
Cerise: Program Verification on a Capability Machine in the
Presence of Untrusted Code

AÏNA LINN GEORGES∗, MPI-SWS, Germany
ARMAËL GUÉNEAU∗, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes
Formelles, France
THOMAS VAN STRYDONCK, imec-Distrinet, KU Leuven, Belgium
AMIN TIMANY, Aarhus University, Denmark
ALIX TRIEU∗, ANSSI, France
DOMINIQUE DEVRIESE, imec-Distrinet, KU Leuven, Belgium
LARS BIRKEDAL, Aarhus University, Denmark

A capability machine is a type of CPU allowing fine-grained privilege separation using capabilities, machine
words that represent certain kinds of authority. We present a mathematical model and accompanying proof
methods that can be used for formal verification of functional correctness of programs running on a capability
machine, even when they invoke and are invoked by unknown (and possibly malicious) code. We use a
program logic called Cerise for reasoning about known code, and an associated logical relation, for reasoning
about unknown code. The logical relation formally captures the capability safety guarantees provided by the
capability machine. The Cerise program logic, logical relation, and all the examples considered in the paper
have been mechanized using the Iris program logic framework in the Coq proof assistant.

The methodology we present underlies recent work of the authors on formal reasoning about capability
machines [Georges et al. 2021; Skorstengaard et al. 2019a; Van Strydonck et al. 2022], but was left somewhat
implicit in those publications. In this paper we present a pedagogical introduction to the methodology, in a
simpler setting (no exotic capabilities), and starting fromminimal examples. Wework our way up to new results
about a heap-based calling convention and implementations of sophisticated object-capability patterns of the
kind previously studied for high-level languages with object-capabilities, demonstrating that the methodology
scales to such reasoning.

CCS Concepts: • Security and privacy→ Logic and verification; Formal security models; • Theory of
computation→ Program verification; Program specifications.

Additional Key Words and Phrases: capability machines, capability safety, universal contracts, program logic,
separation logic, CHERI

∗This work was carried out while the author was affiliated with Aarhus University.

Authors’ addresses: Aïna Linn Georges, algeorges@mpi-sws.org, MPI-SWS, Germany; Armaël Guéneau, armael.gueneau@
inria.fr, Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette,
France; Thomas Van Strydonck, thomas.vanstrydonck@cs.kuleuven.be, imec-Distrinet, KU Leuven, Belgium; Amin Timany,
timany@cs.au.dk, Aarhus University, Denmark; Alix Trieu, alix.trieu@ssi.gouv.fr, ANSSI, France; Dominique Devriese,
dominique.devriese@kuleuven.be, imec-Distrinet, KU Leuven, Belgium; Lars Birkedal, birkedal@cs.au.dk, Aarhus University,
Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
0004-5411/2024/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

char* p = malloc(10);

Standard CPU Capability machine

0xFF18CE0 base: 0xFF18CE0
end: 0xFF18CEA
addr: 0xFF18CE0

perm: rw

1 capability/1 word

Fig. 1. Representation of a pointer in a standard architecture vs. a capability machine. A capability is similar
to a pointer with extra meta-data.

ACM Reference Format:
Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Dominique Devriese,
and Lars Birkedal. 2024. Cerise: Program Verification on a Capability Machine in the Presence of Untrusted
Code. J. ACM 1, 1 (January 2024), 59 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A capability machine is a type of CPU that enables fine-grained memory compartmentalization and
privilege separation through the use of capabilities. This type of hardware architecture has been
studied since the 1960s [Dennis and Van Horn 1966; Levy 1984], and in particular more recently
as part of the CHERI project [Watson et al. 2020]. Capability machines offer fine-grained and
scalable privilege separation at the hardware level and they are a compelling target for secure
compilation [Chisnall et al. 2017; El-Korashy et al. 2021; Skorstengaard et al. 2019b; Van Strydonck
et al. 2019]. As such, capability machines have recently enjoyed a lot of interest from industry as a
promising way to mitigate memory safety related vulnerabilities. As part of the Digital Security by
Design initiative, a prototype, Morello, has been developed by Arm. Microsoft has also recently
announced CHERIoT [Amar et al. 2023], an implementation of CHERI more adapted to small
embedded systems. Compared with other security mechanisms like secure enclaves [Maene et al.
2018], or memory-management-unit (MMU)-based models, capability machines offer a fine-grained
and flexible security model without compromising on efficiency [Watson et al. 2016].

Capability machines distinguish, at the level of hardware, between machine integers and capabil-
ities; and a capability can be understood as a pointer with associated metadata, cf. Fig 1. A machine
word containing an integer value can only be used for numerical computations and cannot be used
as a pointer to access memory. On the other hand, a machine word containing a capability can be
used to access a given portion of memory, depending on the metadata contained in the capability.
We also say that the capability has authority over some fragment of memory.

A capability thus corresponds to a native machine value, and can be stored in a CPU register
or in memory. While this might seem wasteful due to the amount of extra metadata that needs to
be carried around, for realistic capability machines a lot of work has been dedicated to the design
of compressed representations for capabilities [see, e.g., Carter et al. 1994; Woodruff et al. 2019].
In this paper, we will abstract from these details and represent capabilities in their uncompressed
form, as a tuple carrying the metadata.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.dsbd.tech/
https://www.dsbd.tech/
https://www.morello-project.org/

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 3

A capability machine guarantees the integrity of capabilities: one cannot create fresh capabilities
out of thin air or modify the metadata of existing capabilities in arbitrary ways. For instance, CHERI
associates tags to machine words to identify whether they represent a capability or an integer.
Such a tag bit is checked and set by the machine, and is not directly accessible by software. More
generally, new capabilities can only be derived from existing capabilities using a restricted set of
operations provided by the machine. As such, all capabilities on the system are recursively derived
from the full-authority capabilities that are initially provided to software at boot time. Intuitively,
the machine ensures that a given program cannot forge capabilities and obtain more authority than
it held previously, a property sometimes referred to as capability monotonicity [Nienhuis et al.
2020].
Capabilities therefore allow a piece of code to interact securely with untrusted third-party

code, even within the same address space, by restricting the set of capabilities the untrusted code
(transitively) has access to. In a system composed of mutually untrusted components (which might
even contain malicious code), capabilities provide a way of enforcing that the overall system
nevertheless satisfies some security properties.

Note, however, that capabilities are low-level, flexible, building blocks, which operate at the level
of the machine code and whose metadata “just” triggers some additional runtime checks by the
machine. This means that the properties we can actually enforce using capabilities crucially depend
on how we use capabilities: the variety of properties that can be enforced stems from how one can
use and combine capabilities.

In this paper we show how we can formally prove that security properties are enforced for some
known verified code, even when that code is linked with unverified untrusted third-party code.
Our model of interaction between the known and unknown code is very simple: we assume the
code is in the same address space and that control is transferred from one to the other using an
ordinary jump instruction. We focus on a restricted subset of the capabilities present in the CHERI
architecture (using only “normal” read/write capabilities and a kind of so-called sentry capabilities,
which provide a basic form of encapsulation, see Section 2.4). Because the security properties we
consider hold even in the presence of unverified unknown code, they are sometimes referred to
as robust safety properties [Swasey et al. 2017]. The security properties we focus on are centered
around memory compartmentalization, in particular, local state encapsulation. We consider a
range of examples, starting with very basic examples (sharing a buffer with some unknown code),
through implementations of closures with encapsulated state, and end up with a quite sophisticated
low-level implementation of an interval library, for which we show that certain representation
invariants are preserved, even when interacting with unknown code.

We proceed as follows:

• We first explain informally how one can program with capabilities and use capabilities to
enforce memory compartmentalization (Section 2).
• We then introduce the formal operational semantics of a simple capability machine with
sentry capabilities (Section 3).
• We define the Cerise program logic which can be used to formally verify the correctness of
programs running on the capability machine. Our program logic is defined by instantiating the
Iris framework [Jung et al. 2018], which provides an expressive separation logic with powerful
reasoning principles, including, in particular, the notion of a logical invariant (Section 4).
• We define, using our program logic, the specification of what a “safe” capability and a “safe”
program is. Intuitively, a capability (respectively, a program) is “safe” if it cannot be used to
invalidate an invariant. Hence, safe capabilities can be shared freely with unknown code.
Safety of a capability is defined in the program logic as a unary logical relation (Section 5).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

4 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

• We show that if a program only has access to “safe” values, then running the program itself
is also “safe”. This is a global property of the capability machine, expressing its capability
safety: it is not possible to increase one’s authority beyond what was available initially,
independently of the sequence of instructions that one executes (Section 5). Concretely,
the theorem takes the form of a contract that holds for arbitrary code,1 and which can be
combined in the program logic with specifications for trusted code, which are themselves
proved using an interactive proof mode inherited from the Iris framework [Krebbers et al.
2017]. The last piece of the puzzle is then a so-called Adequacy theorem (Section 4), which
relates invariants established in the program logic to the operational semantics of the machine.
Given a concrete scenario (typically, a complete system mixing known verified code with
unknown untrusted code), this makes it possible to obtain a theorem about the execution
of the system which only depends on the operational semantics of the machine (not on the
program logic).
• In Section 6 we then return to the examples from Section 2 and show how to use Cerise to
formally prove that the desired memory compartmentalization results really do hold.
• In Section 7 we consider more sophisticated examples, which involve dynamic memory
allocation. We focus on the low-level implementation of ML-like programs, and introduce
a heap-based calling convention for closures implementing ML functions. We extend the
earlier Adequacy theorem to account for dynamically allocated memory.
• In Section 8 we demonstrate how to use our methodology to establish correctness of object
capability patterns (OCPs) from the literature. In particular, we consider the OCP of dynamic
sealing, as presented by [Swasey et al. 2017] in the context of a high-level language and we
demonstrate that Cerise can be used to prove similar results about a low-level implementation
of their example.
• Section 9 offers some perspectives on the relevance of our technical contributions and how
we envision them being used in the development of secure systems.
• Finally, we discuss related work in Section 10.

This paper pedagogically introduces and explains the methodology underlying a sequence of
recent research papers [Georges et al. 2021; Skorstengaard et al. 2018, 2019a; Van Strydonck et al.
2022], in the form of the Cerise program logic, but also contributes new material. The operational
semantics, program logic and logical relation discussed in Sections 3, 4 and 5 are based on those
used by Georges et al. [2021] (but we have removed local and uninitialized capabilities as well as
Kripke indexing for simplicity and instead added much more extensive explanations and proofs).
Sections 2 and 6 are new; they provide a clear and accessible introduction to capability machine
programming and our reasoning tools. The examples in Sections 7-8 are also new and represent a
non-trivial verification effort.
The results and examples presented here have been fully formalized in Coq, and are available

online: https://github.com/logsem/cerise/tree/journal. The development can also be viewed online
at https://logsem.github.io/cerise/journal/; we use circled numbers such as 1 to link directly to
corresponding Coq formal statements in the following.

2 PROGRAMMINGWITH CAPABILITIES
Let us give a taste of how one might use capabilities when writing programs with the goal of
enforcing some additional memory protection or encapsulation guarantees. We consider a fairly
simple but quite general adversarial model, where we wish to verify the correctness of a known

1Because it holds for arbitrary code, we sometimes refer to this as a universal contract.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://github.com/logsem/cerise/tree/journal
https://logsem.github.io/cerise/journal/
https://logsem.github.io/cerise/journal/index.html

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 5

(a) Scenario 1: passing control to
untrusted code

(b) Scenario 2: being called by
untrusted code (possibly many

times)

Fig. 2. Two scenarios where a (trusted) component interacts with its (untrusted) context. The trusted compo-
nent is represented with a plain background, while the untrusted context is represented with a red dotted
background.

component interacting with a possibly adversarial third-party component whose code is unverified
and untrusted.

In this section we detail two concrete example programs, which use capabilities in two different
scenarios. In the first scenario, illustrated in Figure 2a, we consider a program that eventually
passes control to the untrusted third-party code, but uses capabilities to protect a region of memory
containing some secret data from being accessed by the untrusted code. In the second scenario
(Figure 2b), we consider the case of a verified component being called by the third-party code. The
goal is then for the verified component to use capabilities to protect (or “encapsulate”) a piece of
private memory, which it may access during its execution, but which should remain inaccessible to
the unverified code.

2.1 Anatomy of a capability (in our model)
We are interested in a subset of the capabilities available in a CHERI capability machine. We thus
work with a simplified machine model, featuring basic capabilities that are used to give access
to a range of memory, as well as so-called “sealed entry” capabilities (abbreviated as “sentry”
capabilities [Watson et al. 2020, §3.8]) that provide encapsulation features. The sentry capabilities
were also called “enter” capabilities in earlier work, e.g., in the M-Machine by Carter et al. [1994].

Concretely, we model capabilities as 4-tuples (𝑝, 𝑏, 𝑒, 𝑎). In actual hardware, capabilities are
encoded as fixed-size binary words, but here we abstract over their concrete representation.

Capability: (𝑝, 𝑏, 𝑒, 𝑎)
𝑝 ∈ {o, ro, rx, rw, rwx, e} permission
𝑏 ∈ Addr base address
𝑒 ∈ Addr end address
𝑎 ∈ Addr current address

A capability (𝑝, 𝑏, 𝑒, 𝑎) represents a machine word that can be used to access memory within the
region [𝑏, 𝑒) delimited by its base address 𝑏 and end address 𝑒 . The permission 𝑝 specifies what is
possible to do within this memory range: permission o specifies that the capability actually gives
no access rights, ro grants read-only access to memory, rx grants the right to read and execute the
contents of the memory, rw gives read and write access, and rwx gives read, write, and execute
access. Capabilities with permission e behave a bit differently (they are used to provide a form of
encapsulation), and will be explained later in Section 2.4.

A capability is meant to be used as a pointer, and thus additionally points to a specific address 𝑎
(typically, but not necessarily, belonging to the range [𝑏, 𝑒)). Each time the capability is used to

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

6 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

access memory, the machine will automatically check that 𝑎 is between bounds 𝑏 and 𝑒 , and that the
access is permitted according to 𝑝 . From a capability (𝑝,𝑏, 𝑒, 𝑎) it is easy to derive another capability
(𝑝,𝑏, 𝑒, 𝑎′) pointing to a different address 𝑎′ also within range [𝑏, 𝑒) – in other words, while a
capability points to a specific address, it really holds authority over the whole region delimited by
its beginning and end address.
Note that, on a capability machine, machine words can represent not only binary-encoded

capabilities, but also traditional fixed-size integers. However, unlike on a traditional computer
architecture, integers cannot be used as pointers. In other words, without holding a capability, one
cannot access memory at all. In this paper, we rely on difference in notation to distinguish between
capabilities and integers. In actual hardware, this is done by associating an extra one-bit tag to each
word to distinguish capabilities from integers.

2.2 Sometimes, failure is a good thing
It is worth pointing out a sometimes counter-intuitive aspect of reasoning about security of
programs running on a capability machine, especially for readers with a background in reasoning
about safety in higher-level languages. For a high-level language, program safety can be seen
as the absence of undefined behavior or runtime errors. For instance, an out-of-bounds array
access is undefined behavior in C, and it leads to a runtime error, such as raising an exception, in
memory-safe languages such as Rust or OCaml. We are instead interested in security properties for
which a runtime failure can actually be considered a good thing.

Generally speaking, a low-level machine has many cases where it can fail at runtime, stopping
the normal course of execution. In a standard (non-capability) machine, this can happen, e.g., if
the machine attempts to execute an invalid instruction which cannot be decoded. The addition
of capabilities only adds more possibilities for runtime faults: each time a capability is used, the
capability machine will check that it has adequate permission and bounds, and raise a runtime
fault otherwise.
Now, the point is that, from a security perspective, these additional runtime faults are a good

thing. Using these additional checks, the capability machine turns dangerous behavior (out-of-
bounds accesses leading to buffer overflow attacks, etc.) into proper faults before they can cause
damage. Thus, for our purposes, it is always safe for the machine to fail: it means that an illegal
operation may have been attempted, and the execution has been stopped in response.
Of course, when writing concrete programs, we will typically want to verify that we do not

involuntarily trigger faults, as this would make our programs less useful. But when interacting
with adversarial code, this is a possibility that we have to take into account anyway: we cannot
prevent unknown code from shooting itself in the foot, e.g. by trying to access memory it does not
have a valid capability for, or by decoding illegal instructions.

To sum up, in this work we reason about security properties that are not violated in the case of
machine failure. This includes, for example, integrity of private data: no data can be compromised
if the machine stops running. It is therefore useful to keep in mind that we consider failure to be
trivially safe!

2.3 Restricting access to memory by constraining available capabilities
Consider Scenario 1 from Figure 2a: how can one write a program which passes control to untrusted
code while protecting some secret data? That is, we wish to write a program that sets up capabilities
so that its secrets are preserved even after it runs untrusted code.

The key intuition is that, at any point of the execution, one can only access the part of memory
that is accessible using the currently available capabilities. In other words, the authority of a running
program comes from the set of capabilities which are transitively reachable from the CPU registers.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 7

This is illustrated below, in a scenario where the pc register (“program counter”) contains a
capability with permission rx pointing to some memory region (containing the code of the program
being executed), and register r1 contains a capability with permission rw, pointing to a region of
memory, which itself contains an rw capability pointing to another memory region. The collection
of the “hatched” memory regions corresponds to the overall subset of memory accessible by the
program.

rx
pc

42
r0

rw
r1

...
registers

rw
memory

If one wishes to reduce the set of available memory or its associated access rights—for instance
to protect secrets from being leaked to an adversary—then it is enough to constrain the capabilities
currently available. This can be done in a few different ways.

First, one can simply remove a capability from registers in order to remove access to the memory
it was giving access to. For instance, after executing the instruction “mov r1 0”, which overwrites
the contents of register r1 with the integer 0, one loses access to the memory regions which were
previously accessible from the capability stored in that register.

rx
pc

42
r0

0
r1

...
registers

memory

Alternatively, it is possible to restrict the range of a capability to point to a smaller memory
region. This changes the set of accessible memory to a subset of what was previously available.
For instance, starting from our initial scenario and running the instruction “subseg r1 a0 a1”
will change the range of the capability stored in register r1 to [𝑎0, 𝑎1). (The machine will check
that [𝑎0, 𝑎1) is indeed included in the range of the original capability.) In our example scenario
(illustrated below), we then only keep the beginning of the region accessible from r1, and this
entails that the third region of memory becomes inaccessible, since it was only reachable from a
capability stored at the end of the region accessible from r1.

rx
pc

42
r0

rw
r1

...
registers

𝑎0 𝑎1 memory

Finally, one can restrict the permission of a capability to a permission that grants less access
rights. For instance, running the instruction “restrict r1 RO” in our initial scenario modifies the
capability stored in r1 to only grant read-only access to its corresponding memory region. Note
that we still have read-write access to the last memory region, as we can still read the capability
(with permission rw) pointing to it.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

8 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

; initially, PC = (RWX, code, end, code)

; r0 = (unknown) capability to the continuation

code:

mov r1 PC ; r1 = (RWX, code, end, code)

lea r1 [data-code] ; r1 = (RWX, code, end, data)

subseg r1 [data] [data+3] ; r1 = (RWX, data, data+3, data)

jmp r0 ; jump to unknown code: we give it read-write

; access to the first 3 words of the data,

; but not the secret value

data:

; the first 3 data words contain public data that will be passed

; to the unknown code (the "Hi" string)

'H', 'i', 0,

; they are followed by secret data (the integer 42)

42

end:

Fig. 3. Program sharing a buffer with possibly adversarial code.

rx
pc

42
r0

ro
r1

...
registers

rw
memory

Example: sharing a sub-buffer with unknown code. Using some of the mechanisms detailed
above, we can implement a very simple program that shares a buffer with unknown, possibly
adversarial, code while using capabilities to protect some data that would otherwise be vulnerable
to buffer overflow attacks.

The assembly code for the program is shown in Figure 3 2 . It consists of a code section containing
the instructions of the program, followed by some data which (for simplicity) we simply assume to
be statically allocated. The data section holds the zero-terminated string "Hi", which we wish to
share with the untrusted code, and the integer 42 which represents our secret data.
Initially, we assume the program counter to contain an rwx capability for the whole region

holding our program. This capability serves two purposes: it allows the machine to execute our
program, but can also be manipulated by the program itself to derive a capability pointing to its
own data. By convention, the register r0 is assumed to contain a capability to the continuation of
the program, i.e. other code that the program will pass control to after it is done executing. As no
assumption is made about the contents of r0, it is conservatively assumed to point to unknown,
arbitrary code.
Our program executes as follows: it first loads the capability held by the program counter into

register r1. Then, using the lea instruction, it changes the “current address” of the capability to
point to the data label (lea modifies a capability by adding an offset to its “current address”). In
assembly programs, we use the brackets notation [...] to denote an arithmetic expression that is
computed statically when assembling the program.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_code

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 9

At this point, the capability held in r1 points to the start of the "Hi" string, but has (rwx)
authority over the whole code and data section. This capability would be unsafe to share with the
untrusted code, as they could simply use lea to increment the capability’s current address past
the end of the string, and obtain a valid capability to the secret value (thus performing a basic
“buffer overflow” attack). To prevent this from happening, we use the subseg instruction to obtain a
capability whose range of authority is restricted to the sub-buffer holding the "Hi" string. Note that
we are not restricting the permission of the shared sub-buffer capability. Following the principle
of least privilege, one might expect that we remove its execute (-x) permission as well. However,
while it would have been good practice, doing so would not have been necessary to uphold the
expected security property2, and we can thus prove something stronger. Finally, we pass control to
the untrusted code by using the jmp instruction, loading the contents of register r0 into pc.
This example illustrates that even a basic mode of use of capabilities (restricting them appro-

priately) can easily prevent buffer overflow attacks. In Section 6.1, we show how we can formally
prove that, for any untrusted code, the value of the secret data will be equal to 42 at every step of the
execution, including after control has been passed to the untrusted code. We have also developed
a relational model, which can be used to prove that the secret value cannot even be read by the
unknown code, but the details of this relational model are out of scope of this paper.

2.4 Securely encapsulating code and private capabilities
The previous example illustrates how to restrict available capabilities to prevent an adversary from
accessing secret data. However, what if we additionally want our program to be called back by the
untrusted code, as in Scenario 2b? In that case, when the trusted code gets invoked again we would
like to recover access to the capabilities it previously had to its private state.
This is unfortunately not achievable with the capabilities that we have described so far. If we

remove capabilities to private memory before passing control to untrusted code, then there is
no way for us to get them back later on: the only capabilities we will get access to in a further
invocation are capabilities the untrusted code itself has access to.
Sentry capabilities provide this missing feature. They implement a form of encapsulation that

resembles the use of closures with encapsulated local state in high-level languages, and they allow
implementing compartments which encapsulate private state and capabilities but can be called
from untrusted code. From a security perspective, sentry capabilities allow setting up protection
boundaries: the code executing before and after an invocation of a sentry capability has different
authority and thus represent distrusting components. We denote sentry capabilities with permission
e (for “Enter”, a terminology originating from the M-machine [Carter et al. 1994]).

One typically creates a sentry capability pointing to a region ofmemory describing a compartment
containing executable code and local state (or private capabilities to that local state). A sentry
capability is opaque: it cannot be used to read or write to the memory region it points to, and
it cannot be modified using restrict or subseg. It can thus be safely shared with untrusted
third-parties: they will not be able to access the encapsulated code and data. In the figure below,
the memory region pointed to by r1 (hatched in gray) is not accessible for either reading or writing.

