allocates its socket handler using mk_client_skt str_ser int_ser clt, and then connects to the
server using connect s srv with the servers address srv. The operation blocks until the server
accepts the request, after which it returns the channel descriptor 2 on which it communicates with
the server. The client then sends two consecutive messages “Carpe” and “Diem”, and waits for
the results m1 and m2. Note that for the client’s assertion assert (m1 = 5 && m2 = 4) to hold, the
communication must be reliable (in particular that messages arrive in order, and are not duplicated).
To verify the implementation of RCLib we need a formal operational semantics for distributed

systems, along with a mechanism for reasoning about the semantics. To this end we have imple-
mented the library in AnerisLang; an OCaml-like programming language with network primitives
for UDP-like sockets that is formally defined in the Coq proof assistant together with the Aneris
program logic [Krogh-Jespersen et al. 2020], which can be used to reason about unreliable dis-
tributed systems written in AnerisLang. Aneris allows reasoning about so-called unreliable spatial

resource transfer—safely transferring spatial resources over an unreliable network—using a variant
of the escrow pattern [Kaiser et al. 2017]. In particular, the escrow pattern lets a party safely store
spatial resources in an “escrow”, which another party can then obtain. The evidence that resources
have been stored can be freely duplicated and thus one can repeatedly attempt to relay the evidence
in the presence of failures. To ensure that only the receiving party can obtain the resources once,
the receiving party starts with a one-time-use receipt, which must be given up along with a copy
of the evidence, to obtain the transferred resources from the escrow. We will further elaborate on
how Aneris shares resources using a similar intuition to the escrow pattern in Section 2.2.
As part of this work, to verify the AnerisLang implementation of RCLib, we have developed a

simple compiler that translates programs written in a subset of OCaml to AnerisLang, to (infor-
mally) tie the verified program to executable code. This approach is similar to one taken in prior
work [Chajed et al. 2019]. Note that such a compiler does not give any formal guarantees about
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the executed OCaml code: in fact, no such guarantees are currently possible, as OCaml does not
have a formal semantics. Nevertheless, the formal operational semantics of AnerisLangmatches, by
design, the informal, but commonly understood, semantics of the corresponding subset of OCaml.

We remark that the trusted computing base of our framework (only) comprises (a) the compiler
from OCaml to AnerisLang, (b) the operational semantics of AnerisLang, and (c) the Coq proof
assistant in which we formalize all of our results. Note that Aneris is not part of the trusted
computing base as its adequacy (soundness) is proven in Coq. Finally, we note that we focus on the
challenges of giving reliable specifications to endpoints communicating in an unreliable network —
we leave practical optimizations and performance evaluation to future work.

1.2 Modular Specifications of RCLib using Dependent Separation Protocols

To enable reasoning about functional correctness of the RCLib clients and libraries built on top of
RCLib, we prove Aneris program logic specifications for the RCLib API. The key ingredient of these
specifications is that they capture reliability guarantees of the client-server communication using
dependent separation protocols of the Actris framework [Hinrichsen et al. 2020, 2022]. The dependent
separation protocols are session type-like protocols that allow so-called reliable dependent resource

transfer, by specifying a sequence of obligations to send or receive messages. Each exchange
is associated with logical binders, a physical value, and separation logic resources, to specify
obligations that the sender has to guarantee, and the receiver can rely on. Notably, the protocols
are dependent, meaning that each specified exchange can depend on the exchanges that were made
before them. As an example, the session of the echo-server example above can be captured by the
following dependent separation protocol:

echo_prot ≜ `rec. ! (B : String) ⟨B⟩. ?⟨|B |⟩. rec

where (B : String) denote a quantified variable and ⟨B⟩ and ⟨|B |⟩ denote the messages first sent and
then received, respectively. The protocol specifies (from the client’s point of view) how the client
must first send a string B to the server, and how the server then replies with the length of the string
|B |. The protocol is recursive, by virtue of the `-operator. Given a protocol prot that describes a
session for a specific client-server communication, we further follow the Actris methodology by
associating each channel descriptor 2 in an established session with a predicate 2 >

ip
−−→
B4A

prot in the
logic called a channel descriptor resource. Here B4A describes how the values must be serialized, ip
corresponds to the ip-address of the node that the channel descriptor belongs to, and prot describes
the current state of the protocol. When a session is established between a client and the server,
along with fresh channel descriptors, the client obtains the resource 2 >

ip
−−→
B4A

prot, and the server
obtains the resource 2 >

ip
−−→
B4A

prot. Here, prot denotes the dual of the protocol prot, which turns all
sends into receives, and vice versa. This enforces that what is sent by one side is what the other
side receives. The local states of the protocol then change on each side with every user’s call to
the send and receive operations. We cover the specification pattern formally in Section 3, which
presents the specification of the RCLib API and shows how it is used to prove the example above.

1.3 Modular Verification of RCLib and the Session Escrow Pa�ern

The dependent separation protocols that we adopt have previously been applied to verify reliable
communication implemented via shared-memory message-passing [Hinrichsen et al. 2020, 2022].
In this paper, we apply the methodology to specify an implementation of reliable communication
that is built on top of unreliable network primitives. This mismatch between a reliable proof pattern
and an unreliable implementation imposes multiple non-trivial challenges, which we elaborate
on in Section 2.4. Our solution to these challenges is a new proof pattern called the session escrow

pattern, which is the main technical contribution of this paper. The session escrow pattern merges
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the unreliable spatial resource transfer of the escrow pattern (Section 1.1) with the reliable dependent
resource transfer of Actris (Section 1.2), to achieve so-called unreliable dependent resource transfer.
In particular, the escrow pattern, and the Aneris variant thereof, allow us to transfer spatial

resources in an unreliable setting, however, it is not suited for transfer of dependent resources
in the same way as Actris. Consider the introductory example shown in Figure 1. The escrow
of the escrow pattern would somehow need to capture the dependent history of prior messages,
and similarly the witnesses would need to be applied sequentially, in the right order. The session
escrow pattern thus serves as a solution to this problem. We present the session escrow pattern in
Section 4.2, and discuss how it elegantly solves the non-trivial verification challenges.

1.4 Verified Reliable Distributed Components on top of the RCLib

We demonstrate the expressivity of the RCLib specifications by verifying a number of examples,
including the simple example presented in Figure 1. As a more realistic case study, we implement a
remote procedure call (RPC) service library. We additionally use the RPC library to implement and
verify a lazily replicated key-value store with leader-followers implementation in which the leader
can both read from and write to the contents of the store, and the followers lazily replicate the
updates from the leader, preserving the order of the leader’s writes.
We leverage the fact that Aneris allows us to obtain highly modular and general specifications.

Indeed, each component (RCLib, RPC, leader-followers KVS) is verified relative to the specification of
the libraries that it is built on top of (not their implementations); this simplifies reasoning since the
specifications of libraries hide all the verification related details. For instance, the leader-followers
is verified on top of the specification of the RPC library, which is expressed in terms of an abstract
specification of the remote procedure calls. In particular, the verification of the leader-followers
KVS does not involve any reasoning about network-level communication at all.

1.5 Contributions

In summary, the main contributions of this work are:

• RCLib: The first foundationally verified implementation of a reliable communication library
for client-server communication with session-based protocol specifications (Section 3).

• The session escrow pattern; a proof pattern for reasoning about reliable dependent transfer of
resources in an unreliable setting, used to verify the RCLib (Section 4).

• A demonstration of the expressivity of the RCLib specifications through the verification of
a generic remote procedure call library, which can be used as a middleware component to
further simplify the formal development of distributed applications (Section 5).

• A verified implementation of a leader-followers key-value store on top of the RPC library,
demonstrating the vertical modularity enabled by the RCLib specifications (Section 6).

All of our results are mechanized on top of the Aneris logic and Actris framework in the Coq
proof assistant, and consists of ∼15.500 lines of Coq code. The development is available in the
accompanying artifact [Gondelman et al. 2023].

2 PRIOR WORK AND ITS LIMITATIONS

In this section we recall some of the key features of the existing logical frameworks that our work
builds on. We first give a brief overview of the Iris base logic followed by a short introduction of
the Aneris program logic (Section 2.2) which is based on it. We then present the Actris ghost the-
ory (Section 2.3) and subsequently discuss some of the limitations of Aneris and Actris (Section 2.4),
motivating the construction of the session escrow pattern, which is presented in (Section 4).
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2.1 An Iris Primer

The Iris base logic upon which Aneris is built is essentially a higher-order logic (∧, ⇒, ∀, etc.)
together with basic separation logic connectives, the separating conjunction, ∗ and the (magic)
wand −∗ along with user-defined ghost state and invariants:

% ∈ iProp ::= True | False | % ⇒ % | % ∧ % | % ∨ % | ∀G . % | ∃G . % | % ∗ % | % −∗ % | □ % | |⇛% | %

The separating conjunction % ∗& asserts that the two propositions % and& both hold, but, crucially,
for disjoint resources. A prime example of a proposition defined in terms of ownership of resources
is the heap points-to proposition ℓ

ip
↦−→ E which asserts exclusive ownership over location ℓ , i.e. that it

is allocated on the heap of the machine with IP address ip storing value E . The exclusiveness of heap
points-to propositions is captured in the logic by the fact that ℓ

ip
↦−→ E ∗ ℓ

ip
↦−→ E ′ ⊢ False holds which

means that location ℓ on machine ip cannot be owned twice as two disjoint resources. The opposite
of exclusivity is persistence. In Iris the proposition □ % (□ being the so-called persistently modality)
holds if % holds and asserts no exclusive ownership. Persistent propositions (% is called persistent
if % ⊣⊢ □ % — ⊣⊢ being the logical equivalence relation) are duplicable, i.e., □ % ⊣⊢ □ % ∗ □ % . The
wand connective has the same relation to the separating conjunction as the implication connective
to ordinary conjunction, i.e., % ⊢ & −∗ ' holds if and only if % ∗& ⊢ '. In addition to heap resources,
Iris’s base logic also supports user-declared ghost resources. We will not delve into the details of
user-defined ghost resources in this paper. What is important here is the proposition |⇛% where
|⇛ is called the update modality. Intuitively, |⇛% holds if we can update resources, including those
asserted in invariants (see blow), in a consistent manner, i.e. without violating resources owned
disjointly, e.g. by other threads or nodes, in order to satisfy % . We write % ⇛ & as a shorthand
for □(% −∗ |⇛&) — an update that does not rely on any exclusive resources and is hence always

valid to apply at any point (multiple times) in the proof. The proposition % asserts that % holds
invariantly. That is, once established, it must always hold throughout the program which means
that we can rely on it holding before every individual step of execution but must ensure that it holds

afterwards. Crucially, % does not assert any exclusive ownership regardless of % . It just asserts
that % must always hold — hence invariants are always persistent. We write Prop for the collection
of Iris propositions as opposed to Prop, the collection of meta-level, i.e., Coq, propositions.

