
Designing and Proving Robust Safety
of Efficient Capability

Machine Programs
Aïna Linn Georges

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Designing and Proving Robust Safety
of Efficient Capability

Machine Programs

A Dissertation
Presented to the Faculty of Natural Sciences

of Aarhus University
in Partial Fulfillment of the Requirements

for the PhD Degree

by
Aïna Linn Georges
October 26, 2023

Abstract

Memory safety vulnerabilities have plagued the computer security field for decades.
High level languages such as Rust enforce memory safety through type systems
and abstract representations of memory pointers. Unfortunately, these languages are
compiled to low-level languages that are unable to enforce the same guarantees. In
order to guarantee the security properties of the source language, it’s thus important
to target a machine with the necessary primitives to enforce them.

Capability machines are a kind of architecture that allow fine-grained privilege
separation using hardware capabilities. Hardware capabilities grant authority over
segments of memory, and can thus be used as primitives to enforce memory safety.
However, maintaining safety can quickly become complex in systems with multiple
domains, each with their own distinct authority, and with multiple switches between
them. Such implementations must ensure that no authority is leaked from one domain
to another, and that control flow is not tampered with. Domain switches are typically
implemented using a call-stack, a shared structure with special spatial and temporal
properties. However, enforcing these properties can lead to undesired overhead. In
this dissertation, we propose new capability designs to efficiently enforce stack safety.

To establish high levels of confidence, and create a convincing proposal, each
design is fully and mechanically formalized in models that capture and prove the
desired security properties. These properties can be subtle, and complex to prove in
low level machines. It is thus important to create mechanized frameworks to prove
that the intended goals are met.

In Chapter 1, we outline the concept of capabilities and capability safety, provide
relevant background, and present the general motivations behind this dissertation.
In Chapter 2, we outline Cerise, the first of three frameworks created within this
dissertation. Cerise consists of a program logic for reasoning about known capability
machine programs, and a model that formally captures capability safety. Cerise can be
used to prove functional correctness of capability machine programs, even whey they
interact with unknown code. In Chapter 3, we introduce uninitialized capabilities,
a new design that can be used to efficiently enforce spatial stack safety properties.
In Chapter 4, we introduce directed capabilities, a new design that can be used to
additionally enforce temporal stack safety properties. Finally, in Chapter 5, we lay the
foundation for the exploration of a secure compiler that targets capability machines, by
formalizing the security properties of WebAssembly, an interesting source language
for a secure compiler.

i

Resumé

Sikkerhed relateret til hukommelse har i årtier været et betydeligt problem inden-
for computersikkerhedsområdet. Højniveausprog som Rust opretholder hukom-
melsessikkerhed gennem typesystemer og abstrakte repræsentationer af hukommelses-
markører (en slags værdi der peger på et hukommelsesfelt). Desværre er programmer
skrevet i disse sprog ikke i stand til at sikre de samme garantier når de oversættes til
lavniveau-sprog.For at kunne garantere kildesprogets sikkerhedsegenskaber, er det
således vigtigt at vælge et lavniveau-sprog med de nødvendige primitiver til at bevare
sikkerhedsgarantierne.

Kapacitetsmaskiner, også kendt som capability machines, er en slags arkitektur,
der tillader adskillelse af privilegier ved hjælp af såkaldte hardware kapaciteter. Hard-
ware kapaciteter giver autoritet over hukommelsessegmenter, og kan således bruges
som primitiver til at opretholde hukommelsessikkerhed. At opretholde sikkerhed
bliver dog hurtigt en kompleks process i systemer med flere domæner, hvor kontrol
flere gange skiftes fra et domæne til det andet. I disse situationer er det vigtigt at sikre,
at ingen kapaciteter lækker fra et domæne til et andet, og at domæneskifterne ikke
manipuleres.

Domæneskift implementeres typisk ved hjælp af en såkaldt call-stack, en delt
struktur med særlige egenskaber. Desværre kan det føre til uønsket tidsspilde at
opretholde en sikker call-stack. I denne afhandling foreslår vi nye kapaciteter til
effektivt at opretholde en sikker call-stack.

For at etablere tillid og skabe et overbevisende forslag, er hvert design mekanisk
formaliseret i modeller der opfanger og beviser de ønskede sikkerhedsegenskaber.
Disse egenskaber kan være subtile og komplekse at bevise. Det er derfor vigtigt at
skabe mekaniserede rammer for at bevise, at de tilsigtede mål er opfyldt. I denne
afhandling præsenterer vi i alt fire mekaniserede formaliseringer, tre som formaliserer
kapacitetsmaskiner, og en som formaliserer WebAssembly, og bruger dem til at
etablere sikkerhedsegenskaber fra programmer skrevet i lavniveau sprog.

ii

Acknowledgments

... but when pain is over, the remembrance of it often becomes a pleasure.

Jane Austen, Persuasion

I want to begin by thanking my supervisor Lars Birkedal. Lars offered guidance
when needed, and encouraged me to seek out my independence when most important.
He has helped me overcome my insecurities without me realizing it. Most importantly,
Lars has always been kind and patient, encouraging my creativity and enthusiasm.

I also want to extend my gratitude to the many amazing collaborators I’ve had
the pleasure to work with. Collaboration and community building will always be the
biggest strength of research and academia. I want to especially thank to Alix and
Armaël, whose collaboration and friendship was integral to my PhD, as well as my
mentees Bastien and Maxime, who I look forward to work with in the future.

I want to thank the many mentors and role models who lead me towards research.
Brigitte Pientka introduced me to programming languages research, and showed me
that I could belong in computer science. Lau Skorstengaard was an incredible mentor
in the beginning of my PhD, and I am grateful that I got the privilege to build on his
research.

I could never have done this PhD without the friendship and support from the
LogSem group here at Aarhus University. This is a truly unique group, and it might
sound cliché, but it has become like family to me. I want to especially thank my office
mate Léon, as well as Jean, Jonas and Alejandro for being my dear friends, with whom
I can always count on for research brainstorming, serious Friday evening discussions,
and silly weekend marathons. The same goes to all my friends. I especially thank my
boardgame friends Hart, Kevin, Per and Peter, for enriching my life beyond research,
and allowing me to win once in a while.

Finally, I want to thank the most important people in my life. I could not have
done this without the support of my partner João, who was there for me when I needed
it the most. To my mom, I want to thank her for everything. She has given me
unconditional love and support all my life. This dissertation is for her.

Aïna Linn Georges,, Aarhus, October 26, 2023.

iii

Contents

Abstract i

Resumé ii

Acknowledgments iii

Contents iv

I Overview 1

1 Introduction 2
1.1 Memory Safety Vulnerabilities in Hardware Architectures 2
1.2 Capabilities as Security Primitives 4
1.3 Enforcing and Characterizing Capability-enabled Security Properties 10
1.4 Mechanized Reasoning about Hardware Architectures 15
1.5 Contributions and Structure . 18
1.6 Conclusion and Future Work . 22

II Publications 24

2 Cerise: Program Verification on a Capability Machine in the Presence
of Untrusted Code 25
2.1 Introduction . 26
2.2 Programming with capabilities . 29
2.3 Operational semantics of a capability machine 39
2.4 Program logic . 42
2.5 Reasoning about Untrusted Code in Cerise 52
2.6 Reasoning with capabilities: two examples 59
2.7 Dynamic Memory Allocation and Closures 67
2.8 Case study: a Library Implementing Dynamic Sealing and a Client . 78
2.9 Case study: Data Abstraction . 86
2.10 Discussion and Perspectives . 95

iv

CONTENTS v

2.11 Related work . 96

3 Efficient and Provable Local Capability Revocation using Uninitialized
Capabilities 100
3.1 Introduction . 101
3.2 A capability machine with local capabilities 104
3.3 Revocation using local capabilities 109
3.4 Uninitialized Capabilities . 112
3.5 Program Logic . 115
3.6 Logical Relation Model . 119
3.7 Implementation . 148
3.8 Related Work . 149
3.9 Conclusion . 151

4 Le Temps des Cerises: Efficient Temporal Stack Safety on Capability
Machines using Directed Capabilities 152
4.1 Introduction . 153
4.2 On the Stack Safety of Capability Machines 155
4.3 Capability Machine: Operational Semantics and Calling Convention 161
4.4 A Unary Model for Integrity . 170
4.5 A Binary Model For Confidentiality 183
4.6 Characterizing security using a fully abstract overlay semantics . . . 188
4.7 Related Work . 195
4.8 Conclusion and Future Work . 197

5 Iris-Wasm: Robust and Modular Verification of WebAssembly Programs199
5.1 Introduction . 200
5.2 Modular reasoning for WebAssembly modules 204
5.3 Host Language and Proof Rules 217
5.4 Mechanization in the Iris Framework 223
5.5 Case Study . 224
5.6 Related work . 240
5.7 Conclusion . 242

Bibliography 243

Part I

Overview

1

Chapter 1

Introduction

1.1 Memory Safety Vulnerabilities in Hardware
Architectures

While software systems continue to increase in scope, ubiquity and complexity, the
underlying hardware architecture has, in its fundamentals, largely remained unchanged.
To this day, the most prevalent computer architecture systems are, in essence, Von
Neumann machines. Industry efforts have centered around efficiency, often at the cost
of security. However, as computer systems are becoming an integral part of society,
it is important to create systems that are secure at every level of abstraction. In the
advent of Spectre, Meltdown and Heartbleed, we have witnessed increased concern
about the security flaws of modern microprocessors, despite the impact mitigations
have on efficiency [114].

Over the years, an extensive body of work has identified many vulnerabilities in the
languages of hardware architectures, namely assembly languages and C. Conventional
instruction set architectures, such as ARM, x86 or RISC-V, all depend on variations
of the same model for pointers, in which memory is accessed via integer indices.
Likewise, rather than crashing, C allows for undefined behavior when integers are
used as pointers. As a result, all these languages are vulnerable against memory
corruption attacks, which have plagued the computer security field for decades. In
recent surveys, it was observed that 70% of all issues in Microsoft products [141] and
in the Google Chrome browser [32] are memory safety related.

To make matters worse, unsafe pointers can lead to control flow hijacking. Com-
pilers typically handle control flow by implementing a call-stack, which is a piece
of memory that stores return pointers and local variables. As a result, unsafe stack
pointers can be manipulated to access not just the local state of another function, but
the pointers that directly determine control flow. Without proper mitigation techniques,
assembly languages and C are thus vulnerable to control flow hijacking attacks.

Many mitigation techniques have been proposed, at different levels of the soft-
ware stack, ranging from address space layout randomization [113], stack canaries
[146], data execution prevention [96] to control flow integrity [2] (see [139] for a

2

CHAPTER 1. INTRODUCTION 3

survey). Unfortunately, while many of these techniques mitigate the risks, they do
not entirely eliminate them [22, 25, 28, 127]. In many ways, they seek to address the
symptom, rather than the cause: that modern hardware architectures lack the necessary
abstraction to enforce memory safety, and prevent memory corruption attacks.

Language-based techniques have for a long time provided promising approaches to
security [124]. From certifying compilers to type systems, language-based approaches
to security offers a variety of efficient enforcement mechanisms, all following the
principle of least privilege [120]. For example, the systems programming language
Rust offers an alternative to C that is both type-safe and memory-safe. Rust promises
to offer low-level control, while maintaining strong safety guarantees. Moreover, these
safety guarantees have been rigorously investigated and formally verified [76, 78].
Unfortunately, code written in these languages is compiled to low-level target assembly
languages, which do not robustly preserve the source level safety guarantees. As a
result, as soon as it is linked with native target level code, the code that actually gets
executed inherits all the vulnerabilities of the target language.

The solution investigated in this dissertation is to target a safe assembly language
instead. In the following paragraphs, we first review some related approaches, then
describe the one investigated in this dissertation.

Proof carrying code (PCC) [106] is a mechanism that guarantees safety by requir-
ing that untrusted code comes with a formal proof of safety, which the machine then
validates before executing the associated code. In such systems, the onus is on the
untrusted agent to establish safety of their code, whereas the proof checker simply
validates its correctness. Proof validation is in many ways similar to a type checker, in
that both statically check that a proof, or a type, is correct according to an established
set of rules.

While type systems may only express a fixed set of safety properties, as determined
by the richness of the types, they still display advantages over proof carrying code.
Since type-checkers automatically establish whether a program is well-typed, types
present a significantly smaller barrier of entry compared to proofs of safety, which
must be established manually. Typed Assembly Language (TAL) [102] is a RISC-like
assembly language with a type system that enforces high level abstractions such as data
abstraction and encapsulation. More recently, WebAssembly [65], a language initially
designed for the web, is now an increasingly popular portable bytecode language
featuring a simple type system, with a formally defined operational semantics and
proof of soundness.

PCC, TAL and WebAssembly take a static approach to establish safety. Al-
ternatively, dynamic approaches can guarantee safety a priori, imposing no static
restrictions on the executing code. However, dynamic approaches require bespoke
languages with baked in dynamic checks.

Capability machines, the focus of this dissertation, are a kind of architecture that
enable dynamic fine-grained memory protection via hardware capabilities [27, 36, 91].
A capability is a concept that exists at multiple levels of abstraction, from software
to hardware. Conceptually, capabilities represent unforgeable tokens of authority
[128]; they are tokens, meaning they are tangible primitives distinguished from

CHAPTER 1. INTRODUCTION 4

other primitives such as integers, they are unforgeable, which means no unprivileged
operation can result in a new capability, and finally, each capability carries with it a
specified amount of authority, which can never be increased.

At the machine level, capabilities grants authority over segments of memory, and
precisely delineate authority over memory regions. In order to access a memory
region, one must demonstrate the ownership of a capability with sufficient authority.
Capabilities can thus act as the building blocks for implementing memory safety
properties. However, these implementations can quickly become complex. Consider
a scenario with multiple processes, each with their own distinct authority. Secure
implementations of such a scenario must ensure that one process never gains access
to capabilities outside its intended authority, a goal that is particularly subtle when
transferring from one process to another, since reachable objects must change to match
the new process’ authority, without leaking objects owned by the previous process.

In this dissertation, we propose new capability designs, and leverage them to
implement efficient transfers from one domain to another through secure calling
conventions. To establish high levels of confidence, and create a convincing proposal,
each design is fully and mechanically formalized in models that capture and prove the
security properties of the proposed calling conventions. These properties can be subtle,
and complex to prove in low level machines, that do not enjoy the abstractions of high
level languages. It is thus imperative to create mechanized frameworks to not just
prove the properties in question, but lay the groundwork for rigorous investigations
of new designs. Before detailing the precise contributions of this dissertation, we
provide context behind capability machines, the kind of security properties that can
be achieved using capabilities, how they have been formalized and reasoned about,
and how low-level machines have been mechanized in proof assistants.

1.2 Capabilities as Security Primitives

The use of a capability-based access control for dynamic protection mechanisms has
been intended since the inception of capabilities. Dennis and Van Horn [36] introduce
the concept of a segment capability within the context of multiprogrammed computer
systems (MCS); a system running multiple concurrent processes, for more than one
user. These computations may share resources, pointed to by references, and may
require different sets of computing resources, varying throughout their execution.
These resources should be protected by an access control mechanism. Crucially, the
access control system may need to adapt to an ever changing environment.

Dennis and Van Horn [36] introduce a range of concepts and terminology. A
segment stores a list of words of information, and may be referenced by a word name
[i,a], consisting of an index i, abbreviating the name of a segment, and an address
a. An MCS implements memory protection on a segment basis, by keeping a list of
capabilities, specifying the sphere of protection of a computation (a set of processes),
where each capability points to some computing object, and specifies the means of
accessing that object. In particular, a segment capability contains a reference pointer

CHAPTER 1. INTRODUCTION 5

(word name) and a permission, an indicator of the possible actions permitted by that
capability: X, R, XR, RW and XRW, where X stands for executable, R for readable and
W for writable.

During the execution of a computation, capabilities are dynamically added and
deleted from its associated list of capabilities. Multiple processes may execute within
that computation, thus sharing access to the resources granted by the capability list,
but processes of another computation may not have access to the same capabilities.
As such, capabilities allow for a dynamic access control protection mechanism, on
systems with multiple computations, and protected resources.

Lampson [87] generalizes the protection mechanism of capabilities into a model
for dynamic protection structures. As in [36], the model assumes a computation C,
running on a multi-access system, executing multiple programs that at various times
require access to system resources. The primary concern of a dynamic protection
structure is to manage the resources, also denoted as objects, that a process (the
currently executing program) has access to. Lampson [87] identifies three fundamental
ideas behind the protection structure. First, objects are named by capability tokens,
which themselves must be unforgeable. Second, capabilities are grouped into domains
(previously denoted as spheres of influence), and each domain may have access to
a different set of capabilities. As such, “when control passes from one domain to
another (in a suitably restricted fashion) the capabilities of the process will change” ([,
§1]). Third, capability ownership is implemented via so-called access keys, which
specifically serve as indicators of authority.

According to Lampson, a capability is the “protected name of an object”. To
protect the integrity and unforgeable nature of a capability, Lampson [87] proposes
the following structure for hardware dependent capabilities.

TAG TYPE VALUE

In this scheme, the underlying hardware must allow for words to be tagged, with
a bit that can only be modified by the machine itself. The TYPE indicates what kind of
object the capability grants authority over, and the VALUE is the pointer to the object
in question.

During the transfer of control from one domain to another, the protection structure
must carefully handle the ensuing acquisition of new capabilities. Lampson [87] thus
introduces the notion of a protected entry point which he calls a gate; a new kind of
capability specifically for changing domains. Invoking a gate is essentially a protected
function call. As such, the subroutine in charge of implementing the domain transfer
must also create a means of returning. However, the latter cannot take the form of
another gate; “it is not satisfactory to create another gate which the called process
may return through, since he might save it away and use it to return at some later and
unexpected time” ([87, §5.1]). Instead, the protection system must implement some
kind of call-stack to handle domain transfers.

It is interesting to note, that while our setting will be adapted to modern capability

CHAPTER 1. INTRODUCTION 6

machines, the difficulties raised by Lampson are closely related to the difficulties
tackled in this dissertation. In the following subsections, we present various existing
capabilities, with a particular focus on CHERI (a modern capability machine that is at
the heart of this dissertation), after which we delve into these exact challenges, and
how they relate to this dissertation.

1.2.1 Capabilities at Different Levels of Abstraction

Capabilities in Language Design Building on the ideas presented by Dennis and
Van Horn and Lampson, Morris Jr. [100] describes how programming language
features can be used to protect one subprogram from another. In object oriented
languages, where procedures are regarded as objects, an object is local when it
is accessible only to part of a program. By restricting the accessibility of local
objects, and by extension its associated procedures, objects become capabilities. More
precisely, an object-capability is an encapsulated object, that communicates to other
objects by invoking their procedures via accessible references, and may restrict access
to its own procedures simply by not sharing references of itself to other objects.
Examples of object-capability languages include E [97] and joe-E [94], two Java-like
object-capability languages, Emily [134], a restricted version of OCaml, and Caja (as
well as Cajita) [98], a capability-safe subset of JavaScript.

Capabilities in Operating Systems Operating systems must enforce an increasingly
wide range of security policies. Among their responsibilities is the enforcement of
an access control system in charge of authorizing and restricting a subject’s access
to certain protocols as well as its ability to perform operations on objects such as
files or sockets. Conventional operating systems implement a Discretionary Access
Control system (DAC), in which users specify permissions for an object, which
are subsequently checked by the OS whenever it is accessed. On the other hand, a
Mandatory Access Control system (MAC) implements a privilege-based approach,
in which users have system defined access permissions, that are checked at run-
time whenever a user attempts to perform a protected task. Unfortunately, MAC
approaches are insufficient to protect a system running many processes from different
sources on behalf of one user. As a result, web browsers such as Chromium cannot
take full advantage of MAC, and must sandbox different components into several
processes, where untrusted sources have restricted access to user data. Implementing
Mandatory Access Control systems using capabilities offers an alternative approach,
which prevents confused deputy issues [66].

Using capabilities as security primitives in operating systems is an old idea. In their
provably secure operating system (PSOS), Feiertag and Neumann [50] propose the
use of capabilities as primitives to enforce an access control system. The microkernel-
based operating system FLASK [133] offers flexible support for security policies via
capability-based Mandatory Access Control. More recently, Capsicum [156] extends
UNIX with capability support, enabling lightweight sandboxing, in accordance with
the intention behind Mandatory Access Control.

CHAPTER 1. INTRODUCTION 7

Another notable capability-based system is seL4, a microkernel based on the
L4 family of microkernels, with support for capabilities to authorize inter-process
communication [46]. All memory accesses are protected and managed using capa-
bilities, which are themselves stored in special capability address spaces enclosed
within containers called CNodes. Functional correctness of the seL4 kernel has been
formally verified in Isabelle/HOL [126]. The formalization proves a refinement prop-
erty, establishing a correspondence between the high-level abstract specification of the
kernel against its low-level C implementation. Building on this refinement, Klein et al.
[80] prove that seL4 enforces two high-level security properties: integrity of relevant
state, in accordance to a given access policy, and authority confinement, which limits
the propagation of authority between subjects.

Hardware Capabilities Capability-based hardware designs have been implemented
since the inception of capabilities, dating back to the 60s (the Chicago Magic Number
Computer [47–49], or the System 250 built by the Plessey Company [33, 34]). These
machines implement capabilities by storing access permissions in tables. More recent
capability machines, such as the M-Machine [26], implement capabilities via so-
called guarded pointers. Rather than maintaining tables of access permissions, the
M-Machine encodes the authority of a capability within the pointer object itself, and
maintains a tag to distinguish pointers from integers. Guarded pointers enable fast
context switching, since the change of protection domain no longer needs to manage
the different tables of access permission.

CHERI [158], a modern and developed family of capability machine architec-
tures, also features guarded pointers (referred to as fat pointers) as the capability
representation. Over the last decade CHERI has matured into an extensive design fea-
turing, among other, CheriBSD [154], a full UNIX-style operating system. Ideas from
CHERI have recently been adopted by ARM in their Morello project [12], which is
aimed at developing concrete CPU designs and prototypes that could be implemented
in future hardware. The Morello board provides a platform to explore new security
features that may realistically be implemented in hardware.

While early capability machines implement capabilities indirectly through ca-
pability lists and ownership tables, modern capability machines, including CHERI,
implement capabilities as direct replacement for pointers. On such machines, the set
of reachable capabilities, starting from the register state, exactly defines the authority
of the currently running process.

Concretely, a CHERI capability is a fat pointer with metadata describing its
authority. A memory capability’s authority is determined by a permission (such as
readable, writable, etc.) and by a bounds interval (the physical boundaries of a memory
region). Below we represent a capability as a tuple (perm, len,b,a), describing a
capability pointing to a, with the ability to access addresses within [b,b+ len) via
operations permitted by perm.

CHAPTER 1. INTRODUCTION 8

Kernel stack

continuation
to A

continuation
to B

A’s stack

B’s stack

C’s stack

CCall

CCall

Figure 1.1: The trusted intra-component call-stack is managed by the kernel, while
each component possess its own intra-component stack

(perm, len,b,a)

b b+ lena

CHERI allows capabilities to be out-of-bounds, meaning a may be outside
[b,b+ len). Rather than maintaining some kind of capability invariant, bounds and
permissions are enforced on dereference, by triggering a dynamic check that validates
the capability before executing the operation. If the capability does not carry sufficient
authority, the operation fails. By means of sophisticated optimizations and compres-
sion techniques, CHERI efficient implements capabilities, including native bounds
and permission checks to dereference operations, with little runtime overhead.

In addition to memory capabilities, capability machines usually offer a capability
for closures that represent the authority to invoke a component without exposing its
implementation details and its private capabilities (recall Lampson’s gate). Invoking
such a capability passes control to the other component and makes available its private
capabilities and thus, its authority. As such, they offer a cheap form of domain transfer.
These capabilities are often referred to as object capabilities, and are closely related
to their high-level counterparts. The M-Machine implements object capabilities by
using sentry-capabilities, which are capabilities with a special enter permission E

that only permits jump instructions. On CHERI1, object capabilities take the form of
pairs of code and data capabilities, tied together by being sealed with a common seal
[154, 155]. Sealing is a primitive CHERI operation that renders capabilities opaque
and unusable, except that the pair can be invoked with a special instruction CCall.

1Note that CHERI still has sentry capabilities

CHAPTER 1. INTRODUCTION 9

An object may then return by invoking the special instruction CReturn.
Both sentry capabilities and sealed capabilities offer lightweight domain transi-

tions between capability machine processes. More precisely, a domain transition on a
capability machine is triggered by invoking one of these object capabilities. Authority
can be transferred from one process to another by keeping specific capabilities in
registers when transferring control. Meanwhile, the authority of capabilities that are
kept out of reach is guaranteed to be isolated from the new process. In this dissertation,
we will use sentry capabilities to implement secure domain transfers, but note that
many of the ideas can likewise be applied to seals.

While domain transfers on CHERI are relatively lightweight, they must still pass
through the kernel, which manages a trusted call-stack to maintain well-bracketed
inter-component calls and returns. Upon invocation via CCall, the kernel pushes
the caller component’s continuation onto the stack, which is subsequently popped
upon return via CReturn. Each component then manages its own personal stack for
intra-component calls. Figure 1.1, inspired by a similar figure in [154], illustrates a
sequence of component invocations, and the resulting chain of per-component stacks,
implicitly linked through the trusted call-stack.

Local variables defined within a function in C have a lifetime limited to the
function’s execution and are stored in the function’s stack frame during runtime. To
distinguish between capabilities that are local to a function, and those that are allocated
on the heap and are not limited to the lifetime of a function, CHERI introduces the
notion of local capabilities [154]. Conceptually, local capabilities grant temporary
authority, and are meant to be used during the current execution, but lost upon return.
This is enforced by allowing local capabilities to be stored in registers, but not on
the heap. However, local capabilities should still be able to live on the stack. After
all, local capabilities are exactly meant to point to stack variables, which may be
passed as parameters on the stack in case of register spilling. This is achieved with a
special “write-local” permission, specifically intended for the stack capability, which
(unlike capabilities pointing to the heap) will allow storing local capabilities. Later in
this introduction, we will detail what happens when multiple domains share a stack,
pointed to by a shared write-local stack capability.

Above, we showed an abstract representation of a capability as a tuple. Concretely,
CHERI capabilities are native machine values of fixed size and layout. Capabilities
are distinguished from integers by virtue of a tag, which user-level instructions can
only read from, but not write to. The tag is maintained via tagged memory, in which
physical memory addresses are associated with a 1-bit tag, indicating whether that
address stores a capability or an immediate. Subsequent store operations may alter the
state of a memory address tag, but no user-level instruction can directly manipulate it,
thus ensuring that no capability can appear out of thin air. Operations that manipulate
capabilities are dynamically validated, such that the authority of a capability never
increases. As such, tagged memory and dynamically validated manipulations render
capabilities unforgeable. More precisely, new capabilities can only be derived from
existing ones, and the authority of the currently running process is never increased.

Early versions of the CHERI instruction-set architecture implement a 256-bit

CHAPTER 1. INTRODUCTION 10

capability format [154, 161], where otype determines the object type (distinguishing
closures from memory capabilities, and linking an object’s sealed code and data
capabilities), perm determines its permission and locality, s is a bit indicating whether
the capability is sealed, len is the size of the region, b is its base, and a its pointer
value.

otype perm s

len

b

a

256 bits

While the above format is simple to read and understand, it incurs a significant
spatial overhead. More recent versions of CHERI thus implement rigorous compres-
sion schemes to achieve capabilities of 64 bits for 32-bit architectures, and 128 bits
for 64-bit architectures [162]. For the purposes of this dissertation, we abstract away
the details of the concrete implementation of a capability, and represent them more
abstractly as simple tuples.

1.3 Enforcing and Characterizing Capability-enabled
Security Properties

While each kind of capability greatly varies in implementation and abstraction level,
they all share common principles and purpose. Capabilities are primitives that dynam-
ically facilitate the compartmentalization of multiple sandboxed components. In early
capability machine designs, a component (referred to as a computation) owns a list of
capabilities determining its sphere of influence, and compartmentalization dictates
that this sphere of influence is encapsulated and protected throughout execution.

On modern capability machine processors such as CHERI, a component is defined
in terms of an object capability (either a sentry capability, or a sealed code and
data capability pair), and a component’s sphere of influence corresponds to all the
reachable capabilities once the object capability is invoked. Compartmentalization
is thus achieved by creating closures via sealing, or via sentry capabilities, by the
absence of ambient authority (such as static objects), and the inherent prevention of
privilege escalation, also called authority amplification.

As a result, capabilities enable compositional reasoning of individual components.
In other words, safety of a component is guaranteed to be robust against the sur-
rounding context, assuming that the component does not self-sabotage by exposing its
safety-critical capabilities to the context. This restriction, however, is quite flexible,
and does not prevent fine-grained resource sharing. By using the ability to copy and
restrict the authority of a capability, a component can share parts of its resources with

CHAPTER 1. INTRODUCTION 11

another component, while preserving the integrity and confidentiality of its remaining
safety-critical resources.

These notions have been formalized in multiple characterizations of capability-
enabled security properties. In the context of object-capability languages, many
of such works characterize capability safety in terms of reference graphs [93, 99].
Maffeis et al. [93] develop a language-based foundation for reasoning about object-
capability languages, by defining a more general notion of authority safety as the
combination of two principles: any access must derive from the set of reachable
authority established at the beginning of the current object’s execution, and authority
is either derived from an object’s initial authority, achieved through interaction, or
created over new allocated resources.

The approach uses reference graph dynamics to determine the authority of an
object, and as such is based on the syntactic structure of an object capability program.
However, as a result, the approach lacks the ability to capture the more refined dynamic
behaviors of object capabilities. In response, Devriese et al. [37] develop a Kripke
logical relation to reason about typical object capability patterns, fully capturing the
dynamic behavior of capabilities.

Building on this model, Swasey et al. [138] introduce a logic for object capability
patterns called OCPL, the first formal system for compositional reasoning about
the security properties enabled by object capability patterns. OCPL can be used for
modular reasoning about libraries that implement object capability patterns, as well
as the clients that depend on them. Furthermore, the logic is fully mechanized in
Iris [77], a higher order separation logic framework, making OCPL a framework for
mechanically verifying robust safety properties of object capability patterns.

The core principles of capability safety remain the same across different levels of
abstraction, but the sheer scale and complexity of low-level architectures can make
characterizing capability safety on capability machines a challenge. By using Sail
[14], a language for defining ISA semantics with the ability to generate definitions
in various proof assistants, Nienhuis et al. [109] formalize the CHERI instruction
set architecture, and define the key security properties behind CHERI’s design, and
prove in Isabelle that they hold. One key property, reachable capability monotonicity,
states that, until execution switches to a new domain, the set of reachable capabilities
does not increase. The set of reachable capabilities includes those accessible from
the current register state, those that can be accessed via a series of load operations,
and those reachable from a sealed capability that the current domain has the ability to
unseal. Another key property characterizes the isolation properties granted by a setup
that uses capabilities to implement compartmentalization. Compartment isolation
states that the enclosed and isolated state of a compartment remains isolated during
the execution of another compartment. Similar characterizations of capability safety
are applied and proved for the Morello system [18], establishing very high confidence
on the overall architecture design of ARM’s capability machine.

Nienhuis et al. [109] prove an architectural property, and do not consider proofs of
safety of individual programs. As such, the proven security properties do not attempt
to characterize the intricacies of multiple interwoven domain changes, which is a

CHAPTER 1. INTRODUCTION 12

key focus of this dissertation. Instead, reachable capability monotonicity describes
monotonicity of intra-compartment executions, and compartment isolation is limited
to the coarse-grained isolation guarantees of resources that domains do not share with
the context. However, many applications depend on the specific behavior of shared
resources across multiple domain changes. One particularly interesting application is
a compiler.

Compilers typically implement domain changes through a calling convention by
creating and managing a call-stack. However, CheriBSD implements domain changes
as system call operations that manage a trusted call-stack in kernel space, with each
compartment owning a per-compartment stack for intra-compartment calls. It is
unclear whether this approach can scale to a large number of compartments, in which
every cross-compartment call must pass through the kernel, and whether it robustly
enforces the expected call/return disciplines. On the other hand, a cross-compartment
shared call-stack, managed in user space by a compiler’s calling convention, presents
its own set of challenges for enforcing secure domain changes.

In his dissertation, Skorstengaard [128] identifies the challenges of enforcing two
key stack related security properties, local state encapsulation and well-bracketed
control flow, and proposes two calling convention implementations, the latter of which
depend on a proposed kind of hardware capability, that robustly enforce them. A core
difficulty of enforcing stack safety comes back to Lampson [87], who observed that a
return must be distinguished from an entry, as there must be some mechanism in place
to revoke access to a return capability, and avoid it is stored for later use, breaking
well-bracketed control flow.

To understand the challenge more concretely, let’s imagine a scenario with two
different domains, and a sequence of transfers between them. Domain A calls twice
into domain B by successively invoking B’s entry point capabilities. At the first call,
the subroutine in charge of domain transfers, which here takes the form of a calling
convention implemented by a compiler, pushes a new stack frame unto the call-stack,
and creates a back-link to A’s stack frame. Domain B must be prevented from directly
accessing A’s stack frame. As such, the back-link is a closure capability around a
continuation to A’s code and its stack frame, which will henceforth be referred to as
the return capability. Note that the return capability is created dynamically, that it
is added to B’s available capabilities, and that domain B returns to A by invoking
it. Below we sketch a high-level representation of the first call in the scenario. In
particular, we depict the capabilities owned respectively by B and by A after control
has been transferred to B.

CHAPTER 1. INTRODUCTION 13

B’s frame

A’s frame

Shared stack

B’s capabilities A’s capabilities

B’s frame
capability

A’s frame
capability

Return ca-
pability 1

Upon return, B’s stack frame is popped, and A continues executing. Next, domain
A calls B for a second time; the calling convention thus allocates a new stack frame
for B, and creates a new return capability for returning from the second call. Note that
while B’s second stack frame is conceptually different from its first, they share the
same space on the call-stack.

The challenge arises in controlling B’s access to the first return capability. Without
a revocation mechanism, B still has access to the return capability from the first call.
As a result, B can break well-bracketed control flow by invoking it.

B’s frame

A’s frame

Shared stack

B’s capabilities A’s capabilities

B’s frame
capability

A’s frame
capability

Return ca-
pability 1

Return ca-
pability 2

In essence, a secure calling convention must enforce specific lifetime guarantees
on its return capabilities, since ownership of a stack frame and associated return
capability is inherently temporary.

In principle, local capabilities are meant to capture this temporary authority. How-
ever, Skorstengaard et al. [129] show that temporary ownership of local capabilities
can only be guaranteed with significant overhead. As Georges et al. [55] (Chapter 3)
puts it; “if a local capability must be revoked before a second invocation of a com-
partment, the calling convention must make sure not to accidentally leak an old copy
of the capability. While local capability rules ensure that such old copies can never
end up in heap memory (because no write-local capabilities to heap memory exist),
they may still be present in any location where the adversary was previously able
to store them: capability registers, but also any region of memory which it had a
write-local memory capability for, such as the shared call-stack. Practically, the only

CHAPTER 1. INTRODUCTION 14

way accidental leaking can be avoided is by clearing unused registers and sweeping
over this write-local memory to clear it entirely or at least erase local capabilities. In
their secure calling convention built on local capabilities, Skorstengaard et al. [129]
have to clear the entire unused part of the stack before any invocation of adversarial
code. This requirement is very costly in practice, and also hard to avoid, since the
stack must be made write-local if we want to allow invoked code to spill registers
or store local capabilities away during sub-invocations. The performance impact
might be mitigated with special hardware support [72], but it is unclear whether this
is enough to make it realistic for practical use.”

In later work, Skorstengaard et al. [132] address this issue by proposing a new
kind of linear capability, used to securely guarantee local state encapsulation and well-
bracketed control flow in a highly efficient calling convention with no stack clearing.
As the name indicates, a linear capability is guaranteed to possess no alias; operations
that move a linear capability from register to memory, or from one register to another,
make sure to remove the copy from the source. Unfortunately, to uphold linearity,
such operations must be performed atomically. As a result, existing optimizations
employed by CHERI are not applicable, and it is unclear whether they can efficiently
implemented in practice.

Throughout his work, Skorstengaard [128] formalizes a simple but expressive
capability machine, and proves that the proposed calling conventions enforce local
state encapsulation and well-bracketed control flow. The formalization builds on
prior work for capturing object capability patterns [37], now applied to a low level
capability machine. Since the goal is to create a model rich enough to reason about
well-bracketed calls, Skorstengaard et al. [129] define a step-indexed Kripke logical
relation that uses a variant of Dreyer et al. [39]’s public and private future worlds
[39] to express the special lifetime properties of local capabilities [129]. While their
early work presents a model that implicitly captures local state encapsulation and
well-bracketed control flow, insofar as it can be used to prove the robust safety of
examples that depend on these properties, Skorstengaard et al. [132] later go on to
completely characterize stack safety using a novel method that they call an overlay
semantics [132]. An overlay semantics defines the operational semantics of the
machine language in question, overlaid with an abstract notion of a call-stack, and
special semantics for calls and returns to manipulate it. The key idea is to define
an overlay that inherently and obviously captures the desired stack behaviors, and
to then prove that the overlay semantics is fully abstract with respect to the original
semantics, in which the main meaningful translation takes the abstract call and return
instructions, and map them to the calling convention subroutines that implement them.
Thus, Skorstengaard et al. [132] propose a novel method for characterizing security
properties of capability machines, and in so doing, contribute to the characterization
of stack safety, as the combination of local state encapsulation and well-bracketed
control flow.

Building on the groundwork laid by Skorstengaard [128], this dissertation takes
the work further through two significant additions. First, it addresses the technical im-
practicality of linear capabilities by proposing alternative capability designs that stay

CHAPTER 1. INTRODUCTION 15

faithful to the design choices of CHERI capabilities, but retain some of the properties
granted by linear capabilities. Second, while the correctness of Skorstengaard [128]’s
contributions are established in impressively rigorous proofs, the formalization is
entirely done on paper. A key contribution of this dissertation is a fully mechanized
formalization of multiple capability machines, each with a mechanized model captur-
ing its deeper semantic properties, resulting in rich but practical frameworks to prove
robust safety of low level machine programs.

1.4 Mechanized Reasoning about Hardware Architectures

Throughout this dissertation, we will present multiple mechanized frameworks for
reasoning about security properties of low-level machine programs. There is a long
history of formalizing low-level machines. We here discuss a (non-comprehensive)
selection of such work, that together display a range of different approaches.

XCAP [107] is a framework for defining second-order Hoare-logics for proof
carrying code systems of low level assembly languages with embedded code pointers,
i.e. code pointers as data. When applying the framework, the resulting Hoare logic
can be used to reason about certified assembly programs. XCAP builds on previous
iterations of the framework; CAP (Certified Assembly Programming) [165], CCAP
(Concurrent CAP) [164] which supports concurrency, and CMAP (Certified Multi-
threaded Assembly Programming) [51], which builds on CCAP but with the added
functionality of code sharing and dynamic thread creation and termination. Like its
predecessors, XCAP’s target machine is an idealized and abstract low level machine,
that remains expressive enough to capture the challenges of verifying assembly code,
but simple enough to be tractable (for instance, code and data do not live in the same
address space). Ni et al. [108] later apply XCAP to a more realistic x86 machine
model, and use the resulting Hoare logic to certify a context management system. The
x86 machine is realistic, but remains a subset of the full instruction set architecture,
focusing on the parts needed to define a realistic context management system. Unlike
the previously mentioned idealized assembly machines, the x86 machine model uses
a continuous memory address space storing both code and data, and covers interesting
x86 features such as variable instruction encoding length. Additionally, Ni et al. [108]
build an abstraction layer for calls and returns, which abstracts away the underlying
calling convention (implemented in x86), making reasoning about calls and returns
more tractable.

The Certified Assembly Programming family of frameworks enable the mech-
anized verification of low level assembly programs. However, specifications must
subsequently be proved manually, and can quickly become complex, and hard to
maintain against the natural evolution of software systems. Chlipala [30] thus presents
Bedrock, a separation logic framework, implemented in Coq, that supports the au-
tomated verification of low-level programs. Languages supported by Bedrock are
low-level, insofar as they can include registers, linear memory, and a jump (GOTO) in-
struction. However, they remain sufficiently abstract to facilitate programmer friendly

CHAPTER 1. INTRODUCTION 16

implementations, by including syntax for structured control flow, such as basic blocks
and while loops. As such, Bedrock is a flexible framework, that is applicable at
varying levels of abstraction.

CertiKOS [63] is an extensible architecture for building certified concurrent OS
kernels. Using CertiKOS, Gu et al. [63] develop a concurrent OS kernel, mC2, on top
of an x86 multicore machine with support for fine-grained locking, all fully certified in
the Coq proof assistant. The mC2 kernel is proved to contextually refine a high-level
functional specification, similar to those presented in [62], which in turn implies the
safety and termination of all system calls and traps, and the guarantee that all high
level specifications proved about a program also hold when that program runs on the
kernel.

A core design philosophy of CertiKOS is to enable a compositional approach to
OS kernel verification, with a particular emphasis on distinguishing each abstraction
layer implemented by an operating system. In essence, each component of an OS
kernel ought to be verified at the layer it lives in. A similar methodology was used
in [149], in which a virtual memory management unit, a specific component of an
operating system, is compositionally verified by distinguishing between its layers
of abstraction, and proving a series of contextual refinements. In the case of mC2,
the bottommost layer is a x86 multicore machine, and CertiKOS thus models x86
assembly. Specifically, CertiKOS covers a subset of the full x86 instruction set, limited
to the instructions needed to implement mC2.

Since compilers typically target low level assembly languages, verifying a realistic
compiler involves defining a model of possible target machine languages. CompCert
[89, 90], a verified C compiler, and CakeML [86], a verified ML compiler, are two
significant high-profile verified compilers, that target low level assembly languages.

Modern iterations of CompCert can compile Clight (a subset of C) into a variety
of assembly backends, including RISC-V, ARM and x86. Each backend is faithfully
defined in Coq, albeit with some abstractions; the semantics of instructions not needed
by the compiler are occasionally left undefined, and, more importantly, the formalized
backends include pseudo-instructions such as Pallocframe and Pfreeframe, which
abstract away certain operations that are not native to machine languages. Likewise,
the memory model of CompCert assumes an infinite memory, split into a series of
blocks. The elimination of pseudo-instructions is subsequently done in a machine code
generation phase, which takes CompCert’s assembly and generates real executable
machine code. CompCert has since then been extended to additionally verify various
machine code generation phases; Stack-Aware CompCert [152] extends CompCert
with an explicit and finite stack, and is used to develop CompCertMC, a fully verified
compiler down to a low-level language without pseudo-instructions, and with a
flattened memory model, unlike CompCert’s block based memory model. Programs
written in this new target language is thus much closer to real native code. Wang
et al. [152] demonstrate how to convert the result into executable assembly by using
RockSalt [101] to generate the final x86 machine code. Later, CompCertELF [153]
completes the compilation chain, by verifying the final compilation phase which
compiles the low level machine code to the standard object file format ELF. The result

CHAPTER 1. INTRODUCTION 17

is a fully verified compiler from Clight to ELF on a 32-bit x86 architecture.
CakeML is a bootstrapping compiler written in 64-bit x86 machine code, and

verified in the HOL4 theorem prover. The target language of the compiler, CakeML
Bytecode, is a low-level assembly language with a single abstracted stack. CakeML
Bytecode is designed to be sufficiently abstract to ease the implementation and
verification of the compiler, while being sufficiently close to x86 assembly to enable
straight-forward code generation. Useful abstraction is achieved by structuring stack
data into blocks, and avoiding any notion of heap pointers, while realism is achieved
by making sure each operation map to one or two real x86 instructions. As a result,
the machine language is modeled with an abstract distinction between code space
and the stack, and abstract instructions for calls and returns, and other stack related
manipulations.

As mentioned above, Morrisett et al. [101] define a model of a subset of the x86
instruction set architecture in Coq, and use it to create RockSalt, a verifier that checks
that code binaries respect a sandbox policy, similar to that of Google’s Native Client
(NaCl). The model of x86 specifies the semantics of over 70 instructions, and is
validated against existing x86 implementations. To facilitate reasoning about the
famously complex x86 semantics, RockSalt defines two domain specific languages
for specifying instruction semantics, thus lifting the semantics to a higher-level
representation. Kennedy et al. [79] define a shallow embedding of x86 semantics
in Coq, which is used to create an assembler entirely in Coq. Both works model
only subsets of the x86 ISA. Meanwhile, Dasgupta et al. [35] define a complete and
faithful formal semantics of all sequential x86-64 user-level instructions in the K
framework, using a combination of automated cross-checked translation of existing
formalizations, and manual specification of remaining instructions. They leave a
model of x86’s concurrency, including its relaxed memory model, for future work.

Thus far, we can observe a general trend, in which each new application leads to
the creation of a new model of some low level machine. This is somewhat expected,
since many of the aforementioned models are subsets of the machines they represent,
exactly suited to fit the needs of the system in question. However, this raises the
question, what should a universally applicable model look like? Sail [13, 14] addresses
this challenge, with a more general and comprehensive approach at mechanizing low
level assembly. Sail is a domain specific language for instruction set architecture (ISA)
semantics, that supports automatic generation of emulator code in C and OCaml, as
well as proof-assistant definitions for Isabelle, HOL4 and Coq. Using Sail, Armstrong
et al. [14] mechanize semantic models for large parts of ARMv8-A, RISC-V, MIPS
and CHERI-MIPS architectures, and use the generated theorem prover definitions to
prove functional correctness of ARMv8-A address translation. Later, Nienhuis et al.
[109] use Sail to formalize key security properties of the CHERI-MIPS architecture.
A core goal is to aim for realistic, complete and executable ISA definitions.

Thus far, we can notice a range of different approaches. One notable through
line in many of these formalizations, are various high-level abstractions that facilitate
proofs of safety of low-level programs, such as structured control flow, an idealized
call-stack, block-like memory models, and a distinction between code and data.

CHAPTER 1. INTRODUCTION 18

The formalizations presented in this dissertation will purposefully avoid these exact
abstractions, since our goal is to explore how low a level machine securely implements
them.

Nevertheless, the frameworks presented in this dissertation will, for the most part,
be subsets of the architecture in question, with certain details abstracted away, such
as the encoding of capabilities as a series of bytes. These simplifications allow us to
reason about deeper semantic properties of the language, which can be difficult to
accomplish for the highly detailed Sail mechanizations. In recent work, Islaris [122]
bridges the gap between real-world ISA specifications and the verification of rich
semantic properties, by taking advantage of sophisticated automation techniques to
generate Iris-based program logics for a given ISA. This opens up future possibilities
of scaling up the frameworks presented in this dissertation to realistic representations
of capability machine architectures.

1.5 Contributions and Structure

The challenges of implementing domain transfers in capability-enabled security sys-
tems were identified early [87], and have since then been tackled from various per-
spectives. CheriBSD implements domain transfers as system calls, using an internal
call-stack managed by the kernel. However, such an approach limits its applicability
to machines that run an operating system with similar system operations for calls and
returns. One the other hand, a compiler typically implement domain transfers via an
implemented call-stack, which, unlike CheriBSD, is managed in user-space rather
than kernel-space. However, Skorstengaard [128] identifies multiple vulnerabilities
when dealing with a shared call-stack in the presence of untrusted code. Unfortunately,
Skorstengaard [128]’s proposed solutions are arguably not feasible in practice; a
secure calling convention with local capabilities leads to a significant overhead (full
stack clearing at every call). On the other hand, while linear capabilities enable a
calling convention with much less overhead, they cannot be efficiently implemented
in hardware.

We propose two simple designs that grant all the security of previous proposals,
while being sufficiently faithful to the design of CHERI capabilities to justify a practi-
cal hardware implementation. While the designs are simple, the arguments behind the
security of the proposed calling conventions are subtle. We formalize each proposed
capability design and associated calling conventions, and prove that they enforce
secure domain transfers. The formalized capability machines models build on prior
work [128], but are for the first time fully mechanized. The mechanized frameworks,
used to reason about security properties of capability machines, serve as significant
contributions of this dissertation. Finally, in anticipation of secure compilers that
implement the proposed calling conventions, we formalize the full WebAssembly 1.0
standard in a framework to reason about WebAssembly’s encapsulation properties,
setting up the infrastructure for future work on a capability machine backend to the
rapidly growing WebAssembly ecosystem.

CHAPTER 1. INTRODUCTION 19

Throughout this dissertation, we show how new capability designs can lead to
efficient and secure calling conventions. These calling conventions implement secure
domain transfers by managing a call-stack, which must behave exactly as expected,
even when shared between different domains. The calling conventions must thus
robustly enforce Stack safety, a property that can intuitively be understood as the
following three disciplines (each of which are often taken for granted in high-level
programming languages):

(1)

✗

(2)

✗

(3)

1. Well-bracketed control flow: stack frame are pushed and popped in first-in-last-
out order

2. Spatial stack safety: the stack frame of the currently executing process cannot
grant access to lower stack frames

3. Temporal stack safety: the stack frame of the currently executing process cannot
grant access to the previously active, now popped, stack frames of returned calls

In summary, this dissertation makes the following contributions:

New Capability Designs We propose two new capability designs: Chapter 3
presents uninitialized capabilities, an extension of CHERI permissions which enable
the efficient enforcement of spatial stack safety, and Chapter 4 directed capabilities, a
new locality that enable the efficient enforcement of temporal stack safety. Each new
design can be implemented with 1 additional bit of representation, with semantics that
are similar to existing CHERI capability operations. More precisely, the new designs
apply similar arithmetic bounds checks to existing operations, and allow for similar
optimization patterns such as parallelizing the execution of the new operations.

Efficient Calling Conventions By using combinations of uninitialized and directed
capabilities, we propose two new calling conventions which enforce the stack safety
properties outlined above. The first calling convention, presented in Chapter 3, uses
uninitialized capabilities to enforce well-bracketed control flow and spatial stack

CHAPTER 1. INTRODUCTION 20

safety. While temporal stack safety is not enforced, vulnerabilities are mitigated by
clearing stack frames before returning. However, this clearing is entirely avoided
by using both uninitialized and directed capabilities, in a calling convention that
additionally enforces temporal stack safety, presented in Chapter 4.

Three Mechanized Formalizations The new capability designs and associated
calling conventions are rigorously formalized in mechanized frameworks to reason
about security properties of capability machines. Section 1.4 presented a selection
of mechanized formalizations of low level machines. To facilitate the formalization
and reasoning of low-level code, many of the various formalizations depict subsets
of instruction set architectures, arguably at higher levels of abstraction than the real
machines (e.g. structure control flow, distinction between code and data, idealized
call-stack, etc.). The frameworks presented in this dissertation similarly only capture a
fraction of a real CHERI-like machine, and abstracts away details such as the hardware
representation of capabilities as a sequence of bytes. Nonetheless, they maintain a
low-level representation of key security related features of a CHERI-like capability
machine. For example, our formalizations make no distinction between code and data,
they define a flattened and finite memory model, use completely unstructured control
flow, and do not depict an idealized stack. Instead, domain transfers and stack safety
is implemented and maintained via the proposed calling conventions.

Chapter 2 presents Cerise, a capability machine model to reason about the security
properties of a capability machine without locality bits. Cerise models capability
safety, and the encapsulation properties enabled by capabilities. Chapters 3 and 4
present two version of Stack-Cerise, one with support for uninitialized capabilities,
the other with support for uninitialized and directed capabilities. Each are used to
prove that the intended stack safety properties are indeed enforced by the proposed
calling conventions. Each framework provides a separation logic to reason about
capability machine programs, an ideal logic to reason about capability safety, and a
logical relations model to reason about their security properties. All three frameworks
are defined in Iris, a higher-order separation logic frameworks [74, 75, 82], using the
Iris interactive proof mode built in Coq [83].

Towards a Secure Compiler The mechanized capability machine frameworks es-
tablish safety and security properties of the proposed capability designs and associated
calling conventions. Such calling conventions are eventually implemented by a com-
piler. The proposed calling conventions enforce high degrees of security, including
properties that implicitly hold in certain high level languages, such as well-bracketed
control flow and local state encapsulation. One such language is WebAssembly,
a relatively small bytecode language with formally defined semantics, a type sys-
tem, and an actively growing ecosystem. Its module system is designed to enforce
various encapsulation properties. Furthermore, a recent proposal seeks to extend
WebAssembly with support for fine-grained memory safety [95]. WebAssembly thus
presents an interesting source language for a secure compiler targeting a capability

CHAPTER 1. INTRODUCTION 21

machine. In Chapter 5, we explore the security properties enforced by WebAssembly,
by implementing a language specification of the WebAssembly standard in the Iris
logic. The formalization captures the isolation guarantees provided by WebAssembly
modules, and gives a starting point to formally explore a compiler from WebAssembly
to a capability machine.

1.5.1 Publications

This dissertation is comprised of the following publications and manuscripts, each
accompanied by a Coq formalization.

[55] Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,
Alix Trieu, Sander Huyghebaert, Dominique Devriese, Lars Birkedal.
Efficient and Provable Local Capability Revocation using Uninitialized
Capabilities
Proceedings of the ACM on Programming Languages (POPL), 2021, 5.

https://github.com/logsem/cerise-stack

[59] Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,
Alix Trieu, Dominique Devriese, Lars Birkedal.
Cerise: Program Verification on a Capability Machine in the Presence of
Untrusted Code
In Submission.

https://github.com/logsem/cerise

[57] Aïna Linn Georges, Alix Trieu, Lars Birkedal.
Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines
using Directed Capabilities
Proceedings of the ACM on Programming Languages (OOPSLA), 2022, 6.

https://github.com/logsem/cerise-stack-monotone

[115] Xiaojia Rao, Aïna Linn Georges, Conrad Watt, Maxime Legoupil, Jean Pichon-
Pharabod, Philippa Gardner, Lars Birkedal
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs
Conditionally accepted at the International Conference on Programming Lan-
guage Design and Implementation (PLDI) 2023

https://zenodo.org/record/7708441

https://github.com/logsem/cerise-stack
https://github.com/logsem/cerise
https://github.com/logsem/cerise-stack-monotone
https://zenodo.org/record/7708441

CHAPTER 1. INTRODUCTION 22

1.6 Conclusion and Future Work

By proposing new capability designs we hope to inform the design of future capability
machine architectures. Ultimately, the security of high level programming languages
depends on the compiled backend that actually runs the code. The mechanized
frameworks in this dissertation establishes a foundation for investigating secure
compilers targeting capability machines.

Secure Compilation from WebAssembly to a Capability Machine WebAssembly
is a portable low-level bytecode language, with a type system and runtime environment
that enforces strict isolation guarantees between modules. It is sufficiently low level
to efficiently compile to low-level executable assembly, while being sufficiently high
level to enforce structured control flow and local state encapsulation. Furthermore,
a growing number of compilers target WebAssembly, making it an intermediate
representation within multiple compilation chain. The recent proposal to add memory
safe pointers to WebAssembly [95] offers an excellent opportunity to investigate a
secure compiler that targets a capability machine.

A secure compiler must not only guarantee that the produced code refines the
source code, it must guarantee that the behavior robustly behaves like its source code
counterpart, even when linked with arbitrary target code. Multiple criteria for defining
secure compilation have been proposed [4]. A robustly safe compiler must guarantee
that all safety properties that robustly hold on traces emitted by a source program
must also robustly hold on the trace of the compiled target program [110, 111]. Both
memory safety properties and control flow properties can be expressed in terms of
trace-based safety properties. Implementing and proving the robustly safe compilation
from WebAssembly to a capability machine is an ambitious, but interesting avenue
of future work. Viable techniques for proving that a compiler targeting a capability
machine is robustly safe have been proposed [44], but can get complicated by the
presence of pointer passing [45]. Part of the complexity comes from reasoning about
separation of partial heaps, and an interesting avenue of future work is to investigate
whether using a separation logic facilitates the proof.

Cheri Backend to CompCert Another possibility is to build on an existing verified
compiler, by extending it with a secure backend, and apply existing techniques to prove
secure compilation that reuse verified compilation results [44]. An ideal candidate
is CompCert, which could lay the foundation for the first realistic secure compiler
from C to assembly. In an extended abstract, Thibault et al. [140] [140] propose
to extend CompCert with a notion of compartments, and prove that it is a robustly
safe compartmentalizing compiler. The secure compilation criteria includes a notion
of dynamic compromise between mutually distrustful components, and is a criteria
defined specifically for language with undefined behavior and compartments [3]. In
essence, even if a component is compromised, it cannot compromise other components
that are outside the reach of its interface. The same extended abstract proposes to

CHAPTER 1. INTRODUCTION 23

add a CHERI backend to CompCert, to robustly enforce compartmentalization at the
target level.

Scaling up the Capability Machine Formalization While the capability machines
modeled in this dissertation express tricky features of low level languages, such as
unstructured control flow, they remain small and idealized representations of real
machines. On the other hand, the models describe deep semantic properties of
capability machines, that could be interesting to reason about at scale, for example
on the recent Morello architecture. By using techniques such as Islaris [122] and
automation techniques for establishing ISA security guarantees [69], it should be
possible to scale up the frameworks to realistic representations of CHERI, including
features such as interrupts and a weak memory model.

Part II

Publications

24

Chapter 2

Cerise: Program Verification on a
Capability Machine in the Presence
of Untrusted Code

This chapter is an extended version of the following journal submission:

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix
Trieu, Dominique Devriese, Lars Birkedal.
Cerise: Program Verification on a Capability Machine in the Presence of Untrusted
Code

The extension consists of

• A section about a binary model to reason about confidentiality properties;
Section 2.9

Abstract

A capability machine is a type of CPU allowing fine-grained privilege
separation using capabilities, machine words that represent certain kinds of
authority. We present a mathematical model and accompanying proof methods
that can be used for formal verification of functional correctness of programs
running on a capability machine, even when they invoke and are invoked by
unknown (and possibly malicious) code. We use a program logic called Cerise
for reasoning about known code, and an associated logical relation, for reasoning
about unknown code. The logical relation formally captures the capability
safety guarantees provided by the capability machine. The Cerise program
logic, logical relation, and all the examples considered in the paper have been
mechanized using the Iris program logic framework in the Coq proof assistant.

The methodology we present underlies recent work of the authors on formal
reasoning about capability machines [55, 131, 135], but was left somewhat im-
plicit in those publications. In this paper we present a pedagogical introduction

25

CHAPTER 2. CERISE 26

char* p = malloc(10);

Standard CPU Capability machine

0xFF18CE0 base: 0xFF18CE0
end: 0xFF18CEA
addr: 0xFF18CE0

perm: RW

1 capability/1 word

Figure 2.1: Representation of a pointer in a standard architecture vs. a capability
machine. A capability is similar to a pointer with extra meta-data.

to the methodology, in a simpler setting (no exotic capabilities), and starting from
minimal examples. We work our way up to new results about a heap-based call-
ing convention and implementations of sophisticated object-capability patterns
of the kind previously studied for high-level languages with object-capabilities,
demonstrating that the methodology scales to such reasoning.

2.1 Introduction

A capability machine is a type of CPU that enables fine-grained memory compart-
mentalization and privilege separation through the use of capabilities. This type of
hardware architecture has been studied since the 60ies [36, 91], and in particular more
recently as part of the CHERI project [158]. Capability machines offer fine-grained
and scalable privilege separation at the hardware level and they are a compelling target
for secure compilation [29, 44, 132, 147].

Capability machines distinguish, at the level of hardware, between machine inte-
gers and capabilities; and a capability can be understood as a pointer with associated
metadata, cf. Fig 2.1. A machine word containing an integer value can only be used
for numerical computations and cannot be used as a pointer to access memory. On
the other hand, a machine word containing a capability can be used to access a given
portion of memory, depending on the metadata contained in the capability. We also
say that the capability has authority over some fragment of memory.

A capability thus corresponds to a native machine value, and can be stored in a
CPU register or in memory. While this might seem wasteful due to the amount of extra
metadata that needs to be carried around, for realistic capability machines a lot of
work has been dedicated to the design of compressed representations for capabilities,
see, e.g., [27, 162]. In this paper, we will abstract from these details and represent
capabilities in their uncompressed form, as a tuple carrying the metadata.

A capability machine guarantees the integrity of capabilities: one cannot create
fresh capabilities out of thin air or modify the metadata of existing capabilities in
arbitrary ways. For instance, CHERI associates tags to machine words to identify

CHAPTER 2. CERISE 27

whether they represent a capability or an integer. Such a tag bit is checked and set
by the machine, and is not directly accessible by software. More generally, new
capabilities can only be derived from existing capabilities using a restricted set of
operations provided by the machine. As such, all capabilities on the system are
recursively derived from the full-authority capabilities that are initially provided
to software at boot time. Intuitively, the machine ensures that a given program
cannot forge capabilities and obtain more authority than it held previously, a property
sometimes referred to as capability monotonicity [109].

Capabilities therefore allow a piece of code to interact securely with untrusted
third-party code, even within the same address space, by restricting the set of capabili-
ties the untrusted code (transitively) has access to. In a system composed of mutually
untrusted components (which might even contain malicious code), capabilities pro-
vide a way of enforcing that the overall system nevertheless satisfies some security
properties.

Note, however, that capabilities are low-level, flexible, building blocks, which
operate at the level of the machine code and whose metadata “just” triggers some
additional runtime checks by the machine. This means that the properties we can
actually enforce using capabilities crucially depend on how we use capabilities: the
variety of properties that can be enforced stems from how one can use and combine
capabilities.

In this paper we show how we can formally prove that security properties are
enforced for some known verified code, even when that code is linked with unverified
untrusted third-party code. Our model of interaction between the known and unknown
code is very simple: we assume the code is in the same address space and that
control is transferred from one to the other using an ordinary jump instruction. We
focus on a restricted subset of the capabilities present in the CHERI architecture
(using only “normal” read/write capabilities and a kind of so-called sentry capabilities,
which provide a basic form of encapsulation, see Section 2.2.4). Because the security
properties we consider hold even in the presence of unverified unknown code, they
are sometimes referred to as robust safety properties [138]. The security properties we
focus on are centered around memory compartmentalization, in particular, local state
encapsulation. We consider a range of examples, starting with very basic examples
(sharing a buffer with some unknown code), through implementations of closures with
encapsulated state, and end up with a quite sophisticated low-level implementation
of an interval library, for which we show that certain representation invariants are
preserved, even when interacting with unknown code.

We proceed as follows:

• We first explain informally how one can program with capabilities and use
capabilities to enforce memory compartmentalization (Section 2.2).

• We then introduce the formal operational semantics of a simple capability
machine with sentry capabilities (Section 2.3).

CHAPTER 2. CERISE 28

• We define the Cerise program logic which can be used to formally verify the
correctness of programs running on the capability machine. Our program logic
is defined by instantiating the Iris framework [77], which provides an expressive
separation logic with powerful reasoning principles, including, in particular, the
notion of a logical invariant (Section 2.4).

• We define, using our program logic, the specification of what a “safe” capability
and a “safe” program is. Intuitively, a capability (respectively, a program) is
“safe” if it cannot be used to invalidate an invariant at the logical level. Hence,
safe capabilities can be shared freely with unknown code. Safety of a capability
is defined in the program logic as a unary logical relation (Section 2.5).

• We show that if a program only has access to “safe” values, then running
the program itself is also “safe”. This is a global property of the capability
machine, expressing its capability safety: it is not possible to increase one’s
authority beyond what was available initially, independently of the sequence of
instructions that one executes (Section 2.5). Concretely, the theorem takes the
form of a contract that holds for arbitrary code,1 and which can be combined
in the program logic with manual proofs for trusted code. The last piece of
the puzzle is then a so-called Adequacy theorem (Section 2.4), which relates
invariants established in the program logic to the operational semantics of
the machine. Given a concrete scenario (typically, a complete system mixing
known verified code with unknown untrusted code), this makes it possible to
obtain a theorem about the execution of the system which only depends on the
operational semantics of the machine (not on the program logic).

• In Section 2.6 we then return to the examples from Section 2.2 and show how
to use Cerise to formally prove that the desired memory compartmentalization
results really do hold.

• In Section 2.7 we consider more sophisticated examples, which involve dynamic
memory allocation. We focus on the low-level implementation of ML-like
programs, and introduce a heap-based calling convention for closures imple-
menting ML functions. We extend the earlier Adequacy theorem to account for
dynamically allocated memory.

• In Section 2.8 we demonstrate how to use our methodology to establish cor-
rectness of object capability patterns (OCPs) from the literature. In particular,
we consider the OCP of dynamic sealing, as presented by [138] in the context
of a high-level language and we demonstrate that Cerise can be used to prove
similar results about a low-level implementation of their example.

• In Section 2.9 we outline how Cerise can be used to construct a binary model to
reason about confidentiality properties of object capability patterns.

1Because it holds for arbitrary code, we sometimes refer to this as a universal contract.

CHAPTER 2. CERISE 29

(a) Scenario 1: passing
control to untrusted code

(b) Scenario 2: being called
by untrusted code (possibly

many times)

Figure 2.2: Two scenarios where a (trusted) component interacts with its (untrusted)
context. The trusted component is represented with a plain background, while the
untrusted context is represented with a red dotted background.