2Indeed, we will see in later sections how the execute permission generally does not provide additional authority over a
capability.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

10 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

rx
pc

42
r0

e
r1

...
registers

memory

The only possible operation is to “invoke” the sentry capability using the jmp instruction, thus
passing control to the code held in the region pointed to by the capability (in other words, “running”
the compartment). When jmp is called on a sentry capability, it turns the capability into a capability
with permission read-execute (rx) over the same memory region, and puts it into the program
counter register pc. This simultaneously runs the encapsulated code, and gives access to the data
and capabilities stored there, which were previously inaccessible. Running instruction jmp r1 on
the scenario of the previous figure leads to the machine state shown below.

rx
pc

42
r0

e
r1

...
registers

memory

Register pc now contains an rx capability to the previously opaque region, meaning that code
contained in that region can execute. Furthermore, it may access other capabilities stored in that
region, which can in turn be used to transitively access other private regions of memory.

Example: a counter compartment. To illustrate the use of sentry capabilities, let us consider the
example of a simple secure compartment implementing a counter. An instance of the counter holds
a private memory cell containing the current (integer) value of the counter. Every time the code
in the counter’s compartment is invoked, it increases the value stored in the memory cell. Using
a sentry capability, one can expose the counter to an untrusted context, without giving it direct
access to the counter value.
It is worth pointing out that this is similar to the use of closures encapsulating local state in

high-level languages. Typically, a similar counter program could be implemented in a high-level
language as follows, using a function closure to encapsulate a reference holding the counter value.

let 𝑥 = ref 0 in (𝜆(). 𝑥 := !𝑥 + 1; !𝑥)

As before, our actual counter program is implemented in assembly, and its code appears in
Figure 4 3 . Its implementation is divided into two parts. First, the code starting at label init (and
ending at code) is used to set up the counter compartment; it is intended to run only once at the
beginning of the program. Then, the region between code and end corresponds to the contents of
the counter compartment itself, including its executable code (between code and data) and private
data (between data and end).
The role of the initialization code is to create a sentry capability encapsulating the code–end

region, and then pass control to the (untrusted) context, giving it access to the newly created sentry
capability. Additionally, the initialization code stores at address data a capability giving read-write
access to the compartment’s region, and pointing to the counter’s value at address data+1.
One might wonder why we have this extra indirection to the counter’s value through the

capability in data. Recall that after calling jmp on a sentry capability, the program counter is only
provisioned with an rx capability. For the counter code to be able to actually increment the counter

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_init0

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 11

; initially, PC = (RWX, init, end, init)

; r0 = (unknown) capability to the context

init:

mov r1 PC ; r1 = (RWX, init, end, init)

lea r1 [data-init] ; r1 = (RWX, init, end, data)

mov r2 r1 ; r2 = (RWX, init, end, data)

lea r2 1 ; r2 = (RWX, init, end, data+1)

store r1 r2 ; mem[data] <- (RWX, init, end, data+1)

lea r1 [code-data] ; r1 = (RWX, init, end, code)

subseg r1 [code] [end] ; r1 = (RWX, code, end, code)

restrict r1 E ; r1 = (E, code, end, code)

mov r2 0 ; r2 = 0

jmp r0 ; jump to unknown code: we only give it access

; to an enter capability pointing to 'code'

; when 'code' gets executed from the E capability,

; PC = (RX, code, end, code)

; r0 = (unknown) return capability to the continuation

code:

mov r1 PC ; r1 = (RX, code, end, code)

lea r1 [data-code] ; r1 = (RX, code, end, data)

load r1 r1 ; r1 = (RWX, init, end, data+1)

load r2 r1 ; r2 = <counter value>

add r2 r2 1 ; r2 = <counter value> + 1

store r1 r2 ; mem[data+1] <- <counter value> + 1

mov r1 0 ; r1 = 0

jmp r0 ; return to unknown code

data:

0xFFFF, ; will be overwritten with (RWX, init, end, data+1), i.e.

; a read-write capability to the counter value

0 ; our private data: the current value of the counter

end:

Fig. 4. Program implementing a secure counter

value (at address data+1), it needs to have write access to it. The additional rwx capability stored at
address data by the initialization code is thus used to “promote” read access on the compartment’s
region into read-write access to that same region.
The code of the counter’s compartment can then run many times, once each time the context

chooses to invoke the sentry capability it got from the initialization code. At each invocation, the
counter’s implementation (at address code) reads the rwx capability stored in the data section,
uses it to increment the value of the counter, and passes control back to its caller.

Let us walk through the details of the code. The initialization code is assumed to run starting with
a program counter giving rwx access over the whole program region. The first four instructions
derive, from the program counter, rwx capabilities pointing to addresses data and data+1. Then,
using the store instruction, the capability (rwx, init, end, data+1) is stored at address data. Next,
after using lea and subseg to adjust the address and bounds of the capability, a sentry capability
is created pointing to the compartment’s region [code, end). This is done using the restrict

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

12 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

instruction, turning a capability with permission rwx into a capability with permission e. Register
r2 is then cleared, to make sure that the rwx capability pointing to the counter value is not leaked
to the context. Finally, the initialization code jumps to the capability in r0, which by convention
points to the context.
The compartment’s code (starting at address code) then gets executed each time the context

invokes the sentry capability. Because we have only shared a sentry capability (e, code, end, code)
with the context, we know that when the compartment gets executed, the program counter must
contain (rx, code, end, code). By reading the program counter, the first two instructions of the
code then derive an rx capability pointing to address data, and use it (with load) to read the
capability that was stored there, granting rwx access to data+1. The subsequent load, add and
store instructions use this second capability to increment the value of the counter. Finally, before
returning to the context by jumping to r0, the program takes care of clearing register r1, overwriting
its contents with 0. This is quite crucial, as otherwise an rwx capability would be leaked to the
context, giving it direct access to the counter’s private state!
To sum up, our example program carefully selects which capabilities it shares with unknown

code, and leverages the encapsulation properties of sentry capabilities provided by the machine.
Consequently, it should seem clear, at least informally, that the integrity of the counter’s value
is guaranteed through the execution. More precisely, we should be able to formally prove some
invariant about it: for instance, that it is nonnegative at every step of the execution, for any un-
trusted context. In Section 6.2, we show in more detail how to formally establish this property.

In this section, we have showcased how one might program with capabilities in order to obtain
security guarantees, and make it possible to interact with adversarial code while protecting private
data and invariants.

In the rest of this paper, we show how we can make the intuitions that we have developed so far
more precise, and formally prove capability safety for machine code programs that interact with
untrusted code. Namely:

• We expect to have some concrete known code, which has some private data and invariants,
and interacts with untrusted code.
• We formally define the operational semantics of the capability machine that we consider
(Section 3). This precisely defines the behavior of the machine on which the rest of our
framework is built.
• Then we develop (Section 4) a program logic which supports formally verifying correctness
properties about known code. Given some verified known code, we would then like to be
able to conclude some result about a complete execution of the machine, when it runs a
combination of the known code and some arbitrary untrusted code.
• To that end we need a way of formally capturing the fact that the machine effectively restricts
the behavior of arbitrary code at runtime, by limiting the capabilities it has access to. We do
this (Section 5) by defining a logical relation capturing “capability safety” of arbitrary code.
• By combining the Adequacy theorem of our program logic and the Fundamental theorem of
our logical relation, we can prove safety of concrete examples (Section 6) and obtain theorems
about complete executions of the machine.

3 OPERATIONAL SEMANTICS OF A CAPABILITY MACHINE
The very basis of our framework is a formal description of the capability machine we consider:
which instructions it supports, and its behavior when it runs and executes programs. Technically

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 13

𝑎 ∈ Addr ≜ [0,AddrMax]
𝑝 ∈ Perm ::= o | e | ro | rx | rw | rwx
𝑐 ∈ Cap ≜ {(𝑝, 𝑏, 𝑒, 𝑎) | 𝑏, 𝑒, 𝑎 ∈ Addr}
𝑤 ∈ Word ≜ Z + Cap
reg ∈ Reg ≜ RegName→Word
𝑚 ∈ Mem ≜ Addr→Word
𝑠 ∈ ExecState ::= Running | Halted | Failed
𝜑 ∈ ExecConf ≜ Reg ×Mem

rwx

rw rx

ro e

o

Lattice defining the ≼ relation.
(We have 𝑝1 ≼ 𝑝2 if there is a path going up from 𝑝1 to 𝑝2 in the diagram.)

𝑟 ∈ RegName ::= pc | r0 | r1 | . . . | r31 𝜌 ∈ Z + RegName
𝑖 ::= jmp 𝑟 | jnz 𝑟 𝑟 | mov 𝑟 𝜌 | load 𝑟 𝑟 | store 𝑟 𝜌 | add 𝑟 𝜌 𝜌 | sub 𝑟 𝜌 𝜌 |

lt 𝑟 𝜌 𝜌 | lea 𝑟 𝜌 | restrict 𝑟 𝜌 | subseg 𝑟 𝜌 𝜌 | isptr 𝑟 𝑟 | getp 𝑟 𝑟 |
getb 𝑟 𝑟 | gete 𝑟 𝑟 | geta 𝑟 𝑟 | fail | halt

Fig. 5. Base definitions for the machine’s words, state, and instructions.

speaking, this description corresponds to the operational semantics of the machine, upon which
the program logic described next in Section 4 is built.

Our capability machine draws inspiration from CHERI [Watson et al. 2020], albeit in a simplified
form, and only covers a subset of the features found in CHERI machines. Compared to a realistic
CHERImachine, we consider a number of simplifications: our instruction set isminimal, ourmachine
does not have virtual memory or different privilege levels, machine words can store unbounded
integers, every instruction can be encoded in a single machine word, we do not consider memory
alignment issues, and we abstract away from the binary encoding of capabilities. Nevertheless, our
semantics does capture many of the aspects that make reasoning about machine code programs
challenging: our machine has a finite amount of memory, a fixed number of registers, and there are
no distinctions between code and data nor structured control flow for programs, owing to the fact
that program instructions are simply encoded and stored in memory as normal integers.

Figure 5 4 gives the basic definitions that will play a role in the operational semantics of machine
instructions. The set of memory addresses Addr is finite, and corresponds to the integer range
[0,AddrMax]. A memory word 𝑤 ∈ Word is either an (unbounded) integer or a capability 𝑐 .
Capabilities are of the form (𝑝,𝑏, 𝑒, 𝑎), giving access to the memory range [𝑏, 𝑒) with permission 𝑝 ,
while currently pointing to 𝑎. The permissions 𝑝 are ordered according to the lattice appearing at
the top-right of the figure, inducing a bottom-to-top partial order ≼ on permissions. There are six
different permissions; the null (o), read-only (ro), enter (e), read-write (rw), read-execute (rx) and
read-write-execute (rwx) permissions.
The state of the machine is modeled by the semantics as a pair of an execution state 𝑠 and

a configuration 𝜑 . An execution state flag indicates whether the machine is presently running
(Running), has successfully halted (Halted), or has stopped execution by raising an error (Failed). A
configuration 𝜑 contains the state of the registers 𝜑.reg and the memory 𝜑.mem. A register file reg
consists of a map from register names 𝑟 to machine words, while the memory𝑚 maps addresses to
words.

Next, Figure 5 shows the list of instructions of our machine. An instruction 𝑖 typically operates
on register names 𝑟 , but can also sometimes take integer values as parameters; 𝜌 denotes an
instruction parameter which can be either a register name or a constant integer. Our machine

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.machine_base.html

14 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

features general purpose registers (r0 – r31), on top of the pc register, which points to the address in
memory where the currently executing instruction is stored. (Technically speaking, pc must point
to a memory cell containing an integer which can be successfully decoded into an instruction.) pc
should therefore always contain a capability with at least permission rx; in any other case, the
machine fails immediately.
Figure 6 5 defines the small-step operational semantics for the capability machine. The rule

ExecSingle describes how a single instruction gets executed. An execution step requires an
executable and in-bounds capability in the pc register, and fails otherwise. It expects the memory
cell pointed to by the capability to store an integer 𝑧, decodes it into an instruction and executes
the instruction on the current state 𝜑 ; the new configuration is denoted Jdecode(𝑧)K(𝜑). The table
making up most of Figure 6 defines the operational behavior J𝑖K(𝜑) for each instruction 𝑖 of the
machine.

Most instructions use the auxiliary function updPC to increment the pc register after their proper
operations. Because the address space is finite, pointer arithmetic such as incrementing pc can result
in illegal addresses. To avoid notational clutter, we will always write as if arithmetic operations
succeed, and consider that otherwise themachine transitions to a Failed state. The auxiliary function
getWord is used to get the value corresponding to the argument 𝜌 of an instruction: either its
corresponding integer value if it is an immediate integer, or the contents of the corresponding
register if it is a register name. The auxiliary function updatePcPerm is used in the definition of the
behavior of the jmp and jnz instructions to unseal sentry capabilities. As mentioned previously, an
additional effect of these jump instructions is to unseal sentry (e) capabilities into rx capabilities.
We now describe the semantics of the instructions of the machine, as formally defined in the

table of Figure 6. The fail and halt instructions stop the execution of the machine, in the Failed
and Halted state respectively. mov 𝑟 𝜌 copies 𝜌 (either an immediate value or the contents of
the corresponding register name) into register 𝑟 . The instructions load and store allow reading
and writing memory: load 𝑟1 𝑟2 reads the value pointed to by the capability in 𝑟2 provided it
has the permission r and points within its bounds; store 𝑟 𝜌 stores 𝜌 to the location pointed to
by the capability in 𝑟 provided it has the w permission and points within bounds. The jmp and
jnz instructions correspond to an unconditional and conditional jump respectively, thus loading
the provided capability into pc. Using updatePcPerm, in the case of a sentry (e) capability, they
unseal it into an rx capability first. Three instructions allow deriving new capabilities from existing
ones. restrict 𝑟 𝜌 allows restricting the permission of a capability (where 𝜌 provides an integer
encoding of the desired permission), provided it is less permissive than the current permission
according to ≼. subseg 𝑟 𝜌1 𝜌2 restricts the range of authority of the capability stored in 𝑟 , provided
it is a subset of the current range of the capability, and that the given integers represent valid
addresses. lea 𝑟 𝜌 modifies the current address of the capability in 𝑟 , by adding to it the integer
offset 𝜌 . As should be expected, subseg and lea fail for sentry capabilities. Arithmetic operations
are provided by the add, sub and lt instructions, which implement addition, subtraction, and
comparison on integers, respectively. Finally, a number of instructions allow inspecting machine
words and capabilities. isptr can be used to query whether a machine word is an integer or a
capability, and getp, getb, gete, and geta return the different parts of a capability (permission,
bounds and address). (More precisely, getp returns an integer encoding the permission, as given by
encodePerm.) If any of the capability checks for an instruction are not satisfied, the machine fails.

An important aspect of our operational semantics is how it explicitly accounts for errors: when
a capability check fails (for instance when a program tries to use a capability outside of its range),
the semantics does not get stuck (meaning that it would not be able to reduce): instead, it explicitly
transitions to a state with the Failed execution state flag.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.cap_lang.html

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 15

ExecSingle

(Running, 𝜑) →


Jdecode(𝑧)K(𝜑) if 𝜑.reg(pc) = (𝑝,𝑏, 𝑒, 𝑎) ∧ 𝑏 ≤ 𝑎 < 𝑒 ∧

𝑝 ∈ {rx, rwx} ∧ 𝜑.mem(a) = 𝑧

(Failed, 𝜑) otherwise

𝑖 J𝑖K(𝜑) Conditions
fail (Failed, 𝜑)
halt (Halted, 𝜑)

mov 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤]) 𝑤 = getWord(𝜑, 𝜌)

load 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑤]) 𝜑.reg(𝑟2) = (𝑝, 𝑏, 𝑒, 𝑎) and𝑤 = 𝜑.mem(𝑎)
and 𝑏 ≤ 𝑎 < 𝑒 and 𝑝 ∈ {ro, rx, rw, rwx}

store 𝑟 𝜌 updPC(𝜑 [mem.𝑎 ↦→ 𝑤]) 𝜑.reg(𝑟) = (𝑝, 𝑏, 𝑒, 𝑎) and 𝑏 ≤ 𝑎 < 𝑒 and
𝑝 ∈ {rw, rwx} and𝑤 = getWord(𝜑, 𝜌)

jmp 𝑟
(Running,
𝜑 [reg.pc ↦→ newPc]) newPc = updatePcPerm(𝜑.reg(𝑟))

jnz 𝑟1 𝑟2

if 𝜑.reg(𝑟2) ≠ 0, then
(Running,
𝜑 [reg.pc ↦→ newPc])

else updPC(𝜑)

newPc = updatePcPerm(𝜑.reg(𝑟1))

restrict 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤])
𝜑.reg(𝑟) = (𝑝, 𝑏, 𝑒, 𝑎) and
𝑝 ′ = decodePerm(getWord(𝜑, 𝜌)) and 𝑝 ′ ≼ 𝑝

and𝑤 = (𝑝 ′, 𝑏, 𝑒, 𝑎)

subseg 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑤])

𝜑.reg(𝑟) = (𝑝, 𝑏, 𝑒, 𝑎) and for 𝑖 ∈ {1, 2},
𝑧𝑖 = getWord(𝜑, 𝜌𝑖) and 𝑧𝑖 ∈ Z
𝑏 ≤ 𝑧1 < AddrMax and
0 ≤ 𝑧2 ≤ 𝑒 and 𝑝 ≠ e and𝑤 = (𝑝, 𝑧1, 𝑧2, 𝑎)

lea 𝑟 𝜌 updPC(𝜑 [reg.𝑟 ↦→ 𝑤]) 𝜑.reg(𝑟) = (𝑝, 𝑏, 𝑒, 𝑎) and 𝑧 = getWord(𝜑, 𝜌)
and 𝑝 ≠ e and𝑤 = (𝑝, 𝑏, 𝑒, 𝑎 + 𝑧)

add 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑧]) for 𝑖 ∈ {1, 2}, 𝑧𝑖 = getWord(𝜑, 𝜌𝑖)
and 𝑧𝑖 ∈ Z and 𝑧 = 𝑧1 + 𝑧2

sub 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑧]) for 𝑖 ∈ {1, 2}, 𝑧𝑖 = getWord(𝜑, 𝜌𝑖)
and 𝑧𝑖 ∈ Z and 𝑧 = 𝑧1 − 𝑧2

lt 𝑟 𝜌1 𝜌2 updPC(𝜑 [reg.𝑟 ↦→ 𝑧]) for 𝑖 ∈ {1, 2}, 𝑧𝑖 = getWord(𝜑, 𝜌𝑖)
and 𝑧𝑖 ∈ Z and if 𝑧1 < 𝑧2 then 𝑧 = 1 else 𝑧 = 0

getp 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑧]) 𝜑.reg(𝑟2) = (𝑝, _, _, _) and 𝑧 = encodePerm(𝑝)
getb 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑏]) 𝜑.reg(𝑟2) = (_, 𝑏, _, _)
gete 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑒]) 𝜑.reg(𝑟2) = (_, _, 𝑒, _)
geta 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑎]) 𝜑.reg(𝑟2) = (_, _, _, 𝑎)

isptr 𝑟1 𝑟2 updPC(𝜑 [reg.𝑟1 ↦→ 𝑧]) if 𝜑.reg(𝑟2) = (_, _, _, _)
then 𝑧 = 1 else 𝑧 = 0

_ (Failed, 𝜑) otherwise

updPC(𝜑) =
{
(Running, 𝜑 [reg.pc ↦→ (𝑝, 𝑏, 𝑒, 𝑎 + 1)]) if 𝜑.reg(pc) = (𝑝,𝑏, 𝑒, 𝑎)
(Failed, 𝜑) otherwise

getWord(𝜑, 𝜌) =
{

𝜌 if 𝜌 ∈ Z
𝜑.reg(𝜌) if 𝜌 ∈ RegName

updatePcPerm(𝑤) =
{
(rx, 𝑏, 𝑒, 𝑎) if𝑤 = (e, 𝑏, 𝑒, 𝑎)
𝑤 otherwise

Fig. 6. Operational semantics: execution of a single instruction.
J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

16 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

4 PROGRAM LOGIC
The operational semantics presented in the previous section formally define the behavior of our
machine when it runs and executes code. Based on that, we expect to be able to formally verify
concrete programs running on the machine.
The most direct approach would be to manually establish properties of sequences of reduction

steps, based solely on the definition of the operational semantics. We do not follow this approach,
because it would quickly become very tedious even for simple programs.
Instead, we draw from previous research in program logics and separation logic, and define

Cerise: a program logic which provides a convenient framework in which to modularly reason
about programs running on our machine. Indeed:
• It is typically more convenient to devise a system of proof rules for programs, rather than
work directly at the level of abstraction provided by the bare operational semantics. Such rules
form a program logic, which can be proved sound according to the operational semantics,
and then can be used to verify properties of concrete programs.

• Separation logic, a family of program logics, has been widely used to reason about programs
manipulating shared mutable state (such as memory). On our capability machine, not only
do all programs access a mutable shared memory, but programs are themselves represented
as unstructured data in memory; so the use of separation logic is particularly called for.
Separation logic enables modular reasoning about programs that operate only on a sub-part
of the global state, allowing them to be freely composed with programs that operate on a
disjoint part of the state.

The first step is to consider what part of the machine state should be described by separation
logic assertions. Here, the machine state consists of both the machine memory and the machine
registers. Indeed, it is useful to modularly reason about programs operating on both a subset of
memory and a subset of the available registers.

Technically speaking, we build the Cerise program logic on top of the Iris framework [Jung et al.
2018], which provides us with additional useful features, such as invariants. In the following we
introduce both the basic separation logic assertions describing the machine state and additional
features inherited from Iris (Section 4.1). Then, we describe the rules that are used to specify the
execution of machine instructions and programs (Section 4.2).
Note that the program logic is, in a sense, only a technical device. The end goal is to obtain

theorems that only refer to reductions in the operational semantics of our machine. To that end, we
present (Section 4.3) an Adequacy theorem for our logic, which allows us to “extract” a correctness
theorem expressed in terms of the operational semantics of the machine from a proof established
in the program logic.

4.1 Basic resources
Figure 7 shows the syntax of our Cerise program logic based on Iris. In this subsection, we present
the underlying concepts of Iris used to define the Cerise program logic. We keep the presentation
high level, and refer to Birkedal and Bizjak [2022] for a complete and pedagogical presentation of the
Iris logic. We write iProp for the universe of propositions. These feature the standard connectives
of higher-order logic and separation logic, including the separating conjunction ∗ and the magic
wand −−∗ (read as an implication). The proposition ⌈𝜙⌉ asserts that the pure proposition 𝜙 holds,
where 𝜙 is a proposition from the meta logic.

Iris assertions can be divided in two categories: ephemeral assertions and persistent assertions.
Ephemeral assertions describe facts or resources that are available at a given point but might
become false or unavailable later. Persistent assertions describe facts that never cease to be true.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 17

𝑃,𝑄 ∈ iProp ::=
True | False | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | . . . higher-order logic
| 𝑃 ∗𝑄 | 𝑃 −−∗ 𝑄 | ⌈𝜙⌉ | □ 𝑃 | ⊲ 𝑃 separation logic
| a ↦→ 𝑤 | 𝑟 Z⇒ 𝑤 | ®𝑎 ↦→ ®𝑙 machine resources
| 𝑃 invariants
| ⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩ | {𝑃}⇝ {𝑠 . 𝑄} | {𝑃}⇝ • program logic

Fig. 7. The syntax of our program logic.