2.2 Aneris: Distributed Separation Logic

Aneris is a program logic on top of Iris’s base logic for reasoning about distributed programs in
which each node is written in an ML-like language, with low-level socket-based communication
primitives akin to the UDP protocol. An overview of the relevant additions can be found in Figure 2.
Specifications in Aneris are stated as ip-decorated Hoare triples {% } ⟨8? ; 4⟩ {Q} . Aneris Hoare-

triples capture partial correctness, i.e., that given the precondition (% : iProp), the program 4 can
safely be executed at the specified ip, and as a result the postcondition (Q : Val → iProp) holds for
the returned value. We often write {% } ⟨8?; 4⟩ {F.&} ≜ {% } ⟨8?; 4⟩ {_F.&} , and {% } ⟨8? ; 4⟩ {&} ≜
{% } ⟨8? ; 4⟩ {_F.F = () ∗&} . Aneris’s proof rules reflect the conventional informal specification of
UDP-based communication, decorated with user-specified protocols for transfer of spatial resources
of fresh messages, using an intuition similar to the escrow pattern which we discuss below. To
express the proof rules Aneris employs new logical predicates that each govern parts of the
network resources. The FreeIp(ip) resource2 asserts that no node exists at the specified ip (ip).
The FreePorts(ip,P) resource asserts that the specified ports (P), at the specified ip (ip), have not
been bound. We often write FreeAddr(B0) ≜ FreePorts(B0.ip, {B0.port}). The Bℎ

ip
↩−→ (>, 1) resource

asserts exclusive ownership of a socket handler (Bℎ) at the node with the given ip (ip), asserting

2Since Aneris is a resourceful separation logic, we often refer to predicates as resources.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 217. Publication date: August 2023.



Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 217:7

Grammar:

g, f ::= Handle | Socket | Address | Message | . . .

%,& ::= FreeIp(ip) | FreePorts(ip,P) | Bℎ
ip
↩−→ (>, 1) | Unallocated(�) | B0 Z⇒ Q | B0 { (',) ) | . . .

Network primitives:

Ht-start

{% ∗ FreePorts(ip,P)} ⟨ip; 4⟩ {F. True}

{% ∗ FreeIp(ip)} ⟨ipsys; start ip 4⟩ {F.F = ()}

Ht-newsocket

{True}
⟨ip; socket ()⟩

{F. ∃Bℎ.F = Bℎ ∗ Bℎ
ip
↩−→ (None,«)}

Ht-settimeout

{Bℎ
ip
↩−→ (>, 1)} ⟨ip; settimeout Bℎ = <⟩ {if (= = 0 ∧< = 0) then Bℎ

ip
↩−→ (>,«) else Bℎ

ip
↩−→ (>, «⊘)}

Ht-socketbind

{FreeAddr(B0) ∗ Bℎ B0.ip
↩−−→ (None, 1)}

⟨B0.ip; socketbind Bℎ B0⟩
{F.F = 0 ∗ Bℎ

B0.ip
↩−−→ (Some B0, 1)}

Ht-socket-interp-alloc

{% ∗ B0 Z⇒ Q} ⟨ip; 4⟩ {F.&}

{% ∗ Unallocated({B0})} ⟨ip; 4⟩ {F.&}

Ht-send

{Bℎ
<.src.ip
↩−−−−→ (Some<.src, 1) ∗<.dst Z⇒ Q ∗

<.src { (',) ) ∗ (< ∉ ) ⇒ Q <) }
⟨<.src.ip; sendto Bℎ <.str<.dst⟩

{F.F = |<.str| ∗<.src { (',) ∪ {<}) ∗
Bℎ

<.src.ip
↩−−−−→ (Some<.src, 1) }

Ht-recv

{Bℎ B0.ip
↩−−→ (Some B0, 1) ∗ B0 { (',) ) ∗ B0 Z⇒ Φ}

⟨B0.ip; receivefrom Bℎ⟩

{
F. Bℎ

B0.ip
↩−−→ (Some B0, 1) ∗

(1 = «⊘ ∗F = None ∗ B0 { (',) )) ∨
(∃<.F = Some (<.str,<.src) ∗<.dst = B0 ∗

B0 { (' ∪ {<},) ) ∗ (< ∉ ' ⇒ Q <))
}

Fig. 2. The grammar and a selection of rules of the Aneris communication layer.

that it is either closed or open on a given address (> : Option Address), as well as whether it is in a
blocking or non-blocking state (1 : « + «⊘). The Unallocated(�) resource asserts that the given
addresses (� : Set Address) are “unallocated”, meaning that no protocols have been assigned to
them yet. Conversely, once “allocated”, the duplicable B0 Z⇒ Q resource asserts that the socket at the
given address (B0), follows the given protocol (Q : Message → iProp). The B0 { (',) ) resource
asserts the history of messages received (') and transmitted () ) at the given address (B0). Finally,
FreePorts(ip,P) and Unallocated(�) enjoy splitting; FreePorts(ip,P1 ⊎P2) ⊣⊢ FreePorts(ip,P1) ∗
FreePorts(ip,P2) and Unallocated(�1 ⊎�2) ⊣⊢ Unallocated(�1) ∗ Unallocated(�2).

The semantics of these connectives is made clear by the associated logical rules. The rule Ht-start
states that one can start new nodes using start ip 4 whenever the ip address is free (FreeIp(ip)),
giving back the assertion that all the ports (P) at the ip are free (FreePorts(ip,P)). Note that
start ip 4 can only be executed on the “system” node with the ip address: ipsys. This is to reflect
that the language does not have dynamic allocation of nodes, and instead only allows setting up the
nodes from an initial node that can be thought of as an admin node. The rule Ht-newsocket specifies
that the socket () expression allocates a new socket, returning the handle (Bℎ), for which we obtain
exclusive ownership Bℎ

ip
↩−→ (None,«), capturing that the socket is initially unbound (None), and

blocking («). The blocking status of a socket can be updated with settimeout Bℎ = <, as specified
by the Ht-settimeout rule, which sets the blocking status based on the given timeout float number
=.<. Since Aneris is time-insensitive, the timeout is treated as the binary blocking flag in the logic.
Concretely, that means that in the operational semantics of Aneris, a call to receivefrom sh with a
non-blocking handle and when there is nothing to be returned to the user, is evaluated to the None
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value, modelling that timeout has expired. In particular the role of the numerical value =.< is only
to set the status to non-blocking or back to blocking, depending on whether =.< = 0 or not. Such
an approach is sound logically, when reasoning about safety properties.

Sockets are bound to addresses via socketbind Bℎ B0, as specified by the Ht-socketbind rule, that
updates the socket handle resource to the bound address Bℎ

ip
↩−→ (Some sa, 1). Protocols are bound to

socket addresses using the Ht-socket-interp-alloc rule, which captures that an Unallocated({sa})
resource can be converted to an sa Z⇒ Q resource at any given time. The rule Ht-send specifies
how a message (<.str) can be sent over a socket (Bℎ) to a given destination address (<.dst) using
the sendto Bℎ <.str <.dst command. It requires the socket to be bound to the sender’s address
(Bℎ

ip
↩−→ (Some <.src, 1)), and the protocol of the destination to be known (<.dst Z⇒ Q). It also

requires the message history resource (<.src { (',) )), which allows to track whether the message
to be sent is fresh or not. If the message is fresh (< ∉ ) ) we must give up the resources specified by
the protocol (Q<). Otherwise, i.e. resending a previously sent message is done without any resource
transfer. In return, the sent message is added to the history of transmitted message () ∪ {<}).

The rule Ht-recv specifies how we can receive messages over a socket (Bℎ) using receivefrom Bℎ.
This requires that the socket is bound (Bℎ

ip
↩−→ (Some B0, 1)), the presence of the message history

(B0 { (',) )), and that we know our protocol (B0 Z⇒ Q). If there is no message inbound the function
returns nothing (F = None), and we retain the original history of received messages ('). If there is
a message inbound its contents are returned (F = Some<.str,<.src), and it is added to the history
of received messages (' ∪ {<}). Finally, if the message is fresh (< ∉ ') we obtain the resources
specified by our protocol (Q <). If the socket is blocking the function blocks until a message is
received, and thus the first case is only possible if the socket is non-blocking (1 = «⊘).

Adequacy: obtaining the initial resources and closed proofs. The specifications presented above
depend on resources that seem to occur from nothing. Particularly Unallocated(�), sa { (',) ),
and FreeIp(ip) occur as a precondition of various rules, while not being obtained as a result of
any. This is sound because closed proofs of complete programs in Aneris are instantiated with a
concrete network configuration, for which initial resources are provided. This is formally captured
by the foundationally mechanised Aneris adequacy theorem:

Theorem 2.1 (Adeqacy of Aneris). Let i ∈ Val → Prop be a meta-level (i.e. Coq) predicate on

values and suppose that the following is derivable in Aneris for a program 4 running on node ip:

ip ∉ ips ⇒ {Unallocated(�) ∗∗0∈�, 0 { (∅, ∅) ∗∗=∈ips, FreeIp(=)} ⟨ip; 4⟩ {i}

We then obtain the following properties:

• Safety: The program 4 , i.e., all threads on all nodes, will never get stuck

• Postcondition Validity: If the program 4 terminates with value E , then i E holds.

To verify a complete program, the first step is thus to pick the set of addresses (� : Set Address),
and the set of ips (excluding the ip of the initial node) (ips : Set Ip where ip ∉ ips); and then prove
the Hoare triple, in which we start with the initial network resources for tracking unallocated
addresses (Unallocated(�)), socket histories (∗0∈�, 0 { (∅, ∅)), and free ips (∗=∈ips, FreeIp(=)).

To obtain a closed proof of a distributed systemwe apply the adequacy theorem to the admin node
(with ip ipsys). To establishing statically known protocols one can apply the Ht-socket-interp-alloc
rule before starting the individual nodes, to obtain the duplicable sa Z⇒ Q resources which can be
distributed to the nodes when started.
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2.3 Actris: Dependent Separation Protocols

The Actris framework [Hinrichsen et al. 2022] supports specifying and reasoning about reliable
communication. It does so by using a notion of session-type-inspired separation logic protocols,
called dependent separation protocols, defined by the following three constructors:

prot ∈ iProto ::= ! ®G : ®g ⟨E⟩{% }. prot | ?®G : ®g ⟨E⟩{% }. prot | end

These constructors are used to specify a sequence of obligations to send (!) and receive (?), which can
be terminated by end. More specifically, the constructors ! ®G : ®g ⟨E⟩{% }. prot and ?®G : ®g ⟨E⟩{% }. prot
specify an exchange of a value E , along with resources described by % , given an instantiation of
the binders ®G : ®g . The binders ®G : ®g bind into both the value E , the proposition % , and the tail prot.
The latter means that the protocols are dependent, i.e., that message exchanges can depend on
the exchanges that were made before them. Additionally, dependent separation protocols can be
defined recursively using the Aneris `-operator (most of the protocols presented in this paper are
recursive). Finally, we often write ! ®G : ®g ⟨E⟩. prot instead of ! ®G : ®g ⟨E⟩{True}. prot.