• Section 2.10 offers some perspectives on the relevance of our technical contri-
butions and how we envision them being used in the development of secure
systems.

• Finally, we discuss related work in Section 2.11.

This paper pedagogically introduces and explains the methodology underlying
a sequence of recent research papers [55, 130, 131, 135], in the form of the Cerise
program logic, but also contributes new material. The operational semantics, program
logic and logical relation discussed in Sections 2.3, 2.4 and 2.5 are based on those
used by [55] (but we have removed local and uninitialized capabilities as well as
Kripke indexing for simplicity and instead added much more extensive explanations
and proofs). Sections 2.2 and 2.6 are new; they provide a clear and accessible intro-
duction to capability machine programming and our reasoning tools. The examples in
Sections 2.7-2.8 are also new and represent a non-trivial verification effort.

The results and examples presented here have been fully formalized in Coq, and
are available online: https://github.com/logsem/cerise. The development can
also be viewed online at https://logsem.github.io/cerise/journal/; we use
circled numbers such as 1 to link directly to corresponding Coq formal statements in
the following.

2.2 Programming with capabilities

Let us give a taste of how one might use capabilities when writing programs with the
goal of enforcing some additional memory protection or encapsulation guarantees.
We consider a fairly simple but quite general adversarial model, where we wish to
verify the correctness of a known component interacting with a possibly adversarial
third-party component whose code is unverified and untrusted.

In this section we detail two concrete example programs, which use capabilities
in two different scenarios. In the first scenario, illustrated in Figure 2.2a, we consider
a program that eventually passes control to the untrusted third-party code, but uses

https://github.com/logsem/cerise
https://logsem.github.io/cerise/journal/
https://logsem.github.io/cerise/journal/index.html

CHAPTER 2. CERISE 30

capabilities to protect a region of memory containing some secret data from being
accessed by the untrusted code. In the second scenario (Figure 2.2b), we consider the
case of a verified component being called by the third-party code. The goal is then
for the verified component to use capabilities to protect (or “encapsulate”) a piece of
private memory, which it may access during its execution, but which should remain
inaccessible to the unverified code.

2.2.1 Anatomy of a capability (in our model)

We are interested in a subset of the capabilities available in a CHERI capability
machine. We thus work with a simplified machine model, featuring basic capabilities
that are used to give access to a range of memory, as well as so-called “sealed
entry” capabilities (abbreviated as “sentry” capabilities [158, §3.8]) that provide
encapsulation features. The sentry capabilities were also called “enter” capabilities in
earlier work, e.g., in the M-Machine by [27].

Concretely, we model capabilities as 4-tuples (p,b,e,a). In actual hardware,
capabilities are encoded as fixed-size binary words, but here we abstract over their
concrete representation.

Capability: (p,b,e,a)
p ∈ {O,RO,RX,RW,RWX,E} permission
b ∈ Addr base address
e ∈ Addr end address
a ∈ Addr current address

A capability (p,b,e,a) represents a machine word that can be used to access
memory within the region [b,e) delimited by its base address b and end address e. The
permission p specifies what is possible to do within this memory range: permission
O specifies that the capability actually gives no access rights, RO grants read-only
access to memory, RX grants the right to read and execute the contents of the memory,
RW gives read and write access, and RWX gives read, write, and execute access.
Capabilities with permission E behave a bit differently (they are used to provide a
form of encapsulation), and will be explained later in Section 2.2.4.

A capability is meant to be used as a pointer, and thus additionally points to a
specific address a (typically, but not necessarily, belonging to the range [b,e)). Each
time the capability is used to access memory, the machine will automatically check
that a is between bounds b and e, and that the access is permitted according to p.
From a capability (p,b,e,a) it is easy to derive another capability (p,b,e,a′) pointing
to a different address a′ also within range [b,e) – in other words, while a capability
points to a specific address, it really holds authority over the whole region delimited
by its beginning and end address.

Note that, on a capability machine, machine words can represent not only binary-
encoded capabilities, but also traditional fixed-size integers. However, unlike on a
traditional computer architecture, integers cannot be used as pointers. In other words,
without holding a capability, one cannot access memory at all. In this paper, we rely

CHAPTER 2. CERISE 31

on difference in notation to distinguish between capabilities and integers. In actual
hardware, this is done by associating an extra one-bit tag to each word to distinguish
capabilities from integers.

2.2.2 Sometimes, failure is a good thing

It is worth pointing out a sometimes counter-intuitive aspect of reasoning about
security of programs running on a capability machine, especially for readers with
a background in reasoning about safety in higher-level languages. For a high-level
language, program safety can be seen as the absence of undefined behavior or runtime
errors. For instance, an out-of-bounds array access is undefined behavior in C, and
it leads to a runtime error, such as raising an exception, in memory-safe languages
such as Rust or OCaml. We are instead interested in security properties for which a
runtime failure can actually be considered a good thing.

Generally speaking, a low-level machine has many cases where it can fail at
runtime, stopping the normal course of execution. In a standard (non-capability)
machine, this can happen, e.g., if the machine attempts to execute an invalid instruction
which cannot be decoded. The addition of capabilities only adds more possibilities
for runtime faults: each time a capability is used, the capability machine will check
that it has adequate permission and bounds, and raise a runtime fault otherwise.

Now, the point is that, from a security perspective, these additional runtime
faults are a good thing. Using these additional checks, the capability machine turns
dangerous behavior (out-of-bounds accesses leading to buffer overflow attacks, etc.)
into proper faults before they can cause damage. Thus, for our purposes, it is always
safe for the machine to fail: it means that an illegal operation may have been attempted,
and the execution has been stopped in response.

Of course, when writing concrete programs, we will typically want to verify that
we do not involuntarily trigger faults, as this would make our programs less useful.
But when interacting with adversarial code, this is a possibility that we have to take
into account anyway: we cannot prevent unknown code from shooting itself in the
foot, e.g. by trying to access memory it does not have a valid capability for, or by
decoding illegal instructions.

To sum up, in this work we reason about security properties that are not violated
in the case of machine failure. This includes, for example, integrity of private data: no
data can be compromised if the machine stops running. It is therefore useful to keep
in mind that we consider failure to be trivially safe!

2.2.3 Restricting access to memory by constraining available
capabilities

Consider Scenario 1 from Figure 2.2a: how can one write a program which passes
control to untrusted code while protecting some secret data? That is, we wish to write
a program that sets up capabilities so that its secrets are preserved even after it runs
untrusted code.

CHAPTER 2. CERISE 32

The key intuition is that, at any point of the execution, one can only access the
part of memory that is accessible using the currently available capabilities. In other
words, the authority of a running program comes from the set of capabilities which
are transitivitely reachable from the CPU registers.

This is illustrated below, in a scenario where the pc register (“program counter”)
contains a capability with permission RX pointing to some memory region (containing
the code of the program being executed), and register r1 contains a capability with
permission RW, pointing to a region of memory, which itself contains a RW capability
pointing to another memory region. The collection of the “hatched” memory regions
corresponds to the overall subset of memory accessible by the program.

RX
pc

42
r0

RW
r1

...

registers

RW
memory

If one wishes to reduce the set of available memory or its associated access rights—
for instance to protect secrets from being leaked to an adversary—then it is be enough
to constrain the capabilities currently available. This can be done in a few different
ways.

First, one can simply remove a capability from registers in order to remove access
to the memory it was giving access to. For instance, after executing the instruction
“mov r1 0”, which overwrites the contents of register r1 with the integer 0, one loses
access to the memory regions which were previously accessible from the capability
stored in that register.

RX
pc

42
r0

0
r1

...

registers

memory

Alternatively, it is possible to restrict the range of a capability to point to a smaller
memory region. This changes the set of accessible memory to a subset of what was
previously available. For instance, starting from our initial scenario and running the
instruction “subseg r1 a0 a1” will change the range of the capability stored in
register r1 to [a0,a1). (The machine will check that [a0,a1) is indeed included in the
range of the original capability.) In our example scenario (illustrated below), we then
only keep the beginning of the region accessible from r1, and this entails that the third
region of memory becomes inaccessible, since it was only reachable from a capability
stored at the end of the region accessible from r1.

CHAPTER 2. CERISE 33

; initially, PC = (RWX, code, end, code)
; r0 = (unknown) pointer to the continuation
code:
mov r1 PC ; r1 = (RWX, code, end, code)
lea r1 [data-code] ; r1 = (RWX, code, end, data)
subseg r1 [data] [data+3] ; r1 = (RWX, data, data+3, data)
jmp r0 ; jump to unknown code: we give it

; read-write access to the first 3
; words of the data,
; but not the secret value

data:
; the first 3 data words contain public data that will be passed
; to the unknown code (the "Hi" string)
’H’, ’i’, 0,
; they are followed by secret data (the integer 42)
42

end:

Figure 2.3: Program sharing a buffer with possibly adversarial code.

RX
pc

42
r0

RW
r1

...

registers

a0 a1
memory

Finally, one can restrict the permission of a capability to a permission that grants
less access rights. For instance, running the instruction “restrict r1 RO” in our
initial scenario modifies the capability stored in r1 to only grant read-only access to
its corresponding memory region. Note that we still have read-write access to the last
memory region, as we can still read the capability (with permission RW) pointing to it.

RX
pc

42
r0

RO
r1

...

registers

RW
memory

Example: sharing a sub-buffer with unknown code Using some of the mecha-
nisms detailed above, we can implement a very simple program that shares a buffer
with unknown, possibly adversarial, code while using capabilities to protect some
data that would otherwise be vulnerable to buffer overflow attacks.

The assembly code for the program is shown in Figure 2.3. It consists of a code
section containing the instructions of the program, followed by some data which (for

CHAPTER 2. CERISE 34

simplicity) we simply assume to be statically allocated. The data section holds the
zero-terminated string "Hi", which we wish to share with the untrusted code, and the
integer 42 which represents our secret data.

Initially, we assume the program counter to contain a RWX capability for the
whole region holding our program. This capability serves two purposes: it allows the
machine to execute our program, but can also be manipulated by the program itself to
derive a capability pointing to its own data. By convention, the register r0 is assumed
to contain a pointer to the continuation of the program, i.e. other code that the program
will pass control to after it is done executing. As no assumption is made about the
contents of r0, it is conservatively assumed to point to unknown, arbitrary code.

Our program executes as follows: it first loads the capability held by the program
counter into register r1. Then, using the lea instruction, it changes the “current
address” of the capability to point to the data label (lea modifies a capability by
adding an offset to its “current address”). In assembly programs, we use the brackets
notation [...] to denote an arithmetic expression that is computed statically when
assembling the program.

At this point, the capability held in r1 points to the start of the "Hi" string, but
has (RWX) authority over the whole code and data section. This capability would be
unsafe to share with the untrusted code, as they could simply use lea to increment
the capability’s current address past the end of the string, and obtain a valid capability
to the secret value (thus performing a basic “buffer overflow” attack). To prevent this
from happening, we use the subseg instruction to obtain a capability whose range
of authority is restricted to the sub-buffer holding the "Hi" string. Finally, we pass
control to the untrusted code by using the jmp instruction, loading the contents of
register r0 into pc.

This example illustrates that even a basic mode of use of capabilities (restricting
them appropriately) can easily prevent buffer overflow attacks. In Section 2.6.1, we
show how we can formally prove that, for any untrusted code, the value of the secret
data will be equal to 42 at every step of the execution, including after control has been
passed to the untrusted code. We have also developed a relational model, which can
be used to prove that the secret value cannot even be read by the unknown code, but
the details of this relational model are out of scope of this paper.

2.2.4 Securely encapsulating code and private capabilities

The previous example illustrates how to restrict available capabilities to prevent an
adversary from accessing secret data. However, what if we additionally want our
program to be called back by the untrusted code, as in Scenario 2.2b? In that case,
when the trusted code gets invoked again we would like to recover access to the
capabilities it previously had to its private state.

This is unfortunately not achievable with the capabilities that we have described
so far. If we remove capabilities to private memory before passing control to untrusted
code, then there is no way for us to get them back later on: the only capabilities we

CHAPTER 2. CERISE 35

will get access to in a further invocation are capabilities the untrusted code itself has
access to.

Sentry capabilities provide this missing feature. They implement a form of encap-
sulation that resembles the use of closures with encapsulated local state in high-level
languages, and they allow implementing compartments which encapsulate private state
and capabilities but can be called from untrusted code. From a security perspective,
sentry capabilities allow setting up protection boundaries: the code executing before
and after an invocation of a sentry capability has different authority and thus represent
distrusting components. We denote sentry capabilities with permission E (for “Enter”,
a terminology originating from the M-machine [27]).

One typically creates a sentry capability pointing to a region of memory describing
a compartment containing executable code and local state (or private capabilities to
that local state). A sentry capability is opaque: it cannot be used to read or write to the
memory region it points to, and it cannot be modified using restrict or subseg. It
can thus be safely shared with untrusted third-parties: they will not be able to access
the encapsulated code and data. In the figure below, the memory region pointed to by
r1 (hatched in gray) is not accessible for either reading or writing.

RX
pc

42
r0

E
r1

...

registers

memory

The only possible operation is to “invoke” the sentry capability using the jmp
instruction, thus passing control to the code held in the region pointed to by the
capability (in other words, “running” the compartment). When jmp is called on a
sentry capability, it turns the capability into a capability with permission read-execute
(RX) over the same memory region, and puts it into the program counter register pc.
This simultaneously runs the encapsulated code, and gives access to the data and
capabilities stored there, which were previously inaccessible. Running instruction
jmp r1 on the scenario of the previous figure leads to the machine state shown below.

RX
pc

42
r0

E
r1

...

registers

memory

Register pc now contains an RX capability to the previously opaque region, mean-
ing that code contained in that region can execute. Furthermore, it may access other
capabilities stored in that region, which can in turn be used to transitively access other
private regions of memory.

CHAPTER 2. CERISE 36

Example: a counter compartment To illustrate the use of sentry capabilities, let
us consider the example of a simple secure compartment implementing a counter. An
instance of the counter holds a private memory cell containing the current (integer)
value of the counter. Every time the code in the counter’s compartment is invoked,
it increases the value stored in the memory cell. Using a sentry capability, one can
expose the counter to an untrusted context, without giving it direct access to the
counter value.

It is worth pointing out that this is similar to the use of closures encapsulating
local state in high-level languages. Typically, a similar counter program could be im-
plemented in a high-level language as follows, using a function closure to encapsulate
a reference holding the counter value.

let x = ref 0 in (λ (). x := !x+1; !x)

As before, our actual counter program is implemented in assembly, and its code
appears in Figure 2.4. Its implementation is divided into two parts. First, the code
starting at label init (and ending at code) is used to set up the counter compartment;
it is intended to run only once at the beginning of the program. Then, the region
between code and end corresponds to the contents of the counter compartment itself,
including its executable code (between code and data) and private data (between
data and end).

The role of the initialization code is to create a sentry capability encapsulating the
code–end region, and then pass control to the (untrusted) context, giving it access
to the newly created sentry capability. Additionally, the initialization code stores at
address data a capability giving read-write access to the compartment’s region, and
pointing to the counter’s value at address data+1.

One might wonder why we have this extra indirection to the counter’s value
through the capability in data. Recall that after calling jmp on a sentry capability,
the program counter is only provisioned with an RX capability. For the counter code
to be able to actually increment the counter value (at address data+1), it needs to
have write access to it. The additional RWX capability stored at address data by the
initialization code is thus used to “promote” read access on the compartment’s region
into read-write access to that same region.

The code of the counter’s compartment can then run many times, once each time
the context chooses to invoke the sentry capability it got from the initialization code.
At each invocation, the counter’s implementation (at address code) reads the RWX

capability stored in the data section, uses it to increment the value of the counter, and
passes control back to its caller.

Let us walk through the details of the code. The initialization code is assumed
to run starting with a program counter giving RWX access over the whole program
region. The first four instructions derive, from the program counter, RWX capabilities
pointing to addresses data and data+1. Then, using the store instruction, the
capability (RWX,init,end,data+1) is stored at address data. Next, after using lea
and subseg to adjust the address and bounds of the capability, a sentry capability

CHAPTER 2. CERISE 37

; initially, PC = (RWX, init, end, init)
; r0 = (unknown) pointer to the context
init:
mov r1 PC ; r1 = (RWX, init, end, init)
lea r1 [data-init] ; r1 = (RWX, init, end, data)
mov r2 r1 ; r2 = (RWX, init, end, data)
lea r2 1 ; r2 = (RWX, init, end, data+1)
store r1 r2 ; mem[data] <- (RWX, init, end, data+1)
lea r1 [code-data] ; r1 = (RWX, init, end, code)
subseg r1 [code] [end] ; r1 = (RWX, code, end, code)
restrict r1 E ; r1 = (E, code, end, code)
mov r2 0 ; r2 = 0
jmp r0 ; jump to unknown code: we only give it

; access to an enter capability pointing
; to ’code’

; when ’code’ gets executed from the E capability,
; PC = (RX, code, end, code)
; r0 = (unknown) return pointer to the continuation
code:
mov r1 PC ; r1 = (RX, code, end, code)
lea r1 [data-code] ; r1 = (RX, code, end, data)
load r1 r1 ; r1 = (RWX, init, end, data+1)
load r2 r1 ; r2 = <counter value>
add r2 r2 1 ; r2 = <counter value> + 1
store r1 r2 ; mem[data+1] <- <counter value> + 1
mov r1 0 ; r1 = 0
jmp r0 ; return to unknown code

data:
0xFFFF, ; will be overwritten with (RWX, init, end, data+1), i.e.

; a read-write capability to the counter value
0 ; our private data: the current value of the counter

end:

Figure 2.4: Program implementing a secure counter

is created pointing to the compartment’s region [code,end). This is done using the
restrict instruction, turning a capability with permission RWX into a capability
with permission E. Register r2 is then cleared, to make sure that the RWX capability
pointing to the counter value is not leaked to the context. Finally, the initialization
code jumps to the pointer in r0, which by convention points to the context.

The compartment’s code (starting at address code) then gets executed each time
the context invokes the sentry capability. Because we have only shared a sentry
capability (E,code,end,code) with the context, we know that when the compartment
gets executed, the program counter must contain (RX,code,end,code). By reading
the program counter, the first two instructions of the code then derive an RX capability
pointing to address data, and use it (with load) to read the capability that was

CHAPTER 2. CERISE 38

stored there, granting RWX access to data+1. The subsequent load, add and store
instructions use this second capability to increment the value of the counter. Finally,
before returning to the context by jumping to r0, the program takes care of clearing
register r1, overwriting its contents with 0. This is quite crucial, as otherwise an
RWX capability would be leaked to the context, giving it direct access to the counter’s
private state!

To sum up, our example program carefully selects which capabilities it shares
with unknown code, and leverages the encapsulation properties of sentry capabilities
provided by the machine. Consequently, it should seem clear, at least informally,
that the integrity of the counter’s value is guaranteed through the execution. More
precisely, we should be able to formally prove some invariant about it: for instance,
that it is nonnegative at every step of the execution, for any untrusted context. In
Section 2.6.2, we show in more detail how to formally establish this property.

In this section, we have showcased how one might program with capabilities in
order to obtain security guarantees, and make it possible to interact with adversarial
code while protecting private data and invariants.

In the rest of this paper, we show how we can make the intuitions that we have
developed so far more precise, and formally prove capability safety for machine code
programs that interact with untrusted code. Namely:

• We expect to have some concrete known code, which has some private data and
invariants, and interacts with untrusted code.

• We formally define the operational semantics of the capability machine that we
consider (Section 2.3). This precisely defines the behavior of the machine on
which the rest of our framework is built.

• Then we develop (Section 2.4) a program logic which supports formally ver-
ifying correctness properties about known code. Given some verified known
code, we would then like to be able to conclude some result about a complete
execution of the machine, when it runs a combination of the known code and
some arbitrary untrusted code.

• To that end we need a way of formally capturing the fact that the machine
effectively restricts the behavior of arbitrary code at runtime, by limiting the
capabilities it has access to. We do this (Section 2.5) by defining a logical
relation capturing “capability safety” of arbitrary code.

• By combining the Adequacy theorem of our program logic and the Fundamental
theorem of our logical relation, we can prove safety of concrete examples
(Section 2.6) and obtain theorems about complete executions of the machine.

CHAPTER 2. CERISE 39

a ∈ Addr ≜ [0,AddrMax]
p ∈ Perm ::= O | E | RO | RX | RW | RWX

c ∈ Cap ≜ {(p,b,e,a) | b,e,a ∈ Addr}
w ∈ Word ≜ Z+Cap
reg ∈ Reg ≜ RegName→Word
m ∈ Mem ≜ Addr→Word
s ∈ ExecState ::= Running | Halted | Failed
ϕ ∈ ExecConf ≜ Reg×Mem

RWX

RW RX

RO E

O

Lattice defining the ≼
relation.

(We have p1 ≼ p2 if there is a path going up from p1 to p2 in the diagram.)

r ∈ RegName ::= pc | r0 | r1 | . . . | r31 ρ ∈ Z+RegName
i ::= jmp r | jnz r r | mov r ρ | load r r | store r ρ | add r ρ ρ | sub r ρ ρ |

lt r ρ ρ | lea r ρ | restrict r ρ | subseg r ρ ρ | isptr r r | getp r r |
getb r r | gete r r | geta r r | fail | halt

Figure 2.5: Base definitions for the machine’s words, state, and instructions.

2.3 Operational semantics of a capability machine

The very basis of our framework is a formal description of the capability machine we
consider: which instructions it supports, and its behavior when it runs and executes
programs. Technically speaking, this description corresponds to the operational
semantics of the machine, upon which the program logic described next in Section 2.4
is built.

Our capability machine draws inspiration from CHERI [158], albeit in a simplified
form, and only covers a subset of the features found in CHERI machines. Compared to
a realistic CHERI machine, we consider a number of simplifications: our instruction
set is minimal, our machine does not have virtual memory or different privilege
levels, machine words can store unbounded integers, every instruction can be encoded
in a single machine word, we do not consider memory alignment issues, and we
abstract away from the binary encoding of capabilities. Nevertheless, our semantics
does capture many of the aspects that make reasoning about machine code programs
challenging: our machine has a finite amount of memory, a fixed number of registers,
and there are no distinctions between code and data nor structured control flow for
programs, owing to the fact that program instructions are simply encoded and stored
in memory as normal integers.

Figure 2.5 gives the basic definitions that will play a role in the operational
semantics of machine instructions. The set of memory addresses Addr is finite, and
corresponds to the integer range [0,AddrMax]. A memory word w ∈Word is either an
(unbounded) integer or a capability c. Capabilities are of the form (p,b,e,a), giving

CHAPTER 2. CERISE 40

updPC(ϕ) =
{

(Running,ϕ[reg.pc 7→ (p,b,e,a+1)]) if ϕ.reg(pc) = (p,b,e,a)
(Failed,ϕ) otherwise

getWord(ϕ,ρ) =
{

ρ if ρ ∈ Z
ϕ.reg(ρ) if ρ ∈ RegName

updatePcPerm(w) =
{

(RX,b,e,a) if w = (E,b,e,a)
w otherwise

Figure 2.6: Operational semantics: auxiliary definitions

access to the memory range [b,e) with permission p, while currently pointing to a.
The permissions p are ordered according to the lattice appearing at the top-right of the
figure, inducing a bottom-to-top partial order≼ on permissions. There are six different
permissions; the null (O), read-only (RO), enter (E), read-write (RW), read-execute
(RX) and read-write-execute (RWX) permissions.

The state of the machine is modeled by the semantics as a pair of an execution
state s and a configuration ϕ . An execution state flag indicates whether the machine
is presently running (Running), has successfully halted (Halted), or has stopped
execution by raising an error (Failed). A configuration ϕ contains the state of the
registers ϕ.reg and the memory ϕ.mem. A register file reg consists of a map from
register names r to machine words, while the memory m maps addresses to words.

Next, Figure 2.5 shows the list of instructions of our machine. An instruction i
typically operates on register names r, but can also sometimes take integer values as
parameters; ρ denotes an instruction parameter which can be either a register name
or a constant integer. Our machine features general purpose registers (r0 – r31), on
top of the pc register, which points to the address in memory where the currently
executing instruction is stored. (Technically speaking, pc must point to a memory
cell containing an integer which can be successfully decoded into an instruction.) pc
should therefore always contain a capability with at least permission RX; in any other
case, the machine fails immediately.

Figure 2.7 defines the small-step operational semantics for the capability machine,
using the auxiliary definitions from Figure 2.6. The rule EXECSINGLE describes
how a single instruction gets executed. An execution step requires an executable and
in-bounds capability in the pc register, and fails otherwise. It expects the memory
cell pointed to by the capability to store an integer z, decodes it into an instruction
and executes the instruction on the current state ϕ; the new configuration is denoted
Jdecode(z)K(ϕ). The table making up most of Figure 2.7 defines the operational
behavior JiK(ϕ) for each instruction i of the machine.

Most instructions use the auxiliary function updPC to increment the pc register
after their proper operations. Because the address space is finite, pointer arithmetic
such as incrementing pc can result in illegal addresses. To avoid notational clutter, we
will always write as if arithmetic operations succeed, and consider that otherwise the

CHAPTER 2. CERISE 41

EXECSINGLE

(Running,ϕ)→

Jdecode(z)K(ϕ) if ϕ.reg(pc) = (p,b,e,a)∧b≤ a < e∧

p ∈ {RX,RWX}∧ϕ.mem(a) = z

(Failed, ϕ) otherwise

i JiK(ϕ) Conditions
fail (Failed,ϕ)
halt (Halted,ϕ)
mov r ρ updPC(ϕ[reg.r 7→ w]) w = getWord(ϕ,ρ)

load r1 r2 updPC(ϕ[reg.r1 7→ w])
ϕ.reg(r2) = (p,b,e,a) and w = ϕ.mem(a)
and b≤ a < e and p ∈ {RO,RX,RW,RWX}

store r ρ updPC(ϕ[mem.a 7→ w])
ϕ.reg(r) = (p,b,e,a) and b≤ a < e and
p ∈ {RW,RWX} and w = getWord(ϕ,ρ)

jmp r
(Running,
ϕ[reg.pc 7→ newPc])

newPc = updatePcPerm(ϕ.reg(r))

jnz r1 r2

if ϕ.reg(r2) ̸= 0, then
(Running,

ϕ[reg.pc 7→ newPc])
else updPC(ϕ)

newPc = updatePcPerm(ϕ.reg(r1))

restrict r ρ updPC(ϕ[reg.r 7→ w])

ϕ.reg(r) = (p,b,e,a)
and p′ = decodePerm(getWord(ϕ,ρ))
and p′ ≼ p
and w = (p′,b,e,a)

subseg r ρ1 ρ2 updPC(ϕ[reg.r 7→ w])

ϕ.reg(r) = (p,b,e,a) and for i ∈ {1,2},
zi = getWord(ϕ,ρi) and zi ∈ Z
and b≤ z1 and 0≤ z2 ≤ e
and p ̸= E and w = (p,z1,z2,a)

lea r ρ updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p,b,e,a), z = getWord(ϕ,ρ)
and p ̸= E and w = (p,b,e,a+ z)

add r ρ1 ρ2 updPC(ϕ[reg.r 7→ z])
for i ∈ {1,2}, zi = getWord(ϕ,ρi)
and zi ∈ Z and z = z1 + z2

sub r ρ1 ρ2 updPC(ϕ[reg.r 7→ z])
for i ∈ {1,2}, zi = getWord(ϕ,ρi)
and zi ∈ Z and z = z1− z2

lt r ρ1 ρ2 updPC(ϕ[reg.r 7→ z])
for i ∈ {1,2}, zi = getWord(ϕ,ρi)
and zi ∈ Z
and if z1 < z2 then z = 1 else z = 0

getp r1 r2 updPC(ϕ[reg.r1 7→ z])
ϕ.reg(r2) = (p,_,_,_)
and z = encodePerm(p)

getb r1 r2 updPC(ϕ[reg.r1 7→ b]) ϕ.reg(r2) = (_,b,_,_)
gete r1 r2 updPC(ϕ[reg.r1 7→ e]) ϕ.reg(r2) = (_,_,e,_)
geta r1 r2 updPC(ϕ[reg.r1 7→ a]) ϕ.reg(r2) = (_,_,_,a)

isptr r1 r2 updPC(ϕ[reg.r1 7→ z])
if ϕ.reg(r2) = (_,_,_,_)
then z = 1 else z = 0

_ (Failed,ϕ) otherwise

Figure 2.7: Operational semantics: execution of a single instruction.

CHAPTER 2. CERISE 42

machine transitions to a Failed state. The auxiliary function getWord is used to get
the value corresponding to the argument ρ of an instruction: either its corresponding
integer value if it is an immediate integer, or the contents of the corresponding register
if it is a register name. The auxiliary function updatePcPerm is used in the definition
of the behavior of the jmp and jnz instructions to unseal sentry capabilities. As
mentioned previously, an additional effect of these jump instructions is to unseal
sentry (E) capabilities into RX capabilities.

We now describe the semantics of the instructions of the machine, as formally
defined in the table of Figure 2.7. The fail and halt instructions stop the execution
of the machine, in the Failed and Halted state respectively. mov r ρ copies ρ (either
an immediate value or the contents of the corresponding register name) into register
r. The instructions load and store allow reading and writing memory: load r1 r2
reads the value pointed to by the capability in r2 provided it has the permission R

and points within its bounds; store r ρ stores ρ to the location pointed to by the
capability in r provided it has the W permission and points within bounds. The jmp
and jnz instructions correspond to an unconditional and conditional jump respectively,
thus loading the provided capability into pc. Using updatePcPerm, in the case of
a sentry (E) capability, they unseal it into a RX capability first. Three instructions
allow deriving new capabilities from existing ones. restrict r ρ allows restricting
the permission of a capability (where ρ provides an integer encoding of the desired
permission), provided it is less permissive than the current permission according to ≼.
subseg r ρ1 ρ2 restricts the range of authority of the capability stored in r, provided it
is a subset of the current range of the capability. lea r ρ modifies the current address
of the capability in r, by adding to it the integer offset ρ . As should be expected,
subseg and lea fail for sentry capabilities. Arithmetic operations are provided by the
add, sub and lt instructions, which implement addition, subtraction, and comparison
on integers, respectively. Finally, a number of instructions allow inspecting machine
words and capabilities. isptr can be used to query whether a machine word is an
integer or a capability, and getp, getb, gete, and geta return the different parts of a
capability (permission, bounds and address). (More precisely, getp returns an integer
encoding the permission, as given by encodePerm.) If any of the capability checks for
an instruction are not satisfied, the machine fails.

An important aspect of our operational semantics is how it explicitly accounts
for errors: when a capability check fails (for instance when a program tries to use
a capability outside of its range), the semantics does not get stuck (meaning that it
would not be able to reduce): instead, it explicitly transitions to a state with the Failed
execution state flag.

2.4 Program logic

The operational semantics presented in the previous section formally define the
behavior of our machine when it runs and executes code. Based on that, we expect to
be able to formally verify concrete programs running on the machine.

CHAPTER 2. CERISE 43

The most direct approach would be to manually establish properties of sequences
of reduction steps, based on the sole definition of the operational semantics. We do not
follow this approach, because it would quickly become very tedious even for simple
programs.

Instead, we draw from previous research in program logics and separation logic,
and define Cerise: a program logic which provides a convenient framework in which
to modularly reason about programs running on our machine. Indeed:

• It is typically more convenient to devise a system of proof rules for programs,
rather than work directly at the level of abstraction provided by the bare op-
erational semantics. Such rules form a program logic, which can be proved
sound according to the operational semantics, and then can be used to verify
properties of concrete programs.

• Separation logic, a family of program logics, has been widely used to reason
about programs manipulating shared mutable state (such as memory). On our
capability machine, not only do all programs access a mutable shared memory,
but programs are themselves represented as unstructured data in memory; so
the use of separation logic is particularly called for. Separation logic enables
modular reasoning about programs that operate only on a sub-part of the global
state, allowing them to be freely composed with programs that operate on a
disjoint part of the state.

The first step is to consider what part of the machine state should be described
by separation logic assertions. Here, the machine state consists of both the machine
memory and the machine registers. Indeed, it is useful to modularly reason about
programs operating on both a subset of memory and a subset of the available registers.

Technically speaking, we build the Cerise program logic on top of the Iris frame-
work [77], which provides us with additional useful features, such as invariants. In
the following we introduce both the basic separation logic assertions describing the
machine state and additional features inherited from Iris (Section 2.4.1). Then, we
describe the rules that are used to specify the execution of machine instructions and
programs (Section 2.4.2).

Note that the program logic is, in a sense, only a technical device. The end goal
is to obtain theorems that only refer to reductions in the operational semantics of
our machine. To that end, we present (Section 2.4.3) an Adequacy theorem for our
logic, which allows us to “extract” a correctness theorem expressed in terms of the
operational semantics of the machine from a proof established in the program logic.

2.4.1 Basic resources

Figure 2.8 shows the syntax of our Cerise program logic based on Iris. We write
iProp for the universe of propositions. These feature the standard connectives of
higher-order logic and separation logic, including the separating conjunction ∗ and

CHAPTER 2. CERISE 44

P,Q ∈ iProp ::=
True | False | ∀x.P | ∃x.P | . . . higher-order logic
| P∗Q | P−−∗ Q | ⌈φ⌉ |2P | ▷P separation logic
| a 7→ w | r Z⇒ w | a⃗ 7→ l⃗ machine resources
| P invariants
| ⟨P⟩ → ⟨s.Q⟩ | {P}⇝ {s.Q} | {P}⇝ • program logic

Figure 2.8: The syntax of our program logic.

the magic wand −−∗ (read as an implication). The proposition ⌈φ⌉ asserts that the pure
proposition φ holds, where φ is a proposition from the meta logic.

Iris assertions can be divided in two categories: ephemeral assertions and persis-
tent assertions. Ephemeral assertions describe facts or resources that are available
at a given point but might become false or unavailable later. Persistent assertions
describe facts that never cease to be true. The assertion 2P, read “persistently P”,
is persistent, and asserts ownership over resources whose duplicable part satisfies P.
In other words, 2P is like P except that it does not assert any exclusive ownership
over resources. As the knowledge associated with a persistent assertion can never be
invalidated, persistent assertions can be freely duplicated.

The modality ▷P expresses (roughly) that the assertion P holds after one “logical
step” of execution. In this paper, we mainly use it to define recursive predicates using
guarded recursion. It is not necessary to understand how the modality behaves in detail
and the reader can safely ignore it for the most part and just recall that it supports an
abstract accounting of execution steps.

Our logic includes resources (predicates) that describe parts of the current state of
the machine. The assertion a 7→w expresses that the memory cell at address a contains
the machine word w. Furthermore, this assertion should be read as giving unique
ownership over location a, giving the right to freely read and update the corresponding
memory cell. Similarly, the assertion r Z⇒ w asserts ownership of a CPU register r
containing the word w. We write a⃗ 7→ l⃗ for the ownership of contiguous memory cells
at addresses a⃗ containing l⃗.

A key feature of the logic is the notion of an invariant. The assertion P asserts
that P should hold at all times, now and for every future step of the execution (where
P can be any separation logic assertion). An invariant is a persistent assertion. An
invariant P can be created (or “allocated”) by handing over the resources for P,
turning them into P . Then, whenever we know that P holds, we can get access to
the resources P held in the invariant, but only for the duration of one program step.
Indeed, since the invariant must hold at every step of the execution, when accessing its
resources, one needs to show that it holds again no later than one program step after.
A more precise rule for accessing invariants is given next in Section 2.4.2 (rule INV).

CHAPTER 2. CERISE 45

2.4.2 Program specifications

The predicates for machine resources we just presented allow describing the state
of the machine. Our logic, moreover, includes assertions that can be used to specify
machine executions, similar to Hoare triples used in program logics for high-level
languages. Because we work with a low-level machine (where code is located in
memory), we distinguish between three different types of program specifications:

⟨P⟩ → ⟨s.Q⟩ single instruction
{P}⇝ {s.Q} code fragment
{P}⇝ • complete safe execution.

In each case, P are Q are separation logic assertions describing the state of the
machine (registers and memory). P corresponds to a pre-condition, Q a post-condition,
and s binds in Q the corresponding execution state (of type ExecState, see Figure 2.5).

Informally, ⟨P⟩ → ⟨s.Q⟩ holds if, starting from a machine state satisfying P, the
machine can execute one step of computation, and reach a state satisfying Q in an
execution state s. The predicate {P}⇝ {s.Q} holds if, starting from a state satisfying
P, then the machine can diverge (i.e. loop) or reach a state satisfying Q in an execution
state s. This is typically used to describe the execution of a code fragment. Finally,
{P}⇝ • holds if, starting from a machine state satisfying P, then the machine loops
forever or runs until completion, ending in either a Halted or Failed state. In this case,
we say that the initial configuration described by P is safe. (Not every configuration is
safe: the resources in P describing registers and memory must suffice for the machine
to run and execute the code pointed to by pc: we do not have {pc Z⇒ w}⇝ • in
general.)

Additionally, these three specifications require the logical invariants to be pre-
served at every step of the execution. This requirement is implicit in the definition of
invariants, but it is a crucial reasoning principle that we will leverage.

Echoing back to Section 2.2.2, note that our program specification for a complete
safe execution allows the program to fail (or diverge). Indeed, we will capture the
preservation of security properties by preserving invariants throughout execution
and having the machine fail is both fine (invariants are trivially preserved when the
machine ends up in a failure state) and unavoidable (we cannot prevent unknown
code from triggering a capability check failure). Similar considerations apply for
divergence.

Notations In the rest of the paper, we will rely on a couple of additional notations
when writing program specifications. Because we often want to reason about the
case where an instruction (or program fragment) does not fail, we write ⟨P⟩ → ⟨Q⟩
(respectively {P}⇝ {Q}) to denote a resulting execution state equal to Running:

⟨P⟩ → ⟨Q⟩ ≜ ⟨P⟩ → ⟨s.⌈s = Running⌉∗Q⟩
{P}⇝ {Q} ≜ {P}⇝ {s.⌈s = Running⌉∗Q} .

CHAPTER 2. CERISE 46

When writing pre- and post-conditions, we will often need to include a points-to
resource describing the contents of the pc register. We introduce a short-hand notation
for that purpose, and write w;P to assert P and additionally that pc is set to w:

w;P ≜ pc Z⇒ w∗P

Using these two notations, the specification for a single instruction, in a case
where it does not fail, is written as ⟨w0;P⟩→ ⟨w1;Q⟩ (typically, we have w1 = w0 +1,
except in the case of the jmp and jnz instructions, or when explicitly writing to the
pc register).

Properties Our program specifications satisfy the well-known “frame rule” of
separation logic, which permits local reasoning, and asserts that it is always possible
to extend a specification by adding arbitrary resources not accessed by the program.

FRAGFRAME
{P}⇝ {s.Q}

{P∗R}⇝ {s.Q∗R}

STEPFRAME
⟨P⟩ → ⟨s.Q⟩

⟨P∗R⟩ → ⟨s.Q∗R⟩

FULLFRAME
{P}⇝ •

{P∗R}⇝ •

Program specifications can also be composed using sequencing rules. In order
to establish a specification of the form {P}⇝ {s.Q}, one typically uses single-
instructions rules (⟨R⟩ → ⟨s.S⟩) in a sequence, one for each instruction of the relevant
code block. Specifications for two program fragments that follow each other can also
be combined to obtain a specification for the sequence of the two fragments. We prove
general sequencing rules for our three kind of specifications; for simplicity, we only
reproduce here restricted rules that deal with successful executions (relying on the
notations introduced before):

SEQFRAG

{P}⇝ {Q} {Q}⇝ {R}
{P}⇝ {R}

SEQFULL

{P}⇝ {Q} {Q}⇝ •

{P}⇝ •

STEPFULL
⟨P⟩ → ⟨Q⟩ {Q}⇝ •

{P}⇝ •

STEPFRAG
⟨P⟩ → ⟨Q⟩ {Q}⇝ {R}

{P}⇝ {R}

When reasoning about a single execution step, one can additionally access re-
sources held in known invariants. This is done using the INV rule, given below:
2

INV
⟨P∗▷R⟩ → ⟨s.Q∗▷R⟩

R ⊢ ⟨P⟩ → ⟨s.Q⟩

2For clarity of the presentation, we choose to omit additional details related to Iris invariant
namespaces and masks. We refer to the Coq development for the full details 2 .

https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.invariants.html#inv_alloc

CHAPTER 2. CERISE 47

ValidPC(ppc,bpc,epc,apc)
ValidSubseg(p,b,e,z1,z2) decode(n) = subseg r z1 z2

⟨(ppc,bpc,epc,apc) ; apc 7→ n∗ r Z⇒ (p,b,e,a)⟩ →
⟨(ppc,bpc,epc,apc +1) ; apc 7→ n∗ r Z⇒ (p,z1,z2,a)⟩

ValidPC(ppc,bpc,epc,apc)
¬ValidSubseg(p,b,e,z1,z2) decode(n) = subseg r z1 z2

⟨(ppc,bpc,epc,apc) ; apc 7→ n∗ r Z⇒ (p,b,e,a)⟩ →
⟨s.⌈s = Failed⌉∗ ((ppc,bpc,epc,apc) ; apc 7→ n∗ r Z⇒ (p,b,e,a))⟩

ValidPC(ppc,bpc,epc,apc) ValidLoad(p,b,e,a) decode(n) = load dst src

⟨(ppc,bpc,epc,apc) ; apc 7→ n∗dst Z⇒−∗ src Z⇒ (p,b,e,a)∗a 7→ w⟩ →
⟨(ppc,bpc,epc,apc +1) ; apc 7→ n∗dst Z⇒ w∗ src Z⇒ (p,b,e,a)∗a 7→ w⟩

ValidPC(ppc,bpc,epc,apc) ValidStore(p,b,e,a) decode(n) = store dst src

⟨(ppc,bpc,epc,apc) ; apc 7→ n∗dst Z⇒ (p,b,e,a)∗ src Z⇒ w∗a 7→ −⟩→
⟨(ppc,bpc,epc,apc +1) ; apc 7→ n∗dst Z⇒ (p,b,e,a)∗ src Z⇒ w∗a 7→ w⟩

∀i ∈ [0,n), ValidPC(p,b,e,ai) n = length(rclear_instrs l){
(p,b,e,a0);∗r∈l r Z⇒−∗∗i∈[0,n) ai 7→ (rclear_instrs l)[i]

}
⇝{

(p,b,e,an);∗r∈l r Z⇒ 0 ∗∗i∈[0,n) ai 7→ (rclear_instrs l)[i]
}

ValidPC(ppc,bpc,epc,apc) ≜ RX ≼ ppc∧bpc ≤ apc < epc

ValidSubseg(p,b,e,z1,z2) ≜ p ̸= E∧b≤ z1∧0≤ z2 ≤ e
ValidLoad(p,b,e,a) ≜ RO ≼ p∧b≤ a < e
ValidStore(p,b,e,a) ≜ RW ≼ p∧b≤ a < e
rclear_instrs l ≜ map (λ r. encode(move r 0)) l

Figure 2.9: Specifications for the machine instructions subseg, load and store and
for the rclearmacro that sets a given list of registers to zero. Changes to the machine
state are highlighted in red.

CHAPTER 2. CERISE 48

Example specifications As illustrative examples, Figure 2.9 shows specifications
for the subseg, load and store instructions, as well as the rclear macro which is
used to clear the contents of a number of specified registers. The first rule shows a
specification for the subseg instruction. It states that if the program counter contains
a capability pointing to a memory location apc, if that location contains an integer
n which decodes into subseg r z1 z2, and if the register r contains a capability, then
assuming that the program counter is valid (ValidPC(...)) and that z1 and z2 are valid
new bounds (ValidSubseg(...)), the machine successfully increments the program
counter and restricts the capability held in register r with new bounds z1 and z2.

The second rule is also a specification for subseg, but in a case where it fails a
bound check, i.e. ValidSubseg(p,b,e,z1,z2) does not hold. (For instance, when the
new bounds z1 and z2 would allow accessing more memory than what is available
through the original capability.) Then, the rule does give us a specification for
an execution step, but with a resulting execution state of Failed, meaning that the
execution cannot continue afterwards.

The third and fourth rules give specifications for the load and store instructions
(in non-failing cases). The specification for load states that load dst src loads a
word from memory pointed to by a capability in register src and stores its contents in
register dst. The specification for store states that store dst src reads a word from
the src register and writes it into the memory location pointed to by the capability in
dst.

Note that these specifications for subseg, load and store are not in fact the most
general specifications for these instructions. They assume that some side-conditions
hold, and specify the behavior of the instruction in the case of either a “normal”
successful execution, or a failing one. These specifications are typically useful for
reasoning about the correctness of a concrete program. We have also proved in Coq
(e.g., 3 for the subseg instruction) “most general” specifications, covering in one
lemma all possible cases for a given instructions. These are useful for deriving the
more specific rules shown previously. Furthermore, we use them directly in the proof
of the Fundamental Theorem (Theorem 2), for specifying the behavior of arbitrary
instructions that might or might not fail.

The last rule of Figure 2.9 shows a derivable specification for a program composed
of several instructions, the rclear macro. This macro (meaning, a small program
that is typically inserted inline as part of a larger program) clears a number of registers
by setting their content to 0. It is parameterized by a list l of register names, and its
code consists of a sequence of instructions move r 0 for each register name r in l. We
state rclear’s specification using the program specification for code fragments. This
specification is provable using the basic reasoning rules for move. It requires that
the body of the macro (“rclear_instrs l”) is laid out contiguously in memory range
[a0,an), while the program counter initially points to a0. When the program counter
eventually points to an, the address immediately after the macro’s instructions, then
all the registers in l have been cleared and now contain 0. (The “big star”∗ denotes
an iterated separating conjunction, here over the registers r in list l.)

https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Subseg.html#wp_Subseg

CHAPTER 2. CERISE 49

2.4.3 Adequacy theorem

After establishing program specifications and properties at the level of our program
logic, we ultimately want to transfer these results into properties of a program execu-
tion at the level of the operational semantics of the bare machine. Generally speaking,
we prove using the rules of the Iris logic a statement of the form P ⊢ Q, where P and
Q are Iris propositions (read “Q holds assuming invariant P”). From this, we want
to deduce that some mathematical proposition Φ holds (as a Coq proposition, in our
case), where Φ describes some property of the machine execution expressed in terms
of its operational semantics.

Because we are interested in establishing invariants about a program execution,
we typically want to obtain in Φ that at every step of the execution, the state of the
machine satisfies an invariant corresponding to the Iris assertion P.

Deriving mathematical facts from Iris proof derivations is made possible thanks
to the so-called adequacy theorem of Iris 4 . This theorem has a very general but
intricate statement. In this section, we describe a simpler but more specialized
adequacy theorem for our capability machine, which we can use to reason about the
examples introduced in Section 2.2. (We also describe in Section 2.7 a more advanced
adequacy theorem, suitable for reasoning about programs such as the case study of
Section 2.8.) This specialized adequacy theorem is itself established on top of the
general Iris adequacy theorem. When it applies, it is more convenient to use; but in the
general case, it is always possible to directly leverage the general adequacy theorem.

We now present our specialized adequacy theorem. We first define a notion of
memory invariant (Definition 1), which corresponds to a predicate over a finite subset
of the machine memory. Typically, we will consider predicates of the form: “the value
at this specific memory address holds a positive integer” (for instance, the value of the
counter of Section 2.2.4). A memory invariant is given by a predicate I over machine
memory and a set of addresses D (the “domain” of the invariant); we then require that
I is not impacted by changes outside of D.

Definition 1 (Memory invariant 5). We say that I is a memory invariant over D if I
is a predicate over machine memory, D a finite set of addresses, and:

∀mm′. (∀a ∈ D. m(a) = m′(a)) =⇒ I(m)⇔ I(m′).

We now present the statement of our specialized adequacy theorem; we explain
the ingredients in the theorem statement below. Given a memory invariant I over a
set D, our adequacy theorem (Theorem 1) can be used to show that I indeed holds of
the memory at every step of the execution, provided we can show that it holds as an
invariant in Iris.

Theorem 1 (Adequacy 6). Given a memory invariant I over D, a memory fragment
prog : [b,e)→Word, a memory fragment adv : [badv,eadv)→Word, an initial memory
mem, and an initial register file reg, assuming that:

https://plv.mpi-sws.org/coqdoc/iris//iris.program_logic.adequacy.html#wp_invariance
https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy.html#memory_inv
https://logsem.github.io/cerise/jfp/cap_machine.examples.template_adequacy.html#with_adv.template_adequacy

CHAPTER 2. CERISE 50

1. the initial state of memory mem satisfies:

prog⊎adv⊆ mem D⊆ dom(prog) = [b,e)

2. invariant I holds of the initial memory:

I(mem)

3. the adversary region contains no capabilities:

∀a ∈ dom(adv). adv(a) ∈ Z

4. the initial state of registers reg satisfies:

reg(pc) = (RWX,b,e,b), reg(r0) = (RWX,badv,eadv,badv),
reg(r) ∈ Z otherwise

5. the proof in Iris that the initial configuration is safe given invariant I:

∀reg,

∃m,∗(a,w)∈m a 7→ w∗⌈dom(m) = D⌉∗ ⌈I(m)⌉

⊢

(RWX,b,e,b);

r0 Z⇒ (RWX,badv,eadv,badv)∗

∗(r,v)∈reg,
r/∈{pc,r0}

r Z⇒ z∗⌈z ∈ Z⌉∗

∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉∗
∗(a,w)∈prog,

a/∈D
a 7→ w

⇝ •

Then, for any reg′, mem′, if (reg,mem)−→∗ (reg′,mem′), then I(mem′).

Theorem 1 establishes that, starting from an initial machine state (reg,mem), any
subsequent machine state (reg′,mem′) satisfies I(mem′). This is subject to a number
of conditions, in particular about the initial state of the machine.

First, the initial memory must be provisioned with relevant code and data. This
means that the program that we wish to verify (both its code and data) given by memory
fragment prog : [b,e)→Word should be included in the initial memory. Moreover,
some additional “adversarial code” given by adv : [badv,eadv)→ Word should be
included in the initial memory. Indeed, we are not only interested in reasoning
about the execution of our verified program in isolation, but also its interaction with
unverified, possibly adversarial code. The initial memory mem should therefore
include prog and adv, in disjoint regions. Furthermore, the domain of the invariant
I should be included in the program’s region [b,e). The intent is that I specifies an
invariant about some private data of the verified program, and thus should not depend
on other parts of memory.

CHAPTER 2. CERISE 51

Second, as should be expected, the invariant I must hold of the initial memory
mem.

Third, the adversary memory adv is required not to contain any capabilities. This
conservatively ensures that adv does not contain any “rogue” capability that would
give undesired access to the verified program’s private state. No further assumption is
made about adv, which is thus free to contain arbitrary code (i.e. instructions encoded
as integers). Furthermore, note that the absence of capabilities in adv does not mean
that code in adv will not be able to access memory at all: at runtime, it will still get
access to a capability to its own region through the program counter pc.

Then, the initial register file reg should be provided with a RWX capability to
the verified program in pc (meaning that it executes first), and a capability to the
unverified code in register r0 (as we have seen in Section 2.2, by convention r0 holds
the pointer to a program’s continuation). Other registers are conservatively required
not to contain any capabilities.

Finally, one needs to establish at the level of the program logic that the program
is safe to run under invariant I. Concretely, one needs to prove a specification for a
complete safe execution (of the form {P}⇝ •), given “points-to” resources in the
pre-condition that correspond to the initial state of registers and memory. In particular,
we get access to points-to resources for the adversary region (along the fact that they
contain integers) and points-to resources for the region containing the program to
execute.

Note that no resources are given for the domain of I as part of the initial resources
for the complete-execution specification. Instead, these resources are part of the
logical invariant under which the specification must be established (inside . . .). This
corresponds to the intuition that these resources should only be modified in a way
that preserves invariant I. This logical invariant therefore specifies that there exists
a subset of memory m, which covers the memory region defined by D, such that the
invariant holds the corresponding points-to resources and such that I(m) holds, i.e. the
memory invariant I holds of this memory subset. (Recall from Section 2.4.1 that ⌈φ⌉
denotes an Iris proposition that asserts that the mathematical proposition φ holds.)

The reader may be surprised to notice that the region containing “adversarial” code
has no special status. Indeed, it simply corresponds to a memory region containing
(a priori unknown) integers. Nevertheless, remember that we ultimately want our
program to be able to pass control to the unknown adversary code by jumping to the
capability in r0, as we have seen our example programs do. This means we need to
have a way of reasoning about “what it will do”, at least to ensure that it will not break
our program’s invariants.

In the next section, we show how to reason about whether unknown code can
be considered “safe to execute”, so that we can pass control to it while preserving
previously established invariants.

CHAPTER 2. CERISE 52

V (w)

V (z),V (O,−,−,−) ≜ True

V (E,b,e,a) ≜ ▷□E (RX,b,e,a)
V (RW/RWX,b,e,−) ≜ ∗a∈[b,e) ∃w, a 7→ w∗V (w)

V (RO/RX,b,e,−) ≜ ∗a∈[b,e) ∃P, ∃w, a 7→ w∗P(w)
∗▷□(∀w, P(w)−−∗ V (w))

E (w) ≜ ∀reg,
{

w;∗(r,v)∈reg,r ̸=pc r Z⇒ v∗V (v)
}
⇝ •

Figure 2.10: Logical relation defining “safe to share” and “safe to execute” values.

2.5 Reasoning about Untrusted Code in Cerise

Code running on a capability machine is constrained by the set of capabilities it has
access to. This is a crucial idea for reasoning about adversarial code. Whatever code
the machine is running, if this code does not have access to a capability for, e.g.,
writing to a memory region, then it will not be able to modify memory in that region.
In other words, one can prove a theorem describing the behavior of arbitrary code
depending only on the capabilities it has access to.

One major technical contribution of this work is to formulate and mechanize
such a theorem. Specifically, we are concerned with the preservation of invariants
established in the program logic. We will thus give a definition of which machine
words that are “safe” to share with unknown code. Informally, a word is safe if it
cannot be used to break any previously established logical invariants. We will then
prove that, as long as some arbitrary code only has access to safe machine words, its
execution indeed preserves logical invariants.

Interestingly, we can establish this result while staying within the framework of the
Cerise program logic exposed in the previous section. This illustrates the generality
of said program logic: verifying specifications for known programs or specifying the
behavior of arbitrary code are only two of its possible applications.

2.5.1 Logical Relation

Our formal definition of what makes a machine word safe, meaning “safe to share
with unknown code”, appears in Figure 2.10. It takes the form of a unary logical
relation, defining simultaneously the notions of a machine word that is “safe to share”
(V) and “safe to execute” (E). The names V and E originate from the tradition of
logical relations, corresponding respectively to the “value relation” and the “expression
relation”, although this interpretation is perhaps less obvious in the setting of low-level
machine code. We explain the definition in detail below. The intuition is that:

• A value which is safe to share only gives transitive access to other values that are
safe to share, or code that is safe to execute (in the case of a sentry capability).

• A value which is safe to execute allows the machine to run while preserving
logical invariants (by definition of {·; ·}⇝ •), provided the registers contain
safe values.

CHAPTER 2. CERISE 53

Technically speaking, this informal definition is circular. Luckily, we can define it
properly with the help of the “later” modality ▷. Iris provides us with a fixed-point
operator that only requires recursive occurences to be guarded under a ▷, and we use
that to formally define V and E . Except for this technical requirement, the reader can
in practice ignore the use of ▷ here.

Let us more closely examine the definition of V , which is defined by case analysis
on the shape of the given machine word w. If w is an integer (z), then it is always safe
to share, since it cannot be used to access memory. Similarly, opaque capabilities with
permission O are always safe as they also do not give access to memory.

A sentry capability E is safe to share if the code it encapsulates is safe to execute.
Such a capability can be invoked at any moment and possibly several times: this is
expressed through the use of the persistently modality 2. Technically speaking, this
means that the property E (RX,b,e,a) must be established by only relying on persistent
resources (typically, logical invariants) that will remain “available” throughout the
entire execution.

A read-write capability RW or RWX gives read and write access to the memory
region in its range. It is therefore safe as long as the words stored in the corresponding
memory region are safe, and continue to be so when the memory gets modified.
We thus say that it is safe when we have an invariant for each memory cell in the
capability’s region, which asserts ownership over the corresponding memory points-to
resource, and asserts validity of its contents.

Finally, a capability with permission RO/RX cannot be used by unknown code to
modify the memory words in its range. Therefore, these words can obey any property
P as long as it entails safety (V). Intuitively, the words in the interval have to be safe
to share, because the adversary can read them. But since the adversary cannot modify
them, it is possible to guarantee a stronger invariant about them. For instance, P(w)
could be the predicate “w = 42”, describing that a value in the range stays equal to
the integer 42.

Notice that this definition of safety does not distinguish between capabilities with
permission RO and RX, or RW and RWX. This seems to strangely imply that permis-
sions with the execute bit X have no additional expressive power over permissions
without the execute bit. And indeed, in terms of our model—which “only” captures
the ability to break memory invariants—their expressive power is the same!3 The crux
of our main theorem (presented in the next sub-section) is that executing arbitrary
code does not produce capabilities with more access to memory than was available
before. Thus, being able to execute code within a memory region does not yield
additional access to memory compared to what was available by simply reading the
memory region (it only leads to additional machine behaviors).

Is this definition of safety trivial? One might wonder whether the definition in
Figure 2.10 is trivial, meaning that any machine word w will in fact be considered

3Having read-only permission over a region also allows one to simply copy the contents of the
region into any other read-execute region and execute them here.

CHAPTER 2. CERISE 54

safe. This is thankfully not the case; let us illustrate concrete cases where a memory
word w is not considered safe to share with unknown code.

At a high level, E is not trivial because establishing E (w) requires proving that
a full execution of the machine, starting from w, preserves logical invariants. This
requirement is not explicit in the definition, but comes from the definition of the Cerise
program logic. The definition of V (w) is also not trivial because, e.g., in the case of
an RW capability, it requires the memory points-to a 7→ − predicate to be part of a
specific invariant, ∃w, a 7→ w∗V (w) . Since the resource “a 7→ −” is not duplicable,
there can be only one resource a 7→ −, which cannot be simultaneously part of two
different invariants. Memory cells whose contents evolve according to an invariant
more specific (less permissive) than the one above thus cannot be associated with a
safe capability (according to V).

What is a concrete example of a capability which is not safe? Let us consider a
memory cell at address x initialized to 0. Let us assume the following Iris invariant:
x 7→ 0 . This invariant expresses that x will contain the integer 0 for the rest of the
execution. Then, a capability (RW,x,x+1,x) is not safe to share with an adversary.
Indeed, an adversary could use such a capability to write an arbitrary value at address
x, thus invalidating the Iris invariant. (However, (RO,x,x+1,x) would be safe.) A
bit more formally speaking, it is not possible to prove V (RW,x,x+ 1,x), because
it is not possible to create the invariant ∃w, x 7→ w∗V (w) , as the resource for the
memory cell x is already part of the invariant x 7→ 0 , and cannot be extracted to
create a different invariant.

Similarly, one cannot prove E for a code fragment that writes another value than
0 at address x (after getting access to it through the pc register), because the proof
would not be able to guarantee that the Iris invariant related to x is preserved at every
step.

2.5.2 Fundamental Theorem

The Fundamental Theorem of our Logical Relation (Theorem 2) (hereafter, FTLR)
establishes that any capability that is “safe to share” (in V) is in fact “safe to execute”
(in E). In other words, if a capability only gives transitive access to safe capabilities,
then it is safe to use it as a program counter capability and execute it: it will not be
able to gain extra authority over memory or break any invariants. Importantly, this
theorem is independent of the code that the capability points to, even though it is
this code that will be executed. Hence the result applies to arbitrary code and we
sometimes refer to it as a universal contract because of this.

Theorem 2 (FTLR 7). Let p∈ Perm,b,e,a∈Addr. If V (p,b,e,a), then E (p,b,e,a).

This is a non-trivial theorem, the proof of which requires checking all the possible
cases of the semantics of each instruction of the machine. Indeed, one needs to check
that there is no way for some machine instruction to create capabilities with further
authority than what was available. This could, for example, happen if some runtime
checks were missing, making it possible to create a capability (RW,b,e+1,a) from

https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#fundamental_cap

CHAPTER 2. CERISE 55

a capability (RW,b,e,a). One can imagine how this would break expected security
guarantees, and reveal a design or implementation bug of the machine. Therefore,
another informal interpretation of the fundamental theorem is that it expresses that the
capability machine “works well” or that it is capability safe.

The fundamental theorem provides a universal security property satisfied by
unknown code, and gives us a way of verifying the correctness of known code that
includes calls to possibly malicious code. To sum up, our logical relation characterizes
the interface between a piece of verified code which wishes to preserve invariants on
some internal state, and “external” arbitrary code whose accessible, safe capabilities
have been sufficiently restricted.

It is important to note that the distinction between “known” and “adversary” code
only exists at the logical level: there is no such distinction at runtime. We can have
two components that have been verified separately, and that do not mutually trust each
other. In this case, from the point of view of each component, the other component is
considered as being the adversary.

Rules for program verification. From the general statement of the FTLR, we
can derive two corollaries, which can be used to instantiate our adequacy theorem
(Theorem 1) with a program that passes control to an unknown adversarial code
region.

Corollary 1 (Unknown integers are safe 8). For m : [b,e)→Word,

∗
(a,z)∈m

a 7→ z∗⌈z ∈ Z⌉ −−∗ V (p,b,e,a)

Corollary 1 can be used to trade ownership over a memory region of integers to
the knowledge that a capability over this region is safe.4 Since integers can encode
program instructions, we can typically use this rule to reason about a memory region
containing an (unknown) program. The rule follows directly from the definition of V
for values of p different from E; when p = E, an additional application of the FTLR
(Theorem 2) is required.

Notice that the pre-condition of the rule matches the resources that one gets in the
Adequacy theorem (Theorem 1) for the adversary region. When using the Adequacy
theorem, we will thus be able to conclude that capabilities pointing to the adversary
region are safe.

Corollary 2 (Jump to a safe word 9).

V (w)−−∗
▷∀reg.

{
updatePcPerm(w);∗(r,v)∈reg,r ̸=pc r Z⇒ v∗V (v)

}
⇝ •

Corollary 2 gives us a specification for the execution of the machine after a
jump to an unknown word w, assuming that w is safe. Recall that updatePcPerm(w)

4We simplify the presentation here a bit and omit a view shift from the statement of Corollary 1.
See the Coq development for the exact formal statement 8 .

https://logsem.github.io/cerise/journal/cap_machine.logrel.html#region_integers_alloc
https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#jmp_to_unknown

CHAPTER 2. CERISE 56

corresponds to the value of the program counter after jumping to w (see the machine
semantics in Figure 2.7). The full execution specification in the conclusion of the rule
requires that the machine registers contain safe values: indeed, we must only share
safe words with unknown code.

An important application of Corollary 2 is to reason about the last instruction of a
program encapsulated in a sentry (E) capability, where it “returns” and passes control
to its caller by calling jmp on the (unknown but safe) return pointer held in r0. In this
scenario, the return pointer provided by the caller is unknown but safe, so Corollary 2
gives us a specification for the continuation of the program.

Additionally, Corollary 2 is typically used in combination with Corollary 1 when
instantiating the Adequacy theorem. Indeed, in order to prove the complete safe
execution specification required by the theorem, one typically needs to justify that one
can jmp and pass control to an adversary region, given the resources granted by the
Adequacy theorem.

2.5.3 Proving the fundamental theorem

To give a more in-depth perspective of the ideas behind the Fundamental Theorem,
we detail in this sub-section one of the interesting cases of its proof. This sub-section
can be safely skipped on a first read.

Proof. (FTLR) We begin by unfolding the definition of E .

∀reg.
{
(p,b,e,a);∗(r,v)∈reg,r ̸=pc r Z⇒ v∗V (v)

}
⇝ •

We proceed by Löb induction. The Löb rule is a powerful reasoning principle,
which Cerise inherits from Iris, and which states that (in any context Q), if from ▷P
we can derive P, then we can also derive P without any assumptions.

LÖB
Q∧▷P ⊢ P

Q ⊢ P

The idea of the rule is that “after we do some work”, we will be able to remove
the ▷ modality from the assumption, and reach the conclusion. In our case, this means
reasoning about one step of execution, for one instruction. Intuitively, if we show that
our property holds for the execution of one arbitrary instruction, then it must hold for
a sequence of many instructions.

We thus let:

IH ≜ ∀p,b,e,a. V (p,b,e,a)−−∗
∀reg.

{
(p,b,e,a);∗(r,v)∈reg,r ̸=pc r Z⇒ v∗V (v)

}
⇝ •

and assume ▷ IH; we then wish to show IH.
First, we consider the case where (p,b,e,a) is not a valid program counter (for

instance, if it contains a non-executable capability, or an integer). Then the machine

CHAPTER 2. CERISE 57

configuration will step into a Failed configuration. In that case, any full execution
specification ({·; ·}⇝ •) trivially holds, and we are done.