The assertion □ 𝑃 , read “persistently 𝑃”, is persistent, and asserts ownership over resources whose
duplicable part satisfies 𝑃 . In other words, □ 𝑃 is like 𝑃 except that it does not assert any exclusive
ownership over resources. As the knowledge associated with a persistent assertion can never be
invalidated, persistent assertions can be freely duplicated.

The modality ⊲ 𝑃 , read “later 𝑃”, expresses (roughly) that the assertion 𝑃 holds after one “logical
step” of execution. In this paper, we mainly use it to define recursive predicates using guarded
recursion. It is not necessary to understand how the modality behaves in detail and the reader can
safely ignore it for the most part and just recall that it supports an abstract accounting of execution
steps.

Our logic includes resources (predicates) that describe parts of the current state of the machine 6 .
The assertion a ↦→ 𝑤 expresses that the memory cell at address a contains the machine word𝑤 .
Furthermore, this assertion should be read as giving unique ownership over location a, giving the
right to freely read and update the corresponding memory cell. Similarly, the assertion 𝑟 Z⇒ 𝑤

asserts ownership of a CPU register 𝑟 containing the word𝑤 . We write ®𝑎 ↦→ ®𝑙 for the ownership of
contiguous memory cells at addresses ®𝑎 containing ®𝑙 7 .
A key feature of the logic is the notion of an invariant. The assertion 𝑃 asserts that 𝑃 should

hold at all times, now and for every future step of the execution (where 𝑃 can be any separation logic
assertion). An invariant is a persistent assertion. Unlike □ 𝑃 , which does not assert any exclusive
ownership over resources and is established by showing it does not depend on other ephemeral
assertions, 𝑃 is used to encapsulate any assertions into an invariant. An invariant 𝑃 can be
created (or “allocated”) by handing over the resources for 𝑃 , turning them into 𝑃 . Then, whenever
we know that 𝑃 holds, we can get access to the resources 𝑃 held in the invariant, but only for the
duration of one program step. Indeed, since the invariant must hold at every step of the execution,
when accessing its resources, one needs to show that it holds again no later than one program step
after. A more precise rule for accessing invariants is given next in Section 4.2 (rule Inv).

4.2 Program specifications
The predicates for machine resources we just presented allow describing the state of the machine,
as well as modalities to guard those resources, which allows us to relate the state of the machine to
its execution steps. Our logic, moreover, includes assertions that can be used to specify machine
executions, similar to Hoare triples used in program logics for high-level languages. Because we
work with a low-level machine (where code is located in memory), we distinguish between three
different types of program specifications 8 :

⟨𝑃⟩ → ⟨𝑠 .𝑄⟩ single instruction
{𝑃}⇝ {𝑠 .𝑄} code fragment
{𝑃}⇝ • complete safe execution.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.rules.rules_base.html
https://logsem.github.io/cerise/journal/cap_machine.region.html#region_mapsto
https://logsem.github.io/cerise/journal/cap_machine.rules.html

18 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

In each case, 𝑃 are 𝑄 are separation logic assertions describing the state of the machine (reg-
isters and memory). 𝑃 corresponds to a pre-condition, 𝑄 a post-condition, and 𝑠 binds in 𝑄 the
corresponding execution state (of type ExecState, see Figure 5).
Informally, ⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩ holds if, starting from a machine state satisfying 𝑃 , the machine can

execute one step of computation, and reach a state satisfying𝑄 in an execution state 𝑠 . The predicate
{𝑃}⇝ {𝑠 .𝑄} holds if, starting from a state satisfying 𝑃 , then the machine can diverge (i.e. loop) or
reach a state satisfying 𝑄 in an execution state 𝑠 . This is typically used to describe the execution
of a code fragment. Finally, {𝑃}⇝ • holds if, starting from a machine state satisfying 𝑃 , then the
machine loops forever or runs until completion, ending in either a Halted or Failed state. In this
case, we say that the initial configuration described by 𝑃 is safe. (Not every configuration is safe:
the resources in 𝑃 describing registers and memory must suffice for the machine to run and execute
the code pointed to by pc: for example, {𝑝𝑐 Z⇒ (rx, 𝑎, 𝑎 + 2, 𝑎) ∗ 𝑎 ↦→ mov r1 𝑧 ∗ 𝑎 + 1 ↦→ halt}⇝ •
cannot be established, since the precondition lacks a resource for r1. The configuration where the
register and memory maps are the partial maps as defined by the declared points-to assertions is
thus not considered safe.)

Additionally, these three specifications require the logical invariants to be preserved at every step of
the execution. This requirement is implicit in the definition of invariants, but it is a crucial reasoning
principle that we will leverage.
Echoing back to Section 2.2, note that our program specification for a complete safe execution

allows the program to fail (or diverge). Indeed, wewill capture the preservation of security properties
by preserving invariants throughout execution and having the machine fail is both fine (invariants
are trivially preserved when the machine ends up in a failure state) and unavoidable (we cannot
prevent unknown code from triggering a capability check failure). Similar considerations apply for
divergence.

Notations. In the rest of the paper, we will rely on a couple of additional notations when writing
program specifications. Because we often want to reason about the case where an instruction
(or program fragment) does not fail, we write ⟨𝑃⟩ → ⟨𝑄⟩ (respectively {𝑃} ⇝ {𝑄}) to denote a
resulting execution state equal to Running:

⟨𝑃⟩ → ⟨𝑄⟩ ≜ ⟨𝑃⟩ → ⟨𝑠 . ⌈𝑠 = Running⌉ ∗𝑄⟩
{𝑃}⇝ {𝑄} ≜ {𝑃}⇝ {𝑠 . ⌈𝑠 = Running⌉ ∗𝑄} .

When writing pre- and post-conditions, we will often need to include a points-to resource
describing the contents of the pc register. We introduce a short-hand notation for that purpose,
and write𝑤 ; 𝑃 to assert 𝑃 and additionally that pc is set to𝑤 :

𝑤 ; 𝑃 ≜ pc Z⇒ 𝑤 ∗ 𝑃
Using these two notations, the specification for a single instruction, in a case where it does not

fail, is written as ⟨𝑤0; 𝑃⟩ → ⟨𝑤1;𝑄⟩ (typically, we have𝑤1 = 𝑤0 + 1, except in the case of the jmp
and jnz instructions, or when explicitly writing to the pc register).

Properties. Our program specifications satisfy the well-known “frame rule” of separation logic,
which permits local reasoning, and asserts that it is always possible to extend a specification by
adding arbitrary resources not accessed by the program.

FragFrame
{𝑃}⇝ {𝑠 . 𝑄}

{𝑃 ∗ 𝑅}⇝ {𝑠 . 𝑄 ∗ 𝑅}

StepFrame
⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩

⟨𝑃 ∗ 𝑅⟩ → ⟨𝑠 . 𝑄 ∗ 𝑅⟩

FullFrame
{𝑃}⇝ •

{𝑃 ∗ 𝑅}⇝ •

Program specifications can also be composed using sequencing rules. In order to establish a
specification of the form {𝑃}⇝ {𝑠 .𝑄}, one typically uses single-instructions rules (⟨𝑅⟩ → ⟨𝑠 . 𝑆⟩)

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 19

in a sequence, one for each instruction of the relevant code block. Specifications for two program
fragments that follow each other can also be combined to obtain a specification for the sequence
of the two fragments. We prove general sequencing rules for our three kind of specifications; for
simplicity, we only reproduce here restricted rules that deal with successful executions (relying on
the notations introduced before):

SeqFrag
{𝑃}⇝ {𝑄} {𝑄}⇝ {𝑅}

{𝑃}⇝ {𝑅}

SeqFull
{𝑃}⇝ {𝑄} {𝑄}⇝ •

{𝑃}⇝ •

StepFull
⟨𝑃⟩ → ⟨𝑄⟩ {𝑄}⇝ •

{𝑃}⇝ •

StepFrag
⟨𝑃⟩ → ⟨𝑄⟩ {𝑄}⇝ {𝑅}

{𝑃}⇝ {𝑅}

When reasoning about a single execution step, one can additionally access resources held in
known invariants. This is done using the Inv rule, given below: 3

Inv
⟨𝑃 ∗ ⊲𝑅⟩ → ⟨𝑠 .𝑄 ∗ ⊲𝑅⟩

𝑅 ⊢ ⟨𝑃⟩ → ⟨𝑠 . 𝑄⟩

Example specifications. As illustrative examples, Figure 8 shows specifications for the subseg,
load and store instructions, as well as the rclear macro which is used to clear the contents of a
number of specified registers. The first rule shows a specification for the subseg instruction 10 . It
states that if the program counter contains a capability pointing to a memory location 𝑎pc , if that
location contains an integer 𝑛 which decodes into subseg 𝑟 𝑧1 𝑧2, and if the register 𝑟 contains a
capability, then assuming that the program counter is valid (ValidPC(...)) and that 𝑧1 and 𝑧2 are
valid new bounds (ValidSubseg(...)), the machine successfully increments the program counter and
restricts the capability held in register 𝑟 with new bounds 𝑧1 and 𝑧2.

The second rule is also a specification for subseg, but in a case where it fails a bound check, i.e.
ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) does not hold 11 . (For instance, when the new bounds 𝑧1 and 𝑧2 would
allow accessing more memory than what is available through the original capability.) Then, the
rule does give us a specification for an execution step, but with a resulting execution state of Failed,
meaning that the execution cannot continue afterwards.

The third and fourth rules give specifications for the load and store instructions (in non-failing
cases) 12 13 . The specification for load states that load dst src loads a word from memory pointed
to by a capability in register src and stores its contents in register dst. The specification for store
states that store dst src reads a word from the src register and writes it into the memory location
pointed to by the capability in dst.
Note that these specifications for subseg, load and store are not in fact the most general

specifications for these instructions. They assume that some side-conditions hold, and specify the
behavior of the instruction in the case of either a “normal” successful execution, or a failing one.
These specifications are typically useful for reasoning about the correctness of a concrete program.
We have also proved in Coq (e.g., 14 for the subseg instruction) “most general” specifications,
covering in one lemma all possible cases for a given instructions. These are useful for deriving
the more specific rules shown previously. Furthermore, we use them directly in the proof of the

3For clarity of the presentation, we choose to omit additional details related to Iris invariant namespaces and masks. We
refer to the Coq development for the full details 9 .

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Subseg.html#wp_subseg_success_lr
https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Subseg.html#wp_subseg_fail_lr
https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Load.html#wp_load_success_notinstr
https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Store.html#wp_store_success_reg
https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Subseg.html#wp_Subseg
https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.invariants.html#inv_alloc

20 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) decode(𝑛) = subseg 𝑟 𝑧1 𝑧2〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝,𝑏, 𝑒, 𝑎)

〉
→〈

(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc + 1) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝, 𝑧1, 𝑧2, 𝑎)
〉

ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ¬ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) decode(𝑛) = subseg 𝑟 𝑧1 𝑧2〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝, 𝑏, 𝑒, 𝑎)

〉
→〈

𝑠 . ⌈𝑠 = Failed⌉ ∗
(
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ 𝑟 Z⇒ (𝑝,𝑏, 𝑒, 𝑎)

)〉
ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ValidLoad(𝑝, 𝑏, 𝑒, 𝑎) decode(𝑛) = load dst src〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ − ∗ src Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ 𝑎 ↦→ 𝑤

〉
→〈

(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc + 1) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ 𝑤 ∗ src Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ 𝑎 ↦→ 𝑤
〉

ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ValidStore(𝑝, 𝑏, 𝑒, 𝑎) decode(𝑛) = store dst src〈
(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ src Z⇒ 𝑤 ∗ 𝑎 ↦→ −

〉
→〈

(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc + 1) ; 𝑎pc ↦→ 𝑛 ∗ dst Z⇒ (𝑝,𝑏, 𝑒, 𝑎) ∗ src Z⇒ 𝑤 ∗ 𝑎 ↦→ 𝑤
〉

∀𝑖 ∈ [0, 𝑛), ValidPC(𝑝, 𝑏, 𝑒, 𝑎 + 𝑖) 𝑛 = length(rclear_instrs 𝑙){
(𝑝,𝑏, 𝑒, 𝑎);∗𝑟 ∈𝑙 𝑟 Z⇒ − ∗∗𝑖∈[0,𝑛) 𝑎 + 𝑖 ↦→ (rclear_instrs 𝑙) [𝑖]} ⇝{
(𝑝,𝑏, 𝑒, 𝑎 + 𝑛);∗𝑟 ∈𝑙 𝑟 Z⇒ 0 ∗ ∗𝑖∈[0,𝑛) 𝑎 + 𝑖 ↦→ (rclear_instrs 𝑙) [𝑖]}
ValidPC(𝑝pc, 𝑏pc, 𝑒pc, 𝑎pc) ≜ rx ≼ 𝑝pc ∧ 𝑏pc ≤ 𝑎pc < 𝑒pc
ValidSubseg(𝑝, 𝑏, 𝑒, 𝑧1, 𝑧2) ≜ 𝑝 ≠ e ∧ 𝑏 ≤ 𝑧1 ∧ 0 ≤ 𝑧2 ≤ 𝑒

ValidLoad(𝑝, 𝑏, 𝑒, 𝑎) ≜ ro ≼ 𝑝 ∧ 𝑏 ≤ 𝑎 < 𝑒

ValidStore(𝑝, 𝑏, 𝑒, 𝑎) ≜ rw ≼ 𝑝 ∧ 𝑏 ≤ 𝑎 < 𝑒

rclear_instrs 𝑙 ≜ map (𝜆𝑟 . encode(move 𝑟 0)) 𝑙

Fig. 8. Specifications for the machine instructions subseg, load and store and for the rclear macro that
sets a given list of registers to zero. Changes to the machine state are highlighted in red.

Fundamental Theorem (Theorem 2), for specifying the behavior of arbitrary instructions that might
or might not fail.
The last rule of Figure 8 shows a derivable specification for a program composed of several

instructions, the rclear macro 15 . This macro (meaning, a small program that is typically inserted
inline as part of a larger program) clears a number of registers by setting their content to 0. It is
parameterized by a list 𝑙 of register names, and its code consists of a sequence of instructions move 𝑟 0
for each register name 𝑟 in 𝑙 . We state rclear’s specification using the program specification for
code fragments. This specification is provable using the basic reasoning rules for move. It requires
that the body of the macro (“rclear_instrs 𝑙”) is laid out contiguously in memory range [𝑎, 𝑎 + 𝑛),
while the program counter initially points to 𝑎. When the program counter eventually points to
𝑎 + 𝑛, the address immediately after the macro’s instructions, then all the registers in 𝑙 have been
cleared and now contain 0. (The “big star”∗ denotes an iterated separating conjunction, here over
the registers 𝑟 in list 𝑙 .)

4.3 Adequacy theorem
After establishing program specifications and properties at the level of our program logic, we
ultimately want to transfer these results into properties of a program execution at the level of the

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.macros_new.html#rclear_spec

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 21

operational semantics of the bare machine. Generally speaking, we prove using the rules of the Iris
logic a statement of the form 𝑃 ⊢ 𝑄 , where 𝑃 and 𝑄 are Iris propositions (read “𝑄 holds assuming
invariant 𝑃”). From this, we want to deduce that some mathematical proposition Φ holds (as a Coq
proposition, in our case), where Φ describes some property of the machine execution expressed in
terms of its operational semantics.
Because we are interested in establishing invariants about a program execution, we typically

want to obtain in Φ that at every step of the execution, the state of the machine satisfies an invariant
corresponding to the Iris assertion 𝑃 .

Deriving mathematical facts from Iris proof derivations is made possible thanks to the so-called
adequacy theorem of Iris 16 . This theorem has a very general but intricate statement. In this section,
we describe a simpler but more specialized adequacy theorem for our capability machine, which
we can use to reason about the examples introduced in Section 2. (We also describe in Section 7 a
more advanced adequacy theorem, suitable for reasoning about programs such as the case study
of Section 8.) This specialized adequacy theorem is itself established on top of the general Iris
adequacy theorem. When it applies, it is more convenient to use; but in the general case, it is always
possible to directly leverage the general adequacy theorem.

We now present our specialized adequacy theorem. We first define a notion of memory invariant

(Definition 1), which corresponds to a predicate over a finite subset of the machine memory.
Typically, we will consider predicates of the form: “the value at this specific memory address holds a
positive integer” (for instance, the value of the counter of Section 2.4). A memory invariant is given
by a predicate 𝐼 over machine memory and a set of addresses 𝐷 (the “domain” of the invariant); we
then require that 𝐼 is not impacted by changes outside of 𝐷 .

Definition 1 (Memory invariant 17). We say that 𝐼 is a memory invariant over 𝐷 if 𝐼 is a

predicate over machine memory, 𝐷 a finite set of addresses, and:

∀𝑚𝑚′. (∀𝑎 ∈ 𝐷. 𝑚(𝑎) =𝑚′(𝑎)) =⇒ 𝐼 (𝑚) ⇔ 𝐼 (𝑚′).

We now present the statement of our specialized adequacy theorem; we explain the ingredients
in the theorem statement below. Given a memory invariant 𝐼 over a set 𝐷 , our adequacy theorem
(Theorem 1) can be used to show that 𝐼 indeed holds of the memory at every step of the execution,
provided we can show that it holds as an invariant in Iris.

Theorem 1 (Adeqacy 18). Given a memory invariant 𝐼 over 𝐷 , a memory fragment prog :
[𝑏, 𝑒) → Word, a memory fragment adv : [𝑏adv, 𝑒adv) → Word, an initial memory mem, and an

initial register file reg, assuming that:

(1) the initial state of memory mem satisfies:

prog ⊎ adv ⊆ mem 𝐷 ⊆ dom(prog) = [𝑏, 𝑒)

(2) invariant 𝐼 holds of the initial memory:

𝐼 (mem)

(3) the adversary region contains no capabilities pointing outside of [𝑏adv, 𝑒adv):

∀𝑎 ∈ dom(adv). adv(𝑎) ∈ Z ∨ inRegion(adv(𝑎), 𝑏adv, 𝑒adv)

(4) the initial state of registers reg satisfies:

reg(pc) = (rwx, 𝑏, 𝑒, 𝑏), reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv), reg(𝑟) ∈ Z otherwise

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://plv.mpi-sws.org/coqdoc/iris//iris.program_logic.adequacy.html#wp_invariance
https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy.html#memory_inv
https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy.html#with_adv.template_adequacy

22 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

(5) the proof in Iris that the initial configuration is safe given invariant 𝐼 :

∀reg,
∃𝑚,∗(𝑎,𝑤) ∈𝑚 𝑎 ↦→ 𝑤 ∗ ⌈dom(𝑚) = 𝐷⌉ ∗ ⌈𝐼 (𝑚)⌉

⊢


(rwx, 𝑏, 𝑒, 𝑏);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
∗(𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

∗(𝑎,𝑧) ∈adv 𝑎 ↦→ 𝑧 ∗
∗(𝑎,𝑤) ∈prog,

𝑎∉𝐷

𝑎 ↦→ 𝑤


⇝ •

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then 𝐼 (mem
′).

Theorem 1 establishes that, starting from an initial machine state (reg,mem), any subsequent
machine state (reg′,mem

′) satisfies 𝐼 (mem
′). This is subject to a number of conditions, in particular

about the initial state of the machine.
First, the initial memory must be provisioned with relevant code and data. This means that

the program that we wish to verify (both its code and data) given by memory fragment prog :
[𝑏, 𝑒) →Word should be included in the initial memory. Moreover, some additional “adversarial
code” given by adv : [𝑏adv, 𝑒adv) → Word should be included in the initial memory. Indeed, we
are not only interested in reasoning about the execution of our verified program in isolation, but
also its interaction with unverified, possibly adversarial code. The initial memory mem should
therefore include prog and adv, in disjoint regions. Furthermore, the domain of the invariant 𝐼
should be included in the program’s region [𝑏, 𝑒). The intent is that 𝐼 specifies an invariant about
some private data of the verified program, and thus should not depend on other parts of memory.

Second, as should be expected, the invariant 𝐼 must hold of the initial memory mem.
Third, the adversary memory adv can only contain capabilities that are at least ro, with a range

contained within the adversary region, as defined by the following condition:

Definition 2 (In region condition 19).
inRegion(𝑤,𝑏, 𝑒) ≜ ∃𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′, ro ≼ 𝑝 ′ ∧𝑤 = (𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) ∧ 𝑏 ≤ 𝑏 ′ ∧ 𝑒 ′ ≤ 𝑒

This conservatively ensures that adv does not contain any “rogue” capability that would give
undesired access to the verified program’s private state. No further assumption is made about adv,
which is thus free to contain arbitrary code (i.e. instructions encoded as integers), and any arbitrary
in-bounds data capabilities. Furthermore, as we will see in Section 7.1, adversaries will also be
able to gain access to dynamically allocated capabilities pointing to fresh regions. This is achieved
by sharing a safe malloc subroutine with the adversary.

Next, the initial register file reg should be provided with an rwx capability to the verified program
in pc (meaning that it executes first), and a capability to the unverified code in register r0 (as we
have seen in Section 2, by convention r0 holds the capability to a program’s continuation). Other
registers are conservatively required not to contain any capabilities.
Finally, one needs to establish at the level of the program logic that the program is safe to run

under invariant 𝐼 . Concretely, one needs to prove a specification for a complete safe execution (of
the form {𝑃}⇝ •), given “points-to” resources in the pre-condition that correspond to the initial
state of registers and memory. In particular, we get access to points-to resources for the adversary
region (along the fact that they contain integers) and points-to resources for the region containing
the program to execute.
Note that no resources are given for the domain of 𝐼 as part of the initial resources for the

complete-execution specification. Instead, these resources are part of the logical invariant under

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.logrel.html#in_region

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 23

V(𝑤)


V(𝑧),V(o,−,−,−) ≜ True
V(e, 𝑏, 𝑒, 𝑎) ≜ ⊲ □ E(rx, 𝑏, 𝑒, 𝑎)
V(rw/rwx, 𝑏, 𝑒,−) ≜ ∗𝑎∈[𝑏,𝑒) ∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤)
V(ro/rx, 𝑏, 𝑒,−) ≜ ∗𝑎∈[𝑏,𝑒) ∃𝑃, ∃𝑤, 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) ∗ ⊲□ (∀𝑤, 𝑃 (𝑤) −−∗ V(𝑤))

E(𝑤) ≜ ∀reg,
{
𝑤 ;∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

Fig. 9. Logical relation defining “safe to share” and “safe to execute” values.

which the specification must be established (inside . . .). This corresponds to the intuition that
these resources should only be modified in a way that preserves invariant 𝐼 . This logical invariant
therefore specifies that there exists a subset of memory𝑚, which covers the memory region defined
by 𝐷 , such that the invariant holds the corresponding points-to resources and such that 𝐼 (𝑚) holds,
i.e. the memory invariant 𝐼 holds of this memory subset. (Recall from Section 4.1 that ⌈𝜙⌉ denotes
an Iris proposition that asserts that the mathematical proposition 𝜙 holds.)
The reader may be surprised to notice that the region containing “adversarial” code has no

special status. Indeed, it simply corresponds to a memory region containing (a priori unknown)
integers. Nevertheless, remember that we ultimately want our program to be able to pass control
to the unknown adversary code by jumping to the capability in r0, as we have seen our example
programs do. This means we need to have a way of reasoning about “what it will do”, at least to
ensure that it will not break our program’s invariants.
In the next section, we show how to reason about whether unknown code can be considered

“safe to execute”, so that we can pass control to it while preserving previously established invariants.