The dependent separation protocols are subject to the conventional session type notion of duality
prot, which turns all sends (!) into receives (?), and vice versa, for the given protocol prot:

! ®G : ®g ⟨E⟩{% }. prot = ?®G : ®g ⟨E⟩{% }. prot ?®G : ®g ⟨E⟩{% }. prot = ! ®G : ®g ⟨E⟩{% }. prot end = end

By this notion of duality, we can guarantee that any two programs with dual protocols will have
well-behaved communication by construction; when one endpoint expects some message and
resources, the other endpoint will send just that, and vice versa.
As an example consider the following dependent separation protocol of a simple echo-server:

echo_prot ≜ `rec. ?(B : String) ⟨B⟩. ! ⟨|B |⟩. rec

The protocol specifies (from the server’s point of view) how the server first receives an arbitrary
string B from the client. The server then replies with the length of the string |B |, and then recurses.
The dependent separation protocols enjoy a so-called subprotocol relation (⊑), which captures

protocol-preserving updates: local changes that are indistinguishable by the other party, and which
are therefore safe to perform without coordination. The most prominent such protocol-preserving
update is that of swapping, formally captured by the following relation:

⊑-swap

( ®G : ®g) ## ( ®~ : ®f)

?®G : ®g ⟨E⟩{% }. ! ®~ : ®f ⟨F⟩{&}. prot ⊑ ! ®~ : ®f ⟨F⟩{&}. ?®G : ®g ⟨E⟩{% }. prot

The rule captures that one can choose to send (!), a message, before the prior receive (?), whenever
their binders are disjoint (this condition ensures that the send is independent of the receive).
The subprotocol relation is akin to the notion of subtyping, in which supertypes carry less

information/behaviours than their subtypes. As an example, a user of a protocol can choose to send
a message earlier than required (by swapping it ahead of a receive), but not vice versa. Swapping
the message ahead (by using the swapping rule) thus means that the protocol now permits less
behaviours than before. In particular, we have ?⟨42⟩. ! ⟨true⟩. end ⊑ ! ⟨true⟩. ?⟨42⟩. end, but not
the inverse ! ⟨true⟩. ?⟨42⟩. end ⊑/ ?⟨42⟩. ! ⟨true⟩. end, as the first protocol permits sending both as
the first and second action, while the second protocol only permits sending as the first action.
To see why the subprotocol relation is useful, consider a situation where a client of the echo-

server sends two messages upfront, and only awaits the responses from the server afterwards. The
protocol of such a client cannot possibly be strictly dual to the server’s echo_prot protocol, and
so it might seem that its communication with the server is not inherently sound. However, we
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True ⇛ ∃j. prot_ctx j n n ∗ prot_ownl j prot ∗ prot_ownr j prot (proto-alloc)

prot_ctx j ®E1 ®E2 ∗ prot_ownl j (! ®G : ®g ⟨E⟩{% }. prot) ∗ % [®C/®G] ⇛(
⊲
| ®E2 | prot_ctx j ( ®E1 · [E [®C/®G]]) ®E2

)
∗ prot_ownl j (prot [®C/®G])

(proto-send-l)

prot_ctx j ®E1 ( [F] · ®E2) ∗ prot_ownl j (?®G : ®g ⟨E⟩{% }. prot) ⇛

⊲∃®~. (F = E [®~/®G]) ∗ % [®~/®G] ∗ prot_ctx j ®E1 ®E2 ∗ prot_ownl j prot [®~/®G]
(proto-recv-l)

prot_ownl j prot ∗ (prot ⊑ prot ′) ⇛ prot_ownl j prot ′ (proto-⊑-l)

Fig. 3. Excerpt of rules of the Actris ghost theory.

can guarantee that it is sound, by updating the initially strictly dual protocol, using the sound
subprotocol relation, so that the dual of the echo_prot fits the client:

echo_prot ⊑ ! (B1 : String) ⟨B1⟩. ! (B2 : String) ⟨B2⟩. ?⟨|B1 |⟩. ?⟨|B2 |⟩. echo_prot

As the client’s first receive and second send are independent, the relation follows directly from
unfolding the recursive definition twice, and using the ⊑-swap rule (and omitted structural rules).

Actris ghost theory. The Actris framework includes a logical model of reliable dependent resource
transfer via the dependent separation protocols called the Actris ghost theory which is shown in
Figure 3. The model operates on three resources called prot_ctx j ®E1 ®E2 and prot_ownl j prot and
prot_ownr j prot. The prot_ctx j ®E1 ®E2 resource acts as a shared context that tracks the messages
that are currently in transit in either direction via ®E1 and ®E2 respectively; we refer to ®E1 and ®E2
as (reliable) buffers. The resources prot_ownl j prot and prot_ownr j prot represent the current
view of the session from the perspective of either endpoint. The resources are parameterised by
an identifier j that associate them with each other. The rules of the ghost theory capture how to
allocate these resources (proto-alloc), how to release resources along with sent values (proto-send-
l) and how to acquire resources along with received values (proto-recv-l). We omit the symmetric
rules about the transfer from right to left. The rules are defined in terms of the viewshift connective
% ⇛ & , which intuitively captures that the ghost state described by % can safely be updated to the
ghost state described by & . This is made precise by the following rule:

Vs-csq

%1 ⇛ %2 {%2} ⟨ip; 4⟩ {F.&2} ∀F.&2 ⇛ &1

{%1} ⟨ip; 4⟩ {F.&1}

We use the viewshift and this rule when instantiating the ghost state of our reliable communication
framework as presented in Section 3.

The proto-alloc rule captures that we can always allocate a new session with a fresh indentifier
j , and some freely picked protocol prot. The proto-send-l rule captures that to send a value, the
protocol must be in a sending state (prot_ownl j ! ®G : ®g ⟨E⟩{% }. prot). We must then provide a
concrete instantiation (®C : ®g) of the binders (®G : ®g), and give up the resources (% [®C/®G]). As a result,
we get back the shared context with the message (for the given binder instantiation) added at the
end of the respective buffer (prot_ctx j ( ®E1 · [E [®C/®G]]) ®E2). We also get back the protocol resource
whose protocol is updated to its dependent tail (prot [®C/®G]). The proto-recv-l rule specifies that the
protocol must be in a receiving state (prot_ownl j (?®G : ®g ⟨E⟩{% }. prot)), and that there is a message
in the inbound buffer prot_ctx j ®E1 ( [F] · ®E2). We then get an instantiation of the binders (®~ : ®g)
as specified by the protocol (®G : ®g), for which we obtain ownership of the resources specified by
the protocol (% [®~/®G]). We additionally learn that the received value (F ) is equal to the value of the
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protocol (F = E [®~/®G]). Finally, we get back the shared context with the message removed from the
buffer (prot_ctx j ®E1 ®E2) and the protocol resource whose protocol is updated to its dependent tail
(prot [®C/®~]). The proto-⊑-l rule specifies that we can update the local protocol resource according to
the subprotocol relation ⊑. Note that the conclusions of the rules are guarded by the later modality
⊲, and its iterated version ⊲

= ; this is due to the higher-order nature of the ghost theory.

2.4 Limitations of Prior Work

Aneris and Actris individually solve the problems of unreliable spatial resource transfer and reliable

dependent resource transfer, respectively. However, neither of these are expressive enough for the
verification of our framework, which ultimately relies on unreliable dependent resource transfer.

Aneris and the escrow pattern. As described in Section 1.1 Aneris mimics the intuition of the
escrow pattern to achieve unreliable spatial resource transfer. In particular, the escrow pattern
manifests in Aneris by treating the socket interpretation sa Z⇒ Q as a replicated resource agreement
between any external party and the socket address sa. The history of transmitted messages ) ,
tracked by the message histories sa { (',) ) then evidence that the resources have been put into
the escrow, and therefore we can repeatedly resend the message to try and inform the receiver.
Conversely, the history of received messages ' act as the one-time-use resource, ensuring that we
can only obtain each resource once. However, as described in Section 1.3, the escrow pattern, and
the Aneris variant thereof, is not suited for transfer of dependent resources. In particular, while
individual sockets protocols support the transfer of different resources through case analysis on
the associated message, they do not inherently support dependencies between those resources.

The Actris ghost theory in an unreliable distributed settings. The Actris ghost theory lets us reason
about reliable dependent resource transfer, however it does not immediately apply to unreliable
distributed settings. The ghost theory tracks reliable buffers of messages in transit; and to apply
the ghost theory, these reliable buffers have to be tied to physical objects. This was possible in
prior work on Actris [Hinrichsen et al. 2022], as the ghost theory was applied to shared memory
message-passing, built on top of lock-protected buffers. However, no such physical objects exist in
a distributed setting! While sufficient ghost state can be employed to tie the logical buffers of the
Actris ghost theory to the physical messages that are relayed over the network, it is not immediately
clear how this can be achieved, and it does not solve the unreliable nature of the message exchanges.
Additionally, as mentioned earlier, the Actris ghost theory imposes an obligation to strip multiple
laters when applying its rules. In the prior work on Actris this was achieved by instrumenting the
critical section of the implementation, guarded by a lock, with sufficient non-operative steps (skip
instructions), that would each strip a later. This is not possible in a distributed setting, as the only
way to share the session context is via atomically accessible invariants. Instead one needs to strip
all of the laters imposed by the ghost theory during a single physical step. We describe how we
deal with this challenge in Section 4.2.

3 RELIABLE COMMUNICATION LIBRARY API AND SPECIFICATION

In this section we present the API (Section 3.1) and the specification (Section 3.2) of the reliable
communication library that we have implemented and verified, followed by the verification of the
simple example presented in Figure 1 (Section 3.3).

3.1 Reliable Communication Library API

Figure 4 describes the API of the reliable communication library implementation. The API declares
abstract data types of sockets and channel descriptors, and exposes the BSD socket-like primitives
for client-server bidirectional (message-directed) communication.
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type ('a, 'b) client_skt

type ('a, 'b) server_skt

type ('a, 'b) chan_descr

val mk_clt_skt : 'a serializer→'b serializer→saddr→('a, 'b) client_skt

val mk_srv_skt : 'a serializer→'b serializer→saddr→('a, 'b) server_skt

val listen : ('a, 'b) server_skt→unit

val accept : ('a, 'b) server_skt→('a, 'b) chan_descr * saddr

val connect : ('a, 'b) client_skt→saddr→('a, 'b) chan_descr

val send : ('a, 'b) chan_descr→'a→unit

val try_recv : ('a, 'b) chan_descr→'b option

val recv : ('a, 'b) chan_descr→'b

Fig. 4. The API of the reliable communication library.

We make an explicit distinction between client_skt, the type of active sockets on which clients
connect to a given server, server_skt, the type of passive sockets on which the servers listen for the
incoming data from multiple clients, and chan_descr, the type of channel descriptors that clients
and servers can use for reliable data transmission, once the clients’ connection requests have been
accepted by the server and the connection has been established.

The library is polymorphic in the types of values exchanged between the clients and server. This
is achieved by making the library serialize the exchanged data internally, allowing the user directly
to send and receive values of the chosen data types, instead of operating on strings, which is the
standard type of message contents in Aneris. Thus the socket descriptor types are parameterized
by a pair of types (′a,′ b) and to create sockets, one must provide serializers for encoding/decoding
strings to and from those data types.
The API of our library can be used following the usual workflow of reliable client-server com-

munication: (1) by calling the listen function, the server is set to listen for incoming connection
requests, which the server can accept, one at a time, by calling the accept function, which returns
a new channel descriptor for each accepted connection; (2) each client connects to the server, by
calling the connect function, which, when it terminates, returns a new channel descriptor on the
client side; (3) once the connection is established, each side can use its own channel descriptor for
reliable data transmission in both directions, by calling the send and recv functions.

3.2 Reliable Communication API and Specifications

Similar to how the OCaml API hides the implementation details of the RCLib, our specification,
shown in Figure 5, hides the verification details that are irrelevant to the user. It does so by using a
dependent specification pattern, in which the specifications of the API primitives are dependent on
the user parameters (UP : RC_UserParams) provided by the user, and on the abstract specification
parameters (( : RC_Resources UP) provided by the library itself.3 To initialize the library, the user
must supply the following four parameters:

• srv: the statically known socket address of the server;
• prot: the dependent separation protocol clients can use to interact with the server;
• ss: the serializer for the values sent by the server/received by clients;
• cs: the serializer for the values sent by clients/received by the server.