In the case where (p,b,e,a) is a valid program counter, we will have to execute
the next instruction of the program, pointed to by a. For (p,b,e,a) to be a valid
program counter, the following needs to hold:

p ∈ {RX,RWX} (2.1)

b≤ a < e (2.2)

From (2.1), we can infer that V (p,b,e,a) will unfold to (at least) the following:

∗a∈[b,e)∃P, ∃w, a 7→ w∗P(w) ∗▷□ ∀w, P(w)−−∗ V (w)

Since we know that a is an address in the range [b,e) (2.2), we can in particular
infer that there exists a predicate P such that ▷□ ∀w, P(w)−−∗ V (w), for which the
following invariant holds:

∃w, a 7→ w∗P(w) (2.3)

Ownership over a 7→ w is in fact required in order to apply any rule of the program
logic (we need to be able to access memory for the instruction pointed to by pc). We
will therefore first open the invariant (2.3) to get access to that resource.

Recall the invariant opening rule INV (Section 2.4.2). According to that rule, we
can get access to the resources held inside the invariant now, as long as we give them
back after one execution step. Since we wish here to reason about the execution of a
single instruction, this is a perfectly good deal.

Once the invariant has been opened, the following propositions are added to our
assumptions, for some word w (technically speaking, the Iris context also tracks the
fact that these facts come from an invariant and must be given back next, but we
choose to hide these details):5

a 7→ w (2.4)

▷ P(w) (2.5)

Because pc points to a, and address a contains the word w, w should correspond
to the (encoding of the) instruction to execute now. We thus reason by case analysis
on decode(w).

This leads to as many cases as there are instructions in the machine. We will now
detail a sub-case for the load instruction, which is one of the interesting cases. Many
of the other cases are similar in nature.

Case: decode(w) = load rdst rsrc.

5Notice that we directly get a 7→ w rather than ▷a 7→ w, due to the fact that memory points-to are
timeless.

CHAPTER 2. CERISE 58

We consider here the case where rdst and rsrc are two different registers, both
different from pc. We also only consider the case where rsrc contains a capability,
which we are permitted to load from. In other words, our goal is as follows:6

▷ IH∗a 7→ w∗▷P(w)

⊢

(p,b,e,a);
∗(r,v)∈reg,r ̸=pc,rdst,rsrc r Z⇒ v∗V (v)
∗ rdst Z⇒ w′ ∗V (w′)
∗ rsrc Z⇒ (p′,b′,e′,a′)∗V (p′,b′,e′,a′)

⇝ •

As stated, we assume that (p′,b′,e′,a′) permits us to load from a′. We can thus infer
the following two properties:

p′ ∈ {RO,RX,RW,RWX} (2.6)

b′ ≤ a′ < e′ (2.7)

Just like before, we can from V (p′,b′,e′,a′) conclude that the following invariant
holds, where P′ is a predicate such that ▷□ ∀w, P′(w)−−∗ V (w):

∃w, a′ 7→ w∗P′(w) (2.8)

We consider the (more interesting) case where a ̸= a′. We can thus open the invariant
(since it has not been opened already), meaning that we have for some word wsrc the
following (again, plus some invariant-tracking resources not shown here):

a′ 7→ wsrc (2.9)

▷ P′(wsrc) (2.10)

With these assumptions, we now have all the necessary resources to take a step in
the program logic, using the rule for the load instruction (Figure 2.9). A feature of
single-instruction rules of our program logic is that they include a built-in ▷ modality.
In other words, after applying a single-instruction rule, we are “one execution step
later”, and we can remove one occurrence of ▷ for each assumption of our context.
In particular, this means that we can turn ▷ IH into IH, and similarly for P(w) and
P′(wsrc). We now have to show:

IH∗a 7→ w∗P(w)∗a′ 7→ wsrc ∗P′(wsrc)

⊢

(p,b,e,a+1);
∗(r,v)∈reg,r ̸=pc,rdst,rsrc r Z⇒ v∗V (v)
∗ rdst Z⇒ wsrc

∗ rsrc Z⇒ (p′,b′,e′,a′)∗V (p′,b′,e′,a′)

⇝ •

We now have direct access to IH (our initial goal) as an assumption, so the proof is
nearly done. Before we can invoke IH and conclude the goal, we must do two things:
(a) close all the open invariants (as required by the invariant opening rule), and (b)

6We again omit details involving masks and update modalities, and refer to the Coq formalization
for the full details.

CHAPTER 2. CERISE 59

show that the contents of all registers satisfies V (required by the definition of IH).
(We actually need to show (b) before addressing (a), as we will make use of resources
from the open invariants.)

Addressing (b), we already know that the contents of registers satisfy V for
all registers except for rdst—the only register whose contents were changed by the
instruction. We must thus prove V (wsrc). Luckily, wsrc is not a completely arbitrary
word: it was accessible from available memory, so it must be safe as well. More
precisely, from the invariant about a′ (previously opened), we know that P′(wsrc)
holds, and furthermore we know that:

□ ∀w,P′(w)−−∗ V (w)

Owing to the fact that V (·) is persistent, we can shave off the □ modality, and
conclude that V (wsrc) holds, concluding the proof of (b).

Finally, addressing (a) is straightforward, since we did not change the contents
of memory at either address a or a′. We can therefore close the invariants again, by
giving up the same resources as we initially got from opening them, concluding the
proof of (a) and thus the case of the proof for load.

In the proof sketch above, we followed one specific subcase of the proof for the
load instruction. In the complete proof, we must go through all the possible cases of
the semantics for the instruction. In some cases, the machine fails which terminates
the proof easily (for instance, if the capability in rsrc does not in fact allow reading
memory, or if rsrc does not in fact contain a capability). In some other cases, the
machine does not fail, and the proof is similar to the case highlighted here but slightly
different (for instance when rdst and rsrc are the same register).

The proofs for the other instructions of the machine follow a similar pattern. In
particular, in the store case, the register state is not modified except for the pc
register, but memory is modified. As such, closing the invariants is not as easy since
we need to establish that the stored word is at least safe. This is established by using
the fact that we assumed that the register only contains safe words. The case of
the restrict, subseg and lea instructions require showing that a capability with
smaller authority remains in the value relation V , and the jmp, jnz and mov cases
show that pc (or other registers) can be updated with arbitrary safe words. The other
remaining cases are rather trivial, as they all only change a register state to an integer,
which is always safe.

2.6 Reasoning with capabilities: two examples

In this section, we return to the motivational examples introduced in Section 2.2, and
show how to prove that they enforce the desired properties, using Cerise’s reasoning
tools, laid out in the previous sections.

2.6.1 Sharing a sub-buffer with an unknown adversary

CHAPTER 2. CERISE 60

code: mov r1 PC
lea r1 [data-code]
subseg r1 [data] [data+3]
jmp r0

data: ’H’, ’i’, 0, ; public
secret: 42 ; secret
end:

Let us recall (on the right) the code for
our buffer-sharing program, previously intro-
duced in Figure 2.3. The labels code, data,
secret and end denote addresses in mem-
ory. We wish to prove formally that the pro-
gram can share the data between addresses
data and secret (excluded), while protect-
ing the integrity of the data at address secret.

Using the reasoning rules from our program logic, we can first prove a specification
for the program, specifying its behavior from its first instruction up until the final
jmp. The corresponding specification is as follows, where code_instrs is the list of
integers corresponding to the encoded instructions of the program, i.e., code_instrs =
map encodeInstr [mov r1 pc; . . . ;jmp r0].

Lemma 1 (Program specification 10).{
(RWX,code,end,code);

r0 Z⇒ wadv ∗ r1 Z⇒−∗
[code,data) 7→ code_instrs

}
⇝{

updatePcPerm(wadv);
r0 Z⇒ wadv ∗ r1 Z⇒ (RWX,data,secret,data)∗
[code,data) 7→ code_instrs

}
One can read from the specification that executing the program will store in r1 an

RWX capability to the memory segment between addresses data and secret (our
“buffer”), and pass control to the word wadv found in register r0.

Proving this specification is easy: it is enough to successively apply the program
logic rule of each individual instruction found in the program.

This specification shows that the program ultimately jumps to the word initially
passed in register r0, but does not describe what happens after, in the case where this
word points to a region containing unknown code. For this, we use the reasoning
principles from Section 2.5.2 (built on top of the Fundamental Theorem), and derive
a specification for a complete execution of the machine, see Lemma 2 below. The
lemma specifies that, starting by executing our program, and given that r0 contains a
capability to a region containing unknown integers, then the machine is safe to run.
Notice that we do not assume a points-to resource for the secret data: instead, this
points-to will be part of an invariant—specifying that it contains the same secret value
at every step—and we do not need to access that here.

Lemma 2 (Full execution specification 11).
(RWX,code,end,code);

r0 Z⇒ (RWX,badv,eadv,badv)∗
r1 Z⇒−∗
∗ (r,v)∈reg,

r/∈{pc,r0,r1}
r Z⇒ z∗⌈z ∈ Z⌉∗

[code,data) 7→ code_instrs∗
[data,secret) 7→ [′H′; ′i′;0]∗
∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉

⇝ •

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_full_run_spec

CHAPTER 2. CERISE 61

Proof. By Lemma 1, the frame rule FRAGFRAME and the sequence rule SEQFULL, it
suffices to show the following goal, which corresponds to a specification about the
execution of the machine after the execution of the verified code:

Goal:

;

r0 Z⇒ (RWX,badv,eadv,badv)∗

∗ (r,v)∈reg,
r/∈{pc,r0,r1}

r Z⇒ z∗⌈z ∈ Z⌉∗

∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉∗
[code,data) 7→ code_instrs∗
[data,secret) 7→ [′H′; ′i′;0]

⇝ •

We now rely on the reasoning rules derived from the Fundamental Theorem
(Section 2.5.2). First, from the fact that the adversary region adv does not contain
capabilities, we get using Corollary 1 that any capability on that region is safe,
in particular we have V (RWX,badv,eadv,badv). Then, from Corollary 2 we get a
specification for the execution of the machine starting from V (RWX,badv,eadv,badv)
(recall that updatePcPerm is the identity on non-E capabilities):

Fact: ∀reg.
{
(RWX,badv,eadv,badv);∗(r,v)∈reg,r ̸=pc r Z⇒ v∗V (v)

}
⇝ •

From this fact, we can prove our goal provided that we show that the contents of all
machine registers satisfy V . For registers other than r0 and r1, this holds by definition
of V , as we know they only contain integers. Register r0 contains a capability to the
adversary region, which we have already proved to be safe using Corollary 1. Finally,
register r1 contains the capability pointing to the public buffer. We can again leverage
Corollary 1 to obtain V (RWX,data,secret,data) from the memory points-to for the
buffer ([data,secret) 7→ [′H′;′i′;0]), thus concluding the proof.

Finally, from Lemma 2, established in the program logic, we wish to obtain a final
result in terms of the operational semantics of the machine. The toplevel end-to-end
theorem that we obtain is shown in Theorem 3. We consider a machine whose memory
is initially loaded with our program and unknown adversarial code, and that starts by
executing our verified code. The theorem establishes that the adversary will not be
able to tamper with the value held at address secret: at every step of the execution,
it will be unchanged and equal to 42.

Theorem 3 (End-to-end theorem: integrity of the secret data is preserved 12). Starting
from an initial state of the machine (reg,mem) where:

• prog⊎adv⊆mem, for adv : [badv,eadv)→Word and prog : [code,end)→Word

• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities: ∀a.adv(a) ∈ Z;

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#adequacy

CHAPTER 2. CERISE 62

• the initial state of registers satisfies:
reg(pc) = (RWX,code,end,code),
reg(r0) = (RWX,badv,eadv,badv),
reg(r) ∈ Z otherwise;

Then, for any reg′, mem′, if (reg,mem)−→∗ (reg′,mem′), then mem′(secret) = 42.

Proof. We first invoke Theorem 1, choosing the memory invariant I and its domain
D to be the invariant Ibuf and domain Dbuf defined below, asserting that the value at
address secret is equal to 42:

Ibuf ≜ λm. m(secret) = 42

and Dbuf = {secret}.

Most side-conditions of the adequacy theorem can be easily discharged. What
remains is the following specification in Iris:

∃m,∗(a,w)∈m a 7→ w∗
⌈
dom(m) = Dbuf

⌉
∗
⌈
Ibuf (m)

⌉

Goal: ⊢

(RWX,code,end,code);

r0 Z⇒ (RWX,badv,eadv,badv)∗
∗(r,v)∈reg,

r/∈{pc,r0}
r Z⇒ z∗⌈z ∈ Z⌉∗

∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉∗
∗(a,w)∈prog,

a/∈Dbuf

a 7→ w

⇝ •

We can simplify this goal by unfolding the definition of Ibuf , Dbuf , prog and
massaging the goal to extract relevant points-to resources. The goal then becomes:

Goal: ⊢

(RWX,code,end,code);

r0 Z⇒ (RWX,badv,eadv,badv)∗

∗ (r,v)∈reg,
r/∈{pc,r0,}

r Z⇒ z∗⌈z ∈ Z⌉∗

∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉

⇝ •

Note how the points-to resource for the secret address is held as part of the
invariant, asserting that it contains the value 42 at each step. This simplified goal
now follows from the full execution specification established earlier in Lemma 2 by
applying the rule FULLFRAME, which concludes the proof.

2.6.2 Creating a closure around local state

Let us now come back to the example introduced in Section 2.2.4, whose code is
reproduced below. In this example, the control flow is somewhat more involved, as we

CHAPTER 2. CERISE 63

have two separate pieces of known code that run at different times. The initialization
code between init and code runs first, and creates a sentry capability before passing
control to the unknown code. The code and data located between code and end are
encapsulated in the sentry capability created by the initialization code. Because the
sentry capability is exposed to the unknown code, the code it encapsulates may be
invoked several times, incrementing the value of the counter each time.

We wish to prove formally that the value of the counter is correctly encapsulated.
We prove that it remains non-negative at every step: starting from zero, it can only get
incremented by the code routine encapsulated in the sentry capability.

init:
mov r1 PC
lea r1 [data-init]
mov r2 r1
lea r2 1
store r1 r2
lea r1 [code-data]
subseg r1 [code] [end]
restrict r1 E
mov r2 0
jmp r0

code:
mov r1 PC
lea r1 [data-code]
load r1 r1
load r2 r1
add r2 r2 1
store r1 r2
mov r1 0
jmp r0

data:
; will be:
; (RWX, init, end, data+1)
0xFFFF,
0 ; counter value

end:

Using the rules of our program logic, we can first prove a specification for the
initialization code, shown in Lemma 3. This specification describes the behavior of
the code between init and code, where init_instrs denote the corresponding list of
encoded instructions.

Lemma 3 (Specification for the initialization code 13).{
(RWX, init,end, init);

r0 Z⇒ wadv ∗ r1 Z⇒−∗ r2 Z⇒−∗
data 7→ −∗ [init,code) 7→ init_instrs

}
⇝updatePcPerm(wadv);

r0 Z⇒ wadv ∗ r1 Z⇒ (E,code,end,code)∗ r2 Z⇒ 0∗
data 7→ (RWX, init,end,data+1)∗
[init,code) 7→ init_instrs

From this specification, one can read that running the initialization code will store

in register r1 a sentry capability to [code,end), and write at address data an RWX

capability pointing to the location holding the counter value. The initialization code
then passes control to the unknown word wadv stored in r0.

We can also use the program logic rules to prove a specification for the code
routine in [code,data) which increments the counter, and which will run each time the

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_init_spec

CHAPTER 2. CERISE 64

sentry capability is invoked. The specification appears in Lemma 4, where code_instrs
refers to the list of encoded instructions for the routine.

Lemma 4 (Specification for the increment routine 14).

[code,data) 7→ code_instrs ,

data 7→ (RWX, init,end,data+1) , ∃n.(data+1) 7→ n∗⌈n≥ 0⌉
⊢ {(RX,code,end,code); r0 Z⇒ wcont ∗ r1 Z⇒−∗ r2 Z⇒−}⇝
{updatePcPerm(wcont);∃n. r0 Z⇒ wcont ∗ r1 Z⇒ 0∗ r2 Z⇒ n}

This specification assumes a number of Iris invariants, describing the contents
of the [code,end) memory region. Indeed, because the increment routine is invoked
by unknown code, it cannot make many assumptions about the state of the machine.
The only thing that it can assume is that previously established invariants still hold
(because, by definition, capability-safe unknown code has to preserve invariants).

The specification thus assumes, as invariants: 1) that the region [code,data)
contains the code of the routine; 2) that data contains the RWX capability to the
counter value previously stored there by the initialization code, and finally 3) that the
counter value (at address data+1) is a non-negative integer.

The specification asserts that the routine can run, starting with pc containing an RX

capability to the [code,end) region, while preserving the invariants. (In particular, this
means that incrementing the counter indeed preserves the fact that it is a non-negative
integer.) Recall that the RX permission in pc corresponds to what one gets after
jumping to a sentry capability.

Finally, we prove as before a specification proving safety of complete executions,
starting from the initialization code, then followed by the execution of unknown code,
including its possible invocations of the sentry capability. This specification appears
below in Lemma 5.

Lemma 5 (Full execution specification 15).

∃n.(data+1) 7→ n∗⌈n≥ 0⌉

⊢

(RWX, init,end, init);

r0 Z⇒ (RWX,badv,eadv,badv)∗ r1 Z⇒−∗ r2 Z⇒−∗
∗ (r,v)∈reg,

r/∈{pc,r0..r2}
r Z⇒ z∗⌈z ∈ Z⌉∗

[init,code) 7→ init_instrs∗
[code,data) 7→ code_instrs∗data 7→ −∗
∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉

⇝ •

Proof. By using Lemma 3 (the specification for the initialization code), the frame rule
FRAGFRAME and sequence rule SEQFULL, it is enough to show the following goal,

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_code_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_full_run_spec

CHAPTER 2. CERISE 65

which specifies the execution of the machine after the initialization code has run:

∃n.(data+1) 7→ n∗⌈n≥ 0⌉

Goal: ⊢

;

r0 Z⇒ (RWX,badv,eadv,badv)∗
r1 Z⇒∗r2 Z⇒∗
∗ (r,v)∈reg,

r/∈{pc,r0..r2}
r Z⇒ z∗⌈z ∈ Z⌉∗

[init,code) 7→ init_instrs∗
[code,data) 7→ code_instrs∗
data 7→ ∗
∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉

⇝ •

We then allocate two new invariants, one containing the code of the sentry capabi-
lity, the other the points-to resource at address data.

, ,

∃n.(data+1) 7→ n∗⌈n≥ 0⌉

Goal: ⊢

(RWX,badv,eadv,badv);

r0 Z⇒ (RWX,badv,eadv,badv)∗
r1 Z⇒ (E,code,end,code)∗ r2 Z⇒ 0∗
∗ (r,v)∈reg,

r/∈{pc,r0..r2}
r Z⇒ z∗⌈z ∈ Z⌉∗

[init,code) 7→ init_instrs∗
∗(a,z)∈adv a 7→ z∗⌈z ∈ Z⌉

⇝ •

From Corollary 1 and the fact that the adversary region adv does not contain
capabilities, we get that any capability on that region is safe, and therefore that
V (RWX,badv,eadv,badv) holds. From Corollary 2, we get that a full execution starting
from (RWX,badv,eadv,badv) is safe:

Fact: ∀reg.
{
(RWX,badv,eadv,badv);∗(r,v)∈reg,r ̸=pc r Z⇒ v∗V (v)

}
⇝ •

In combination with rule FULLFRAME, this fact allows us to conclude the proof,
provided we can prove safety of values stored in all registers. We have already proved
the capability in r0 to be safe. Registers r2 to r31 contain integers, so they are safe by
definition of V . Safety of the sentry capability created by the initialization code and
stored in r1 remains to be proven.

Goal:
[code,data) 7→ code_instrs , data 7→ (RWX, init,end,data+1) ,
∃n.(data+1) 7→ n∗⌈n≥ 0⌉
⊢ V (E,code,end,code)

By definition of V and E , this goals unfolds to the following:

Goal:
[code,data) 7→ code_instrs , data 7→ (RWX, init,end,data+1) ,
∃n.(data+1) 7→ n∗⌈n≥ 0⌉
⊢ ▷□ ∀reg,

{
(RX,code,end,code);∗(r,v)∈reg,r ̸=pc r Z⇒ v∗V (v)

}
⇝ •

CHAPTER 2. CERISE 66

For technical reasons, we can shave off the later modality (▷) in front of the goal
(we refer to the Coq formalization for more details). The persistent modality (□) is
more interesting: it expresses the fact that safety of the callback should only depend
on persistent assumptions. This corresponds to the fact that the callback may be
invoked several times, in future execution states and because of this it cannot rely on
non-persistent assumptions that only hold at the callback’s creation time. Fortunately,
invariants are persistent, so they remain available for proving the callback’s safety.

Then, let us name w0 the contents of register r0: we get to assume V (w0) (as for
the contents of other registers). By using Lemma 4 (the specification for the increment
routine) with rules FRAGFRAME and SEQFULL, it is enough to prove the following
goal, which asserts safety of the execution after passing control back to unknown
code by jumping to w0:

Goal: ⊢
{

updatePcPerm(w0);
∃n. r0 Z⇒ w0 ∗ r1 Z⇒ 0∗ r2 Z⇒ n∗
∗(r,v)∈reg,r/∈{pc,r0,r1,r2} r Z⇒ v∗V (v)

}
⇝ •

Informally, the increment routine returns to the unknown code by passing control
to some unknown word provided in r0: it is safe to do so, since such word can
be assumed to be itself safe. Formally speaking, we know V (w0), so we apply
Corollary 2 which concludes the proof.

Similarly to the previous example, we derive from Lemma 5 a toplevel theorem
which only refers to the operational semantics of the machine, shown below in
Theorem 4. We consider a machine initially loaded with our program and unknown
adversarial code. The theorem establishes that the value of the counter is properly
encapsulated: at every step of the execution, it will be a non-negative integer.

Theorem 4 (End-to-end theorem: integrity of the counter value is preserved 16).
Starting from an initial state of the machine (reg,mem) where:

• prog⊎adv⊆mem, for adv : [badv,eadv)→Word and prog : [init,end)→Word

• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities: ∀a.adv(a) ∈ Z;

• the initial state of registers satisfies:
reg(pc) = (RWX, init,end, init),
reg(r0) = (RWX,badv,eadv,badv),
reg(r) ∈ Z otherwise;

Then, for any reg′, mem′, if (reg,mem)−→∗ (reg′,mem′), then mem′(data+1)≥
0.

Proof. We invoke Theorem 1, with invariant and domain Icnt and Dcnt defined as
follows:

Icnt ≜ λm.m(data+1)≥ 0
and Dcnt = {data+1}

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#adequacy

CHAPTER 2. CERISE 67

The main step of the proof is to show that the full execution specification for
the initial machine configuration holds, as stated by the theorem. After some basic
unfolding of definitions, it is easy to show that it follows from the specification we
previously established in Lemma 5.

2.7 Dynamic Memory Allocation and Closures

In the previous sections, we have shown how to use capabilities for memory protection
and compartmentalization in the setting of relatively simple scenarios. In particular,
the examples that we have presented so far only relied on memory allocated statically
as part of the initial program region.

We now investigate how we can use and reason about more complicated program-
ming patterns. More precisely, we show how we can implement features found in
higher-level languages, such as dynamic memory allocation and function calls which
guarantee encapsulation of local variables. Additionally, we implement an assert
routine which we use to formally express properties about dynamically allocated
memory.

This section focuses on presenting the aforementioned higher-level building blocks
(§2.7.1–2.7.3), an updated adequacy theorem that incorporates the use of these compo-
nents (§2.7.4), then followed by a simple illustrative example (§2.7.5). In Section 2.8,
we then apply them to build a larger, more significant case study, demonstrating how
these building blocks can work at scale.

2.7.1 Dynamic memory allocation as a library routine

We show how dynamic memory allocation can be implemented as a library, for which:
1) we prove an Iris specification making it usable from verified code, and 2) we show
that it is safe to share with untrusted code, so that an adversary can also use the library
to allocate memory for its own uses.

Note that this task is made easier by the fact that we do not attempt to provide a
way of deallocating memory. As such, memory provided by the allocation routine
is never reclaimed. We leave deallocation for future work, as it likely requires a
significantly more complex runtime mechanism to ensure that no dangling capabilities
remain pointing to previously allocated memory regions [52, 163].

Concretely, we implement our allocator library as a simple bump-pointer allocator.
The library provides a malloc entry point, to be called with an integer argument n,
which works as follows:

1. the routine encapsulates a contiguous region of memory [b,e), as well as a
capability (RWX,b,e,a) where the interval [b,a) represents already allocated
memory, and [a,e) represents memory that can still be allocated;

2. the routine checks that the input size n is strictly positive;

3. if a+n is greater than e, the routine fails (there is not enough memory available);

CHAPTER 2. CERISE 68

4. otherwise, it then records that memory has been allocated by updating its
internal capability to (RWX,b,e,a+n), and returns to the caller the capability
(RWX,a,a+n,a).

Figure 2.11 outlines the code for our simple malloc implementation. The code
assumes that it is stored in memory in an interval [bm,bmid) and that bmid points to a
capability (RWX,bmid,em,a) giving access to: itself (so it can be updated), and the
memory pool (between address bmid +1 and em). For simplicity, we assume that the
non-allocated memory is already initialized to 0. These requirements are represented
by the following invariant 17 :

mallocInv(bm,em)≜

∃bmid,a, [bm,bmid) 7→ malloc_instrs∗
bmid 7→ (RWX,bmid,em,a)∗
[a,em) 7→ [0 · · ·0]∗
⌈bmid < a≤ em⌉

The core property of our safe malloc is that is does not hand out the same
addresses across multiple dynamic allocations. This can be expressed elegantly in
separation logic, by specifying that malloc hands out points-to resources for the
allocated memory. Indeed, points-to resources (a 7→ w) express full ownership over
the data at address a: possessing a resource a 7→ w guarantees that one is the only
owner of address a.

Consequently, remark that the invariant holds memory points-to for the region
corresponding to non-allocated memory (between a and em), but not for the memory
that has already been allocated (between bmid +1 and a): these resources have been
handed out to previous callers of the library.

We show below the specification for malloc 18 . First, note that because malloc
can fail if it runs out of memory or is given a wrong size, the specification documents
that the resulting execution state is either Running or Failed. In the case where it does
not fail, we can read that malloc hands out points-to resources for the allocated range
in its post-condition: this expresses the fact that no piece of code but the caller of
malloc can access the newly allocated memory.

mallocInv(bm,em)

⊢
{
(RX,bm,em,bm);

r0 Z⇒ w0 ∗ r1 Z⇒ n∗
r2,r3,r4 Z⇒−

}
⇝

s.

⌈s = Running⌉∗ pc Z⇒ updatePcPerm(w0)∗
∃ba,ea,⌈ba +n = ea⌉∗
r0 Z⇒ w0 ∗
r1 Z⇒ (RWX,ba,ea,ba)∗
∗a∈[ba,ea) a 7→ 0∗
r2, r3, r4 Z⇒ 0

∨⌈s = Failed⌉

The malloc routine can furthermore be encapsulated using a sentry capability,

which can be shown to be safe to share with an adversary (Lemma 6).

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#malloc_inv
https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_spec

CHAPTER 2. CERISE 69

;; r1: integer determining the number
;; of words to allocate
;;
;; malloc fails if size <= 0 or if it
;; does not have enough space left
;;
;; returns in r1 a capability to the
;; allocated memory
bm:
lt r3 0 r1 ;; check that size > 0
mov r2 pc ;; jmp after fail if
lea r2 4 ;; yes; continue and
jnz r2 r3 ;; fail if not
fail

xm:
mov r2 pc
lea r2 [bmid - xm]
;; r2 = (RWX, bm, em, bmid)
load r2 r2
;; r2 = (RWX, bmid, em, a)
geta r3 r2
lea r2 r1
;; r2 = (RWX, bmid, em, a+size)

geta r1 r2
mov r4 r2
subseg r4 r3 r1
sub r3 r3 r1
lea r4 r3
mov r3 r2
sub r1 0 r1
lea r3 r1
getb r1 r3
lea r3 r1
;; r3 = (RWX, bmid, em, bmid)
store r3 r2
;; bmid <- (RWX, bmid, em, a+size)
mov r1 r4
;; r1 = (RWX, a, a+size, a)
mov r2 0
mov r3 0
mov r4 0
jmp r0

bmid: (RWX, bmid, em, a)
;; ... already allocated memory ...
a:
;; ... free memory ...
em:

Figure 2.11: A simple malloc subroutine

Lemma 6 (malloc is safe 19). mallocInv(bm,em)−−∗ V (E,bm,em,bm)

The proof is comparable to the proof that V (E,code,end,code) on page 65. It
relies on the malloc specification and the fundamental theorem.

2.7.2 Runtime checks: an assert routine

The final end-to-end theorems presented so far in Section 2.6 rely on establishing
that a certain memory location satisfies a given invariant. This requires the relevant
location is statically allocated in memory and thus known in advance, thus making it
easy to tie it to an Iris invariant.

However, when using our malloc routine, we typically wish to enforce properties
about the contents of dynamically allocated memory locations, whose address is, by
definition, not known in advance. To address this issue, we implement an assert
routine, to be linked alongside programs relying on malloc. One can invoke assert
to dynamically test whether the contents of two registers are equal; if the test fails,
assert sets a flag “assert has failed” at a fixed location in memory.

The idea is then that, to assert that some property holds about a piece of dynami-
cally allocated memory, one can check dynamically whether it holds using assert.
Then, one can prove that each assert check succeeds (meaning that the property
indeed holds). Consequently, as a property of the whole execution, one gets that,

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_valid

CHAPTER 2. CERISE 70

at every step, the assert flag (initialized at 0) remains at 0 and is never set to 1 by
assert.

The private memory of the assert routine is described by the following invari-
ant 20 :

assertInv(ba,ea,aflag)≜

∃acap, [ba,acap) 7→ assert_instrs∗
acap 7→ (RW,aflag,aflag +1,aflag)∗⌈
acap +1 = aflag∧aflag +1 = ea

⌉
The address aflag denotes the address of the “assert flag”, which is initialized to 0

and set to 1 by the routine in case of failure. As we are interested in using assert
in programs where we can prove that the equality check succeeds, we establish the
following specification 21 , which asserts in a separate invariant that aflag remains at 0.
Registers r4 and r5 contain the two integers which are compared by the routine; we
thus require that they are equal.

assertInv(ba,ea,aflag) , aflag 7→ 0

⊢

(RX,ba,ea,ba);
r0 Z⇒ w0 ∗
r4 Z⇒ n∗
r5 Z⇒ n

⇝
{

updatePcPerm(w0);
r0 Z⇒ w0 ∗
r4, r5 Z⇒ 0

}

Note that, as opposed to malloc, the assert routine should only be shared with
verified code, which calls it according to the specification above. Were assert shared
with an unknown adversary, the adversary could simply call the routine with two
different integers, setting the flag to 1, thus invalidating any guarantees established by
verified code. Technically speaking, we cannot prove safety of the assert routine
from the specification above: if we try to prove V (E,ba,ea,ba), then we get that
registers r4 and r5 contain two unknown (valid) words, which could be two different
integers. In that case, we cannot use the specification above, as we would violate the
invariant specifying that aflag stays at 0.

2.7.3 A secure heap-based calling convention

We define a heap-based calling convention that uses malloc to dynamically allocate
activation records. An activation record is encapsulated in a closure that reinstates its
caller’s local state, and continues execution from its point of creation. Conceptually,
our heap-based calling convention can be seen as a continuation-passing style calling
convention (one passes control to the callee, giving it a continuation for returning to
the caller). This is similar to the calling convention that was used for instance in the
SML/NJ compiler to implement an extension of Standard ML with call/cc [11] (in the
setting of a traditional computer architecture).

In the setting of a capability machine, our calling convention is furthermore secure
in the sense that it enforces local state encapsulation. In other words, one can use it to
pass control to unknown adversarial code, while protecting local data of the caller,

https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_inv
https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_success_spec

CHAPTER 2. CERISE 71

thanks to the use of sentry capabilities to implement the continuation. Note that this
calling convention does not enforce well-bracketed control flow (another desirable
property); see [55, 131, 132] for stack-based calling conventions that do.

We provide a call macro implementing the calling convention, invoked as call
target locals params, where target is the name of the register containing a pointer
to the code to invoke, locals is the list of registers whose content corresponds to the
local state to reinstate upon return, and params is the list of registers containing the
parameters to the call (passed to the callee). Its implementation appears in Figure 2.12,
and a representation of the corresponding memory layout in Figure 2.13. (Because
call is defined as a macro, its code is used inline as part of a bigger program, here
stored between addresses code and end.)

Before passing control to the callee, the call macro does the following:

1. Invoke malloc to dynamically allocate a region of memory [l, lend) to store the
local state from the registers specified in locals.

2. Allocate a region of memory [act,actend) to store the activation record, com-
posed of: activation code, a capability to the region [l, lend), and a capability to
the instruction of the program following the call.

3. Create a sentry capability (E,act,actend,act) encapsulating the activation record;
this is capability for returning to the caller which is passed to the callee.

4. Clear all registers except those in params.

5. Jump to target.

When the callee passes back control to the caller by jumping to the continuation,
the code stored in the activation run first. It loads the capability pointing to local state,
and returns to the old program counter set up by the call macro. As the last step, the
macro will finally:

6. Restore the local state into the relevant registers from the activation record.

We show below the specification for the code of the macro up to step 5 (the jump
to the target address) 22 . Since the malloc routine is invoked by the macro, the
specification relies on the corresponding invariant for malloc. The parameters of
the macro are params, locals and target, respectively denoting the list of registers
containing the parameters to the call, the list of registers containing local state, and
the register containing the capability to jump to. The list of (encoded) instructions
act_instrs denote the concrete instructions making up the activation code (in
Figure 2.12 they are written as act_instr1...act_instr5 23), which are not shown
here for simplicity.

The post-condition of the specification describes the state immediately after the
jump, where: the activation record has been allocated and initialized in [act,actend);
register r0 contains an enter capability pointing to the activation record, and the local
data has been copied to a newly allocated region [l, lend).

https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#call_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#hw_1

CHAPTER 2. CERISE 72

; initially, PC = (RWX, code, end, a)
; target = register containing the address to jump to
; locals, params = lists of register names
; locals, params and target are parameters of the macro;
; they are in practice instantiated with concrete values
code:
...

a:
malloc (length locals) ; 1. allocate and store local state
store_locals r1 locals
mov r6 r1
malloc 7 ; 2. allocate region for activation record
mov r0 r1
store act_instr1 ; store the activation code
lea r0 1
...
store act_instr5
lea r0 1
store r0 r6 ; store the capability to locals
lea r0 1

x:
mov r1 pc ; prepare and store the continuation
lea r1 [cont - x]
store r0 r1
lea r0 -6 ; 3. create the return capability
restrict r0 E
rclear RegName\{PC,r0,r1} ∪ params ; 4. clear all registers except params
jmp target ; 5. jump to target

cont:
restore_locals r1 locals ; 6. reinstate local state
...

data:
(RO, table, end, table) ; environment table

table:
(E, bm, em, bm) ; entry point to the malloc subroutine
... ; possibly other routines

end:

Figure 2.12: Heap-based calling convention, with a the first instruction in the call
macro

l l_end

locals

RWX

act. code

act act_end

r0 : (E,act,act_end,act)

• •
code endcont

p

dynamically allocated

static code

Figure 2.13: Memory layout dynamically created by the calling convention

CHAPTER 2. CERISE 73

mallocInv(bm,em)

⊢

(p,code,end,a);

[a,cont) 7→ call_instrs∗
data 7→ (RO, table,end, table)∗
table 7→ (E,bm,em,bm)∗
params Z⇒ pws∗ locals Z⇒ lws∗ target Z⇒ wadv ∗
∗ (r,v)∈reg,

r/∈{pc,target}
r ̸∈params ∪ locals

r Z⇒ v

⇝

updatePcPerm(wadv);

∃act,actend, l, lend,reg′,
r0 Z⇒ (E,act,actend,act)∗
data 7→ (RO, table,end, table)∗
table 7→ (E,bm,em,bm)∗
params Z⇒ pws∗ target Z⇒ wadv ∗ [l, lend) 7→ lws∗
[act,actend) 7→ act_instrs

++[(RWX, l, lend, lend);
(p,code,end,cont)]∗

∗ (r,v)∈reg′,
r/∈{pc,target,r0}

r ̸∈params

r Z⇒ v

It is then up to the user of the call macro to establish that the capability in r0 is

safe to share with the (possibly unknown) callee. This can be done with the help of
the specification for the activation code 24 , shown next:

⊢

(RX,act,actend,act);

r1 Z⇒−∗ r2 Z⇒−∗
[act,actend) 7→ act_instrs++

[(RWX, l, lend, lend);
(p,code,end,cont)]

⇝(p,code,end,cont);

r1 Z⇒−∗ r2 Z⇒ (RWX, l, lend, l)∗
[act,actend) 7→ act_instrs++

[(RWX, l, lend, lend);
(p,code,end,cont)]

One can read from this specification that the activation code passes control back

to the caller (at address cont), while loading in register r2 a capability to the region
holding the local state, which can be then loaded back into the corresponding registers
by the restore_locals macro (step 6, which we do not detail here).

To sum up, the calling convention presented here allows one to make a “function
call” as one would do in a higher-level language, while protecting local data of the
caller. The code invoked this way can be completely untrusted: in particular, it does
not need to implement the calling convention itself for the local state encapsulation
guarantees to hold. (But of course it might never “return” and pass control back to the
caller.)

In Section 2.7.5, we demonstrate the use of this heap-based calling convention on
a simple example, showing the interaction of its local state encapsulation guarantees
with read-only capabilities.

https://logsem.github.io/cerise/journal/cap_machine.examples.callback.html#scall_epilogue_spec

CHAPTER 2. CERISE 74

2.7.4 Adequacy in the Presence of Dynamically Allocated Memory

We can now provide an updated version of the adequacy theorem (Theorem 1) which
directly incorporates the malloc and assert library routines. Instead of establishing
that a memory invariant is always preserved at each step, the new adequacy theorem
establishes that the flag held by assert is never modified.

Theorem 5 (Updated adequacy 25). Given memory fragments prog : [b,e)→Word,
malloc : [bm,em)→Word, assert : [ba,ea)→Word, and for any memory fragment
adv : [badv,eadv)→Word, assuming that:

1. the initial state of memory mem satisfies:

prog⊎malloc⊎assert⊎adv⊆ mem

2. [bm,em) contains the malloc routine;

3. [ba,ea) contains the assert routine and its flag at address aflag;

4. the assertion flag is initially set to 0:

mem(aflag) = 0

5. prog contains a table linking to malloc and assert:

∃data, table,mem(data) = (RO, table, table+2, table)

mem(table) = (E,bm,em,bm)

mem(table+1) = (E,ba,ea,ba)

6. the adversary region contains no capabilities except for a table linking to
malloc:

∃dataadv, tableadv, ∀a ∈ dom(adv)\{dataadv, tableadv},
adv(a) ∈ Z
adv(dataadv) = (RO, tableadv, tableadv +1, tableadv)

adv(tableadv) = (E,bm,em,bm)

7. the initial state of registers reg satisfies:

reg(pc) = (RWX,b,e,b), reg(r0) = (RWX,badv,eadv,badv),
reg(r) ∈ Z otherwise

https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy_ocpl.html#ocpl.ocpl_template_adequacy

CHAPTER 2. CERISE 75

8. the proof in the program logic that the initial configuration is safe given the
invariants:

∀reg,

mallocInv(bm,em) , assertInv(ba,ea,aflag) , aflag 7→ 0

⊢

(RWX,b,e,b);

r0 Z⇒ (RWX,badv,eadv,badv)∗

∗(r,v)∈reg,
r/∈{pc,r0}

r Z⇒ z∗⌈z ∈ Z⌉∗

∗ (a,w)∈prog,
a/∈{data,table,table+1}

a 7→ w∗

data 7→ (RO, table, table+2, table)∗
table 7→ (E,bm,em,bm)∗
table+1 7→ (E,ba,ea,ba)∗
∗ (a,z)∈adv

a/∈{dataadv,tableadv}
a 7→ z∗⌈z ∈ Z⌉∗

dataadv 7→ (RO, tableadv, tableadv +1,
tableadv)∗

tableadv 7→ (E,bm,em,bm)

⇝ •

Then, for any reg′, mem′, if (reg,mem)−→∗ (reg′,mem′), then mem′(aflag) = 0.

Theorem 5 assumes that the malloc and assert routines are loaded in memory
disjoint from both prog and adv. Furthermore, the assert routine must have its
flag initialized to 0. The verified program prog is given access to both the malloc
and assert routines. The adversary program adv is given access to malloc. We
assume that prog contains the code and a table that has been filled by a linker with
capabilities giving access to the two routines. Likewise, we assume that adv contains
its program (arbitrary integers) and a table filled by the linker with the capability to
the malloc routine. Similarly to the first adequacy theorem, the theorem states that
if the capability machine starts with the capability pointing to prog in the program
counter, and if it has been proved in the program logic that the machine can run until
completion, then the assertion flag is never modified.

In what follows, Lemma 5 will thus allow us to prove end-to-end theorems saying
that the assertion flag will still be unset after a full execution. This corresponds to
the end-to-end theorems of Swasey et al. [138] which are also phrased in terms of
an assert primitive (albeit in a high-level language) that untrusted code does not get
access to. Of course, such results remain a bit artificial: ultimately, in real systems, we
are not directly interested in the contents of assertion flags in the system’s memory, but
rather in the system’s interaction with the outside world: network communication, the
content of displays etc. Our approach can be extended to reason about such properties,
but we don’t go into details here. Instead, we refer to Strydonck et al. [135], where we
have done exactly this extension, by adding MMIO and external event traces to our
operational semantics and using Iris invariants and ghost state to reason about them.
This results in end-to-end theorems that prove security properties about the external

CHAPTER 2. CERISE 76

; initially, PC = (RWX, code, end, code)
; r1 = (unknown) pointer to adversary function
code:
malloc 1 ; r1 = (RWX, b, b+1, b) where b is fresh
mov r3 r1 ; r3 = (RWX, b, b+1, b)
mov r4 r1 ; r4 = (RWX, b, b+1, b)
store r3 1 ; b <- 1
restrict r4 RO ; r4 = (RO, b, b+1, b)
call r1 [r3] [r4] ; call macro that jumps to r1, keeps r3

; as local state and passes r4 as parameter
load r1 r3 ; r1 = 1, as long as b was not changed

; during call
mov r2 1
assert r1 r2 ; assert (r1 = 1)
halt

data:
(RO, table, end, table) ; environment table

table:
(E, bm, em, bm) ; entry point to the malloc subroutine
(E, ba, ea, ba) ; entry point to the assert subroutine

end:

Figure 2.14: Program passing a read-only capability to unknown callee

event traces of a system, which we regard as a more realistic end goal of a verification
effort.

2.7.5 Application: read-only sharing of dynamically allocated memory

We now present an example program sharing a read-only capability with adversary
code, showcasing the combined use of the malloc (Section 2.7.1) and assert (Sec-
tion 2.7.2) routines, the secure calling convention (Section 2.7.3), and exercising our
updated adequacy theorem (Section 2.7.4).

Figure 2.14 shows the implementation of our program of interest. The program
dynamically allocates a region of size 1, into which it stores the integer 1. Next, it
creates a copy of the newly created capability, which is then restricted to read-only
(RO). This restricted capability is shared with an unknown callee, while the original
copy is kept as local state. Upon return, an assert statement checks that the region
indeed still contains 1. We then wish to prove that the final assertion always succeeds.

Notice that in this example, control is passed to untrusted code, corresponding
to the first scenario in Figure 2.2a. However, we also allow the callee to return, i.e.
jump to a callback. This is achieved using our calling convention to create a secure
two-way boundary between known code and the unknown callee.

In order to prove that the assert statement succeeds, we rely on two facts. First,
the heap-based calling convention guarantees the encapsulation of (RWX,b,b+1,b).

CHAPTER 2. CERISE 77

Second, sharing (RO,b,b+1,b) with unknown code does not threaten the integrity of
b, since RO capabilities cannot be used to write to memory. These two facts are key
when proving the following specification:

Lemma 7 (Full execution specification 26).

mallocInv(bm,em) , assertInv(ba,ea,aflag) , aflag 7→ 0

⊢

(RWX,data,end,code);

r1 Z⇒ wadv ∗V (wadv)∗
∗(r,v)∈reg,r/∈{pc,r1} r Z⇒ w∗
[code,end) 7→ code_instrs∗
data 7→ (RO, table, table+2, table)∗

[table, table+2) 7→ [(E,bm,em,bm);
(E,ba,ea,ba)]

⇝ •

Proof. We begin by applying program logic rules until we make it to the call to
unknown code. At that point, a (fresh) region has been dynamically allocated and
initialized to 1, and thus we have the following Separation Logic resources:

r2 Z⇒ (RWX,b,b+1,b)∗b 7→ 1

At the call site, the calling convention creates an activation record, and sets up a sentry
capability as the return pointer in r0. (The “...” on the second line below stands for the
address of the continuation after the call.)

r0 Z⇒ (E,act,actend,act)∗ (2.11)

[act,actend) 7→ act_instrs++[(RWX, l, l +1, l);(RWX,code,end, ...)]∗
l 7→ (RWX,b,b+1,b)∗
r2 Z⇒ 0∗
r3 Z⇒ (RO,b,b+1,b) (2.12)

Note in particular how the RWX capability pointing to b (part of the “local state”) is
only reachable from the capability (pointing to l) stored in the activation record, while
the RO copy is available in register r3.

The call macro then passes control to the adversary by jumping to wadv. To
reason about this jump, we apply Corollary 2 (assuming wadv is safe). This requires
us to show that all parameters in the current register state are valid. In particular, we
must show that the sentry capability set up by the calling convention (2.11) is safe to
execute, and that the read-only capability (2.12) is safe to share.

The latter is done by allocating an appropriate invariant, which is allowed to be
stronger than the value relation itself, since the capability in question is read-only. To
this end, we will allocate an invariant that remembers the current integer pointed to by
b, namely 1.

∃w,b 7→ w∗w = 1

That same invariant is then used to prove that (2.11) is safe to execute, in particular to
show that the assert statement succeeds, and hence does not change the assert flag.

https://logsem.github.io/cerise/journal/cap_machine.examples.lse.html#roe_spec

CHAPTER 2. CERISE 78

From this functional specification, we can instantiate our updated adequacy theo-
rem (Theorem 5) to then derive the following end-to-end theorem about our program.

Theorem 6 (End-to-end theorem: the read-only permission guarantees integrity 27).
Starting from an initial state of the machine (reg,mem) assuming that:

• prog⊎adv⊎malloc⊎assert ⊆ mem, where:
adv : [badv,eadv)→Word, prog : [code,end)→Word
malloc : [bm,em)→Word and assert : [ba,ea)→Word;

• the contents of prog correspond to the encoded instructions and program data
(i.e. table with capabilities to the malloc and assert subroutines);

• the adversary memory contains no capabilities except a table with a capability
to the malloc subroutine;

• malloc contains the implementation of the malloc subroutine;

• assert contains the implementation of the assert subroutine, with its flag at
address aflag, initialized to 0;

• the initial state of registers satisfies:
reg(pc) = (RX,code,end,code),
reg(r1) = (RWX,badv,eadv,badv).

Then, for any reg′,mem′, if (reg,mem)−→∗ (reg′,mem′), then mem′(aflag) = 0.

Proof. We apply the updated adequacy theorem (Theorem 5), using the specification
proved in Lemma 7. All that remains is to prove the validity of the adversary capability:
V (RWX,badv,eadv,badv). This is done in two steps. First, the adversary linking table is
proved valid by applying validity of the malloc subroutine (Lemma 6). Next, the rest
of the adversary region is proved valid through the assumption that it does not contain
any other capabilities. The full proof can be found in the Coq mechanisation.

2.8 Case study: a Library Implementing Dynamic Sealing
and a Client

We have presented so far a variety of smaller examples enforcing interesting encapsula-
tion properties while interacting with adversarial code. In this section, we demonstrate
that our approach scales up to the verification of a larger case study, involving not
only the building blocks of Section 2.7, but using them to build and modularly verify
a number of libraries built on top of each other.

We take inspiration from the literature on object capability patterns (OCPs) from
high-level languages, a technique that enables programmers to protect the private state
of their objects from corruption by untrusted code. More precisely, we consider the
dynamic sealing OCP as presented by [138]. Dynamic sealing enforces a form of data

https://logsem.github.io/cerise/journal/cap_machine.examples.lse_adequacy.html#roe_adequacy

CHAPTER 2. CERISE 79

abstraction in the absence of static types. It can be implemented as a library providing
pairs of seal/unseal functions, allowing their clients to “seal” private data into opaque
objects which can be safely shared with untrusted code, and later unsealed in order to
get back the original data.

In the context of a high-level language, [138] present a formally verified implemen-
tation of dynamic sealing, equipped with a specification that captures the abstraction
guarantees it provides. The authors then use this dynamic sealing library to build and
verify a library of abstract integer intervals, where the integrity of an interval value
(representing a range [i, j) with i≤ j) is protected using dynamic sealing. Finally, the
authors use their verified integer library to establish robust safety of a simple client
program checking integrity of intervals, establishing that an untrusted context cannot
violate the internal invariants of the program and its underlying libraries.

We implement and verify low-level variants of the dynamic sealing OCP, interval
library, and their robustly safe client. This represents a non-trivial amount of code:
our implementation of those three components adds up to 632 machine instructions.
Nevertheless, despite the fact that those libraries are implemented in low-level assem-
bly code, we are able to give them specifications at a level of abstraction similar to
their high-level counterparts.

For ease of reading, we will keep the explanations fairly high-level. We will first
show high-level pseudo-code for the implementation of the interval library and its
client, and informally discuss what kind of properties should be enforced. Then, we
will present the key ideas for implementing dynamic sealing on a capability machine,
and then for reasoning about it, in particular how to instantiate its specification to be
able to verify the interval library.

2.8.1 Interval Library and Client

The interval library implements an abstract data type representing intervals. An
interval has a lower and upper bound, which can be extracted via two functions; imin
and imax. An interval is created via a function makeint that takes as input two
integers, and chooses the smallest input as the lower bound, and the largest input as
the upper bound. Crucially, the internal representation of an interval must stay hidden
so as to guarantee its integrity.

We thus use dynamic sealing ([136]) to dynamically enforce data abstraction for
the intervals representation. We detail our implementation of seals in Section 2.8.2.
For now, it suffices to know that a seal is a pair of functions, seal and unseal, where
the former hides the internal representation of some value, such that only the latter
can expose it.

An interval can be represented as an ordered pair of integers. On the capability
machine, we implement such a pair as a dynamically allocated region of size two,
storing the lower and upper bound of the interval. Then, an interval itself consists of
a capability with read/write authority over the corresponding region of size two. In
Figure 2.15, we depict the high-level implementation of our interval library. Note that
the library implements closures around a fresh seal-unseal pair, used to seal the

CHAPTER 2. CERISE 80

interval 28 = λ_, let (seal,unseal) = makeseal() in
let makeint= λ z1 z2, let x = malloc(2) in

x←{min(z1,z2);max(z1,z2)};
seal(x)

in
let imin= λ i, unseal(i)[0] in
let imax= λ i, unseal(i)[1] in
(makeint,imin,imax)

client 29 = let (makeint,imin,imax) = interval() in
let checkint= λ i,assert(imin(i)≤ imax(i)) in
(checkint,makeint,imin,imax)

Figure 2.15: High-level pseudo-code for the implementation of the interval library
and its client.

aforementioned internal representation of intervals. The low-level implementation that
we formally reason about can be thought of as the result of compiling the high-level
implementation shown in Figure 2.15.

The same figure also depicts a client of the interval library. The client exposes four
entry points to the environment: in addition to entries to makeint, imin and imax
from a fresh instance of the interval library, the client also exposes an encapsulated
checkint function that, given an interval, dynamically asserts that the expected
representation invariant holds for the interval, that is, that the minimum of the interval
is indeed smaller than or equal to the maximum of the interval.

When formally verifying the interval library and its client, we will need an
invariant to keep track of each interval created by makeint. The invariant should
capture the properties enforced by the implementation of the interval library. We can
already list the internal properties of an interval intuitively. First and foremost, the
lower bound of an interval must be less than or equal to its upper bound. A perhaps
more subtle property is that intervals are immutable. Thus, we will need to define
an invariant that represents each interval as a dynamically allocated region of size
two, which stores the lower and upper bound, and is immutable. The seal-unseal
pair encapsulated by the library will be used only to seal intervals that adhere to
this representation (satisfy this invariant). Keeping this intuition in mind, let us now
explore the technical implementation of seals.

2.8.2 Dynamic Sealing

Dynamic sealing makes it possible to support data abstraction dynamically. The
function makeseal creates a pair of functions, seal and unseal, where seal is used
to seal a word w into a fresh sealed word σ . We will also refer to σ as the key to w.

https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html
https://logsem.github.io/cerise/journal/cap_machine.examples.interval_client.html

CHAPTER 2. CERISE 81

SEAL SPEC 30(−,bs,es,−);
[bs,es) 7→ seal∗
sealInv ds Φ∗
r1 Z⇒ v∗Φ(v)∗ · · ·

⇝
s k.

⌈s = Running⌉∗
isSealedWord k v∗
r1 Z⇒ k ∗ · · ·
∨⌈s = Failed⌉

UNSEAL SPEC 31(−,bu,eu,−);

[bu,eu) 7→ unseal∗
sealInv ds Φ∗
r1 Z⇒ k ∗ · · ·

⇝
s v.

⌈s = Running⌉∗
isSealedWord k v∗
r1 Z⇒ v∗Φ(v)∗ · · ·
∨⌈s = Failed⌉

Figure 2.16: Specifications of seal and unseal

The only way to extract the word w from σ is with unseal. The key point is that this
seal-unseal pair supports data abstraction by sealing away or hiding the internal
representation of some value, only known and available to the owner of the associated
unseal function.

Although capability machines such as CHERI include seals as a language primi-
tive, we show here how we can implement seals in software, as a low-level library. The
library is implemented via a data structure that stores each word sealed through seal,
associating each sealed word with a key. A key in itself does not reveal any details
about the word it is hiding. However, it can provide access to that word, granted
one has the proper authority to unseal it. Only a valid key should grant access to a
sealed word. Keys, and the data structure that uses them, should intuitively satisfy two
properties; (1) the unforgeable nature of keys and (2) the unique association between
a key and the word it seals.

The seal and unseal subroutines respectively perform insertions and lookups
in this underlying data structure. seal takes a word as input, generates a fresh key,
and adds the key value association to the data structure. unseal takes a key as input,
checks that the key is associated to a value in the data structure, in which case it
returns the value.

2.8.2.1 Reasoning about dynamic sealing

A shared seal-unseal pair can be used to seal any word. In practice, one typically
encapsulates a seal-unseal pair within a library, performing additional checks and
thus ensuring that words that are sealed always satisfy a specific property. Then,
whenever one successfully unseals a given key, one gets that the corresponding word
satisfies the chosen property. For instance, the interval library enforces that each
sealed word is a region of size 2, storing the ordered bounds of an interval.

When reasoning about code invoking the dynamic sealing library, one will need

https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#seal_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#unseal_spec

CHAPTER 2. CERISE 82

to pick, for each seal-unseal pair, an representation invariant Φ : Word→ iProp
describing the values to be sealed/unsealed by the pair7. Then, each seal-unseal
pair maintains an Iris invariant sealInv describing the state of the pair itself, namely the
data structure storing the key-values for all sealed entries. Additionally, this invariant
stores the information that each sealed value satisfies Φ.

sealInv ds Φ 32 ≜
∃wvals,dataStructure ds wvals
∗∗(−,w)∈wvals Φ(w)

We require that Φ is persistent, since the representation invariant of a sealed word
should always hold once sealed. The dataStructure predicate describes the state of the
data structure internal to the seal library (see Section 2.8.2.2 for a formal definition). It
asserts that ds can be used to access a data structure storing the key value pairs denoted
by wvals (a sequence of pairs in Addr×Word). In other words, wvals is the complete
list of all words that have been sealed so far, each paired with their associated key.

A sealed word is sealed forever. It is thus possible to persistently remember that a
particular word is an element of wvals. The predicate isSealedWord k v states that the
key k is uniquely associated with the sealed word v. We present the formal definition
of isSealedWord in Section 2.8.2.2.

The functional specifications of the seal and unseal subroutines depend on an
instance of the seal invariant sealInv, for a specific user-provided predicate Φ. Then,
seal can only be applied to words for which the representation predicate Φ holds.
unseal can fail if a given key is not valid, or if it is not associated with any sealed
word, however if it succeeds, it will return a word for which Φ holds. The specification
of makeseal allocates a fresh sealInv instance, for any Φ chosen by the client of
the library. Figure 2.16 shows specifications for seal and unseal (where we omits
low-level administrative details).

2.8.2.2 Implementing a low level seal library

We now present the data structure used to implement the low-level seal library. We
implement it as a linked associative list with a twist, next refered to as a linked list
dictionary. The trick is to take advantage of the unforgeable nature of capabilities, and
use the capability to (a subrange of) a list node as a key to that node; the corresponding
value being then stored in the node.

Figure 2.17 shows the in-memory representation of a linked list dictionary storing
three key-value pairs. Each node is implemented as a region of size three, where
the bottom address acts as the key address. To avoid access to sealed values, it is
important that a key does not provide authority over the other parts of a node (the
value and the next pointer). For instance, the value v1 is uniquely associated to the
capability (RWX,b1,b1 +1,−).

The linked list dictionary library contains two subroutines, findB 33 and
append 34 . findB expects as input an integer b, searches the linked list for a node

7An analogous representation invariant is used in the [138]

https://logsem.github.io/cerise/journal/cap_machine.examples.keylist.html#sealLL
https://logsem.github.io/cerise/journal/cap_machine.examples.keylist.html#findb_instr
https://logsem.github.io/cerise/journal/cap_machine.examples.keylist.html#appendb_instr

CHAPTER 2. CERISE 83

0

b1 b1 +3 b2 b2 +3 b3 b3 +3
• v1 • v2 • v3 0

Figure 2.17: In-memory representation of an empty dictionary linked list and a
dictionary linked list with three values v1, v2 and v3.

of the form (RWX,b,b+3,−) and returns the value that the associated node stores.
It fails if no such node exists. append expects a word as input, invokes malloc to
dynamically allocate a new node of size three, stores the input word in the second
position of that node, and then stores that node as the new tail of the linked list. Finally
a key can then be derived from the newly created node; we now explain in more detail
how that is done.

A fresh instance of a seal-unseal pair is created by calling the makeseal
subroutine, which returns a pair of closures encapsulating a new empty linked list
dictionary. Sealing a word w adds it to the dictionary, and returns a restricted capability
representing the key to the linked list dictionary entry. Say for instance that the input
word w is appended to the list in a fresh node (RWX,b,b+3,b). The seal subroutine
will then return the key (RWX,b,b+1,−) (the address pointed to does not matter, and
is here omitted for clarity).

Recall that in the enclosed linked list dictionary, w will be stored at address
b+1, for which the returned sealed value, or key, does not have authority. This
sealed value is unforgeable. The only way to create it would be to derive it from
a capability (RWX,b′,e′,_) where [b,b+ 1) ⊆ [b′,e′). However, this is impossible
since the appended node is freshly allocated using a safe malloc subroutine, which is
guaranteed to hand out fresh regions upon invocation. Only seal has access to such a
capability, and thus sealed values cannot be forged.

In turn, the unseal subroutine expects a RWX capability of range 1 as input. It
reads its lower bound, searches the enclosed linked list for a node with matching
lower bound, and returns the associated word. Let us consider a continuation of the
previous example. Say that unseal receives (RWX,b,b+ 1,−) as input. It begins
by authenticating the key by dynamically verifying its permission to be RWX, and
its size to be 1. Upon validating its permission and range, it then runs findB on the
enclosed linked list dictionary with the integer b, and returns the word stored within
the node (RWX,b,b+ 3,−) at address b+ 1, namely the previously sealed word w.
The authentication guarantees that a key has the same unforgeable authority as when
it was created.

In summary, the seal and unseal subroutines are implemented as follows:

• seal:

CHAPTER 2. CERISE 84

1. append the input to the enclosed linked list dictionary

2. restrict the range of the fresh node capability to bottom address of node

3. return resulting restricted capability

• unseal:

1. check that permission of input is RWX

2. check that the range of input is 1

3. get the lower bound of input

4. find the node in the linked list dictionary with same lower bound

5. return the stored word at that node (fail if no such node exists)

We now have enough ingredients to revisit the predicates used in the previous
section to define the seal invariant. Recall that the dataStructure predicate represents
the state of the data structure internal to the seal library (now defined to be a linked
list dictionary), and that the isSealedWord predicate describes a persistently known
association between a sealed word and its key.

dataStructure ds wvals ≜ ∃hd, ds 7→ hd
∗ isList hd wvals
∗ Exact wvals

isSealedWord k v ≜ ∃wvals, Pref wvals∗ ⌈(k,v) ∈ wvals⌉ 8

∗V (RWX,k,k+1,−)

The head of the linked list dictionary is stored in location ds. isList corresponds
to a standard inductive separation logic predicate for linked lists. Since the list
monotonically grows, it is useful to persistently remember any prefix of the linked
list dictionary. Exact wvals (the authoritative view of the list state) roughly states that
wvals is the full state of the data structure. Pref wvals (the local fragment view) states
that wvals is a prefix of the data structure. isSealedWord k v, a persistent predicate,
states that the word v has been sealed with a key; a capability with with lower bound
k. This key is safe to share, hence V (RWX,k,k+1,−) holds.

In the next section, we describe how we use the reasoning principles about seal-
unseal to verify our interval library.

2.8.3 Verifying the Interval Library and its Client

The first key step is to formally define the representation invariant for an interval.
Recall the intuitive description given in Section 2.8.1: an interval is a capability with
authority over a region of size 2, storing the lower and upper bounds of an interval,
and which is immutable.

8In the Coq mechanization, wvals associates the word w to k+1 rather than k, for technical reasons.
This small discrepancy has otherwise no impact on the rest of the proof.

CHAPTER 2. CERISE 85

A first thought might be that one can define the representation invariant using two
points-to predicates for the region. However, this does not capture the immutability of
intervals, nor is it persistent. Instead, we use persistent points-to predicates ([150]). A
persistent points-to predicate a ↪→ w asserts that address a stores the word w. It can
be used to read from address a, but not write to it, and as such, is a persistent resource.
This is exactly what we need for our immutable invariants. We formally define the
representation invariant isInterval as follows:

isIntervalInt z1 z2 w 35 ≜ ∃a,⌈w = (RWX,a,a+2,a)⌉∗a ↪→ z1∗
(a+1) ↪→ z2 ∗⌈z1 ≤ z2⌉

isInterval 36 ≜ λw,∃z1 z2, isIntervalInt z1 z2 w

(Note, in particular, that the invariant also captures the property that the lower bound
is less than or equal to the upper bound.) Using properties of persistent points-to
predicates, we can prove the following lemma:

Lemma 8 (37). isIntervalInt z1 z2 w→ isIntervalInt z3 z4 w→ ⌈z1 = z3∧ z2 = z4⌉ .

Because isInterval is persistent, we can use it as the representation predicate for a
seal-unseal pair, which will thus operate over the following invariant:

sealInv ll isInterval

This seal invariant is allocated by the specification for makeseal, which is invoked
during the creation of an interval library closure.

When sealing a new interval using makeint, we must establish isInterval for the
newly created interval. This requires us to transform the regular points-to predicates
handed out by the malloc specification into persistent points-to predicates, and assert
that indeed min(z1,z2)≤ max(z1,z2).

Specifications for imin and imax return the respective lower and upper bound
of a sealed interval. The seal invariant guarantees that the sealed word is an interval
according to the representation invariant isInterval. In other words, if imin or imax
succeeds for some word w, we know that w is the key to some associated capability
pointing to the bounds of an interval [l,r]; specifically that isIntervalInt l r w holds.

During the verification of checkint, the specification for imin gives us some
value l and predicate isIntervalInt l r w. Similarly, the specification for imax gives
us some value r′ and predicate isIntervalInt l′ r′ w. Notice that the bounds may
be different, but the sealed word w is the same in each instance. We can thus apply
Lemma 8 on the two given instances of isIntervalInt, and use the definition of isInterval
to conclude that the given assert statement succeeds, namely that l ≤ r.

Finally, all that remains is to apply adequacy and prove the following final end-to-
end theorem:

Theorem 7 (End-to-end theorem: the interval client does not trigger an assertion
failure 38). Starting from an initial state of the machine (reg,mem) in which regions
reserved for the interval library, the seal library, malloc, the assert flag, the client
and the adversary are all disjoint, and initialized as expected, we have that, for any
reg′, mem′, if (reg,mem)−→∗ (reg′,mem′) then mem′(aflag) = 0.

https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html#isInterval_int
https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html#isInterval
https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html#intervals_agree
https://logsem.github.io/cerise/journal/cap_machine.examples.interval_client_adequacy.html#template_adequacy

CHAPTER 2. CERISE 86

2.9 Case study: Data Abstraction

Object capability patterns enable programmers to protect their private state against
corruption from untrusted code. Thus far, we have defined a methodology to reason
about the integrity properties granted by object capability patterns. However, capabili-
ties can be used to go beyond integrity guarantees. For instance, sentry (E) capabilities
act as closures around some code and data, hiding the internal representation of a
component, and thus enable applications of data abstraction. Seals, both the CHERI
language primitive, and the software implementation presented in Section 2.8, can
similarly be used to enforce data abstraction [92, 118, 136]. Furthermore, seals can be
interpreted as cryptographic primitives that enforce data confidentiality [100]. Data
abstraction is the process of hiding the internal implementation of an object from the
context, whereas data confidentiality is the process of hiding data from the context,
guaranteeing the exclusive access of some secret value.