5 REASONING ABOUT UNTRUSTED CODE IN CERISE
Code running on a capability machine is constrained by the set of capabilities it has access to. This
is a crucial idea for reasoning about adversarial code. Whatever code the machine is running, if
this code does not have access to a capability for, e.g., writing to a memory region, then it will not
be able to modify memory in that region. In other words, one can prove a theorem describing the
behavior of arbitrary code depending only on the capabilities it has access to.
One major technical contribution of this work is to formulate and mechanize such a theorem.

Specifically, we are concerned with the preservation of invariants established in the program logic.
We will thus give a definition of which machine words are “safe” to share with unknown code.
Informally, a word is safe if it cannot be used to break any previously established logical invariants.
We will then prove that, as long as some arbitrary code only has access to safe machine words, its
execution indeed preserves logical invariants.
Interestingly, we can establish this result while staying within the framework of the Cerise

program logic exposed in the previous section. This illustrates the generality of said program logic:
verifying specifications for known programs or specifying the behavior of arbitrary code are only
two of its possible applications.

5.1 Logical Relation
Our formal definition of what makes a machine word safe, meaning “safe to share with unknown
code”, appears in Figure 9 20 . It takes the form of a unary logical relation, defining simultaneously
the notions of a machine word that is “safe to share” (V) and “safe to execute” (E). The namesV
and E originate from the tradition of logical relations, corresponding respectively to the “value

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.logrel.html#interp

24 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

relation” and the “expression relation”, although this interpretation is perhaps less obvious in the
setting of low-level machine code. We explain the definition in detail below. The intuition is that:

• A value which is safe to share only gives transitive access to other values are safe to share, or
code that is safe to execute (in the case of a sentry capability).
• A value which is safe to execute allows the machine to run while preserving logical invariants
(by definition of {·; ·}⇝ •), provided the registers contain safe values.

Technically speaking, this informal definition is circular. Luckily, we can define it properly with
the help of the “later” modality ⊲. Iris provides us with a fixed-point operator that only requires
recursive occurences to be guarded under a ⊲, and we use that to formally defineV and E. Except
for this technical requirement, the reader can in practice ignore the use of ⊲ here.

Let us more closely examine the definition ofV , which is defined by case analysis on the shape
of the given machine word𝑤 . If𝑤 is an integer (𝑧), then it is always safe to share, since it cannot
be used to access memory. Similarly, opaque capabilities with permission o are always safe as they
also do not give access to memory.

A sentry capability e is safe to share if the code it encapsulates is safe to execute. Such a capability
can be invoked at any moment and possibly several times: this is expressed through the use of the
persistently modality □. Technically speaking, this means that the property E(rx, 𝑏, 𝑒, 𝑎) must be
established by only relying on persistent resources (typically, logical invariants) that will remain
“available” throughout the entire execution.

A read-write capability rw or rwx gives read and write access to the memory region in its
range. It is therefore safe as long as the words stored in the corresponding memory region are safe,
and continue to be so when the memory gets modified. We thus say that it is safe when we have
an invariant for each memory cell in the capability’s region, which asserts ownership over the
corresponding memory points-to resource, and asserts validity of its contents.
Finally, a capability with permission ro/rx cannot be used by unknown code to modify the

memory words in its range. Therefore, these words can obey any property 𝑃 as long as it entails
safety (V). Intuitively, the words in the interval have to be safe to share, because the adversary
can read them. But since the adversary cannot modify them, it is possible to guarantee a stronger
invariant about them. For instance, 𝑃 (𝑤) could be the predicate “𝑤 = 42”, describing that a value
in the range stays equal to the integer 42.
Notice that this definition of safety does not distinguish between capabilities with permission

ro and rx, or rw and rwx. This seems to strangely imply that permissions with the execute bit
x have no additional expressive power over permissions without the execute bit. And indeed, in
terms of our model—which “only” captures the ability to break memory invariants—their expressive
power is the same!4 The crux of our main theorem (presented in the next sub-section) is that
executing arbitrary code does not produce capabilities with more access to memory than was
available before. Thus, being able to execute code within a memory region does not yield additional
access to memory compared to what was available by simply reading the memory region (it only
leads to additional machine behaviors).

Is this definition of safety trivial? One might wonder whether the definition in Figure 9 is trivial,
meaning that any machine word𝑤 will in fact be considered safe. This is thankfully not the case; let
us illustrate concrete cases where a memory word𝑤 is not considered safe to share with unknown
code.

4Having read-only permission over a region also allows one to simply copy the contents of the region into any other
read-execute region and execute them here.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 25

At a high level, E is not trivial because establishing E(𝑤) requires proving that a full execution
of the machine, starting from𝑤 , preserves logical invariants. This requirement is not explicit in the
definition, but comes from the definition of the Cerise program logic. The definition ofV(𝑤) is also
not trivial because, e.g., in the case of an rw capability, it requires the memory points-to 𝑎 ↦→ −
predicate to be part of a specific invariant, ∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤) . Since the resource “𝑎 ↦→ −” is
not duplicable, there can be only one resource 𝑎 ↦→ −, which cannot be simultaneously part of two
different invariants. Memory cells whose contents evolve according to an invariant more specific
(less permissive) than the one above thus cannot be associated with a safe capability (according to
V).
What is a concrete example of a capability which is not safe? Let us consider a memory cell

at address 𝑥 initialized to 0. Let us assume the following Iris invariant: 𝑥 ↦→ 0 . This invariant
expresses that 𝑥 will contain the integer 0 for the rest of the execution. Then, a capability (rw, 𝑥, 𝑥 +
1, 𝑥) is not safe to share with an adversary. Indeed, an adversary could use such a capability to
write an arbitrary value at address 𝑥 , thus invalidating the Iris invariant. (However, (ro, 𝑥, 𝑥 + 1, 𝑥)
would be safe.) A bit more formally speaking, it is not possible to proveV(rw, 𝑥, 𝑥 + 1, 𝑥), because
it is not possible to create the invariant ∃𝑤, 𝑥 ↦→ 𝑤 ∗ V(𝑤) , as the resource for the memory cell
𝑥 is already part of the invariant 𝑥 ↦→ 0 , and cannot be extracted to create a different invariant.

Similarly, one cannot prove E for a code fragment that writes another value than 0 at address 𝑥
(after getting access to it through the pc register), because the proof would not be able to guarantee
that the Iris invariant related to 𝑥 is preserved at every step.

5.2 Fundamental Theorem
The Fundamental Theorem of our Logical Relation (Theorem 2) (hereafter, FTLR) establishes that
any capability that is “safe to share” (in V) is in fact “safe to execute” (in E). In other words, if
a capability only gives transitive access to safe capabilities, then it is safe to use it as a program
counter capability and execute it: it will not be able to gain extra authority over memory or break
any invariants. Importantly, this theorem is independent of the code that the capability points to,
even though it is this code that will be executed. Hence the result applies to arbitrary code and we
sometimes refer to it as a universal contract because of this.

Theorem 2 (FTLR 21). Let 𝑝 ∈ Perm, 𝑏, 𝑒, 𝑎 ∈ Addr. IfV(𝑝,𝑏, 𝑒, 𝑎), then E(𝑝,𝑏, 𝑒, 𝑎).
This is a non-trivial theorem, the proof of which requires checking all the possible cases of the

semantics of each instruction of the machine. Indeed, one needs to check that there is no way for
some machine instruction to create capabilities with further authority than what was available.
This could, for example, happen if some runtime checks were missing, making it possible to create
a capability (rw, 𝑏, 𝑒 + 1, 𝑎) from a capability (rw, 𝑏, 𝑒, 𝑎). One can imagine how this would break
expected security guarantees, and reveal a design or implementation bug of the machine. Therefore,
another informal interpretation of the fundamental theorem is that it expresses that the capability
machine “works well” or that it is capability safe.

The fundamental theorem provides a universal security property satisfied by unknown code, and
gives us a way of verifying the correctness of known code that includes calls to possibly malicious
code. To sum up, our logical relation characterizes the interface between a piece of verified code
which wishes to preserve invariants on some internal state, and “external” arbitrary code whose
accessible, safe capabilities have been sufficiently restricted.

It is important to note that the distinction between “known” and “adversary” code only exists at
the logical level: there is no such distinction at runtime. We can have two components that have
been verified separately, and that do not mutually trust each other. In this case, from the point of
view of each component, the other component is considered as being the adversary. Additionally, we

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#fundamental_cap

26 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

note that “adversary” code is meant to denote code that has not been independently verified, and as
such can only be reasoned about using a universal contract, which holds for any arbitrary capability
machine program. Alternatively, since the Cerise separation logic enjoys all the advantages of a
higher-order separation logic, it also supports the composition of two verified components via
abstract and modular specifications. In such cases, both components are considered “known”, even
though their internal representation might be abstracted away by the exposed specifications.

Rules for program verification. From the general statement of the FTLR, we can derive two
corollaries, which can be used to instantiate our adequacy theorem (Theorem 1) with a program
that passes control to an unknown adversarial code region.

Corollary 1 (Unknown in-bounds capabilities and integers are safe 22). For𝑚 : [𝑏, 𝑒) →
Word, ∗

(𝑎,𝑤) ∈𝑚
𝑎 ↦→ 𝑤 ∗

⌈
𝑤 ∈ Z ∨ inRegion(𝑤,𝑏, 𝑒)

⌉
−−∗ V(𝑝,𝑏, 𝑒, 𝑎)

Corollary 1 can be used to trade ownership over a memory region of integers and in-bound
capabilities to the knowledge that a capability over this region is safe.5 Since integers can encode
program instructions, we can typically use this rule to reason about a memory region containing
an (unknown) program, and its associated data. The rule follows directly from the definition ofV
for values of 𝑝 different from e; when 𝑝 = e, an additional application of the FTLR (Theorem 2) is
required.
Notice that the pre-condition of the rule matches the resources that one gets in the Adequacy

theorem (Theorem 1) for the adversary region. When using the Adequacy theorem, we will thus be
able to conclude that capabilities pointing to the adversary region are safe.

Corollary 2 (Jump to a safe word 23).

V(𝑤) −−∗
⊲∀reg.

({
updatePcPerm(𝑤);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

)
Corollary 2 gives us a specification for the execution of the machine after a jump to an unknown

word 𝑤 , assuming that 𝑤 is safe. Recall that updatePcPerm(𝑤) corresponds to the value of the
program counter after jumping to𝑤 (see the machine semantics in Figure 6). The full execution
specification in the conclusion of the rule requires that the machine registers contain safe values:
indeed, we must only share safe words with unknown code.
An important application of Corollary 2 is to reason about the last instruction of a program

encapsulated in a sentry (e) capability, where it “returns” and passes control to its caller by calling
jmp on the (unknown but safe) return capability held in r0. In this scenario, the return capability
provided by the caller is unknown but safe, so Corollary 2 gives us a specification for the continuation
of the program.
Additionally, Corollary 2 is typically used in combination with Corollary 1 when instantiating

the Adequacy theorem. Indeed, in order to prove the complete safe execution specification required
by the theorem, one typically needs to justify that one can jmp and pass control to an adversary
region, given the resources granted by the Adequacy theorem.

5We simplify the presentation here a bit and omit a view shift from the statement of Corollary 1. See the Coq development
for the exact formal statement 22 .

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.logrel.html#region_valid_in_region
https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#jmp_to_unknown

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 27

5.3 Proving the fundamental theorem
To give a more in-depth perspective of the ideas behind the Fundamental Theorem, we detail in
this sub-section one of the interesting cases of its proof. This sub-section can be safely skipped on
a first read.

Proof. (FTLR) We begin by unfolding the definition of E.

∀reg.
{
(𝑝, 𝑏, 𝑒, 𝑎);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

We proceed by Löb induction. The Löb rule is a powerful reasoning principle, which Cerise
inherits from Iris, and which states that (in any context 𝑄), if from ⊲ 𝑃 we can derive 𝑃 , then we
can also derive 𝑃 without any assumptions.

Löb
𝑄 ∧ ⊲ 𝑃 ⊢ 𝑃

𝑄 ⊢ 𝑃

The idea of the rule is that “after we do some work”, we will be able to remove the ⊲ modality
from the assumption, and reach the conclusion. In our case, this means reasoning about one step of
execution, for one instruction. Intuitively, if we show that our property holds for the execution of
one arbitrary instruction, then it must hold for a sequence of many instructions.

We thus let:

IH ≜ ∀𝑝, 𝑏, 𝑒, 𝑎.V(𝑝, 𝑏, 𝑒, 𝑎) −−∗ ∀reg.
{
(𝑝, 𝑏, 𝑒, 𝑎);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

and assume ⊲ IH; we then wish to show IH.
First, we consider the case where (𝑝,𝑏, 𝑒, 𝑎) is not a valid program counter (for instance, if it

contains a non-executable capability, or an integer). Then the machine configuration will step into
a Failed configuration. In that case, any full execution specification ({·; ·}⇝ •) trivially holds, and
we are done.

In the casewhere (𝑝,𝑏, 𝑒, 𝑎) is a valid program counter, wewill have to execute the next instruction
of the program, pointed to by 𝑎. For (𝑝,𝑏, 𝑒, 𝑎) to be a valid program counter, the following needs
to hold:

𝑝 ∈ {rx, rwx} (1)
𝑏 ≤ 𝑎 < 𝑒 (2)

From (1), we can infer thatV(𝑝,𝑏, 𝑒, 𝑎) will unfold to (at least) the following:

∗𝑎∈[𝑏,𝑒) ∃𝑃, ∃𝑤, 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) ∗ ⊲□ ∀𝑤, 𝑃 (𝑤) −−∗ V(𝑤)

Since we know that 𝑎 is an address in the range [𝑏, 𝑒) (2), we can in particular infer that there exists
a predicate 𝑃 such that ⊲□ ∀𝑤, 𝑃 (𝑤) −−∗ V(𝑤), for which the following invariant holds:

∃𝑤, 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) (3)

Ownership over 𝑎 ↦→ 𝑤 is in fact required in order to apply any rule of the program logic (we need
to be able to access memory for the instruction pointed to by pc). We will therefore first open the
invariant (3) to get access to that resource.

Recall the invariant opening rule Inv (Section 4.2). According to that rule, we can get access to
the resources held inside the invariant now, as long as we give them back after one execution step.
Since we wish here to reason about the execution of a single instruction, this is a perfectly good
deal.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

28 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Once the invariant has been opened, the following propositions are added to our assumptions,
for some word𝑤 (technically speaking, the Iris context also tracks the fact that these facts come
from an invariant and must be given back next, but we choose to hide these details):6

𝑎 ↦→ 𝑤 (4)
⊲ 𝑃 (𝑤) (5)

Because pc points to 𝑎, and address 𝑎 contains the word𝑤 ,𝑤 should correspond to the (encoding
of the) instruction to execute now. We thus reason by case analysis on decode(𝑤).

This leads to as many cases as there are instructions in the machine. We will now detail a sub-case
for the load instruction, which is one of the interesting cases. Many of the other cases are similar
in nature.

Case: decode(𝑤) = load 𝑟dst 𝑟src .
We consider here the case where 𝑟dst and 𝑟src are two different registers, both different from pc.

We also only consider the case where 𝑟src contains a capability, which we are permitted to load
from. In other words, our goal is as follows:7

⊲ IH ∗ 𝑎 ↦→ 𝑤 ∗ ⊲ 𝑃 (𝑤)

⊢
(𝑝, 𝑏, 𝑒, 𝑎);

∗(𝑟,𝑣) ∈reg,𝑟≠pc,𝑟dst ,𝑟src 𝑟 Z⇒ 𝑣 ∗ V(𝑣)
∗ 𝑟dst Z⇒ 𝑤 ′ ∗ V(𝑤 ′)
∗ 𝑟src Z⇒ (𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) ∗ V(𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′)

⇝ •

As stated, we assume that (𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) permits us to load from 𝑎′. We can thus infer the following
two properties:

𝑝 ′ ∈ {ro, rx, rw, rwx} (6)
𝑏 ′ ≤ 𝑎′ < 𝑒 ′ (7)

Just like before, we can fromV(𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) conclude that the following invariant holds, where 𝑃 ′
is a predicate such that ⊲□ ∀𝑤, 𝑃 ′(𝑤) −−∗ V(𝑤):

∃𝑤, 𝑎′ ↦→ 𝑤 ∗ 𝑃 ′(𝑤) (8)

We consider the (more interesting) case where 𝑎 ≠ 𝑎′. We can thus open the invariant (since it has
not been opened already), meaning that we have for some word 𝑤𝑠𝑟𝑐 the following (again, plus
some invariant-tracking resources not shown here):

𝑎′ ↦→ 𝑤𝑠𝑟𝑐 (9)
⊲ 𝑃 ′(𝑤𝑠𝑟𝑐) (10)

With these assumptions, we now have all the necessary resources to take a step in the program
logic, using the rule for the load instruction (Figure 8). A feature of single-instruction rules of our
program logic is that they include a built-in ⊲ modality. In other words, after applying a single-
instruction rule, we are “one execution step later”, and we can remove one occurrence of ⊲ for each
assumption of our context. In particular, this means that we can turn ⊲ IH into IH, and similarly for
𝑃 (𝑤) and 𝑃 ′(𝑤𝑠𝑟𝑐). We now have to show:

IH ∗ 𝑎 ↦→ 𝑤 ∗ 𝑃 (𝑤) ∗ 𝑎′ ↦→ 𝑤src ∗ 𝑃 ′(𝑤src)

⊢
(𝑝,𝑏, 𝑒, 𝑎 + 1);

∗(𝑟,𝑣) ∈reg,𝑟≠pc,𝑟dst ,𝑟src 𝑟 Z⇒ 𝑣 ∗ V(𝑣)
∗ 𝑟dst Z⇒ 𝑤𝑠𝑟𝑐

∗ 𝑟src Z⇒ (𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′) ∗ V(𝑝 ′, 𝑏 ′, 𝑒 ′, 𝑎′)

⇝ •

6Notice that we directly get 𝑎 ↦→ 𝑤 rather than ⊲𝑎 ↦→ 𝑤, due to the fact that memory points-to are timeless.
7We again omit details involving masks and update modalities, and refer to the Coq formalization for the full details.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 29

We now have direct access to IH (our initial goal) as an assumption, so the proof is nearly done.
Before we can invoke IH and conclude the goal, we must do two things: (a) show that the contents
of all registers satisfiesV (required by the definition of IH), and (b) close all the open invariants
(as required by the invariant opening rule). (It is important to show (a) before addressing (b), as we
will make use of resources from the open invariants.)

Addressing (a), we already know that the contents of registers satisfyV for all registers except
for 𝑟dst—the only register whose contents were changed by the instruction. We must thus prove
V(𝑤𝑠𝑟𝑐). Luckily,𝑤𝑠𝑟𝑐 is not a completely arbitrary word: it was accessible from available memory,
so it must be safe as well. More precisely, from the invariant about 𝑎′ (previously opened), we know
that 𝑃 ′(𝑤𝑠𝑟𝑐) holds, and furthermore we know that:

□ ∀𝑤, 𝑃 ′(𝑤) −−∗ V(𝑤)
Owing to the fact thatV(·) is persistent, we can shave off the □ modality, and conclude that
V(𝑤𝑠𝑟𝑐) holds, concluding the proof of (a).
Finally, addressing (b) is straightforward, since we did not change the contents of memory at

either address 𝑎 or 𝑎′. We can therefore close the invariants again, by giving up the same resources
as we initially got from opening them, concluding the proof of (b) and thus the case of the proof
for load.

In the proof sketch above, we followed one specific subcase of the proof for the load instruction.
In the complete proof, we must go through all the possible cases of the semantics for the instruction.
In some cases, the machine fails which terminates the proof easily (for instance, if the capability in
𝑟src does not in fact allow reading memory, or if 𝑟src does not in fact contain a capability). In some
other cases, the machine does not fail, and the proof is similar to the case highlighted here but
slightly different (for instance when 𝑟dst and 𝑟src are the same register).

The proofs for the other instructions of the machine follow a similar pattern. In particular, in the
store case, the register state is not modified except for the pc register, but memory is modified.
As such, closing the invariants is not as easy since we need to establish that the stored word is at
least safe. This is established by using the fact that we assumed that the register only contains safe
words. The case of the restrict, subseg and lea instructions require showing that a capability
with smaller authority remains in the value relationV , and the jmp, jnz and mov cases show that
pc (or other registers) can be updated with arbitrary safe words. The other remaining cases are
rather trivial, as they all only change a register state to an integer, which is always safe. □

6 REASONINGWITH CAPABILITIES: TWO EXAMPLES
In this section, we return to the motivational examples introduced in Section 2, and show how
to prove that they enforce the desired properties, using Cerise’s reasoning tools, laid out in the
previous sections.

6.1 Sharing a sub-buffer with an unknown adversary

code: mov r1 PC

lea r1 [data-code]

subseg r1 [data] [data+3]

jmp r0

data: 'H', 'i', 0, ; public

secret: 42 ; secret

end:

Let us recall (on the right) the code for our buffer-
sharing program, previously introduced in Figure 3.
The labels code, data, secret and end denote ad-
dresses in memory. We wish to prove formally that the
program can share the data between addresses data
and secret (excluded), while protecting the integrity
of the data at address secret.
Using the reasoning rules from our program logic,

we can first prove a specification for the program, specifying its behavior from its first instruction

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

30 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

up until the final jmp. The corresponding specification is as follows, where code_instrs is the
list of integers corresponding to the encoded instructions of the program, i.e., code_instrs =

map encodeInstr [mov r1 pc; . . . ; jmp r0].

Lemma 1 (Program specification 24).{
(rwx, code, end, code); r0 Z⇒ 𝑤adv ∗ r1 Z⇒ − ∗

[code, data) ↦→ code_instrs

}
⇝{

updatePcPerm(𝑤adv);
r0 Z⇒ 𝑤adv ∗ r1 Z⇒ (rwx, data, secret, data) ∗
[code, data) ↦→ code_instrs

}
One can read from the specification that executing the program will store in r1 an rwx capability

to the memory segment between addresses data and secret (our “buffer”), and pass control to the
word𝑤adv found in register r0.

Proving this specification is easy: it is enough to successively apply the program logic rule of
each individual instruction found in the program.
This specification shows that the program ultimately jumps to the word initially passed in

register r0, but does not describe what happens after, in the case where this word points to a region
containing unknown code. For this, we use the reasoning principles from Section 5.2 (built on top
of the Fundamental Theorem), and derive a specification for a complete execution of the machine,
see Lemma 2 below. The lemma specifies that, starting by executing our program, and given that
r0 contains a capability to a region containing unknown integers, then the machine is safe to run.
Notice that we do not assume a points-to resource for the secret data: instead, this points-to will be
part of an invariant—specifying that it contains the same secret value at every step—and we do not
need to access that here.