For brevity’s sake, we simply write (.srv instead of UP .srv, whenever ( : RC_Resources UP .
The initialization is captured formally by the RC-init-alloc rule. The rule is parametric in a freely

picked instance of the user parameters UP , and yields an instance of the library provided abstract

3One can think of the dependent specification pattern as providing a logically specified module interface dependent on

universally quantified user parameters, and existentially quantified abstract specification resources.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 217. Publication date: August 2023.



Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 217:13

RC User Parameters and Resources:

UP ∈ RC_UserParams ≜
{srv : Address; prot : iProto; ss : Serializer; cs : Serializer}

( ∈ RC_Resources (UP : RC_UserParams) ≜

{
CanListen : Socket → iProp;
Listens : Socket → iProp;

CanConnect : Ip → Socket → iProp;

SrvInit : iProp;
Qsrv : Message → Prop}

RC-init-alloc

True ⇛ ∃(( : RC_Resources UP). ( .SrvInit

Server Setup Specifications:

Ht-make-server-socket [S]

{(.srv Z⇒ (.Qsrv ∗ (.SrvInit ∗
FreeAddr((.srv) ∗ (.srv { (∅, ∅)}
⟨(.srv.ip; mk_srv_skt (.ss (.cs (.srv⟩

{F. ∃B:C .F = B:C ∗ (.CanListen B:C }

Ht-listen [S]

{(.CanListen B:C }
⟨(.srv.ip; listen B:C⟩

{(.Listens B:C }

Ht-accept [S]

{(.Listens B:C } ⟨(.srv.ip; accept B:C⟩ {F. ∃2, sa.F = (2, sa) ∗ (.Listens B:C ∗ 2 >
(.srv.ip
−−−−−→

(.ss
(.prot}

Client Setup Specifications:

Ht-make-client-socket [S]

{(.srv Z⇒ (.Qsrv ∗ Unallocated({sa}) ∗
FreeAddr(sa) ∗ sa { (∅, ∅) }
⟨B0.ip; mk_clt_skt (.ss (.cs B0⟩

{F. ∃B:C .F = B:C ∗ (.CanConnect B0.ip B:C }

Ht-connect [S]

{(.CanConnect ip B:C }
⟨ip; connect B:C ( .srv⟩

{F. ∃2.F = 2 ∗ 2 >
B0.ip
−−−→
(.cs

(.prot}

Reliable Data Transmission Specifications:

Ht-reliable-send

{2 >
ip
−−→
B4A

! ®G : ®g ⟨E⟩{% }. prot ∗

% [®C/®G] ∗ Ser B4A (E [®C/®G])}
⟨ip; send 2 (E [®C/®G])⟩

{2 >
ip
−−→
B4A

prot [®C/®G]}

Ht-reliable-try-recv

{2 >
ip
−−→
B4A

?®G : ®g ⟨E⟩{% }. prot}
⟨ip; try_recv 2⟩

{F. (F = None ∗ 2 >
ip
−−→
B4A

?®G : ®g ⟨E⟩{% }. prot) ∨
(∃®~.F = Some (E [®~/®G]) ∗ 2 >

ip
−−→
B4A

prot [®~/®G] ∗ % [®~/®G])}
Ht-reliable-recv

{2 >
ip
−−→
B4A

?®G : ®g ⟨E⟩{% }. prot} ⟨ip; recv 2⟩ {F. ∃®~.F = E [®~/®G] ∗ 2 >
ip
−−→
B4A

prot [®~/®G] ∗ % [®~/®G]}

Fig. 5. The specifications of the Reliable Communication Library

specification parameters ( , along with an initialisation resource (.SrvInit. To use the verification
framework a user is then expected to:

(1) Obtain the initial network resources via the Aneris adequacy theorem (Theorem 2.1);
(2) Initialise the reliable communication library via the RC-init-alloc and Vs-csq rules;
(3) Allocate the static server socket interpretation with the library-provided server protocol

(.srv Z⇒ (.Qsrv using Ht-socket-interp-alloc;
(4) Distribute the server initialisation resource (.SrvInit to the server node, and the duplicable

static server socket interpretation (.srv Z⇒ (.prot to all nodes.
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Setup specifications. The specification of the server setup is given by the rules Ht-make-server-
socket [S], Ht-listen [S], and Ht-accept [S]. The Ht-make-server-socket [S] rule takes the initialisa-
tion resource (.SrvInit, the static server interpretation (.srv Z⇒ (.Qsrv, along with the primitive
Aneris resources FreeAddr((.srv) and (.srv { (∅, ∅) to set up the server socket. As a result, we ob-
tain the resource (.CanListen B:C that can then be used to satisfy the precondition of the Ht-listen
[S] rule. In return, the postcondition of the Ht-listen [S] rule yields the resource (.Listens B:C
which can then be passed to the precondition of the Ht-accept [S] rule in order to obtain the channel
descriptor resource 2 >

(.srv.ip
−−−−−→

(.ss
(.prot of the next incoming established connection, with the (dual

of the) user picked protocol (.prot. Note that the postcondition of the Ht-accept [S] rule both
provides the user with the channel descriptor ownership and gives the (.Listens B:C resource
back (so that the accept function can be called again).
The specification of the client setup is given by the rules Ht-make-client-socket [S] and Ht-

connect [S]. The former allows setting up the client socket, by supplying the static server socket
interpretation (.srv Z⇒ (.Qsrv, and the primitive Aneris resources FreeAddr(B0), B0 { (∅, ∅), and
Unallocated({B0}), which yields the (.CanConnect B0.ip B:C resource. The latter then allows the
client to connect to the server, consuming the (.CanConnect ip B:C token to produce the channel
endpoint ownership 2 >

B0.ip
−−−→
(.cs

(.prot, with the initial protocol state (.prot.

Reliable data transmission specifications. Once a session has been established between the server
and client, they share the same specifications, based on the channel endpoint ownership fragment
2 >

ip
−−→
B4A

prot, where prot determines the current state of the session. Both sides can then exchange
values in accordance with the protocol, using the Ht-reliable-send, Ht-reliable-try-recv, and
Ht-reliable-recv rules. The rules are remniscent of the Actris ghost theory rules presented in
Figure 3 (except that for send, we need to show that the value to be sent (E [®C/®G]) is serializable by
the associated serializer B4A ).

3.3 A Simple Example: Verifying a String Length Server

To illustrate how the RCLib specifications can be used concretely, we consider the example presented
in Figure 1, of a server that returns the length of each incoming string.
To prove that the assertion assert (m1 = 5 && m2 = 4) never fails, we prove two individual

separation logic specifications for the server and client, compose them using a system node, and
then apply the adequacy theorem (see section 2.2). The system node is defined as follows:
start (srv.ip) (server srv); start (clt.ip) (client clt srv)

The full formal specification and proof thereof can be found in our accompanying artifact [Gondel-
man et al. 2023]; we now give an overview of it. The crux of the verification is to use an appropriate
dependent separation protocol, which in this example can be the echo_prot protocol presented in
Section 1. We thus start by instantiating the RCLib with the following user parameters:

UP ≜ {srv := srv; prot := echo_prot; ss := int_ser; cs := str_ser}

Here the UP.srv is some globally known socket address, and the protocol (from the client’s view)
is echo_prot. The serialized values are strings (from client to server) and integers (from server
to clients). The library then provides us with the resources ( : RC_Resources (UP) and the proof
rules for RCLib primitives that we can use to verify the client and the server. We then show the
following specifications for the client and server:

{(.srv Z⇒ (.Qsrv ∗ (.SrvInit ∗ FreeAddr((.srv) ∗ (.srv { (∅, ∅)} ⟨S.srv.ip; server (.srv⟩ {False}
{(.srv Z⇒ (.Qsrv ∗ Unallocated({sa}) ∗ FreeAddr(sa) ∗ sa { (∅, ∅)} ⟨B0.ip; client sa S.srv⟩ {True}

Until the session has been established, both proofs are done by symbolic execution. Then, we can
prove the server loops by Löb induction (a proof principle for reasoning about recursive definitions),
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by showing that at any given iteration, both loops end in the same state that they began. For
the accept_loop this is straightforward, as the (.Listens B:C token is preserved when applying
Ht-accept [S]. For the serve_loop this is easy as well, as the echo_prot protocol recurses after
two steps, so the proof boils down to showing that the body of the loop adheres to the echo_prot
protocol. This is straightforward to show, using Ht-reliable-recv and Ht-reliable-send rules.

The verification of the client is a slightly more subtle, since the client sends two messages in a row,
after which it awaits for two messages in a row, and as such this does not match syntactically with
the echo_prot. However, it does so semantically, since the client’s second send request and its first
received response are independent, and so we can update the protocol4 by using the subprotocol
relation as we explained in Section 2.3. The return values dictated by the protocol (|“Carpe”| and
|“Diem”|) then let us show that the assertions hold, which concludes the proof.
As an indication of the proof effort of verifications performed with the RCLib the program and

proof of this example consists of ∼ 350 lines of Coq code.

4 IMPLEMENTING AND VERIFYING THE RELIABLE COMMUNICATION LIBRARY

In this section, we provide insight on how we implemented and verified the key parts of the RCLib
w.r.t. the specifications given in Figure 5. We focus on how we achieve the unreliable dependent
resource transfer specified by the dependent protocols via a novel proof pattern—the session escrow

pattern—which conceptually merges the distributed sharing of spatial resources via the escrow
pattern with the reliable dependent resource transfer of the dependent separation protocols. We first
give an overview of how we implemented the reliable communication library (Section 4.1). We then
cover the session escrow pattern, and how it resolves key limitations of Aneris and Actris when
applied to reliable distributed transfer (Section 4.2). Finally, we give an overview of how we tie the
session escrow pattern to the physical code to verify the send and receive operations (Section 4.3).

4.1 Implementation of the RCLib Channel Descriptor

The RCLib is implemented directly on top of Aneris’s primitive unreliable socket handlers. It
employs an asynchronous server-client architecture, where the server serves multiple clients on the

same socket handle. Once a connection is established the asymmetric nature is hidden via symmetric
channel descriptors, on which the client and server operate identically. The implementation consists
of three distinct parts, describe in detail below:

• The connection step: Initiating the session via unreliable socket primitives.
• The channel descriptors: Symmetric interface for the session endpoints.
• Internal network procedures: Tagging and tracking sequence ids, retransmission, etc.

Implementation of the connection step. The server and client sockets are initialised with their
respective socket operationmk_srv_skt (.ss (.cs (.srv andmk_clt_skt (.ss (.cs B0, which bundle
the pre-determined serializers ((.ss and (.cs) together with a new socket, which is allocated and
bound via the unreliable socket primitives of AnerisLang. The server is set to listen using the
listen B:C operation. This operation allocates an accept buffer for new available sessions, and starts
a loop that awaits incoming server messages on the server socket. Server messages can either be
connection requests, from new clients, or session messages and acknowledgements from existing
clients. Connection requests are sent by clients using connect B:C ( .srv to the statically known
server address (.srv. When a connection request is received, the server initialises a new session
by allocating a channel descriptor for the channel (described momentarily), enqueueing it into
the accept buffer, and responding (with retransmission) that the connection was successful. Once

4A single Coq tactic resolves the subprotocol relation, updates the protocol and executes the second send request.
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the connection acknowledgement has been received, the connect B:C ( .srv function starts a loop
that awaits incoming session messages on the client socket. The function additionally allocates
and returns a new channel descriptor. Finally, the accept B:C function is used on the server-side to
dequeue and return the first channel descriptor in the queue.