While there is a subtle distinction between the two properties, both data abstraction
and data confidentiality are binary properties that can be expressed through contextual
equivalence. As such, if we want to reason about either, we need binary reasoning
principles to capture relational properties between two capability machine programs.
In this section, we present a binary model capturing contextual refinement between
programs, and use it in a simple illustrative example of data abstraction. The model is
adapted from a binary model to reason about confidentiality properties of a capability
machine with special capabilities for a call-stack, which we will present in Chapter 4.

The main goal is to define contextual equivalence for capability machine programs.
Such a definition involves a notion of capability machine components, linking and
contexts; however, for simplicity, we here omit any detailed description, and assume
that each of these notions are in place. comp denotes a compartment, C denotes a
context, and C[comp] denotes the closed program resulting from linking C and comp
(we refer to Chapter 4 for formal definitions).

Contextual equivalence can then be defined as follows:

comp1 ≈ctx comp2 ≜ ∀C,C[comp1]→∗ Halted ⇐⇒ C[comp2]→∗ Halted

While comp1 and comp2 are known components, the universally quantified context
C is arbitrary, and as a result, showing contextual equivalence involves reasoning
about arbitrary code. More precisely, we will need to relate the behavior of an open
capability machine program to itself. We do this via a general definition of logical
refinement.

First, we apply the Cerise program logic to define a binary logical relation that
formalizes program refinement. We use existing techniques for defining binary logical
relations in Iris [54, 83, 85], but apply them here to a low-level capability machine
language. Next, we prove a binary universal contract that holds for arbitrary code,
namely that all programs logically refine themselves. Finally, we apply the universal
contract for proving the contextual equivalence of a pair of counters, and discuss
future applications of the model.

CHAPTER 2. CERISE 87

ValidPC(ppc,bpc,epc,apc)
ValidSubseg(p,b,e,z1,z2) decode(n) = subseg r z1 z2 N .spec↑ ⊆ ε

specInv ∗ ↪→s Running ∗ pc 7→s (ppc,bpc,epc,apc) ∗ apc 7→s n ∗ r Z⇒s (p,b,e,a)

|⇛ε ↪→s Running ∗ pc 7→s (ppc,bpc,epc,apc +1) ∗ apc 7→s n ∗ r Z⇒s (p,z1,z2,a)

ValidPC(ppc,bpc,epc,apc)
ValidLoad(p,b,e,a) decode(n) = load dst src N .spec↑ ⊆ ε

specInv ∗ ↪→s Running ∗ pc 7→s (ppc,bpc,epc,apc) ∗ apc 7→s n ∗
dst Z⇒s − ∗ src Z⇒s (p,b,e,a) ∗ a 7→s w

|⇛ε ↪→s Running ∗ pc 7→s (ppc,bpc,epc,apc +1) ∗ apc 7→s n ∗
dst Z⇒s w ∗ src Z⇒s (p,b,e,a) ∗ a 7→s w

Figure 2.18: Specification program rules

Our goal is to define a binary logical relation that captures logical refinement. We
will say that a program pointed to by pc1 refines a program pointed to by pc2, if pc2
produces the same effects as pc1. We denote logical refinement as follows:

pc1 ≤log pc2.

Where pc1 refers to the implementation, and pc2 to the specification (throughout the
section, we will use this typesetting when referring to the specification program). As
mentioned above, we define the binary logical relation on top of the cerise program
logic. However, the program logic describes the behavior of a single capability
machine program, while we need to compare the behavior of two programs. The
solution is to apply an established technique, in which ghost state is used to describe
the behavior of the specification program.

2.9.1 Ghost State for the Specification Program

The specification program state is tracked via three new resources; r Z⇒s w describes
the state of register r, a 7→s w describes the state of address a, and ↪→s µ describes the
current specification execution state. The full (or authoritative) specification state is
kept in an invariant, henceforth referred to as specInv. Similar to weakest precondition
steps, the specification state is then updated via proof rules for each instruction.

For each weakest precondition rule (recall the fragment presented in Figure 2.9),
there is an equivalent specification rule to carry out the corresponding step in the
specification program. Figure 2.18 39 shows two such rules, one for subseg and one
for load.

The rules mostly resemble their program logic counterpart, but with three notable
differences. First, they require specInv as an additional assumption. Second, since
there are no weakest preconditions, the execution state is instead represented by a
specification execution state fragment. Third, the result is guarded by a so-called

https://logsem.github.io/cerise/journal/cap_machine.rules_binary.html

CHAPTER 2. CERISE 88

γspec ∈ GName
µ ∈ exprR ≜ EX(ExecState)

reg ∈ regR ≜ RegName ↪→ FRAC×AG(Word)
mem ∈ memR ≜ Addr ↪→ FRAC×AG(Word)

s ∈ confR ≜ AUTH(OPTION(exprR)× regR×memR)

↪→s µ ≜ ◦(SOME(EX(µ)), /0, /0)
γspec

r Z⇒s w ≜ ◦(NONE,{[r := w]}, /0)
γspec

a 7→s w ≜ ◦(NONE, /0,{[a := w]}) γspec

Figure 2.19: Ghost state describing the state of the specification program

specInv≜ ∃s,ϕ,

∃s′,reg,mem, •(SOME(EX(s′))
γspec

, toSpecMap(reg), toSpecMap(mem))
∗ (s,ϕ)→∗ (s′,(reg,mem))

N .spec

Where toSpecMap maps every element a in the range of a partial map to (1,AG(a))

Figure 2.20: Specification invariant

frame preserving update modality |⇛ε , necessary for updating the ghost state in
the specification invariant. Each rule is proved by opening the invariant, asserting
properties over the specification state, carrying out the relevant changes, and proving
that these correspond to a step in the operational semantics, upon which the invariant
can be closed again. These rules are then used to carry out the steps taken by the
specification program.

The following paragraph details how the ghost state responsible for tracking the
specification program is formally defined, and assumes the reader is familiar with Iris
ghost state constructions. It can safely be skipped.

Formal Ghost State Definitions The ghost state needs to track the state of the
specification execution state (Running, Halted or Failed), the state of its registers,
and the state of its memory, and should enable local reasoning about state fragments.
Figure 2.19 40 defines the resource algebra describing each of these; the execution
state is exclusive, while the register and memory state match the resource algebras
used in the state interpretation of the program logic.

The full configuration is tracked via the authoritative resource algebra, giving rise
to the aforementioned fragments: ↪→s µ asserts the current specification execution
state to be µ , while r Z⇒s w and a 7→s w are the specification register and memory
points to predicates.

In the cerise program logic, the register and memory states are tracked by the
state interpretation, whose authoritative view is part of the weakest precondition

https://logsem.github.io/cerise/journal/cap_machine.rules_binary.rules_binary_base.html

CHAPTER 2. CERISE 89

definition. For the specification program, we instead keep the authoritative view of
the configuration state in an Iris invariant, defined in Figure 2.20 41 . The invariant
additionally asserts, that the specification configuration is the result of applying the
capability machine operational semantics, starting from some fixed configuration
(s,ϕ). Most often, this starting configuration will be existentially quantified, but note
that it is a free variable (and thus fixed) within the invariant itself.

2.9.2 A Binary Logical Relation for Contextual Refinement

Our formal definition captures a refinement relation between two capability machine
programs. Intuitively, the refined program must observably behave “the same” as the
implemented program. In other words, starting from refined register states, the two
machines must exhibit the same observable effects on memory, and if the implementa-
tion halts, then so must the specification (note that we do not consider failing to be an
observable effect). To easily specify related executions, we add the following type of
program specification to our roster of weakest precondition notations:

{w1 ≤ w2;P}⇝ • ≜ {pc Z⇒ w1 ∗pc Z⇒s w2 ∗ ↪→s Running ∗P}⇝
{s.⌈s = Halted⌉ −−∗ ↪→s Halted}

The above specification holds if, starting from an implementation at program counter
w1, and a specification at program counter w2, as well as a machine state satisfying
P, the implementation machine either loops, or runs into completion, and if it halts,
then the specification machine must also halt. Recall that all logical invariants are
preserved at every step of execution, which may include invariants relating fragments
of the implementation state to fragments of the specification state.

We define two binary logical relations, a binary expression relation for program
refinement, and a binary value relation for word refinement (Figure 2.21 42). Each
resemble their unary counterpart; the expression relation is defined as a weakest
precondition, while the value relation imposes memory invariants over the range of
authority of related capabilities.

Recall that in a capability machine, all the components of a capability are observ-
able. As such, the value relation must imply syntactic equivalence of its arguments,
to prevent a context from exhibiting different behavior based on the syntactic differ-
ences of a word. Additionally, if a word grants read or write authority over memory,
the value relation imposes memory invariants for each address in its range. These
invariants contain the relevant points-to predicate for the implementation a 7→ w, the
matching points-to predicate for the specification a 7→s w′, and relates w to w′.

Thus far, the relation seems somewhat trivial, as it appears to simply impose the
syntactic equivalence of related words and related memory regions. After all, this
is not surprising, when we consider how much is actually observable on low level
machines. However, capability machines do grant some mechanisms to hide internal
representations, namely through seals (on CHERI) and sentry capabilities. This is
precisely captured by the value relation when relating E-capabilities; while the two
capabilities must be syntactically equal, the memory regions they point to do not fall

https://logsem.github.io/cerise/journal/cap_machine.rules_binary.rules_binary_base.html#spec_inv
https://logsem.github.io/cerise/journal/cap_machine.logrel_binary.html

CHAPTER 2. CERISE 90

V (w1,w2)

V (z1,z2) ≜ z1 = z2

V ((O, · · ·),w2) ≜ (O, · · ·) = w2

V ((E,b,e,a),w2) ≜ (E,b,e,a) = w2 ∧
▷□E ((RX,b,e,a),(RX,b,e,a))

V ((RW/RWX,b,e,−),w2) ≜ (RW/RWX,b,e,−) = w2 ∧

∗a∈[b,e) ∃w,w′, a 7→ w∗a 7→s w
∗ V (w,w′)

V ((RO/RX,b,e,−),w2) ≜ (RO/RX,b,e,−) = w2 ∧
∗a∈[b,e)

∃P, ∃w,w′, a 7→ w∗a 7→s w′

∗ P(w,w′)

∗▷□

(
∀w,w′, P(w,w′)−−∗

V (w,w′)

)

E (w1,w2) ≜ ∀reg1,reg2,

w1 ≤ w2;∗ (r,v1) ∈ reg1,
(r,v2) ∈ reg2,
r ̸= pc

r Z⇒ v1 ∗ r Z⇒s v2
∗ V (v1,v2)

⇝ •

Figure 2.21: Binary logical relation defining refinement between two words.

within any memory invariant, and may thus contain arbitrary and different words.
Instead, two E-capabilities are related when they behave the same upon invocation, as
captured by the expression relation. In turn, the expression relation is defined using
the previously stated program specification for two related executions, starting from
any refined pair of register states. The expression relation captures logical refinement.

pc1 ≤log pc2 ≜ E (pc1,pc2)

In general, an arbitrary program ought to refine itself. The binary universal
contract guarantees that all capability machine programs are related to themselves.
More precisely, we state the following binary fundamental theorem of logical relations.

Theorem 8 (Binary FTLR 43).

specInv−−∗ V ((p,b,e,a),(p′,b′,e′,a′))−−∗ (p,b,e,a)≤log (p′,b′,e′,a′)

Recall that the value relation implies syntactic equivalence of the capability,
and the region it points to. The conclusion of the theorem can thus be restated as
(p,b,e,a)≤log (p,b,e,a).

The proof proceeds much like the unary fundamental theorem, as a proof by cases
over each possible instruction pointed to by a. The main difference, is that for each
step taken in the implementation, we must apply the relevant specification rule to show
that the same step can be taken in the specification program. In the final subsection
below, we apply the binary fundamental theorem to prove the contextual equivalence
of two simple counter implementations.

https://logsem.github.io/cerise/journal/cap_machine.fundamental_binary.html#fundamental_binary

CHAPTER 2. CERISE 91

2.9.3 A Pair of Contextually Equivalent Counters

We showcase the model in a simple data abstraction example. In this example, we
implement two counters; one that counts down, and one that counts up. Each data
structure exports two methods, an increment function, and a read function. While the
internal representation of the two counters differ, their observable behavior is the same:
the increment function produces no observable behavior, while the read function of the
decrementing counter returns the absolute value of its internal representation, which
ought to equal the return value of the incrementing counter. The code of each counter
is presented in Figure 2.22.

More subtly, while the state of the internal representation differs, the size it
occupies is the same (a region of size one, allocated upon counter instantiation). As a
result, no context can use memory related side effects, such as the address of a region
allocated via malloc, to distinguish the two counters.

The two data structures are thus contextually equivalent. In this section, we
outline how we can prove it. The proof can be split up into two phases. First, we
show that the data structures fall within the binary logical relation. Next, we apply
the fundamental theorem of logical relations and Iris adequacy to derive the final
statement of contextual equivalence.

Before we begin the proof however, it’s worth discussing some preliminary obser-
vations. First, while the example might be relatively trivial, it nicely illustrates how
sentry capabilities can be used to implement data abstraction. The internal counter
representation differs, and the subroutines contain different code, but no context can
distinguish them.

However, the example also highlights the limits of low level data abstraction. The
difficulty lies in the many observable side effects of low level machines, from the size
of the modules themselves, to the size of dynamically allocated regions. Indeed, recall
that related words must be syntactically equal. Entry points to a module must thus be
composed of exactly the same fields. As a result, the two modules are assumed to be
stored in the same memory region. This can be somewhat mitigated by implementing
some clever indirection between module entry points and the modules themselves, but
in this example we simplify the matter by padding the incrementing counter module
such that its size matches that of the decrementing counter.

Furthermore, in the cases where malloc is a shared library, contexts can observe
the next addressable address by allocating a new region, and reading its bounds.
Given our simple implementation of malloc, the two modules must therefore carefully
allocate regions of the same size, which in some cases can involve more padding.

Ultimately, the nature of low level machines inherently imposes undesirable
restrictions on what can be considered contextually equivalent modules. However,
we argue that this does not diminish the usefulness of our binary model. First, it is
clear that the model still displays interesting abstraction properties granted by sentry
capabilities. Second, it presents a general methodology for investigating other, more
intentional, relational properties between capability machine programs. We leave such
investigations to future work.

CHAPTER 2. CERISE 92

; initially, PC = (RX, init, end, init)
; r0 = (unknown) return pointer
init:
... ; dynamically allocate counter, initialized to 0.

init_instrs ; create sentry capabilities for closures around
... ; read and write subroutines
jmp r0

incr:
load r1 renv
add r1 r1 1 ; count up
store renv r1
mov renv 0
mov r1 0
jmp r0

read:
load ra renv
mov renv 0
mov r1 0
jmp r0

data:
0xFFFF ; padding such that the two modules equal in size
(E, bm, em, bm) ; entry point to the malloc subroutine

end:

; initially, PC = (RX, init, end, init)
; r0 = (unknown) return pointer
init:
... ; dynamically allocate counter, initialized to 0.

init_instrs ; create sentry capabilities for closures around
... ; read and write subroutines
jmp r0

incr:
load r1 renv
sub r1 r1 1 ; count down
store renv r1
mov renv 0
mov r1 0
jmp r0

read:
load ra renv
sub ra 0 ra ; calculate the positive value of the counter
mov renv 0
mov r1 0
jmp r0

data:
(E, bm, em, bm) ; entry point to the malloc subroutine

end:

Figure 2.22: Two counters

CHAPTER 2. CERISE 93

2.9.3.1 Proving that the Counters are Contextually Equivalent

As mentioned, the proof is split up into two phases. First, we show that the modules
are logical refinements of each other. Since the two directions are entirely symmetric,
we will focus on one direction only. The statement assumes four previously allocated
invariants, one containing the implementation program, another containing the specifi-
cation program, a binary variant of the malloc invariant, and the previously described
specInv.

Lemma 9 (44).

[init,end) 7→ counter_up_instrs , [init,end) 7→s counter_down_instrs ,

mallocBinaryInv(bm,em) ,specInv ⊢ (E, init,env, init)≤log (E, init,env, init)

Proof. We begin by stepping through init_instrs in lock step. First, the local counter
is allocated, initialized to zero:

r1 Z⇒ (RWX,d,d +1,d) ∗ r1 Z⇒s (RWX,d,d+1,d) (2.13)

∗ d 7→ 0 ∗ d 7→s 0 (2.14)

We highlight that the binary malloc invariant yields a binary variant of the malloc
specification, which crucially assumes that the allocated regions are of equal size.

Next, closure entry points are created for the incr and read subroutines:

r1 Z⇒ (E,b,e,b)∗ r1 Z⇒s (E,b,e,b) (2.15)

∗ [b,e) 7→ cls_entry_instrs++[(RWX, init,end, incr);(RWX,d,d +1,d)] (2.16)

∗ [b,e) 7→s cls_entry_instrs++[(RWX, init,end, incr);(RWX,d,d+1,d)] (2.17)

∗ r2 Z⇒ (E,b′,e′,b′)∗ r2 Z⇒s (E,b′,e′,b′) (2.18)

∗ [b′,e′) 7→ cls_entry_instrs++[(RWX, init,end, read);(RWX,d,d +1,d)] (2.19)

∗ [b′,e′) 7→s cls_entry_instrs++[(RWX, init,end, read);(RWX,d,d+1,d)] (2.20)

Finally, initialization ends by jumping to the unknown context. In order to reason
about the unknown continuation, we apply the binary fundamental theorem of logical
relations (Theorem 8), which leaves us with the following two proof obligations:

V ((E,b,e,b),(E,b,e,b)) and V ((E,b′,e′,b′),(E,b′,e′,b′)) (2.21)

Each involve proving a weakest precondition, while taking steps in the specification
program. The proof obligations are each guarded by an always modality. We must
therefore first allocate invariants for all the resources that the execution depends on.
Most interesting is the invariant for the local state d, which expresses the underlying
relation between the two distinct internal counter representations. One counter counts
up, while the other counts down, and thus one internal value must invariantly be the
negation of the other.

∃z,d 7→ z∗d 7→s − z

https://logsem.github.io/cerise/journal/cap_machine.examples.counter_binary_preamble.html

CHAPTER 2. CERISE 94

With the invariants in place, we can prove the two value relations, by stepping through
instructions in the implementation, as well as in the specification. Two instructions
must be reasoned about in lock-step: the store instruction in incr, and the load
instruction in read. Both require opening the above instruction, applying the relevant
rules before closing it again. The store instruction is noteworthy, since the state
of d changes to z+ 1 one the one hand, and z− 1 on the other, thus preserving the
necessary invariant.

Once the above lemma has been established, we can derive the following end-
to-end theorem. Note that the theorem depends on formal definitions of linking,
contexts and components, which we forgo in this presentation (see Chapter 4 for
formal definitions).

Theorem 9 (End-to-end theorem: the two counters are contextually equivalent 45).
Starting from two initial states of the machine in which regions reserved for the counter
library (compcount−up and compcount−down respectively), malloc and the reserved
adversary region are all disjoint, and initialized as expected (linking between them is
possible, and the adversary region is a context of instructions only, and has a start
function capability), we have that,

compcount−up ≈ctx compcount−down

Proof. Proving contextual equivalence involves showing two contextual refinements,
one in each direction. Each proof is symmetric, and we focus here on⇒. The proof
starts by setting up the resources of the initial machine states, and allocating specInv
at that starting state, taking care to set aside ↪→s Running.

Next, since the adversary context is made up of instructions only, it is possible
to show that the entry point of the program (the start function capability) c is in the
value relation V (c,c). By the fundamental theorem, we thus know that E (c,c).

We then instantiate E (c,c) to the starting register states, with the corresponding
register resources and ↪→s Running. Next, we show that its contents are indeed
refinements. In particular, this involves applying Lemma 9 for the counter modules,
which are imported by the context.

Finally, we apply Iris adequacy on the resulting weakest precondition, from
which we can assert that the implementation does not get stuck, and that allocated
invariants hold at every step of execution (note that this includes specInv). If the
implementation halts, we must show that the specification also halts. This follows
from the postcondition of our weakest precondition.

If the implementation halts, the postcondition asserts ↪→s Halted. We also know
that specInv holds. We can thus derive that the specification execution state is currently
Halted, and subsequently that (Running,ϕ)→∗ (Halted,(reg,mem)) for some reg and
mem, where ϕ is the starting configuration, as established at the allocation of specInv.
We conclude that the implementation contextually refines the specification.

https://logsem.github.io/cerise/dev/cap_machine.examples.counter_binary_adequacy_theorem.html

CHAPTER 2. CERISE 95

2.10 Discussion and Perspectives

In this paper we have introduced Cerise, a program logic for reasoning about a low-
level capability machine. Moreoever, we have shown how Cerise can be used to
define a logical relation for reasoning about unknown code. Thanks to the logical
relation and the fundamental theorem from Section 2.5, Cerise can be used for robust
verification [121, 138], i.e., to verify correctness of software that interacts with
unverified components. The Cerise program logic is the culmination of ideas used in
a sequence of earlier papers [55, 130, 131, 135] and this paper is intended to give an
accessible and didactic introduction to Cerise and the application of Cerise to program
verification in the presence of untrusted code, accompanied with new results on a
heap-based calling convention and implementations of sophisticated object-capability
patterns.

Throughout the paper we have introduced increasingly complex examples, which
demonstrate how fine-grained abstractions can be implemented on a capability ma-
chine and reasoned about using Cerise. Our examples from Section 2.7 and Section 2.8
are modeled after examples from a paper about a high-level object capability language
[138]. Because of the more low-level nature of our capability machine, we had to im-
plement some abstractions ourselves (such as the calling convention in Section 2.7.3)
but we think it is otherwise fair to say that our examples faithfully represent the exam-
ples used by Swasey et al., using the same granularity of encapsulation and attacker
interaction. As such, this paper demonstrates that the low-level security primitives
offered by our capability machine are expressive enough to implement high-level
language abstractions, despite the stronger attacker model of a low-level adversary.
At the same time, the examples show that Cerise is expressive enough to reason about
these abstractions.

Cerise is the first instantiation of the Iris framework to such a low-level language
and thus this work also demonstrates that the key features of Iris (such as guarded
recursion, ghost state, and invariants) are equally applicable in this low-level setting
as in the high-level settings they were originally intended for.

Of course, while we implement and reason about our examples directly in the
capability machine assembly language, we are not proposing that real software should
all be developed in that way. On the contrary, we think this is only realistic for
low-level code in compiler back-ends [55, 131], operating systems and low-level
security measures [135]. Other software should be developed and reasoned about in a
more abstract setting, which suggests the need for a secure compiler that preserves
high-level security guarantees in a low-level environment. In the context of capability
machines, such compilers have been investigated already, both formally [44, 147],
and practically [29, 116]. While we in this work have shown how to implement and
reason about some high-level programming patterns at a low level, much interesting
work remains to be done to further explore the design of a high-level language whose
security abstractions map well to those offered by a capability machine.

An important aspect of the universal contract provided by our logical relation
and fundamental theorem is that it formalizes the security guarantee of our capability

CHAPTER 2. CERISE 96

machine without overspecifying implementations of the ISA. The contract specifies
an authority bound that suffices to reason about adversarial code, but does not overly
constrain future extensions or optimized implementations of the ISA. This is similar
to how the ISA itself is designed to specify expected behavior that is sufficient for
software authors to reason about their code without preventing CPU designers from
constructing optimized or extended implementations. In fact, we believe universal
contracts offer a general and powerful approach for formalizing ISA security guaran-
tees. Such security guarantees are informally stated in informal ISA specifications
but they have not yet been incorporated in formal definitions of ISAs [14, 23]. As
such, a promising application of universal contracts like the one from Section 2.5
is to incorporate them into the ISA definition to formalize intended ISA security
guarantees.

Finally, it is worth acknowledging that in this paper, we only describe a minimal
capability machine that lacks many features from realistic capability machine ISAs.
Our approach has been extended to support some additional features in the literature
(e.g., local and uninitialized capabilities [55], and MMIO [135]), but other features
are still missing for now (e.g. sealing, interrupts, virtual memory, etc.).

2.11 Related work

We now discuss several lines of work related to ours. First, we discuss earlier variants
of Cerise by the authors and colleagues. Then, we discuss work on verifying object
capability patterns in high-level languages, verification of ISA properties in CHERI,
and other applications of universal contracts in the literature.

2.11.1 Earlier variants of Cerise

Earlier variants of Cerise focused on showing how capabilities can be used to im-
plement a secure, stack-based calling convention [55, 131, 132] and nested security
wrappers [135].

[131] were the first to show that capabilities can be used to implement a secure
stack-based calling convention, i.e., a calling convention where the security guarantees
of function calls at the machine code level are faithful to the high-level notion of a
function call. They employed an additional kind of “local” capabilities and stack
clearing to achieve security. Their work follows a similar methodology as the one
described here, that is, they define a logical relation which characterizes a notion
of safety. However, their proofs were not mechanized and the logical relation was
defined using a non-trivial concrete model; in contrast we use the Cerise program
logic to define and prove properties about our logical relation, which means that
our development is done at a higher-level of abstraction and thus we, e.g., do not
have to solve any recursive domain equations. In follow-up non-mechanized work,
[132] achieved similar security guarantees with a novel calling convention based on
so-called “linear” capabilities; capabilities that can never be duplicated. Although
this calling convention avoids the stack clearing required in the previous work, linear

CHAPTER 2. CERISE 97

capabilities come with certain architectural restrictions [see e.g. 132, §6.2]. An
efficient implementation of linear capabilities has so far not been demonstrated.

The subsequent work by [55] introduced a new type of capabilities (called “unini-
tialized”) to avoid most of the stack clearing from Skorstengaard et al.’s first calling
convention, thereby improving runtime efficiency. Importantly, uninitialized capa-
bilities do not come with the same architectural hurdles as linear capabilities. As a
second contribution, Georges et al. used Iris to formulate safety as a logical relation
and mechanized their proofs of security.

The aforementioned logical relations of both Skorstengaard et al. and Georges
et al. are more expressive and therefore significantly more complicated than the one
presented here: they permit reasoning about revocation of local/linear/uninitialized
capabilities and well-bracketedness properties of machine-code “function calls”, on
top of local-state encapsulation. In our present work, object capabilities ensure local
state encapsulation, but we do not enforce calls and returns to be well-bracketed. In
particular, we do not prevent an adversary from invoking a return pointer several
times, or storing return pointers for later use. In other words, our calling convention
implements the kind of function calls one has in a high-level language with control
operators (e.g., call/cc), where calls and returns are not necessarily well-bracketed. (It
is well-known that models of well-bracketed function calls are more involved than
models of not-necessarily-well-bracketed function calls, see, e.g., [5, 39], and here we
opted for the latter, to present a more accessible model, which suffices for a heap-based
calling convention and for studying low-level implementations of object-capability
patterns.)

In a different line of work, Strydonck et al. [135] employed a capability machine
and logical relations model similar to the one presented here, but with additional
support for MMIO, to verify safety properties for small, nestable wrappers around
security-critical devices on a capability architecture. As part of the verification effort,
multiple end-to-end security theorems were proven, which state that safety predicates
of interest hold over the trace of IO events admitted by the machine. Here we have
instead focused on demonstrating how a core model (without MMIO support) can be
used to reason about low-level implementations of object-capability patterns.

2.11.2 Verifying object capability patterns in high-level languages

A number of high-level programming languages allow for programming patterns
similar to object capabilities, that enable preserving local state while interacting with
unknown code. Examples are closures, and high-level objects in capability safe
languages.

[37] pioneered the use of a logical relation to give a semantic characterization of
capability safety (earlier work used a more conservative syntactic approach based on
whether or not objects contain references to each other and ignored the behaviour of
objects). [37] focused on capability safety for a core calculus of Javascript, including
a notion of observable effects, and used an explicit construction of their logical
relation (not a program logic), which was the inspiration for the capability model by

CHAPTER 2. CERISE 98

[131] mentioned above and for the work by [138], who presented a program logic
which allows reasoning modularly about object capability patterns in a high-level
language. The methodology of [138] is close to the one presented here, but in contrast
to [138] we reason about object capabilities on a low-level machine. For instance,
Swasey et al. define two predicates to describe a reference: a predicate for “high
integrity” locations (ℓ ↪→ v), and one for “low integrity” locations (lowloc ℓ). The
first predicate grants exclusive access to the corresponding reference, and is therefore
not safely shareable with an adversary. The second is shareable with an adversary,
but can only be used to read and write “low integrity” values. In our setting, “high
integrity” directly corresponds to the predicate a 7→w for a memory location, and “low
integrity” corresponds to the invariant used in the definition of V : ∃w,a 7→ w∗V (w) .
Correspondingly, our definitions satisfy similar reasoning rules to the ones established
by Swasey et al.. In particular, we believe that the various object capability patterns
they verify can be implemented and verified in a similar way in the setting of a
capability machine, using the principles presented in this paper. We demonstrated
one such implementation by adapting their dynamic sealing example in Section 2.8.
Additionally, the robust safety theorem of [138] is related to our template adequacy
theorem with malloc and assert (Theorem 5); our assert flag plays a role similar to the
OK flag in [138].

2.11.3 Verifying ISA properties in CHERI

[109] formally verify a number of “architectural” properties of CHERI capability
machines. This constitutes a significant mechanization effort: the authors tackle the
full generality of a realistic operational semantics for CHERI, which is significantly
more complex than the minimal machine we consider here. The approach followed
by Nienhuis et al. is different from ours: they state the properties they establish as
trace properties, over a trace of “abstract actions” describing the various capabilities
transiting through the machine during the execution. This approach makes it possible
to state the desired properties in a very explicit and concrete fashion. For instance, the
authors state and prove a property of “capability monotonicity”: during the execution,
the authority of available capabilities cannot increase (in other words, the machine
does not allow forging new authority). Intuitively, this seems like a very reasonable
property, required for proper operation of the capability machine. However, in practice
it is more subtle: calls between components (in our case, jumping to an E-capability)
do allow for some restricted form of non-monotonicity. The property proved by
Nienhuis et al. is thus restricted to trace fragments that do not include calls to a
different component. Our methodology is less explicit, but more expressive. In our
setting, the fundamental theorem can be understood as expressing that “the machine
works well”. Its very extensional statement is admittedly harder to understand in
terms of the operational semantics of the machine, but it enables deriving correctness
statements in terms of the operational semantics that do apply to a full execution of
the machine, including calls between an arbitrary number of components.

CHAPTER 2. CERISE 99

2.11.4 Other applications of universal contracts

As mentioned, our fundamental theorem constitutes a universal contract for arbitrary
code, i.e., it allows deriving the guarantee that any adversarial capability is safe
to execute, given validity of said capability. This safety is typically obtained by
syntactically restricting the adversarial capability; e.g., requiring that the adressed
memory only contains integers.9 Similar notions of universal contracts have been used
for high-level languages (explicitly or implicitly) in the literature. The aforementioned
work of Skorstengaard et al. [131, 132], and Swasey et al. [138] all used a version
of universal contracts, and placed varying syntactic restrictions on adversaries. The
semantic type systems of Jung et al. [76] and Sammler et al. [121] permit similar
reasoning about untrusted code based on a syntactic well-typedness restriction. The
back-translation in the full-abstraction proof by Van Strydonck et al. [147] involved
an explicit, universal separation logic contract for a C-like language with capabilities.
Generally, whenever a semantic model is used to describe semantic guarantees satisfied
by arbitrary code (possibly subject to syntactic restrictions), and when these guarantees
are used in the manual verification of other code, this can be regarded as an application
of a universal contract.

Acknowledgements Thanks to Léon Gondelman and Pierre Pradic for feedback on
earlier drafts of this document.

This work was supported in part by a Villum Investigator grant (no. 25804), Center
for Basic Research in Program Verification (CPV), from the VILLUM Foundation; by
the Research Foundation - Flanders (FWO); and by DFF project 6108-00363 from The
Danish Council for Independent Research for the Natural Sciences (FNU). Thomas
Van Strydonck holds a Research Fellowship of the Research Foundation - Flanders
(FWO). Amin Timany was postdoctoral fellow of the Flemish Research Foundation
(FWO) during parts of this project.

9Note that instructions are encoded in memory as integers.

Chapter 3

Efficient and Provable Local
Capability Revocation using
Uninitialized Capabilities

This chapter is an extended version of the following conference publication:

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix
Trieu, Sander Huyghebaert, Dominique Devriese, Lars Birkedal.
Efficient and Provable Local Capability Revocation using Uninitialized Capabilities
Proceedings of the ACM on Programming Languages (POPL), 2021, 5.

The extension consists of

• Added technical details about the model used to reason about domain transfers
in the presence of uninitialized capabilities; Section 3.6.6.

• New section detailing how the model is applied when reasoning about domain
transfers; Section 3.6.7

• Detailed part of the proof of a key theorem in the paper; Section 3.6.8

• Detailed the proof of an application of the model on an example; Section 3.6.9

Abstract

Capability machines are a special form of CPUs that offer fine-grained priv-
ilege separation using a form of authority-carrying values known as capabilities.
The CHERI capability machine offers local capabilities, which could be used
as a cheap but restricted form of capability revocation. Unfortunately, local
capability revocation is unrealistic in practice because large amounts of stack
memory need to be cleared as a security precaution.

100

CHAPTER 3. UNINITIALIZED CAPABILITIES 101

In this paper, we address this shortcoming by introducing uninitialized
capabilities: a new form of capabilities that represent read/write authority
to a block of memory without exposing the memory’s initial contents. We
provide a mechanically verified program logic for reasoning about programs on
a capability machine with the new feature and we formalize and prove capability
safety in the form of a universal contract for untrusted code. We use uninitialized
capabilities for making a previously-proposed secure calling convention efficient
and prove its security using the program logic. Finally, we report on a proof-of-
concept implementation of uninitialized capabilities on the CHERI capability
machine.

3.1 Introduction

Capability machines are a type of CPUs with support for fine-grained privilege
separation, dating back to the 1960s [36, 91][157]. In this paper, we will specifically
focus on a recent family of capability machines called CHERI [157]. Capability
machines provide native support for capabilities: values which represent a certain
authority to interact with memory, the operating system or other isolated components
in the system. Capabilities come in several forms. Memory capabilities represent
the authority to access a certain region of memory with a certain permission (e.g.
RW or RX). On many capability machines, including CHERI, memory capabilities
are designed to directly replace pointers, thus adding native bounds and permission
checks with almost zero runtime overhead.

Additionally, capability machines usually offer a form of object capabilities [97]:
a form of reified closures that represent the authority to invoke an isolated component
without exposing its internal state and its private capabilities. Invoking such an object
capability passes control to the other component and makes available its private
capabilities and thus, its authority. As such, they offer a cheap form of context
switches. On CHERI, object capabilities take the form of pairs of code and data
capabilities, tied together by being sealed with a common seal [154, 155]. Sealing is
a primitive CHERI operation that renders capabilities opaque and unusable, except
that the pair can be invoked with a special instruction CCall.

Local capabilities are a new feature of CHERI [154]. Conceptually, they are
intended as a form of ephemeral capabilities that can be used directly but not stored
for later use. More technically, they are a form of capabilities that can be kept in
registers but not stored in memory. There is, however, an exception to the latter
rule: local capabilities can be stored in memory through memory capabilities with
special “write-local” permission. This exception is specifically intended for the stack
capability, so that the stack can be used for spilling local capabilities from registers
and function arguments.

In principle, local capabilities make it possible to pass a capability to an untrusted
component temporarily, without allowing the component to store it for later use. In
other words, if the component is invoked again, the local capability is effectively
revoked: the component cannot have access to it anymore. As such, local capabilities

CHAPTER 3. UNINITIALIZED CAPABILITIES 102

can be seen as a restricted revocation primitive with little performance overhead.
Unfortunately, this potential is not realized in practice. While CheriBSD (an

adaptation of FreeBSD which makes use of CHERI capabilities) does use local
capabilities to represent stack pointers, they work with private per-compartment
stacks, and local capabilities are never passed to untrusted code in other compartments
[154]. Hence, the CheriBSD system does not actually rely on local capabilities
for enforcing security properties but only to mitigate the impact of potential bugs;
specifically, to prevent accidental leaks of stack pointers. The latest CHERI ISA
reference document mentions two additional dimensions of locality (kernel vs. user-
space memory, garbage-collected vs manually managed memory), but neither involves
a form of revocation [157, §D.13].

The likely reason for this limited use of local capabilities as a revocation mech-
anism is that its guarantees only hold under an important restriction. If we want to
revoke a local capability before a second invocation of untrusted adversarial code,
we must make sure not to accidentally leak an old copy of the capability. While
local capability rules ensure that such old copies can never end up in heap memory
(because no write-local capabilities to heap memory exist), they may still be present
in any location where the adversary may have previously stored them: capability
registers, but also any region of memory which it had a write-local memory capability
for. Practically, the only way accidental leaking can be avoided is by clearing unused
registers and sweeping over this write-local memory to clear it entirely or at least
erase local capabilities. For example, in a secure calling convention built on local
capabilities, Skorstengaard et al. [129] have to clear the entire unused part of the stack
before any invocation of adversarial code. This requirement is very costly in practice,
and also hard to avoid, since the stack must be made write-local if we want to allow
invoked code to spill registers or store local capabilities away during sub-invocations.
The performance impact might be mitigated with special hardware support [72], but it
is unclear whether this is enough to make it realistic for practical use.

In this paper, we propose a way to redeem local capabilities as a restricted but
efficient revocation primitive using uninitialized capabilities. This is a new form of
capabilities that represents read-write access to a region of memory without access
to its current contents. Regions of memory which the adversary has previously had
write-local access to, specifically the stack, can be made available to the adversary
through an uninitialized capability without the need to clear the memory beforehand.
Technically, an uninitialized capability’s range of authority is divided into two parts:
the range below the address currently pointed to, say [b,a), and the range above the
current address, say [a,e). The range below represents the initialized part of the
capability, and the range above represents its uninitialized part. The capability grants
read-write access to [b,a), and write-only access to [a,e). However, if the address a is
written to, the boundary between the two parts is automatically changed to include
the now-overwritten memory location, i.e., a is automatically incremented (pushing
a value on the stack in the case of a stack capability). An uninitialized capability
can be restricted by lowering the current address and thus “uninitializing" a range
of memory (popping the stack), but its authority can only be increased by writing

CHAPTER 3. UNINITIALIZED CAPABILITIES 103

to it, thus overwriting its previous content. Additionally, regular capabilities can be
made uninitialized and an uninitialized capability to [b,e) can be restricted to a regular
read-write capability to its initialized part [b,a) which can be passed to existing code.

Although uninitialized capabilities are more generally useful, this paper focuses
on how they redeem local capabilities as a revocation primitive. To this end, we
formally establish the guarantees provided by local and uninitialized capabilities with
a capability safety result based on the one by Skorstengaard et al. [129]. Capability
safety is expressed as a universal contract—or specification—that holds for arbitrary
assembly code. The universal contract is defined using a logical relation which
captures the authority represented by a capability, and guarantees that this authority
is respected and monotonically preserved by arbitrary assembly code. To simplify
the definition of the logical relation and avoid some tedious book-keeping related
to step-indexing and shared logical state, we make use of a program logic for our
capability machine model which we define using the Iris program logic framework
[74, 75, 77, 82]. We have mechanized all of the technical development using the Iris
implementation in Coq [83, 84].

Our program logic and logical relation are the most important technical contribu-
tions of this work. To allow reasoning about the pattern of local capability revocation,
we use a novel combination of Iris’ invariants and saved predicates with more tradi-
tional Kripke world-indexing. We use this Kripke world-indexing with public/private
transitions [39, 129] and a new idea of what we call frozen regions to support typical
patterns of (temporary) local capability revocation.

To demonstrate both how uninitialized capabilities redeem local capabilities as a
revocation primitive in practice and how our capability-safety result enables reasoning
about programs using these features, we study a modification of Skorstengaard et al.
[129]’s calling convention that avoids the problematic clearing of large parts of the
stack. The resulting calling convention is another contribution in its own right. We
demonstrate how our program logic can be used to prove correctness of programs using
the calling convention, specifically for the classic “awkward” example which relies
on well-bracketed control flow and stack frame encapsulation. The mechanization
is highly called for because of the low-level nature of capability machines, and the
large amount of bookkeeping that is necessary for reasoning about example programs
(arithmetic manipulation of addresses, restriction of all relevant capabilities, setup of
activation records, etc.).

Finally, more practically, we provide evidence that uninitialized capabilities can
be realistically added to the CHERI capability machine by implementing them in
the CHERI-MIPS ISA and the definition of its operational semantics in SAIL [13].
Additionally, we add support for the new instructions to the Clang/LLVM assembler.
The simulator that we thus obtain from SAIL and the modified assembler have been
used to experiment with the new calling convention in manually modified assembly
programs.

To summarize, our contributions are centered around the new uninitialized capa-
bilities:

• We propose uninitialized capabilities: a new form of capabilities that represents

CHAPTER 3. UNINITIALIZED CAPABILITIES 104

read-write access to memory without exposing the memory’s initial contents
(Section 3.4).

• We explain how uninitialized capabilities redeem CHERI’s local capabilities as
a restricted but efficient revocation primitive (Section 3.4).

• We characterize the combined guarantees of the two features with a capability-
safety result, mechanized in Coq, as a universal contract that holds for arbitrary
assembly programs. It uses a logical relation and a novel combination of
Iris features like guarded recursion and shared invariants, with Kripke world-
indexing and public/private transitions for reasoning about local capability
revocation (Sections 3.5 and 3.6).

• We define a modified version of the calling convention of Skorstengaard et al.
[129] which removes its performance problems. We provide evidence that it
enforces well-bracketed control flow and local stack frame encapsulation by
proving an implementation of the awkward example correct (Section 3.6.9).

• We implement uninitialized capabilities in the SAIL semantics of CHERI-MIPS
and the Clang/LLVM assembler and use them to experiment with the modified
calling convention (Section 3.7).

Finally we add that, to the best of our knowledge, our Iris-Coq mechanization
of capability safety is the first mechanically verified account of key deep semantic
properties (spanning several components, including unknown adversarial code) that
are enforceable using capabilities. The Iris-Coq mechanization can be found at
https://github.com/logsem/cerise-stack/releases/tag/POPL2021.

The idea and implementation of uninitialized capabilities has also been reported
in the master thesis of one of Sander Huyghebaert [68], overlapping partly with
Sections 3.4 and 3.7.

3.2 A capability machine with local capabilities

This section defines the operational semantics of our capability machine. Our machine
model is defined along the same lines as the one from Skorstengaard et al. [129], and
hence transitively draws from CHERI [154] and the M-Machine [27]. In Section 3.2.1
we describe the operational semantics for a bare-bones capability machine (without
local and uninitialized capabilities) as a starting point. Then, we add support for
local capabilities in Section 3.2.2. The semantics for uninitialized capabilities will be
treated later in Section 3.4, resulting in the full definition of the capability machine
semantics we assume in the rest of the paper.

Figures 3.1 to 3.5 summarize the operational behavior of our capability machine,
and will be referenced on multiple occasions. They are color-coded as follows: the
bare-bones capability machine is defined in black; additions related to local capabilities
are typeset in red. Finally blue additions, introduced on top of the red ones, account
for uninitialized capabilities and will be discussed in Section 3.4.

https://github.com/logsem/cerise-stack/releases/tag/POPL2021

CHAPTER 3. UNINITIALIZED CAPABILITIES 105

a ∈ Addr ≜ [0,AddrMax]
p ∈ Perm ::= O | E | RO | RX | RW | RWX

| RWL | RWLX | URW | URWL | URWX | URWLX

g ∈ Global ::= GLOBAL | LOCAL

c ∈ Cap ≜ {(p,g,b,e,a) | b,e,a ∈ Addr}
w ∈ Word ≜ Z+Cap
r ∈ RegName ::= pc | r0 | r1 | . . .

reg ∈ Reg ≜ RegName→Word
m ∈ Mem ≜ Addr→Word
ϕ ∈ ExecConf ≜ Reg×Mem
δ ∈ DoneState ::= Standby | Halted | Failed
µ ∈ ExecMode ::= SingleStep | Repeat µ | Done δ

ρ ∈ Z+RegName
i ::= jmp r | jnz r r | move r ρ | load r r | store r ρ | add r ρ ρ | sub r ρ ρ |

lt r ρ ρ | lea r ρ | restrict r ρ | subseg r ρ ρ | isptr r r | getp r r |
getl r r | getb r r | gete r r | geta r r | fail | halt |
loadU r r ρ | storeU r ρ ρ | promoteU r

Figure 3.1: Machine words, machine state and instructions.

3.2.1 Bare-bones Capability Machine

Figure 3.1 defines the syntax we use in our capability machine. The set of addresses
Addr is finite, to make our model more realistic, and described by the integer range
[0,AddrMax]. The address AddrMax is the top address and cannot be dereferenced.

A memory word w ∈Word is either an (unbounded) integer or a capability c.
Capabilities are of the form (p,g,b,e,a) and allow exerting permission p on the
memory range [b,e), while currently pointing to a. The permissions p and locality
bit g appear in the permission and locality lattices of Figure 3.2, which induce a
bottom-to-top partial order ≼ on permissions, localities and pairs thereof. The locality
bit g only plays a role in the presence of local capabilities, and will be covered later in
Section 3.2.2. The permission lattice, on the other hand, contains six different types
of permissions; the null (O), read-only (RO), enter (E), read/write (RW), read/execute
(RX) and read/write/execute (RWX) permissions. The sole non-standard permission,
E, is inspired by the M-Machine [27], and referred to as “sealed entry” or “sentry”
capabilities in CHERI [157]. Enter capabilities represent opaque closures, or object
capabilities, encapsulating code and data, and hence cannot be read, written, executed
or modified. They can only be jumped to, thereby loading them into the pc register
and changing their permission from E to RX, effectively unsealing them. Chapter 2
illustrated the use of enter capabilities as primitives for creating boundaries between

CHAPTER 3. UNINITIALIZED CAPABILITIES 106

RWLX

RWL URWLX RWX GLOBAL

URWL RW URWX RX

URW RO E LOCAL

O

Figure 3.2: Permission and locality hierarchy.

REPEATSINGLE
(SingleStep, ϕ)→ (Done δ , ϕ

′)

(Repeat SingleStep, ϕ)→ (Repeat (Done δ), ϕ
′)

REPEATSTANDBY
(Repeat (Done Standby), ϕ)
→ (Repeat SingleStep, ϕ)

REPEATHALT
(Repeat (Done Halted), ϕ)
→ (Done Halted, ϕ)

REPEATFAIL
(Repeat (Done Failed), ϕ)
→ (Done Failed, ϕ)

EXECSINGLE

(SingleStep, ϕ)→

Jdecode(z)K(ϕ) if ϕ.reg(pc) = (p,g,b,e,a)
∧ b≤ a < e
∧ p ∈ {RX,RWX,RWLX}
∧ ϕ.mem(a) = z

(Done Failed, ϕ) otherwise

Figure 3.3: Operational semantics: reduction steps.

domains that guarantee local state encapsulation. Now, we apply similar ideas, but in
the presence of a shared call-stack, while also enforcing well-bracketed control flows.

The machine’s instructions i either operate on register names r, or on sums ρ of
registers and constants. We detail their semantics below.

The state of the machine is modeled by the semantics as a configuration ϕ ,
containing the state of the registers ϕ.reg and the memory ϕ.m. A register file reg
consists of a map from register names r to words, while the memory m maps addresses
to words.

Figure 3.3 defines the small-step operational semantics for the capability ma-
chine. At each step, the machine’s state is described by an execution mode µ and a
configuration ϕ . The mode µ models the machine’s instruction cycle, which loops

CHAPTER 3. UNINITIALIZED CAPABILITIES 107

updPC(ϕ) ={
(Done Standby,ϕ[reg.pc 7→ (p,g,b,e,a+1)]) if ϕ.reg(pc) = (p,g,b,e,a)
(Done Failed,ϕ) otherwise

getWord(ϕ,ρ) =
{

ρ if ρ ∈ Z
ϕ.reg(ρ) if ρ ∈ RegName

Figure 3.4: Operational semantics: auxiliary definitions.

infinitely (expressed by Repeat SingleStep) until it reaches a successful done state
Done Halted through REPEATHALT or a failed state Done Failed through REPEAT-
FAIL. The REPEATSINGLE rule allows for the execution of single instructions through
the EXECSINGLE rule. If the execution of the instruction is successful, i.e. execu-
tion in EXECSINGLE does not fail or halt and results in a Done Standby state, then
REPEATSTANDBY allows for another iteration of the processor’s instruction cycle.

An execution step (EXECSINGLE) requires an executable and in-bounds capability
in the pc register, failing otherwise. It reads the word z at the memory address a,
decodes it and executes the result on the current state ϕ , denoted Jdecode(z)K(ϕ).
Figure 3.5 defines the operational behavior JiK(ϕ) for a number of representative in-
structions i, using the auxiliary definitions in Figure 3.4. The notation ∈ is overloaded
to deconstruct sum types, e.g. if ρ ∈ Z+RegName, then the statement ρ ∈ Z will au-
tomatically unwrap ρ if it is of the form inl _ and fail otherwise. Most instructions use
the auxiliary function updPC to increment the pc register after their proper operations.
Because the address space is finite, pointer arithmetic such as e.g. a+ 1 can result
in illegal addresses, and should hence be represented as an option type. To avoid
notational clutter, we assume this option type to be automatically unpacked through in
the entire figure, resulting in failure in case of a None result. If an instruction operates
on a value ρ , it either uses the constant value directly if ρ ∈ Z, or it reads the value
from the register if ρ ∈ RegName. In what follows, the contents of ρ will be used to
signify the resulting value of either option.

We now describe the semantics of instructions, in particular those listed in Fig-
ure 3.5. The fail and halt instructions terminate execution in the Failed and Halted
state respectively. move r ρ copies the contents of ρ into r. Memory is accessed using
the load and store instructions: load r1 r2 reads the value pointed by the capability
in r2 provided it has the permission R and points within bounds, and store r ρ stores
the contents of ρ through the capability in r provided it has the W permission and
points within bounds. The jmp instruction jumps to a capability, by writing it into the
pc register. In the case of an enter (E) capability, it unseals it into a RX capability first,
allowing us to jump to opaque closures, as previously mentioned. Three instructions
allow modifying capabilities. restrict r ρ allows restricting the permission and
locality of a capability, by decoding the contents of ρ into a pair (p′,g′), and provided
it is less permissive than the current permission-locality-pair of r according to ≼,

CHAPTER 3. UNINITIALIZED CAPABILITIES 108

i JiK(ϕ) Conditions
fail (Done Failed,ϕ)
halt (Done Halted,ϕ)
move r ρ updPC(ϕ[reg.r 7→ w]) w = getWord(ϕ,ρ)

load r1 r2 updPC(ϕ[reg.r1 7→ w])
ϕ.reg(r2) = (p,g,b,e,a)
and w = ϕ.mem(a) and b≤ a < e
and p ∈ {RO,RX,RW,RWX,RWL,RWLX}

store r ρ updPC(ϕ[mem.a 7→ w])

ϕ.reg(r) = (p,g,b,e,a) and b≤ a < e and
p ∈ {RW,RWX,RWL,RWLX}
and w = getWord(ϕ,ρ) and
if w = (_,LOCAL,_,_,_),
then p ∈ {RWLX,RWL}

jmp r
(Done Standby,
ϕ[reg.pc 7→ newPc])

if ϕ.reg(r) = (E,g,b,e,a),
then newPc = (RX,g,b,e,a)
otherwise newPc = ϕ.reg(r)

restrict r ρ updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p,g,b,e,a) and
(p′,g′) = decodePermPair(getWord(ϕ,ρ))
and (p′,g′)≼ (p,g) and w = (p′,g′,b,e,a)

subseg r ρ1 ρ2 updPC(ϕ[reg.r 7→ w])

ϕ.reg(r) = (p,g,b,e,a) and for i ∈ {1,2},
zi = getWord(ϕ,ρi) and zi ∈ Z and
b≤ z1 and 0≤ z2 ≤ e and p ̸= E and
w = (p,g,z1,z2,a)

lea r ρ updPC(ϕ[reg.r 7→ w])

ϕ.reg(r) = (p,g,b,e,a) and
z = getWord(ϕ,ρ) and p ̸= E and
w = (p,g,b,e,a+ z)
and if p = U-, then z≤ 0

geta r1 r2 updPC(ϕ[reg.r1 7→ a]) ϕ.reg(r2) = (_,_,_,_,a)

loadU r1 r2 ρ updPC(ϕ[reg.r1 7→ w])

ϕ.reg(r2) = (p,g,b,e,a) and p = U- and
off = getWord(ϕ,ρ) and
b≤ a+off < a≤ e and
w = ϕ.mem(a+off)

storeU r ρ1 ρ2
updPC(ϕ ′

[mem.(a+off)7→ w])

ϕ.reg(r) = (p,g,b,e,a) and p = U- and
off = getWord(ϕ,ρ1) and
w = getWord(ϕ,ρ2) and
if w = (_,LOCAL,_,_,_)

then p ∈ {URWLX,URWL}
and b≤ a+off ≤ a < e and
if off ̸= 0 then ϕ ′ = ϕ

else ϕ ′ = ϕ[reg.r 7→ (p,g,b,e,a+1)]

promoteU r updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p,g,b,e,a) and p = Uπ and
w = (π,g,b,min(a,e),a)

. . .
_ (Done Failed,ϕ) otherwise

Figure 3.5: Operational semantics: instruction semantics.

CHAPTER 3. UNINITIALIZED CAPABILITIES 109

restricts r accordingly. subseg r ρ1 ρ2 takes a subsegment of a capability range of
authority. It uses the contents of ρ1 and ρ2 to restrict the range of authority of the
capability in r, in case r is not an enter capability. Note that the inequality 0≤ z2 ≤ e
suffices to guarantee monotonicity of authority, since if z2 ≤ z1, then the capability
provides no authority over memory whatsoever. lea r ρ modifies the address of the
capability in r, by adding to it the integer offset in ρ . As expected, lea fails for
enter capabilities. A number of instructions allow inspecting capabilities. We show
geta that retrieves the address field of a capability; getp, getl, getb and gete work
similarly for the other fields. Not shown in Figure 3.5 are jnz (conditional jump),
arithmetic instructions (add, sub, lt) and isptr which checks whether a word is a
capability. Finally, if the capability checks for an instruction are not satisfied, the last
row defines the resulting state as (Done Failed,ϕ).

3.2.2 Capability Machine with Local Capabilities

The red parts of Figures 3.1 to 3.3 and 3.5 add local capabilities to our bare-bones
capability machine. The locality hierarchy in Figure 3.2 receives a second element,
LOCAL. As evident from this hierarchy, the restrict instruction allows deriving
local capabilities from global ones, but not vice versa.

Local capabilities can only be stored to memory through capabilities with a write-
local permission, a stronger version of the W permission that we denote as WL. The
permission hierarchy in Figure 3.2 contains the two new write-local permissions RWL

and RWLX at the top. The permission RWLX is a valid additional permission for the
pc-register, as shown in Figure 3.3. The restrict instruction follows the order ≼
and allows deriving writable capabilities from write-local ones.

The semantics of locality comes into play when interacting with memory, i.e. in
the load and store instructions in Figure 3.5. Both load and store permit loading,
respectively storing, using the two new permissions. Additionally, store only permits
storing local values if the capability’s permission allows local writes.

3.3 Revocation using local capabilities

We now discuss the use of local capabilities as a (inefficient) revocation primitive. We
use an incremental example consisting of three scenarios which build towards the
secure calling convention of Skorstengaard et al. [129]. It will become clear why local
capability revocation and the calling convention incur inherent performance issues
because of stack clearing.

3.3.1 Using Local Capabilities for Revocation

Consider the following scenario, which we will refer to as Scenario 1: a client, Alice,
wishes to invoke an untrusted adversary, Bob, twice. Alice owns a capability, c, that
she wishes to share with Bob, through a register r, but only for the duration of the first
call. During the second call to Bob, he should not be able to access the capability any

CHAPTER 3. UNINITIALIZED CAPABILITIES 110

rstk (RWL,LOCAL,)

e′

(a) The stack capability Alice starts out
with.

rstk (RWL,LOCAL,)

Alice’s
stack frame

a42 42

e′

b′

(b) The stack capability Alice hands to
Bob.

Figure 3.6: Register state for Scenario 2, involving a write-local stack capability.

more. In other words, Alice wishes to revoke capability c before the second call. If
c is a GLOBAL capability, i.e. c = (p,GLOBAL,b,e,a), Bob can simply store c in any
part of memory he has access to, during the first invocation, and retrieve it during the
second, thwarting Alice’s plans. This is where local capabilities come in. In case c
is local, i.e. c = (p,LOCAL,b,e,a), and we disregard write-local permissions for the
moment, Bob cannot store the capability c to memory for later use, and can therefore
not recover c during the second invocation, provided Alice cleared it from the registers
before the second call. In other words, as soon as Bob returns to Alice, Bob’s access
to c is effectively revoked.

3.3.2 Write-local Memory and Stack Clearing

The situation changes when we consider the existence of write-local permissions in an
extended Scenario 2. Specifically, we extend Scenario 1 to handle the stack explicitly,
through a local, write-local stack capability cstk stored in a register we call rstk, as
shown in Figure 3.6a. First, Alice wants to enforce local state encapsulation, i.e.
ensure that Bob cannot gain access to her local stack frame, including the value 42
stored at address a42 in Figure 3.6b. This is trivially enforced by not passing Bob a
reference to the full stack capability. Second, Alice wants to enforce the temporal
ownership of c, by revoking Bob’s ownership of it before the second call.

Concretely, cstk carries RWLX permission. The cstk capability is write-local, to
allow spilling of local arguments and other capabilities onto the stack. It will become
clear in Section 3.3.3 why cstk needs an execute permission. Finally, we cannot
allow cstk to be GLOBAL, since Bob could then, during the first invocation, store
cstk to memory, write c into stack memory through cstk, and then, during the second
invocation, read c again after retrieving cstk. Since GLOBAL, write-local capabilities
clearly break any attempts at building a sensible revocation schema using local
capabilities, we forbid their existence.

Figure 3.6a shows the initial contents of rstk, when Alice starts executing. When
Alice calls Bob, she will restrict the stack capability and pass the unused part
of the stack in rstk, as shown in Figure 3.6b. At the time of the first call, we set

CHAPTER 3. UNINITIALIZED CAPABILITIES 111

cstk = (RWLX,LOCAL,b′,e′,b′). For simplicity, we assume that cstk has the same
value on the second call, i.e. Alice’s stack frame does not change size in between
calls. Notice that it is currently unclear how Alice obtains this cstk capability for the
second call, since cstk itself is local and hence not easily stored in between the first
and second call to Bob. We will clarify this point in Section 3.3.3. We also assume
that the memory addressed by cstk is initially zeroed out.

Alice still wants to prohibit Bob from accessing c during the second call. But now,
Bob does have a way of storing local capability c during the first invocation; he can
store it anywhere in [b′,e′) through the write-local capability cstk. Therefore, Alice has
to make sure that the region [b′,e′) does not contain any copies of c before invoking
Bob a second time. The solution is to clear [b′,e′) before the second invocation, or
more generally, clear all write-local memory that Bob had access to. This means
a potentially large runtime overhead, since the region [b′,e′) may be quite large in
practice. Note that we assume (here and elsewhere in the paper) that the stack is the
only memory region that has write-local capabilities pointing into it; otherwise, Alice
would have to find and clear all other write-local regions that Bob might have had
access to as well.

3.3.3 A Secure Calling Convention using Local Capabilities

Having discussed the core performance issue in the calling convention of Skorsten-
gaard et al. [129], namely the stack clearing caused by the use of local capabilities, we
now extend our previous scenario to their full secure calling convention. Concretely,
we need to make two additions.

First, the astute reader may have noticed that our scenario from Section 3.3.2 does
not actually work. The problem is that after Bob returns, Alice has no capability to
erase Bob’s part of the stack [b′,e′), or to access her old stack frame, since Alice’s
stack capability was itself local, and could only have been stored on the stack itself.
We could require Bob to return his stack capability, but Alice would still have no
way of accessing her own stack frame after the first call to Bob. To remedy this,
Skorstengaard et al. [129] have Alice create a kind of return closure on the stack, and
pass a capability for invoking it to Bob as a return capability cret. This capability is
represented as an enter capability and points to restoration instructions, also called
trampoline instructions, pushed onto Alice’s stack frame, along with her stack pointer,
before invoking Bob. When executed, these trampoline instructions reinstate Alice’s
old stack pointer and then resume execution by loading a previously pushed value for
the pc register. The execution of these instructions on the stack is the reason we gave
cstk execute permission in Section 3.3.2. This constraint can be alleviated when using
alternative object capability models, such as with code and data sealed pairs, where
the code part can be in a separate memory space from the local data part, which in this
case would be stored on the stack [132]. Since enter capabilities are opaque, Bob can
only use cret as a jumping destination, and when he does, Alice’s old return pointer is
restored. Bob cannot simply store the capability cret for later use, since cret is itself
local, as it was derived from the local capability cstk using restrict.

CHAPTER 3. UNINITIALIZED CAPABILITIES 112

Secondly, to ensure generality, we have to assume that Alice is called by a second
untrusted party, Charlie, rather than being allowed to initiate execution. In this
Scenario 3, the stack capability cstk in Figure 3.6a that was previously assumed to be
initially zeroed, is now passed to Alice by Charlie. Charlie has the option to protect
his own stack frame by calling Alice in a fashion similar to Figure 3.6b. Alice again
wishes to revoke Bob’s access to c and to enforce local state encapsulation. With the
introduction of a second adversary, Alice now also has the extra goal of enforcing
well-bracketed control flow, i.e. ensure that Bob cannot bypass Alice and return to
Charlie directly. To achieve all three goals, Alice needs to make sure that cstk does not
contain any capabilities that Bob should not have access to when invoking him. Since
Charlie has access to a larger stack capability than both Alice and Bob, and could have
stored his stack or return pointer high up in the stack, Alice now has to additionally
erase the entire memory region [b′,e′) even before the first call to Bob.

When Alice returns to Charlie, Skorstengaard et al. [129] originally proposed to
erase the entire stack [b′,e′) again, but as they later point out, it suffices for Alice to
clear her own stack frame when returning to Charlie [131]. This is because any stack
capabilities that Bob might want to smuggle to Charlie through the stack, ultimately
originate from Charlie in the first place, and are not of any added value to him. Sharing
his return pointer with Charlie will do Bob no good either, since it will jump to an
address within Charlie’s own stack. The formalization of this previously informal
observation is one of the novelties in our logical relation in Section 3.6.

3.4 Uninitialized Capabilities

Now let us introduce uninitialized capabilities in Section 3.4.1 and see how they can
be used to solve the issue of stack clearing in Section 3.4.2.

3.4.1 Adding Uninitialized Capabilities to the Capability Machine

Uninitialized capabilities are a new form of capabilities that represent read-write
ability to a region of memory without access to its current contents. More specifically,
they are represented as new permissions that are counterparts of the ones that have at
least read-write ability. The blue labels in Figure 3.2 represent the additions to our
permission lattice.

An uninitialized capability (Uπ , g, b, e, a) has permission π on the range [b,a)
(the initialized part) and write-only permission on the range [a,e) (the uninitialized
part), assuming b≤ a < e for simplicity. For instance, if π is RWX, then the capability
can read, write, or execute anything in the initialized part of the capability, but can
only write to the uninitialized part.1 The initialized part of the capability can be
extended by writing to the first uninitialized address, i.e. a.

1Using an URWLX, URWX or URX capability to execute is actually only possible after first initializing
(a part of) it and converting it to a regular capability using promote, as explained in the next paragraph.

CHAPTER 3. UNINITIALIZED CAPABILITIES 113

Capabilities that have at least read-write permissions can be restricted to their
uninitialized counterparts. Uninitialized capabilities can be further restricted w.r.t. the
initialized part, e.g., an URWLX permission can be restricted to an URW permission.
Since an uninitialized capability (Uπ , g, b, e, a) represents authority π on the initialized
part [b,a), we also allow converting it to a regular capability (π , g, b, a, a) with
authority π on the initialized range [b,a), using a new promote instruction. We will
make use of this instruction to construct return capabilities in Section 3.4.2.

We now discuss the changes to the operational semantics, indicated in blue in
Figure 3.5. Instead of modifying load and store to support uninitialized capabilities,
we define two new instructions loadU and storeU that can only be used with unini-
tialized capabilities. loadU r1 r2 ρ first checks that r1 contains a capability (Uπ , g, b,
e, a), that b≤ a+off < a < e (where off is the contents of ρ). If both checks succeed,
the value at address a+off will be loaded into register r2. Similarly, storeU r ρ1 ρ2
checks that r contains a capability (Uπ , g, b, e, a) and b≤ a+off ≤ a < e (with off
the contents of ρ1). It will then store the value in ρ2 into the address a+off . If off = 0,
then the capability in r is incremented.