Lemma 2 (Full execution specification 25).
(rwx, code, end, code);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ − ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0,r1 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0] ∗
∗(𝑎,𝑤) ∈adv 𝑎 ↦→ 𝑤 ∗ ⌈𝑤 ∈ Z ∨ inRegion(𝑤,𝑏adv, 𝑒adv)⌉


⇝ •

Proof. By Lemma 1, the frame rule FragFrame and the sequence rule SeqFull, it suffices to
show the following goal, which corresponds to a specification about the execution of the machine
after the execution of the verified code:

Goal:
(rwx, 𝑏adv, 𝑒adv, 𝑏adv);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ (rwx, data, secret, data) ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0,r1 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0]
∗(𝑎,𝑤) ∈adv 𝑎 ↦→ 𝑤 ∗ ⌈𝑤 ∈ Z ∨ inRegion(𝑤,𝑏adv, 𝑒adv)⌉


⇝ •

We now rely on the reasoning rules derived from the Fundamental Theorem (Section 5.2). First,
from the fact that the adversary region adv does not contain capabilities pointing outside of
[𝑏adv, 𝑒adv), we get using Corollary 1 that any capability on that region is safe, in particular we

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_full_run_spec

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 31

haveV(rwx, 𝑏adv, 𝑒adv, 𝑏adv). Then, from Corollary 2 we get a specification for the execution of the
machine starting fromV(rwx, 𝑏adv, 𝑒adv, 𝑏adv) (recall that updatePcPerm is the identity on non-e
capabilities):

Fact: ∀reg.
{
(rwx, 𝑏adv, 𝑒adv, 𝑏adv);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

From this fact, we can prove our goal provided that we show that the contents of all general
purpose machine registers satisfyV . For registers other than r0 and r1, this holds by definition of
V , as we know they only contain integers. Register r0 contains a capability to the adversary region,
which we have already proved to be safe using Corollary 1. Finally, register r1 contains the capability
pointing to the public buffer. We can again leverage Corollary 1 to obtainV(rwx, data, secret, data)
from the memory points-to for the buffer ([data, secret) ↦→ [′H′;′ i′; 0]), thus concluding the
proof. □

Finally, from Lemma 2, established in the program logic, we wish to obtain a final result in
terms of the operational semantics of the machine. The toplevel end-to-end theorem that we
obtain is shown in Theorem 3. We consider a machine whose memory is initially loaded with
our program and unknown adversarial code, and that starts by executing our verified code. The
theorem establishes that the adversary will not be able to tamper with the value held at address
secret: at every step of the execution, it will be unchanged and equal to 42.

Theorem 3 (End-to-end theorem: integrity of the secret data is preserved 26). Starting
from an initial state of the machine (reg,mem) where:
• prog ⊎ adv ⊆ mem, for adv : [𝑏adv, 𝑒adv) →Word and prog : [code, end) →Word
• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities pointing outside of [𝑏adv, 𝑒adv):
∀𝑎.adv(𝑎) ∈ Z ∨ inRegion(adv(𝑎), 𝑏adv, 𝑒𝑎𝑑𝑣);
• the initial state of registers satisfies:

reg(pc) = (rwx, code, end, code),
reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv),
reg(𝑟) ∈ Z otherwise;

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(secret) = 42.

Proof. We first invoke Theorem 1, choosing the memory invariant 𝐼 and its domain 𝐷 to be the
invariant 𝐼buf and domain 𝐷buf defined below, asserting that the value at address secret is equal
to 42:

𝐼buf ≜ 𝜆𝑚. 𝑚(secret) = 42
and 𝐷buf = {secret}.

Most side-conditions of the adequacy theorem can be easily discharged. What remains is the
following specification in Iris:

∃𝑚,∗(𝑎,𝑤) ∈𝑚 𝑎 ↦→ 𝑤 ∗
⌈
dom(𝑚) = 𝐷buf

⌉
∗
⌈
𝐼buf (𝑚)

⌉
⊢

(rwx, code, end, code);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗∗(𝑟,𝑣) ∈reg,
𝑟∉{pc,r0 }

𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

∗(𝑎,𝑤) ∈adv 𝑎 ↦→ 𝑤 ∗ ⌈𝑤 ∈ Z ∨ inRegion(𝑤,𝑏adv, 𝑒adv)⌉ ∗
∗(𝑎,𝑤) ∈prog,

𝑎∉𝐷buf

𝑎 ↦→ 𝑤


⇝ •

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#adequacy

32 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

We can simplify this goal by unfolding the definition of 𝐼buf , 𝐷buf , prog and massaging the goal
to extract relevant points-to resources. The goal then becomes:

secret ↦→ 42 ⊢

⊢


(rwx, code, end, code);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ − ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0,r1 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0] ∗
∗(𝑎,𝑤) ∈adv 𝑎 ↦→ 𝑤 ∗ ⌈𝑤 ∈ Z ∨ inRegion(𝑤,𝑏adv, 𝑒adv)⌉


⇝ •

Note how the points-to resource for the secret address is held as part of the invariant, asserting
that it contains the value 42 at each step. This simplified goal now follows from the full execution
specification established earlier in Lemma 2 by applying the rule FullFrame, which concludes the
proof. □

6.2 Creating a closure around local state
Let us now come back to the example introduced in Section 2.4, whose code is reproduced below.
In this example, the control flow is somewhat more involved, as we have two separate pieces of
known code that run at different times. The initialization code between init and code runs first, and
creates a sentry capability before passing control to the unknown code. The code and data located
between code and end are encapsulated in the sentry capability created by the initialization code.
Because the sentry capability is exposed to the unknown code, the code it encapsulates may be
invoked several times, incrementing the value of the counter each time.

We wish to prove formally that the value of the counter is correctly encapsulated. We prove that
it remains non-negative at every step: starting from zero, it can only get incremented by the code
routine encapsulated in the sentry capability.

init:

mov r1 PC

lea r1 [data-init]

mov r2 r1

lea r2 1

store r1 r2

lea r1 [code-data]

subseg r1 [code] [end]

restrict r1 E

mov r2 0

jmp r0

code:

mov r1 PC

lea r1 [data-code]

load r1 r1

load r2 r1

add r2 r2 1

store r1 r2

mov r1 0

jmp r0

data:

; will be:

; (RWX, init, end, data+1)

0xFFFF,

0 ; counter value

end:

Using the rules of our program logic, we can first prove a specification for the initialization code,
shown in Lemma 3. This specification describes the behavior of the code between init and code,
where init_instrs denote the corresponding list of encoded instructions.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 33

Lemma 3 (Specification for the initialization code 27).{
(rwx, init, end, init); r0 Z⇒ 𝑤adv ∗ r1 Z⇒ − ∗ r2 Z⇒ − ∗

data ↦→ − ∗ [init, code) ↦→ init_instrs

}
⇝{

updatePcPerm(𝑤adv);
r0 Z⇒ 𝑤adv ∗ r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
data ↦→ (rwx, init, end, data + 1) ∗ [init, code) ↦→ init_instrs

}
From this specification, one can read that running the initialization code will store in register

r1 a sentry capability to [code, end), and write at address data an rwx capability pointing to the
location holding the counter value. The initialization code then passes control to the unknown
word𝑤adv stored in r0.

We can also use the program logic rules to prove a specification for the code routine in [code, data)
which increments the counter, and which will run each time the sentry capability is invoked. The
specification appears in Lemma 4, where code_instrs refers to the list of encoded instructions for
the routine.

Lemma 4 (Specification for the increment routine 28).
[code, data) ↦→ code_instrs ,

data ↦→ (rwx, init, end, data + 1) , ∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉
⊢ {(rx, code, end, code); r0 Z⇒ 𝑤cont ∗ r1 Z⇒ − ∗ r2 Z⇒ −}⇝
{updatePcPerm(𝑤cont);∃𝑛. r0 Z⇒ 𝑤cont ∗ r1 Z⇒ 0 ∗ r2 Z⇒ 𝑛}

This specification assumes a number of Iris invariants, describing the contents of the [code, end)
memory region. Indeed, because the increment routine is invoked by unknown code, it cannot
make many assumptions about the state of the machine. The only thing that it can assume is that
previously established invariants still hold (because, by definition, capability-safe unknown code
has to preserve invariants).

The specification thus assumes, as invariants: 1) that the region [code, data) contains the code of
the routine; 2) that data contains the rwx capability to the counter value previously stored there by
the initialization code, and finally 3) that the counter value (at address data + 1) is a non-negative
integer.

The specification asserts that the routine can run, starting with pc containing an rx capability to
the [code, end) region, while preserving the invariants. (In particular, this means that incrementing
the counter indeed preserves the fact that it is a non-negative integer.) Recall that the rx permission
in pc corresponds to what one gets after jumping to a sentry capability.

Finally, we prove as before a specification proving safety of complete executions, starting from
the initialization code, then followed by the execution of unknown code, including its possible
invocations of the sentry capability. This specification appears below in Lemma 5.

Lemma 5 (Full execution specification 29).
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉

⊢


(rwx, init, end, init);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗ r1 Z⇒ − ∗ r2 Z⇒ − ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 ..r2 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[init, code) ↦→ init_instrs ∗
[code, data) ↦→ code_instrs ∗ data ↦→ − ∗
∗(𝑎,𝑤) ∈adv 𝑎 ↦→ 𝑤 ∗ ⌈𝑤 ∈ Z ∨ inRegion(𝑤,𝑏adv, 𝑒adv)⌉


⇝ •

Proof. By using Lemma 3 (the specification for the initialization code), the frame rule FragFrame
and sequence rule SeqFull, it is enough to show the following goal, which specifies the execution

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_init_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_code_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_full_run_spec

34 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

of the machine after the initialization code has run:
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉ ⊢
(rwx, 𝑏adv, 𝑒adv, 𝑏adv);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 ..r2 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[init, code) ↦→ init_instrs ∗
[code, data) ↦→ code_instrs ∗
data ↦→ (rwx, init, end, data + 1) ∗
∗(𝑎,𝑤) ∈adv 𝑎 ↦→ 𝑤 ∗ ⌈𝑤 ∈ Z ∨ inRegion(𝑤,𝑏adv, 𝑒adv)⌉


⇝ •

We then allocate two new invariants, one containing the code of the sentry capability, the other
the points-to resource at address data.

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉ ⊢
(rwx, 𝑏adv, 𝑒adv, 𝑏adv);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 ..r2 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

[init, code) ↦→ init_instrs ∗
∗(𝑎,𝑤) ∈adv 𝑎 ↦→ 𝑤 ∗ ⌈𝑤 ∈ Z ∨ inRegion(𝑤,𝑏adv, 𝑒adv)⌉


⇝ •

From Corollary 1 and the fact that the adversary region adv does not contain capabilities
pointing outside of [𝑏adv, 𝑒adv), we get that any capability on that region is safe, and therefore
that V(rwx, 𝑏adv, 𝑒adv, 𝑏adv) holds. From Corollary 2, we get that a full execution starting from
(rwx, 𝑏adv, 𝑒adv, 𝑏adv) is safe:

Fact: ∀reg.
{
(rwx, 𝑏adv, 𝑒adv, 𝑏adv);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

In combination with rule FullFrame, this fact allows us to conclude the proof, provided we

can prove safety of values stored in all registers. We have already proved the capability in r0 to be
safe. Registers r2 to r31 contain integers, so they are safe by definition ofV . Safety of the sentry
capability created by the initialization code and stored in r1 remains to be proven.

Goal:

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉
⊢ V(e, code, end, code)

By definition ofV and E, this goals unfolds to the following:

Goal:

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃𝑛. (data + 1) ↦→ 𝑛 ∗ ⌈𝑛 ≥ 0⌉
⊢ ⊲□ ∀reg,

{
(rx, code, end, code);∗(𝑟,𝑣) ∈reg,𝑟≠pc 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

For technical reasons, we can shave off the later modality (⊲) in front of the goal (we refer to the
Coq formalization for more details). The persistent modality (□) is more interesting: it expresses
the fact that safety of the callback should only depend on persistent assumptions. This corresponds
to the fact that the callback may be invoked several times, in future execution states and because of
this it cannot rely on non-persistent assumptions that only hold at the callback’s creation time.
Fortunately, invariants are persistent, so they remain available for proving the callback’s safety.
Then, let us name𝑤0 the contents of register r0: we get to assumeV(𝑤0) (as for the contents

of other registers). By using Lemma 4 (the specification for the increment routine) with rules

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 35

FragFrame and SeqFull, it is enough to prove the following goal, which asserts safety of the
execution after passing control back to unknown code by jumping to𝑤0:

Goal: ⊢
{
updatePcPerm(𝑤0);

∃𝑛. r0 Z⇒ 𝑤0 ∗ r1 Z⇒ 0 ∗ r2 Z⇒ 𝑛 ∗
∗(𝑟,𝑣) ∈reg,𝑟∉{pc,r0,r1,r2 } 𝑟 Z⇒ 𝑣 ∗ V(𝑣)

}
⇝ •

Informally, the increment routine returns to the unknown code by passing control to some
unknown word provided in r0: it is safe to do so, since such word can be assumed to be itself safe.
Formally speaking, we knowV(𝑤0), so we apply Corollary 2 which concludes the proof. □

Similarly to the previous example, we derive from Lemma 5 a toplevel theorem which only
refers to the operational semantics of the machine, shown below in Theorem 4. We consider a
machine initially loaded with our program and unknown adversarial code. The theorem establishes
that the value of the counter is properly encapsulated: at every step of the execution, it will be a
non-negative integer.

Theorem 4 (End-to-end theorem: integrity of the counter value is preserved 30). Start-
ing from an initial state of the machine (reg,mem) where:
• prog ⊎ adv ⊆ mem, for adv : [𝑏adv, 𝑒adv) →Word and prog : [init, end) →Word
• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities pointing outside of [𝑏adv, 𝑒adv):
∀𝑎.adv(𝑎) ∈ Z ∨ inRegion(adv(𝑎), 𝑏adv, 𝑒adv);
• the initial state of registers satisfies:

reg(pc) = (rwx, init, end, init),
reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv),
reg(𝑟) ∈ Z otherwise;

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(data + 1) ≥ 0.

Proof. We invoke Theorem 1, with invariant and domain 𝐼cnt and 𝐷cnt defined as follows:

𝐼cnt ≜ 𝜆𝑚.𝑚(data + 1) ≥ 0
and 𝐷cnt = {data + 1}

The main step of the proof is to show that the full execution specification for the initial machine
configuration holds, as stated by the theorem. After some basic unfolding of definitions, it is easy
to show that it follows from the specification we previously established in Lemma 5. □

7 DYNAMIC MEMORY ALLOCATION AND CLOSURES
In the previous sections, we have shown how to use capabilities for memory protection and
compartmentalization in the setting of relatively simple scenarios. In particular, the examples that
we have presented so far only relied on memory allocated statically as part of the initial program
region.

We now investigate how we can use and reason about more complicated programming patterns.
More precisely, we show how we can implement features found in higher-level languages, such as
dynamic memory allocation and function calls which guarantee encapsulation of local variables.
Additionally, we implement an assert routine which we use to formally express properties about
dynamically allocated memory.
This section focuses on presenting the aforementioned higher-level building blocks (§7.1–7.3),

an updated adequacy theorem that incorporates the use of these components (§7.4), then followed
by a simple illustrative example (§7.5). In Section 8, we then apply them to build a larger, more
significant case study, demonstrating how these building blocks can work at scale.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#adequacy

36 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

7.1 Dynamic memory allocation as a library routine
We show how dynamic memory allocation can be implemented as a library, for which: 1) we prove
an Iris specification making it usable from verified code, and 2) we show that it is safe to share with
untrusted code, so that an adversary can also use the library to allocate memory for its own uses.
Note that this task is made easier by the fact that we do not attempt to provide a way of

deallocating memory. As such, memory provided by the allocation routine is never reclaimed.
We leave deallocation for future work, as it likely requires a significantly more complex runtime
mechanism to ensure that no dangling capabilities remain pointing to previously allocated memory
regions [Filardo et al. 2020; Xia et al. 2019].

Concretely, we implement our allocator library as a simple bump-pointer allocator. The library
provides a malloc entry point, to be called with an integer argument 𝑛, which works as follows:

(1) the routine encapsulates a contiguous region of memory [𝑏, 𝑒), as well as a capability
(rwx, 𝑏, 𝑒, 𝑎) where the interval [𝑏, 𝑎) represents already allocated memory, and [𝑎, 𝑒) repre-
sents memory that can still be allocated;

(2) the routine checks that the input size 𝑛 is strictly positive;
(3) if 𝑎 + 𝑛 is greater than 𝑒 , the routine fails (there is not enough memory available);
(4) otherwise, it then records that memory has been allocated by updating its internal capability

to (rwx, 𝑏, 𝑒, 𝑎 + 𝑛), and returns to the caller the capability (rwx, 𝑎, 𝑎 + 𝑛, 𝑎).

Figure 10 outlines the code for our simple malloc implementation. The code assumes that it is
stored in memory in an interval [𝑏𝑚, 𝑏mid) and that 𝑏mid points to a capability (rwx, 𝑏mid, 𝑒𝑚, 𝑎)
giving access to: itself (so it can be updated), and the memory pool (between address 𝑏mid + 1 and
𝑒𝑚). For simplicity, we assume that the non-allocated memory is already initialized to 0. These
requirements are represented by the following invariant 31 :

mallocInv(bm, em) ≜

∃𝑏mid, 𝑎, [𝑏𝑚, 𝑏mid) ↦→ malloc_instrs ∗
𝑏mid ↦→ (rwx, 𝑏mid, 𝑒𝑚, 𝑎) ∗
[𝑎, 𝑒𝑚) ↦→ [0 · · · 0] ∗
⌈𝑏mid < 𝑎 ≤ 𝑒𝑚⌉

The core property of our safe malloc is that is does not hand out the same addresses across
multiple dynamic allocations. This can be expressed elegantly in separation logic, by specifying
that malloc hands out points-to resources for the allocated memory. Indeed, points-to resources
(𝑎 ↦→ 𝑤) express full ownership over the data at address 𝑎: possessing a resource 𝑎 ↦→ 𝑤 guarantees
that one is the only owner of address 𝑎.

Consequently, remark that the invariant holds memory points-to for the region corresponding to
non-allocated memory (between 𝑎 and 𝑒𝑚), but not for the memory that has already been allocated
(between 𝑏mid + 1 and 𝑎): these resources have been handed out to previous callers of the library.

We show below the specification for malloc 32 . First, note that because malloc can fail if it runs
out of memory or is given a wrong size, the specification documents that the resulting execution
state is either Running or Failed. In the case where it does not fail, we can read that malloc hands
out points-to resources for the allocated range in its post-condition: this expresses the fact that no

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#malloc_inv
https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_spec

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 37

;; r1: integer determining the number

;; of words to allocate

;;

;; malloc fails if size <= 0 or if it

;; does not have enough space left

;;

;; returns in r1 a capability to the

;; allocated memory

bm:

lt r3 0 r1 ;; check that size > 0

mov r2 pc ;; jmp after fail if

lea r2 4 ;; yes; continue and

jnz r2 r3 ;; fail if not

fail

xm:

mov r2 pc

lea r2 [bmid - xm]

;; r2 = (RWX, bm, em, bmid)

load r2 r2 ;; r2 = (RWX, bmid, em, a)

geta r3 r2

lea r2 r1

;; r2 = (RWX, bmid, em, a+size)

geta r1 r2

mov r4 r2

subseg r4 r3 r1

;; r4 = (RWX, a, a+size, a+size)

;; fails if a+size > em

sub r3 r3 r1;; r3 = -size

lea r4 r3 ;; r4 = (RWX, a, a+size, a)

mov r3 r2 ;; r3 = (RWX, bmid, em, a+size)

sub r1 0 r1 ;; r1 = -a-size

lea r3 r1 ;; r3 = (RWX, bmid, em, 0)

getb r1 r3 ;; r1 = bmid

lea r3 r1 ;; r3 = (RWX, bmid, em, bmid)

store r3 r2

;; bmid <- (RWX, bmid, em, a+size)

mov r1 r4 ;; r1 = (RWX, a, a+size, a)

mov r2 0

mov r3 0

mov r4 0

jmp r0

bmid: (RWX, bmid, em, a)

;; ... already allocated memory ...

a:

;; ... free memory ...

em:

Fig. 10. A simple malloc subroutine

piece of code but the caller of malloc can access the newly allocated memory.

mallocInv(bm, em)

⊢
{
(rx, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚);

𝑟0 Z⇒ 𝑤0 ∗ 𝑟1 Z⇒ 𝑛 ∗
𝑟2, 𝑟3, 𝑟4 Z⇒ −

}
⇝

𝑠 .

⌈𝑠 = Running⌉ ∗ pc Z⇒ updatePcPerm(𝑤0) ∗
∃𝑏𝑎, 𝑒𝑎, ⌈𝑏𝑎 + 𝑛 = 𝑒𝑎⌉ ∗
r0 Z⇒ 𝑤0 ∗
r1 Z⇒ (rwx, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎) ∗∗𝑎∈[𝑏𝑎,𝑒𝑎) 𝑎 ↦→ 0 ∗
r2, r3, r4 Z⇒ 0

∨ ⌈𝑠 = Failed⌉


The malloc routine can furthermore be encapsulated using a sentry capability, which can be

shown to be safe to share with an adversary (Lemma 6). We highlight that sharing the entry point
to the malloc subroutine with an adversary means that adversaries may dynamically allocate new
capabilities at runtime, thus enriching the class of adversary programs that may safely be linked to.

Lemma 6 (malloc is safe 33). mallocInv(𝑏𝑚, 𝑒𝑚) −−∗ V(e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)

The proof is comparable to the proof that V(e, code, end, code) on page 34. It relies on the
malloc specification and the fundamental theorem.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_valid

38 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

7.2 Runtime checks: an assert routine
The final end-to-end theorems presented so far in Section 6 rely on establishing that a certain
memory location satisfies a given invariant. This requires the relevant location is statically allocated
in memory and thus known in advance, thus making it easy to tie it to an Iris invariant.
However, when using our malloc routine, we typically wish to enforce properties about the

contents of dynamically allocated memory locations, whose address is, by definition, not known in
advance. To address this issue, we implement an assert routine, to be linked alongside programs
relying on malloc. One can invoke assert to dynamically test whether the contents of two registers
are equal; if the test fails, assert sets a flag “assert has failed” at a fixed location in memory.

The idea is then that, to assert that some property holds about a piece of dynamically allocated
memory, one can check dynamically whether it holds using assert. Then, one can prove that each
assert check succeeds (meaning that the property indeed holds). Consequently, as a property of
the whole execution, one gets that, at every step, the assert flag (initialized at 0) remains at 0 and is
never set to 1 by assert.

The private memory of the assert routine is described by the following invariant 34 :

assertInv(𝑏𝑎, 𝑒𝑎, aflag) ≜
∃𝑎cap, [𝑏𝑎, 𝑎cap) ↦→ assert_instrs ∗

𝑎cap ↦→ (rw, 𝑎flag, 𝑎flag + 1, 𝑎flag) ∗⌈
𝑎cap + 1 = 𝑎flag ∧ 𝑎flag + 1 = 𝑒𝑎

⌉
The address 𝑎flag denotes the address of the “assert flag”, which is initialized to 0 and set to 1

by the routine in case of failure. As we are interested in using assert in programs where we can
prove that the equality check succeeds, we establish the following specification 35 , which asserts
in a separate invariant that 𝑎flag remains at 0. Registers 𝑟4 and 𝑟5 contain the two integers which
are compared by the routine; we thus require that they are equal.

assertInv(𝑏𝑎, 𝑒𝑎, 𝑎flag) , 𝑎flag ↦→ 0

⊢
(rx, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎);

r0 Z⇒ 𝑤0 ∗
r4 Z⇒ 𝑛 ∗
r5 Z⇒ 𝑛

⇝
{
updatePcPerm(𝑤0);

r0 Z⇒ 𝑤0 ∗
r4, r5 Z⇒ 0

}
Note that, as opposed to malloc, the assert routine should only be shared with verified code,

which calls it according to the specification above. Were assert shared with an unknown adversary,
the adversary could simply call the routine with two different integers, setting the flag to 1, thus
invalidating any guarantees established by verified code. Technically speaking, we cannot prove
safety of the assert routine from the specification above: if we try to proveV(e, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎), then
we get that registers r4 and r5 contain two unknown (valid) words, which could be two different
integers. In that case, we cannot use the specification above, as we would violate the invariant
specifying that 𝑎flag stays at 0.