Implementation of the channel descriptors. We represent a channel descriptor as a 4-tuple consist-
ing of (ℓsbuf , ℓrbuf , slk, rlk). The reference ℓsbuf stores a send buffer sbuf , implemented as a queue,
which stores the values to be sent over the network. Each call to send 2 E then simply enqueus E to
sbuf . The reference ℓrbuf stores a receive buffer rbuf , implemented as a queue, containing values
coming from the other session endpoint, in the order that they were originally sent (by virtue of
the underlying network implementation). Each user’s call to recv 2 then simply loops until a value
is available, dequeues it from the queue rbuf , and returns it to the user. Finally, the slk, rlk are
locks guarding the send and receive buffer respectively (since those buffers are shared between
the internal procedures and user’s calls to the send/receive operations). Using buffers allows us to
implement send and receive in a way that is simple, network agnostic, and identical for the client
and server (and it also simplifies verification).

Implementation of the internal network procedures. The internal network procedures of the server
and client concurrently forward values from/to the buffers of the channel descriptors.
In parallel to user calls to send, the internal sending procedure (a non-terminating loop) keeps

(re)transmitting the contents of sbuf over the network via the unreliable network primitives of
AnerisLang. To achieve sequential ordering the messages are ascribed a sequence id which reflects
the order in which they were originally enqueued into the send buffer and which lets the other
endpoint accept them in the order they were sent. To this end, the internal procedure maintain
a reference ℓsid to a sequence id lower bound sid that reflects the sequence id of the first message
in sbuf (initially 0). The messages E0 . . . E8 . . . E ( |sbuf |−1) of sbuf are thus indexed by sid + 8 . To
avoid retransmitting messages forever, the internal procedure accepts acknowledgement messages.
When an acknowledgement message is received, the sbuf queue is pruned and the sid is updated
accordingly. If the acknowledgement message is less than sid the message is discarded. Otherwise,
all messages with a sequence id less than the acknowledgement are removed from sbuf and sid is
updated to the acknowledgement id, being the new lowest sequence id. Outbound messages are
serialized using the outbound serializer stored in the server/client sockets respectively.
The internal receiving procedure (again a non-terminating loop) awaits incoming messages,

and deserializes them using the inbound serializer stored in the server/client sockets respectively.
Inbound messages are filtered based on their sequence id, to ensure messages are only received
once. To this end, the loop uses a reference ℓaid which stores the current acknowledgement id

aid, which is the index that the next incoming message is expected to have. If the index of an
inbound message matches aid, the message payload is enqueued into the receive queue rbuf , and
an acknowledgement message with aid is sent back. If the received index is lower than aid, an
acknowledgement message with the current aid is still sent back to notify the sender that they can
prune their buffer and thus stop retransmitting the deprecated message. If the received index is
higher than the current sequence id, the message is simply discarded.
Finally, the server handles incoming requests by cross referencing the address of the incoming

session request with the list of channel descriptors, and processes the incoming message with
respect to the corresponding sequence id and receive queue.

4.2 Unreliable Dependent Resource Transfer with the Session Escrow Pa�ern

To verify the unreliable dependent resource transfer in an unreliable network we merge the ideas
behind the escrow pattern, already used in Aneris, with the dependent separation protocols, already
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sescrow-init

|⇝ ∃j. ses_own j left 0 0 prot ∗ ses_own j right 0 0 prot

sescrow-send

ses_own j B = < (! ( ®G : ®g) ⟨E⟩{% }. prot) ∗ % [®C/®G]

|⇝ ses_own j B (= + 1) < (prot [®C/®G]) ∗ ses_idx j B = (E [®C/®G])

sescrow-recv

ses_own j B = < (?( ®G : ®g) ⟨E⟩{% }. prot) ∗ ses_idx j B < F

|⇝ ∃(®~ : ®g). ses_own j B = (< + 1) (prot [®~/®G]) ∗F = E [®~/®G] ∗ % [®~/®G]

sescrow-dup

ses_idx j B = E

ses_idx j B = E ∗ ses_idx j B = E

Ht-step-modality

{% } ⟨ip; 4⟩ {F.&}

{% ∗ |⇝ '} ⟨ip; 4⟩ {F.& ∗ '}

Fig. 6. The session escrow pa�ern and step modality (Mask details omi�ed5).

used in Actris. The result of this is the novel so-called “Session Escrow Pattern”, which has been
formalised partially via the Actris ghost theory. The pattern leverages the unreliable spatial resource
transfer of the escrow pattern, namely that we can asynchronously commit and release resources,
and track the state of the transfer via a duplicable witness, which we can replay over the network.
The pattern also leverages the reliable dependent resource transfer of the dependent separation
protocols, by allowing the ascription of expressive protocols of dependent sessions.
The intuition behind the pattern is that it, much like the Actris ghost theory, lets us initialise a

session described by a dependent separation protocol, which acts as an agreement between the
separate channel descriptors about what messages and associated resources will be sent in either
direction, and in which order. A transfer made by either side is evidenced by a duplicable witness,
much alike the escrow pattern, which can be sent indefinitely over the network, until it is received
by the other side. Once received, the witness can then be used by the other side to obtain the
transferred resources. The pattern is formally presented in Figure 6. The pattern operates on two
types of resources, ses_own j B = < prot and ses_idx j B = E . The j argument is an identifier that
associates the resources with each other. The B argument signifies which side of the session the
resource belongs to. The first resource has three additional arguments: =,<, and prot. The = and
< arguments capture the number of messages that have been sent and received by the endpoint,
to track how far the endpoint is in the protocol. The prot argument capture the local view of the
protocol. The second resource has two additional arguments: = and E . The = argument captures the
index of the message, while the E argument captures the value that the message is associated with.

The proof rules of the pattern are quite similar to the Actris ghost theory. The sescrow-init rule
initialises a new session, yielding a ghost resource for both endpoints, ses_own j left 0 0 prot and
ses_own j right 0 0 prot, which have initially sent and received zero messages. The protocol prot is
chosen freely for one endpoint, while the other gets the dual prot, similar to the Actris ghost theory.
The sescrow-send rule takes an endpoint resource with a sending protocol (ses_own j B = < (! ®G :

®g ⟨E⟩{% }. prot)), and the resources described by the protocol (% [®C/®G]), for some instantiation of
its binders (®C : ®g). It returns the endpoint resource with the updated protocol and sending index
(ses_own j B (= + 1)< (prot [®C/®G])), along with a witness that the message has been sent, tracking
the corresponding message index and value (ses_idx j B = (E [®C/®G])). The sescrow-recv rule takes

5The actual session escrow pattern is constructed using an Iris invariant and is specified with a “namespace” N. Iris uses

namespaces to avoid opening the same invariant twice. We refer the interested reader to [Jung et al. 2016].
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an endpoint resource with a receiving protocol (ses_own j B = < (?®G : ®g ⟨E⟩{% }. prot)), and a
witness from the other endpoint that corresponds to the current receive index (ses_idx j B < F ).
It returns the endpoint resource with the updated protocol and receive index (ses_own j B = (< +

1) (prot [®C/®G])), and the resources described by the protocol (% [®~/®G]), for some instantiation of the
identifiers (®~ : ®g). The sescrow-dup rule captures that the witnesses can be freely duplicated.

Finally, the rules are defined using a novel step modality |⇝ ', as opposed to the multiple laters
in the Actris ghost theory. Intuitively, |⇝ ' holds if we can obtain ' after taking a step of the
operational semantics. This is made precise by the associated rule Ht-step-modality, which states
that one can resolve ' in the postcondition of a Hoare triple, when having |⇝ ' in the precondition.

While the stepmodality may seem similar to the later modality, it leverages recent discoveries that
allow resolving multiple later modalities during one step of the operational semantics [Matsushita
et al. 2022; Mével et al. 2019; Spies et al. 2022]. In particular, the modality abstracts over the concrete
number of laters that needs to be resolved, by internalising that we can resolve enough laters, at
every operational step. This abstraction over the number of laters is imperative for defining the
session escrow pattern. It would be impossible to state the above ghost theory rules, as either
endpoint is unable to determine the number of laters they would need to resolve, since that number
is related to the number of inbound messages, which cannot be inferred from the local state.

4.3 Verifying the Reliable Communication Library

With the session escrow pattern presented above, we now give an overview of howwe can verify the
reliable communication library. Similar to the implementation, the verification can be considered
in three parts; the connection step, the channel descriptors, and the internal network procedures.

Verifying the connection step. While established sessions have disjoint resources, the resources are
initially allocated together (using the sescrow-init rule). This happens on the server side, during the
handshake, when the server transfers the client’s resource (the ses_own j left 0 0 prot resource)
to the client, using the Aneris rules. The client and server must agree on the session protocol
before the handshake (to satisfy the Aneris rules, which require mutual agreement on the socket
interpretations), which holds since the (statically known) server only serves a single pre-determined
protocol prot. This kind of distributed channel creation is in contrast with the message-passing
concurrency instantiation of Actris ghost theory, where both channel endpoints are stored on the
same node, and can thus be created logically and physically at the same time.

Verifying the channel descriptors. To verify the channel descriptors, we associate the physical
counters sid / aid and buffer sizes |sbuf | / |rbuf | with the counters of the session escrow context
as follows ses_own j B (sid + |sbuf |) (aid − |rbuf |) prot. We enforce this correspondence using

the Iris ghost theory for exclusive agreement, consisting of two resources •=
W
and ◦<

W
, which

always agree •=
W
∗ ◦<

W
⇒ = =<, and can be updated together •=

W
∗ ◦<

W
⇛ •>

W
∗ ◦>

W
.

We additionally associate each element E0 . . . E8 . . . E ( |sbuf |−1) of the send buffer with an outbound
session escrow witness ses_idx j B (sid + 8) E8 , and each element F0 . . .F 9 . . .F ( |rbuf |−1) of the
receive buffer with an inbound session escrow witness ses_idx j B (aid − |rbuf | + 9) F 9 . The
significance of the indices are elaborated upon at the end of this section.
To formally verify the channel descriptors we use an existing lock library of Aneris, which

enforce lock invariants that hold between any access to the critical section of the related lock. With
the above correspondences in place, we define the lock invariants of the buffers as follows:

sbuf_inv j W= ip ℓsbuf ℓsid B4A B ≜ ∃sbuf , sid .

ℓsbuf
ip
↦−→q sbuf ∗ ℓsid

ip
↦−→ sid ∗ ◦ (sid + |sbuf |)

W= ∗

∗8 ↦→E∈sbuf , Ser B4A E ∗ ses_idx j B (sid + 8) E

rbuf_inv j W< ip ℓrbuf ℓaid B ≜ ∃rbuf , aid .

ℓrbuf
ip
↦−→q rbuf ∗ ℓaid

ip
↦−→ aid ∗ ◦ (aid − |rbuf |)

W< ∗

∗9 ↦→F∈rbuf , ses_idx j B (aid − |rbuf | + 9) F
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The lock invariants reflect the physical state of their respective buffer (using a “queue resource”
connective ℓ

ip
↦−→q @) and counter (using the points-to-predicate ℓ

ip
↦−→ E). They additionally govern

one part of the exclusive agreement ghost state ◦ =
W
. Finally, they capture the correspondence

between elements and session escrow witnesses. Notably, the iterated separation conjunction

∗8 ↦→E∈®E asserts ownership of separate resources at each element E of the buffer ®E at index 8 . With
the lock invariants in place we can define the channel descriptor resource as follows:

2 >
ip
−−→
B4A

prot ≜ ∃j,W=, W<, B, =,<, ℓsid, ℓaid .