From a hardware implementation perspective, the new loadU and storeU instruc-
tions do perform more work than load and store. In particular, they additionally
need to compute an addition and an extra bounds check. Nevertheless, we expect that
this should not drastically change the implementation complexity or the critical path
for our new instructions. Woodruff et al. [162] show that bounds checks can typically
be made efficient by running them in parallel with memory accesses: “any bounds
check on the virtual address can be performed in parallel to [address] translation,
making memory access a particularly convenient time to perform a bounds check”.
We believe the same optimisation could be applied to an implementation of loadU
and storeU.

Finally, one instruction must be slightly modified: we cannot allow lea to increase
the current address of an uninitialized capability, as this would increase its read
authority. Therefore, when using lea to change the address of a capability (Uπ , g, b,
e, a) to a′, the machine additionally checks that a′ ≤ a.

3.4.2 A New Calling Convention

Description of the calling convention. With uninitialized capabilities, we can now
revisit the calling convention from Section 3.3.3 and use uninitialized capabilities
to avoid the stack clearing requirement and fix its performance issues. Instead of
using a RWLX stack capability, we give it permission URWLX. Let us consider again
the example from Section 3.3.3, but let Alice pass the capability cstk = (URWLX,
LOCAL, b, e, b) to Bob. Bob now cannot use cstk to read the contents of [b,e) without
overwriting it first, so stack clearing is no longer needed.

Alice still needs to provide an enter capability cret as a return pointer to Bob.
However, Alice must now first promote cstk back into a RWLX capability before she
can use restrict on it to create the return capability. When Alice returns to Charlie,
Charlie regains access to the entire stack, so Alice still needs to clear her own stack

CHAPTER 3. UNINITIALIZED CAPABILITIES 114

frame. This clearing requirement is very reasonable compared to the earlier case, as
Alice only needs to clear the part of the stack she has actually used.

We recap the new calling convention formally:

At program start-up. A local URWLX capability stack pointer is in register rstk.

When called by an adversary. Check that the received stack pointer has permission
URWLX.

Before calling an adversary. Push activation record to the stack and create a local
E-capability to use as return pointer. Subseg the stack capability to the unused part.
Clear non-argument registers.

Before returning to an adversary. Clear non-return-value registers and the part of the
stack we used.

While the changes may seem simple, there are some details to get right. Let’s
revisit Scenario 3 from Section 3.3.3, and assume Alice receives stack capability cstk1
= (URWLX, LOCAL, b1, e, b1) from Charlie and uses range [b1,b2) to store data. She
now calls Bob with cstk2 = (URWLX, LOCAL, b2, e, b2). Suppose that after this first
call, Alice needs less stack space. She can instead provide cstk3 = (URWLX, LOCAL,
b3, e, b3) as stack capability to Bob with b1 ≤ b3 ≤ b2 for the second call. Alice
does not need to clear the range [b3,b2) since Bob cannot possibly read it as it is
uninitialized. However, when returning to Charlie, Alice must be careful to clear
everything she has ever written to, i.e. the whole range [b1,b2) and not just [b1,b3).
This is because Alice cannot be sure that Bob overwrote what is in [b3,b2) and she
must ensure that any capabilities she may have inadvertently left there are scrubbed
before returning to Charlie.

Informal cost analysis. With these details in mind, let’s make sure that we can
indeed witness a gain in performance. At first glance, since the new calling convention
still clears the local stack frame upon return, it could appear as if the new calling
convention only provides a minor constant factor performance improvement. However,
in the calling convention by Skorstengaard et al. [129], the full stack space (even parts
that will never be used) is cleared twice for each call. In our new proposed calling
convention, each function only needs to clear its own stack frame once upon return.

Let us consider two concrete scenarios. First, assume that we are making n secure
calls in sequence to untrusted components. Let us note m the size of the remaining
unused stack space, and c the size of the stack frame that we currently use.

Skorstengaard et al.’s calling convention requires that we clear the whole unused
stack space before each call, and finally, clear it again along with our own stack frame
before returning. The cost of clearing is then:

n∗m+m+ c

In a typical scenario where c is small compared to m, the overall cost of clearing
is quadratic: O(mn) (m is typically comparable to the overall available stack space,

CHAPTER 3. UNINITIALIZED CAPABILITIES 115

which counts in megabytes). In the improved calling convention, we only need to
clear our stack frame before returning. We therefore only need to pay the small price
of clearing c memory cells.

Now assume that we are making n nested secure calls, each call using a stack
frame of size c.

Skorstengaard et al.’s calling convention now requires that we clear m before
the first call and m+ c when returning, (m− c) before the second call and m when
returning, etc, i.e.:

2nm−n(n−1)c+ c

Again, in a typical scenario where the portion of the stack actually used (nc) is
small compared to the available stack space m, the cost remains a quadratic O(mn).
With our calling convention, we only need to clear the individual stack frames, which
amounts to an overall linear cost of nc. (Notice how this does not depend on the size
of the available stack space.)

In summary, it seems like uninitialized capabilities solve the stack clearing require-
ment and associated performance issue of local capability revocation and the secure
calling convention of Skorstengaard et al. [129, 131]. But security of the result relies
on subtle arguments and invariants. Fortunately, in the next section, we’ll see that we
can build on Skorstengaard et al.’s approach for reasoning about capability machines
and the guarantees they provide and prove security of local capability revocation and
our new calling convention.

3.5 Program Logic

In order to reason about the behavior of programs running on the capability machine,
we build a program logic on top of the machine operational semantics. The logic
provides rules describing the execution of single machine instructions, and can then
be used to establish a specification for a complete program running until the machine
halts (or fails).

Specifications are written as separation logic triples, both in the case of manually
written specifications for concrete programs (such as the macros of Section 3.6.9),
and in the case of the “universal specification” which holds of arbitrary code by the
Fundamental Theorem (see Section 3.6.8). Figure 3.7 shows specifications for some
single machine instructions as well as for a program composed of several instructions
(in this case, a simple macro). In a high-level language, a separation logic triple
{P}e{Q} provides a precondition P and postcondition Q for the execution of the
expression e. However, in our setting, there is no direct equivalent of e since code
executed by the machine is laid out in memory as mere integers that are then decoded
into instructions. Instead, we use triples of the form {P}µ {Q}, where µ denotes an
execution mode as defined in Figure 3.1. Treating execution modes as expressions
in this way makes our assembly language fit well into the Iris framework, which
is more usually used with lambda calculi. A triple using the SingleStep execution
mode specifies the behavior of a single instruction (the one currently pointed to by the

CHAPTER 3. UNINITIALIZED CAPABILITIES 116

ValidPC(ppc,bpc,epc,apc, p′)
ValidSubseg(p,b,e,z1,z2) decode(n) = subseg r z1 z2

{pc 7→ (ppc,gpc,bpc,epc,apc) ∗ apc 7→p′ n ∗ r 7→ (p,g,b,e,a)}
SingleStep

{v, v = Done Standby ∗ pc 7→ (ppc,gpc,bpc,epc,apc +1)
∗ apc 7→p′ n ∗ r 7→ (p,g,z1,z2,a) }

ValidPC(ppc,bpc,epc,apc, p′)
ValidStore(p,b,e,a, p′′,w) decode(n) = store dst src

{ pc 7→ (ppc,gpc,bpc,epc,apc) ∗ apc 7→p′ n ∗ dst 7→ (p,g,b,e,a)
∗ src 7→ w ∗ a 7→p′′ − }
SingleStep

{v, v = Done Standby ∗ pc 7→ (ppc,gpc,bpc,epc,apc +1) ∗ apc 7→p′ n
∗ dst 7→ (p,g,b,e,a) ∗ src 7→ w ∗ a 7→p′′ w }
∀i ∈ [0,n), ValidPC(p,b,e,ai, p′) n = |rclear_instrs l|

{ pc 7→ (p,g,b,e,a0) ∗ ∗
r∈l

r 7→ − ∗ ∗
i∈[0,n)

ai 7→p′ (rclear_instrs l)[i] ∗ pc 7→ (p,g,b,e,an) ∗ ∗
r∈l

r 7→ 0 ∗ ∗
i∈[0,n)

ai 7→p′ (rclear_instrs l)[i]−−∗

wpRepeat SingleStep{Q}

 }
Repeat SingleStep

{Q}

ValidPC(ppc,bpc,epc,apc, p′) ≜ ppc ≼ p′∧ p′ ∈ {RX,RWX,RWLX}
∧bpc ≤ apc < epc

ValidSubseg(p,b,e,z1,z2) ≜ b≤ z1∧0≤ z2 ≤ e
ValidStore(p,b,e,a, p′′,w) ≜ RW ≼ p≼ p′′∧b≤ a < e∧

if w = (_,LOCAL,_,_,_)
then p ∈ {RWLX,RWL}

rclear_instrs l ≜ map (λ r. encode(move r 0)) l

Figure 3.7: Separation Logic specifications for the machine instructions subseg and
store and for the rclear macro that sets a given list of registers to zero. Changes to
the machine state are highlighted in red.

CHAPTER 3. UNINITIALIZED CAPABILITIES 117

program counter). A triple using the Repeat SingleStep execution mode specifies a
complete execution, starting from the instruction currently pointed to by the program
counter, and continuing until the machine halts or fails.

We use Iris’ standard definition of triples, which correspond to partial correctness:
correctness does not entail termination. Finally, note that machine failure (e.g. failure
to pass a capability check) is modeled explicitly. A failing program does not get
stuck, instead, it reduces to a configuration with the Done Failed execution mode.
A postcondition binds the execution mode at the end of the execution, allowing
specifications to talk explicitly about failure or success.

As an additional subtlety, note that separation logic triples are not a primitive
concept in Iris. Instead, they are defined as syntactic sugar on top of a weakest-
precondition combinator

{P}µ {Q} ≜□(P−−∗ wp µ {Q})

The triple {P}µ {Q} specifies that owning the resource P is sufficient to run the
machine with mode µ and eventually obtain the postcondition Q. Furthermore, this
fact is required to hold not only at the current point, but also to remain true indefinitely,
using the Iris modality □ [see, e.g., 20, 77]. This “persistent” modality □ expresses
that the proof of a triple may not rely on assumptions that hold now but may cease to
hold in the future (“ephemeral assertions”). Instead, it must only rely on assumptions
that remain true at any point in the execution of the system (“persistent assertions”),
because we may want to invoke this specification at any later point.

Access to registers and memory is described using two separate points-to asser-
tions. The assertion “r 7→ w” asserts that register r currently contains the machine
word w, and provides exclusive ownership over that register. The assertion “a 7→p w”
asserts that the memory location at address a currently contains the machine word
w and provides ownership over that location. Furthermore, access to the location
is restricted with permission p: for instance, if p is RO then it is not possible to
modify the value stored at that location. More generally, when accessing a memory
location with permission p using a capability with permission p′, the permission of
the capability must be included in the permission for the location, i.e. p′ ≼ p.

The first two rules of Figure 3.7 show specifications for the subseg and store
instructions. Their respective preconditions describe the subset of the machine state
accessed by the instruction, and the postconditions describe the updated state after
executing the instruction. For both specifications, the postcondition asserts that the
execution mode after executing the instruction is Done Standby, meaning that the
machine instruction always succeeds under the premises of the specification. The
first rule states that if the program counter contains a capability pointing to a memory
location apc, if that location contains an integer n which decodes into subseg r z1 z2,
if the register r contains a capability, and assuming that the program counter is valid
(ValidPC(. . .)) and that z1 and z2 are valid new bounds (ValidSubseg(. . .)), then the
machine successfully increments the program counter and restricts the capability
held in register r with new bounds z1 and z2. Similarly, the second rule states that

CHAPTER 3. UNINITIALIZED CAPABILITIES 118

successfully executing the store instruction reads a word from the src register and
writes it into the memory location pointed to by the capability in the dst register.

The specifications that appear in Figure 3.7 for subseg and store are in fact
not the most general specifications for these instructions. They assume that some
side-conditions hold and establish that the execution succeeds, making them useful
for reasoning about the correctness of a concrete program. However, there are many
ways in which instructions can fail: because of capability checks, but also, for
example, because incrementing the program counter or performing address arithmetic
can fail since we have finite memory. Our program logic thus also provides rules
(not reproduced here) to reason about cases where executing an instruction fails.
Furthermore, “most general” specifications covering all cases are also provided; these
are useful not only as a proxy for deriving more specific rules, but also directly in the
proof of the Fundamental Theorem (Theorem 10), for characterizing the behavior of
arbitrary instructions that might or might not fail.

Our machine code does not have primitive mechanisms for structured control
flow. Similarly, our program logic does not make assumptions about program control
flow. Instead, programs composed of several instructions are specified in continuation-
passing style: one proves a specification for a complete execution of the machine,
starting at the beginning of the program, by assuming a specification for the continua-
tion of the program, which is reached either through sequential instruction fetch, or
through a jmp instruction.

The last rule of Figure 3.7 exemplifies such a specification for a program composed
of several instructions; the rclear macro. This macro clears a number of registers
by setting their contents to 0. It is parameterized by a list l of register names and its
code consists of a sequence of instructions move r 0 for each register name r in l. We
state rclear’s specification as a triple using the Repeat SingleStep execution mode,
meaning that the specification covers a full execution of the machine, and prove that
starting before the execution of rclear, to reach any postcondition Q (describing
the state of the machine at the very end of the execution) it is enough to prove that
one can reach Q from the continuation, i.e. after rclear as been executed. In other
words, the postcondition of rclear is given as the precondition of its continuation.

Concretely, the specification of rclear assumes that the body of the macro
(“rclear_instrs l”) is laid out contiguously in memory range [a0,an), while the program
counter initially points to a0. When the program counter eventually points to an, the
address immediately after the macro instructions, then all the registers in l have
been cleared and now contain 0. Importantly, notice that the specification for the
continuation of rclear is given not as a separation logic triple, but directly in terms of
the weakest-precondition combinator. Unlike triples, this specification is not required
to be persistent (note the absence of □). Indeed, it only makes sense to invoke this
specification once, at the point of the execution where the continuation is reached (i.e.
when pc reaches (p,g,b,e,an)).

CHAPTER 3. UNINITIALIZED CAPABILITIES 119

3.6 Logical Relation Model

Now that we have this program logic, we can explain the most important contribution
of this paper: the formalization and proof of capability safety. This is the set of
guarantees that the capability machine provides for untrusted code and it includes
both general capability safety guarantees and guarantees that are specific to local and
uninitialized capabilities.

While our program logic (Section 3.5) provides rules for concrete machine in-
structions which are useful to verify known concrete code, capability safety provides
a universal contract that holds for unknown, arbitrary code. Thanks to the capability
checks implemented by the capability machine, an arbitrary piece of code cannot
behave completely arbitrarily: it is limited by the set of capabilities it has access to.
Our logical relation model thus captures how we can reason about the interaction of
known and unknown code, and in particular which guarantees one exactly gets from
the revocation mechanism enabled by local and uninitialized capabilities.

For readability, we introduce the required machinery gradually, starting with a
simple formulation of capability safety without support for revocation (Section 3.6.1).
Next, we provide some intuitions on what needs to change for supporting revocation
in Section 3.6.2. This motivates the need for a form of Kripke worlds with public/pri-
vate transitions, and standard and custom resources, which we explain and apply in
Sections 3.6.3 to 3.6.5. In Sections 3.6.6 to 3.6.7, we provide more technical details
on how we combine Iris invariants and saved predicates with more traditional Kripke
world-indexing. The Fundamental Theorem, which establishes that our machine
indeed satisfies the capability safety formalized by the logical relation, is discussed in
Section 3.6.8. Finally, we demonstrate reasoning about examples with revocation, by
outlining a proof of the classic awkward example in Section 3.6.9.

3.6.1 A Version of the LR without Kripke Worlds/Local Capabilities

We begin with a formulation of capability safety without support for revocation. As
such, we model capability safety of capabilities without a locality bit, reminiscent to
the Cerise model presented in Chapter 2. Intuitively, the idea is to define the authority
represented by a capability. The guarantees provided by the machine then amount to
the fact that arbitrary code can never exceed the authority of the capabilities it has
access to, or create capabilities with larger authority. To formalize these intuitions,
we define a maximum bound on the authority of a capability using a notion of safety
with respect to a set of registered invariants. A capability will be considered safe if
it cannot be used in any way to break those invariants. This intuition is instantiated
differently for different types of capabilities. For example, memory capabilities are
safe if they only grant access to memory that is guaranteed to contain safe values
by an invariant. Updating the memory with safe values must not break registered
invariants. If the capability is executable, jumping to it with safe words in the registers
must respect invariants and produce safe result values.

CHAPTER 3. UNINITIALIZED CAPABILITIES 120

E (v) ≜ ∀reg, R(reg)∗pc 7→ v∗∗(r,w)∈reg,r ̸=pc r 7→ w−−∗

wpRepeat SingleStep
{

v,v = Done Halted⇒
∃reg′,∗(r,w)∈reg′ r 7→ w

}
R(reg) ≜ ∗(r,w)∈reg,r ̸=pcV (w)

V (w)

V (z) ≜⊤
V (O,−) ≜⊤
V (E,b,e,a) ≜ □ ▷ E (RX,b,e,a)
V (p,b,e,a) ≜ ∗a′∈[b,e) ∃p′, p≼ p′∧ ∃w,a′ 7→p′ w∗V (w)

Figure 3.8: Safety without Revocation.

The reader may notice that this intuitive definition of safety is problematically
circular. This is commonly referred to as the world circularity problem [6, 21].
Skorstengaard et al. [129] resolve it for their model using step-indexed Kripke logical
relations [6, 21]. We define our logical relations model in Iris so that we can (1) replace
the manual bookkeeping of step-indices with its built-in support for guarded recursion,
(2) use Iris invariants for reasoning about shared state, and (3) take advantage of the
Iris implementation in Coq and its associated interactive proof mode [83].

Formally, we define in Figure 3.8 three mutually recursive logical relations. The
value relation V : Word→ iProp defines what it means for a word to be safe, the
expression relation E : Word→ iProp expresses what it means for a program counter
to be safe to execute and the relation R : (RegName→Word)→ iProp expresses that
a register file is safe if all register values are safe.

We define safety of words V as a guarded fixed point: each recursive occurrence
of V is either guarded by the so-called “later” modality ▷ or appears inside an Iris
invariant, indicated by the boxed assertion, and thus Iris guarantees that V is well-
defined. For space reasons, we will not explain the later modality or Iris invariants
technically; readers who are unfamiliar with them may interpret ▷P to mean that
P holds after one step of execution and think of an Iris invariant as a property that
remains valid at every step of execution.

We define the expression relation E as a program specification, expressed using
the weakest-precondition combinator. Conceptually, the body of E can be read as
a Hoare-triple (see Section 3.5), except that it is not required to be persistent. A
word v is in the expression relation—i.e. it is safe to execute—if one can run the
machine with v in the pc register, and safe values in the other registers, provided we
temporarily give up ownership of the registers but we get it back afterwards. Note that
we do not specify what happens if the machine runs into an error, but only the case
where the machine halts gracefully. Now, since we are not requiring any interesting
property to hold in the postcondition, it might seem like the definition of E is trivial
and always true! This is not the case, however. A weakest-precondition assertion only
holds within Iris if all Iris invariants are preserved at every step of the execution. This
includes the Iris invariants mentioned in the definition of V , as detailed next.

CHAPTER 3. UNINITIALIZED CAPABILITIES 121

The value relation, V (w), defines what it means for a word to be safe. Intuitively,
the definition expresses that a word is safe when it cannot be used to violate invariants.
There are two modes of usage to consider: (1) read/write authority over an address, and
(2) authority to jump to an enter capability. A capability (p,b,e,a) with a permission
p other than E or O grants read/write authority over each address a within its range
of authority. It is in the value relation, if for each a within [b,e), there exists an Iris
invariant (indicated by the boxed assertion) which owns the memory location and
guarantees that it will always contain a safe value. Note that the invariant is allowed
to hold a stronger permission p′ ≽ p (so that we can easily downgrade capabilities’
permissions).

A capability with an enter (E) permission is a special case: it cannot be used
directly to read values from memory, so we do not require safety of the values it
points to. Instead, its safety only requires that the capability is safe to execute (by the
expression relation) after changing its permission to RX (as happens when invoking an
enter capability). Since this capability may be jumped to at any point of the execution,
this fact needs to hold persistently, hence the “box” modality.

Interestingly, the safety of executable capabilities (RX or RWX) does not require
any additional conditions. As we will see in Section 3.6.8, this is because we are
formalizing capability safety: a property that holds for arbitrary code. As such, we
could in principle allow the adversary to execute any capability it has read access
to and in fact, all executable permissions in the lattice of Figure 3.2 also have read
permission. In fact, even if we give an adversary read but not execute permission
over some memory, we already cannot prevent them from executing the instructions
anyway: as soon as they have writable and executable access to any block of memory
[b,e) elsewhere, they can simply copy the instructions into the range [b,e) and jump
to them there.

3.6.2 Reasoning about Revocation

The logical relation from the previous section is relatively easy to understand, but
only captures a basic form of capability safety. In the following sections, we extend it
to support local and uninitialized capabilities as well as revocation.

To understand what needs to change, we first take another look at scenario 3 from
Section 3.3.3, using the illustrations in Figure 3.9. In this scenario, Alice receives a
stack capability cstk from Charlie in some register rstk, as shown in Figure 3.9a. Alice
knows that Charlie only has access to safe capabilities, so every address a in the range
of cstk must be owned by an invariant ∃w,a 7→p′ w∗V (w) . These invariants are
depicted as Temporary in Figure 3.9, a term that we will explain in the next sections.
This invariant means that any component in the system is allowed to change the
content of the memory cell at a to any safe value w.

However, when Alice invokes Bob, the situation is different. Alice has now stored
the value 42 in location a42 and expects Bob to not be able to change this value (see
Figure 3.9b). To this end, Alice uses local capabilities to revoke Bob’s read/write
access to part of the stack and only allow him to modify the other parts. In other

CHAPTER 3. UNINITIALIZED CAPABILITIES 122

rstk (RWL,LOCAL,)

Temporary

(a) The stack Alice receives from Charlie.

rstk (RWL,LOCAL,)

Frozen(42)

Temporary

a42 42

(b) The stack Alice passes to Bob.

Figure 3.9: A scenario where a stack capability is passed in a register rstk between
different parties.

words, the invariant ∃w,a 7→p′ w∗V (w) that used to govern the memory location
a42 should no longer be active. Instead, it should be replaced by a new invariant
expressing Alice’s intention: the memory location should now be frozen: it should
not be modifiable and only be allowed to contain 42, as shown in Figure 3.9b.

Replacing this old invariant with such a frozen invariant also means that capabil-
ities that used to be safe are not safe any more. Specifically, a read/write memory
capability c whose range includes a (e.g. Charlie’s stack capability) will no longer
be safe as the required invariant has been replaced. This observation makes a lot of
sense: in this scenario, such a capability is really not safe anymore to pass to Bob, as
he could use it to break the new frozen invariant.

In other words, reasoning about local capabilities and revocation requires two
things that are impossible in the logical relation from Section 3.6.1. First, general Iris
invariants cannot be deactivated (except temporarily during a single atomic step, but
that’s not what we need). Once they are defined, they remain active during the rest of
the execution of the system. Second, the logical relation does not allow a capability to
be safe at one moment but become unsafe later (when certain invariants have been
revoked): the value relation is simply a predicate on words and if it is true, it remains
true forever.

Moreover, we also need to ensure that an adversary does not deactivate an invariant,
without reinstating it when they return. In other words, we need a more refined model,
where invariants can be in different states and where safety can depend on these states.
Moreover, we must be able to track precisely how these states evolve (to ensure that
invariants are properly reinstated when necessary). This final point means that to
define the refined model it is not enough simply to replace the general Iris invariants
with so-called cancellable invariants. Instead we will parameterize our logical relation
by an explicit notion of world, which will allow fine-grained control over invariant
states.

CHAPTER 3. UNINITIALIZED CAPABILITIES 123

3.6.3 Kripke Worlds to Track the State of Invariants

We change the signature of the value relation as follows: the safety of a word can
now depend on a world representing the currently active invariants: V : WORLD→
Word→ iProp.

Some readers may notice that our value relation now has the same signature as a
step-indexed Kripke logical relation, but we hasten to point out that our worlds are
much simpler than is typical in such settings. In earlier work, e.g., [8, 39, 129, 132],
worlds track both invariant states and associated predicates (which are also world-
indexed) on memory and are therefore recursively defined. Here instead, worlds
track only the states of invariants and in Section 3.6.6, we will discuss how the
associated predicates on memory are tracked using an Iris mechanism called saved
predicates[75, 77].

Before we move on to the definition of worlds, there is a final important observa-
tion to make in the revocation scenario we discussed. As discussed, Alice revokes the
old invariant for location a42 before invoking Bob and as discussed, this will break the
safety of some capabilities. However, not all invariants can be revoked in this way
and also, not all capabilities will be made unsafe by revoking an invariant. To under-
stand this, consider that it is easy to control the local capabilities that an adversary
has access to: they must reside in the registers or in memory that the adversary has
previously received write-local access to. However, the same is not true for global
capabilities: the adversary might have previously stored those in arbitrary memory and
we have no way to revoke them. Since we can’t revoke an adversary’s access to global
capabilities, it should not be possible to revoke invariants which their safety depends
on. Conversely, global capabilities’ safety should be able to survive the revocation of
invariants like the one for a42.

What this means is that we need to distinguish two kinds of invariants: (1) non-
revocable ones, which global capabilities’ safety may depend on, and (2) revocable
ones, which global capabilities’ safety must not depend on. Revoking the latter may
affect the safety of local capabilities but not global capabilities. To formalize this,
we follow previous work [39, 131] and distinguish public and private world updates.
The former are those which cannot break safety of any capabilities (e.g. adding new
invariants for previously unused memory) while the latter are updates which may
break safety of local capabilities but not global capabilities (e.g. revoking invariants,
adding new invariants for unused memory). If a world W ′ can be reached from
W using public transitions alone, we call it a public future world (W ′ ⊒pub W) and
similarly for private transitions and private future worlds (W ′ ⊒priv W). To securely
enforce revocation, a calling convention must satisfy the following; during execution,
a function may internally produce private future worlds, however, the overall change
observed from the beginning of a call to its return is a public transition.

Our worlds assign to memory locations a logical state belonging to a small protocol
tailored to talk about revocation. This “standard” protocol uses four possible states.
A location can be either in the Temporary, Frozen, Permanent or Revoked state: The
first two are revocable (consequently, global capabilities may not depend on them),

CHAPTER 3. UNINITIALIZED CAPABILITIES 124

the third is not (consequently, global capabilities can depend on them).

• The Temporary state represents the invariant that a location may only contain
safe words, including local capabilities. This type of invariant is intended to
cover memory locations in the stack as they are passed from caller to callee,
which are allowed to contain local capabilities.

• The Permanent state represents the invariant that a location contains safe words,
but only those whose safety will survive private updates, i.e., no local capabili-
ties.

• The Revoked state corresponds to the result of revocation: a location that was
previously Temporary or Frozen but got revoked. This means we know nothing
about the contents of the memory at this location: conceptually, someone has
taken control over the location, and needs to do some work to reinstantiate the
invariants and restore safety of capabilities for it.

• Finally, the Frozen state asserts that we know the exact (not-necessarily-safe)
value stored at the location, and it is not allowed to change. Frozen states are
used for two purposes: (1) to keep a local stack frame frozen during a call to
an adversary and (2) to freeze the uninitialized part of a capability. Indeed,
locations in the uninitialized part of a U- capability will point to the same word
right until they are written to. Whenever an uninitialized capability is purposely
uninitialized (when passing it to an adversary), the Frozen state will allow us
to remember the old, now unsafe value it still contains. If the word is never
overwritten, then that knowledge can be used to reinstate the address to its
previous Temporary state (see Section 3.6.7 for an example of such an update).
Note that the Frozen state is a schema that describes a pattern of states, one
for each possible mapping m. The transition from Frozen m1 to Frozen m2
must therefore go through the Temporary state, and is thus an overall private
transition.

We call these states the standard states, StdStates.
Invariants represented by these standard states are collected in W std, the first

component of a world W . It is a partial map from addresses to standard states:
W std : Addr ↪→ EX(StdStates). Here EX refers to the Iris notion of an exclusive
resource algebra—readers who are unfamiliar with Iris can ignore it. This map only
tracks the states of shared resources, i.e. those that safe capabilities can range over.
The shared resources are exactly those that are associated to the standard behaviour. In
Section 3.6.5, we will explain a second component of W , which collects other, custom
invariants. Such custom invariants are never directly addressable by shared (i.e. safe)
capabilities, but they are necessary for modeling advanced examples (closures with
non-trivial local state), see, e.g., Section 3.6.9.

CHAPTER 3. UNINITIALIZED CAPABILITIES 125

E (W)(v) ≜ ∀reg, R(W)(reg)∗ sharedResources(W)∗ stsCollection(W)∗
pc 7→ v∗∗(r,w)∈reg/pc r 7→ w−−∗

wpRepeat SingleStep

v,v = Done Halted→
∃W ′ reg′, W ′ ⊒priv W
∗ sharedResources(W ′)
∗ stsCollection(W ′)
∗∗(r,w)∈reg′ r 7→ w

R(W)(reg) ≜ ∗(r,w)∈reg/pcV (W)(w)

V (W)(w)

V (W)(z),V (W)(O,−) ≜⊤

V (W)(E,g,b,e,a) ≜
□ ∀W ′ ⊒g W ,
▷ E (W ′)(RX,g,b,e,a)

V (W)(p,g,b,e,a) ≜ ∗a′∈[b,e)∃p′, p≼ p′∧ rel(a′, p′,V)

∧

{
S u(W)(a′,g, p,a) if p = U-
S (W)(a′,g, p) otherwise

State relation

S (W)(a,g, p) ≜

W std(a) ∈ {Temporary,Permanent} if ¬write-local(p)

∧ g = LOCAL

W std(a) = Temporary if write-local(p)
∧ g = LOCAL

W std(a) = Permanent if g = GLOBAL

S u(W)(a,g, p,mid) ≜

S (W)(a,g, p)
∨ ∃w,W std(a) = Frozen{[a := w]} if a≥ mid

∧ g = LOCAL

S (W)(a,g, p) otherwise

Figure 3.10: Safety with Revocation. Differences with Figure 3.8 are highlighted in
blue.

CHAPTER 3. UNINITIALIZED CAPABILITIES 126

3.6.4 The Logical Relation with Support for Revocation

Let us now take a look at Figure 3.10 and see how the logical relation is updated to
use these worlds. The differences with the LR from Section 3.6.1 are highlighted in
blue. Apart from the addition of world parameters W , the changes are concentrated
around the validity of a read-write capability. Instead of requiring the presence of
an Iris invariant, that condition now formalizes the intuitive idea mentioned above:
rel(a, p′,V) associates a memory invariant (namely V itself) to address a using saved
predicates, whereas S and S u associate the address a to its state. More precisely,
the state relation S (W)(a,g, p) looks at the locality g and the permission p, and
requires W to contain the appropriate state in W std. The uninitialized state relation
S u(W)(a,g, p,mid) does the same but for U- permissions, for which the required
state also depends on the boundary mid between the initialized and uninitialized part
(i.e. the current address a of the uninitialized capability). The resource rel(a, p′,V)
will be discussed later in Section 3.6.6.

We highlight what the states are for some interesting cases of safe capabilities:

• A capability with a RWLX permission (which must be itself local) is in V (W) if
each address within its range of authority is in a Temporary state of W std (so
the address can be used to store local capabilities).

• A capability in V (W) with a URWLX permission and LOCAL locality, currently
pointing to the address mid, has all addresses a < mid in a Temporary state,
whereas it has all addresses a ≥ mid either in a Temporary state or Frozen at
some hidden word w.

• Global capabilities in V (W) have all addresses in their range of authority in a
Permanent state, regardless of their permission.

In addition, the value relation for enter capabilities now quantify over future
worlds W ′ ⊒g W . For g local resp. global, this means that the execution of the
capability must hold in arbitrary public resp. private future worlds. This quantification
makes sure that global enter capabilities remain safe when temporary invariants are
revoked, and enforces that invariants are properly reinstated. Intuitively, it means that
a global enter capability, typically referring to that of a function pointer, can be safely
invoked in any private future world (or in other words, at any time during execution),
while invoking a local enter capability, i.e. that of a return pointer, indicates the end
of a call, and can thus only safely be invoked in a public future world.

Finally, the new sharedResources and stsCollection assertions in the figure are
used to ensure that shared memory actually satisfies the memory invariants, which
have been registered using saved predicates, during execution.

Concretely, sharedResources(W) and stsCollection(W) are non-duplicable Iris
resources that describe the current global state of standard states and memory invari-
ants at world W , contrasted against V (W)(w) which defines the persistent knowledge
that w is valid in the world W . All three are parametrized by a world state W . As such,

CHAPTER 3. UNINITIALIZED CAPABILITIES 127

Temporary RevokedFrozen m

Permanent

Figure 3.11: Standard State Transition System. Full lines indicate public transitions,
dashed lines indicate private transitions. Public transitions are also private.

the following three assertions can hold at the same time:

sharedResources(W1)∗ stsCollection(W2)∗V (W3)(w)

where W1, W2 and W3 are different worlds. A recurring proof obligation, is to update
the world state of stsCollection(W) and sharedResources(W) (typically as a result of
some physical change to the machine), and consequently having to reestablish validity
of relevant words, so that it matches the new world state.

The formal details behind sharedResources and stsCollection are a bit technical
and will be discussed further in Section 3.6.6.

3.6.5 World Updates and Monotonicity

Now let us reconsider our worlds and future world relations in more detail. As already
mentioned, temporary invariants may be revoked to obtain a private future world and
fresh invariants over unused memory may be added to obtain a public future world.
Actually, those are not the only types of updates allowed; Figure 3.11 depicts the
allowed transitions between standard states. Dashed lines in the figure indicate private
updates and full lines indicate public ones. One can observe that making a frozen or
revoked location temporary is a public update. Indeed, doing so can never make safe
capabilities unsafe; the only frozen locations that a safe capability may depend on,
are those that belong to the uninitialized part of a U- capability. These locations can
become Temporary without breaking the capability’s validity. In contrast, changing
the state of a temporary location is a private update, because it may break safety of
capabilities depending on it.

We can now give the full definition of WORLD. In addition to the component W std

which we have already seen, it contains a second component W cus. This component
contains custom state transition systems, whose states can be associated with arbitrary
Iris predicates. Such custom invariants are often needed for examples that involve
closures with some private state evolving according to a certain ad hoc protocol, like
in the example presented in Section 3.6.9. We remark that the definition of the value
relation does not depend on the custom states, and only standard states are needed to
prove the fundamental theorem of logical relations (Section 3.6.8). However, through
its quantification over future worlds, the value relation enforces that custom states
evolve according to their public and private future world relations.

CHAPTER 3. UNINITIALIZED CAPABILITIES 128

W cus refers to a mapping from region names rn ∈ RNames to custom state transi-
tion systems with private and public transitions, and their current state σ ∈ CState.
Formally, this is represented in two maps, W cus

sta and W cus
rel , where the former maps

region names to current states, and the latter maps region names to private and pub-
lic transitions. A WORLD is simply a pair of W std and W cus, and stsCollection(W)
denotes the full ownership, what we call the authoritative view, of W std, W cus

sta and
W cus

rel .
We distinguish between two future world relations. We call W ′ a public future

world of W , W ′ ⊒pub W , if each state in W ′ is either fresh, or publicly reachable
from its state in W . A state is publicly reachable by a sequence of public transitions.
Conversely, we call W ′ a private future world of W , W ′ ⊒priv W , if each state in W ′ is
either fresh, or privately reachable from its state in W . A state is privately reachable
by a (possibly interwoven) sequence of private and public transitions. Note that a
public future world is also a private future world.

Since the validity of global capabilities depend only on Permanent regions, it is
easily proved monotone with regards to private future worlds, in which Permanent
regions can never be affected.

Lemma 10. Let w be a word that is not Local. Then

W ′ ⊒priv W → V (W)(w)−−∗ V (W ′)(w)

On the other hand, local capabilities may depend on Temporary regions, and are
thus only monotone with regards to public future worlds, giving rise to the following
general monotonicity property.

Lemma 11. W ′ ⊒pub W → V (W)(w)−−∗ V (W ′)(w)

In the remainder of this section, we discuss how individual states of
stsCollection(W) may be reasoned about. This part of the model is a bit techni-
cal and may be skipped on a first reading. The key idea, is that Iris enables us to
reason locally about individual states in the global world state. To facilitate local
reasoning about standard states, we introduce fragmental views of individual resources,
in the form of points-to predicates: a std7−→ ρ denotes the fragmental view of the stan-
dard state of address a, and rn cus7−→ σ denotes the fragmental view of the state of the
custom state transition system rn. These are non-duplicable, while the fragmental
view for custom state transitions rn rel7−→ (Rpub,Rpriv) is persistent. We occasionally
abuse notation and write

rn rel7−→

to denote the fragmental view of the public and private transitions of a custom state
transition system named rn.

Owning both a fragmental and authoritative view implies that the state of the
fragment is part of the global state. We write W (a) = ρ as shorthand for W std(a) = ρ .

Lemma 12. stsCollection(W)∗a std7−→ ρ −−∗ W (a) = ρ

CHAPTER 3. UNINITIALIZED CAPABILITIES 129

γsstd,γscus,γrcus ∈ GName
W std : Addr ↪→ EX(StdStates)
W cus

sta : RNames ↪→ EX(CState)
W cus

rel : RNames ↪→ AG(2CState×2CState)

stsCollection(W std,W cus) ≜ •W std γsstd ∗ •W cus
sta

γscus ∗ •W cus
rel

γrcus

a std7−→ ρ ≜ ◦ [a := EX(ρ)]
γsstd

rn cus7−→ σ ≜ ◦ [rn := EX(σ)]
γscus

rn rel7−→ (Rpub,Rpriv) ≜ ◦ [rn := AG(Rpub,Rpriv)]
γrcus

Figure 3.12: Collection of State Transition Systems

Likewise, a fragment allows us to update its state in stsCollection(W). We write
W [a := ρ ′] as shorthand for (W std[a := ρ ′],W cus). Since the following lemma updates
Iris ghost state, we use the ‘update’ modality from iris ≡−∗, readers unfamiliar with
Iris may safely ignore it, and regard it as a typical separation logic wand.

Lemma 13. stsCollection(W)∗a std7−→ ρ ≡−∗ stsCollection(W [a := ρ ′])∗a std7−→ ρ ′

Lemma 13 updates stsCollection(W), without updating sharedResources(W) or
any previously stated validity assertions. A recurring proof obligation will thus be to
reestablish validity in the new updated world state. We will describe how this can be
done in Section 3.6.7.

The above lemmas sufficiently display the core features of stsCollection(W) and
its fragments. Nevertheless, readers familiar with Iris might be interested in the
underlying technical details. Throughout the ensuing explanations, we will first
introduce the main ideas through somewhat abstract definitions, and then follow up
with the underlying Iris implementation.

When defining stsCollection(W), we introduce three globally named authoritative
resource algebras; an exclusive map for standard and custom states respectively,
and an agreement map for custom transitions. Figure 3.12 formally defines all the
aforementioned resources.

3.6.6 Linking Worlds to Memory

So far, we’ve defined worlds, explained how the logical relation depends on the
invariants in a world and how worlds are allowed to evolve over time. What is
still missing in the story is mapping invariants to requirements on memory contents
and ensuring that those requirements are satisfied at runtime. This section is quite
technical, and makes use of sophisticated Iris machinery like stored predicates.

The core idea is to define an authoritative mapping from addresses to memory
invariants, where the authoritative view, sharedResources(W), instantiates each in-

CHAPTER 3. UNINITIALIZED CAPABILITIES 130

monoReq(W,φ ,v,⊒)≜□ ∀W ′,W ′ ⊒W → φ(W,v)−−∗ φ(W ′,v)

permR(a,p,W,φ)≜ ∃v,a 7→p v∗▷ φ(W,v)∗monoReq(W,φ ,v,⊒priv)

tempR(a,p,W,φ)≜ ∃v,a 7→p v∗▷ φ(W,v)

∗

{
monoReq(W,φ ,v,⊒pub) if write-local(p)
monoReq(W,φ ,v,⊒priv) o/w

frozenR(a,p,m,Mstd)≜ a 7→p m(a)∗∀a ∈ dom(m),Mstd(a) = Frozen m

Figure 3.13: Standard Resources.

variant according to some side conditions, while the fragmental view, rel(a, p,φ)
describe knowledge that an address a is associated to a particular invariant φ . The
standard state of an address, determined via the standard state fragment presented in
the previous section, is used to interpret each memory invariant accordingly.

Unlike Iris invariants, which hold at every step of execution, and which can only
be invalidated for one atomic step, the authoritative view of the mapping is explicitly
carried around, and may be invalidated during multiple steps of execution. Its integrity
is instead enforced by the logical relation. Recall that the logical relation is used
to reason about unknown code. More precisely, the expression relation yields a
weakest precondition statement that describes the safe execution of arbitrary code.
However, in order to apply that weakest precondition, certain side conditions must be
established, among which are stsCollection(W) and sharedResources(W) for some
world W . Likewise, since validity of the return capability is defined in terms of the
expression relation, stsCollection(W ′) and sharedResources(W ′) is assumed to hold
upon invoking the return capability, for some future world W ′. Thus, the expression
relation is used whenever control is changed between the trusted and untrusted code,
and the invariant mapping is guaranteed to hold at the beginning of a function call,
and upon the return the its caller. Finally, the postcondition given by the expression
relation guarantees that the invariant mapping holds at the final program completion.

We will gradually build up to the full definition of the memory invariant mapping.
First, in Figure 3.13, we define the resource interpretation of each standard state:
standard shared resource invariants. The role of each interpretation is to map an
address to the requirement on the location’s contents that the associated invariant in
its current state represents.

A permanent resource invariant for some address a and permission p contains the
ownership of a points-to predicate for the address a. It states that some predicate φ

holds at the current state of a, say v, and at some world W . Crucially, this φ holds
invariantly, that is in any private future world of W (when applied to that same v). On
the other hand, local capabilities are allowed to depend on revocable invariants, so
a temporary invariant only requires φ to be monotone with regards to public future
worlds and is not required to be able to survive private world updates.

CHAPTER 3. UNINITIALIZED CAPABILITIES 131

a1 Temporary
a1 Frozen m

· · ·
an Permanent

(a) Mstd

a1 γ1,p1 γ1 Z⇒ φ1
a1 γ2,p2

· · ·
an γn,pn γn Z⇒ φn

(b) Minterp

rn1

· · ·
rnn

(c) Mcus

Figure 3.14: Abstract Machine.

srMap(W,Minterp,Mstd) ≜ ∗(a,(γ,p))∈Minterp ∃ρ φ ,γ Z⇒ φ ∗Mstd(a) = ρ ∗a std7−→ ρ

∗

permR(a,p,W,φ) if ρ = Permanent
tempR(a,p,W,φ) if ρ = Temporary
frozenR(a,p,m,Mstd) if ρ = Frozen m
⊤ if ρ = Revoked

sharedResources(W) ≜ ∃Minterp Mstd,
· · · ∗ authoritative ownership of Minterp ∗ · · ·
∗ srMap(W,Minterp,Mstd)

Figure 3.15: Standard Shared Resources Map

Finally, a frozen resource invariant Frozen m is parametrized by a memory seg-
ment: a partial map m : Addr ↪→Word from addresses to specific words. Note that
these words do not need to satisfy any invariant φ or be themselves safe in any way.
The Frozen state imposes two requirements for addresses a ∈ dom(m): that they point
to the associated word, i.e. they cannot change until the state changes from Frozen
to Temporary, and that each address in the map m are also frozen to the same map m
(see below for more details on Mstd). This additional requirement ensures that if one
of the invariants for an address in dom(m) is revoked, all other ones must be revoked
along and it allows us to think of the addresses in m as being frozen as a block, rather
than individually.

So, now we have defined maps that keep track of the standard state of shared
resources, the region state of custom resources, and their associated state transition
systems. We have also defined the meaning of temporary, permanent, and frozen
resource invariants as requirements on memory. What remains is to connect the two:
mapping a given world to the requirement on memory that its invariants represent.
This connection is made using a few non-trivial pieces of Iris machinery, and as such
we begin by presenting a rough sketch of what is going on.

Technically, the connection is made in the predicates rel(a, p,φ), stsCollection(W)
and sharedResources(W) that appear in Figure 3.10. These three predicates are all
defined as requirements on what we can think of as an instrumented machine state.
This instrumented machine state consists of three parts, depicted in Figure 3.14. The

CHAPTER 3. UNINITIALIZED CAPABILITIES 132

sharedResourcesOpen(W,S) ≜ ∃Minterp Mstd,
· · · ∗ authoritative ownership of Minterp ∗ · · ·
∗ srMap(W,Minterp\S,Mstd)

where S is a set of addresses, and Minterp\S removes S from the domain of Minterp.

Figure 3.16: Open Standard Shared Resources

most important part is Minterp, which associates each address ai with a predicate φi

and a permission p. To simplify the definition of Minterp, we do not associate ai

directly to φi, but indirectly through an Iris saved predicate γi Z⇒ φi for some i. The
permission represents the permission of the first allocated capability with authority
over ai, in other words an upper bound on the permission of all capabilities that
contain ai in their range of authority. The predicate φi : WORLD×Word→ iProp
represents the predicate that is currently enforced on values stored in memory at
address ai. It is interesting to note, that the φi in question will most often be the value
relation V . However, given the circular nature of the value relation, and the invariants
imposed over memory governed by a valid capability, the use of saved predicates over
a generalized φi enables a well-formed definition.

Additionally, the instrumented machine state contains two other pieces of logical
states, Mstd and Mcus, describing the current world W and its two parts W std and
W cus. The predicates stsCollection(W) and sharedResources(W) from Figure 3.10
impose requirements on this authoritative world. As we have seen in Section 3.6.5,
stsCollection(W) restricts the authoritative copy of the current world to correspond
exactly to W . Meanwhile, sharedResources(W) makes the connection for every
address a between three things: the actual word w in the capability machine’s memory
at a, the predicate φ registered for a in Minterp and the standard state ρ for a in Mstd. It
requires that φ satisfies the word w at the world W , in the appropriate way as defined
in Figure 3.13 for the state ρ .

Let’s now formally outline how these connections are established. Figure 3.15 ab-
stractly describes the final piece of the instrumented machine state, namely
sharedResources(W). It claims ownership over the authoritative view of the exis-
tentially quantified Minterp, and declares an instance of the srMap predicate. This
predicate unfolds Minterp, determines the saved predicate of each address a, looks
up the appropriate standard state ρ as declared in Mstd, asserts ownership over the
exclusive fragment a std7−→ ρ , and asserts the appropriate standard resources predicate
accordingly.

We highlight that the standard resource is instantiated using W , rather than Mstd.
Indeed, W std and Mstd are not formally required to be equal. As a result, memory
invariants are instantiated on a world that is potentially out of sync with the actual
collection of standard states. In Section 3.6.7, we will see how this is a useful feature
of the instrumented machine state.

CHAPTER 3. UNINITIALIZED CAPABILITIES 133

The rel(a, p,φ) predicate, used in Figure 3.10, asserts the persistent knowledge
that address a is in the domain of Minterp, associated with permission p, and the saved
predicate φ . The rel predicate is, in essence, a fragment of the authoritative view
as defined by the sharedResources predicate. As such, rel can be used to extract
resources from the instrumented machine state. Since the extracted resources are non-
duplicable, the resulting sharedResources predicate is opened (Figure 3.16), resulting
in a mapping in which the opened resources are invalidated.

The following two lemmas let us to claim ownership over resources in
sharedResources, allowing us to potentially invalidate their invariants, and later on
yield ownership over those resources by reestablishing their invariants, thus closing
sharedResources. Let W1 denote the current standard state mapping, and W2 the world
at which each invariant is instantiated to.

Lemma 14 (Open Region).

a ̸∈ S→
stsCollection(W1)∗ sharedResourcesOpen(W2,S)∗ rel(a, p,φ)−−∗
∃ρ,a std7−→ ρ ∗ stsCollection(W1)∗ sharedResourcesOpen(W2,S⊎{a})

∗

permR(a,p,W,φ) if ρ = Permanent
tempR(a,p,W,φ) if ρ = Temporary
frozenR(a,p,m,Wstd

1) if ρ = Frozen m
⊤ if ρ = Revoked

The assumption that a ̸∈ S, and the resulting sharedResourcesOpen(W2,S⊎{a}),
guarantees that a cannot be extracted twice. Once extracted, it is possible to invalidate
the memory invariant of a. However, in order to get the closed region predicate back,
it is necessary to reestablish the memory invariants of address a.

Lemma 15 (Close Region).

stsCollection(W1)∗ sharedResourcesOpen(W2,S⊎{a})∗ rel(a, p,φ)∗a std7−→ ρ

∗

permR(a,p,W,φ) if ρ = Permanent
tempR(a,p,W,φ) if ρ = Temporary
frozenR(a,p,m,Wstd

1) if ρ = Frozen m
⊤ if ρ = Revoked

−−∗ stsCollection(W1)∗ sharedResourcesOpen(W2,S)

The above lemmas are useful for accessing resource invariants, and use them to rea-
son about physical machine changes whenever those resources include memory points-
to predicates. However, they do not describe changes to the instrumented machine
state, in other words, changes to W2 or W1. In the following section, we investigate
the necessary requirements for updating sharedResources(W2) and stsCollection(W1),
and how such complex manipulations are made more tractable.

CHAPTER 3. UNINITIALIZED CAPABILITIES 134

γh ∈ GName
Minterp : Addr ↪→ AG(GName×Perm)

sharedResources(W) ≜ ∃Minterp Mstd, dom(W std) = dom(Minterp)
= dom(Mstd)

∗ •Minterp γh

∗ srMap(W,Minterp,Mstd)

sharedResourcesOpen(W,S) ≜ ∃Minterp Mstd, dom(W std) = dom(Minterp)
= dom(Mstd)

∗ •Minterp γh

∗ srMap(W,Minterp\S,Mstd)

rel(a, p,φ) ≜ ∃γ,γ Z⇒ φ ∗ ◦ [a := AG(γ, p)]
γh

Figure 3.17: Standard Shared Resources

As in the previous section, the high level descriptions of sharedResources are
sufficient for understanding the role and utility of the instrumented machine state,
however, the Iris reader may want to see its formal definition. Figure 3.17 describes
the global names and resource algebras behind sharedResources and rel.

3.6.7 Changing the Instrumented Machine State

When reasoning about the execution of a function, the instrumented machine state
undergoes changes both public and private. These changes often follow specific
patterns related to the intended interpretation of standard states. Figure 3.18 de-
fines a collection of useful functions over worlds: revoke(W std) sets all Temporary
states to Revoked, freeze(W std,m) sets all addresses in the domain of m to Frozen m,
uninitialize(W std,m) sets all addresses in m to singleton Frozen states, and
reinstate(W std,S) sets all Revoked addresses in S to Temporary. The first three define
private changes, while the latter defines a public change. Finally, updated(W std,S,ρ)
sets all addresses in S to ρ , and is used for specific fine-grained changes that does not
fall within the more general transformations.

Updating the instrumented machine state is non-trivial, as it changes the general
interpretation of memory invariants. Throughout this section, we will refer to current
collection of standard state mapping as W1, and the world at which each invariant
is instantiated to as W2. On the one hand, updating stsCollection(W1) means the
interpretation of a standard resource changes. For instance, making a Revoked state
Temporary means we must now establish the tempR standard resource interpretation
for that address. On the other hand, updating sharedResources(W2) means that each
memory invariant in the standard resources map must now be instantiated to the new

CHAPTER 3. UNINITIALIZED CAPABILITIES 135

revoke(W std) = λa,

{
Revoked if W std(a) = Temporary
W std(a) otherwise

freeze(W std,m) = λa,

{
Frozen m if a ∈ dom(m)

W std(a) otherwise

uninitialize(W std,m) = λa,

{
Frozen {[a := m(a)]} if a ∈ dom(m)

W std(a) otherwise

reinstate(W std,S) = λa,

{
Temporary if a ∈ S
W std(a) otherwise

updated(W std,S,ρ) = λa,

{
ρ if a ∈ S
W std(a) otherwise

Where m denotes partial maps from addresses to standard states, and S denotes
sets of addresses. We will overload the notation and write revoke(W) to denote
(revoke(W std),W cus) (and similarly for remaining functions).

Below is a list of useful world relation properties of above functions.

revoke(W)⊒priv W (3.1)

freeze(W,m)⊒priv W (3.2)

uninitialize(W,m)⊒priv W (3.3)

reinstate(W,S)⊒pub W (3.4)

W ′ ⊒priv W → revoke(W ′)⊒priv revoke(W) (3.5)

Figure 3.18: Some Useful Functions over Worlds

updated world. This is particularly interesting for all the permanent and temporary
resources, which each satisfy their own distinct monotonicity property.

Both temporary and permanent standard resources are monotone with regards to
public future worlds. As such, public changes to sharedResources(W2) require no
side conditions on the collection of standard states, and we can prove the following
public update lemma.

Lemma 16. If dom(W std
2) = dom(W ′std

2) and W ′2 ⊒pub W2, then
sharedResources(W2)−−∗ sharedResources(W ′2)

Proof. By unfolding sharedResources(W2), we observe that the changed parameter
is restricted to the world at which invariants to the srMap are instantiated: neither the
standard states in Mstd, nor the content of Minterp are affected.

The proof proceeds pointwise over each a to (p,γ) mapping in Minterp. The saved

predicate a Z⇒ φ and standard state predicate a std7−→ ρ are framed away, and we are left

CHAPTER 3. UNINITIALIZED CAPABILITIES 136

with the standard resource of a. We then proceed by cases:

• Case: ρ = Permanent:
To show: permR(a, p,W2,φ)−−∗ permR(a, p,W ′2,φ).

Unfolding permR, we frame away the points to predicate, and are left with two
proof obligations, namely:

1. ▷φ(W2,w)−−∗ ▷φ(W ′2,w), and that
2. monoReq(W2,φ ,w,⊑priv)−−∗monoReq(W′2,φ ,w,⊑priv).

(1) is shown using the private monotonicity property of (2) (public future worlds
are also private future worlds), and (2) is shown by applying transitivity of
private and public future worlds (the private future world of a public future
world describes an overall private future world).

• Case: ρ = Temporary:
To show: tempR(a, p,W2,φ)−−∗ tempR(a, p,W ′2,φ).

Similar to above, by applying the transitivity of public future worlds.

• Cases: ρ = Frozen m and ρ = Revoked:
To show: frozenR(a, p,m,Mstd)−−∗ frozenR(a, p,m,Mstd)
To show: ⊤−−∗ ⊤
Cases are trivial.

The same cannot be proved for private changes to sharedResources(W2). Since
temporary resources might not be monotone with regards to private future worlds,
we must assert that the collection of standard states is free from any Temporary state.
This can be done by asserting ownership over stsCollection(revoke(W1)), giving rise
to the following private update lemma.

Lemma 17. If dom(W std
2) = dom(W ′std

2) and W ′2 ⊒priv W2, then
stsCollection(revoke(W1))∗ sharedResources(W2)−−∗
stsCollection(revoke(W1))∗ sharedResources(W ′2)

Proof. The proof proceeds similarly to Lemma 16, except for the case where ρ is
Temporary. A priori, this case cannot be proved since the given invariant is assumed to
be monotone with regards to public future worlds, but we now assume a private future
world. However, unlike in Lemma 16, we now know more about ρ . Specifically, the
ownership of stsCollection(revoke(W1)) and a std7−→ ρ implies that revoke(W1)(a) = ρ ,
from which we conclude that ρ cannot be Temporary, reductio ad absurdum.

Before being able to do any private changes to sharedResources(W2), it’s thus
necessary to revoke all Temporary states from stsCollection(W1). This amounts to
claiming ownership of all temporary resources in the instrumented machine state, and
is typically done as the first action in a function’s execution.

CHAPTER 3. UNINITIALIZED CAPABILITIES 137

Lemma 18. Let S be a set of addresses such that W std
1 (a) = Temporary iff a ∈ S, then

stsCollection(W1)∗ sharedResources(W2)≡−∗
stsCollection(revoke(W1))∗ sharedResources(W2)
∗∗a∈S∃p,φ , tempR(a, p,W2,φ)∗ rel(a, p,φ)

Proof. Proof proceeds by induction over each a to (p,γ) mapping in Minterp, which
means stsCollection(W1) is updated one address at a time. Let W1mid denote the partly
updated world state of stsCollection, obtained through the induction hypothesis. If
the standard state of a is Temporary, stsCollection(W1mid) must be updated such that
the standard state of a is Revoked.

Invoking Lemma 13 yields a std7−→ Revoked∗ stsCollection(W1mid [a := Revoked]).
Since a ∈ S, we must establish ∃p,φ , tempR(a, p,W2,φ) ∗ rel(a, p,φ), which corre-
sponds exactly to the contents of srMap at address a. Finally, since the new standard
state is Revoked, the new standard resource interpretation of a is trivially ⊤, and the
proof can proceed until W1mid = revoke(W1).

Note that the above lemma revokes all temporary resources from the instrumented
machine state. Indeed, revocation is an all or nothing update, since one temporary
resource might be invalidated by revoking another temporary resource that points to
it. In this version, we do not assume knowledge about any temporary resources of
addresses in S. However, in some cases, a subset of S will refer to known memory
invariants. Hence, it’s useful to state the following corollary, in which we additionally
assume rel(a, p,φ) for some known p and φ , for all addresses a in that subset.

Corollary 3. Let S and S′ be disjoint sets of addresses
such that W std

1 (a) = Temporary ∀a ∈ S⊎S′, then
stsCollection(W1)∗ sharedResources(W2)∗∗a∈S rel(a, p,φ)≡−∗
stsCollection(revoke(W1))∗ sharedResources(W2)
∗∗a∈S tempR(a, p,W2,φ)∗∗a∈S′ ∃p′,φ ′, tempR(a, p,W2,φ)∗ rel(a, p′,φ ′)

Thus far, we have presented lemmas for applying public and private changes to
the world, as well as revocation lemmas that relinquish ownership of all temporary
resources of the instrumented machine state. We refer to the Coq mechanization for
similar lemmas over the remaining function in Figure 3.18.

An often applied pattern is to revoke stsCollection(W1) and claim ownership over
temporary resources by applying Corollary 3, and syncing up the memory invariants
by applying Lemma 17, using Property 3.1. This pattern reflects the changes enacted
by the calling convention, when a function is called by an adversary. Indeed, the
calling convention generally induces certain patterns of change to the instrumented
machine state. In the following section, we sketch out these patterns for each stage of
the calling convention.

3.6.7.1 Effects of the Calling Convention on the Instrumented Machine State

In principle, the stack is a shared memory region managed by the calling convention,
pointed to by a local URWLX capability. It is characterized in the instrumented

CHAPTER 3. UNINITIALIZED CAPABILITIES 138

otherTemps

b

a

e

otherTemps

b

a
b′

e

priv⊑

Figure 3.19: World Changes at Program Startup

machine state by Temporary states for the initialized part, and a mix of Temporary
and singleton Frozen states for the uninitialized part. During execution, a function
may claim ownership of parts of the stack, invalidating the stack as a whole. Upon
calling a new function, the current stack frame is Frozen, while the uninitialized part is
passed to the callee. All in all, stack regions may take the following states, represented
on the left by a color encoding, that we will employ in ensuing diagrams.

Interweaving of Temporary and singleton Frozen states
Temporary states
Interweaving of Revoked and singleton Frozen states
Revoked states
Cohesive Frozen block

Below are sketches of the general patterns of change performed by the calling
convention, and their representations in the instrumented machine state. Let f be the
function about to execute. Assume that f is invoked by some other function, and will
itself invoke a function during its execution.

When called by a function The calling convention dynamically checks that rstk
stores a local URWLX capability, say (LOCAL,URWLX,b,e,a). The currently executing
function implicitly claims ownership of their stack frame, whose size is presumed
to be known at compile time. Since this invalidates the integrity of the stack as a
whole, the instrumented machine state must be fully revoked. The resulting change is
depicted in Figure 3.19, where [b,b′) describes the local stack frame.

Note that there may be Temporary regions outside the scope of the known stack
that get revoked as a result. We will refer to their state as otherTemps : Addr ↪→Word.

Since the calling convention does not check the address a of the given stack
capability, there is no relation between a and b′. As such, in order to claim ownership

CHAPTER 3. UNINITIALIZED CAPABILITIES 139

frame

otherTemps

b

b′

e frame

otherTemps

b

b′

e

otherTemps

b

b′

e
pub⊑

Figure 3.20: World Changes upon Call and at Callback

of the full stack frame, there may be (singleton) frozen states within [a,b′) that need
to be revoked, in addition to the Temporary states. Let S denote the set of such
addresses. Let W be the starting world state depicted on the left. The resulting world
is a private future world of W , and can be described as follows (Note that revoked(·)
and updated(·) commute):

Wf = updated(revoked(W),S,Revoked)⊒priv W

The updated instrumented machine state is obtained by applying Corollary 3, along a
similar lemma for S, and Lemma 17. We will henceforth refer to the resulting world
as Wf .

When calling a function and at callback When preparing for a function call, the
calling convention stores an activation record on the stack, restricts the stack capability
to point to the uninitialized part of the stack, and derives a local E capability pointing
to the activation record, to serve as the return capability.

CHAPTER 3. UNINITIALIZED CAPABILITIES 140

An important function of the calling convention is to encapsulate the local stack
frame from the callee, thus guaranteeing its integrity during the callee’s execution.
This is represented in the instrumented machine state by freezing all the owned
Temporary resources, namely the local stack frame and otherTemps. This is a private
update to Wf , which does not break any invariants in the instrumented machine state,
as Wf is fully revoked (Lemma 17).

Meanwhile, the ownership of Temporary resources from the uninitialized part of
the stack are relinquished to the callee. Since the restricted stack capability will be
fully uninitialized, they do not need to be Temporary; instead they are updated to
singleton Frozen resources. Let frame : Addr ↪→Word refer to the state of the local
stack frame, and unused : Addr ↪→Word refer to the state of previously Temporary
states from [b′,e). The new world can then be described as follows (referred to as
Wout):

Wout = uninitialize(freeze(Wf ,otherTemps⊎ frame),unused)⊒priv Wf

Since the return capability is local, we expect the world at its invocation to be a
public future world of Wout. Figure 3.20 shows the state of the world as control is
passed to the callee (left), and the two possible worlds we can expect upon return
(right). We will henceforth refer to either of these worlds as Wret. The explanation
behind the existence of two cases is subtle, but important in order to understand the
degree of stack safety achieved by the new calling convention. The explanation is
given in two phases, first purely technical, then how each case can intuitively be
understood.

Both possibilities allow for a world where parts of [b′,e) may have become
Temporary. However, in one version, the cohesive Frozen otherTemps⊎ frame state
is unchanged, while in the other it has become fully Temporary. From a technical
standpoint, the justification is made by observing that in the standard state transition
system (Figure 3.11), the transition from Frozen to Temporary is public. In a public
future world, any Frozen state in Wout is thus either Temporary, or Frozen at the same
map. The sharedResources(Wret) predicate guarantees the cohesion of the block:
either the full map remains Frozen, or it is fully Temporary.

In order to intuitively make sense of the two cases, it is useful to account for
the possible situations in which the return capability an be invoked. As expected,
the callee can invoke the return capability to return to f (corresponding to the case
where the full map remains Frozen). The calling convention guarantees that once
invoked, the return capability is in effect revoked from the callee. However, the calling
convention makes no similar guarantees with respect to f ’s caller. While f ’s local
stack frame might be cleared before returning, nothing stops the caller from reading
the potentially uncleared contents of higher stack frames. As a result, the callee
may use the stack to covertly communicate f ’s return capability to the caller. The
return capability can thus, more surprisingly, also be invoked by f ’s caller, after f
has returned to it. Thankfully, this means that f has now cleared its own stack frame,
and the invocation does not lead to any unwanted privilege escalation. This second

CHAPTER 3. UNINITIALIZED CAPABILITIES 141

otherTemps

b

b′

e

Figure 3.21: World Changes upon Return

situation is reflected in the public future world in which the Frozen state has become
Temporary.

We can make some interesting observations based on these two cases. First, it
illustrates that a callee may not themselves apply the calling convention, and may in
fact leak their own encapsulated capabilities to other functions (such as the caller). In
our attacker model, this poses no issue since we assume a simple binary distinction
between the trusted code, and the untrusted context. However, the calling convention
might not fit an attacker model where multiple mutually distrustful components, with
clearly specified privileges, should be prevented from covertly sharing privilege with
one another, such as in [3].

Second, we can observe that the calling convention does not prevent a caller
from reading the previous contents of now popped stack frames. While the calling
convention clears the local stack frame upon return, thus preventing unwanted privilege
escalation, one could argue that such a read action ought to have been prevented in
the first place. This aspect of stack safety is investigated in [144], and in Chapter 4 of
this thesis.