7.3 A secure heap-based calling convention
We define a heap-based calling convention that uses malloc to dynamically allocate activation
records. An activation record is encapsulated in a closure that reinstates its caller’s local state, and
continues execution from its point of creation. Conceptually, our heap-based calling convention
can be seen as a continuation-passing style calling convention (one passes control to the callee,
giving it a continuation for returning to the caller). This is similar to the calling convention that
was used for instance in the SML/NJ compiler to implement an extension of Standard ML with
call/cc [Appel 1992] (in the setting of a traditional computer architecture).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_inv
https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_success_spec

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 39

In the setting of a capability machine, our calling convention is furthermore secure in the sense
that it enforces local state encapsulation. In other words, one can use it to pass control to unknown
adversarial code, while protecting local data of the caller, thanks to the use of sentry capabilities
to implement the continuation. Note that this calling convention does not enforce well-bracketed
control flow (another desirable property); see Georges et al. [2021]; Skorstengaard et al. [2019a,b]
for stack-based calling conventions that do.
We provide a call macro implementing the calling convention, invoked as call target locals

params, where target is the name of the register containing a capability to the code to invoke,
locals is the list of registers whose content corresponds to the local state to reinstate upon return,
and params is the list of registers containing the parameters to the call (passed to the callee). Its
implementation appears in Figure 11, and a representation of the corresponding memory layout in
Figure 12. (Because call is defined as a macro, its code is used inline as part of a bigger program,
here stored between addresses code and end.)
Before passing control to the callee, the call macro does the following:

(1) Invoke malloc to dynamically allocate a region of memory [𝑙, 𝑙end) to store the local state
from the registers specified in locals. The macro store_locals r locals unfolds to a series of
store r r’ and lea r 1 instruction, for each register r’ in locals.

(2) Allocate a region of memory [act, actend) to store the activation record, composed of: activa-
tion code, a capability to the region [𝑙, 𝑙end), and a capability to the instruction of the program
following the call.

(3) Create a sentry capability (e, act, actend, act) encapsulating the activation record; this is the
capability for returning to the caller which is passed to the callee.

(4) Clear all registers except those in params.
(5) Jump to target.

When the callee passes back control to the caller by jumping to the continuation, the code stored
in the activation run first. It loads the capability pointing to local state, and returns to the old
program counter set up by the call macro. As the last step, the macro will finally:

(6) Restore the local state (restore_locals r locals) into the relevant registers from the activa-
tion record, by now doing a load and lea instruction for each register in locals.

We show below the specification for the code of the macro up to step 5 (the jump to the
target address) 36 . Since the malloc routine is invoked by the macro, the specification relies
on the corresponding invariant for malloc. The parameters of the macro are params, locals and
target, respectively denoting the list of registers containing the parameters to the call, the list
of registers containing local state, and the register containing the capability to jump to. The list
of (encoded) instructions act_instrs denote the concrete instructions making up the activation
code (in Figure 11 they are written as act_instr1...act_instr5 37), which are not shown here for
simplicity.
The post-condition of the specification describes the state immediately after the jump, where:

the activation record has been allocated and initialized in [act, actend); register r0 contains an enter
capability pointing to the activation record, and the local data has been copied to a newly allocated
region [𝑙, 𝑙end).

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#call_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#hw_1

40 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

; initially, PC = (RWX, code, end, a)

; target = register containing the address to jump to

; locals, params = lists of register names

; locals, params and target are parameters of the macro;

; they are in practice instantiated with concrete values

code:

...

a:

malloc (length locals) ; 1. allocate and store local state

store_locals r1 locals

mov r6 r1

malloc 7 ; 2. allocate region for activation record

mov r0 r1

store act_instr1 ; store the activation code

lea r0 1

...

store act_instr5

lea r0 1

store r0 r6 ; store the capability to locals

lea r0 1

x:

mov r1 pc ; prepare and store the continuation

lea r1 [cont - x]

store r0 r1

lea r0 -6 ; 3. create the return capability

restrict r0 E

rclear RegName\({PC,r0,r1} ∪ params) ; 4. clear all registers except parameters

jmp target ; 5. jump to target

cont:

restore_locals r1 locals ; 6. reinstate local state

...

data:

(RO, table, end, table) ; environment table

table:

(E, bm, em, bm) ; entry point to the malloc subroutine

... ; possibly other routines

end:

Fig. 11. Heap-based calling convention, with a the first instruction in the call macro

l l_end

locals

rwx

act. code

act act_end

𝑟0 : (e, act, act_end, act)

• •
code endcont

p

dynamically allocated

static code

Fig. 12. Memory layout dynamically created by the calling convention

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 41

mallocInv(𝑏𝑚, 𝑒𝑚)

⊢


(𝑝, code, end, a);

[a, cont) ↦→ call_instrs ∗
data ↦→ (ro, table, end, table) ∗ table ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚) ∗
params Z⇒ pws ∗ locals Z⇒ lws ∗ target Z⇒ wadv ∗∗ (𝑟,𝑣) ∈reg,

𝑟∉{pc,target }
𝑟∉params ∪ locals

𝑟 Z⇒ 𝑣


⇝


updatePcPerm(wadv);

∃act, actend, l, 𝑙end, reg′,
r0 Z⇒ (e, act, actend, act) ∗
data ↦→ (ro, table, end, table) ∗ table ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚) ∗
params Z⇒ pws ∗ target Z⇒ wadv ∗ [l, 𝑙end) ↦→ lws ∗
[act, actend) ↦→ act_instrs ++[(rwx, l, 𝑙end, 𝑙end);

(𝑝, code, end, cont)] ∗
∗ (𝑟,𝑣) ∈reg′,

𝑟∉{pc,target,r0 }
𝑟∉params

𝑟 Z⇒ 𝑣


It is then up to the user of the call macro to establish that the capability in r0 is safe to share

with the (possibly unknown) callee. This can be done with the help of the specification for the
activation code 38 , shown next:

⊢

(rx, act, actend, act);
r1 Z⇒ − ∗ r2 Z⇒ − ∗
[act, actend) ↦→ act_instrs ++

[(rwx, l, 𝑙end, 𝑙end);
(𝑝, code, end, cont)]

⇝(𝑝, code, end, cont);
r1 Z⇒ − ∗ r2 Z⇒ (rwx, 𝑙, 𝑙end, 𝑙) ∗
[act, actend) ↦→ act_instrs ++

[(rwx, 𝑙, 𝑙end, 𝑙end);
(𝑝, code, end, cont)]


One can read from this specification that the activation code passes control back to the caller (at

address cont), while loading in register r2 a capability to the region holding the local state, which
can be then loaded back into the corresponding registers by the restore_locals macro (step 6,
which we do not detail here).

To sum up, the calling convention presented here allows one to make a “function call” as one
would do in a higher-level language, while protecting local data of the caller. The code invoked
this way can be completely untrusted: in particular, it does not need to implement the calling
convention itself for the local state encapsulation guarantees to hold. (But of course it might never
“return” and pass control back to the caller.)

In Section 7.5, we demonstrate the use of this heap-based calling convention on a simple example,
showing the interaction of its local state encapsulation guarantees with read-only capabilities.

7.4 Adequacy in the Presence of Dynamically Allocated Memory
We can now provide an updated version of the adequacy theorem (Theorem 1) which directly incor-
porates the malloc and assert library routines. Instead of establishing that a memory invariant is
always preserved at each step, the new adequacy theorem establishes that the flag held by assert
is never modified.
Theorem 5 assumes that the malloc and assert routines are loaded in memory disjoint from

both prog and adv. Furthermore, the assert routine must have its flag initialized to 0. The verified

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.callback.html#scall_epilogue_spec

42 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Theorem 5 (Updated adeqacy 39). Given memory fragments prog : [𝑏, 𝑒) → Word, malloc :
[𝑏𝑚, 𝑒𝑚) → Word, assert : [𝑏𝑎, 𝑒𝑎) → Word, and for any memory fragment adv : [𝑏adv, 𝑒adv) →
Word, assuming that:

(1) the initial state of memory mem satisfies:

prog ⊎malloc ⊎ assert ⊎ adv ⊆ mem

(2) [𝑏𝑚, 𝑒𝑚) contains the malloc routine;

(3) [𝑏𝑎, 𝑒𝑎) contains the assert routine and its flag at address 𝑎flag ;

(4) the assertion flag is initially set to 0:

mem(𝑎flag) = 0
(5) prog contains a table linking to malloc and assert:

∃data, table,mem(data) = (ro, table, table + 2, table)
mem(table) = (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)

mem(table + 1) = (e, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎)
(6) the adversary region contains no capabilities except for a table linking tomalloc, and capabilities

pointing to its own region:

∃dataadv, tableadv, ∀𝑎 ∈ dom(adv)\{dataadv, tableadv},
adv(𝑎) ∈ Z ∨ inRegion(adv(𝑎), 𝑏adv, 𝑒adv)
adv(dataadv) = (ro, tableadv, tableadv + 1, tableadv)
adv(tableadv) = (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)

(7) the initial state of registers reg satisfies:

reg(pc) = (rwx, 𝑏, 𝑒, 𝑏), reg(r0) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv), reg(𝑟) ∈ Z otherwise

(8) the proof in the program logic that the initial configuration is safe given the invariants:

∀reg,
mallocInv(𝑏𝑚, 𝑒𝑚) , assertInv(ba, ea, 𝑎flag) , 𝑎flag ↦→ 0

⊢



(rwx, 𝑏, 𝑒, 𝑏);

r0 Z⇒ (rwx, 𝑏adv, 𝑒adv, 𝑏adv) ∗
∗(𝑟,𝑣) ∈reg,

𝑟∉{pc,r0 }
𝑟 Z⇒ 𝑧 ∗ ⌈𝑧 ∈ Z⌉ ∗

∗ (𝑎,𝑤) ∈prog,
𝑎∉{data,table,table+1}

𝑎 ↦→ 𝑤 ∗

data ↦→ (ro, table, table + 2, table) ∗
table ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚) ∗
table + 1 ↦→ (e, 𝑏𝑎, 𝑒𝑎, 𝑏𝑎) ∗∗ (𝑎,𝑧) ∈adv

𝑎∉{dataadv ,tableadv }
𝑎 ↦→ 𝑧 ∗

dataadv ↦→ (ro, tableadv, tableadv + 1, tableadv) ∗
tableadv ↦→ (e, 𝑏𝑚, 𝑒𝑚, 𝑏𝑚)



⇝ •

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(𝑎flag) = 0.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy_ocpl.html#ocpl.ocpl_template_adequacy

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 43

; initially, PC = (RWX, code, end, code)

; r2 = (unknown) capability to adversary function

code:

malloc 1 ; r1 = (RWX, b, b+1, b) where b is fresh

mov r3 r1 ; r3 = (RWX, b, b+1, b)

mov r4 r1 ; r4 = (RWX, b, b+1, b)

store r3 1 ; b <- 1

restrict r4 RO ; r4 = (RO, b, b+1, b)

call r2 [r3] [r4] ; call macro that jumps to r1, keeps r3 as local

; state and passes r4 as parameter

load r1 r3 ; r1 = 1, as long as b was not changed during call

mov r2 1

assert r1 r2 ; assert (r1 = 1)

halt

data:

(RO, table, end, table) ; environment table

table:

(E, bm, em, bm) ; entry point to the malloc subroutine

(E, ba, ea, ba) ; entry point to the assert subroutine

end:

Fig. 13. Program passing a read-only capability to unknown callee

program prog is given access to both the malloc and assert routines. The adversary program
adv is given access to malloc. We assume that prog contains the code and a table that has been
filled by a linker with capabilities giving access to the two routines. Likewise, we assume that adv
contains its program and data (arbitrary integers and capabilities pointing to its own region) and a
table filled by the linker with the capability to the malloc routine. Similarly to the first adequacy
theorem, the theorem states that if the capability machine starts with the capability pointing to
prog in the program counter, and if it has been proved in the program logic that the machine can
run until completion, then the assertion flag is never modified.
In what follows, Lemma 5 will thus allow us to prove end-to-end theorems saying that the

assertion flag will still be unset after a full execution. This corresponds to the end-to-end theorems
of Swasey et al. [2017] which are also phrased in terms of an assert primitive (albeit in a high-
level language) that untrusted code does not get access to. Of course, such results remain a bit
artificial: ultimately, in real systems, we are not directly interested in the contents of assertion flags
in the system’s memory, but rather in the system’s interaction with the outside world: network
communication, the content of displays etc. Our approach can be extended to reason about such
properties, but we don’t go into details here. Instead, we refer to Van Strydonck et al. [2022], where
we have done exactly this extension, by adding MMIO and external event traces to our operational
semantics and using Iris invariants and ghost state to reason about them. This results in end-to-end
theorems that prove security properties about the external event traces of a system, which we
regard as a more realistic end goal of a verification effort.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

44 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

7.5 Application: read-only sharing of dynamically allocated memory
We now present an example program sharing a read-only capability with adversary code, show-
casing the combined use of the malloc (Section 7.1) and assert (Section 7.2) routines, the secure
calling convention (Section 7.3), and exercising our updated adequacy theorem (Section 7.4).
Figure 13 shows the implementation of our program of interest. The program dynamically

allocates a region of size 1, into which it stores the integer 1. Next, it creates a copy of the newly
created capability, which is then restricted to read-only (ro). This restricted capability is shared
with an unknown callee, while the original copy is kept as local state. Upon return, an assert
statement checks that the region indeed still contains 1. We then wish to prove that the final
assertion always succeeds.

Notice that in this example, control is passed to untrusted code, corresponding to the first scenario
in Figure 2a. However, we also allow the callee to return, i.e. jump to a callback. This is achieved
using our calling convention to create a secure two-way boundary between known code and the
unknown callee.

In order to prove that the assert statement succeeds, we rely on two facts. First, the heap-based
calling convention guarantees the encapsulation of (rwx, 𝑏, 𝑏 +1, 𝑏). Second, sharing (ro, 𝑏, 𝑏 +1, 𝑏)
with unknown code does not threaten the integrity of 𝑏, since ro capabilities cannot be used to
write to memory. These two facts are key when proving the following specification:

Lemma 7 (Full execution specification 40).
mallocInv(𝑏𝑚, 𝑒𝑚) , assertInv(ba, ea, 𝑎flag) , 𝑎flag ↦→ 0

⊢


(rwx, data, end, code);

r2 Z⇒ 𝑤adv ∗ V(𝑤adv) ∗∗(𝑟,𝑣) ∈reg,𝑟∉{pc,r1 } 𝑟 Z⇒ 𝑣 ∗
[code, end) ↦→ code_instrs ∗
data ↦→ (ro, table, table + 2, table) ∗
[table, table + 2) ↦→ [(e, 𝑏m, 𝑒m, 𝑏m); (e, 𝑏a, 𝑒a, 𝑏a)]


⇝ •

Proof. We begin by applying program logic rules until we make it to the call to unknown code.
At that point, a (fresh) region has been dynamically allocated and initialized to 1. Specifically, the
malloc specification has yielded the following Separation Logic resources:

r1 Z⇒ (rwx, 𝑏, 𝑏 + 1, 𝑏) ∗ 𝑏 ↦→ 1
At the call site, the calling convention creates an activation record, and sets up a sentry capability
as the return capability in r0. (The “...” on the second line below stands for the address of the
continuation after the call.) After reaching the end of the call macro in Figure 13, the program
counter now points to𝑤adv , and the call specification has yielded the following resources.

𝑟0 Z⇒ (e, act, actend, act) ∗ (11)
[act, actend) ↦→ act_instrs ++[(rwx, 𝑙, 𝑙 + 1, 𝑙); (rwx, code, end, ...)] ∗
𝑙 ↦→ (rwx, 𝑏, 𝑏 + 1, 𝑏) ∗
r3 Z⇒ 0 ∗
r4 Z⇒ (ro, 𝑏, 𝑏 + 1, 𝑏) (12)

Note in particular how the rwx capability pointing to 𝑏 (part of the “local state”) is only reachable
from the capability (pointing to 𝑙) stored in the activation record, while the ro copy is available in
register r4.

To reason about the execution of𝑤adv , we apply Corollary 2 (assuming𝑤adv is safe). This requires
us to show that all parameters in the current register state are valid. In particular, we must show

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.lse.html#roe_spec

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 45

that the sentry capability set up by the calling convention (11) is safe to execute, and that the
read-only capability (12) is safe to share.
The latter is done by allocating an appropriate invariant, which is allowed to be stronger than

the value relation itself, since the capability in question is read-only. To this end, we will allocate
an invariant that remembers the current integer pointed to by b, namely 1.

∃𝑤,𝑏 ↦→ 𝑤 ∗𝑤 = 1

That same invariant is then used to prove that (11) is safe to execute, in particular to show that the
assert statement succeeds, and hence does not change the assert flag. □

From this functional specification, we can instantiate our updated adequacy theorem (Theorem 5)
to then derive the following end-to-end theorem about our program.

Theorem 6 (End-to-end theorem: the read-only permission guarantees integrity 41).
Starting from an initial state of the machine (reg,mem) assuming that:

• prog ⊎ adv ⊎malloc ⊎ assert ⊆ mem, where:

adv : [𝑏adv, 𝑒adv) →Word, prog : [code, end) →Word
malloc : [𝑏m, 𝑒m) →Word and assert : [𝑏a, 𝑒a) →Word;
• the contents of prog correspond to the encoded instructions and program data (i.e. table with

capabilities to the malloc and assert subroutines);

• the adversary memory contains no capabilities except a table with a capability to the malloc

subroutine, and capabilities pointing to its own region;

• malloc contains the implementation of the malloc subroutine;

• assert contains the implementation of the assert subroutine, with its flag at address 𝑎flag ,

initialized to 0;

• the initial state of registers satisfies:

reg(pc) = (rx, code, end, code),
reg(r2) = (rwx, 𝑏adv, 𝑒adv, 𝑏adv).

Then, for any reg
′,mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(𝑎flag) = 0.

Proof. We apply the updated adequacy theorem (Theorem 5), using the specification proved in
Lemma 7. All that remains is to prove the validity of the adversary capability:V(rwx, 𝑏adv, 𝑒adv, 𝑏adv).
This is done in two steps. First, the adversary linking table is proved valid by applying validity of
the malloc subroutine (Lemma 6). Next, the rest of the adversary region is proved valid through
the assumption that it does not contain any other capabilities pointing outside of [𝑏adv, 𝑒adv). The
full proof can be found in the Coq mechanisation. □

8 CASE STUDY: A LIBRARY IMPLEMENTING DYNAMIC SEALING AND A CLIENT
We have presented so far a variety of smaller examples enforcing interesting encapsulation proper-
ties while interacting with adversarial code. In this section, we demonstrate that our approach scales
up to the verification of a larger case study, involving not only the building blocks of Section 7, but
using them to build and modularly verify a number of libraries built on top of each other.
We take inspiration from the literature on object capability patterns (OCPs) from high-level

languages, a technique that enables programmers to protect the private state of their objects from
corruption by untrusted code. More precisely, we consider the dynamic sealing OCP as presented
by Swasey et al. [2017]. Dynamic sealing enforces a form of data abstraction in the absence of static
types. It can be implemented as a library providing pairs of seal/unseal functions, allowing their
clients to “seal” private data into opaque objects which can be safely shared with untrusted code,
and later unsealed in order to get back the original data.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.lse_adequacy.html#roe_adequacy

46 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

interval = 𝜆_, let (seal, unseal) = makeseal() in
let makeint = 𝜆 z1 z2, let x = malloc(2) in

x ← {𝑚𝑖𝑛(z1, z2);𝑚𝑎𝑥 (z1, z2)};
seal(x)

in
let imin = 𝜆 i, unseal(i) [0] in
let imax = 𝜆 i, unseal(i) [1] in
(makeint, imin, imax)

client = let (makeint, imin, imax) = interval() in
let checkint = 𝜆 𝑖, assert(imin(𝑖) ≤ imax(𝑖)) in
(checkint, makeint, imin, imax)

Fig. 14. High-level pseudo-code for the implementation of the interval library and its client.

In the context of a high-level language, Swasey et al. [2017] present a formally verified implemen-
tation of dynamic sealing, equipped with a specification that captures the abstraction guarantees
it provides. The authors then use this dynamic sealing library to build and verify a library of
abstract integer intervals, where the integrity of an interval value (representing a range [𝑖, 𝑗) with
𝑖 ≤ 𝑗) is protected using dynamic sealing. Finally, the authors use their verified integer library
to establish robust safety of a simple client program checking integrity of intervals, establishing
that an untrusted context cannot violate the internal invariants of the program and its underlying
libraries.
We implement and verify low-level variants of the dynamic sealing OCP, interval library, and

their robustly safe client. This represents a non-trivial amount of code: our implementation of those
three components adds up to 632 machine instructions. Nevertheless, despite the fact that those
libraries are implemented in low-level assembly code, we are able to give them specifications at a
level of abstraction similar to their high-level counterparts.

For ease of reading, we will keep the explanations fairly high-level. We will first show high-level
pseudo-code for the implementation of the interval library and its client, and informally discuss
what kind of properties should be enforced. Then, we will present the key ideas for implementing
dynamic sealing on a capability machine, and then for reasoning about it, in particular how to
instantiate its specification to be able to verify the interval library.

8.1 Interval Library and Client
The interval library implements an abstract data type representing intervals. An interval has a
lower and upper bound, which can be extracted via two functions; imin and imax. An interval is
created via a function makeint that takes as input two integers, and chooses the smallest input as
the lower bound, and the largest input as the upper bound. Crucially, the internal representation of
an interval must stay hidden so as to guarantee its integrity.
We thus use dynamic sealing [Sumii and Pierce 2004] to dynamically enforce data abstraction

for the intervals representation. We detail our implementation of seals in Section 8.2. For now, it
suffices to know that a seal is a pair of functions, seal and unseal, where the former hides the
internal representation of some value, such that only the latter can expose it.
An interval can be represented as an ordered pair of integers. On the capability machine, we

implement such a pair as a dynamically allocated region of size two, storing the lower and upper

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 47

bound of the interval. Then, an interval itself consists of a capability with read/write authority over
the corresponding region of size two. In Figure 14, we depict the high-level implementation of our
interval library 42 . Note that the library implements closures around a fresh seal-unseal pair, used
to seal the aforementioned internal representation of intervals. The low-level implementation that
we formally reason about can be thought of as the result of compiling the high-level implementation
shown in Figure 14.
The same figure also depicts a client of the interval library 43 . The client exposes four entry

points to the environment: in addition to entries to makeint, imin and imax from a fresh instance
of the interval library, the client also exposes an encapsulated checkint function that, given an
interval, dynamically asserts that the expected representation invariant holds for the interval, that
is, that the minimum of the interval is indeed smaller than or equal to the maximum of the interval.
When formally verifying the interval library and its client, we will need an invariant to keep

track of each interval created by makeint. The invariant should capture the properties enforced by
the implementation of the interval library. We can already list the internal properties of an interval
intuitively. First and foremost, the lower bound of an interval must be less than or equal to its
upper bound. A perhaps more subtle property is that intervals are immutable. Thus, we will need
to define an invariant that represents each interval as a dynamically allocated region of size two,
which stores the lower and upper bound, and is immutable. The seal-unseal pair encapsulated
by the library will be used only to seal intervals that adhere to this representation (satisfy this
invariant). Keeping this intuition in mind, let us now explore the technical implementation of seals.