2 = (ℓsbuf , ℓrbuf , slk, rlk) ∗ ses_own j B = < prot ∗ •=
W=

∗ •<
W<

∗
is_lock ip slk (sbuf_inv j W= ip ℓsbuf ℓsid B4A B) ∗
is_lock ip rlk (rbuf_inv j W< ip ℓrbuf ℓaid B)

The descriptor resource captures the session escrow context ses_own j B = < along with the other

part of the exclusive agreement ghost states •=
W=

and •<
W<

. Moreover, the descriptor resource
also keeps a copy of the duplicable lock predicates of both buffers.
With the definition of the channel descriptor resource we can verify the send and receive

functions of the reliable communication library. Whenever we send, we first obtain the internals
of the send buffer lock invariant (when acquiring the lock), and unify the counter = with sid +
|sbuf |. We then simply use the session escrow send rule sescrow-send to obtain a new witness
ses_idx j B (sid + |sbuf |) E at the next sequence id, which we delegate to the send buffer when
enqueueing the value. Conversely, whenever we receive, we unify< with aid − |rbuf |, dequeue the
first elementF0 of the receive buffer, and derive that it has the witness ses_idx j B (aid− |rbuf |) F .
We can then use the witness along with the session escrow receive rule sescrow-recv to obtain the
resources specified by the protocol.

Verifying the internal network procedures. Verifying the internal layers of the server and clients
primarily involve relaying the session escrow witnesses using the primitive unreliable network
rules of Aneris. Ultimately, this means that we have to pick an appropriate socket interpretation.
Sidestepping the connection and acknowledgement messages, the socket interpretations asserts
that messages (1) are serializable using the pre-determined serializers, (2) are pairs of sequence
identifiers 8 and payload values E , and (3) are associated with a corresponding witness:

Φclt ≜ _<.

(∃8, E . ( .ss<.str (inl(8, E)) ∗
ses_idx j right 8 E) ∨

⟨acknowledgement_message⟩

Φsrv ≜ _<.

(∃8, E . ( .cs<.str (inl(8, E)) ∗
ses_idx j left 8 E) ∨

⟨acknowledgement_message⟩ ∨
⟨connection_message⟩

With this, the verification follows from using Aneris’s primitive rules for sending and receiving
along with preserving the invariants of the send and receive buffers. Notably, we are able to
guarantee that we only enqueue fresh values into the receive buffers, by filtering inbound messages
via the acknowledgement id aid.

As mentioned in Section 4.1, the implementation uses concurrency internally; verifying this
concurrency was achieved using existing Iris / Aneris verification techniques and thus we do not
further detail the verification thereof.

5 REMOTE PROCEDURE CALL LIBRARY

To demonstrate the expressivity of the RCLib specs (Section 3), we now consider the specification
and verification of a multi-threaded remote procedure call (RPC) library. In Section 6 we will then
show how this library itself is used to facilitate the formal development of clients and applications
that make use of it.
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RPC API:

type ('a, 'b) rpc

val rpc_start : 'b serializer→'a serializer→saddr→('a→'b)→unit

val rpc_connect : 'a serializer→'b serializer→saddr→saddr→('a, 'b) rpc

val rpc_make_request : ('a, 'b) rpc→'a→'b

RPC User Parameters and Resources:

UP ∈ RPC_UserParams ≜

{
srv : Address;
qs : Serializer;
rs : Serializer;

ReqData : Type; RepData : Type;
pre : Val → ReqData → iProp;
post : Val → ReqData → RepData → iProp}

S ∈ RPC_Resources (UP : RPC_UserParams) ≜

{SrvInit : iProp; CanConnect : Address → iProp; Qsrv : Message → Prop}

RPC-init-alloc

True ⇛ ∃(( : RPC_UserParams UP). ( .SrvInit

RPC Specifications:

Ht-rpc-start [S]

{
S.srv Z⇒ (.Qsrv ∗ (.SrvInit ∗
FreeAddr(S.srv) ∗ S.srv { (∅, ∅) ∗
rpc_process_spec S proc }
⟨S.srv.ip; rpc_start S.rs S.qs S.srv proc⟩

{True}

rpc_process_spec S proc ≜ ∀qv, qd .

{S.pre qv qd}
⟨S.srv.ip; proc qv⟩

{rv. ∃rd . Ser S.rs rv ∗ S.post rv qd rd}

Ht-rpc-connect [S]

{FreeAddr(sa) ∗ sa { (∅, ∅) ∗
S.srv Z⇒ (.Qsrv ∗ Unallocated({sa})}
⟨sa.ip; rpc_connect S.qs S.rs sa S.srv⟩

{rpc. S.CanRequest sa.ip rpc}

Ht-rpc-reqest [S]

{S.CanRequest ip rpc ∗
S.pre qv qd ∗ Ser S.qs qv}
⟨ip; rpc_make_request rpc qv⟩

{rv. S.CanRequest ip rpc ∗ ∃rd . S.post rv qd rd}

Fig. 7. Specifications for the RPC library.

We have implemented, specified and verified a variant of such an RPC service. Our variant
exposes just one service handler, but it allows the types of the client’s request and the server’s
response to be polymorphic. In particular, when instantiating those types with sum-types g1@ + g

2
@ for

requests (and g1A + g
2
A for responses), we can effectively encode an RPC service that handles multiple

procedure calls, e.g., as a pair of procedures of type g1@ → g1A and g2@ → g2A .
Figure 7 shows the API and the specifications of our RPC library. The RPC library can be initialised

by calling rpc_start, which is parametric in the serializers for the request- and response data
types, the socket address of the server, and the implementation of the procedure that will be used
to handle the incoming requests. To call the procedure remotely, the clients must first connect to
the server, by calling rpc_connect, which yields the RPC handle rpc. The handle is then used as
an argument of rpc_make_request along with some input data to make a request.

5.1 Specifications of the RPC library

The specifications of the RPC are parametric in the user provided parameters (UP : RPC_UserParams),
which most importantly consist of the universally established server address (S.srv), and the logical
data types of the requests and replies (S.ReqData and S.RepData). Additionally, the user must
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Client Protocol Server

{
S.CanRequest ip rpc ∗

S.pre qv qd ∗ Ser S.qs qv

}

{
rpc >

ip
−−→
S.qs

rpc_prot S ∗

S.pre qv qd ∗ Ser S.qs qv

}

send rpc qv;

{rpc >
ip

−−→
S.qs

_}

let qv = recv 2 in

{2 >
ip

−−→
S.rs

rpc_prot S }
!qv qd ⟨qv⟩ {S.pre qv qd }.

{2 >
ip

−−→
S.rs

_ ∗ S.pre qv qd }

let rv = proc qv in

{2 >
ip

−−→
S.rs

_ ∗ S.post rv qd rd }

send 2 rv

{2 >
ip

−−→
S.rs

rpc_prot S }

recv rpc
?rv rd ⟨rv⟩ {S.post rv qd rd }.

rpc_prot S

{rpc >
ip

−−→
S.qs

_}

{
rv. rpc >

ip
−−→
S.qs

rpc_prot S ∗

∃rd . S.post rv qd rd

}

{
rv. S.CanRequest ip rpc ∗

∃rd . S.post rv qd rd

}

Fig. 8. The reliable communication of the RPC library

determine the serializers to be used for the request and reply values (S.qs and S.rs), so that the
client and server can serialize and deserialize the exchanged messages without coordination. Finally,
the user must provide pre- and post-condition predicates (S.pre and S.post) that relate the request
and reply values with their corresponding logical values.

In return the RPC library provides the abstract specification parameters (S : RPC_Resources UP),
which consist of SrvInit, (.Qsrv, and the S.CanRequest ip rpc resources. The rpc library is ini-
tialised using the RPC-init-alloc rule, similarly to the RCLib approach.
To start the RPC service using rpc_start the user must use the Ht-rpc-start [S] specifica-

tion, which needs the static server socket interpretation S.srv Z⇒ (.Qsrv, the SrvInit resource,
along with the primitive Aneris resources FreeAddr(S.srv) and S.srv { (∅, ∅). Additionally, the
user must prove that the procedure proc satisfies the specification defined by rpc_process_spec.
Indeed, this specification ensures that the procedure function handles the incoming requests cor-
rectly. In particular, rpc_process_spec states that the procedure argument qv must satisfy the
provided precondition S.pre qv qd, and that the results rv must satisfy the provided postcondition
S.post rv qd rd. In other words, when starting the server, the user must prove rpc_process_spec
for the procedure function that they choose.
To connect to the RPC service using the rpc_connect operation, clients must use the Ht-rpc-

connect [S] rule, to give up the server socket interpretation S.srv Z⇒ (.Qsrv, alongwith the primitive
Aneris resources FreeAddr(S.srv), S.srv { (∅, ∅), and Unallocated({sa}). The specification then
yields the S.CanRequest ip rpc resource for the returned RPC handle rpc. Finally, the Ht-rpc-

reqest [S] specification captures how the client can make requests when in possession of the
S.CanRequest ip rpc resource. Additionally, the argument qv must satisfy the provided precondition
S.pre qv qd, and qv must be serializable by the provided request serializer S.qs. In return the client
obtains the resources of the postcondition S.post rv qd rd for the returned value rv.

5.2 Verification of the RPC library

The main challenge of verifying the RPC library is to show that the specification of the client’s
rpc_make_request function follows from the user provided proof of the request handler at the
server side, cf. rpc_process_spec. We address this challenge by using a dependent separation
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protocol which specifies the delegation of the handler call to the server:

rpc_prot (S :RPC_Resources UP) ≜
`rec. ! (qv : Val) (qd : S.ReqData) ⟨qv⟩{S.pre qv qd}.

?(rv : Val) (rd : S.RepData) ⟨rv⟩{S.post rv qd rd}. rec

The protocol describes (from the clients point of view) the request-reply communication. The client
first sends a value qv, which is related to the request data qd by the provided S.pre qv qd predicate.
The server will then reply with a value rv, related to some reply data rd and the original request
data qd by the provided S.post rv qd rd predicate.

Figure 8 sketches the proof of how this protocol connects the specifications of the client’s local
and remote calls to verify Ht-rpc-reqest [S]. First, the abstract resource S.CanRequest ip rpc is
unfolded, to obtain the channel endpoint ownership rpc >

ip
−−→
S.qs

(rpc_prot S). Then the resources
for the request value (S.pre qv qd) are transferred along the request. On the server side, when the
resources are received, they are supplied to the procedure proc, yielding the reply value rv and the
resources S.post rv qd rd, which are then sent back to the client (in accordance with the protocol).
On the client side, the processed request and resources are finally received and returned. As the
protocol completed one cycle of recursion and returns to the initial state, it is packed back into
the abstract resource S.CanRequest ip rpc, so that the postcondition of the rpc_make_request
holds. In summary, the dependent separation protocols of RCLib make it quite simple to verify the
implementation of the RPC library!