Upon return Upon return, the calling convention clears the local stack frame, and
invokes the return capability passed in r0. Since this signifies the end of f ’s execution,
it is important that no local changes are exposed to the context. As such, the final
world should be a public future world of W .

This is achieved by (1) relinquishing ownership of the local stack frame by
updating its addresses to Temporary, easily established since its content is cleared
prior to returning, and (2) reinstating all the previously Temporary resources that
happen to have remained frozen in Wret. The latter is less straightforward, since it
involves deriving the relevant memory invariants that are only known to hold at W .
The trick is to prove that they hold when instantiated to the final world, by applying
their public monotonicity property.

CHAPTER 3. UNINITIALIZED CAPABILITIES 142

Let Wfinal refer to the final world, defined as follows:

Wfinal = reinstate(Wret,dom(frame)⊎dom(otherTemps)⊎dom(unused))⊒pub Wret

By individually going over the affected states in W (note that we cannot use any
transitivity property over the intermediary private future worlds), it is possible to prove
that the final world is a public future world of W :

Wfinal ⊒pub W (3.6)

This proof is often dependent on the particular behavior of the function f . Figure 3.21
depicts the final world Wfinal. Given Property 3.6, the Frozen resources in otherTemps
and unused can be re-established, and the return capability is provably valid in Wfinal.
Each of these patterns will be applied in Section 3.6.9, but first, we need to detail how
we prove that it’s safe to execute unknown code.

3.6.8 Fundamental Theorem

With the definition of our logical relation in place, we can now state the fundamental
theorem of our logical relation (FTLR). In broad terms, the FTLR states that if a range
[b,e) is safe to read, then it is safe to execute. The permission of the capability must
itself be executable, and in particular if the capability is RWLX, then its locality must
be LOCAL.

Theorem 10 (FTLR). Assume that p = RX, p = RWX or (p = RWLX∧g = LOCAL).
Assume also that V (W)(p,g,b,e,a). Then we have that E (W)(p,g,b,e,a).

Proof sketch. We prove the FTLR by Löb induction, i.e. by assuming that the theorem
holds later (after one step), we prove that it holds now. In order to take a step in the
program, we consider the different possible instructions pointed to by the program
counter. For each instruction, we look at all the possible cases: for example we need
to distinguish between moving a constant into a register and moving from one register
to another. If the instruction fails, we are done since we know the postcondition of the
expression relation holds for a failed configuration. If the instruction succeeds, we
prove safety of the resulting machine state and the updated program counter capability,
and apply the induction hypothesis. Each instruction has many cases, especially when
one considers all the possible ways an instruction can fail. To avoid a tedious blow-up
of case distinctions, we use a general form of the program logic rules that separate
the (interesting) success case from all the (uninteresting) possible failure cases. The
store and load instructions also require us to access the memory invariants of the
source and destination addresses. This is done using Lemmas 14 and 15 over the
sharedResources(W) predicate, knowing that each address is accessed using a safe
capability, which means we know its exact standard type in W . A particularly interest-
ing case is that of the storeU instruction at offset 0. Let’s consider the case where
the destination is a valid capability with permission URWLX.

CHAPTER 3. UNINITIALIZED CAPABILITIES 143

Case: instr = storeU rdst rsrv 0

We own the following resources:

rdst 7→ (URWLX, l,b,e,a) (3.7)

rsrc 7→ wsrc (3.8)

sharedResources(W) (3.9)

stsCollection(W) (3.10)

V (W)(URWLX, l,b,e,a) (3.11)

V (W)(wsrc) (3.12)

To consider the case where storeU succeeds, we assume that a ∈ [b,e). By definition
of V , we can thus extract rel(a,URWLX,V) from Equation (3.11). Furthermore, we
know:

∃w,W (a) = Frozen({[a := w]})∨W (a) = Temporary (3.13)

We open sharedResources(W) by applying Lemma 14, and extract resources for

a. Given Equation (3.13), a std7−→ ρ and stsCollection(W), we can apply Lemma 12 and
infer that ρ is either Frozen or Temporary. We can thus derive the points-to predicate
a 7→ v, for some word v. We use it to apply the relevant weakest precondition
rule for storeU, updating the points to predicate to a 7→ z, and Equation (3.7) to
rdst 7→ (URWLX, l,b,e,a+1).

The final step is to close the region, establish R for the new register state, and
conclude by applying the induction hypothesis. Since the state of a in W might have
been frozen, changing its value means we must initialize its state to Temporary. In
that case, we apply Lemma 13, resulting in a std7−→ Temporary∗ stsCollection(W [a :=
Temporary]) (note that the resulting world is identical to W in the case where W (a) =
Temporary).

Since W [a := Temporary]⊒pub W , we can apply Lemma 16 on the opened region
to get sharedResourcesOpen(W [a := Temporary],{· · · ,a}). Next, we can close the
region by applying Lemma 15, for which we must establish

tempR(a,URWLX,W [a := Temporary],V)

V (W [a := Temporary])(z) holds by Equation (3.12) and Lemma 11, while
monoReq(W [a := Temporary],V ,z,⊒pub) can be derived from Lemma 11.

Finally, we use Lemma 11 to show that the register state is valid in the new world,
and conclude by applying the induction hypothesis.

We use the fundamental theorem whenever we want to reason about unknown
adversary code. For instance, if we go back to the third scenario, when Alice returns
to Charlie, we can finish the execution simply by knowing that the return capability is

CHAPTER 3. UNINITIALIZED CAPABILITIES 144

g1: malloc r2 1
store r2 0
move r3 pc
lea r3 offset
crtcls [(x,r2)] r3
jmp r0

f1: reqglob radv
prepstack rstk
store renv 0
scallU radv ([], [r0,radv,renv])
(continues in next column)

(continued from previous column)

store renv 1
scallU radv ([], [r0,renv])
load radv renv
assert radv 1
getb r1 rstk
add r2 r1 10
subseg rstk r1 r2
mclear rstk
rclear RegName\{pc,r0}
jmp r0

end:

Figure 3.22: The awkward example using our new calling convention. It relies on
local state encapsulation and well-bracketedness as provided by scall. g1 is the
entry-point of the program; when executed, it creates a closure (as an E capability)
whose body executes f1. offset is the offset to f1. Changes following our new calling
convention are highlighted in blue.

safe: if it was an enter capability, we directly apply the execute condition, and if it
was an executable capability, we know that its range is safe to read, and thus by the
fundamental theorem, safe to execute. Let us see in slightly more detail what kind of
properties we can prove about example programs.

3.6.9 A Concrete Scenario: the “Awkward Example”

We demonstrate the use of our logical relation model by verifying the correctness of
a tricky example program, in a scenario where known (verified) code calls to and is
called by unknown (possibly adversarial) code. The example is a low-level version of
the “awkward example” [39]:

let x = ref 0 in λ f .(x := 0; f (); x := 1; f (); assert(!x = 1))

The correctness of this program—the assert never fails—relies on local state encap-
sulation (the adversary cannot modify private location x) and well-bracketed control
flow (the adversary must return to where he was last invoked). Taking advantage of
these properties when they are built into the language is already quite challenging:
Dreyer et al. deploy a step-indexed Kripke logical relation with public and private
transitions to achieve that task. In subsequent work, Skorstengaard et al. [129] verify
(on paper) a low-level version of this example adapted to a capability machine with
local capabilities. In that setting, local state encapsulation and well-bracketed control
flow are not properties of the language (they do not make sense at the machine-code
level), but are instead consequences of the secure calling convention implemented in
the example.

In this work, we adapt the machine-code example from Skorstengaard et al. [129]
to use our improved calling convention with uninitialized capabilities, and prove the

CHAPTER 3. UNINITIALIZED CAPABILITIES 145

updated code correct using Iris and our logical relation mechanized in Coq. Our
code appears in Figure 3.22, with differences highlighted in blue. There are two
main changes: first, secure function calls are made through a new scallU macro that
implements the stack discipline described in Section 3.4.2; second, we now only clear
our own stack frame before returning to the adversary instead of the whole stack (here,
this means clearing ten memory cells instead of possibly thousands or millions).

We carry out the proof in two main steps. In a first step (Lemma 19), we show
that the program entry-point g1 is safe according to the expression relation E . In a
second step (Theorem 11), we use the standard adequacy theorem of Iris, and derive a
closed statement for the correctness of our program against the operational semantics
of the machine2.

The bulk of the work consists in proving the first lemma: the proof requires
allocating a custom state transition system for the encapsulated reference, stepping
through the code of the program using the program logic rules, and using the FTLR
(Theorem 10) to reason about calls to unknown code (made by scallU and the final
jmp to an unknown return pointer). What follows is a rough sketch of the proof,
focused on the evolution of the instrumented machine state.

Lemma 19. For any world W, assuming that the memory has been properly initial-
ized3 in region [bawk,eawk) with the code of the program and a pointer to the malloc
and assert subroutines, we have:

E (W)(RX,GLOBAL,bawk,eawk,g1).

Proof. In an initial phase, we apply relevant weakest precondition rules to step through
the instructions in [g1,f1). The final instruction jmp r0 jumps to an unknown target,
but can be reasoned about given the assumption that it is in the value relation. If the
jump succeeds, and the program does not immediately crash, we apply the fundamental
theorem (Theorem 10), and assert that the target program is in the expression relation.

Next, in order to apply the weakest precondition granted by the expression relation,
we must show that the new register state is in the register relation. In particular, we
must show that the closure generated by crtcls [(x,r2)] r3 is in the value relation.
A preliminary step is to allocate a custom state transition system and a related iris
invariant, for the local state of that closure. As expected, this state transition system
corresponds exactly to the one established in the original proof of the (high level)
awkward example [39]. Let rnawk ∈ RNames be fresh in W cus, and let W ′ be the result

2We have also instantiated Theorem 11 with a simple adversarial code that invokes the awkward
example with f = (λ (). ()) and additionally proved that, in that setting, the whole machine runs and
gracefully halts.

3These assumptions are kept intentionally vague for brevity. Full statements can be found in the
Coq formalization.

CHAPTER 3. UNINITIALIZED CAPABILITIES 146

of allocating the new state transition system (depicted below) in W :

stsCollection(W ′) (3.14)

∃s,rnawk
cus7−→ s ∗

if s = σ0 then l 7→ 0 else l 7→ 1

N .awk

(3.15)

rnawk
rel7−→ σ0 σ1 (3.16)

Since W ′⊒pub W , we get sharedResources(W ′) by applying Lemma 16. What remains
is to prove the following (where b, e and a are the dynamically allocated addresses
storing the closure around [f1,end) and the dynamically allocated l):

V (W ′)(E,GLOBAL,b,e,a) = 2∀W ′′ ⊒priv W ′,E (W ′′)(RX,GLOBAL,b,e,a)

Let Wstart be a private future world of W . Equation (3.15) and Equation (3.16) are
persistent, and thus still within scope after introducing the 2 modality. Unfolding E ,
we then introduce the following assumptions to our context:

stsCollection(Wstart) (3.17)

sharedResources(Wstart) (3.18)

R(Wstart)(reg) (3.19)

pc 7→ (RW,GLOBAL,b,e,a)∗ ∗
(r,w)∈reg/pc

r 7→ w (3.20)

Throughout the proof, we will change the instrumented machine state according to
the pattern described in Section 3.6.7.1. As such, we start by claiming ownership over
the current stack by revoking Wstart, as well as the addresses that are frozen but within
the stack frame bounds (denoted by S).

stsCollection(updated(revoke(Wstart),S,Revoked)) (3.21)

sharedResources(updated(revoke(Wstart),S,Revoked)) (3.22)

For clarity, we here omit the Temporary resources that result from applying Corol-
lary 3. Suffices to know, we obtain the relevant points-to predicates for the local stack
frame and the unused part of the stack, alongside the remaining unknown Temporary
standard resources. We will use the same naming conventions as in Section 3.6.7.1,
and use otherTemps to refer to the state of unknown Temporary resources, and unused
to refer to the unused (and Temporary) part of the stack.

Next, we apply weakest precondition rules to step through the program instruc-
tions, most interesting of which is store renv 0, as it involves storing 0 to the local
state l. The necessary points-to predicate is in the iris invariant 3.15. Upon opening
the invariant, we gain ownership over the custom state rnawk

cus7−→ s, and a conditional
stating the two cases for l. Regardless of rnawk’s state in W ′, since Wstart is a private
future world of W ′, s can be either σ0 or σ1. However, once the store instruction

CHAPTER 3. UNINITIALIZED CAPABILITIES 147

has executed, we get l 7→ 0, and the state of rnawk must be updated to σ0, in order to
properly close the invariant again.

stsCollection(updated(revoke(Wstart),S,Revoked)[rnawk := σ0]) (3.23)

sharedResources(updated(revoke(Wstart),S,Revoked)) (3.24)

As a result, the instrumented machine state is desynchronized. Furthermore, if s
happened to equal σ1, the resulting change is private. We must thus apply Lemma 17
to bring the sharedResources up to date.

sharedResources(updated(revoke(Wstart),S,Revoked)[rnawk := σ0]) (3.25)

We will refer to the above world state as W1. What follows is the call to the unknown
function. We apply the pattern as described in Section 3.6.7.1. Let frame be the
current state of the local stack frame. Below is the instrumented machine state, upon
jumping to the unknown function. We will refer to the new world as Wout.

stsCollection(uninitialize(freeze(W1,otherTemps⊎ frame),unused)) (3.26)

sharedResources(uninitialize(freeze(W1,otherTemps⊎ frame),unused)) (3.27)

In order to reason about the unknown call, the current register state must be proved
valid at Wout. The calling convention subroutine clears most registers, except the
restricted stack capability, and the return capability. Validity of the stack capability
follows from definition of Wout. Validity of the return capability, on the other hand, is
more interesting, as it requires reasoning about the execution of the callback:

V (Wout)(E,LOCAL, · · ·) = 2∀Wret ⊒pub Wout,E (Wret)(RX,LOCAL, · · ·)

Recall that in any given Wret, we must consider two possible cases; either the Frozen
frame remains Frozen at the same state, or it has become fully Temporary. In the latter
case, we are not reasoning about the execution of the callback. Instead, we are now
executing a list of arbitrary but valid words. In fact, since the return capability has
authority exactly over the addresses in frame, which have become fully Temporary,
it is possible to derive V (Wret)(RX,LOCAL, · · ·). In other words, we are reasoning
about a range that is safe to read, which is precisely what the fundamental theorem
tells us is safe to execute. We conclude the case by applying Theorem 10.

The remainder of the proof proceeds in the same manner; we reason about the
callback by stepping through the activation record instructions, perform the typical
instrumental machine state changes related to the calling convention, and derive
properties about the custom state rnawk whenever needed. More precisely, since we
now know that rnawk was in state σ0 in Wout, we can infer that updating it to σ1 in the
first callback yields a public change. Furthermore, during the second callback, we can
infer that it is still at the state σ1, since the given future world in the second callback
is again public.

Finally, upon return, we reinstate all the standard resources revoked throughout
the proof. Since the final state of rnawk is σ1, we can conclude that the final world is a
public future world of Wstart.

CHAPTER 3. UNINITIALIZED CAPABILITIES 148

In the next step, we use the standard adequacy theorem of Iris, and derive the final
closed statement for the correctness of our program.

Theorem 11. (Correctness of the awkward example) Let reg ∈ Reg, m ∈Mem and

cawk ≜ (RX,GLOBAL, ...) cstk ≜ (URWLX,LOCAL, ...) cadv ≜ (RWX,GLOBAL, ...)

where the capabilities have an appropriate range of authority and pointer. Further-
more, assume that:

• m has been initialized with the code of the program and subroutines (pointed to
by cawk), an uninitialized stack (pointed to by cstk), and unknown adversarial
code (pointed to by cadv);

• reg(pc) = cawk, reg(rstk) = cstk, reg(r0) = cadv and reg(r) ∈ Z otherwise;

• flag denotes the memory address set to 1 by the assert subroutine in case of
failure;

• m(flag) = 0.

If (Repeat SingleStep,(reg,m))→∗ (µ,(reg′,m′)) then m′(flag) = 0.

Theorem 11 states that, starting from a properly initialized machine state, the
in-memory flag set by the assert routine remains set to 0 at every step of the
execution—meaning that the call to assert never fails. Obtaining Theorem 11 from
Lemma 19 is mostly mechanical: this highlights one of the benefits of using Iris,
whose built-in soundness theorem can be leveraged to obtain a program specification
stated directly against the operational semantics of the machine.

3.7 Implementation

We have implemented uninitialized capabilities in the CHERI-MIPS ISA for the
uncompressed 256-bit capability format (we believe that the implementation should
be possible for other capability formats as well4). In CHERI-MIPS the stack grows
downwards (from higher memory adresses to lower memory addresses) and the
implementation of uninitialized capabilities is inverted to reflect the stack growth.
Concretely, uninitialized capabilities only allow reading from the range [a,e] and a
moves downwards on writes below the current a, just like the stack. Capabilities now
have a bit indicating if they are uninitialized or not. Some existing CHERI-MIPS
instructions are modified to take the uninitialized permission into account: the load
instructions and those that modify a capability’s cursor. For experimentation purposes,
we have opted to add separate store instructions for uninitialized capabilities, leaving
the old store instructions intact. Additionally, we add an instruction to make a regular

4Available at https://zenodo.org/record/4067949

https://zenodo.org/record/4067949

CHAPTER 3. UNINITIALIZED CAPABILITIES 149

capability uninitialized and a new variant of CSetBounds (the CHERI version of
subseg) that is needed for technical reasons.

These modifications result in a CHERI-MIPS simulator that supports uninitialized
capabilities. We have also added support for the new instructions to the Clang/LLVM
assembler for CHERI-MIPS.This allows us to write assembly programs with the new
instructions and run them on the simulator. With the simulator and assembler in place,
we were able to experiment with the new calling convention by manually modifying
assembly programs. The calling convention of Section 3.4.2 is slightly modified for
CHERI-MIPS because CHERI uses pairs of sealed capabilities (a code capability
and data capability) instead of enter capabilities. This means we do not need to store
return closures on the stack (like for StkTokens [132]), but otherwise makes little
difference.

Although more investigation is needed, our results suggest that uninitialized
capabilities and the calling convention from Section 3.4.2 can be adapted and applied
in a CHERI setting.

3.8 Related Work

We already discussed some related work in the introduction, which we briefly recall
now. We follow an existing line of work on capability machines [27, 91, 154, 157],
and in particular the CHERI family featuring local capabilities [154, 157] that provide
a form of revocable capabilities. To our knowledge, uninitialized capabilities and the
idea of using them to reduce the cost of local capability revocation are both new.

Other forms of revocation have been proposed in capability machine contexts.
A line of work of the CHERI project (CHERI-JNI [29], CHERIvoke [163], Cornu-
copia [52]) presents a general revocation mechanism for memory managed through a
dedicated memory allocator. In that setting, revocation happens by sweeping through
the whole memory and clearing obsolete (revoked) pointers. This GC-like approach
to revocation is somewhat orthogonal to our stack-based revocation mechanism. The
authors mostly focus on practical feasibility, and do not formally state or prove the
guarantees provided by their revocation procedure.

Linear capabilities [157] have also been proposed as a lightweight revocation
mechanism, both for implementing a secure calling convention [132] providing similar
guarantees as ours, and as a secure compilation target for separation logic verified
code [147]. However, there are concerns as to whether the atomic store-and-clear
operation required by linear capabilities can be realistically implemented in hardware
without an important performance penalty and whether they would be easy to support
in existing compilers [128, §3.6.2]. We expect uninitialized capabilities to be a more
benign extension from a micro-architectural and compiler perspective.

Another category of related work is on formalizing capability safety, i.e. char-
acterizing the guarantees provided by a capability machine or language runtime. In
the context of high-level languages with object capabilities, Maffeis et al. [93] define
a syntactic notion of capability safety based on reachability between objects. This

CHAPTER 3. UNINITIALIZED CAPABILITIES 150

kind of criterion is however of limited expressive power as it is not directly defined
with respect to the actual behaviour of objects. Drossopoulou et al. [42] formalize a
form of capability safety in their Chainmail specification language. It can be used
to capture properties of object-oriented programs like “An account’s balance can be
changed only if a client has access to that particular account”.

More closely to our current work, Devriese et al. [37] propose a more expressive,
semantic definition of capability-safety for object capabilities, based on a Kripke
logical relation with public and private transitions which is not unlike ours. Swasey
et al. [138] extend this line of work by showing that a similar logical relation can
be used to give compositional specifications for the robustness of object capabilities
patterns, and formalize their work in Coq using Iris.

Other related work has considered capability safety of (low-level) capability ma-
chines. Nienhuis et al. [109] build a formal model of the CHERI ISA, and formally
verify a number of architectural security properties using Isabelle/HOL. A key security
property they prove is capability monotonicity, meaning that the machine does not
allow creating new capabilities out of thin air, and therefore, that an unknown code
component can only modify parts of memory it has access to through its reachable
capabilities. This is a somewhat syntactic property in nature, and it has an important
limitation: it only holds until the code jumps to an enter capability (or sealed capa-
bility in the case of CHERI), which purposely gives access to new capabilities in a
non-monotonic way. Therefore, their security properties only hold within a single
“component”. Our definition of capability safety, although more involved, allows
reasoning about a complete machine execution, with arbitrary calls between different
security domains and dynamic evolution of invariants and boundaries. Akram El-
Korashy [9] has studied a formal model of the CHERI capability machine and proved
some properties of it. Their main capability safety property captures a whole-system
form of capability monotonicity that appears unsuitable for reasoning.

The work by Skorstengaard et al. [129, 131] is probably the most closely related
to our own. As discussed before, they define capability safety for a capability machine
with local capabilities as a logical relation, and propose a secure calling convention
based on local capabilities. Our contributions are the introduction of a more efficient
calling convention using uninitialized capabilities and a more expressive model (with
the introduction of Frozen regions), as well as our formalization of our work in Coq
using Iris. In subsequent work, Skorstengaard et al. [132] verify a secure calling
convention based on linear capabilities. They phrase their result as a fully-abstract
compilation theorem, rather than by verifying challenging examples, as they did in
their previous work, and as we do here. This is an interesting perspective for future
work: we believe that we could alternatively prove a similar theorem to characterize
the correctness of our secure calling convention.

There are a number of previous work on using logical relations with public/private
transitions to account for well-bracketed state changes [37, 39, 129], as well as using
Iris to mechanize logical relations using higher-level constructs [61, 142, 143]. Our
combination of the two is novel: we use lightweight Kripke worlds and Iris saved
predicates to allow for precisely tracking the relationship between intermediate logical

CHAPTER 3. UNINITIALIZED CAPABILITIES 151

states (which would be impossible using Iris invariants), but we avoid solving recursive
domain equations or working explicitly with step indices.

A final category of related work is on program logics for low-level code. Our
program logic deals with code stored in memory as data, uses continuations to
specify sequences of instructions, in combination with step-indexing to deal with
unstructured control flow, and uses separation logic to model the resources associated
to registers and memory. These features can often be found in a number of previous
works [24, 31, 71, 104, 107]. The distinguishing feature of our program logic is that
it is built on top of an existing general purpose logic. Consequently, we can (and we
do) exploit the powerful features of Iris to reason about the low-level programs that
we consider.

3.9 Conclusion

Local capabilities potentially provide an efficient but restricted revocation primitive in
capability machines, with many possible applications. We have demonstrated how
uninitialized capabilities can make them actually live up to this potential by solving
an important performance problem. Moreover, using our novel formalized model of
capability safety, we have demonstrated that the combination of local and uninitialized
capabilities lends itself to machine-checked reasoning. In particular, we have verified
an implementation of a classical example from the literature, which makes advanced
use of local capability revocation through our modified calling convention. The
example is, by the way, longer than it looks (400 instructions after unfolding macros).
This shows the power of local capability revocation using uninitialized capabilities
as well as the expressiveness of our reasoning infrastructure. Finally, our initial
results suggest that uninitialized capabilities and our new calling convention can be
practically applied in a more realistic setting like CHERI. We believe these different
results combined make a strong case for the addition of uninitialized capabilities in
CHERI and other capability machines.

Acknowledgements We thank the anonymous reviewers for valuable comments
and suggestions. This work was supported in part by a Villum Investigator grant
(no. 25804), Center for Basic Research in Program Verification (CPV), from the
VILLUM Foundation; by the Research Foundation - Flanders (FWO) under grant
number G0G0519N; and by DFF project grant no. 6108-00363 from The Danish
Council for Independent Research for the Natural Sciences (FNU). Thomas Van
Strydonck holds a Research Fellowship of the Research Foundation - Flanders (FWO).
Amin Timany was a postdoctoral fellow of the Flemish research fund (FWO) during
parts of this project.

Chapter 4

Le Temps des Cerises: Efficient
Temporal Stack Safety on
Capability Machines using
Directed Capabilities

This chapter is an extended version of the following conference publication:

Aïna Linn Georges, Alix Trieu, Lars Birkedal.
Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines
using Directed Capabilities
Proceedings of the ACM on Programming Languages (OOPSLA), 2022, 6.

The extension consists of

• An small addition to the discussion on dangling stack pointers; Section 4.2.2.1

• A proof sketch of the fundamental theorem of logical relations; Section 4.4.2.1

• A proof of an example application of the unary model; Section 4.4.3.1

• Added technical details about the binary model used to reason about confiden-
tiality, including a proof of an example application of the model; Section 4.5

• Formal definitions of various auxiliary definitions used to define contextual
equivalence, and the overlay semantics; Section 4.6.2

Abstract

152

CHAPTER 4. DIRECTED CAPABILITIES 153

Capability machines are a type of CPUs that support fine-grained privilege
separation using capabilities, machine words that include forms of authority.
Formal models of capability machines and associated calling conventions have
so far focused on establishing two forms of stack safety properties, namely local
state encapsulation and well-bracketed control flow. We introduce a novel kind of
directed capabilities and show how to use them to make an earlier suggested call-
ing convention more efficient. In contrast to earlier work on capability machine
models we do not only consider integrity properties but also confidentiality prop-
erties; we provide a unary logical relation to reason about the former and a binary
logical relation to reason about the latter, each expressive enough to reason about
temporal stack safety. While the logical relations are useful for reasoning about
concrete examples, they do not on their own demonstrate that stack safety holds
for a large class of programs. Therefore, we also show full abstraction of a
compiler from an overlay semantics that internalizes the calling convention as
a single call step and explicitly keeps track of the call stack and frame lifetimes
to a base capability machine. All results have been mechanized in Coq.

4.1 Introduction

Lack of memory safety is an important source of security bugs, for instance, 70% of
all issues in Microsoft products [141] and in the Google Chrome browser [32] are
memory safety related. It is thus not surprising that a large number of software or
hardware protection mechanisms such as shadow stacks, stack canaries, address space
layout randomization, etc (see [139] for a survey) have been proposed. Capability
machines have recently risen as a promising solution to memory safety vulnerabil-
ities; quoting a Microsoft study, “[capability machines] would have deterministically
mitigated at least two thirds of all those issues” [73].

Capability machines are a kind of architecture that enable fine-grained memory
protection using tagged memory [27, 36, 91] and capabilities, a form of unforgeable
memory pointers with a certain amount of authority, in the form of a permission,
range, etc. Over the last decade, CHERI [158], a family of capability machines, has
matured into an extensive design featuring, among other, a full UNIX-style operating
system, CheriBSD [154]. Ideas from CHERI are currently being adopted by ARM in
their Morello project [12], which is aimed at developing concrete CPU designs and
prototypes that could be implemented in future hardware.

One of the promises of capability machines is that they can enforce security
properties that we expect from high-level languages, in particular stack safety, even
when machine code is linked with other untrusted and possibly adversarial machine
code. This potential is not yet realized in practice. In particular, while CheriBSD does
make use of so-called local capabilities to limit the impact of potential bugs, it does not
rely on them for enforcing security properties. This is likely because a secure calling
convention based on local capabilities could be too inefficient as it would require a lot
of stack clearing. Indeed, this is the case for the first known provably secure calling
convention based on local capabilities [131] — this calling convention requires to
clear the full stack before and after every call. This has led to research on other calling

CHAPTER 4. DIRECTED CAPABILITIES 154

conventions based on novel forms of capabilities. In particular, Skorstengaard et al.
[132] proposed a calling convention based on so-called linear capabilities, which,
however, are believed not to be efficiently implementable in hardware. This motivated
another proposal by Georges et al. [55] who suggested a secure calling convention
based on a combination of so-called uninitialized capabilities and local capabilities,
and which only involves a modicum of stack clearing per call, on the order of a single
stack frame.

The works cited above on provably secure capability-machine-based calling con-
ventions have all focused on spatial memory safety, in particular local state encap-
sulation and well-bracketed control flow. In another direction, Tsampas et al. [144]
recently proposed a kind of capabilities including “lifetime” information to enforce
temporal memory safety, e.g., that the content of popped stack frames cannot be
accessed. However, one problem with implementing this proposal is that in order
to allow for a call depth of size 2n, n bits would be required in the encoding of the
lifetime information for a capability, which renders it impractical.

In this paper, we propose a novel kind of so-called directed capabilities and show
how they can be used in combination with uninitialized capabilities to realize a new
calling convention, which is efficient (it does not involve any stack clearing at all) and
which provably enforces both spatial and temporal stack safety properties.

More precisely, we present CERISEM, an extension of the low-level capability
machine model of Georges et al. [55], with a novel form of directed capabilities, for
which we present a novel stack-based calling convention. We show that it provably
guarantees spatial and temporal stack safety. In light of the fact that it is actually
quite subtle to capture stack safety properties formally, as also emphasized in a recent
paper by Anderson et al. [10], we include a detailed discussion of the stack safety
properties we consider and how our novel approach improves over earlier proposals,
see Section 4.2. We include a discussion of the impact of stack objects on stack
safety properties; prior work on local capability machines have largely ignored stack
objects, but they have a significant impact on the guarantees provided by the capability
machine. In contrast to the earlier formal models for capability machines mentioned
above, we do not only consider integrity properties but also (stack) confidentiality
properties.

To formally establish integrity, we follow the approach of Skorstengaard et al.
[131] and develop a unary Kripke logical relations model, which captures capability
machine safety. Our model is an extension of the one by Georges et al. [55]; the
novelty consists of an extension to account for temporal safety. There are two facets to
this: a simple one, which is to extend the definition to also treat directed capabilities,
and a challenging one, which is to extend the model, in particular, the Kripke worlds,
to capture the enforcement of temporal properties. The latter means that our model
makes use of a novel kind of state transition system for the Kripke worlds.

To formally establish confidentiality, we further develop a binary logical relations
model. We show that the binary logical relation implies contextual refinement so
that it can serve as a sound proof method for establishing contextual equivalence and
hence confidentiality. To the best of our knowledge, this is the first binary logical

CHAPTER 4. DIRECTED CAPABILITIES 155

relations model for a low-level capability machine model.
We demonstrate that the unary and binary logical relations models can be used to

prove stack safety properties for challenging example programs; we focus on examples
that have not been considered in the literature before.

To give further evidence for the claim that our novel directed-capability-based
calling convention actually does capture stack safety, we follow the approach of
Skorstengaard et al. [132] and show full abstraction of a compiler from an overlay
semantics that internalizes the calling convention as a single call step and explicitly
keeps track of the call stack and frame lifetimes to the base capability machine. The
idea is that the overlay semantics clearly enforces stack safety; our overlay semantics
is related to the one used in [132] but now accounts for temporal properties by
completely removing popped stack frames from the stack once their lifetime is over
(technical differences are detailed in Section 4.6).

We have mechanized all of the models and results presented in the paper on top
of the mechanization of the Iris program logic [74, 75, 77, 82] in Coq [83, 84]. The
Iris-Coq mechanization [56] can be found online at https://github.com/logsem/
cerise-stack-monotone/releases/tag/OOPSLA2022.

4.2 On the Stack Safety of Capability Machines

In this section, we explore the properties that make up stack safety in the context of
capability machines. We follow Anderson et al. [10], who define multiple degrees
of stack safety, as various conjunctions of local state encapsulation (LSE) and well-
bracketed control flow (WBCF). In particular, our goal is to reach a notion of stack
safety that falls within their definition of observational stack safety, which also covers
the temporal aspect of LSE. A key takeaway of this section is to highlight how existing
calling convetions incur undesired overhead in order to enforce stack safety. Unlike
Anderson et al. [10], we consider LSE, WBCF and temporal stack safety for machines
with both a stack and a heap. For clarity, we illustrate each property with an example
written in a C-like language, though we actually consider the underlying assembly
code. Next, we explore two interesting aspects of these properties that are particularly
tricky. Finally, we survey previously proposed capability machine calling conventions
and show where they fall on the spectrum of stack safety, including the novel calling
convention and efficient enforcement mechanism we present in this paper.

4.2.1 A Family of Stack Safety Properties

4.2.1.1 Local State Encapsulation

Local state is a concept that exists in both low and high level languages. In a
low-level language with a stack, local state often refers to the encapsulation of local
variables in a stack frame. For instance, in Listing 4.1, the local variable y is a part of
f’s local stack frame, and is not shared with the arbitrary adversarial code adv; and
hence the assert, stating the integrity of y, should succeed.

https://github.com/logsem/cerise-stack-monotone/releases/tag/OOPSLA2022
https://github.com/logsem/cerise-stack-monotone/releases/tag/OOPSLA2022

CHAPTER 4. DIRECTED CAPABILITIES 156

1 void adv(void);
2 void f(void) {
3 int *y; // allocated on
4 *y = 2; // the stack
5 adv(); assert (*y == 2)}

Listing 4.1: Integrity: frame

1 void adv(void);
2 void f(void) {
3 static int x = 2;
4 adv(); assert (x == 2)}

Listing 4.2: Integrity: environment

Figure 4.1: local state encapsulation: integrity

1 void adv(void);
2 void f(void) {
3 int *y; *y = 2; adv()}
4 void g(void) {
5 int *y; *y = 3; adv()}

Listing 4.3: Confidentiality: frame

1 void adv(void);
2 void f(void) {
3 static int x = 2; adv()}
4 void g(void) {
5 static int x = 3; adv()}

Listing 4.4: Confidentiality: environment

Figure 4.2: local state encapsulation: confidentiality

In high-level languages, local state may also refer to the state encapsulated within
the scope of a closure. Consider Listing 4.2, where function f possesses some private
state x (a static variable persists across calls, similarly to local variables in closures).
Upon return, the integrity of x is tested with an assert statement. If x is not properly
encapsulated, adv may modify x, and the assertion fails.

The stack is used to store local variables as well as the local environment to be
reclaimed upon return of a call. When discussing LSE, we will refer to the local state
being the local stack frame not shared with a callee, as well as the state encapsulated
within a closure, which ought to stay encapsulated not just from the callee, but from
the caller as well. For instance, an adversarial context may call f in Listing 4.2
multiple times, but it should never get access to the private state x.

Following Anderson et al. [10], we must distinguish between local state integrity
and local state confidentiality. Local state integrity states that the local stack frame is
protected from changes by the callee, local state confidentiality states that the local
stack frame cannot be read by the callee and thus influence their behaviour. Hence
local state confidentiality is a binary property. For example, Listing 4.3 contains two
programs f and g with different local states that should stay hidden from the arbitrary
function adv. Local state confidentiality guarantees the contextual equivalence of the
functions f and g. Similarly, Listing 4.4 depends on the same local state confidentiality,
but for the environment of closures.

Since we also use the stack for the encapsulated environment of closures, our
notion of LSE includes the integrity and confidentiality of the environment of a closure
against the full context. Indeed, a closure needs to protect its private state against both
callees and callers.

4.2.1.2 Well-Bracketed Control Flow

CHAPTER 4. DIRECTED CAPABILITIES 157

1 void adv(void);
2 void f(void) {
3 static int x = 0;
4 x = 0; adv();
5 x = 1; adv();
6 assert (x == 1); }

Listing 4.5: Awkward Example

1 int N, K;
2 void h(int* x) { *x = 0 }
3
4 void g(int* x) {
5 char* t[K]; h(x) }
6
7 void f(int** x) {
8 char* t[N];
9 int z; *x = &z }

10
11 int main(void) {
12 int* x; f(&x);
13 g(x); return 0 }

Listing 4.6: Example violating tempo-
ral stack safety

Another common property in high-level languages is well-bracketed control flow.
For example, consider Listing 4.5, which is a variant of the classical “awkward
example” [39]. Here f possesses some local state x (line 3), which is set to 0 before
calling some arbitrary adversarial code adv(). After the call returns, x is set to 1
before calling the adversary again. Finally, x is checked to be still equal to 1 at the
end. If WBCF is not enforced, then during the second call to adv on line 5, adv could
store the return pointer to line 6 in its own private state, and call f, which would then
set x to 0 before calling adv again who can finally use the return pointer to line 6 it
kept and fail the assertion.

It has been shown that both some form of LSE and WBCF can be enforced on
capability machines, even in the presence of arbitrary code [55, 129, 132]. We will
give more details on how this is enforced in Section 4.3.2.

4.2.1.3 Temporal Stack Safety

In another direction, Tsampas et al. [144] study the issue of temporal safety. Consider
the code in Listing 4.61, where &x on line 12 is a pointer to a location containing
another pointer. After the call to f, there is now a pointer at &x to the location l
previously occupied by z on line 8. The value of l depends on a global variable N.
It should be noted that l is stale after the return and should not be allowed to be
passed down. Nevertheless, l is passed to h through g. For well chosen values of
K and N, it is possible that l coincides with where the return pointer of h is stored
and thus the store at line 2 can lead to the control flow being hijacked. This example
shows a temporal stack safety violation that exploits a dangling stack pointer. To
address this issue, Tsampas et al. propose that capabilities are extended with “lifetime”
information, basically the call depth of the function’s stack frame, and that capabilities
with longer lifetime may not be used to store a capability with shorter lifetime. This
would disallow the store on line 9 in the example. In essence, it disallows dangling

1An example adapted from [144].

CHAPTER 4. DIRECTED CAPABILITIES 158

stack pointers to be stored on the stack, and thus to be passed down the call stack
beyond their lifetime.

Also related to temporal stack safety, Anderson et al. [10] find that the lazy tagging
and clearing micro-policy of Roessler and DeHon [117] violates the temporal aspect
of observable stack safety, and repairs it by generating fresh identifiers for each call,
requiring an unbounded number of tags.

4.2.2 Two Subtleties of Stack Safety

1 void f(void) {
2 static int x = 2;
3 int *y;
4 *y = &x;
5 assert (x == 2); }

Listing (4.7) Dangling
stack

1 void f(void) {
2 int *x; *x = 2; }
3 void g(void) {
4 int *x; *x = 3; }

Listing (4.8) Temporal
confidentiality

1 int g(char* z, char* in)
2 int f(char* in) {
3 int *y = 2;
4 char* z = ...;
5 g(z, in);
6 assert (y == 2); }

Listing (4.9) Integrity with stack
objects

We now highlight two subtleties of stack safety which previous works have mostly
glossed over in the context of capability machines.

4.2.2.1 Elaborating on Temporal Stack Safety

Stack frame lifetime intuitively dictates that the content of a popped frame should not
be read once popped. Tsampas et al. define temporal stack safety as the absence of
dangling stack pointers passed down the call stack (cf. Listing 4.6). Here we wish
to emphasize that the absence of dangling stack pointers should also mean that no
caller should be able to (re)gain access to a dangling stack pointer when they resume.
Concretely, consider Listing 4.7, where f possesses some local state x, initialised to
2, which is copied to the local variable y, after which its integrity is tested with an
assert statement. This assert statement appears entirely trivial. However, recall that x
is statically allocated and that f may be called multiple times. Each invocation of f
may therefore leave a copy of x’s address on the stack. Subsequently, if a caller can
read f’s old stack frame then it may break the integrity of x in-between calls. This
dangling stack attack is an additional threat in low level languages where callers may
create activation records containing dangling stack pointers. Furthermore, dangling
stack pointers allow callees to use the stack as a covert channel to communicate with
callers, which becomes an issue in attacker models with multiple mutually mistrusting
components, in which we want to prevent the communication between two different
attackers.

We will distinguish the absence of dangling stack pointers property from a slightly
different notion of temporal stack safety, which we call temporal confidentiality,
and which can be thought of as the temporal aspect of local state confidentiality.
Consider two programs f and g whose only difference is to leave different traces

CHAPTER 4. DIRECTED CAPABILITIES 159

on their respective stack frames, e.g., as in Listing 4.8. Then, as long as temporal
confidentiality is enforced, no caller should be able to distinguish f from g. We remark
that the complete absence of any dangling stack pointer (passed down or otherwise)
implies temporal confidentiality, without having to clear any parts of the stack.

4.2.2.2 Stack Safety in the Presence of Stack Objects

We now explain how stack objects may influence stack safety properties. In prior
work on local capability machines, stack objects have largely been ignored. However,
they have a significant impact on the guarantees provided by the capability machine.
Disallowing stack objects altogether is too restrictive as it is a common programming
idiom in C-like languages to pass stack references as arguments.

Let us consider what happens to local state integrity in the presence of stack
objects. Consider for instance the example in Listing 4.9 in which f receives an input
from a caller and passes it along with its own stack object to its callee. In this scenario,
neither f’s caller, nor g are trusted. In fact, they may collaborate to break y’s integrity.
Indeed, if no precaution is taken by f, it may be possible that the stack object passed
by its caller actually possesses write authority on f’s stackframe, which could be
abused by g.

4.2.3 Enforcing Stack Safety in Capability Machines

Let us recap the stack safety properties we have isolated thus far. (1) Local state
integrity (LSE integrity) guarantees that a callee cannot break the integrity of local
stack frames (Listings 4.1 and 4.9), and that neither the callee nor a caller can break the
integrity of the private environment associated with a closure (Listing 4.2). (2) Local
state confidentiality (LSE confidentiality) guarantees that the local stack frame cannot
influence the behaviour of a callee (Listing 4.3), and that the private environment
of a closure cannot influence the behaviour of a callee or a caller (Listing 4.4). (3)
Well-bracketed control flow (WBCF) guarantees that a callee returns to its immediate
caller in the call stack (Listing 4.5). (4) Temporal stack safety according to Tsampas
et al. guarantees that a callee cannot return a dangling stack pointer (a property that is
violated in Listing 4.6). We expand on that notion and additionally guarantee that no
caller can restore a dangling stack pointer upon return either (Listing 4.7). Finally (5)
temporal confidentiality guarantees that a caller is unable to read popped stack frames,
or, in other words, that popped stack frames cannot influence the behaviour of the
caller (Listing 4.8). Temporal confidentiality can also be interpreted as the temporal
aspect of local state confidentiality.

Each of these properties can be investigated with or without the presence of stack-
object parameters. It is in general easier to guarantee these properties by altogether
disallowing stack objects. Passing a stack object from a caller to a callee is not safe,
unless certain conditions are dynamically checked in between, in case an overlapping
stack pointer (potentially breaking integrity) can be reached from that stack object.

CHAPTER 4. DIRECTED CAPABILITIES 160

Table 4.1: Guarantees granted by the calling convention.

LOCAL + clear LOCAL + U LINEAR TEMPORAL DIRECTED + U

w\o w w\o w w\o w w\o w w\o w
LSE integrity ✓ ✗ ✓ ✗ ✓2 ✓2 N\A N\A ✓ ✗

LSE confidentiality ✓ ✗ ✓ ✗ ✓2 ✓2 N\A N\A ✓ ✗

WBCF ✓ ✗ ✓ ✗ ✓ ✓ N\A N\A ✓ ✗

Temp. confidentiality ✓ ✓ ✓ ✓ ✗ ✗ N\A N\A ✓ ✓

Dangling stack ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Together, these properties make up Anderson et al.’s notion of observable stack
safety. In order for the calling convention of a capability machine to be fully stack
safe, it must enforce each of these properties. Unfortunately, the current state of the
art enforce them at a varying degree of efficiency. In particular, enforcing temporal
stack safety appears always to come at a significant cost.

Table 4.1 relates previous work on capability machine stack safety and also the
work presented in this paper to these properties, each in a situation where stack objects
are not passed from caller to callee (w\o), and in a situation stack objects are allowed
(w). A✓ means that the property is guaranteed by the associated calling convention.
The different calling conventions have more or less overhead, in terms of the amount
of stack clearing required by the calling convention. A ✓ depicts a high overhead, on
the order of the full stack size, a ✓ depicts a relatively low overhead, on the order of
a single stack frame, and a ✓ depicts a low overhead of constant time. A ✗ means
some additional check is needed to guarantee the property (it does not mean it is
impossible to guarantee a given property, but rather that it requires some additional
mechanism beyond the calling convention). Finally, N\A means that the property
is assumed to hold given the granularity of the capability machine language. (The
marks come from our understanding of the earlier work, supported by the various
examples verified in each model.) The first column outlines the calling convention
using LOCAL capabilities and full stack clearing [129]. The second column outlines
the calling convention using uninitialized capabilities and partial clearing [55]. The
third column outlines the calling convention using LINEAR capabilities [132], and
the fourth column outlines a more high level language using TEMPORAL capabilities
[144]. The rightmost column gives an overview of the novel calling convention using
the DIRECTED capabilities we introduce in this paper.

We remark that the LINEAR column shows a calling convention that checks many
of the boxes and, in fact, we conjecture that a (LINEAR + uninitialized)-based calling
convention could check all boxes. Thus the reader may wonder why we introduce a
new kind of capability and a new calling convention here. There are several reasons:
first, linear capabilities can be cumbersome to use, as only the top part of a stack frame
can be passed as parameters. Second, exceptions cannot be implemented efficiently.

2While we mark the StkTokens calling convention [132] as enforcing LSE as the authors claim,
it is actually unclear whether it does protect more than just the local stackframe as done in the other
works [55, 129]. Indeed, the calling convention does not seem to prevent one from leaving a capability
to some private state on the stack and returning without clearing the stackframe.

CHAPTER 4. DIRECTED CAPABILITIES 161

Third, and most importantly, LINEAR capabilities are expensive to realize in practice.
Moving a LINEAR capability requires an atomic move which is believed by hardware
developers to lead to an undesirable overhead in runtime [128, §3.6.2]. Indeed,
this was also the reason why Georges et al. [55] considered local and uninitialized
capabilities instead.

In fact, in order to reach full stack safety à la [10], there is a cost to each existing
calling convention. The excessive stack clearing of [129] was improved upon in [55],
however the latter only achieves temporal stack safety by clearing local stack frames
upon return. Tsampas et al. [144] propose temporal capabilities as an enforcement
mechanism to prevent dangling stack pointers. However, they would require an
expensive amount of bits to represent.

In this paper, we propose DIRECTED capabilities as an efficient enforcement
mechanism (both wrt. space and time complexity) of full stack safety. Section 4.3.3
presents the definition of DIRECTED capabilities, and in Sections 4.4 to 4.6 we show
how DIRECTED capabilities can be used to enforce stack safety. Our calling convention
does not use any stack clearing at all. Furthermore, DIRECTED capabilities can be
efficiently realized in practice, requiring only one additional bit in the representation
of capabilities, and with only one additional dynamic bounds check which is similar
to existing ones (and hence efficient).

We define a unary model to reason about integrity properties, and a binary model
to reason about confidentiality properties (including temporal confidentiality). We
use these models to reason about small but challenging examples; we focus on
examples that depend on properties not previously considered on a low level capability
machine (integrity in the presence of stack objects, and temporal confidentiality).
Furthermore, we follow the methodology presented by Skorstengaard et al. [132] and
define an overlay semantics that clearly enforces each of the properties in Table 4.1. In
Section 4.6.3, we show how our new calling convention is fully abstract with respect
to this overlay semantics.3

4.3 Capability Machine: Operational Semantics and
Calling Convention

In this section we present the operational semantics of the capability machine we
consider. Our capability machine is based on the one by Georges et al. [55] and is,
transitively, inspired by CHERI [154] and the M-Machine [27].

In Section 4.3.1, we first recall from Georges et al. [55] how the operational
semantics for a capability machine with local and uninitialized capabilities is defined.

3In light of this full abstraction result, the reader may wonder why we also develop the logical
relations models. The reason is that while the overlay semantics makes some properties obvious (e.g.,
popping stack frames upon return), it is not easy to use the overlay semantics for reasoning about
concrete examples. This is not so surprising: even for high-level languages like ML, scientists have had
to invent Kripke logical relations (and other kinds of) models to reason about local state encapsulation,
e.g., [8, 39, 137].

CHAPTER 4. DIRECTED CAPABILITIES 162

a ∈ Addr ≜ [0,AddrMax]
p ∈ Perm ::= O | E | RO | RX | RW | RWX

| RWL | RWLX | URW | URWL | URWX | URWLX

g ∈ Locality ::= GLOBAL | LOCAL | DIRECTED

c ∈ Cap ≜ {(p,g,b,e,a) | b,e,a ∈ Addr}
w ∈ Word ≜ Z+Cap

r ∈ RegName ::= pc | r0 | r1 | . . .
reg ∈ Reg ≜ RegName→Word
m ∈ Mem ≜ Addr→Word
ϕ ∈ ExecConf ≜ Reg×Mem
δ ∈ ExecMode ::= Executable | Halted | Failed

ρ ∈ Z+RegName
i ::= jmp r | jnz r r | move r ρ | load r r | store r ρ | add r ρ ρ | sub r ρ ρ |

lt r ρ ρ | lea r ρ | restrict r ρ | subseg r ρ ρ | isptr r r | getp r r |
getl r r | getb r r | gete r r | geta r r | fail | halt |
loadU r r ρ | storeU r ρ ρ | promoteU r

Figure 4.4: Machine words, machine state and instructions.

EXECSTEP

(Executable, ϕ)→

Jdecode(z)K(ϕ) if ϕ.reg(pc) = (p,g,b,e,a)
∧ b≤ a < e
∧ p ∈ {RX,RWX,RWLX}
∧ ϕ.mem(a) = z

(Failed, ϕ) otherwise

Figure 4.5: Operational semantics: reduction steps.

CHAPTER 4. DIRECTED CAPABILITIES 163

Then, in Section 4.3.2, we further recall how said capabilities can be used to enforce
LSE and WBCF via a secure calling convention. We then add support for directed
capabilities in Section 4.3.3, and present our new improved calling convention, which
can finally efficiently guarantee temporal stack safety, in Section 4.3.4. Figures 4.4
to 4.8 summarize the operational semantics; components marked in blue are for the
novel directed capabilities and will be detailed in Section 4.3.3.

Figure 4.4 describes the syntax of our capability machine. We model a capability
machine with finite memory. The set of addresses Addr is defined as the interval
[0,AddrMax], where AddrMax is the top address and cannot be dereferenced. Mem-
ory contains machine words w that are represented by either an (unbounded) integer
or a capability. A capability is a quintuple (p,g,b,e,a) representing the authority to
exert the permission p over the memory range [b,e) and currently pointing to a.

4.3.1 A Capability Machine with Local and Uninitialized Capabilities

A permission p can either be opaque (O), enter (E), read-only (RO), read-execute (RX),
read-write (RW), read-write-execute (RWX), read-write-local (RWL), read-write-local-
execute (RWLX), or uninitialized-RW (URW), uninitialized-RWL (URWL), uninitialized-
RWX (URWX), uninitialized-RWLX (URWLX). Permissions form a lattice as illustrated
in Figure 4.6. The permissions RO, RX, RW, RWX are standard. Permission O provides
no authority. Enter (E) capabilities represent opaque closures encapsulating code
and data. As such, they cannot be read, written to, executed nor modified. They can
only be jumped to, which will load them into the program counter register and unseal
them into a RX capability. Their usage will be further illustrated when describing
the operational semantics and the calling convention. Locality g is either GLOBAL

or LOCAL, and forms a lattice as illustrated in Figure 4.6. LOCAL capabilities are
meant to represent stack derived capabilities, while GLOBAL ones represent heap
derived ones. They will be described further in Section 4.3.2. Write-local permissions
(RWL and RWLX) are similar to their regular counterparts, but additionally provide
the authority to write LOCAL capabilities to memory. That is, a regular RW capability
cannot be used to write a LOCAL capability to memory, only GLOBAL ones. Finally,
uninitialized capabilities Uπ represent a form of use-after-write authority: they provide
permission π over the range [b,a) and write permission on range [a,e) — the boundary
is automatically increased when the capability is used to write at a.

Machine instructions i operate over registers or constants and their behaviour will
be detailed later. A register is either the program counter pc or a general purpose
register r0, r1, A machine state is composed of a mode describing whether the
machine is in an Executable state, or in a terminal Failed or Halted state, and an
execution configuration. An execution configuration is a pair of a register file, mapping
registers to their values, and a memory state, mapping addresses to their values. The
operational semantics of the machine shown in Figure 4.5 is given in smallstep style
and has only one rule: if the state is Executable and the program counter contains an
in-bounds executable capability pointing to some machine word, then an instruction

CHAPTER 4. DIRECTED CAPABILITIES 164

RWLX GLOBAL

RWL URWLX RWX

URWL RW URWX RX LOCAL

URW RO E

O DIRECTED

Figure 4.6: Permission and locality hierarchy.

is decoded and executed; otherwise the machine fails. Recall that, in general, failing
is considered safe since it crashes the machine before anything unsafe occurs.

The semantics of instructions is given in Figure 4.8, with auxiliary definitions
given in Figure 4.7. Most instructions increment the program counter at the end of their
execution, except for branching and terminating instructions. This process is defined
by updPC, which fails if the program counter does not contain an executable capability.
Terminating instructions fail and halt change the machine state respectively to a
Failed and Halted state. The move instruction copies a machine word in a register.
The load instruction reads from the memory into a register, provided that a capability
with sufficient authority is given. Similarly, the store instruction is used to write
to memory. Additionally, if the word that is stored is a local capability, it must be
that the capability provided has write-local authority. The jmp instruction copies
a word to the program counter, additionally, if the word is an enter capability, it is
unsealed into a RX one. The instructions restrict and subseg are used to decrease
the authority of a capability. The former decreases the permission and the locality of
a capability following the lattice given in Figure 4.6. The latter decreases the range of
authority of a capability. The lea instruction is used to change the current address a
capability points to. As explained earlier, an enter capability cannot be modified, and
subseg and lea will thus fail. Furthermore, as the current address of an uninitialized
capability indicates the boundary between where its regular authority applies and
where it can only write, it is only safe to decrease the current address using lea. The
instructions getp, getl, getb, gete and geta can be used to retrieve respectively
the permission, locality, base address, end address and current address of a capability.
loadU and storeU are similar to their regular counterparts, but operate only with
uninitialized capabilities. An additional offset parameter is provided in order to be
able to access the range that has already been written to. Moreover, if the offset
provided is 0, then the boundary of the capability is incremented by storeU. The
promoteU instruction can promote an uninitialized capability to its regular counterpart
by discarding the memory range that has not been written to yet.

CHAPTER 4. DIRECTED CAPABILITIES 165

updPC(ϕ) =
(Executable,ϕ[reg.pc 7→ (p,g,b,e,a+1)]) if ϕ.reg(pc) = (p,g,b,e,a)

and RX ̸≼ p
(Failed,ϕ) otherwise

getWord(ϕ,ρ) =
{

ρ if ρ ∈ Z
ϕ.reg(ρ) if ρ ∈ RegName

canReadUpTo(w) =

⊥Addr if w ∈ Z
min(a,e) if w = (Uπ,_,_,e,a)
e if w = (π,_,_,e,_)

Figure 4.7: Operational semantics: auxiliary definitions.

4.3.2 A Secure Calling Convention using Local and Uninitialized
Capabilities

We now give an intuitive account of how the calling conventions of Skorstengaard et al.
[129, 131] and Georges et al. [55] enforce local state encapsulation and well-bracketed
control flow.

The calling convention of Skorstengaard et al. [129] uses local capabilities (not
uninitialized capabilities) and requires that a program is initially provided with a
stack capability with authority over the whole stack in a register rstk when executed.
Assume the following scenario where Alice calls Bob who calls Claire. We explain
how Bob can protect himself from both Alice and Claire using the calling convention
of Skorstengaard et al. [129].

Bob expects to receive a stack capability from Alice to build his own stack frame.
Similarly, when calling Claire, Bob needs to provide the stack capability to her.
However, in order to enforce local state encapsulation, it is necessary that Bob does
not provide access to his own stackframe to Claire. Thus, when calling Claire, Bob
restricts the stack capability to the unused part, using the subseg instruction, and
then passes it to her. However, Bob needs to be able to restore access to his own stack
frame upon return. He can do that using an enter capability: Bob constructs a return
capability as an enter capability that restores the local environment when jumped
to. This return capability can be safely passed to the callee Claire as its contents
cannot be read, but can only be jumped to. This suffices to protect Bob’s private state
from Claire, but it is not enough to enforce WBCF. Indeed, on its own, this does
not prevent the attack explained in Section 4.2.1.2, in which a callee keeps a copy
of a previous return capability beyond its “lifetime”. To prevent this kind of attack,
Skorstengaard et al. use local capabilities: The stack capability is made write-local,
executable (RWLX) and LOCAL, and all other (heap) capabilities are non write-local.
This guarantees that if the return capability is built on the stack (and therefore LOCAL),

CHAPTER 4. DIRECTED CAPABILITIES 166

i JiK(ϕ) Conditions
fail (Failed,ϕ)
halt (Halted,ϕ)
move r ρ updPC(ϕ[reg.r 7→ w]) w = getWord(ϕ,ρ)

load r1 r2 updPC(ϕ[reg.r1 7→ w])
ϕ.reg(r2) = (p,g,b,e,a) and w = ϕ.mem(a)
and b≤ a < e and
p ∈ {RO,RX,RW,RWX,RWL,RWLX}

store r ρ updPC(ϕ[mem.a 7→ w])

ϕ.reg(r) = (p,g,b,e,a) and b≤ a < e and
p ∈ {RW,RWX,RWL,RWLX} and
w = getWord(ϕ,ρ) and if
w = (_,LOCAL,_,_,_), then
p ∈ {RWLX,RWL} and if
w = (_,DIRECTED,_,_,_), then
p ∈ {RWLX,RWL} and canReadUpTo(w)≤ a

jmp r
(Executable,
ϕ[reg.pc 7→ newPc])

if ϕ.reg(r) = (E,g,b,e,a), then
newPc = (RX,g,b,e,a) otherwise
newPc = ϕ.reg(r)

restrict r ρ updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p,g,b,e,a) and
(p′,g′) = decodePermPair(getWord(ϕ,ρ))
and (p′,g′)≼ (p,g) and w = (p′,g′,b,e,a)

subseg r ρ1 ρ2 updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p,g,b,e,a) and for i ∈ {1,2},
zi = getWord(ϕ,ρi) and zi ∈ Z and b≤ z1 and
0≤ z2 ≤ e and p ̸= E and w = (p,g,z1,z2,a)

lea r ρ updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p,g,b,e,a) and
z = getWord(ϕ,ρ) and p ̸= E and
w = (p,g,b,e,a+ z) p = U-, then z≤ 0

geta r1 r2 updPC(ϕ[reg.r1 7→ a]) ϕ.reg(r2) = (_,_,_,_,a)

loadU r1 r2 ρ updPC(ϕ[reg.r1 7→ w])
ϕ.reg(r2) = (p,g,b,e,a) and p = U- and
off = getWord(ϕ,ρ) and b≤ a+off < a≤ e
and w = ϕ.mem(a+off)

storeU r ρ1 ρ2
updPC(ϕ ′

[mem.(a+off) 7→ w])

ϕ.reg(r) = (p,g,b,e,a) and p = U- and
off = getWord(ϕ,ρ1) and
w = getWord(ϕ,ρ2) and if w = (_, ℓ,_,_,_)
and ℓ ̸= GLOBAL then p ∈ {URWLX,URWL}
and b≤ a+off ≤ a < e and if off ̸= 0 then
ϕ ′ = ϕ else ϕ ′ = ϕ[reg.r 7→ (p,g,b,e,a+1)]
and if ℓ= DIRECTED, then
canReadUpTo(w)≤ a+off

promoteU r updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p,g,b,e,a) and p = Uπ and
w = (π,g,b,min(a,e),a)

. . .
_ (Failed,ϕ) otherwise

Figure 4.8: Operational semantics: instruction semantics.

CHAPTER 4. DIRECTED CAPABILITIES 167

then the only place Claire can keep a copy of a return capability, is on the stack itself.
Consequently, by clearing the stack before passing it to Claire, Bob can be sure that
she will not be able to recover a previously left copy of a return capability. Finally, to
protect himself from Alice, Bob also clears the whole stack and the registers before
returning, so that Alice cannot access anything. Skorstengaard et al. later point out
that it is sufficient for Bob to only clear his own stack frame, as anything that Claire
may leave on the stack either originally came from Alice, or is a return capability
from Bob, and, as Bob clears his own stack frame, using the return capability will
only lead to cleared data. As briefly mentioned in Section 4.2, the original calling
convention by Skorstengaard et al. [129] enforces temporal confidentiality with an
excessive amount of clearing. With the optimization by Skorstengaard et al. [131],
one only clears one’s own stack frame on return. Although this improves the efficiency
of the calling convention, every secure closure must clear its own stack frame upon
return.

Furthermore, even with the optimization mentioned by Skorstengaard et al. [129],
Bob still needs to clear the whole stack before being able to call Claire safely, and
hence the calling convention is still very inefficient. To address this issue, Georges
et al. [55] proposed to make the stack capability into an uninitialized capability. By
passing an uninitialized URWLX stack capability to Claire, we are guaranteed that
Claire cannot read anything left on the stack, without overwriting it beforehand, and
thus there is no need to clear the whole stack before calling Claire. However, Bob
still needs to clear his own stack frame before returning, as there is no guarantee that
Alice did not keep a “fully initialized” stack capability, which would allow her to read
leftover data on the stack. For this calling convention, Georges et al. [55] prove that
LSE and WBCF are enforced; however dangling stack pointers are still a possibility,
and thus some clearing is still needed in order to guarantee temporal confidentiality.

4.3.3 Directed Capabilities

We now introduce a novel kind of directed capabilities and then explain, in Sec-
tion 4.3.4, our new improved calling convention, which relies on directed capabilities
to efficiently guarantee LSE, WBCF and temporal stack safety (as we prove in later
sections).

The intention of directed capabilities is to restrict where they can be stored in
memory. This is done by adding a new locality DIRECTED, as illustrated in the locality
lattice in Figure 4.6. To write a DIRECTED capability to memory it is then necessary to
have permit-write-local authority (similarly to writing LOCAL capabilities to memory),
as shown in the operational semantics of store and storeU in Figure 4.8. The
distinguishing feature of a directed capability is that it cannot be stored “below” where
it can read memory up to. That is, for a directed capability with a regular permission
(i.e., not uninitialized) with authority over range [b,e), it can only be stored at an
address a such that e≤ a. For an uninitialized directed capability (Uπ, ℓ,b,e,a), the
part [a,e) can only be written to, therefore it can only be stored at an address a′ such
that a≤ a′. The intuition is that, for a stack that grows upwards, the address a stack

CHAPTER 4. DIRECTED CAPABILITIES 168

capability can read up to implicitly approximates the lifetime of the capability. Given
two directed capabilities, if the first can read at a lower address than the second, then
the first is owned by an “older” stack frame than the second and has thus a longer
lifetime.

We remark that, from an hardware implementation point of view, directed capa-
bilities should be quite easy to implement. First, uninitialized directed capabilities
require only two additional bits, one for the directed locality, and one indicating
whether it is uninitialized. Since increased pointer size can severely affect perfor-
mance, CHERI Concentrate [162] employs a rigorous compression scheme to achieve
realistic performance. Within this scheme, 2 and 7 bits are reserved for future use in
the CHERI-64 and CHERI-128 respective compression formats. The two necessary
additional bits are thus already available in either format. We can contrast that to
temporal capabilities [144], which require n bits to encode the lifetime information
for a call depth of size 2n. The required number of bits is thus unbounded, and it is
unclear how to determine the ideal least number of bits. Tsampas et al. discuss this
exact point, and propose various workarounds. Directed capabilities, on the other
hand, already fit within existing formats.

Second, directed capabilities only change the semantics of load(U) and store(U)
by adding an extra bounds check. The added bounds check is no different from current
checks, and we expect existing optimisation patterns, such as parallelisation, to apply.

4.3.4 A New Calling Convention using Directed Capabilities

Let us revisit the example in Section 4.3.2, now assuming that the stack capability
is directed instead of local. When Bob is called by Alice, Bob can ensure that Alice
did not keep a capability with read authority on the unused part of the stack by
checking that the return capability that he received is not “above” the stack capability
he received. This check can be avoided if the return capability is passed on the stack
as part of the calling convention. Indeed, if the return capability is stored at some
address a′, Bob knows by property of directed capabilities that Alice can only have
kept a copy of the stack capability with read authority at most up to a′. Thus, Bob
will not have to clear his stackframe on return. On the other hand, if Bob passes some
stack references to Claire as parameters, Claire will not be able to store anything from
her own stackframe in them, thus avoiding the issues described in Section 4.2.2. In
fact, Bob can take advantage of this property to ensure that Claire only returns safe
values. By passing a stack capability rather than a dedicated register as the return
value destination, Bob knows that any return value cannot grant read authority over
popped stack frames. The calling convention assumes this strategy, and clears all
general purpose registers upon return.