8.2 Dynamic Sealing
Dynamic sealing makes it possible to support data abstraction dynamically. The function makeseal
creates a pair of functions, seal and unseal, where seal is used to seal a word w into a fresh
sealed word 𝜎 . We will also refer to 𝜎 as the key to w. The only way to extract the word w from 𝜎

is with unseal. The key point is that this seal-unseal pair supports data abstraction by sealing

away or hiding the internal representation of some value, only known and available to the owner
of the associated unseal function.
Although capability machines such as CHERI include seals as a language primitive, we show

here how we can implement seals in software, as a low-level library. The library is implemented
via a data structure that stores each word sealed through seal, associating each sealed word with a
key. A key in itself does not reveal any details about the word it is hiding. However, it can provide
access to that word, granted one has the proper authority to unseal it. Only a valid key should
grant access to a sealed word. Keys, and the data structure that uses them, should intuitively satisfy
two properties; (1) the unforgeable nature of keys and (2) the unique association between a key
and the word it seals.

The seal and unseal subroutines respectively perform insertions and lookups in this underlying
data structure. seal takes a word as input, generates a fresh key, and adds the key value association
to the data structure. unseal takes a key as input, checks that the key is associated to a value in
the data structure, in which case it returns the value.

8.2.1 Reasoning about dynamic sealing. A shared seal-unseal pair can be used to seal any word.
In practice, one typically encapsulates a seal-unseal pair within a library, performing additional
checks and thus ensuring that words that are sealed always satisfy a specific property. Then,
whenever one successfully unseals a given key, one gets that the corresponding word satisfies the
chosen property. For instance, the interval library enforces that each sealed word is a region of size
2, storing the ordered bounds of an interval.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html
https://logsem.github.io/cerise/journal/cap_machine.examples.interval_client.html

48 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

seal spec(−, 𝑏𝑠 , 𝑒𝑠 ,−);
[𝑏𝑠 , 𝑒𝑠) ↦→ seal ∗
sealInv ds Φ ∗
r1 Z⇒ 𝑣 ∗ Φ(𝑣) ∗ · · ·

⇝
𝑠 𝑘.

⌈𝑠 = Running⌉ ∗
isSealedWord 𝑘 𝑣 ∗
r1 Z⇒ 𝑘 ∗ · · ·
∨ ⌈𝑠 = Failed⌉


unseal spec(−, 𝑏𝑢, 𝑒𝑢,−);

[𝑏𝑢, 𝑒𝑢) ↦→ unseal ∗
sealInv ds Φ ∗
r1 Z⇒ 𝑘 ∗ · · ·

⇝
𝑠 𝑣 .

⌈𝑠 = Running⌉ ∗
isSealedWord 𝑘 𝑣 ∗
r1 Z⇒ 𝑣 ∗ Φ(𝑣) ∗ · · ·
∨ ⌈𝑠 = Failed⌉


Fig. 15. Specifications of seal and unseal

When reasoning about code invoking the dynamic sealing library, one will need to pick, for
each seal-unseal pair, a representation invariant Φ : Word → iProp describing the values to be
sealed/unsealed by the pair8. Then, each seal-unseal pair maintains an Iris invariant sealInv 44

describing the state of the pair itself, namely the data structure storing the key-values for all sealed
entries. Additionally, this invariant stores the information that each sealed value satisfies Φ.

sealInv ds Φ ≜
∃wvals, dataStructure ds wvals
∗∗(−,𝑤) ∈wvals Φ(𝑤)

We require that Φ is persistent, since the representation invariant of a sealed word should always
hold once sealed. The dataStructure predicate describes the state of the data structure internal to
the seal library (see Section 8.2.2 for a formal definition). It asserts that ds can be used to access a
data structure storing the key value pairs denoted by wvals (a sequence of pairs in Addr ×Word).
In other words, wvals is the complete list of all words that have been sealed so far, each paired with
their associated key.
Since the library does not implement deallocation9, a sealed word is sealed forever. It is thus

possible to persistently remember that a particular word is an element of wvals. The predicate
isSealedWord 𝑘 𝑣 states that the key 𝑘 is uniquely associated with the sealed word 𝑣 . We present
the formal definition of isSealedWord in Section 8.2.2.

The functional specifications of the seal and unseal subroutines depend on an instance of the
seal invariant sealInv, for a specific user-provided predicate Φ. Then, seal can only be applied to
words for which the representation predicate Φ holds. unseal can fail if a given key is not valid, or
if it is not associated with any sealed word, however if it succeeds, it will return a word for which
Φ holds. The specification of makeseal allocates a fresh sealInv instance, for any Φ chosen by the
client of the library. Figure 15 shows specifications for seal 45 and unseal 46 (where we omit
low-level administrative details).

8.2.2 Implementing a low level seal library. We now present the data structure used to implement
the low-level seal library. We implement it as a linked associative list with a twist, next refered to
as a linked list dictionary. The trick is to take advantage of the unforgeable nature of capabilities,
and use the capability to (a subrange of) a list node as a key to that node; the corresponding value
being then stored in the node.

8An analogous representation invariant is used by Swasey et al. [2017]
9deallocation would require some kind of garbage collection

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.keylist.html#sealLL
https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#seal_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#unseal_spec

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 49

0

𝑏1 𝑏1 + 3 𝑏2 𝑏2 + 3 𝑏3 𝑏3 + 3
• 𝑣1 • 𝑣2 • 𝑣3 0

Fig. 16. In-memory representation of an empty dictionary linked list and a dictionary linked list with three
values 𝑣1, 𝑣2 and 𝑣3.

Figure 16 shows the in-memory representation of a linked list dictionary storing three key-value
pairs. Each node is implemented as a region of size three, where the bottom address acts as the key
address. To avoid access to sealed values, it is important that a key does not provide authority over
the other parts of a node (the value and the next pointer). For instance, the value v1 is uniquely
associated to the capability (rwx, 𝑏1, 𝑏1 + 1,−).
The linked list dictionary library contains two subroutines, findB 47 and append 48 . findB

expects as input an integer b, searches the linked list for a node of the form (rwx, 𝑏, 𝑏 + 3,−) and
returns the value that the associated node stores. It fails if no such node exists. append expects a
word as input, invokes malloc to dynamically allocate a new node of size three, stores the input
word in the second position of that node, and then stores that node as the new tail of the linked list.
Finally a key can then be derived from the newly created node; we now explain in more detail how
that is done.
A fresh instance of a seal-unseal pair is created by calling the makeseal subroutine, which

returns a pair of closures encapsulating a new empty linked list dictionary. Sealing a word w adds it
to the dictionary, and returns a restricted capability representing the key to the linked list dictionary
entry. Say for instance that the input word w is appended to the list in a fresh node (rwx, 𝑏, 𝑏 + 3, 𝑏).
The seal subroutine will then return the key (rwx, 𝑏, 𝑏 + 1,−) (the address pointed to does not
matter, and is here omitted for clarity).

Recall that in the enclosed linked list dictionary, w will be stored at address b + 1, for which the
returned sealed value, or key, does not have authority. This sealed value is unforgeable. The only
way to create it would be to derive it from a capability (rwx, 𝑏 ′, 𝑒 ′, _) where [𝑏,𝑏 + 1) ⊆ [𝑏 ′, 𝑒 ′).
However, this is impossible since the appended node is freshly allocated using a safe malloc
subroutine, which is guaranteed to hand out fresh regions upon invocation. Only seal has access
to such a capability, and thus sealed values cannot be forged.
In turn, the unseal subroutine expects a rwx capability of range 1 as input. It reads its lower

bound, searches the enclosed linked list for a node with matching lower bound, and returns the
associated word. Let us consider a continuation of the previous example. Say that unseal receives
(rwx, 𝑏, 𝑏+1,−) as input. It begins by authenticating the key by dynamically verifying its permission
to be rwx, and its size to be 1. Upon validating its permission and range, it then runs findB on
the enclosed linked list dictionary with the integer b, and returns the word stored within the
node (rwx, 𝑏, 𝑏 + 3,−) at address 𝑏 + 1, namely the previously sealed word w. The authentication
guarantees that a key has the same unforgeable authority as when it was created.

In summary, the seal and unseal subroutines are implemented as follows:
• seal:
(1) append the input to the enclosed linked list dictionary
(2) restrict the range of the fresh node capability to the bottom address of the node

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.keylist.html#findb_instr
https://logsem.github.io/cerise/journal/cap_machine.examples.keylist.html#appendb_instr

50 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

(3) return resulting restricted capability
• unseal:
(1) check that permission of input is rwx
(2) check that the range of input is 1
(3) get the lower bound of input
(4) find the node in the linked list dictionary with same lower bound
(5) return the stored word at that node (fail if no such node exists)

We now have enough ingredients to revisit the predicates used in the previous section to define
the seal invariant. Recall that the dataStructure predicate represents the state of the data structure
internal to the seal library (now defined to be a linked list dictionary), and that the isSealedWord
predicate describes a persistently known association between a sealed word and its key.

dataStructure ds wvals ≜ ∃hd, ds ↦→ hd

∗ isList hd wvals

∗ Exact wvals
isSealedWord k v ≜ ∃wvals, Pref wvals ∗ ⌈(k, v) ∈ wvals⌉ 10 ∗ V(rwx, 𝑘, 𝑘 + 1,−)

The head of the linked list dictionary is stored in location ds. isList corresponds to a standard
inductive separation logic predicate for linked lists. Since the list monotonically grows, it is useful
to persistently remember any prefix of the linked list dictionary. Exact wvals (the authoritative
view of the list state) roughly states that wvals is the full state of the data structure. Pref wvals
(the local fragment view) states that wvals is a prefix of the data structure. isSealedWord 𝑘 𝑣 , a
persistent predicate, states that the word v has been sealed with a key; a capability with lower
bound k. This key is safe to share, henceV(rwx, 𝑘, 𝑘 + 1,−) holds.
In the next section, we describe how we use the reasoning principles about seal-unseal to

verify our interval library.

8.3 Verifying the Interval Library and its Client
The first key step is to formally define the representation invariant for an interval. Recall the
intuitive description given in Section 8.1: an interval is a capability with authority over a region of
size 2, storing the lower and upper bounds of an interval, and which is immutable.
A first thought might be that one can define the representation invariant using two points-to

predicates for the region. However, this does not capture the immutability of intervals, nor is it
persistent. Instead, we use persistent points-to predicates [Vindum and Birkedal 2021], a predicate
from the core logic of Iris11, which can be derived by relinquishing a regular points-to predicate
and transforming it into its persistent counterpart. A persistent points-to predicate 𝑎 ↩→ 𝑤 asserts
that address 𝑎 stores the word 𝑤 . It can be used to read from address 𝑎, but not write to it, and
as such, is a persistent resource. This is exactly what we need for our immutable invariants. We
formally define the representation invariant isInterval 49 as follows:

isIntervalInt z1 z2 w ≜ ∃𝑎, ⌈𝑤 = (rwx, 𝑎, 𝑎 + 2, 𝑎)⌉ ∗ 𝑎 ↩→ z1 ∗ (𝑎 + 1) ↩→ z2 ∗ ⌈𝑧1 ≤ 𝑧2⌉
isInterval𝑤 ≜ ∃𝑧1 𝑧2, isIntervalInt 𝑧1 𝑧2 𝑤

(Note, in particular, that the invariant also captures the property that the lower bound is less than
or equal to the upper bound.) Using properties of persistent points-to predicates, we can prove the
following lemma:
10In the Coq mechanization, wvals associates the word w to k + 1 rather than k, for technical reasons. This small discrepancy
has otherwise no impact on the rest of the proof.
11Indeed, one advantage of building Cerise in the Iris framework, is that we can use the many existing definitions and
features of the Iris logic

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html#isInterval

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 51

Lemma 8 (50). isIntervalInt z1 z2 w → isIntervalInt z3 z4 w → ⌈z1 = z3 ∧ z2 = z4⌉ .

Because isInterval is persistent, we can use it as the representation predicate for a seal-unseal
pair, which will thus operate over the following invariant:

sealInv ll isInterval

This seal invariant is allocated by the specification for makeseal, which is invoked during the
creation of an interval library closure.

When sealing a new interval using makeint, we must establish isInterval for the newly created
interval. This requires us to transform the regular points-to predicates handed out by the malloc
specification into persistent points-to predicates, and assert that indeed𝑚𝑖𝑛(𝑧1, 𝑧2) ≤ 𝑚𝑎𝑥 (𝑧1, 𝑧2).

Specifications for imin and imax return the respective lower and upper bound of a sealed interval.
The seal invariant guarantees that the sealed word is an interval according to the representation
invariant isInterval. In other words, if imin or imax succeeds for some word w, we know that w is
the key to some associated capability pointing to the bounds of an interval [𝑙, 𝑟]; specifically that
isIntervalInt 𝑙 𝑟 𝑤 holds.

During the verification of checkint, the specification for imin gives us some value 𝑙 and predicate
isIntervalInt 𝑙 𝑟 𝑤 . Similarly, the specification for imax gives us some value 𝑟 ′ and predicate
isIntervalInt 𝑙 ′ 𝑟 ′ 𝑤 . Notice that the bounds may be different, but the sealed word𝑤 is the same in
each instance. We can thus apply Lemma 8 on the two given instances of isIntervalInt, and use the
definition of isInterval to conclude that the given assert statement succeeds, namely that 𝑙 ≤ 𝑟 .

Finally, all that remains is to apply adequacy and prove the following final end-to-end theorem:

Theorem 7 (End-to-end theorem: the interval client does not trigger an assertion
failure 51). Starting from an initial state of the machine (reg,mem) in which regions reserved for

the interval library, the seal library, malloc, the assert flag, the client and the adversary are all disjoint,
and initialized as expected, we have that, for any reg

′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′) then
mem

′(𝑎flag) = 0.

9 DISCUSSION AND PERSPECTIVES
In this paper we have introduced Cerise, a program logic for reasoning about a low-level capability
machine. Moreover, we have shown how Cerise can be used to define a logical relation for reasoning
about unknown code. Thanks to the logical relation and the fundamental theorem from Section 5,
Cerise can be used for robust verification [Sammler et al. 2020; Swasey et al. 2017], i.e., to verify
correctness of software that interacts with unverified components. The Cerise program logic is
the culmination of ideas used in a sequence of earlier papers [Georges et al. 2021; Skorstengaard
et al. 2018, 2019a; Van Strydonck et al. 2022] and this paper is intended to give an accessible
and didactic introduction to Cerise and the application of Cerise to program verification in the
presence of untrusted code, accompanied with new results on a heap-based calling convention and
implementations of sophisticated object-capability patterns.

Throughout the paper we have introduced increasingly complex examples, which demonstrate
how fine-grained abstractions can be implemented on a capability machine and reasoned about
using Cerise. Our examples from Section 7 and Section 8 are modeled after examples from a paper
about a high-level object capability language [Swasey et al. 2017]. Because of the more low-level
nature of our capability machine, we had to implement some abstractions ourselves (such as the
calling convention in Section 7.3) but we think it is otherwise fair to say that our examples faithfully
represent the examples used by Swasey et al., using the same granularity of encapsulation and
attacker interaction. As such, this paper demonstrates that the low-level security primitives offered
by our capability machine are expressive enough to implement high-level language abstractions,

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html#intervals_agree
https://logsem.github.io/cerise/journal/cap_machine.examples.interval_client_adequacy.html#template_adequacy

52 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

despite the stronger attacker model of a low-level adversary. At the same time, the examples show
that Cerise is expressive enough to reason about these abstractions.

Cerise is the first instantiation of the Iris framework to such a low-level language and thus this
work also demonstrates that the key features of Iris (such as guarded recursion, ghost state, and
invariants) are equally applicable in this low-level setting as in the high-level settings they were
originally intended for. The proof effort is similar to that of other Iris mechanizations, and took
around two to three person years to finalize, including the full program logic, logical relations
model and case studies. While using Cerise to verify the non-trivial dynamic sealing case study
required a manageable proof effort (Cerise comes equipped with simple but useful tactical support
for stepping through straight-forward instructions and for reasoning about address arithmetic,
which is useful for the tedious but otherwise trivial parts of the proof), the user experience would be
improved with support for more sophisticated automated reasoning. Since Cerise is implemented in
Iris, one could for example apply similar techniques to existing automation support in Iris [Keuchel
et al. 2022; Mulder and Krebbers 2023; Mulder et al. 2022; Sammler et al. 2021].
Since Cerise, we have seen more instantiations of low-level languages in Iris. For example,

Sammler et al. [2022] present Islaris, which can used to verify machine code against authoritative
ISA semantics of Armv8-A and RISC-V, and Liu et al. [2023] introduce VMSL, a novel separation
logic, which can be used to reason about virtual machines which communicate through a hypercall
API. To reason about stored code, the latter work introduces a new kind of weakest precondition
(called single-step weakest precondition), which could probably be used to slightly simplify the
formal treatment of stored code in Cerise.

Of course, while we implement and reason about our examples directly in the capability machine
assembly language, we are not proposing that real software should all be developed in that way. On
the contrary, we think this is only realistic for low-level code in compiler back-ends [Georges et al.
2021; Skorstengaard et al. 2019a], operating systems and low-level security measures [Van Strydonck
et al. 2022]. Other software should be developed and reasoned about in a more abstract setting,
which suggests the need for a secure compiler that preserves high-level security guarantees in a
low-level environment. In the context of capability machines, such compilers have been investigated
already, both formally [El-Korashy et al. 2021; Van Strydonck et al. 2019], and practically [Chisnall
et al. 2017; Richardson 2020]. While we in this work have shown how to implement and reason
about some high-level programming patterns at a low level, much interesting work remains to be
done to further explore the design of a high-level language whose security abstractions map well
to those offered by a capability machine.

An important aspect of the universal contract provided by our logical relation and fundamental
theorem is that it formalizes the security guarantee of our capabilitymachinewithout overspecifying
implementations of the ISA. The contract specifies an authority bound that suffices to reason about
adversarial code, but does not overly constrain future extensions or optimized implementations
of the ISA. This is similar to how the ISA itself is designed to specify expected behavior that
is sufficient for software authors to reason about their code without preventing CPU designers
from constructing optimized or extended implementations. In fact, we believe universal contracts
offer a general and powerful approach for formalizing ISA security guarantees. Such security
guarantees are stated in informal ISA specifications but they have not yet been incorporated in
formal definitions of ISAs [Armstrong et al. 2019; Bourgeat et al. 2021]. As such, a promising
application of universal contracts like the one from Section 5 is to incorporate them into the ISA
definition to formalize intended ISA security guarantees. Inspired by Cerise, Huyghebaert et al.
[2023] have proposed a general method for verifying security guarantees in the form of universal
contracts in separation logic on Sail specifications of ISAs, supported by a general verification tool
called Katamaran. One of their case studies is a custom capability machine ISA called MinimalCaps

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 53

which extends Cerise and for which they establish a very similar universal contract as ours, but
they don’t verify capability-machine assembly software as the ones shown in Section 8.
Finally, it is worth acknowledging that in this paper, we only describe a minimal capability

machine that lacks many features from realistic capability machine ISAs. In other work, our
approach has been extended to support some additional features in the literature. Particularly, this
includes local and uninitialized capabilities [Georges et al. 2021], memory-mapped I/O (MMIO) [Van
Strydonck et al. 2022] and CHERI-like hardware-based capability-sealing (a technical ingredient in
a work-in-progress model of CHERI-TrEE [Van Strydonck et al. 2023]). However, other features
are still missing for now (e.g. capability compression, interrupts, virtual memory, etc.). This means
that we can sometimes not accurately study certain aspects of security measures. For example, the
secure calling conventions described by Georges et al. [2021], Skorstengaard et al. [2019b] and
Georges et al. [2022] would not work well in the presence of capability compression because the
stack capability cannot have a large range of authority and precise bounds at the same time. In
terms of reasoning, the unary model we have described only supports reasoning about integrity
properties. However, we have implemented a binary model in our Coq development which can be
used to reason about relational properties (e.g., confidentiality).

10 RELATEDWORK
We now discuss several lines of work related to ours. First, we discuss earlier variants of Cerise
by the authors and colleagues. Then, we discuss work on verifying object capability patterns in
high-level languages, verification of ISA properties in CHERI, and other applications of universal
contracts in the literature.

10.1 Earlier variants of Cerise and Related Frameworks
Earlier variants of Cerise focused on showing how capabilities can be used to implement a secure,
stack-based calling convention [Georges et al. 2021; Skorstengaard et al. 2019a,b] and nested security

wrappers [Van Strydonck et al. 2022].
Skorstengaard et al. [2019a] were the first to show that capabilities can be used to implement a

secure stack-based calling convention, i.e., a calling convention where the security guarantees of
function calls at the machine code level are faithful to the high-level notion of a function call. They
employed an additional kind of “local” capabilities and stack clearing to achieve security. Their work
follows a similar methodology as the one described here, that is, they define a logical relation which
characterizes a notion of safety. However, their proofs were not mechanized and the logical relation
was defined using a non-trivial concrete model; in contrast we use the Cerise program logic to define
and prove properties about our logical relation, which means that our development is done at a
higher-level of abstraction and thus we, e.g., do not have to solve any recursive domain equations. In
follow-up non-mechanized work, Skorstengaard et al. [2019b] achieved similar security guarantees
with a novel calling convention based on so-called “linear” capabilities; capabilities that can never
be duplicated. Although this calling convention avoids the stack clearing required in the previous
work, linear capabilities come with certain architectural restrictions [see, e.g., Skorstengaard et al.
2019b, §6.2]. An efficient implementation of linear capabilities has so far not been demonstrated.
The subsequent work by Georges et al. [2021] introduced a new type of capabilities (called

“uninitialized”) to avoidmost of the stack clearing from Skorstengaard et al.’s first calling convention,
thereby improving runtime efficiency12. Importantly, uninitialized capabilities do not come with
the same architectural hurdles as linear capabilities. As a second contribution, Georges et al. used

12This argument is somewhat informal in the absence of an actual implementation, but can be argued for informally due to
a significant decrease of memory clearing

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

54 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Iris to formulate safety as a logical relation and mechanized their proofs of security. Their work
was subsequently built on in [Georges et al. 2022], which presents a new type of locality (called
“directed”) to completely avoid stack clearing upon return, while still enforcing temporal stack
safety properties. Uninitialized capabilities have been taken up in the CapStone capability-based
architecture [Zhijingcheng Yu et al. 2023], where they are used to prevent leaking secrets when
reallocating memory to untrusted software.
The aforementioned logical relations of both Skorstengaard et al. and Georges et al. are more

expressive and therefore significantly more complicated than the one presented here: they permit
reasoning about revocation of local/linear/uninitialized capabilities and well-bracketedness prop-
erties of machine-code “function calls”, on top of local-state encapsulation. In our present work,
object capabilities ensure local state encapsulation, but we do not enforce calls and returns to be
well-bracketed. In particular, we do not prevent an adversary from invoking a return capability
several times, or storing return capabilities for later use. In other words, our calling convention
implements the kind of function calls one has in a high-level language with control operators (e.g.,
call/cc), where calls and returns are not necessarily well-bracketed. (It is well-known that models
of well-bracketed function calls are more involved than models of not-necessarily-well-bracketed
function calls [see, e.g., Abramsky et al. 1998; Dreyer et al. 2012], and here we opted for the latter,
to present a more accessible model, which suffices for a heap-based calling convention and for
studying low-level implementations of object-capability patterns.)