6 LAZY REPLICATIONWITH LEADER-FOLLOWERS

To illustrate the power of our approach to reason about reliable network components in a highly
modular way, we now show how to specify and verify an implementation of the leader-followers
key-value store KVS, which we build directly on top of the RPC library. As we will see, our modular
approach enables us to verify KVS without having to reason about the UDP network (handled by
the RCLib) or the RCLib protocols and specifications (handled by the RPC library)!
Concretely, the leader-followers KVS we present is a replicated KVS that provides different

guarantees for read and write operations. The entire system consists of a central server node, called
the leader and the multiple replica nodes, called followers – the idea is that a client has to direct all
write requests to the leader while they have a choice to direct read operations at the leader or any
of the followers. Importantly, to ensure consistency of reads from followers (w.r.t writes directed to
the leader), the latter and all the followers, are guaranteed to agree upon, and preserve, the order of
write operations. This is achieved by having leader to register all the write operations as a part of
its state. This state is then lazily replicated by the followers servers which periodically poll the
state of the leader and store a local copy of it. Note that because replication is lazy, the system is
more available, but provides weaker consistency guarantees for the reads from followers. Indeed,
while the read operation directed at the leader is guaranteed to always return the most up-to-date
value, a read directed at a follower may return a stale value.

6.1 Implementation of the Leader-Followers KVS

Leader and followers are implemented directly on top of the RPC library. Thus we only need to
implement handlers which, upon clients’ requests, write (at the leader) or read (at the leader or
follower) the local state of the server (here we use instantiate our RPC library with sum-types so as
encode a service that handles multiple procedure calls).

The local state of each node consists of a key-value table together with a log of all write events
observed by that server. The idea is that the primary state of the KVS is the log. The key-value
table is a memoization table to optimize read operations which simply look up the value in the

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 217. Publication date: August 2023.



Verifying Reliable Network Components in a Distributed Separation Logic with Dependent Separation Protocols 217:23

table instead of seeking the latest written value to the requested key in the log. Hence, the write
operation on the leader, in addition to adding the write event to the log, also updates the local table.
Similarly, when a follower receives a new write event from the leader, in addition to adding it to its
local log, it updates its local copy of the table.

The interaction between the leader and the followers is also implemented using the RPC library
where the leader assumes the role of the server for followers which periodically make a request to
the leader asking for the next available log entry they have not seen yet. The programs for both
the leader and followers are concurrent programs, e.g., the leader runs two different threads, one
for serving clients and another one for serving followers. These programs use locks to protect the
data structures shared between different threads running on each server.

6.2 Specification of the Leader-Followers KVS

We first consider a simple version of the system with only one server: the leader. In this setting, we
can give simple specifications to read and write, similar to those for local heap-allocated references:

leader-only-write-spec

{: ↦→ldr vo} ⟨ip; write : E⟩ {: ↦→ldr Some E}
leader-only-read-spec

{: ↦→ldr
@ vo} ⟨ip; read :⟩ {G . : ↦→ldr

@ vo ∗ G = vo}

Here the : ↦→ldr vo proposition, where vo is an optional value, asserts ownership over the key : in
the KVS and indicates its value (None indicates that no writes have taken place on that particular
key). The proposition : ↦→ldr

@ vo is the fractional variant where ownership is only asserted for a
fraction 0 < @ ∈ Q ≤ 1.
The specs given above for reading and writing in fact remain sound for interacting with the

leader even in the presence of followers. The values read from followers can correspond to old
write operations which have since been overwritten. In order to express this intuition formally
we introduce propositions in our logic for tracking the history of all write operations in the form
of a sequence of write events. A write event, we, is a tuple consisting of the target key in the
KVS, the written value, as well as its logical time, i.e., its index in the history of write events
observed by the system. We write we.key and we.value for the key and value of the write event
respectively. Furthermore, we write ℎ↓: for the optional value of the last (latest) write event in
history ℎ whose key is : . We use the observation proposition Obs(DB, ℎ), defined in terms of Iris
resources, to indicate that the history ℎ has been observed at the server whose address is DB;
this server could either be the leader or a follower. The important intuition here is that write
operations are immediately observed on the leader while they are only observed on followers if
they have occurred before the point in time when said follower has last polled and copied the
state of the leader. Observation propositions only express the knowledge that a certain history
has been observed and are thus persistent in the technical Iris sense, which implies that they are
duplicable: Obs(DB, ℎ) ⊣⊢ Obs(DB, ℎ) ∗ Obs(DB, ℎ). In addition to introducing observations we
also let points-to predicates specify the optional write event corresponding to the key instead of
an optional value. That is, in the proposition : ↦→kvs wo (our form of points-to proposition for the
system featuring followers), wo is an optional write event, which allows us to express stronger
guarantees for the write operation.

Following an approach similar to Gondelman et al. [2021], we use Iris invariants to express the
relationship between the logical state of each key on the leader, exposed to the client as : ↦→kvs wo,
the logical state of what is observed by each server, exposed to the client as Obs(DB, ℎ), and the
physical state (stored in the memory) of each server, not exposed to the client. The following tables
give a summary of the building blocks used in the specification of leader and followers:
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write-spec
{: ↦→kvs wo ∗ Obs (DBld , ℎ) ∗ ℎ↓: = wo} ⟨ip; write : E⟩ {∃hf ,we.we.key = : ∗ we.value = E ∗ hf ↓: = None ∗

Obs (DBld , ℎ ++hf ++ [we]) ∗ : ↦→kvs Some we}
leader-read-spec

{: ↦→kvs
@ wo} ⟨ip; read : ⟩ {G. : ↦→kvs

@ wo ∗ ( (G = None ∧ wo = None) ∨ (∃we. G = Some we.value ∧ wo = Some we)) }

follower-read-spec
{Obs (DBfl, ℎ) } readfl : {G. ∃ℎ

′. ℎ ≤? ℎ′ ∗ Obs (DBfl, ℎ
′) ∗(

(G = None ∧ ℎ′y
:
= None) ∨ (∃we. G = Some we.value ∧ ℎ′y

:
= Some we)

) }
Fig. 9. The specification for the write operation and the read operation for both the leader and followers.

Proposition Intuitive meaning

: ↦→kvs wo

Asserts exclusive ownership over the key : with
the last write event being wo. Note that wo is an
optional value and can be None which indicates
that no value has ever been written to : .

Obs (DB, ℎ)
This persistent proposition asserts the
knowledge that history ℎ has been observed by
the server whose address is DB.

GlobalInv
N

Relates the resources underlying : ↦→kvs E and
Obs (DB, ℎ) and enables tying these to physical
states through local invariants (one invariant per
server) which are not exposed to the client.

Symbol Meaning

we Ranges over write events.

wo
Ranges over optional write events, i.e., it is either
None or Some we.

write The write function.

read The read function for leader.

readfl The read function for follower fl.

DB Ranges over server addresses: leader or follower.

DBld The addresses of the leader.

DBfl The address of follower fl.

These are the important properties of observations (the full list can be found in the accompanying
Coq formalization):

GlobalInv
N
∗ : ↦→kvs

@ wo ≡∗ : ↦→kvs
@ wo ∗ ∃ℎ. Obs(DBld, ℎ) ∗ ℎ↓: = wo (observe-at-leader)

GlobalInv
N
∗ Obs(DB, ℎ) ≡∗ ∃ℎ′. Obs(DBld, ℎ

′) ∗ ℎ ≤? ℎ′ (leader-observes-first)

Obs(DB, ℎ) ∗ Obs(DB′, ℎ′) ⊢ ℎ ≤? ℎ′ ∨ ℎ′ ≤? ℎ (linear-order)

The property (observe-at-leader) states that the current value stored by the leader is always observed
by the leader; the history where this write event is the last write event with key : is observed on the
leader. Note how this property is stated using the update modality, ≡∗, which allows for accessing
invariants to obtain the necessary information since points-to propositions, observations, and the
physical states of servers are all tied together using such invariants. The property (linear-order)
captures that all servers, the leader and the followers, agree on the order of observed write events;
as such one history is always a prefix of the other.

The specifications for writing to the KVS, reading from the leader, and reading from the followers
are given in Figure 9. Note how the specification for reading a key on the leader, leader-read-spec,
is exactly the same as the leader-only situation, leader-only-read-spec. On the other hand, the
write spec, write-spec, is strengthened compared to leader-only-write-spec. It states that having
: ↦→kvs wo, the write event added as the result of this call, is the first write event after wo.

The specification for reading from a follower, follower-read-spec, states that after reading we
get the knowledge that the observed history on that follower is possibly extended in a way such
that the returned optional write event is consistent with this observed history — the extended
history is the one observed at the moment the read operation was carried out on the follower.
Note how the specifications for the read and write operations, despite the implementation of

the KVS being based on that of the RPC library and in turn on the reliable communication library
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let do_writes () =

write "x" 37; write "y" 1

let rec wait_on_read k v =

let res = read_fl k in

if res = Some v

then ()

else wait_on_read k v

let do_reads () =

wait_on_read "y" 1;

let vx = read_fl "x" in

assert (vx = Some 37)

let client0 () = do_writes ()

let client1 () = do_reads ()

client0 () ||| client1 ()

Fig. 10. Example Client of Leader-Followers.

and ultimately Aneris’s network primitives, do not mention any of these dependencies or their
specs. This demonstrates that our modular verification approach enables proper encapsulation of
modules (what Krogh-Jespersen et al. [2020] refer to as vertical modularity). Note also that the
leader-only specifications can be derived from the general specs (see Appendix A).

Client Example. Figure 10 shows an example of the program using the KVS. It consists of two
clients running in parallel on two different nodes (written with three parallel vertical lines). We
assume that the leader and the followers have been initialized prior to running these clients. One
client, client0, performs two write operations, 37 to G followed by 1 to~. The other client, client1,
perform two read operations directed at a follower. It first waits until it observes the value 1 on
~ and then asserts that G has value 37. Note that the program order in do_writes implies that
the second write causally depends on the first write. See the accompanying Coq formalization
for a formal proof of this example client; the proof guarantees that the assert in do_reads will
not fail. The example above demonstrates that reading from a follower satisfies monotonic reads,
monotonic writes, and writes follow reads guarantees [Terry et al. 1994], but does not provide the
read-your-writes guarantee, as the leader does not synchronize with followers during the writes.

6.3 Verification of the Leader-Followers KVS

The crux of the verification is to (a) give concrete definitions of the abstract predicates, e.g.,
Obs(DB, ℎ) and : ↦→kvs wo, (b) instantiate the specifications of the RPC library for handlers, and (c)
show the Hoare triples for the handlers as ascribed by the RPC library. We omit a description of
those steps (see Appendix A and accompanying Coq formalization) and just mention one elided
nuance, namely that the specifications we have presented for the read and write operations do not
capture the fact that these operations are logically atomic. To verify the example above, one needs
to use logical atomicity (in order to be able to open invariants around read and write operations).
And indeed, in our Coq formalization, our specifications for read and write do capture the logical
atomicity; technically the specifications are given in the so-called HOCAP-style [Svendsen et al.
2013], from which the read and write specifications presented in Figure 9 can easily be derived.