CHAPTER 4. DIRECTED CAPABILITIES 169

activation

code

return

capability

parameters

Caller’s

stackframe

Callee’s

stackframe

To sum up, our new calling convention is as follows; see also the figure above,
which shows what the stack is expected to look like just after a call.

At program start-up. A directed URWLX stack capability is in register rstk.

When called by an adversary. Check that the received stack capability is a capability
of the form
(URWLX,DIRECTED,b,e,a), the return capability is expected to be stored at address
b.

Before calling an adversary. Push activation record to the stack and create a directed
E-capability to use as return capability. Subseg the stack capability to the unused
part. Push the return pointer on the stack, as well as all parameters. Clear all
registers except rstk and the program counter before calling.

Before returning to an adversary. Clear all general purpose registers.

Let’s consider the cost of one secure call. Our new calling convention does
not require any memory clearing, and thus incurs a constant overhead, mainly of
clearing registers. Register clearing can be done efficiently using the CClearRegs
instruction [158]. On the other hand, memory clearing is a costly operation. Previous
calling conventions based on LOCAL capabilities all require some amount of stack
clearing. Although Georges et al. [55] improves the situation by only clearing the local
stack frame, the calling convention still has an undesired linear cost in the amount of
stack memory used.

In summary, we present a faster calling convention, which can realistically be
implemented in hardware. Moreover, the calling convention enforces all desired stack
safety properties as is proved in the next sections.

4.3.5 Discussion

While directed capabilities lead to an efficient calling convention, the questions
remains whether their new restrictions render them impractical otherwise. Specifically,
do directed capabilities hinder critical C idioms, or compiler optimizations to any

CHAPTER 4. DIRECTED CAPABILITIES 170

significant extent. A full investigation of this question is beyond the scope of this
paper. However, we conjecture that directed capabilities are sufficiently permissive in
practice, and in some cases more practical than, e.g., linear capabilities.

Some objects cannot be allocated on the stack. For instance, a locally allocated
circular linked list breaks the directed property. Similarly, any locally allocated node
cannot be added to an ambient heap allocated linked list. Indeed, nor should they:
stack objects and heap objects often have different lifetimes and are thus generally
incompatible.

We do not expect uninitialized capabilities to have major impact on code genera-
tion, though one must be careful to initialize an uninitialized object in “increasing”
order. Similarly, it takes linear time to allocate and pass stack objects, while C assumes
constant time allocation. However, we hasten to point out that it is in general only safe
to pass stack objects for which the previous contents cannot be read. [117] enforce this
efficiently using a lazy tagging and clearing scheme; it would interesting to investigate
a similar scheme for uninitialized capabilties.

Furthermore, a compiler must also be careful with the order of stack allocations.
Consider for instance the following code snippet: int* x; int y; x = &y. In this
code, the compiler must reorder the allocations for x and y to guarantee the directed
property. Such considerations must also be taken into account when implementing
compiler optimizations.

All in all, directed capabilities are more restrictive (by design) than local capabili-
ties, but we argue they remain more practical than linear capabilities. For instance, it is
a common idiom in C to pass pointers as an argument but not return them to the caller.
With linear capabilities, a compiler would need to ensure that all linear capabilities be
returned when used in this fashion. Furthermore, some library functions such as

i n t memcmp(c o n s t vo id * p1 , c o n s t vo id * p2 , s i z e _ t s i z e)

are not implementable in an linearity-friendly way, since p1 and p2 are allowed to be
aliases.

We leave a full practical evaluation of directed capabilities to future work.

4.4 A Unary Model for Integrity

In this section, we develop a novel model that captures all the guarantees provided by
DIRECTED capabilities and our associated calling convention. The core novelty lies in
its ability to express temporal stack safety. The model is made up of two components;
a program logic to reason about known and trusted code, and a Kripke logical relation
to reason about arbitrary untrusted code. We use the unary model to reason about the
integrity of example programs.

The program logic is a variant of the one by Georges et al. [55]; the main change is
that some proof rules have been updated to account for directed capabilities, following
the operational semantics defined in Section 4.3.1. Thus we refrain from describing
the program logic in detail.

CHAPTER 4. DIRECTED CAPABILITIES 171

Here it suffices to know that the program logic is defined using Iris’ weakest
preconditions [77] (which means that we can re-use the Iris program logic infras-
tructure to reason formally in Coq) and that the weakest precondition predicate
wpExecutable{v,Q(v)} intuitively means the program pointed to by the program
counter can execute without getting stuck, and that if it terminates, then Q(v) is
guaranteed to hold for some final mode v, which can be either Halted or Failed.

Thanks to the dynamic checks of the capability machine, the behaviour of a
program is limited by the capabilities it has access to. Thus, even completely arbitrary
code must adhere to rules imposed by the capability machine, and will satisfy some
notion of capability safety. The logical relation captures this notion of capability
safety, and serves as a contract between trusted and untrusted code. The fundamental
theorem of logical relations (see below) means that any word that is safe to read
satisfies that contract. As long as arbitrary code is just a list of instructions (and
thus does not, e.g., include an embedded capability), a corollary then states that even
completely arbitrary code satisfies that contract.

Our logical relation is an extension of the one by Georges et al. [55] and our
presentation focuses on the key challenge, which is to extend the model, in particular,
the Kripke worlds, to capture the enforcement of temporal properties qua directed
capabilities. The execution of a program depends on the physical state of memory.
Since we want to reason about stack safety, we are particularly interested in the state
of the stack. During execution, different parts of the stack are in different states (e.g.
used, unused, etc.). Following Georges et al., we use a Kripke world to model the
abstract state of the stack. In essence, the Kripke world is an abstraction of physical
memory. Concretely, it tracks which parts are in heap space, which parts are in stack
space, and at what particular state a location is. The stack may change in ways that
accord with the specific properties we attribute to stack safety. We capture stack-based
properties by carefully describing the possible changes to the Kripke world so that
they reflect the expected behaviour of the physical stack.

From a technical point of view, a WORLD has two parts: W std maps addresses to
so-called standard states, governing shared regions, such as the stack; and W cus maps
a countably infinite set of region names to custom state transition systems, governing
owned regions, such as the private environment of closures.

The logical relation imposes certain invariants on regions of memory that is shared
between trusted and untrusted code. Those invariants depend on the state of the stack,
and thus on the Kripke world that represents it. We use Iris ghost state to track not
only the physical machine state, but also what we call the instrumented machine
state, which captures the connection between the physical memory, and the abstract
state of memory. It uses an Iris predicate called the standard resource. A standard
resource has two functions: (1) it associates an address of a shared region of memory,
in particular each stack address, to its physical state, and (2) it associates that physical
state to an invariant. The invariant may depend on the current state of the Kripke
world. Our model extends Georges et al. [55] insofar as it uses the same structure for
the instrumented machine state. However, in order to capture temporal properties, we
define a novel Kripke world, upon which we build new definitions for the standard

CHAPTER 4. DIRECTED CAPABILITIES 172

TemporaryFrozen(m) Uninitialized(w)

Revoked

Permanent

Figure 4.9: Standard State Transition System. Full lines indicate public transitions,
dashed lines indicate private transitions, orange lines indicate temporal transitions.

resources. In this paper, we focus a large part of our attention on the new Kripke
world.

In the remainder of this section we first describe the standard states we use to
capture stack and heap states, and how these states may evolve, such that they can
be used to capture the desired stack properties (Section 4.4.1). In Section 4.4.2, we
will then present the logical relation itself. Finally, we end this section with two
examples highlighting what kind of programs we can now verify using our model
(Section 4.4.3).

4.4.1 A New Kripke World

The standard states represent the various states a shared memory address can be in.
An address is shared if it lies within the region of authority of a capability that crosses
the boundary between known and arbitrary code. The physical state of these addresses
will be imposed by invariants, which may in turn depend on the current state of the
rest of the machine. For instance, the invariant of a heap region should not be able to
depend on the state of the stack and its changes, since locality dictates that the heap is
unable to contain stack pointers. Likewise, the invariant of a stack address connected
to a lower stack frame will be different from the invariant of the currently live, or
popped stack frame. The standard states must therefore also reflect the very specific
lifetime properties of a stack frame.

We now explain each of the standard states. The Permanent state represents an
allocated heap region. As soon as a heap region is allocated and shared, it becomes
permanent. There is no mechanism to free the heap region from its state. The
Temporary state represents a live stack frame, i.e., the stack frame owned by the
currently executing function. Specifically, it will refer to the readable parts of the
stack shared between calls. A live stack frame does not need to be Temporary at every
step of execution. Rather, the Temporary state is meant to represent the live parts
of the stack at the point of change of control. The Uninitialized state represents the
unused part of the stack, i.e., a Freed frame or some part of the stack that has never
been used. In general, the Uninitialized state will simply refer to the parts of the stack
that cannot be read from, only written to. The Frozen(m) state represents a frozen
stack frame, i.e., the parts of a frame not shared with a new callee. Here m maps the
addresses of that particular frame to their frozen values. The Revoked state represents
a part of the stack which is currently owned by an executing function. A region is not
part of the shared stack while it is Revoked.

CHAPTER 4. DIRECTED CAPABILITIES 173

Next we define how a standard state may evolve in order to reflect physical stack
changes that accord with the key properties of stack safety (LSE, WBCF, and temporal
stack safety). Some stack changes are not observable by any caller or callee, whereas
other changes are public and observable by both. As long as temporal stack safety
is enforced, some stack changes (such as popping a stack frame) are safe to observe
by the caller, but not by higher stack frames. After all, it is not safe to pop a frame if
there are still live frames on top of it.

We use three kinds of transitions to reflect these distinctions. A transition is
observable whenever some entity is oblivious to that transformation. Public transitions
(depicted in Figure 4.9 as straight black lines) are those that are observable by all
functions. Private transitions (dashed lines) can only be observed by the currently
executing function. Finally, temporal transitions (orange lines) are only observable by
functions that are still present on the call stack.

Using these transitions, we isolate three future world relations. A world W ′ is a
public future world of W, W ′ ⊒pub W , if all the states in W ′ are either connected to a
fresh address or region name, or were updated from W through public transitions only.
A private future world W ′ ⊒priv W allows for public, temporal or private transitions.
Finally, the third relation we consider is in fact a family of future world relations,
where each relation is indexed by an address. We say that W ′ is a future world of W
relative to address a, written as W ′ ⊒a W , when the state of all addresses below a were
updated via public transitions only, while addresses at or above a were updated via
public or temporal transitions.

For instance, consider an address a′ that is Temporary in W. If that address lies
below a, it must still be Temporary in W ′ if W ′ ⊒a W . However, if that address lies at
or above a, it may change to an uninitialized state. Likewise, any address at or above
a with an Uninitialized(w) state in W may change to a new Uninitialized(w′) state.

A relative future world relation captures the changes to a stack relative to a
specific stack frame (delimited by its upper bound address). From the point of view
of a particular stack frame, a new call will push then pop new stack frames, whereas
that stack frame remains frozen or initialized. Upon return of a well-bracketed call, a
stack frame is safe to pop. In other words, invoking a return capability should be safe
to do in a world where the current as well as all higher stack frames are uninitialized.
In W ′ ⊒a W , world W ′ represents such a world, from the perspective of a stack frame
with upper bound a.

The instrumented machine state imposes monotonicity requirements on the invari-
ants associated with shared addresses4. If a shared address a is part of the heap, then
the associated invariant must be monotone with regards to ⊒priv. On the other hand,
if a is part of the (live) stack, then the associated invariant must be monotone with
regards to ⊒a.

We finish this section by highlighting some interesting transitions, relating them
to the corresponding physical state changes of the stack:

4The formal definitions of the instrumented machine state and standard resources are here omitted
for brevity, full definitions can be found in the Coq formalisation.

CHAPTER 4. DIRECTED CAPABILITIES 174

• Temporary −−→ Frozen(m): local variables freeze when their associated func-
tion makes a new call. These local variables are stored in a stack frame. The frozen
part of a stack frame cannot be written to while it is frozen. A stack frame cannot
stay frozen forever. In particular, a frozen stack frame must thaw when control is
returned to its caller. A caller should therefore not be able to observe that the stack
frame was at any point frozen during execution, hence the private transition.

• Frozen(m) −−−−→ Temporary: as indicated in the previous point, a frozen stack
frame must thaw before it can be written to again. A frozen stack frame is thawed
only after a callee invokes the callback. Temporal stack safety dictates that only
higher stack frames can invoke the callback. Invoking the callback effectively pops
the callee’s stack frame. Thus a local stack frame is thawed once all higher stack
frames have been popped, but has no effect on lower stack frames.

• Temporary−−−−→ Uninitialized(w): Finally, local stack frames are popped upon
return. Thanks to temporal stack safety, popping a stack frame has no effect on
lower stack frames, since they cannot read its content.

In summary, we have presented the standard states and transitions that make up the
new Kripke world used to model LSE, WBCF and now also temporal stack safety. The
world differs from [55] in the following way: we distinguish between the Uninitialized
state (shared write access but no shared read access) and the Frozen state (no shared
write or read access), and we introduce a new kind of transition for defining a relative
future world relation, capturing the temporal properties of the stack.

4.4.2 A Unary Logical Relation

Figure 4.10 defines the unary Kripke logical relation with support for temporal stack
safety. We depict in blue the parts of the definition that are different from the unary
logical relation used by Georges et al. [55].

The value relation V : WORLD→Word→ iProp defines the validity of a word
relative to a world; the register relation R defines the validity of a register state; and
the expression relation E defines when it is is safe to use a word as the program
counter. Note that all relations are defined in the Iris program logic (cf. the type iProp
for Iris propositions). We now explain the definition, and first consider the value
relation. Integers and words with O capability are always valid. A word with a read
and/or write permission is valid in a world W only if certain conditions on W are
met. A GLOBAL capability with a read and/or write permission imposes a Permanent
state on its range of authority. An uninitialized capability with a write-local (i.e., it
can be used to store LOCAL and DIRECTED words) permission imposes a Temporary
state on its initialized readable range of authority, whereas its uninitialized part may
be either Temporary or Uninitialized. The state relations S and S u define the exact
conditions on W for regular and uninitialized capabilities respectively.

A valid capability with read and/or write permission grants access to the so-called
standard resources alluded to in the beginning of this section: rel(a,φ) associates
the memory predicate φ : WORLD→Word→ iProp to the address a. It suffices

CHAPTER 4. DIRECTED CAPABILITIES 175

E (W)(v) ≜ ∀reg,R(W)(reg)∗ sharedResources(W)∗
stsCollection(W)∗pc 7→ v∗∗(r,w)∈reg/pc r 7→ w−−∗

wpExecutable

v,v = Halted→∃W ′ reg′, W ′ ⊒priv W
∗ sharedResources(W ′)
∗ stsCollection(W ′)
∗(r,w)∈reg′ r 7→ w

R(W)(reg) ≜ ∗(r,w)∈reg/pcV (W)(w)

V (W)(w)

V (W)(z) ≜⊤
V (W)(O,−) ≜⊤

V (W)(p,g,b,e,a)≜ ∗a′∈[b,e)

{
S u(W)(a′,g, p,a) if p = U-
S (W)(a′,g, p) otherwise

∧

∃P,rel(a′,P)∗ rcond(P) if p ∈

{RO,RX}
rel(a′,V) otherwise

V (W)(E,g,b,e,a)≜ 2 ∀W ′ ⊒g W ,▷ E (W ′)(RX,g,b,e,a)
rcond(P) ≜ ▷2∀W,w,P(W)(w)−−∗ V (W)(w)∗▷2∀W1,W2,z,P(W1)(z)

−−∗ P(W2)(z)
State relation

S (W)(a,g, p) ≜

W std(a) ∈ {Temporary,Permanent} if ¬write-local(p)
∧ g = DIR

W std(a) = Temporary if write-local(p)
∧ g = DIR

W std(a) = Permanent if g ̸= DIR

S u(W)(a,g, p,mid)≜

S (W)(a,g, p)
∨ ∃w,W std(a) = Uninitialized(w)

if a≥ mid∧ g = DIR

S (W)(a,g, p) if a < mid∨ g ̸= DIR

Figure 4.10: A Logical Relation with Support for Temporal Stack Safety. ⊒g equals
⊒priv whenever g is GLOBAL or LOCAL, and⊒e whenever g is DIRECTED. DIR. stands
for DIRECTED

CHAPTER 4. DIRECTED CAPABILITIES 176

to think of rel(a,φ) as an invariant, that can be used to access the ghost state of a,
while guaranteeing that φ holds at the current physical state of a in the current world
W. Normally, the predicate we associate with such an address a would be V itself.
However, we distinguish between a read-only and a read-write permission by allowing
the associated predicate of an address within a read-only region to be stronger than
V . The predicate in question then needs to satisfy the read condition rcond(φ), which
imposes two restrictions on φ . First, it enforces that φ(W)(w) always implies validity,
regardless of W and w. Second, it enforces that φ(W)(w) never depends on W when
w is an integer. In other words, only capabilities can depend on the instrumented
machine state. Notice how each condition is guarded by a later (▷) modality; this is to
guarantee that the definition of V is well defined (here we use that Iris supports the
definition of guarded recursive predicates).

An E capability can only be jumped to, hence its validity is defined in terms of
its safe execution. Such a capability can be jumped to at any moment and hence
the property should be persistent (i.e., not rely on any ephemeral resources); this is
expressed by Iris’ persistence modality 2. The execution of a capability may depend
on the current state of the stack. For instance, a GLOBAL E capability represents a
global function closure, and is safe to jump to regardless of the state of the stack. On
the other hand, a DIRECTED closure (used for return pointers) is only safe to jump
to at the end of a function’s execution. This distinction is made by quantifying over
the possible future worlds an E capability may be invoked from, see W ′ ⊒g W . A
GLOBAL or LOCAL closure can be invoked in any private future world of W, whereas
a DIRECTED closure can only be invoked in a relative future world W ′ ⊒e W , where e
will represent the upper bound of the stack frame being returned to.

Finally, the safe execution of a word is defined using the expression relation
E . The expression relation is defined in terms of the program logic that the logical
relation is built upon. Specifically, E (W)(w) expresses that given an instrumented
machine state beginning at world W, and a safe register state R(r), the word w is safe
to execute. That is, the weakest precondition holds for a configuration in which the pc
contains w, with a post condition that enforces the instrumented machine state, i.e., all
the established invariants hold at some private future world.

4.4.2.1 Fundamental Theorem of Logical Relations

One of the key facts supporting that our logical relation models temporal stack safety
is the following monotonicity lemma. It describes the monotonicity of V relative to
a word’s current read authority. It entails in particular that a stack capability that is
valid in some world W is also valid in a relative-to-its-current-address-future world;
and thus it does not depend on the contents of higher stack frames.

CHAPTER 4. DIRECTED CAPABILITIES 177

Lemma 20 (Address Relative Monotonicity).

(1) p ∈ {URWLX,URWL,URWX,URW}∧W ′ ⊒a W →
V (W)(p,g,b,e,a)−−∗ V (W ′)(p,g,b,e,a)

(2) p /∈ {URWLX,URWL,URWX,URW}∧W ′ ⊒e W →
V (W)(p,g,b,e,a)−−∗ V (W ′)(p,g,b,e,a)

Furthermore, the address relative temporal future world relation can be weakened
by lowering the associated address, and the value relation is monotone wrt. private
future worlds (for all non-directed capabilities).

Lemma 21 (Address Relative Weakening). a′ ≤ a→W ′ ⊒a W →W ′ ⊒a′ W

Lemma 22 (Private Monotonicity). Let w be a word that is not DIRECTED. Then
W ′ ⊒priv W → V (W)(w)−−∗ V (W ′)(w).

Finally, we state the fundamental theorem of logical relations. We refer to the Coq
mechanisation for its full proof, and present here a proof sketch.

Theorem 12 (FTLR). Assume that p= RX, p= RWX or (p= RWLX∧g= DIRECTED).
Assume also that V (W)(p,g,b,e,a). Then we have that E (W)(p,g,b,e,a).

Proof. Upon unfolding the definition of E , our goal is to prove that the weakest
precondition holds for a program pointed to by the program counter (p,g,b,e,a), given
the predicates of a safe register state. According to the underlying definition of Iris
weakest preconditions, this amounts to showing that the program does not get stuck;
either it executes the next instruction and continues, or the program attempts to reach
outside its bounds of authority and subsequently crashes into a failed configuration.

The fundamental theorem is proved by Löb induction (the proof principle for
guarded recursion), generalized for all W , p, g, b, e and a. The induction hypothesis
states that the program will safely execute later, in other words after at least one
step of execution. The fundamental theorem is thus proved by stepping through the
execution of the next instruction, currently pointed to by a, (which may either fail or
succeed), and then applying the induction hypothesis one step later.

First, we extract the resources needed for executing the next instruction. Since p
has at least read authority over its range of authority, the assumption V (W)(p,g,b,e,a)
grants access to the standard resources within the range [b,e). In particular, if the
program counter is valid, we can extract the standard resources for a, including the
points-to predicate a 7→ w for some Word w. The proof then proceeds by case analysis
on decode(w).

Let us focus on the particularly interesting case storeU rdst rsrc 0 in which the
register rdst contains a stack capability, currently pointing to some address astk. In this
case, we will be overriding some (uninitialized) word with a new possibly DIRECTED

and valid word wsrc from rsrc. Since the offset is 0, the capability in rdst will increment,
thus initializing address astk. We will therefore have to update the standard resource

CHAPTER 4. DIRECTED CAPABILITIES 178

(closure creation around f1)
g1: malloc r2

store r2 2
move r3 pc
lea r3 offset
crtcls [r2] r3
jmp r0

f1: prepstack rstk
loadU r0 rstk (-1)

(intentional leak)
push renv
load renv renv

(integrity assertion)
assert renv 2
rclear RegName\{pc,r0}
jmp r0

end:

Figure 4.11: Assembly of Listing 4.7

for astk to an initialized standard resource, now pointing to the word wsrc. In particular,
since this is a stack address, we will have to prove that wsrc satisfies the conditions
of a stack standard resource, namely that wsrc is directed with regards to ⊒astk . We
first use Lemma 20, which asserts that wsrc is directed relative to the upper bound of
its own read authority. Storing a DIRECTED capability on the stack will dynamically
check that this upper bound is smaller than the current stack address, in other words
below astk. We can therefore apply Lemma 21 to assert that wsrc is indeed directed
with regards to ⊒astk .

The remainder of the cases are similar. Instructions that interact with memory
require invariants to be opened, whereas instructions that only change the register
state will only have to establish the validity of updated registers.

4.4.3 Examples

We show how to use the unary model to prove safety of two example programs:
Listings 4.7 and 4.9 in capability machine code. These two examples illustrate two
properties that have not been explored in previous formalizations. Each program uses
an assert subroutine that tests the integrity of encapsulated state. Although we will
not present it in this paper, we have also proved the safety of the awkward example
(Listing 4.5), which can be found in the Coq mechanization.

4.4.3.1 Protection against Dangling Stack Pointers

Figure 4.11 depicts a program with an assertion whose success depends on the
absence of dangling stack pointers. g1 creates a closure around some code f1 and a
dynamically allocated location containing the integer 2. The macro crtcls [r2] r3
allocates a closure where r3 points to the closure’s code (created using the offset from

CHAPTER 4. DIRECTED CAPABILITIES 179

g1 to f1), and r2 points to the newly allocated environment; the resulting closure is an
enter capability. f1 applies the calling convention from Section 4.3.4: (1) it prepares
the stack by checking that the stack has permission URWLX and lowers its address to
point to the bottom of its bound, and (2) it loads the return capability parameter which
has been passed on the stack itself. Now the idea is that since the parameter was stored
on the stack, it must either be a heap closure, or a stack allocated activation record of
an older stack frame qua temporal stack safety. Thus, when f1 attempts to leak the
private capability of the closure by pushing a copy of the private capability onto the
stack, temporal stack safety ought to ensure that the content of the stack frame cannot
be read once popped and thus that the leaked capability remains inaccessible from the
environment after we return from f1. Finally, f1 clears the registers and returns to
the caller by invoking the return capability that was passed on the stack. Note that
f1’s stack frame is not cleared.

Recall that f1’s assertion hinges on the fact that any caller to the closure created
by g1 is not able to read the popped stack frame (Section 4.2.2.1). We use the unary
model to prove that within any arbitrary context of a certain layout, the assertion flag
associated with the assert subroutine stays at 0 at every step of the execution, meaning
that the assertion never fails.

We prove this statement in two stages. First, we show that g1 is safe according to
the expression relation E .

Lemma 23. For any world W, assuming that the memory has been properly initial-
ized in region [btemp,etemp) with the code of the program and a pointer to the malloc
and assert subroutines, we have:

E (W)(E,GLOBAL,btemp,etemp,g1).

Proof. The proof proceeds by applying the program logic rules, updating the physical
machine state, while at the same time change the instrumented machine state when
appropriate. We first reason about instructions [g1,f1). The crtcls subroutine
creates a closure around the dynamically allocated region (say at address l, pointing to
2), and the code from f1 to end. This closure is pointed to by a global enter capability,
say (E,GLOBAL,b,e,b), and exposed to the unknown context at jmp r0.

To reason about the unknown continuation, we apply the fundamental theorem of
logical relations (Theorem 12) on the jump target. To use the resulting weakest pre-
condition, we must then show that the current register state is valid. More specifically,
we must show that the created E-capability is in the value relation.

V (W)(E,GLOBAL,b,e,b) ≜ 2 ∀W ′ ⊒priv W,▷ E (W ′)(RX,GLOBAL,b,e,b)

Since the goal is guarded by an always modality, we must first allocate invariants
for all the resources that the closure depends on. In particular, we must allocate an
invariant for the local data of the closure. We know that the code will never mutate its
content, so we allocate the following invariant:

l 7→ 2
N .l

(4.1)

CHAPTER 4. DIRECTED CAPABILITIES 180

Note that the above invariant cannot be maintained, if the capability pointing to l is
leaked.

Once all relevant invariants have been allocated, we introduce the always modality.
Let W ′ be a private future worlds of W . Upon introducing the later modality, our goal
becomes E (W ′)(RX,GLOBAL,b,e,b).

Unfolding E , we introduce the following assumptions into our context.

R(W ′)(reg) (4.2)

∗ sharedResources(W ′) ∗ stsCollection(W ′) (4.3)

∗ pc 7→ v1 (4.4)

∗
(r,w)∈reg/pc

r 7→ w (4.5)

The proof proceeds by applying weakest precondition rules for stepping through the
program, using the instrumented machine state to access shared stack state.

We begin the proof by stepping through prepstack, and inferring properties
about the stack region in W ′. The subroutine dynamically checks that rstk points to an
uninitialized write-local capability, with at least one initialized address. Without loss
of generality, let’s assume that the stack capability equals (URWLX, l,b,e,b+1).

Given assumption 4.2, we know that the stack capability is valid. We can thus infer
that its locality l is DIRECTED. Furthermore, we can infer the following assumptions
over W ′:

W ′std(b) = Temporary (4.6)

W ′std(a) = Temporary∨∃w,W ′std(a) = Uninitialized(w) ∀a ∈ [b+1,e) (4.7)

Since we now own the current stack capability, we can safely uninitialize all stack
addresses above b. Formally, this is done by updating all Temporary states above b in
the instrumented machine state to its appropriate Uninitialized state. This holds, since
any invariant associated to addresses at and below b will be monotone with regards to
⊒b, and will thus still hold at the new world. Let W ′uninit be the world which results in
uninitializing all Temporary states above b. We can prove the following future world
relation:

W ′uninit ⊒b W ′ (4.8)

From which we can derive the new instrumented machine state:

sharedResources(W ′uninit) ∗ stsCollection(W ′uninit) (4.9)

Next, we load the continuation from the stack. Since we load from the initialized
part of the stack, we know that its state is Temporary in W ′uninit, and we can infer that
the loaded word is valid. Let wret denote the loaded word.

V (W ′uninit)(wret) (4.10)

CHAPTER 4. DIRECTED CAPABILITIES 181

We then reach the interesting part of the program, in which we intentionally try
to leak a secret on the stack, namely the capability to the local state of the closure.
We are changing the physical state of the stack, which signifies we must update the
instrumented machine state accordingly. Since we have uninitialized all addresses
above b, we may take transitions that yield a relative-to-b future world.

We currently know that

W ′uninit(b+1) = Uninitialized(w)

(for some word w). Looking at Figure 4.9, we can observe that updating the state
of b+1 to Uninitialized(RWX,GLOBAL, l, l +1, l) is a temporal transition (since the
Uninitialized state changes, the path of the transition goes through Temporary). By
definition of ⊒b, the resulting world is thus a relative-to-b future world, and we now
have the following instrumented machine state:

sharedResources(W ′uninit[b+1 := (RWX,GLOBAL, l, l +1, l)]) (4.11)

∗ stsCollection(W ′uninit[b+1 := (RWX,GLOBAL, l, l +1, l)]) (4.12)

Finally, we load from (RWX,GLOBAL, l, l + 1, l), and assert that it points to 2.
This is easily proven by opening invariant 4.1.

Once registers are cleared, we reach the end of the closure, and jump to the
continuation wret, which we can reason about by applying the fundamental theorem.
However, the instrumented machine state has now changed, and we must thus first
reestablish the validity of wret, at world W ′uninit[b+ 1 := (RWX,GLOBAL, l, l + 1, l)].
However, since wret was loaded from address b, we know its validity is monotone
with regards to ⊒b. We can thus conclude the proof by applying Lemma 20 on 4.10.

Next, we apply the adequacy of weakest preconditions to conclude the following.

Theorem 13. (Correctness of the temporal stack safety example) Let reg ∈ Reg,
m ∈Mem and

ctemp ≜ (RX,GLOBAL, ...) cstk ≜ (URWLX,DIRECTED, ...)

cadv ≜ (RWX,GLOBAL, ...)

where the capabilities have an appropriate range of authority and pointer. Further-
more, assume that:

• m has been initialized with the code of the program and subroutines (pointed to
by ctemp), an uninitialized stack (pointed to by cstk), and unknown adversarial
code (pointed to by cadv);

• reg(pc) = ctemp, reg(rstk) = cstk, reg(r0) = cadv and reg(r) ∈ Z otherwise;

• flag denotes the assertion flag, initialized to 0;

If (Executable,(reg,m))→∗ (µ,(reg′,m′)) then m′(flag) = 0.

CHAPTER 4. DIRECTED CAPABILITIES 182

(closure creation around f2)
g2: move r1 pc

lea r1 offset
restrict r1 encodePerm(e)
jmp r0

f2: (the linked code is a heap closure)
reqglob radv
(calling convention)
prepstack rstk
loadU r1 rstk (-1)
(integrity protection)
reqRA r1
checkintregion r1
(hidden part of stack)
push “secret”

(new stack object)
createstackobj r2 “obj”
(call linked code)
scall radv [r0;renv] [r1;r2]
lea rstk (-6)
(load hidden part of stack)
loadU radv rstk (-2)
(assert its integrity)
assert radv “secret”
(return to caller)
loadU r1 rstk (-4)
rclear RegName\{pc,r1}
jmp r1

Figure 4.12: Assembly of Listing 4.9

4.4.3.2 Local State Integrity and Stack Objects

We now consider what happens with local state encapsulation in the presence of stack
objects. One might expect that this property is rather straightforward: a shared stack
object is not encapsulated, but capability bounds ensure that the other parts of the
stack are hidden from the context, and that their integrity is guaranteed. However,
subtle issues creep up if one is not careful about the parameters exposed to the context,
in particular in the cases where a stack object is passed from the caller to a callee.
Consider Figure 4.12, where g2 creates a closure around some code f2, which in
turn calls some unknown linked code, to which f2 passes two parameters: a stack
object that was passed to f2 from its caller, and a new stack object created by f2. In
the callback, the integrity of the unshared parts of f2’s stack frame is tested with an
assertion. f2 begins by checking that the linked unknown code is indeed a heap closure
(using a macro reqglob). f2 then applies the calling convention from Section 4.3.4
by checking the permission of the stack capability, and loading a parameter from the
stack; here the parameter of interest is the older stack object passed to f2 by the caller.

Since this stack object was passed through the stack, its read authority must be
smaller (i.e. lower) than f2’s stack frame. However, directed capabilities do not
enforce any restrictions on the write authority of that stack object. In fact, this passed
stack object could in principle be an uninitialized capability with a write authority that
overlaps with f2’s stack frame, thus presenting a threat to the integrity of the stack
frame if passed to some unknown code.

To mitigate that threat, f2 must dynamically check not only that the stack object
itself is fully initialized, but also that it transitively does not provide any write access
to f2’s stack frame. In this particular example, f2 expects a stack object containing
simply integers; checkintregion is a macro for checking this. For other examples,
other mitigations could be done to inspect the permission of all reachable capabilities
within the stack object.

CHAPTER 4. DIRECTED CAPABILITIES 183

Theorem 14. (Correctness of the stack object example)
Let reg ∈ Reg, m ∈Mem and

cstkobj ≜ (RX,GLOBAL, ...) cstk ≜ (URWLX,DIRECTED, ...)

cadv ≜ (RWX,GLOBAL, ...)

where the capabilities have an appropriate range of authority and pointer. Further-
more, assume that:

• m has been initialized with the code of the program and subroutines (pointed to
by cstkobj), an uninitialized stack (pointed to by cstk), and unknown adversarial
code (pointed to by cadv);

• reg(pc) = cstkobj, reg(rstk) = cstk, reg(r0) = cadv and reg(r) ∈ Z otherwise;

• flag denotes the assertion flag, initialized to 0;

If (Executable,(reg,m))→∗ (µ,(reg′,m′)) then m′(flag) = 0.

Discussion We emphasize that the dynamic checking of the content of a stack object
would always have been necessary, including in calling conventions based on LOCAL

capabilities [129]. However, in all prior examples, including the awkward example
considered by Georges et al. [55], this subtlety never arose, since they did not consider
stack objects at all. For instance, the awkward example only allows global heap
closures as input. The issue is worse for LOCAL or DIRECTED stack closures, for
which no dynamic check can be done. In these cases, the only safe option is to very
carefully control what other parameters are passed alongside the closure.

4.5 A Binary Model For Confidentiality

So far, we have shown how to use the unary model to reason about examples that
depend on integrity properties. To reason about confidentiality properties we must
use a binary model. For the temporal aspect of local state confidentiality, we expect
that a popped frame should not be able to influence the caller, and thus that two
programs whose only difference is to leave different traces on their stack frames ought
to be contextually equivalent. We define a binary logical relation and use it to show
the contextual equivalence of assembly versions of f and g from Listing 4.8. We
follow well-known techniques for defining binary logical relations in Iris [54, 83, 85],
but apply them here for the first time to a low-level capability machine language.
The logical relation is parameterised by a binary version of the world. The key
technical aspect of the definition is to allow for the uninitialized part of the stack to
be uninitialized at different words. We will return to this key aspect later. First, let’s
examine some high-level aspects of the definition of the binary logical relation.

The logical relation, presented in Figure 4.13, captures program refinement. We
depict in blue the parts of the definition that are different from the unary logical

CHAPTER 4. DIRECTED CAPABILITIES 184

E (W)(v1,v2) ≜ ∀reg1,reg2,R(W)(reg1,reg2)
∗ sharedResources(W)∗ stsCollection(W)
∗ Z⇒ Executable
∗pc 7→ v1 ∗pc↣ v2

∗(r,w1)∈reg1/pc ∧ (r,w2)∈reg2/pc r 7→ w1 ∗ r↣ w2 −−∗

wpExecutable

v,v = Halted→
∃W ′ reg′1 reg′2, W ′ ⊒priv W
∗ Z⇒ Halted
∗ sharedResources(W ′)
∗ stsCollection(W ′)
∗(r,w1)∈reg′1 ∧ (r,w2)∈reg′2

r 7→ w1 ∗ r↣ w2

R(W)(reg1,reg2) ≜ ∗(r,w1)∈reg1/pc ∧ (r,w2)∈reg2/pcV (W)(w1,w2)

V (W)(w1,w2)

V (W)(z1,z2) ≜ z1 = z2

V (W)((O,g,b,e,a),w2)≜ (O,g,b,e,a) = w2

V (W)((E,g,b,e,a),w2)≜ (E,g,b,e,a) = w2
∗2 ∀W ′ ⊒g W,

▷ E (W ′)(
(RX,g,b,e,a),
(RX,g,b,e,a)

)

V (W)((p,g,b,e,a),w2)≜ (p,g,b,e,a) = w2

∗a′∈[b,e)

{
S u(W)(a′,g, p,a) if p = U-
S (W)(a′,g, p) otherwise

∧

{
∃P,rel(a′,P)∗ rcond(P) if p = RO|RX

rel(a′,V) otherwise

rcond(P) ≜ ▷2∀W,w1,w2,P(W)(w1,w2)−−∗ V (W)(w1,w2)
∗▷2∀W1,W2,z1,z2,P(W1)(z1,z2)−−∗ P(W2)(z1,z2)

State relation

S (W)(a,g, p) ≜

W std(a) ∈ {Temporary,Permanent} if ¬write-local(p)
∧ g = DIR

W std(a) = Temporary if write-local(p)
∧ g = DIR

W std(a) = Permanent if g ̸= DIR

S u(W)(a,g, p,mid)≜

S (W)(a,g, p)
∨ ∃w1,w2,W std(a) = Uninitialized(w1,w2) if a≥ mid

∧ g = DIR

S (W)(a,g, p) otherwise

Figure 4.13: A Binary Logical Relation with Support for Temporal Stack Safety

CHAPTER 4. DIRECTED CAPABILITIES 185

relation. The expression relation E (v1,v2) describes that the program pointed to by
capability v1, thought of as the implementation, refines the program pointed to by
capability v2, thought of as the specification. The trick in defining logical refinements
in Iris is to use ghost state (separate from the state interpretation) to track the current
state and expression of the specification.

In our low level capability machine, this means we use ghost state to track the state
of specification registers, denoted r↣ w, the state of specification memory, denoted
a↣ w, and the current execution mode of the specification program, denoted Z⇒ µ .
As usual, these ghost state assertions depict fragmental views of the ghost state. We
store the full authoritative view in an Iris invariant, henceforth denoted specCtx.

The expression relation can roughly be interpreted as follows: given an imple-
mentation register state that refines a specification register state, where both the
implementation and specification are in Executable mode, if the implementation halts,
then the specification must also halt, and all established invariants of the (binary)
instrumented machine state hold at some private future world.

Capability machine programs are able to observe and compare words. As a first
step towards a value relation, we thus observe that a word w1 can only refine w2 if they
are equal. However, syntactic equivalence is not enough. Capabilities that grant read
authority must themselves point to refined memory fragments. Just as in the unary
case, we use the (binary) instrumented machine state to relate the memory fragments
within the authority of a valid capability. The binary state relation enforces appropriate
standard states on the world. These standard states are as in Figure 4.9, except the
Uninitialized state now records two words, one for the specification and one for the
implementation. Crucially, since a directed capability only grants write authority
to its uninitialized part, the content of the latter cannot affect program execution.
The state interpretation thus allows the content of implementation side uninitialized
memory to differ from its specification counterpart, as reflected by the standard state
Uninitialized(w1,w2). This is the key point that allows us to verify the contextual
equivalence of programs that depend on the temporal aspect of confidentiality.

With the binary logical relation in place, we prove a similar fundamental theorem
of logical relations as Theorem 12.

Theorem 15 (Binary FTLR). Assume that p = RX, p = RWX or (p = RWLX∧g =
DIRECTED). Assume also that V (W)((p,g,b,e,a),(p,g,b,e,a)) and the invariant
specCtx. Then we have that E (W)((p,g,b,e,a),(p,g,b,e,a)).

We use the logical relation to show contextual equivalence of components. In-
formally, two components are contextually equivalent if no context can distinguish
them through termination. A component is either a library or a main component. A
component C can be considered a context for component comp when their linking
C[comp] generates a closed program, that is, there are no imports left to satisfy. We
only consider components that are well-formed. A component is well-formed if its
memory segment does not overlap with the stack memory, and all capabilities that
it contains only address its own memory segment, and are not permit-write-local.

CHAPTER 4. DIRECTED CAPABILITIES 186

f3: prepstack rstk
loadU r0 rstk (-1)
push 2
rclear RegName\{pc,r0}
jmp r0

h3: prepstack rstk
loadU r0 rstk (-1)
push 3
rclear RegName\{pc,r0}
jmp r0

Figure 4.14: Assembly of Listing 4.8

The initial state of a closed program is a state where the register file contains only 0,
except for the program counter, which should be initialized to the entry point of the
program, and rstk, which should be initialized with the stack capability. The memory
is empty except for the part specified by the memory segment of the program, and the
stack, which is initialized with arbitrary words. These definitions are formally stated
in Section 4.6.2. We use them to formally define contextual equivalence.

comp1 ≈ctx comp2 ≜ ∀C,C[comp1] ⇓⇐⇒ C[comp2] ⇓

We use c ⇓ to denote that the configuration c terminates in a Halted state.
Let’s use the binary model to prove the equivalence of the two programs from

Listing 4.8. Figure 4.14 depicts their low level implementation. f3 pushes 2 onto the
stack, clears its registers and jumps to a return capability loaded from the stack. h3
behaves similarly, except it pushes 3 onto the stack. The two programs leave different
traces on their respective stack frames, but if temporal confidentiality is enforced, no
caller can distinguish them. We use the binary model to show that the two programs
refine each other according to our logical refinement definition.

Lemma 24. For any world W, assuming that the memory has been properly initialized
in the implementation and in the specification each in region [bni,eni) with the code
of the respective programs, and given the invariant specCtx :

E (W)((RX,GLOBAL,bni,eni,f3),(E,GLOBAL,bni,eni,h3))

Proof. Unfolding E , we introduce the following assumptions into our context.

R(W)(reg1,reg2) (4.13)

∗ sharedResources(W) ∗ stsCollection(W) (4.14)

∗ Z⇒ Executable (4.15)

∗ pc 7→ v1 ∗ pc↣ v2 (4.16)

∗
(r,w1)∈reg1/pc ∧ (r,w2)∈reg2/pc

r 7→ w1 ∗ r↣ w2 (4.17)

Where the goal is a weakest precondition, in which the post condition matches
that given by the expression relation definition (Figure 4.13). The proof proceeds by
applying weakest precondition rules for stepping through the implementation program,
while applying respective rules that manipulate Z⇒ Executable, a↣− and r↣− for
stepping through the specification program.

CHAPTER 4. DIRECTED CAPABILITIES 187

We begin the proof by stepping through prepstack, and inferring properties
about the stack region in W . The subroutine dynamically checks that rstk points to
an uninitialized write-local capability, with at least one initialized address. Without
loss of generality, let’s assume that the stack capability in the implementation equals
(URWLX, l,b,e,b+1).

We know from assumption 4.13, that the stack capabilities are in the binary
value relation. We can thus infer that the specification stack capability also equals
(URWLX, l,b,e,b+1), and that its locality l is DIRECTED. Furthermore, we can infer
the following assumptions over W :

W std(b) = Temporary (4.18)

W std(a) = Temporary∨∃w1,w2,W std(a) = Uninitialized(w1,w2) ∀a ∈ [b+1,e)
(4.19)

As previous, since we currently have ownership of the stack, we can safely uninitialize
all stack addresses above b. Let Wuninit be the world which results in uninitializing all
Temporary states above b. We can prove the following future world relation:

Wuninit ⊒b W (4.20)

From which we can derive the new instrumented machine state:

sharedResources(Wuninit) ∗ stsCollection(Wuninit) (4.21)

Next, we step through the loadU instruction, followed by the push subroutine.
Both use the shared stack, and must be reasoned about in lock-step. Since we are
loading from the initialized part of the stack, we know that its state is Temporary
(assumption 4.18), and thus that the loaded word is also in the value relation (Note
that the value relation is instantiated to the new world Wuninit). Let wret and w′ret be the
loaded words.

V (Wuninit)(wret,w′ret) (4.22)

The next part of the proof is particularly interesting, as the two programs push different
values onto the stack. Since we have uninitialized the instrumented machine state for
all addresses above b, we know that Wuninit(b+1) = Uninitialized(w1,w2), for some
w1 and w2. However, since push updates the state of b+1, the instrumented machine
state must likewise change. After applying relevant rules to step through the subroutine,
we update the instrumented machine state by setting b+ 1 to Uninitialized(2,3),
denoted Wuninit[b+1 := (2,3)]. We prove the following world relation:

Wuninit[b+1 := (2,3)]⊒b Wuninit (4.23)

The update is allowed, since there are no Temporary invariants in Wuninit above b, and
all remaining Temporary invariants are monotone with regards to ⊒b. Likewise, we
can derive the following from applying Lemma 20 to assumption 4.22.

V (Wuninit[b+1 := (2,3)])(wret,w′ret) (4.24)

CHAPTER 4. DIRECTED CAPABILITIES 188

Finally, we step through the remaining instructions, and reason about the con-
tinuations wret and w′ret by applying the binary fundamental theorem on assumption
4.24.

We prove a similar lemma to show the refinement in the other direction.
We then apply the adequacy of weakest preconditions to prove the following

contextual equivalence:

Theorem 16. (Correctness of the temporal confidentiality example) Let comp f 3 and
comph3 be two components containing the programs f3 and h3 respectively, where

comp f 3.exports≜ {0 : (E,GLOBAL, ...,f3)}

comph3.exports≜ {0 : (E,GLOBAL, ...,h3)}

in which the respective exported entry points have an appropriate range of authority
and pointer.

Furthermore, assume that contexts are defined as well-formed components with no
exports, a single import 0, and a memory segment with instructions (integers) only.
Then

comp f 3 ≈ctx comph3

Proof. By applying Iris adequacy on the conclusion from Lemma 24.

4.6 Characterizing security using a fully abstract overlay
semantics

The unary and binary model can be used to prove the integrity and confidentiality
of example programs that may depend on any of the five properties presented in
Section 4.2.1. While the unary and binary model capture integrity and confidentiality
properties, and proving examples increase our confidence in the calling convention,
they do not define any notion of stack safety. Rather than detailing examples that
vaguely cover all properties, we wish to truly capture this notion of stack safety, and
prove that our new calling convention enforces it.

To that end, we follow the same approach as Skorstengaard et al. [132] for proving
that our calling convention does enforce the security properties we claim. We first start
by describing an overlay semantics (Section 4.6.1) whose aim is to clearly capture
the properties included in our notion of stack safety. Next, we provide some base
definitions for components, linking and contexts (Section 4.6.2). Then, we prove a full
abstraction theorem between the overlay semantics and the original base capability
machine semantics (Section 4.6.3).

CHAPTER 4. DIRECTED CAPABILITIES 189

4.6.1 Overlay Semantics

The overlay semantics augments the base semantics of the capability machine with
additional structure to model the properties we wish to enforce, these components are
indicated in blue.

c ∈ Cap≜ {(p, ℓ,b,e,a) | b,e,a ∈ Addr}
∪ {Stk(d, p,b,e,a) | d ∈ N, p ∈ Perm,b,e,a ∈ Addr}
∪ {Ret(b,e,a) | b,e,a ∈ Addr}

instr ::= . . . | call r r⃗

sf ∈ Stackframe≜ (Reg×Mem)

ϕ ∈ ExecConf ≜ Reg×Mem ×Mem× list Stackframe

Syntax Configurations in the overlay semantics now track a list of overlay stack
frames, and natively separate the heap and stack memory. Configurations are now
quadruples (reg,h,stk,cs) where reg and stk are the current register state and current
stack frame. h is the state of the heap, while cs corresponds to the call stack, a list of
saved register states and stack frames.

The overlay semantics has two additional kinds of capabilities; stack derived capa-
bilities Stk(d, p,b,e,a), and return capabilities Ret(b,e,a). A capability Stk(d, p,b,e,a)
provides access to the dth stack frame with permission p over range [b,e), and cur-
rently points to address a. That is, if the current state is (reg,h,stk,cs), then d = 0
provides access to the oldest stack frame (i.e., at the tail of cs), while d = |cs| provides
access to the current stack frame stk. For instance, if |cs|= 1, then it means that the
current executing function is at depth 1, its caller is necessarily the main entrypoint
function. Return capabilities Ret(b,e,a) make the overlay semantics return from a call
by deallocating the topmost frame, the addresses b,e,a do not matter except for the
full abstraction proof which will be explained Section 4.6.3. The regular capabilities
(p, ℓ,b,e,a) are now specifically for accessing only the heap in the overlay semantics.

Call The overlay semantics provide a new instruction call r r⃗args which calls the
function given in the register r, and passing the arguments in r⃗args. The operational
semantics is given an additional rule for executing calls as follows.

CHAPTER 4. DIRECTED CAPABILITIES 190

EXECCALL
†
ϕ.reg(pc) = (p, ℓ,b,e,a) † p ∈ {RX,RWX,RWLX}

†[a,a+ |call r r⃗args|)⊆ [b,e)
†
ϕ.h([a,a+ |call r r⃗args|)) = [call0 r r⃗args;call1 r r⃗args; . . .]

¶∀r,r ∈ r⃗args,safe(ϕ.reg(r))
§
ϕ.reg(r) = (E, ℓ′,b′,e′,a′) ⋆

ϕ.reg(rstk) = Stk(d,URWLX,bstk,estk,astk)
⋆d = |ϕ.cs| ⋆[a,astk + |actcode|+1+ |⃗rargs|)⊆ [bstk,estk)

•∀i,canBeStored(ϕ.reg(ri),astk + i)
ϕ
′ = (reg′,ϕ.h,stk′,(reg∗,stk∗) :: ϕ.cs)

(Executable, ϕ)→ (Executable, ϕ
′)

where

• reg′ is defined such that reg′(pc) = (RX, ℓ′,b′,e′,a′),
reg′(rstk) = Stk(d + 1,URWLX,astk + |actcode|,estk,astk + |actcode|+ 1+ |⃗rargs|)
and
reg′(r′) = if r′ = r then reg(r) else 0;

• stk′ = /0[astk + |actcode| 7→ Ret(. . .), . . .];
• reg∗ = reg[pc 7→ (p, ℓ,b,e,a+ |call r r⃗args|)];
• stk∗ = stk[astk 7→ . . . , . . . ,astk + |actcode|−1 7→ . . .].

First, the overlay machine dynamically checks that the current pc contains a valid
program counter, pointing to the code pattern implementing call r r⃗args (indicated with
a † in EXECCALL). It then checks (¶) the parameters of the call are safe and (§) the
call target is an enter capability.

Definition 2 (Safe word). Given an overlay configuration ϕ = (reg,h,stk,cs), a word
w is safe to pass as argument in that configuration, written safe(ϕ,w) if one of the
following holds.

• w is an integer (w ∈ Z);

• w is a heap capability (p, ℓ,b,e,a);

• w is a stack derived capability Stk(d, p,b,e,a) such that

– d < |cs| and cs is of the form (regn,stkn) :: · · · :: (reg0,stk0) and
regd(rstk) = Stk(d, p′,b′,e′,a′) and e < a′ and
for all a′′ ∈ [b,canReadUpTo(w)), safe(ϕ,stkd(a′′));

– or d = |cs| and the above conditions hold using regd = reg and stkd = stk
instead.

Intuitively, a word is safe to pass if it cannot tamper the activation code of active
return capabilities. As such, integers and heap capabilities are obviously safe. Return
capabilities are unsafe to pass as this would break well-bracketed control flow (though

CHAPTER 4. DIRECTED CAPABILITIES 191

allowing to pass them would actually implement a form of longjmp). The activation
code of return capabilities is stored on the stack, just above the stackframe used by a
function, hence the e < a′ condition above. We must also ensure that the capability
can only give access to safe words itself.

We point out, that while the definition may not seem well-founded, a stack
capability can only be safe if its contents are also safe (which may itself contain the
original capability), this is actually not the case, as stack capabilities are directed
capabilities, making this definition provide a terminating algorithm. Indeed, in the
recursive check safe(ϕ,stkd(a′′)), it is either a word that is immediately safe (i.e., an
integer or a heap capability), or immediately unsafe (a return capability), or a stack
capability w′ such that canReadUpTo(w′)≤ a′′ (by property of directed capabilities)
and a′′ < canReadUpTo(w) (by definition of a′′). There is therefore a decreasing
measure ensuring termination of the check.

In the Coq formalization, we use a more restrictive notion of safe words that
instead only allow passing integers and heap capabilities.

(⋆) It then checks that the provided capability in rstk is actually a capability for the
current stack, with enough range to store the activation code and parameters. The
local state is stored on the stack, followed by the activation record.

(•) The overlay semantics requires that all of these can be legally stored on the stack.
The callee is given a fresh register state (all cleared except pc, rstk and r), and receives
a fresh stackframe with the return capability at the bottom, and all parameters above
it. Finally, the local state (reg∗,stk∗) of the caller is pushed on the call stack. If a
condition is not satisfied, the overlay semantics falls back on the rule EXECSTEP,
and simply executes one instruction at a time. The formal rule for call, denoted
EXECCALL has been formalized in Coq.

Return A jump using a return capability is interpreted as a return.

Jjmp rK(reg,h,stk,cs) = (reg′,h,stk′,cs′) when

{
reg(r) = Ret(b,e,a)
cs = (reg′,stk′) :: cs′

The semantics of return capture temporal stack safety. The topmost stack frame
stk is deallocated and the local environment reg′ and stk′ is restored. By deallocating
the topmost stack frame, we capture that the caller loses any read access to its old
content. This is in contrast with [132], where the stack frames stk and stk′ are instead
merged together, giving the caller access to whatever was left on the stack.

Properties of the overlay semantics EXECCALL and jumping using a return ca-
pability are the only way in the semantics to push or pop the call stack, it is thus
obvious that WBCF is enforced by the overlay semantics. As the topmost stack frame
is entirely removed when returning, temporal stack safety is also natively enforced
by the semantics. Finally, a stack frame can only be accessed using a corresponding

CHAPTER 4. DIRECTED CAPABILITIES 192

ms ∈MemFrag ::= Addr⇀Word

a←[s ∈ Imports ::= Symbols×Addr

s 7→ w ∈ Exports ::= Symbols⇀Word

basecomp ∈ BaseComp ::=Memfrag× Imports×Exports

Comp ::= basecomp | (basecomp,cmain)

(a) Components.

comp1 = (ms1,a←[s1,s 7→ w1) comp2 = (ms2,a←[s2,s 7→ w2)

comp = (ms,a←[s,s 7→ w) s 7→ w = s 7→ w1∪ s 7→ w2

ms = (ms1⊎ms2)[a 7→ w | a←[s ∈ (a←[s1∪a← [s2),s 7→ w ∈ s 7→ w]
a←[s = (a←[s1∪a←[s2)\{_←[s | s 7→ w ∈ s 7→ w}

comp = comp1 ▷◁ comp2

(b) Linking.

Figure 4.15: Components and linking.

Stk capability with the right depth. EXECCALL is the only rule that creates a Stk
capability with an increasing depth and only provides it to the callee, a caller cannot
thus access to a callee’s stack frame. Conversely, a callee is only given access to its
Stk capability and parameters, it thus cannot access its caller’s local state, local state
is also natively enforced by the overlay semantics.

4.6.2 Components, Linking and Contexts

In Section 4.5, we defined contextual equivalence on top of definitions for components,
linking and context. Before we present the full abstraction theorem, which also
depends on these, let’s first establish them formally.

A closed program is created by linking together multiple components, until
all imports are satisfied. A component (defined in Figure 4.15a) is either a base
component, representing a library waiting to be linked with other components, or a
main component, a base component with a main entrypoint. A base component is
defined by a memory fragment representing the part of the memory owned by the
component, its content, a list of imports indicating where an import will be stored by
the linker, and a list of exports associating words with symbols.

Linking components comp1 and comp2, denoted comp1 ▷◁ comp2, is defined in
Figure 4.15b. For linking to succeed, components must have disjoint memories, with
at most one main component amongst them. The new component comp1 ▷◁ comp2
is obtained by taking the union of both components’ memory fragments, and satisfy
all matching imports and exports by storing the export word into the import memory.
The satisfied imports are removed from the resulting program, and the components’

CHAPTER 4. DIRECTED CAPABILITIES 193

exports are combined.
We can now define notions of contexts and closed programs.

Definition 3 (Closed programs and contexts). A main component is a closed program
when its imports list is empty.

A component C is a context for component comp, written C [comp] when comp ▷◁
C is a closed program.

A closed program can run once we define its initial state. Specifically, we are
interested in running well-formed programs.

Definition 4 (Well-formed components). A base component (ms,a← [s,s 7→ w) is
well-formed when:

• import and export symbols are disjoint;
• all exported words can only address memory owned by the component, i.e., ms;
• all import addresses are part of the memory owned by the component;
• ms only contains integers or capabilities that can address memory within ms,

are not permit-write-local (i.e., have permission URWL, URWLX, RWL or RWLX)
and are global;

• ms is disjoint from the memory reserved for the call stack.

A main component is well-formed when its base component is well-formed and its
main entrypoint can only address memory it owns.

These properties are necessary in order to satisfy the initial assumptions of a
secure capability machine program. For instance, stack safety cannot be enforced if
any of the components have direct access to the call stack, or if they can keep a copy of
stack derived capabilities in their own memory by owning separate permit-write-local
capabilities.

Assuming that [bstk,estk) is the range reserved for the stack, the initial configuration
of a closed program ((ms, [],s 7→ w),cmain) is a configuration (reg,m) in the base
semantics such that:

• reg(pc) = cmain;
• reg(rstk) = (URWLX,Directed,bstk,estk,bstk);
• reg(r) = 0 if r ̸= pc or r ̸= rstk;
• mem(a) = ms(a) if a ∈ dom(ms), and mem(a) = 0 otherwise.

In the overlay semantics, the initial configuration of a closed program
((ms, [],s 7→ w),cmain) is the configuration (reg,ms, /0, []) such that:

• reg(pc) = cmain;
• reg(rstk) = Stk(0,URWLX,bstk,estk,bstk);
• reg(r) = 0 if r ̸= pc or r ̸= rstk.

With these definitions in place, we can now formally state and prove the full
abstraction theorem.

CHAPTER 4. DIRECTED CAPABILITIES 194

4.6.3 A Full Abstraction Theorem

In order to show that our new calling convention does enforce stack safety, we prove
a full abstraction theorem between the overlay semantics and the base capability
machine. Full abstraction states that two components are indistinguishable by other
components in the overlay semantics if and only if they are indistinguishable by other
components in the base semantics. Informally, this shows that adversarial contexts in
the base capability machine are not stronger that those in the overlay semantics. The
theorem is stated as follows. We use blue for the overlay machine, and red for the
regular capability machine.

Theorem 17. For well-formed components comp1 and comp2, we have

comp1≈ctxcomp2⇔ comp1≈ctxcomp2

The theorem states that contextual equivalences are preserved and reflected, it
is proved using a simple simulation argument. A forward simulation is defined as
follows.

Definition 5 (Forward simulation). We say that ∼ is a forward simulation between
programs p1 and p2 when the following holds.

1. Let φ and ψ be the initial states of p1 and p2, then φ ∼ ψ .

2. Let φ and ψ such that φ ∼ ψ , then if φ → φ ′ then there exists ψ ′ such that
ψ →∗ ψ ′ and φ ′ ∼ ψ ′.

3. Let φ and ψ such that φ ∼ ψ , then if φ is a final state of p1, then ψ is a final
state of p2.

A forward simulation implies preservation of termination [89]:

Lemma 25. If there exists a forward simulation between programs p1 and p2, then
p1⇓⇒ p2⇓.

Before proving Theorem 17, we first show the following lemma.

Lemma 26. For all well-formed closed programs P in the overlay semantics, there
exists a forward simulation between P and its counterpart P in the base semantics.

Proof. The detailed proof can be found in the accompanying Coq development,
we only provide a proof sketch here. The crux of the proof is to build a relation
∼ and show it is a forward simulation. We say that (reg,h,stk,cs) ∼ (reg,mem)
when reg and reg contain related words in each register. An integer is only related
to itself, while a stack capability Stk(d, p,b,e,a) is related to a directed capability
(p,DIRECTED,b,e,a). Similarly, return capabilities Ret(b,e,a) are related to enter
directed capabilities (E,DIRECTED,b,e,a) and regular capabilities (p, ℓ,b,e,a) are
related to themselves. Furthermore, the heap h, the current stack stk and saved stack

CHAPTER 4. DIRECTED CAPABILITIES 195

frames in the call stack cs must have disjoint domains, as well as have related words
at corresponding addresses with mem.

When this relation is defined, it is relatively straightforward, though tedious, to
show that it is indeed a forward simulation. The simulation operates in a “lockstep”
fashion, except for the EXECCALL and EXECRETURN steps where one step in the
overlay semantics is simulated by multiple ones in the base semantics.

We can now prove our full-abstraction theorem (Theorem 17).

Proof. By unfolding the definitions, we need to prove the following:

(∀C ,C [comp1]⇓⇔ C [comp2]⇓)⇔ (∀C,C[comp1]⇓⇔ C[comp2]⇓)

By combining Lemma 25 and Lemma 26, we know that for all closed programs p,
p⇓ =⇒ p⇓. Furthermore, as the base capability machine semantics is deterministic,
we can actually build a backward simulation from the forward simulation [89]. We
thus actually have that for all closed programs p, p⇓⇔ p⇓.

Without loss of generality, we can thus consider the ⇒ implication (the other
direction is similar). By symmetry it suffices once again to consider only the ⇒
direction of (∀C,C[comp1]⇓⇔ C[comp2]⇓).

We prove this by following the proof structure shown on the left. Let C be
a context such that C[comp1]⇓, we need to prove that C[comp2]⇓, knowing that
C [comp1]⇓⇔ C [comp2]⇓.

(1)
(2)

(3)

?
C[comp1]⇓ C[comp2]⇓

C [comp1]⇓ C [comp2]⇓

The steps described in the figure can then be proved as follows.

(1) We use the backward simulation to prove that C [comp1]⇓.

(2) By assumption, we have that C [comp1]⇓⇔ C [comp2]⇓,
and therefore C [comp2]⇓.

(3) We use the forward simulation to conclude that C[comp2]⇓.

4.7 Related Work

We now discuss some related work that has not already been discussed in the paper.
In this paper we have emphasized temporal stack safety, but capabilities have also

recently been proposed in the CHERI project as a mechanism for ensuring temporal
memory safety for the heap. In particular, in CHERIvoke [163] and Cornucopia [52]

CHAPTER 4. DIRECTED CAPABILITIES 196

the authors suggest to use capabilities to efficiently and securely reclaim memory
managed by a dedicated memory allocator using a garbage-collector-like approach. In
contrast to our work, they do not formally state nor prove the guarantees provided by
their mechanism, and it would be interesting to do that in future work.

We have already discussed the most closely related work on formalising capabi-
lity safety. Other related approaches include the work of Nienhuis et al. [109] and
Bauereiss et al. [18], who define a syntactic notion of capability safety as a mono-
tonicity guarantee of reachable objects (the machine does not create new capabilities
out of thin air); in contrast to our approach, they do not consider safety across calls
to possibly adversarial code, so they only show that security properties hold within
a single component. On the other hand, they consider a capability machine model
with all of the instructions found on a real machine (Morello in the case of [18])
whereas we consider a core capability machine model. Devriese et al. [37] propose
a semantic approach to capturing capability safety for a high-level language with
object capabilities using logical relations; this approach was further expanded upon by
Swasey et al. [138], who showed the robustness of several object capability patterns.
Recently, El-Korashy et al. [44] have studied the formal security guarantees of PAC
(pointers-as-capabilities) compilers for partial programs and characterized them via a
full abstraction result.

Full abstraction [1] is a well-known property in the field of secure compila-
tion [112] and has been used in recent works to characterize the security properties
provided by different capability machines. Our approach follows the one proposed
by Skorstengaard et al. [132] who use a fully abstract overlay semantics to define
and show that their protection mechanisms enforce WBCF and LSE. Their proof
uses a complex cross-language logical relation and is not mechanized, whereas we
use a simpler simulation argument. Van Strydonck et al. [148] also use a simulation-
based argument for a fully abstract compiler from a statically verified language to
an unverified language with support for linear capabilities. Likewise, Tsampas et al.
[144] also use a simulation proof for proving full abstraction between an “ideal”
semantics with native temporal safety and an imperative language equipped with
capabilities. It is interesting to note that their higher-level semantics already assumes
well-bracketed control-flow with automatic deallocation of stackframes on return; we
provably enforce that using directed capabilities.

While we use an overlay semantics to characterize the notion of stack safety our
calling convention guarantees, Anderson et al. [10] define stack safety as a trace
property, expressed as the conjunction of LSE and WBCF. Anderson et al. distinguish
between the integrity of local state, and the confidentiality of local state. Likewise,
we develop a unary model to reason about the integrity of specific examples, and a
binary model to reason about confidentiality. Unlike Anderson et al., we consider a
machine with both a stack and a heap. Anderson et al. use their definition to validate
the stack safety micro-policies proposed by Roessler and DeHon [117], who use
a general-purpose tagged architecture to design stack protection security policies.
Unlike our capability-based calling convention, their policies do not incur an overhead
when passing stack objects, but require more sophisticated tags, and a mechanism of

CHAPTER 4. DIRECTED CAPABILITIES 197

lazy tagging to achieve the low overhead.
Tagged architectures have also been used to enforce more general properties

such as information-flow control [15], secure compartmentalization [3], among other
micro-policies [16]. However, micro-policies must be expertly designed in order to
leverage cache and be efficient.