In a different line of work, Van Strydonck et al. [2022] employed a capability machine and logical
relations model similar to the one presented here, but with additional support for memory-mapped
I/O (MMIO), to verify safety properties for small, nestable wrappers around security-critical devices
on a capability architecture. As part of the verification effort, multiple end-to-end security theorems
were proven, which state that safety predicates of interest hold over the trace of IO events admitted
by the machine. Here we have instead focused on demonstrating how a core model (without MMIO
support) can be used to reason about low-level implementations of object-capability patterns.

10.2 Verifying object capability patterns in high-level languages
A number of high-level programming languages allow for programming patterns similar to object
capabilities, that enable preserving local state while interacting with unknown code. Examples are
closures, and high-level objects in capability safe languages.

Devriese et al. [2016] pioneered the use of a logical relation to give a semantic characterization
of capability safety (earlier work used a more conservative syntactic approach based on whether
or not objects contain references to each other and ignored the behaviour of objects). [Devriese
et al. 2016] focused on capability safety for a core calculus of Javascript, including a notion of
observable effects, and used an explicit construction of their logical relation (not a program logic),
which was the inspiration for the capability model by Skorstengaard et al. [2019a] mentioned above
and for the work by Swasey et al. [2017], who presented a program logic which allows reasoning
modularly about object capability patterns in a high-level language. The methodology of Swasey
et al. [2017] is close to the one presented here, but in contrast to Swasey et al. [2017] we reason
about object capabilities on a low-level machine. For instance, Swasey et al. define two predicates to
describe a reference: a predicate for “high integrity” locations (ℓ ↩→ 𝑣), and one for “low integrity”
locations (lowloc ℓ). The first predicate grants exclusive access to the corresponding reference, and
is therefore not safely shareable with an adversary. The second is shareable with an adversary, but
can only be used to read and write “low integrity” values. In our setting, “high integrity” directly
corresponds to the predicate 𝑎 ↦→ 𝑤 for a memory location, and “low integrity” corresponds to
the invariant used in the definition ofV: ∃𝑤, 𝑎 ↦→ 𝑤 ∗ V(𝑤) . Correspondingly, our definitions

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 55

satisfy similar reasoning rules to the ones established by Swasey et al.. In particular, we believe that
the various object capability patterns they verify can be implemented and verified in a similar way
in the setting of a capability machine, using the principles presented in this paper. We demonstrated
one such implementation by adapting their dynamic sealing example in Section 8. Additionally, the
robust safety theorem of Swasey et al. [2017] is related to our template adequacy theorem with
malloc and assert (Theorem 5); our assert flag plays a role similar to the OK flag of Swasey et al.
[2017].

10.3 Verifying ISA properties in CHERI
Nienhuis et al. [2020] formally verify a number of “architectural” properties of CHERI capability
machines. This constitutes a significant mechanization effort: the authors tackle the full generality of
a realistic operational semantics for CHERI-MIPS. Bauereiss et al. [2022] go even further, and apply
the methodology of Nienhuis et al. to the Morello CPU, which is based on the high-performance
Neoverse N1 CPU and extending the Armv8 ISA, a significantly more complex ISA than both
CHERI-MIPS or the minimal machine we consider here.
The approach followed by Nienhuis et al. is different from ours: they state the properties they

establish as trace properties, over a trace of “abstract actions” describing the various capabilities
transiting through the machine during the execution. This approach makes it possible to state
the desired properties in a very explicit and concrete fashion. For instance, the authors state and
prove a property of “capability monotonicity”: during the execution, the authority of available
capabilities cannot increase (in other words, the machine does not allow forging new authority).
Intuitively, this seems like a very reasonable property, required for proper operation of the capability
machine. However, in practice it is more subtle: calls between components (in our case, jumping to
an e-capability) do allow for some restricted form of non-monotonicity. The property proved by
Nienhuis et al. is thus restricted to trace fragments that do not include calls to a different component.
Our methodology is less explicit, but more expressive. In our setting, the fundamental theorem
can be understood as expressing that “the machine works well”. Its very extensional statement
is admittedly harder to understand in terms of the operational semantics of the machine, but it
enables deriving correctness statements in terms of the operational semantics that do apply to a
full execution of the machine, including calls between an arbitrary number of components.

10.4 Other applications of universal contracts
As mentioned, our fundamental theorem constitutes a universal contract for arbitrary code, i.e., it
allows deriving the guarantee that any adversarial capability is safe to execute, given validity of said
capability. This safety is typically obtained by syntactically restricting the adversarial capability;
e.g., requiring that the adressed memory only contains integers.13 Similar notions of universal
contracts have been used for high-level languages (explicitly or implicitly) in the literature. The
aforementioned work of Skorstengaard et al. [2019a,b], and Swasey et al. [2017] all used a version
of universal contracts, and placed varying syntactic restrictions on adversaries. The semantic type
systems of Jung et al. [2017] and Sammler et al. [2020] permit similar reasoning about untrusted
code based on a syntactic well-typedness restriction. The back-translation in the full-abstraction
proof by Van Strydonck et al. [2019] involved an explicit, universal separation logic contract for
a C-like language with capabilities. Generally, whenever a semantic model is used to describe
semantic guarantees satisfied by arbitrary code (possibly subject to syntactic restrictions), and
when these guarantees are used in the manual verification of other code, this can be regarded as an
application of a universal contract.

13Note that instructions are encoded in memory as integers.

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

56 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

Acknowledgements. Thanks to Léon Gondelman and Cécilia Pradic for feedback on earlier drafts
of this document.
This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic

Research in Program Verification (CPV), from the VILLUM Foundation; by the Research Foundation
- Flanders (FWO); by DFF project 6108-00363 from The Danish Council for Independent Research
for the Natural Sciences (FNU); by the Air Force Office of Scientific Research under award number
FA9550-21-1-0054, by the Research Fund KU Leuven; and by the Flemish Research Programme
Cybersecurity. Thomas Van Strydonck held a Research Fellowship of the Research Foundation
- Flanders (FWO) during the work on this project. Amin Timany was postdoctoral fellow of the
Flemish Research Foundation (FWO) during parts of this project.

REFERENCES
Samson Abramsky, Kohei Honda, and Guy McCusker. 1998. A Fully Abstract Game Semantics for General References.

In Thirteenth Annual IEEE Symposium on Logic in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998. IEEE
Computer Society, 334–344. https://doi.org/10.1109/LICS.1998.705669

Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Filardo, Kunyan Liu, Robert Norton-Wright, Yucong Tao,
Robert N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Rethinking security for low-cost embedded systems. Technical
Report MSR-TR-2023-6. Microsoft. https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-
for-low-cost-embedded-systems/

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press.
Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E. Gray, Robert M. Norton, Prashanth

Mundkur, Mark Wassell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell.
2019. ISA Semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proceedings of the ACM on Programming Languages 3,
POPL (Jan. 2019), 71:1–71:31. https://doi.org/10.1145/3290384

Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong, Lawrence Esswood, Ian Stark, Graeme Barnes,
Robert N. M. Watson, and Peter Sewell. 2022. Verified Security for the Morello Capability-enhanced Prototype Arm
Architecture. In Programming Languages and Systems - 31st European Symposium on Programming, ESOP 2022, Held as

Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,

Proceedings (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.). Springer, 174–203. https://doi.org/10.1007/978-
3-030-99336-8_7

Lars Birkedal and Aleš Bizjak. 2022. Lecture Notes on Iris: Higher-Order Concurrent Separation Logic. https://iris-
project.org/tutorial-pdfs/iris-lecture-notes.pdf. [Online; accessed 26-May-2023].

Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Andrew Wright, and Adam Chlipala. 2021. A Multipurpose
Formal RISC-V Specification. arXiv:2104.00762 [cs] (April 2021). arXiv:2104.00762 [cs] http://arxiv.org/abs/2104.00762

Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. 1994. Hardware Support for Fast Capability-Based Addressing.
In Intenrational Conference on Architectural Support for Programming Languages and Operating Systems. ACM, 319–327.
https://doi.org/10.1145/195473.195579

David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou, Jonathan Woodruff, A. Theodore Markettos,
J. EdwardMaste, Robert Norton, Stacey Son,Michael Roe, SimonW.Moore, Peter G. Neumann, Ben Laurie, and Robert N.M.
Watson. 2017. CHERI JNI: Sinking the Java Security Model into the C. In International Conference on Architectural Support

for Programming Languages and Operating Systems. ACM, 569–583. https://doi.org/10.1145/3037697.3037725
Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for Multiprogrammed Computations. Commun. ACM

9, 3 (March 1966), 143–155. https://doi.org/10.1145/365230.365252
Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Capabilities Using Logical Relations

and Effect Parametricity. In European Symposium on Security and Privacy. IEEE. https://doi.org/10.1109/EuroSP.2016.22
Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order state and control effects on local relational

reasoning. J. Funct. Program. 22, 4-5 (2012), 477–528. https://doi.org/10.1017/S095679681200024X
Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese, Deepak Garg, and Frank Piessens. 2021.

CapablePtrs: Securely Compiling Partial Programs Using the Pointers-as-Capabilities Principle. In 34th IEEE Computer

Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE, 1–16. https://doi.org/10.1109/
CSF51468.2021.00036

Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan
Xia, Edward Tomasz Napierala, Alexander Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan Gudka,
Alexandre Joannou, A. Theodore Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael Roe, Peter Sewell, Stacey D.
Son, Timothy M. Jones, Simon W. Moore, Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia: Temporal

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://doi.org/10.1109/LICS.1998.705669
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-030-99336-8_7
https://doi.org/10.1007/978-3-030-99336-8_7
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://arxiv.org/abs/2104.00762
http://arxiv.org/abs/2104.00762
https://doi.org/10.1145/195473.195579
https://doi.org/10.1145/3037697.3037725
https://doi.org/10.1145/365230.365252
https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1109/CSF51468.2021.00036
https://doi.org/10.1109/CSF51468.2021.00036

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 57

Safety for CHERI Heaps. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21,

2020. IEEE, 608–625. https://doi.org/10.1109/SP40000.2020.00098
Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique

Devriese, and Lars Birkedal. 2021. Efficient and Provable Local Capability Revocation using Uninitialized Capabilities.
Proc. ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434287

Aïna Linn Georges, Alix Trieu, and Lars Birkedal. 2022. Le Temps Des Cerises: Efficient Temporal Stack Safety on Capability
Machines Using Directed Capabilities. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (April 2022),
74:1–74:30. https://doi.org/10.1145/3527318

Sander Huyghebaert, Steven Keuchel, Coen De Roover, and Dominique Devriese. 2023. Formalizing, Verifying and Applying
ISA Security Guarantees as Universal Contracts. In ACM Conference on Computer and Communications Security (CCS)

2023. ACM. TODO Accepted for publication.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of the

Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 66:1–66:34 pages. https:
//doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the
ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. 2022. Verified Symbolic Execution with
Kripke Specification Monads (and No Meta-Programming). Proc. ACM Program. Lang. 6, ICFP, Article 97 (aug 2022).
https://doi.org/10.1145/3547628

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic.
In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. https://doi.org/10.1145/3009837.
3009855

Henry M. Levy. 1984. Capability-Based Computer Systems. Digital Press. https://homes.cs.washington.edu/~levy/capabook/
Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod, Amin Timany, Aslan Askarov, and Lars Birkedal. 2023. Mechanised

Robust Safety for Virtual Machines Communicating above FF-A. Proc. ACM Prog. Lang (PLDI) (2023).
P. Maene, J. Götzfried, R. de Clercq, T. Müller, F. Freiling, and I. Verbauwhede. 2018. Hardware-Based Trusted Computing

Architectures for Isolation and Attestation. IEEE Trans. Comput. 67, 3 (March 2018), 361–374. https://doi.org/10.1109/TC.
2017.2647955

Ike Mulder and Robbert Krebbers. 2023. Proof Automation for Linearizability in Separation Logic. Proc. ACM Program. Lang.

7, OOPSLA1 (2023), 462–491. https://doi.org/10.1145/3586043
Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: automated verification of fine-grained concurrent

programs in Iris. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 809–824. https:
//doi.org/10.1145/3519939.3523432

Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony C. J. Fox, Michael Roe, Brian Campbell, Matthew
Naylor, Robert M. Norton, Simon W. Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell. 2020.
Rigorous engineering for hardware security: Formal modelling and proof in the CHERI design and implementation
process. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1003–1020.
https://doi.org/10.1109/SP40000.2020.00055

Alexander Richardson. 2020. Complete Spatial Safety for C and C++ Using CHERI Capabilities. Ph.D. Dissertation. University
of Cambridge, Computer Laboratory. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.html

Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020. The high-level benefits of low-level sandboxing.
Proc. ACM Program. Lang. 4, POPL (2020), 32:1–32:32. https://doi.org/10.1145/3371100

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg,
and Peter Sewell. 2022. Islaris: verification of machine code against authoritative ISA semantics. In PLDI ’22: 43rd ACM

SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA, USA, June 13 -

17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 825–840. https://doi.org/10.1145/3519939.3523434
Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:

automating the foundational verification of C code with refined ownership types. In PLDI ’21: 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 158–174. https://doi.org/10.1145/3453483.3454036

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2018. Reasoning About a Machine with Local Capabilities -
Provably Safe Stack and Return Pointer Management. In Programming Languages and Systems - 27th European Symposium

on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801), Amal Ahmed

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3527318
TODO
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://homes.cs.washington.edu/~levy/capabook/
https://doi.org/10.1109/TC.2017.2647955
https://doi.org/10.1109/TC.2017.2647955
https://doi.org/10.1145/3586043
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1109/SP40000.2020.00055
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.html
https://doi.org/10.1145/3371100
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3453483.3454036

58 A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu, D. Devriese, and L. Birkedal

(Ed.). Springer, 475–501. https://doi.org/10.1007/978-3-319-89884-1_17
Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019a. Reasoning about a Machine with Local Capabilities:

Provably Safe Stack and Return Pointer Management. ACM Transactions on Programming Languages and Systems 42, 1
(Dec. 2019), 5:1–5:53. https://doi.org/10.1145/3363519

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019b. StkTokens: Enforcing Well-Bracketed Control Flow
and Stack Encapsulation Using Linear Capabilities. Proc. ACM Program. Lang. 3, POPL (Jan. 2019), 19:1–19:28. https:
//doi.org/10.1145/3290332

Eijiro Sumii and Benjamin C. Pierce. 2004. A bisimulation for dynamic sealing. In Proceedings of the 31st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones
and Xavier Leroy (Eds.). ACM, 161–172. https://doi.org/10.1145/964001.964015

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object Capability Patterns.
Proc. ACM Program. Lang. 1, OOPSLA (2017), 89:1–89:26. https://doi.org/10.1145/3133913

Thomas Van Strydonck, Aïna Linn Georges, Armaël Guéneau, Alix Trieu, Amin Timany, Frank Piessens, Lars Birkedal,
and Dominique Devriese. 2022. Proving Full-System Security Properties under Multiple Attacker Models on Capability
Machines. In 35th IEEE Computer Security Foundations Symposium, CSF 2022, Haifa, Israel, August 7-10, 2022. IEEE, 80–95.
https://doi.org/10.1109/CSF54842.2022.9919645

Thomas Van Strydonck, Job Noorman, Jennifer Jackson, Leonardo Alves Dias, Robin Vanderstraeten, David Oswald, Frank
Piessens, and Dominique Devriese. 2023. CHERI-TrEE: Flexible enclaves on capability machines. In 8th IEEE European

Symposium on Security and Privacy, EuroS&P 2023, Delft, The Netherlands, July 3-7, 2023. IEEE. https://people.cs.kuleuven.
be/~thomas.vanstrydonck/cheri-tree-preprint.pdf Accepted for publication.

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2019. Linear Capabilities for Fully Abstract Compilation
of Separation-Logic-Verified Code. Proc. ACM Program. Lang. 3, ICFP (2019), 84:1–84:29. https://doi.org/10.1145/3341688

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue (proof pearl). In CPP ’21:

10th ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19,

2021, Catalin Hritcu and Andrei Popescu (Eds.). ACM, 76–90. https://doi.org/10.1145/3437992.3439930
Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary, Jonathan Anderson, John

Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley Filardo, Richard
Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan
Nienhuis, Robert Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. 2020. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8). Technical Report UCAM-CL-TR-951.
University of Cambridge, Computer Laboratory. https://doi.org/10.48456/tr-951

R. N. M. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neumann, J. Anderson, D. Chisnall, B. Davis, B. Laurie, M.
Roe, N. H. Dave, K. Gudka, A. Joannou, A. T. Markettos, E. Maste, S. J. Murdoch, C. Rothwell, S. D. Son, and M. Vadera.
2016. Fast Protection-Domain Crossing in the CHERI Capability-System Architecture. IEEE Micro 36, 5 (Sept. 2016),
38–49. https://doi.org/10.1109/MM.2016.84

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony C. J. Fox, Robert M. Norton, David Chisnall, Brooks Davis,
Khilan Gudka, Nathaniel Wesley Filardo, A. Theodore Markettos, Michael Roe, Peter G. Neumann, Robert N. M. Watson,
and Simon W. Moore. 2019. CHERI Concentrate: Practical Compressed Capabilities. IEEE Trans. Computers 68, 10 (2019),
1455–1469. https://doi.org/10.1109/TC.2019.2914037

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo, Michael Roe, Alexander Richardson, Peter Rugg,
Peter G. Neumann, Simon W. Moore, Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke: Characterising
Pointer Revocation Using CHERI Capabilities for Temporal Memory Safety. In IEEE/ACM International Symposium on

Microarchitecture. ACM. https://doi.org/10.1145/3352460.3358288
Jason Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, and Prateek Saxena. 2023. Capstone: A Capability-

based Foundation for Trustless Secure Memory Access. In 32nd USENIX Security Symposium, USENIX Security 2023,

Anaheim, CA, USA, August 09-11, 2023, Joe Calandrino and Carmela Troncoso (Eds.). USENIX Association. https:
//www.usenix.org/conference/usenixsecurity23/presentation/yujason

A REFERENCES TO THE COQ DEVELOPMENT: LOOKUP TABLE

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

https://doi.org/10.1007/978-3-319-89884-1_17
https://doi.org/10.1145/3363519
https://doi.org/10.1145/3290332
https://doi.org/10.1145/3290332
https://doi.org/10.1145/964001.964015
https://doi.org/10.1145/3133913
https://doi.org/10.1109/CSF54842.2022.9919645
https://people.cs.kuleuven.be/~thomas.vanstrydonck/cheri-tree-preprint.pdf
https://people.cs.kuleuven.be/~thomas.vanstrydonck/cheri-tree-preprint.pdf
https://doi.org/10.1145/3341688
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.48456/tr-951
https://doi.org/10.1109/MM.2016.84
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/3352460.3358288
https://www.usenix.org/conference/usenixsecurity23/presentation/yujason
https://www.usenix.org/conference/usenixsecurity23/presentation/yujason

Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code 59

Buffer code 2 examples/buffer.v buffer_code

Counter code 3 examples/minimal_counter.v counter_init0

Semantics basics 4 machine_base.v

Operational seman-
tics

5 cap_lang.v

Points-to predicates 6 rules/rules_base.v

Region points-to 7 region.v region_mapsto

Program logic specs 8 rules.v

Rule for subseg (suc-
cess)

10 rules/rules_Subseg.v wp_subseg_success_lr

Rule for subseg (fail-
ure)

11 rules/rules_Subseg.v wp_subseg_fail_lr

Rule for load 12 rules/rule_Load.v wp_load_success_notinstr

Rule for store 13 rules/rule_Store.v wp_store_success_reg

General WP rule for
subseg

14 rules/rules_Subseg.v wp_Subseg

Rule for rclear 15 examples/macros_new.v rclear_spec

Memory invariant 17 examples/template_adequacy.v memory_inv

In region 19 logrel.v in_region

Adequacy 18 examples/template_adequacy.v with_adv.template_adequacy

Logical relation 20 logrel.v interp

FTLR 21 fundamental.v fundamental_cap

Regions are safe 22 logrel.v region_valid_in_region

Jump to safe word 23 fundamental.v jmp_to_unknown

Buffer spec 24 examples/buffer.v buffer_spec

Buffer run spec 25 examples/buffer.v buffer_full_run_spec

Buffer adequacy 26 examples/buffer.v adequacy

Counter init spec 27 examples/minimal_counter.v counter_init_spec

Increment spec 28 examples/minimal_counter.v counter_code_spec

Counter adequacy 30 examples/minimal_counter.v adequacy

Malloc invariant 31 examples/malloc.v malloc_inv

Malloc spec 32 examples/malloc.v simple_malloc_subroutine_spec

Malloc is safe 33 examples/malloc.v simple_malloc_subroutine_valid

Assert invariant 34 examples/assert.v assert_inv

Assert spec 35 examples/assert.v assert_success_spec

Call spec 36 examples/call.v call_spec

Activation code 37 examples/call.v hw_1

Activation spec 38 examples/callback.v scall_epilogue_spec

RO spec 40 examples/lse.v roe_spec

RO adequacy 41 examples/lse_adequacy.v roe_adequacy

Interval library 42 examples/interval.v

Interval client 43 examples/interval_client.v

Seal spec 45 examples/dynamic_sealing.v seal_spec

Unseal spec 46 examples/dynamic_sealing.v unseal_spec

Seal invariant 44 examples/keylist.v sealLL

FindB code 47 examples/keylist.v findb_instr

Append code 48 examples/keylist.v appendb_instr

isInterval 49 examples/interval.v isInterval

isInterval agree 50 examples/interval.v intervals_agree

Interval adequacy 51 examples/interval_
client_adequacy.v

template_adequacy

J. ACM, Vol. 1, No. 1, Article . Publication date: January 2024.

	Abstract
	1 Introduction
	2 Programming with capabilities
	2.1 Anatomy of a capability (in our model)
	2.2 Sometimes, failure is a good thing
	2.3 Restricting access to memory by constraining available capabilities
	2.4 Securely encapsulating code and private capabilities

	3 Operational semantics of a capability machine
	4 Program logic
	4.1 Basic resources
	4.2 Program specifications
	4.3 Adequacy theorem

	5 Reasoning about Untrusted Code in Cerise
	5.1 Logical Relation
	5.2 Fundamental Theorem
	5.3 Proving the fundamental theorem

	6 Reasoning with capabilities: two examples
	6.1 Sharing a sub-buffer with an unknown adversary
	6.2 Creating a closure around local state

	7 Dynamic Memory Allocation and Closures
	7.1 Dynamic memory allocation as a library routine
	7.2 Runtime checks: an assert routine
	7.3 A secure heap-based calling convention
	7.4 Adequacy in the Presence of Dynamically Allocated Memory
	7.5 Application: read-only sharing of dynamically allocated memory

	8 Case study: a Library Implementing Dynamic Sealing and a Client
	8.1 Interval Library and Client
	8.2 Dynamic Sealing
	8.3 Verifying the Interval Library and its Client

	9 Discussion and Perspectives
	10 Related work
	10.1 Earlier variants of Cerise and Related Frameworks
	10.2 Verifying object capability patterns in high-level languages
	10.3 Verifying ISA properties in CHERI
	10.4 Other applications of universal contracts

	References
	A References to the Coq Development: Lookup Table