7 RELATED WORK

Reliable Transport Protocols in Verification of Distributed Systems. In recent years, there have
been several verification frameworks to reason about implementations and/or high-level models of
distributed systems. Some of these works focus on high-level properties of distributed applications
assuming that the underlying transport layer of the verification framework is reliable, e.g., [Koh
et al. 2019; Sergey et al. 2018; Zhang et al. 2021] and the first version of Aneris framework [Gondel-
man et al. 2021; Krogh-Jespersen et al. 2020]. Other works that focus on high-level properties of
distributed applications [Hawblitzel et al. 2017; Nieto et al. 2022; Wilcox et al. 2015] also treat the
reliable communication as a part of the verification process to some extent.
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Nieto et al. [2022] implement a reliable causal broadcast (RCB) library in Aneris and use it to
implement op-based conflict-free replicated data types (CRDTs). Their implementation uses vector
clocks to achieve causal reliable delivery. While RCB can be used for reliable communication,
it is not suitable for client-server communication. Firstly, since the RCB implements broadcast,
in order to isolate clients from one another, the server would need to create a new instance of
RCB for each client, and somehow match the standard API for reliable communication (listen,
accept, ...) as we do. Secondly, and more importantly, the RCB specification does not expose the
dependencies in the session communication; instead it only tracks the causality relation between
the delivered messages and the already received messages as sets, not sequences. In contrast,
our RCLib specification is session-type based and tracks dependencies using Actris’s dependent
separation protocols. The Verdi framework [Wilcox et al. 2015] proposes a methodology to verify
distributed systems that relies on a notion of verified transformers. One such transformer is a
Sequence Numbering Transformer that allows ensuring that messages are delivered at most once,
similar to the guarantees provided by our RCLib. However, in Verdi verified transformers are stated
in a high-level domain-specific language which abstracts over implementation details such as
node-local concurrency or message serialization, and the reasoning is done in terms of traces on the
high-level semantics. In contrast, developing RCLib in Aneris enables both the modular verification
of a realistic implementation of a reliable transport communication layer (horizontal modularity)
and the modular verification of the clients of the RCLib (vertical modularity). Moreover, some
of the existing verification systems assume that the shim connecting the analysis framework to
executable code is reliable [Lesani et al. 2016; Wilcox et al. 2015]. That can limit guarantees about
the verified code and lead to the discrepancies between the high-level specification, verification
tool, and shim of such verified distributed systems [Fonseca et al. 2017].

Verification of Reliable Transport Layer Protocols. There has been several works focusing on
showing correctness of protocols for reliable communication. Smith [1996]’s work is one of the
earliest on formal verification of communication protocols. Bishop et al. [2006] provide HOL
specification and symbolic-evaluation testing for TCP implementations. Compton [2005] presents
Stenning’s protocol verified in Isabelle. Badban et al. [2005] presents verification of a sliding window
protocol in `CRL. None of those works however capture the reliability guarantees in a logic in a
modular way that facilitates reasoning about clients of those protocols. In contrast, our work both
verifies the reliable transport layer as a library and provides a modular high-level specification
for reasoning about distributed libraries and applications that require reliable communication.
This is illustrated in our work by the case studies such as verification of the RPC library and
leader-followers KVS, for which our work, to the best of our knowledge, is the first formal modular
verification of such distributed applications. Broadly speaking, considering the existing verified prior
work, we believe that it can conceptually be ported to using the RCLib, with minor modifications
regarding how the reliable transfer is encoded and specified. However, carrying out this port in
a mechanized setting is in practice non-trivial, and heavily relies on the frameworks in question.
Porting Iris-based proofs would likely be easier, as a lot of the mechanization shares the same
foundation, but reusing proofs from a framework like Verdi would require more effort.

Session Types in Distributed Systems. Session types, since their inception by Honda [1993], have
primarily been concernedwith idealised reliable communication, wheremessages are never dropped,
duplicated, or received out of order. Castro-Perez et al. [2019] developed a toolchain for “transport-
independent” multi-party session typed endpoints in Go. They show how their theory applies
to channel endpoints that may communicate locally (via shared memory) and in a distributed
setting (via TCP). Miu et al. [2021] developed a toolchain for generating TypeScript WebSocket
code for session type-checked TCP-based reliable communication in a distributed setting. Their
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system guarantees communication safety and deadlock freedom, for which they provide a paper
proof. Recent work considers variations of unreliable communication, focused on constructing new
session type variants for handling the setting in question. Kouzapas et al. [2019] develops a session
type variant for such an unreliable setting where messages can be lost (although they are never
duplicated or arrive out of order). Their system handles message loss by tagging messages with a
sequence id where, when a failure is detected, the session catches up to the protocol through some
parametric failure handling mechanism. They provide such a mechanism, where a default value
of the expected type is returned, after which the sequence id is increased. In contrast to related
work, our work establishes a high-level reliable communication library built on top of a low-level
unreliable network, which is then given reliable specifications, via conventional session-type like
protocols. We are unaware of existing work that takes this approach.

8 CONLUSION AND FUTURE WORK

In this paper we have demonstrated the maturity of the Aneris distributed separation logic and the
genericity of the Actris dependent separation protocol framework, by combining them to implement
and verify a suite of reliable network components on top of low-level unreliable semantics. Each
component specification is encapsulated as an abstraction; no details about their building blocks
are exposed, even when these consist of other libraries. While we deem our low-level unreliable
semantics to be a step towards verification of more realistic languages, we find that the RCLib
implementation could be further improved from future extensions. The implementation of the
reliable communication library includes a mechanism for retransmitting messages until an acknowl-
edgement is received. This is crucial, as messages could otherwise be lost in the network, never to be
retransmitted, resulting in any blocking receive halting indefinitely. The Aneris logic however does
not give us any formal guarantees about progress, and so cannot verify that our implementation
of retransmission actually ensures progress. It would thus be interesting to investigate whether
one can obtain any such progress guarantees for the library by using the Trillium refinement
logic [Timany et al. 2021]. Trillium allows for proving refinements between the executions of
the program and a user-defined model, and has been used to prove eventual consistency for a
Conflict-Free Replicated Data Type (CRDT) in conjunction with Aneris.

The RCLib assumes that established connections are never closed, neither graciously, nor because
of an abrupt connection loss, e.g. due to a remote’s crash. Lifting those assumptions would allow
obtaining an even more realistic implementation, e.g. with the possibility of closing the channel
endpoints and connection reestablishment. For the latter, it would also be interesting to consider
how our specifications could be adapted to consider the possibility of crashes, e.g. by integrating a
crash-sensitive logic such as Perennial [Chajed et al. 2019]) into our framework. The implementation
is not partition-tolerant, as any partitioning between the server and one of its client would prevent
further communication between them. It would be interesting to investigate methods for achieving
fault-tolerance in Aneris, e.g. by having a cluster of nodes acting as the server, so the clients
can broadcast to the entire cluster, rather than communicating with a singular node. This would
effectively handle partitions, as other nodes in the cluster could relay the message to the server,
and help in the development of fault-tolerant libraries (e.g., multi-consensus). Finally, our system
does not consider network security. It would be interesting to investigate the verification of secure
reliable channels, where the connection is provably secure after the initial handshake.
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A LAZY REPLICATIONWITH LEADER-FOLLOWERS

A.1 Deriving the Leader-Only Spec

The leader-only specifications, leader-only-write-spec and leader-only-read-spec, can be derived
from the general specs, write-spec and leader-read-spec, by defining the leader-only version of the
points-to proposition as follows:

: ↦→ldr vo ≜

{
: ↦→kvs None if vo = None

∃wo. : ↦→kvs Some we ∗ we.value = E if vo = Some E for some value E

Note how the leader-only read function returns the value of the write event returned by the read
function. The leader-only-read-spec spec follows straightforwardly from leader-read-spec. To see
how leader-only-write-spec follows from write-spec note how we can use (observe-at-leader) to
obtain that there exists a history ℎ such that ℎ↓: = wo whenever we have : ↦→kvs wo, which we
get by unfolding the definition of : ↦→ldr vo, and a case analysis on whether vo is None or Some E .

A.2 Concrete definitions of the abstract predicates used in leader-followers

We start by defining two sets of propositions in terms of Iris resources using Iris’s so-called
authoritative resource algebra and fractional resource algebras. These resource constructions are
standard and hence we will not get into the details of these constructions; see Jung et al. [2018]
for similar constructions, e.g., the resource construction for relating the contents of the physical
heap to separation logic’s standard points-to propositions. Iris’s authoritative resource algebra
allows us to construct resources that can be split into two parts, a so-called full part and a so-called
fragment part. The idea is that the fragments must always be included in the full part — the notion
of included depends on the precise construction of the resource as we will explain below. These
two sets of propositions are as follows:

Proposition Intuition

KWT (") Tracks global view of the mapping from keys to their latest write events maintained by the leader.

: ↦→kvs wo As before; the write event always agrees with, i.e., is included in," in KWT (") .

LogG (DB, ℎ) Tracks the writes observed on server DB in the global invariant. Agrees with LogS and LogL .

LogS (DB, ℎ) Tracks the writes observed on server DB in the local invariant of the server. Agrees with LogG and LogL .

LogL (DB, ℎ) Tracks the writes observed on server DB in the proof of correctness of RPC handlers. Agrees with LogG and LogS .

Obs (DB, ℎ) As before; the history ℎ is a prefix of, i.e., is included in, the history tracked in LogG , LogS , and LogL .

Here the propositions KWT (") and : ↦→kvs wo are defined as an instance of the authoritative
resource algebra where the former is defined the full part and the latter defined as a fragment.
Similarly, the propositions LogG (DB, ℎ), LogS (DB, ℎ), and LogL (DB, ℎ) are defined as the full part
of an instance of the authoritative resource algebra (split into three different parts) while the
proposition Obs(DB, ℎ) is defined as a fragment in the same resource algebra.
The rules governing these propositions are shown in Figure 11. The rules capture how the

inclusions of the underlying authoritative resource algebras are reflected for the propositions
(notably in rules Table-lookup, Logs-agree, and Obs-prefix), and how they are preserved when
resources are updated (notably in rules Table-update and Obs-update).
Given these propositions we can define the global and local invariants as follows:6

GlobalInv ≜ ∃",ℎ. KWT (") ∗ LogG (DBld, ℎ) ∗ LogMapConsistent (ℎ,") ∗

∗fl∈Fs∃ℎ
′. LogG (DBfl, ℎ

′) ∗ ℎ′ ≤? ℎ

6The local invariant is essentially stated as a lock invariant. See [Birkedal and Bizjak 2017] for locks in Iris.
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Table-lookup

KWT (") ∗ : ↦→kvs wo ⊢ " (:) = wo

Table-update

KWT (") ∗ : ↦→kvs wo ≡∗ KWT
(
" [: ↦→ wo′]

)
∗ : ↦→kvs wo′

Logs-agree
-,. ∈ {G, S, L} - ≠ .

Log- (DB, ℎ) ∗ Log. (DB, ℎ
′) ⊢ ℎ = ℎ′

Obs-prefix
- ∈ {G, S, L}

Log- (DB, ℎ) ∗ Obs(DB, ℎ′) ⊢ ℎ′ ≤? ℎ

Obs-update
ℎ ≤? ℎ′

LogG (DB, ℎ) ∗ LogS (DB, ℎ) ∗ LogL (DB, ℎ) ≡∗ LogG (DB, ℎ
′) ∗ LogS (DB, ℎ

′) ∗ LogL (DB, ℎ
′) ∗ Obs(DB, ℎ′)

Fig. 11. Rules governing the internal leader-followers library propositions.

LocalInvDB ≜ ∃",ℎ, E, E ′. LogS (DB, ℎ) ∗ LogMapConsistent (ℎ,") ∗

ℓtblDB
DB
↦−−→ E ∗ isMap(E,") ∗ ℓlogDB

DB
↦−−→ E ′ ∗ isSeq(E ′, ℎ)

The global invariant states that there is a map" that is our global view of the state of the leader. It
is consistent with the history observed by the leader. Also, the history observed by each follower is
a prefix of the history of the leader. The local invariant on the other hand states that there is a map
that is consistent with the history observed by the server and that this map is physically stored, as
the value E , in the memory location ℓtblDB . Similarly, it asserts that the server physically stores the
sequence that is the history ℎ, as the value E ′, in the memory location ℓlogDB .
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