In a different line of work, software-based fault isolation (SFI) aims to provide
process-based isolation by compartmentalizing (sandboxing) processes in different
regions of the memory [151]. Our calling convention provides similar guarantees
despite a shared stack. Recently, Kolosick et al. [81] have used an overlay semantics
to characterize sufficient conditions for which so-called “heavyweight transitions”
(context switching) can be safely replaced by “near zero cost transitions” akin to
regular function calls. They further show that WebAssembly code compiled by a
correct compiler would satisfy these conditions.

Finally, we remark that our unary and binary models are built on a large body of
work on characterizing security through logical relations. We use a logical approach
[40, 41, 145] to step-indexed Kripke logical relations [6, 21], mechanized in the Coq
implementation of Iris [83]. We use private and public transitions to characterise
well-bracketed control flow [39], and a new kind of transition that we call temporal
transitions to characterise the temporal aspect of stack safety.

4.8 Conclusion and Future Work

We have demonstrated how directed capabilities can be used to enforce a strong
degree of stack safety, including local state encapsulation, well-bracketed control
flow, and temporal stack safety, with no stack clearing, and with only one additional
bit. We have presented two new logical relations to reason about the integrity and
confidentiality of specific examples, and proved a full abstraction result for an overlay
semantics that defines our notion of stack safety. Finally, we discussed interesting
subtleties of stack safety properties in a capability machine with a stack and a heap,
and in the presence of stack objects crossing the boundary from caller to callee.

We have used contextual equivalence to formalize confidentiality, whereas An-
derson et al. [10] and Azevedo de Amorim et al. [17] intuitively link confidentiality
to a kind of non-interference property. We believe our calling convention based on
directed capabilities also guarantees non-interference and in future work, it would be
interesting to show this formally. To that end, one would probably have to extend the
capability machine language with security labels.

We have shown how our capability machine can implement function calls, as found
in higher-level languages, in a secure manner. We believe it is easy to show that it can
also implement tail-calls securely and conjecture that it is also possible to implement
non-standard control flow such as C-style setjmp/longjmp efficiently and securely.
Indeed, we may implement setjmp by creating a Jmp capability pointing to some
activation code, similarly to how call creates a return capability. These capabilities can
then be safely passed up the stack to callees. longjmp would then be implemented

CHAPTER 4. DIRECTED CAPABILITIES 198

by jumping to such a capability. Such an implemention is efficient as longjmp is
just a jump, and it is not necessary to unwind the stack. It is also safe in the sense
that we can guarantee temporal safety of a setjmp environment: a caller will not
be able to longjmp to a setjmp environment set up by one of its descendants (this
is similar to how we ensure WBCF and guarantee that a return capability cannot be
smuggled away). Temporal confidentiality of stack frames can still be enforced, and
stack frames do not need to be scrubbed because directed capabilities guarantee that
a caller cannot read them. Previously proposed calling conventions for capability
machines either cannot provide such guarantees or would require careful unwinding
or extensive memory clearing.

Acknowledgements We thank the anonymous reviewers for excellent comments
and suggestions. This work was supported in part by a Villum Investigator grant
(no. 25804), Center for Basic Research in Program Verification (CPV), from the
VILLUM Foundation. We would also like to thank Dominique Devriese, Thomas
Van Strydonck, Amin Timany, Armaël Guéneau and Frank Piessens for invaluable
discussions and feedback.

Chapter 5

Iris-Wasm: Robust and Modular
Verification of WebAssembly
Programs

This chapter is an extended version of the following conference submission, which
has been conditionally accepted to the International Conference on Programming
Language Design and Implementation (PLDI) 2023:

Xiaojia Rao, Aïna Linn Georges, Conrad Watt, Maxime Legoupil, Jean Pichon-
Pharabod, Philippa Gardner, Lars Birkedal
Iris-Wasm: Robust and Modular Verification of WebAssembly Programs

The extension consists of

• Added technical details about the logical relation model; Section 5.5.1

• A extended presentation of the fundamental theorem of logical relations, includ-
ing a proof of multiple key cases; Section 5.5.1.3

• An illustrative example of applying the logical relation model; Section 5.5.2

Abstract

WebAssembly makes it possible to run C/C++ applications on the web with
near-native performance. A WebAssembly program is expressed as a collection
of higher-order ML-like modules, which are composed together through a system
of explicit imports and exports, using a host language, enabling a form of higher-
order modular programming. We present Iris-Wasm, a mechanised higher-order
separation logic building on a specification of Wasm 1.0 mechanised in Coq and
the Iris framework. Using Iris-Wasm, we are able to specify and verify individual
modules separately, and then compose them modularly in a simple host language

199

CHAPTER 5. IRIS-WASM 200

featuring the core operations of the WebAssembly JavaScript Interface. Building
on Iris-Wasm, we develop a logical relation that enforces robust safety: unknown,
adversarial code can only affect other modules through the functions that they
explicitly export. Together, the program logic and the logical relation allow
us to formally verify functional correctness of WebAssembly programs, even
when they invoke and are invoked by unknown code, thereby demonstrating that
WebAssembly enforces strong isolation between modules.

5.1 Introduction

WebAssembly (Wasm) is a new bytecode language, supported by all major Web
browsers and designed primarily to be an efficient compilation target for low-level
languages such as C/C++ and Rust. It is officially specified using a formal operational
semantics in the W3C Wasm 1.0 standard [119]. The formal nature of the official
Wasm standard and the existence of a well-exercised language mechanisation give
us a standout opportunity to define a higher-order program logic that covers the
full definition of an industrial programming language. We introduce Iris-Wasm, a
mechanised higher-order separation logic for Wasm 1.0 which builds on the WasmCert-
Coq mechanised specification of the Wasm 1.0 language standard [160] and the Iris
framework [74, 77]. In Iris-Wasm, we present an interactive formal verification
framework that exactly reflects the Wasm semantics. The result is a semantic and
compositional characterization of all Wasm definitions, which can be used to prove
separation logic assertions about real Wasm programs, and which lays the foundation
for rigorous investigations of the Wasm ecosystem.

A Wasm program is expressed as a collection of higher-order ML-like modules,
which are composed together through a system of explicit imports and exports. This
process of composing Wasm modules into a full program is not performed within
Wasm itself. Instead, Wasm is embedded within a host language, which provides
several important capabilities not available to core Wasm code, including a com-
plex, inherently higher-order, instantiation operation in which the declared state of
a WebAssembly module is allocated, the module’s requested imports are satisfied,
and the module’s declared exports are registered for use in satisfying further imports
requested during subsequent instantiations. The Wasm standard defines instantiation
in a host-agnostic way, to be then satisfied by the specific host-language instantiation.
For example, a typical Wasm program on the web will involve individual Wasm
modules which are instantiated and composed together by a top-level JavaScript host
script using the functions of the WebAssembly JavaScript Interface [43].

Iris-Wasm is a higher-order mechanised program logic for the W3C Wasm 1.0 in-
dustrial standard using the Iris framework, inspired by a previous Isabelle-mechanised
first-order program logic for the language draft [159]. Our implementation of the
Wasm run-time semantics, with its difficult constructs such as complex control-flow
commands, is given directly in Iris, instead of being translated into an existing inter-
mediate Iris language. This choice requires considerable Iris engineering, but does
provide more trust in our mechanisation, as it is line-by-line close to the Wasm se-

CHAPTER 5. IRIS-WASM 201

mantics, and should lead to the mechanisation being comparatively straightforward to
extend as the standard expands. We make a minor reformulation of the host function
semantics (see §5.2.2.3), so that our core Wasm semantics and program logic are
properly separate from the host.

We provide a host-agnostic axiomatic characterisation of Wasm module instantia-
tion by establishing a lemma which lifts the complex W3C Wasm 1.0 instantiation
predicate to our Iris-Wasm logic, describing the state before and after instantiation
using our logical assertions. We illustrate this instantiation lemma on a simple host
language designed to capture the core functionality of the WebAssembly JavaScript
Interface [43], and corresponding host program logic, where the soundness of our host
instantiation proof rule is established using our instantiation lemma. The Iris-Wasm
program logic thus gives a semantic characterization of the host-agnostic instantiation
operation.

By capturing the semantics of the full Wasm 1.0 industrial standard directly, Iris-
Wasm lays the groundwork for a wide range of future analyses. Iris-Wasm can be used
to validate proposed extensions to Wasm such as MSWasm, a memory safe extension
of Wasm [95]. It can be used to rigorously investigate compilers that either target
Wasm or compile Wasm down to some low-level assembly language. Jacobs et al.
[70] demonstrate that Iris can be a useful tool to prove results such as full abstraction.
Iris-Wasm sets the groundwork for similar results for realistic compilers involving
Wasm.

We demonstrate our compositional higher-order reasoning about Wasm modules in
our host language by developing a series of examples. Our main running example is a
higher-order stack example comprising a stack module and a client module. The stack
module defines and exports stack functions, including a higher-order map function
for the stack, and the client module imports these functions and uses some of them,
including map, in its main function. Using our Wasm program logic and a program
logic for the simple host we introduce, we provide specifications for both modules: the
stack module’s specification contains specifications for all the stack functions, and the
client module’s specification depends on the stack module’s specification. Finally, we
verify a host program which instantiates the two modules in sequence, by modularly
combining the proofs for the two module specifications. In addition, we demonstrate
how to reason about reentrancy between the host and Wasm, by having the client
module invoke a host function to modify the function table to provide a different
input function for subsequent applications of map. The higher-order reasoning of
the Iris framework provides an ideal environment to reason about Wasm modules.
Nevertheless, it’s a substantial task to apply Iris to a true industrial standard. Our
implementation precisely follows the design decisions of the W3C Wasm 1.0 standard,
and by using a rich logic such as Iris, we have laid the foundations for deep semantic
investigations of WebAssembly and its future iterations.

In a case study, we investigate the intuitive coarse-grained encapsulation property
of Wasm modules, stated in the standard: ‘code from a module can arbitrarily affect
its own state, but can only access the state of another module through the module’s
exports’. Several systems rely on this important property of Wasm to provide a form

CHAPTER 5. IRIS-WASM 202

of sandboxing: for example, Fastly’s ‘Compute@Edge’ [67] platform and the RLBox
tool [105]. Both depend on the encapsulation property of a module, regardless of
behaviour of other modules, which are validated but not necessarily trusted. Reasoning
about such modules necessarily involves the interaction between the known, verified
code of one module against unknown, untrusted, and unverified code from other
modules, something that cannot be done with a program logic. Building on top of
Iris-Wasm, we define a relational interpretation of WebAssembly types through a
unary logical relation, which is then used to verify specific robust safety properties
of a known module, that hold even when composed with unknown modules. We
demonstrate this by proving robust safety properties of our stack module composed
with arbitrary clients. Our relational interpretation is entirely host agnostic, and can
modularly be applied to any host language.

In summary, our contributions are:

1. Iris-Wasm, a Coq-mechanised higher-order program logic for the Wasm run-
time semantics.

2. A host-agnostic module instantiation lemma, and a program logic for a simple
example host language with soundness of the specific host instantiation rule
proved using our general instantiation lemma.

3. A semantic interpretation of the Wasm type system, defined via a logical
relations interpretation using our Wasm program logic.

4. Illustrative examples and case studies that demonstrate the expressiveness of
Iris-Wasm; we show that an implementation of a higher-order stack module
satisfies a very modular abstract specification; we verify a reentrant module that
uses host language features to modify function tables dynamically; and we use
Iris-Wasm to define and prove the properties of our logical relation, which we
use to verify robust safety of higher-order examples.

All results, including soundness of the program logic and logical relations, have been
formalized in Coq – we hope this foundation will prove useful to other researchers
when further investigating the WebAssembly ecosystem.

5.1.1 Higher-Order Programming in WebAssembly and Reentrancy

Consider the WebAssembly snippet in Figure 5.1, which contains a module that works
as a library implementing a stack of i32s (on the left), and a module that works as a
client of that library (on the right). The library module, which the host language calls
"stack" here, uses a memory (with initial size 0; some other function is in charge of
allocating space for the stack) to implement a stack. The "stack" module exports a
"map" function that maps a function over a stack. However, because WebAssembly
is a first-order language, "map" does not take the function to map as an argument.
Instead, "map" takes as argument an index, $i, into a table of 3 functions, "tab1",
that this module creates and exports, and calls the function at that index in the table

CHAPTER 5. IRIS-WASM 203

stack_module≜
(module ; ;"stack"
(type $t1 (func (param i32) (result i32)))
(table (export "tab1") 3 funcref)
(memory 0)
(func (export "map")

(param $i i32) (param $stk i32)
...
loop
...
local.get $i
call_indirect $t1
...

end
...)

...)

client_module≜
(module ; ;"client"
(import "stack" "tab1"
(table 3 funcref))

(import "stack" "map"
(func $map (param i32 i32)))
(elem (i32.const 0) $f0 $f1 $f2)
(func $f0 (param $n i32) (result i32)
...)
...
(func (export "main")

(param $stk i32) (result i32)
i32.const 0
local.get $stk
call $map
... ; ;Rest of the code
))

Figure 5.1: A module implementing a stack library, and a client module. Module
boundaries enforce isolation.
This example uses the Wasm text format; below, we work directly with the AST.

using call_indirect. The client module imports the same shared table of functions,
and uses the elem directive to populate it (from offset 0) with functions it defines:
$f0, $f1, and $f2. It also imports the "map" function from the "stack" module as
$map, and its "main" function then calls the $map function with function index 0 as
argument, which makes it map $f0 on the stack.

In §5.2 we describe our program logic and we show in §5.2.2 how it can be used
to give a modular specification of the stack module, and, in particular, in §5.2.3, the
"map" function. A proof of the specification of the instantiation of the stack module
is given at the end of §5.3. We emphasize that our logic supports verification of the
client module relative to an abstract logical specification of the stack module; in other
words, the encapsulation of the internal representation of the stack module is reflected
in its specification.

We now consider a simple extension of this example to demonstrate the need for
reasoning about reentrancy between WebAssembly and the host. To this end, we
will let the "main" function, after the call to $map, dynamically modify the contents
of the table to now contain a new function $f3 at index 0. Dynamic modification
of the table cannot be performed in pure WebAssembly, as WebAssembly only has
the elem directive available to statically provide an initial value for the elements of
the table. WebAssembly code can, however, call functions defined by the host, and
those may modify the state of the WebAssembly program. Thus we add an import
(import "host" "mut" (func $mut (param i32 i32))) to the preamble of the client
module and then complete the code of the "main" function with 6 more instructions:
i32.const 0; i32.const $f3;call $mut; i32.const 0; local.get $stk;call $map. The first

CHAPTER 5. IRIS-WASM 204

three of these call the host function $mut that we assume will modify the function
table at address 0, replacing the previous value ($f0) by $f3. The last three instructions
are a call to $map identical to the one at the beginning of the body of "main" function
(see Figure 5.1), but this time, when mapping the 0th function from the table onto the
stack, it maps function $f3 instead of $f0 like it did during the first call to $map. Thus
calling "main" on a value that represents stack [x0, . . . ,xn] will modify the stack so
that the argument value now represents [f3(f0(x0)), . . . , f3(f0(xn))].

This example illustrates how programs may take advantage of the stronger expres-
sive power of the host. In §5.2.2, we show how we deal with calls to host functions
in Iris-Wasm, and in §5.3, we introduce a simple host language and a program logic
for it and show how it can be used in combination with our WebAssembly program
logic to reason about complex interaction between WebAssembly code and the host
language code that embeds it, including this example.

5.2 Modular reasoning for WebAssembly modules

In this section, we introduce Iris-Wasm. We present our proof rules for WebAssembly
language features, and outline how they are used to prove a specification for the stack
module from the Introduction. For reasons of space, we only discuss selected proof
rules; we stress that we have proved program logic rules for all of WebAssembly and
used them to give full formal proofs of examples, including the stack module; see the
accompanying Coq formalisation for details. Then, in §5.3, we present the operational
semantics and proof rules for our host language, and show how they are used to verify
the interaction of a client module with the stack module; we focus on instantiation
and reentrancy. Finally, in §5.4 we discuss how our program logic is defined within
the Iris program logic framework, we overview some of the generic features and proof
rules we inherit from Iris, and we state the soundness and adequacy of Iris-Wasm.

5.2.1 Proof rules for basic WebAssembly stack operations

WebAssembly is a stack language with structured control. Its dynamics is specified
by a small-step operational semantics on configuration tuples of the form (S;F;es),
where es is a hybrid stack of values and instructions,1 S is the global store, and F is the
current function frame. The store S contains information about the global variables,
the tables, the memories and the functions declared in all modules instantiated thus far,
and the frame F contains the values of all local variables, as well as an instance that
handles indirection, as will be explained progressively below. We recall the abstract
syntax in Figure 5.2.

Reductions are structural: for any program fragment2 es that reduces to es′, the
same reduction can occur under a context; for example, for any lists vs of constants

1The standard uses ‘∗’ to stand for ‘a list of’, but we prefer using s as a suffix to avoid confusion
with the symbol for separating conjuction, so ‘es’ is a list of ‘e’s, ‘vs’ is a list of ‘v’s, etc.

2For simplicity, in this paper, we conflate what WebAssembly calls ‘basic instructions’ and ‘admin-
istrative instructions’, see beginning of §5.2.2

CHAPTER 5. IRIS-WASM 205

(value type) t ::= i32 | i64 | f32 | f64
(value) v ::= t.const c

(function type) ft ::= ts→ ts
(immediate) i,min,max ::= nat

(instructions) e ::= v | t.add | other stackops | local.{get/set} i | global.{get/set} i |
t.load flags | t.store flags |memory.size |memory.grow |
block ft es | loop ft es | if ft es es |
br i | br_if i | br_table is | call i | call_indirect i | return

(functions) func ::= func i ts es
(memories) mem ::= mem min max

(elem segments) elem ::= elem i esoff is

(tables) tab ::= tab min max
(globals) glob ::= glob mutable t e init

(data segments) data ::= data i esoff bytes

(import descriptions) importdesc ::= funci i | tabi min max |memi min max |
globi mutable? t

(imports) import ::= import string string importdesc
(export descriptions) exportdesc ::= funce i | tabe i |meme i | globe i

(exports) export ::= export string exportdesc
(start) start ::= Some i | None

(function instances) finst ::= {(inst; ts);es }NativeCltf |
{hidx}HostCltf

(table instances) tinst ::= {elem : is, max : max? }
(memory instance) minst ::= {data : bytes, max : max? }

(global instance) ginst ::= {mut : mutable?, value : v }

(store) S ::=
{

funcs : finsts, globs : ginsts,
mems : minsts, tabs : tinsts

}
(frame) F ::= { locs : vs, inst : inst }

(module instance) inst ::=
{

types : fts, funcs : is, globs : is,
mems : is, tabs : is

}
(modules) m ::=

types : fts, funcs : funcs, globs : globs, mems : mems,
tabs : tabs,data : datas, elem : elems, imports : imports,
exports : exports, start : start

Figure 5.2: WebAssembly 1.0 Abstract Syntax

CHAPTER 5. IRIS-WASM 206

and es2 of expressions, vs++ es++ es2 reduces to vs++ es′++ es2. We give the
general meaning of contexts in §5.2.2.

The overall structure of the operational semantics is as expected for a stack
language; for example, the stack [t.const c1; t.const c2; t.binop binop] reduces to
[t.const c], where c is the result of applying binop to c1 and c2. Let us introduce the
corresponding proof rule in our program logic.

Weakest preconditions Our proof rules are phrased using Iris’ weakest precondition.
Intuitively, wp es{w,Φ(w)} states that the program fragment es computes safely, and,
if it terminates with result w, predicate Φ holds of w (we discuss the formal meta-
theory in §5.4). This construct is close to Hoare triples, as we have the following
equality in Iris:

{P} es {w,Φ(w)}=□(P−−∗ wp es{w,Φ(w)})

The persistent modality □ simply indicates the Hoare triple is a proposition that can
be freely duplicated as many times as needed.

Logical values Because we reason about fragments of WebAssembly programs,
execution does not always terminate with a stack of WebAssembly values, but more
generally with a logical value:

LogVal ∋ w ::= immV vs | trapV | brV i vhi | retV lhk |
call_hostV tf hidx vs llh

which is one of the following:

• immV vs, the ‘normal’ result: a stack of WebAssembly values;

• a trap trapV, which represents that the program has encountered an error in its
execution;

• a break (or branching) value brV, a return value retV, or a host call value
call_hostV, which correspond to program fragments that are stuck as such,
but can get unstuck when placed in an appropriate context; we explain their
meaning, and the meaning of their arguments, in §5.2.2.

Accordingly, in our proof rules, the postcondition Φ takes a logical value w as an
argument.

Proof rule We prove the following Iris-Wasm proof rule for binary operators:

wp_binop

Jt.binopK(c1,c2) = c ∗ ▷Φ(immV [t.const c]) ∗ FR↪−−→ F

wp [t.const c1; t.const c2; t.binop binop]
{

w,Φ(w)∗ FR↪−−→ F
}

CHAPTER 5. IRIS-WASM 207

which states that, with two constants t.const c1 and t.const c2 on the value stack, and
any function frame F , if an arbitrary predicate Φ holds later of the result c of the
binop of type t on c1 and c2, then this program fragment executes safely, and if it
terminates (which it does in this case), Φ holds of the execution result w, because it
will be the value stack immV [t.const c]. The frame resource is a special resource
which will need to be included in every proof rule where we ‘take a reduction step’.

We merely require that Φ holds after one step of execution, as expressed by the
later ▷ modality of Iris [77]. One may choose to ignore this, but it is necessary in the
presence of Iris’ higher-order features, to avoid cyclicity.

5.2.2 Control and function calls

Control and function calls in WebAssembly are intricate, but still feature locality,
as expected; for example, blocks can be reasoned about in isolation, and function
scope is still respected. We present an approach that allows us to reason about code
fragments without needing knowledge of their environment; it improves over the
approach taken in the earlier Wasm program logic [159] which does not scale to
higher-order programs. In this section, we show how our rules capture this locality to
make reasoning tractable.

5.2.2.1 Administrative instructions

To define reduction of blocks and functions calls, WebAssembly adds an extra layer
on top of the surface language, to represent intermediate states by administrative
instructions, which are defined by the following grammar:

AI ::= basic e | trap | invoke i | labeli{es} es end | locali{F} es end |
call_host tf hidx vs

• A basic instruction is a plain WebAssembly expression, as described in Fig-
ure 5.2. When clear from the context, we conflate basic e and e, for example in
weakest preconditions.

• A trap represents a program that has encountered an error in its dynamic
execution.

• An invoke represents an intermediate step when reducing a call or call_indirect .

• A label represents a block or a loop that is being executed.

• A local represents a function call that is being executed.

• A call_host represents a program that performs a call to a function defined the
host language.

We discuss the last four kinds of administrative instructions below, as we describe
control flow and function calls in WebAssembly.

CHAPTER 5. IRIS-WASM 208

5.2.2.2 Blocks, labels, and breaks

WebAssembly is somewhat unusual as an assembly-like language in that it features
only structured control, including labeled breaks. We show how we use the higher-
order nature of Iris to ease reasoning about the control structure of WebAssembly.

WebAssembly has (aside from function calls) two core constructs for control flow:
block, and loop (and the conditional if, which reduces immediately to a block). These
take as arguments a function type, and a list of expressions constituting the body of
the block or loop. This body will reduce until either it becomes a list of constants and
the block or loop is exited, or a br instruction is its first non-constant instruction. In
a block, the body is then exited, and execution continues with whatever follows the
block; and in a loop, the full original body of the loop is repeated from the beginning.
The function type ts1→ ts2 describes the |ts1| values3 needed to enter the block or
loop, and the |ts2| values that need to be on the stack if a br is encountered.

Because of the similarity between these two constructs, WebAssembly semantics
has them both reduce to a label administrative instruction. labeln{escont} esbody end is
a label with body esbody that will execute continuation expression escont if it encounters
a br instruction preceeded by n values. We come back later to the exact semantics of
br. When preceeded with |ts1| values vs of the right type, block (ts1→ ts2) es reduces
to label|ts2|{[]} vs++ es end and loop (ts1→ ts2) es reduces to label|ts1|{[loop (ts1→
ts2) es]} vs++ es end.

Once the block or loop instruction has been reduced to a label, reduction steps
can be taken in the body of the label. As this may happen under many nested labels,
WebAssembly defines evaluation contexts lhk, which describe stack environments
consisting of k nested labels surrounding a hole [_] where the next step of execution
takes place:

lh0 ::= vs++ [_]++ es lhk+1 ::= vs++ labeln{escont} lhk end++ es

Note how only (constant) values vs can be on the left of the hole and label instructions:
this enforces that we can only ‘zoom in’ on the next expression to reduce.

As expected, steps can be taken under an evaluation context: if es reduces to
es′, then lhk[es] reduces to lhk[es′]. Taking k = 0 yields the expected sequencing rule
mentioned at the start of §5.2.1.

Correspondingly, we prove the following Iris-Wasm rule, which reduces reasoning
about a program fragment that can be decomposed as lhi[es] to reasoning about lhi[vs],
that is, the result vs of evaluating the expression to a list of constants, placed in the
evaluation context. 4

wp_ctx_bind

wp es
{

w,wp lhi[w]
{

w′,Φ(w′)
}}

wp lhi[es]
{

w′,Φ(w′)
}

3In WebAssembly 1.0, ts1 is always empty.
4The version we show here is meant for evaluation contexts with at least one label constructor; in

our Coq formalisation, we prove more intricate variations of this rule, to be applied for sequencing, with
for instance lhi[es] replaced with lhi[es1 ++ es2].

CHAPTER 5. IRIS-WASM 209

This rule leverages the fact that in Iris, weakest preconditions are propositions them-
selves, and can therefore be nested. Notice how we have implicitly cast w, a logical
value, into an expression when plugging it into lhi. This is done in the intuitive way:
immV vs is cast into vs, trapV is cast into the single administrative instruction [trap],
etc.

While control flow in WebAssembly is structured, the presence of labelled breaks
makes it slightly involved. A break targets a particular level of the evaluation context,
and skips the rest. As a result, the default evaluation context rules provided by Iris are
inadequate, and we have to build our own reasoning principles for contexts.

The br i instruction targets the ith label from the context. Crucially, breaking relies
on the instruction br i being in an evaluation context lhk with i = k: the break index
indicates what context depth is targeted. If i > k, the expression lhk[br i] is stuck and
can only reduce if placed in a deeper context. Correspondingly, we introduce a new
type of logical values: brV i vhi, representing the program fragment vhi[br i]. The
breaking context vhi is similar to an evaluation context lhi, except that the meaning of
the subscript i is that the context has depth at most i, instead of exactly i. If i < k, a
br i nested in context lhk will only break out of the i first labels, and the result will
be in the form lhk−i[vs++ es]. The break value brV allows to bind into any number
of labels without needing to worry about getting stuck at a br i statement: when
encountering such a statement, we simply bind back i+1 times to get a wp in a form
where our rule for br can be applied.

5.2.2.3 Functions

There are two ways to call a function in WebAssembly: statically with call, or by
dynamically fetching a function from a table, with call_indirect. We focus on the
simpler direct call here, and explain call_indirect in §5.2.3.

The instruction call n calls the nth function declared in the current module. In-
dexing starts at 0 with the imported functions, followed by the functions defined in
the module itself. The store S keeps a list of the function closures (which we describe
below) of all the instantiated modules. This means the nth function in the current
module will not always been the nth function in the store: the instance in the function
frame F is in charge of remembering that indirection. The instance also contains this
indirection information for global variables, memories, and tables.

A call i retrieves the address addri of the relevant closure in the store from the
frame’s instance, and reduces to invoke addri. We prove the corresponding Iris-Wasm
rule:

wp_call

(F.inst.funcs[i] = addri)∗ FR↪−−→ F ∗ ▷
(

FR↪−−→ F −−∗ wp [invoke addri]{w,Φ(w)}
)

wp [call i]{w,Φ(w)}

which requires ownership of the frame, not only because we are taking a reduction
step, but also to know where to look up index addri.

CHAPTER 5. IRIS-WASM 210

. . . cl . . .functions

0 1 i

.tables

n

. . . a . . .
i

.memories

n

. . . b . . .
i

. . . g . . .globals
i

i . . .finsts

n . . .tinsts

n . . .minsts

i . . .ginsts

frame F ::= {inst, locs}

i wf7−−→cl

n wt7−−→i a

n wm7−−−→i b

i wg7−−−→g

FR↪−−→ F

Module Instance WebAssembly Store Iris Resources

Figure 5.3: Points-to predicates for the store and the frame

The function closures cl (also called function instances finst in Figure 5.2) stored in
the store S are of two kinds: native and host. Let us focus first on native closures, and
come back to host closures at the end of this section. The closure {(inst; ts);es}NativeClts1→ts2

describes a native function that was defined in a WebAssembly module with instance
inst (this is the environment for the closure), which expects arguments of type ts1,
defines additional local variables of type ts for the computation of its body, yields
results of type ts2, and has body es. When reducing invoke, we look up the closure
in the store, and check that the stack contains the appropriate number of values to
be passed as parameters to the function. If the closure is native, invoke is replaced
with the body of the function. In order to properly encapsulate the function call,
WebAssembly places the function body inside a local administrative instruction, and,
for technical reasons described later, inside a block, as captured by the following
Iris-Wasm proof rule:

wp_invoke_native

|vs|= |ts1| ∗ cl = {(inst; ts);es}NativeCl
(ts1→ts2)

∗F ′ = {locs := vs++ zeros(ts); inst := inst}
∗ i wf7−−→ cl∗ FR↪−−→ F

∗ ▷
[

(i wf7−−→ cl∗ FR↪−−→ F)−−∗
wp
(
local|ts2|{F

′} (block ([]→ ts2) es) end
)
{w,Φ(w)}

]
wp (vs++ invoke i){w,Φ(w)}

We say more about local and the meaning of F ′ further down.
Unlike for the function frame F , we do not assert ownership of the whole store S.

Instead, we rely on points-to predicates to assert ownership of specific components:
the predicate i wf7−−→ cl asserts ownership of S.funcs[i] in the store.

In general, we define points-to predicates for each component of the Wasm store.
Figure 5.3 illustrates all the points-to predicates used in this paper, and how they relate
to the physical Wasm store. Functions and globals are referred to directly via their
indices, while function tables and linear memories can be viewed as two dimensional

CHAPTER 5. IRIS-WASM 211

structures, where an index is used to refer to a particular table or memory, and another
index is used to refer to a particular cell within that table or memory. For example,
n wm7−−−→i b asserts that the ith byte of memory n is b. The WebAssembly frame F tracks
the scope of the currently executing function, namely its enclosing instance and local
variables. The enclosing instance collects indices of all the entities of the Wasm store
that the module may access, and is crucial for enforcing the encapsulation properties
of Wasm modules.

Encapsulation Let us return to why the function body is placed inside a local and
inside a block. The first of these is to provide proper encapsulation, as reduction of an
expression nested in a local takes place with respect to the nested frame of the local:
when reducing [localn{F1} es end], one reduces es with respect to frame F1 rather
than the current function frame F .

For our native invocation, the frame used will be F ′. Note that the inst field of F ′

is the instance that was declared in the closure (to enforce static scoping), and that the
local variables in F ′ are the function parameters from the stack, followed by a list of
zeros corresponding to the types of local variables required by the function.

We prove the corresponding proof rule for local:

wp_local_bind
FR↪−−→ F ∗(

FR↪−−→ F1 −−∗ wp es

{
w,
∃F ′1,

FR↪−−→ F ′1 ∗(
FR↪−−→ F −−∗ wp [localn{F ′1} w end]

{
w′,Φ(w′)

}) })
wp [localn{F1} es end]

{
w′,Φ(w′)

}
which is reminiscent of wp_ctx_bind; the only reason this rule looks like more of
a mouthful, is that the frame changes. As discussed above, this frame change is
necessary for proper encapsulation.

Finally, the reason WebAssembly puts the function body in a block is to allow
the function body to contain a br (with the right index) to exit the function-body’s
execution. Alternatively, a return instruction will work like a br, but target the closest
local instruction. The return instruction also has an associated logical value retV lhk,
representing the expression lhk[return]. Here, there is no restriction on the depth k, as
a return is stuck under any amount of labels, and can only be unstuck under a local.
The program logic rules for return is as follows:

wp_return

(lhi[(vs++ return)] = les)∗ (|vs|= n)∗ ▷
[
wp (vs++ es)

{
w,Φ(w)∗ FR↪−−→ F

}]
wp localn{F0} les end

{
w,Φ(w)∗ FR↪−−→ F

}
Example Consider the increment function with body

esincr = [i32.local.get 0; i32.const 1; i32.add]

CHAPTER 5. IRIS-WASM 212

of type [i32]→ [i32]. We show that calling it on input 3 returns 4.
Define es as [i32.const 3;call $incr], and assume that F.inst.funcs[$incr] = i, we

then prove that

i wf7−−→ {(inst; []);esincr}NativeCl[i32]→[i32]∗
FR↪−−→ F −−∗ wp es{w,w = immV [i32.const 4]}

Here, the first precondition asserts that we know that function number i in the store
is the increment function (we denote by inst the instance of the module where the
increment function was defined), and the second precondition is ownership of the
frame F .

We first introduce the two preconditions by moving them to a proof environment
Γ. For the first step of derivation, we apply the wp_call rule. Some structural rules,
which we have omitted here for simplicity, allow us to apply it even though the call
instruction is preceded by a constant. To fulfill the premises of the wp_call rule, the
resource FR↪−−→ F from Γ is consumed, and it remains to prove its last premise

▷(FR↪−−→ F −−∗ wp [i32.const 3; invoke i]{w,w = immV [i32.const 4]})

Now we introduce the ▷, move the frame resource back to our proof environment Γ,
and are left with a new weakest precondition to prove. This first proof step corresponds
to the bottom-most rule of the following simplified proof-tree:

Γ ⊢ immV [i32.const 4] = immV [i32.const 4]
wp_local_value

Γ ⊢ wp [local1{F ′1} [i32.const 4] end]{w,w = immV [i32.const 4]}
wp_label_value

Γ
′ ⊢ wp [label1{[]} [i32.const 4] end]{w,Φ(w)}

wp_binop
Γ
′ ⊢ wp [i32.const 3; i32.const 1; i32.add]

{
w,wp [label1{[]} w end]

{
w′,Φ(w′)

}}
wp_ctx_bind

Γ
′ ⊢ wp [label1{[]} [i32.const 3; i32.const 1; i32.add] end]

{
w′,Φ(w′)

}
wp_local_get

Γ
′ ⊢ wp [local.get 0]

{
w,wp [label1{[]} w++ [i32.const 1; i32.add] end]

{
w′,Φ(w′)

}}
wp_ctx_bind

Γ
′ ⊢ wp [label1{[]} esincr end]{w,Φ(w)}

wp_block
Γ
′ ⊢ wp [block([]→ [i32])esincr]{w,Φ(w)}

wp_local_bind
Γ ⊢ wp [local1{F ′} block([]→ [i32])esincr end]{w,w = immV [i32.const 4]}

wp_invoke_native
Γ ⊢ wp [i32.const 3; invoke i]{w,w = immV [i32.const 4]}

wp_call
Γ ⊢ wp es{w,w = immV [i32.const 4]}

As illustrated, we proceed by applying rule wp_invoke_native, leaving us with
a new weakest precondition to prove with the same environment Γ. In the figure, F ′ is
defined as {locs := [i32.const 3]; inst := inst}, which is the frame where the call to
the increment function needs to be executed in. Next we apply rule wp_local_bind
in order to bind the contents of the local. We give up the FR↪−−→ F resource in order to
fulfill one premise. In its last premise, the new frame resource FR↪−−→ F ′ is introduced
back to the context, and will be the frame we use to reason within the call to the
increment function. We denote by Γ′ this new proof environment where we own frame
F ′ instead of F , and let

Φ(w) = ∃F ′1,
FR↪−−→ F ′1

∗
(

FR↪−−→ F −−∗ wp [local1{F ′1} w end]{w′,w′ = immV [i32.const 4]}
)

CHAPTER 5. IRIS-WASM 213

which is the large postcondition in the last premise of the rule wp_local_bind.
The next few steps are mechanical, and we omit the details of some rules for

brevity. We apply wp_block followed by wp_ctx_bind to focus on the first in-
struction of esincr, local.get. We resolve it by applying rule wp_local_get, which
inspects the locs field of the frame, and leaves us to prove the post-condition for 3.
We apply wp_ctx_bind again to bind the binary operation i32.add, resolve it by
applying wp_binop5, and then wp_label_value to exit the label. It now remains to
show Φ(immV [i32.const 4]), which expands to

∃F ′1,
FR↪−−→ F ′1

∗
(

FR↪−−→ F −−∗ wp [local1{F ′1} [i32.const 4] end]{w,w = immV [i32.const 4]}
)

We satisfy the existential with F ′, give up the resource FR↪−−→ F ′ from the context Γ′ to
satisfy the first part of the separating conjunction, and obtain FR↪−−→ F back, making our
proof environment Γ again. We exit the local instruction (which is the function call
context) by applying wp_local_value, and are left with our original post condition
to prove, which is now trivial when substituted with the value we obtained inside
local. This completes the detailed proof.

Example Coming back to the stack module from §5.1.1, we now outline what
specifications for functions look like and, how they can be used by client modules.
Take any function f from the "stack"module. We write its specification in the general
form:

□∃cl P,∀i vs xs, Ψ(P,vs,xs)−−∗ (i wf7−−→ cl)−−∗ wp vs++ [invoke i]{w,Φ(P,w,xs)}

with Φ and Ψ some predicates specific to the function f . The persistence modality
□ simply indicates this specification can be duplicated as many times as needed;6

we omit this modality in every specification that follows, for simplicity. Note the
existential quantifiers. The first one, cl, abstracts over the actual closure of function
f ; because it is hidden behind an existential, it is hidden from clients. The second
one, P, allows the specification to reference some abstract representation predicate.
In the case of the functions from the "stack" module, we will have an existentially
quantified predicate isStack, which hides the data representation from clients. We put
all specifications under one large existential ∃clpush clpop clmap . . . isStack, so that all
specifications can share the predicate isStack.

The specification is thus a weakest precondition7 on an invoke, with some pre-
condition Ψ on the arguments vs given and some postcondition Φ. Both Ψ and Φ can

5Formally, to use the rule as it was presented earlier, one must first frame in the resource FR↪−−→ F ′ in
order to have the postcondition be of the right form. This means that, just like for every rule we have
applied so far, even though we give up ownership of FR↪−−→ F ′ to fulfill one premise, we still get to use it
to prove the other premise.

6As a counterpart, proving this specification cannot rely on usage of any non-duplicable resource.
7In practice, we use the host weakest precondition wpHOST − {−} that we introduce in §5.3, as to

allow functions to interact with the host via host calls. For functions that do not interact with the host,
this makes no difference.

CHAPTER 5. IRIS-WASM 214

mention the existentially quantified predicate P, as well as some universally quantified
variables xs. The invocation address i is linked to the function f by the condition
i wf7−−→ cl, that asserts that the function body is stored at address i. Let us give the
concrete Φ and Ψ used for function "push":

∃clpush clpop clmap . . . isStack,
(
∀i v x s, isStack(v,s)−−∗ (i wf7−−→ clpush)−−∗

wp [i32.const x;v; invoke i]{w,w = immV []∗ isStack(v,x :: s)}
)

∗ . . . (other specs)

To present the corresponding Φ and Ψ predicates for the "map" function, we need
first to introduce some aspects about higher-order code in WebAssembly, which we
do in §5.2.3.

When specifying the functions from the "stack" module, we put all specifications
under one large existential ∃clpush clpop clmap . . . isStack, so that all specifications
can share the predicate isStack.

Given a specification written in this form, and given the resource i wf7−−→ clmap,8 a
client can verify its code in the presence of a call to the imported map function: when
arriving at the instruction call $map, wp_call reduces call to invoke, and now the
specification shown above can be applied.

Host functions WebAssembly is meant to be defined independently of the host
language in which it is embedded. However, the way the WebAssembly standard
is phrased assumes that it is given some operational semantics of the host language
as input, and embeds it in the operational semantics of WebAssembly. This phras-
ing suffices for defining the semantics of WebAssembly alone, which is what the
WebAssembly standard does. However, when providing the first formal integration of
WebAssembly with a separately-defined host language, we identified that this phrasing
is limiting, because it prevents formally giving the semantics of the combined host and
embedded language as the integration of two concrete, separately defined language.

To account for this, we modify the presentation of the WebAssembly semantics
(this is our only point of departure from the Coq formalisation of Watt et al. [160]) so
that the invoke of a host function reduces to a new call_host administrative instruction:

invoke_host(
S.funcs[i] = {hidx}HostClts1→ts2

)
∗ (|ts1|= |vs|)

(S;F ;vs++ [invoke i]) ↪→ (S;F ; [call_host (ts1→ ts2) hidx vs])

The closure {hidx}HostClts1→ts2
represents a host function imported from the host lan-

guage that expects arguments of type ts1 and yields results of type ts2. The argument
hidx is an identifier that the host will use to determine what the desired function is.
The call_host instruction remembers the function type tf , the ‘host identifier’ hidx that

8The name of the index i and ownership of this resource are provided by instantiation when the
client does the import.

CHAPTER 5. IRIS-WASM 215

allows the host language to identify which function is being called, and the function
arguments vs. A call_host is stuck, and can only be unstuck by the host language,
which typically replaces it by the return value of the call, possibly changing the frame
or the store in doing so. We say more about the host interaction in §5.3.

We prove the following Iris-Wasm proof rule:

wp_invoke_host

|vs|= |ts1| ∗ cl = {hidx}HostCl(ts1→ts2)
∗

i wf7−−→ cl∗ FR↪−−→ F ∗ ▷
[

(i wf7−−→ cl∗ FR↪−−→ F)−−∗
wp (call_host (ts1→ ts2) hidx vs){w,Φ(w)}

]
wp (vs++ [invoke i]){w,Φ(w)}

We introduce the call_hostV tf hidx vs llh logical value, representing the stuck
value
llh[call_host tf hidx vs]. This allows for seamless binding rules when we intro-
duce the host language’s logical rules in §5.3. Since a call_host instruction is also
stuck if it is under a local or under a label, we remember the context llh around
the call_host as the fourth argument of call_hostV. This context llh is a general-
ized version of lhk, that has a hole in nested locals and labels. In the rule above,
wp (call_host (ts1→ ts2) hidx vs){Φ} is thus a weakest precondition on a value, and
it thus suffices to show that Φ(call_hostV (ts1→ ts2) hidx vs [_]).

For example, when specifying the "main" function of the extended client module
from §5.1.1, one intermediate goal, when verifying the part of the code corresponding
to the call to the host function $mut, would have the form wp vs++ call $mut{Φ},
where vs represents the constant arguments we have pushed onto the stack prior to
making the call. To prove this, one can simply apply rule wp_call to reduce call to
invoke, and then rule wp_invoke_host to reduce the invoke to a call_hostV value.
The computation is now reduced to a logical value, thus we now must prove that the
postcondition Φ holds of the host call value. We cannot carry on to the rest of the
code of the reentrant example if we stick at the WebAssembly level; this is in line
with the nature of this call: it is a host call and needs interaction with the host to be
unstuck. We will see in §5.3 how to reason about interaction with the host to prove
the full specification of the reentrant example.

5.2.3 Higher-order code with call_indirect

As explained in §5.1.1, one can use call_indirect to implement higher-order functions
with the help of the host language. The instruction call_indirect i, where i is an index
into the types field of the module instance in the function frame, takes one argument
k from the stack, and uses it as an index to look up the function to call in the table.
The table itself is located in the store. Like for function invocation, the instance in
the frame F finds the store-index ta of the correct table (i.e. the one at the head of the
tables field). Now the kth element a of the table indexed ta can be looked up, and used
as the index in the function closures component of the store, to find the closure cl to
execute. As a side condition, the type of the closure must match the one declared by

CHAPTER 5. IRIS-WASM 216

index i (that call_indirect takes as an immediate). Finally, [call_indirect i] reduces
to [invoke a], setting cl to be invoked in the next reduction step.

We prove the following program logic rule:

wp_call_indirect_success
FR↪−−→ F ∗ (F.inst.tabs[0] = ta)∗ (ta wt7−−→k a)∗ (a wf7−−→ cl)∗

(F.inst.types[i] = typeof cl)∗
▷
(
(ta wt7−−→k a)−−∗ (ta wf7−−→ cl)−−∗ (FR↪−−→ F)−−∗ wp [invoke a]{w,Φ(w)}

)
wp [i32.const k;call_indirect i]{w,Φ(w)}

Here, we use the points-to predicate for elements of the table: only ownership of
the relevant kth element of the table is required. Notice how the rule passes the
ownership of all three points-to predicates (frame ownership, table element ownership
and function closure ownership) to the continuing weakest precondition.

Example The higher-order "map" function of our stack module in §5.1.1 calls its
argument function on each element in the stack by using call_indirect. We have now
introduced enough logical machinery to present our modular specification of "map":

∃clmap isStack,∀Φ Ψ a v s F j k i, (1)
□(∀u.Φ u−−∗ . . .−−∗ wp (i32.const u; invoke a){v,Ψ u v∗ . . .})−−∗ (2)

isStack v s−−∗ stack_all s Φ−−∗ (3)
(FR↪−−→ F)−−∗ (F.inst.tabs[0] = j)−−∗ (j wt7−−→k a)−−∗

. . .−−∗ (i wf7−−→ clmap)−−∗ (4)
wp [i32.const k;v; invoke i]{w,∃s′. isStack v s′ ∗ stack_all2 s s′ Ψ∗ . . .} (5)

Let us describe the specification line by line: 1. As explained in §5.2.2, we existentially
quantify over a closure clmap and a predicate isStack, to hide our implementation of
the stack and the body of the "map" function. We then universally quantify over many
variables, including notably Φ and Ψ used in the specification of the mapped function,
stressing this specification can be as general as needed 2. The first precondition is
a specification for the mapped function; it uses two predicates Φ and Ψ to express
that for any i32 input u that satisfies Φ, the mapped function returns an i32 result v
such that Ψ relates u with v. We have used ‘. . . ’ to elide some predicates, which are
simply a copy of some of the resources from line 4, so as to allow usage of those
resources (like frame ownership) in the proof of the specification of the mapped
function. 3. Next, we describe the argument value v: it must represent a mathematical
stack s, all elements of which satisfy Φ. This is captured by the isStack v s predicate.
4. A points-to predicate for table j links the argument value k to the function index
a (from the invoke in line 2). For brevity, we elide other side-conditions pertaining
to typechecking the mapped function. At the end of the line, we have the function
closure points-to predicate that links the index i of the invocation on line 5 to the
"map" function closure. 5. After running "map", we have a stack with logical state
s′ at location v, whose elements are related one-to-one to that of the previous logical

CHAPTER 5. IRIS-WASM 217

state s by Ψ. For readability, we omit the second part of the postcondition, which
simply gives back all of the resources from line 4.

To prove the above specification, the $stack module, who has access to the ac-
tual code of the "map" function, simply fills in the existential quantifiers with the
actual closure of "map" and the definition of isStack reflecting the actual implemen-
tation. Then all that remains is a weakest precondition to prove, which is done by
applying the rules in §5.2.2: wp_invoke_native using hypothesis i wf7−−→ clmap, then
wp_local_bind, to enter the local etc.

Note that we rely on the fact that our ambient logic, Iris, is a higher-order sepa-
ration logic, in which weakest preconditions are just usual propositions. We stress
again that the user of "map" does not need to know how isStack is defined (and in
fact, we hide it with an existential quantifier surrounding the specification of the stack
module, again exploiting the higher-order logic of Iris) or the physical state of the
stack representation in memory: they only need to reason about the mathematical
state, s; for example, stack_all only refers to s.

This example demonstrates that Iris-Wasm can be used to prove specifications for
modules that cleanly hide the heavy indirection and low-level details of WebAssembly.9

The use of call_indirect for higher-order programming, to call an arbitrary client
function, goes beyond the ‘encapsulated’ fragment of WebAssembly of Watt et al.
[159], and yet is captured modularly in the first line of our specification. Our ac-
companying Coq formalisation contains a formal proof that a simple implementation
of the stack module meets the specification. We can then apply the specification to
different clients. In this paper, we focus on the reentrant client introduced in §5.1.1,
see §5.3, and a client that applies "map" to an unknown and potentially malicious
imported function (see §5.5). The code for these examples, and a few more, can be
found in our Coq development.

5.3 Host Language and Proof Rules

In this section, we define a minimal host language featuring the core operations of
the WebAssembly JavaScript Interface. The host fulfils two important roles; first, it
embeds WebAssembly and defines the interoperability between WebAssembly and
the host; and, second, it implements module instantiation, in which the host language
handles the allocation of WebAssembly states. Our minimal host language also has
the ability to mutate WebAssembly function tables.

We begin by introducing the syntax of the host language and selected proof rules,
with a focus on the interoperability with WebAssembly. We then detail the rules for
module instantiation.

The syntax of the host language is shown in Figure 5.4. Host expressions are pairs
of WebAssembly expressions and host-specific declarations; host values are pairs
of WebAssembly values, and an empty list of declarations. Finally, the host state is

9Indeed, the specification shown here is akin to the specification for a stack module implemented in
an ML-like programming language in standard Iris [20].

CHAPTER 5. IRIS-WASM 218

(import variable) vi ::= nat (module variable) vm ::= nat (host action id) hidx ::= nat

(declaration) δ ::= inst_decl vis vm vis | get_global i
(host action) a ::= nop | print | instantiate δ | call_wasm | table.set
(import variable store) I ::= vi ↪→ export
(host state) H ::= {store : S, frame : F, imports : I, modules : ms, actions : as}
(host expression) he ::= (es;δ s) (host value) hw ::= (vs; []) | (trap; [])

Figure 5.4: Host Syntax (definitions reference the grammar in Figure 5.2)

a record of the WebAssembly store and frame, as well as host-specific state. Host
specific state has three components. First, it includes a store of export objects, to store
the exports of an instantiated module, and to feed the imports of future instantiations.
Note that while we call them import variables, they are used both for imports and
exports. Subsequently, an export object refers to any object passed from one module
to another, either as import or export. Second, it keeps track of a list of WebAssembly
modules. Finally, to maintain the generality of host calls, host actions are indirectly
referenced by indices into a list of available host actions.

To illustrate the expressive power of a host, our minimal host language includes
five different host actions. nop, print and instantiate δ are pure operations that do
not depend on host or WebAssembly store. More noteworthy are the call_wasm and
table.set operations: call_wasm reduces to a WebAssembly call instruction, which
opens up the possibility of reentrancy between the host and WebAssembly; table.set
displays the expressive power of the host over the WebAssembly store, by mutating a
given function table with a function from the WebAssembly store.

Declarations are either 1. instantiations inst_decl vis vm vis, which consist of a list
of import/export variables to feed into the imports of a module (referenced indirectly
by its index into the module store), whose exports are stored in the subsequent list
of import/export variables, or 2. load declarations for WebAssembly globals, to load
the final output of a Wasm module’s main function. The host operational seman-
tics prioritises the reduction of WebAssembly expressions over that of instantiation
declarations.

Figure 5.5 defines the operational semantics of the host, where ↪→h describes the
small step operations of the host language, and⇝a describes the semantics of the host
actions. Note that host actions may mutate the WebAssembly store.

In the remainder of this section, we will discuss the proof rules of our new program
logic for the host. We define our host logic using a weakest precondition predicate
wpHOST (es;δ s){hw,Φ(hw)}, which intuitively means that the host expression (es;δ s)
does not get stuck and, if it terminates with the host value hw, then the predicate Φ

holds for hw.
While the host weakest precondition is not to be confused with the Wasm weakest

precondition, it shares some similarities in its memory model. The memory model of
the host program logic extends the memory model of the Wasm program logic, as it

CHAPTER 5. IRIS-WASM 219

lifting
(S;F ;es) ↪→ (S′;F ′;es′)

(S;F ; I;ms;as;(es;δ s)) ↪→h (S′;F ′; I;ms;as;(es′;δ s))

host action
llhk[call_host ft hidx vs] = lles as[hidx] = a

(S; innermostFrame(F, llhk);vs;a)⇝a (S′;es) llhk[es] = lles′

(S;F ; I;ms;as;(lles;δ s)) ↪→h (S′;F ; I;ms;as;(lles′,δ s))

host action: instantiate
llhk[call_host ([]→ []) hidx []] = lles as[hidx] = instantiate δ llhk[[]] = lles′

(S;F ; I;ms;as;(lles;δ s)) ↪→h (S;F ; I;ms;as;(lles′,δ :: δ s))

instantiation
ms[vm] = m I[vi0] = export s0 exportdesc0 · · · I[vin] = export sn exportdescn
Instantiate(S,m, [exportdesc0; · · · ;exportdescn],((S

′, inst,exports),start))
I′ = I[vi′0← exports[0]][· · ·][vi′m← exports[m]]

es = [] if start = None es = [invoke i] if start = Some a∧ inst.funcs[a] = i
(S;F ; I;ms;as;(vs; inst_decl [vi0; · · · ;vin] vm [vi′0; · · · ;vi′m] :: δ s)) ↪→h (S′;F ; I′;ms;as;(es;δ s))

get global
F.inst.globs[i] = addr ∗S.globs[addr] = {mutability;v}

(S;F ; I;ms;as;(vs;get_global i)) ↪→h (S;F ; I;ms;as;(v :: vs; []))

nop
(S;F ; [];nop)⇝a (S; [])

call wasm
(S;F ; [i32.const i];call_wasm)⇝a (S; [call i])

print
(S;F ; [v];print)⇝a (S; [])

table.set
F.inst.funcs[fidx] = func [1em]S′ = S[tabs← S.tabs[0][tidx← func]]

(S;F ; [i32.const tidx; i32.const fidx]; table.set)⇝a (S′; [])

Figure 5.5: Host operational semantics. innermostFrame(F, llhk) looks through llhk
to find the innermost frame, and returns F if there is none.

CHAPTER 5. IRIS-WASM 220

includes the Wasm store. We reason about the host-specific part of the host state using
three new predicates: 1. vi vis7−−→ export: a points-to predicate for the export object
store; 2. vm mod↪−−−→ m: a points-to predicate for the module store; 3. hidx ha↪−−→ a: a
points-to predicate for the host action store. We present the host program logic in two
parts: first we discuss the rules that implement interoperability between WebAssembly
and the host, and second we discuss module instantiation.

Interoperability The first key to WebAssembly and host interoperability is the
WebAssembly lifting step. Any reduction in the WebAssembly part of a host expres-
sion corresponds to a step in the host expression, as captured by the following bind
rule:

wp_lift_wasm

wp es{w,wpHOST (w;δ s){hw,Φ(hw)}}
wpHOST (es;δ s){hw,Φ(hw)}

Note that w may be a logical value, in particular a suspended host call from Wasm
to the host, which can now be resolved via the host proof rules for call_host. Recall
the definition of a stuck host call: the call_host tf hidx vs administrative instruction
is considered stuck in any nested WebAssembly context llh, and is interpreted as
the logical value call_hostV tf hidx vs llh, in which hidx refers to the host action
identifier which is storing the executing host action, tf refers to its type, and vs refers
to the parameters of the invocation. Each host action is resolved via a different proof
rule.

In particular, one such host action is a call in the other direction, from the host to
Wasm. In that case, the inner call_wasm action, performed by the host function hidx,
reduces to the WebAssembly instruction call as follows.

wp_host_action_call_wasm

hidx ha↪−−→ call_wasm ∗
▷ (hidx ha↪−−→ call_wasm−−∗ wpHOST (llh[call i];δ s){hw,Φ(hw)})

wpHOST (llh[call_host tf hidx [i32.const i]];δ s){hw,Φ(hw)}

Reentrant example We now have all we need to prove a specification for the ex-
tended (reentrant) client introduced in §5.1.1. This specification will be parametrized
with specifications for all the functions from the stack module (and thus with all the
existentials of those specifications, most importantly the isStack predicate), and can
be modularely combined with a specification for the stack module.

Our specification could look like this:

∃clmain,∀v x1 . . . xn i hidx, isStack v [x1, . . . ,xn]−−∗ i wf7−−→ clmain −−∗
OwnClosures([$f0;$f3;$map])−−∗

$mut wf7−−→ {hidx}HostCl[i32;i32]→[] −−∗ hidx ha↪−−→ table.set−−∗
wpHOST ([i32.const v; invoke i], []){hw, isStack hw [f3(f0(x1)), . . . , f3(f0(xn))]∗ . . .}

CHAPTER 5. IRIS-WASM 221

The elided postconditions give back all the preconditions; OwnClosures(fs) asserts
ownership, for all functions f ∈ fs, of a closure cl f . For the function $map imported
from the stack module, the closure is the one referenced in the specification of the
stack module. In order to carry out our proof, we assume we are given specifications
for functions $f0 and $f3 that reference cl f0 and cl f3 .

To prove this specification, we fill in the existential quantifier for clmain with the
actual code of the "main" function. Now we apply wp_lift_wasm to bring ourselves
to proving a WebAssembly weakest preconditon: the postcondition now becomes
w,wpHOST w{hw,Φ(hw)} where Φ is the postcondition in the weakest precondition
shown above. We can now begin the proof just like we proved all the specifica-
tions for the functions in the stack module: we apply wp_invoke_native, then
wp_local_bind, etc.

As showcased in §5.2.2, the WebAssembly weakest precondition gets stuck on
a value when it arrives at the host call: we now need to show that the postcondition
holds of the call_hostV value, i.e. that

wpHOST llh[call_host tf hidx vs]{hw,Φ(hw)}

where llh is the context in which the host call was, containing for instance all the code
that follows the host call. To prove this, we have a rule wp_host_action_table_set
similar to rule wp_host_action_call_wasm shown above, that, given our knowl-
edge of n wt7−−→0 $f0, gives back n wt7−−→0 $f3, and brings us to prove a (host) weakest
precondition statement on the code that follows the host call, with this new function at
the 0th place in the table. We can prove this by lifting to WebAssembly and carrying
out the proof in the WebAssembly program logic until the end.

Module instantiation While WebAssembly 1.0 does not depend on any particular
host language, it does define a specification for module instantiation. Any host
language is tasked with implementing instantiation according to that specification. We
thus conceptually distinguish between the parts of module instantiation pertaining to
the official WebAssembly specification, and the parts that deal with the host language.
Instantiate(S,m,exportdescs,((S′, inst,exports),start)) defines the specification for
module instantiation. The full definition is quite elaborate; we refer to the Coq
mechanisation for all details, and provide an intuitive overview here. In essence, it
states that inst is the result of instantiating module m while importing exportdescs,
exports are the resulting exports, and S′ is the resulting WebAssembly store, in which
all the relevant state has been allocated.

The specification enforces various side conditions. First, the module must be
well typed according to a list of relevant import and export types. Next, it asserts the
necessary operational conditions on the allocated state and created instance; that all
the fields of the instance are properly initialised (e.g. any function table is initialised
with the proper elements as defined by the module), that all the initialised values are
within the bounds of the initialised object, and finally that the start function is either
empty, or refers to a function of the module of type []→ [].

CHAPTER 5. IRIS-WASM 222

The instantiation specification specifies the outcome of module instantiation on
the WebAssembly store. Note that the specification is host language agnostic. The
semantic outcome of instantiation on the WebAssembly store ought likewise to be
independent of the host language that implements it. The following lemma captures
the effects of instantiation on the interpretation of the WebAssembly store as Iris
resources, according to the host agnostic instantiation specification. The lemma is
thus independent of any host language definition.

Lemma 27 (Module Instantiation Resource Allocation).

If ⊢ m : timps→ texps ∧ constInits(m)
and Instantiate(S,m, imports,((S′, inst,exports),start))
then resourcesImports(m, imports, timps,wfs,wts,wms,wgs)∗ stateInterp(S)

≡−∗resources(m, imports, timps,wfs,wts,wms,wgs,start, inst)∗ stateInterp(S′)

For readability, we omit the technical details behind some of the above predicates.
It suffices to know the following: constInits limits the global initialisers and offsets to
be constants, resourcesImports defines the points-to predicate associated with each
import in imports, and resources defines all the points-to predicates associated to the
created instance inst, including those that were previously imported. The variables wfs,
wts, wms and wgs are maps that summarise the values of functions, tables, memories
and globals of the created instance. (The ≡−∗modality is used in Iris to update ghost
resources [77].) Using Lemma 27, we can then prove a host weakest precondition
rule for host instantiation, that we will refer to as wp_host_instantiate.

Example The complete stack module is an instantiation declaration, which exports
closures for push, pop, new_stack, is_empty, is_full, stack_length and map, as well
as the function table invoked by map. We recall that exports are passed via indices
into the import variable store.

vm≜ {0 7→ stack_module} host_program≜ ([], [inst_decl [] 0 [0,1,2,3,4,5,6,7])

The Iris-Wasm specification of the complete stack module from §5.1.1 is as follows
(we elide the exporting of the table, for simplicity):

∃stack_module,∀i js,(i mod↪−−−→ stack_module)−−∗
(
∗
j∈js

j vis7−−→−
)
−−∗

wpHOST ([]; [inst_decl [] i js])

∃clpush clpop . . . clmap, isStack,spec_push∗

spec_pop∗ . . .∗ spec_map∗

∗
j∈js

j vis7−−→ function_export cl j

spec_push is the specification of the "push" method shown earlier. Likewise for the
other specifications mentioned in the postcondition. Both the contents of the $stack
module and the implementations of the stack operations are hidden from clients
because of the existential quantifiers.

CHAPTER 5. IRIS-WASM 223

Figure 5.6: Lines of code of the Iris development, as given by cloc

helpers language rules instantiation host examples logrel stack

11836 3685 7123 6828 2339 2754 8145 8787
total = 51497

This stack module specification is proven by applying rule wp_host_instantiate,
which populates the value import stores and gives ownership of all the resources nec-
essary for the stack module operations, and then we apply the specifications for the
stack operations shown in §5.2.3.

With this specification for the stack module and a similar one for the client module
(parametrised by the specification of the stack), we verify the complete stack program
(a sequence of instantiations) in our Coq formalisation.

5.4 Mechanization in the Iris Framework

We implement and prove the Iris-Wasm proof rules in this paper in the Iris framework
in the Coq proof assistant. Iris was originally developed to reason about programs with
complex concurrency; however, the same mechanisms have proven useful to reason
about complex sequential programs such as the awkward example, as demonstrated
for example by Georges et al. [55]. In this paper, we focus our presentation on the
novel, language-specific proof rules we introduce and prove, but our program logic
also inherits many other logical constructs and proof rules from Iris which we make
use of in our development. We have already mentioned the ‘later’ modality, ▷, which
avoids circularities in the presence of the higher-order features of Iris, and which can
be used to define guarded recursive predicates in Iris, as well as the ‘persistence’ □
modality, the ‘update’ ˙|⇛modality, and its wand version ≡−∗. Other features we use
include the frame rule, non-atomic invariants, ghost state, and other proof rules like
Löb induction; for a thorough introduction to those, see Jung et al. [77].

We prove all our proof rules in Iris, with respect to the default definition of the
weakest precondition predicate (with an extra requirement that the frame resource
holds for every step of reduction; alternatively, we could have made the frame be
part of the Iris ‘state’) instantiated to refer to the Coq formalisation of the official
WebAssembly 1.0 operational semantics by Watt et al. [160].

The adequacy theorem of Iris [77, §6.4] then yields the final desired soundness
theorem, which intuitively says that if a weakest precondition for a WebAssembly
or host program has been proved in Iris-Wasm, then it does indeed mean that the
program runs safely, according to the official WebAssembly 1.0 operational semantics,
or the host language that embeds it. An example of the latter can be found in the Coq
mechanisation.

The size of the full Iris development is summarized in Figure 5.6. The logrel

CHAPTER 5. IRIS-WASM 224

folder contains files for a case study presented in the following section, while stack
contains the full stack module and associated clients.

The stack module, with a binary size of 637 bytes, is defined in around 200 lines
code in Coq, with the module type checking done in 300 lines of code using the type
checker from Watt et al. [160]. The module specification is fully verified using the Iris-
Wasm logic in around 3800 lines of code in Coq, where 2100 lines are used to verify
each of the module function specifications, and the remaining code is used to prove
the top level instantiation specification and auxiliary lemmas. Such a ratio between
program and proof size may hint at a substantial verification effort. However, it’s
important to note that it reflects a version of Iris-Wasm without a bespoke proof mode;
an interesting line of future work is to extend Iris-Wasm with various automation
techniques, such as Mulder et al. [103], and use it to prove specifications of large
real-world programs.

5.5 Case Study

We showcase the utility of our program logic through a case study10. The goal is to
leverage the coarse-grained encapsulation guarantees of WebAssembly modules to
prove robust safety of two scenarios involving some interaction between a known
module and an unknown, potentially malicious, module. While the coarse-grained
encapsulation properties granted by modules are relatively shallow (one module
cannot interact with the internals of another), the reasoning principles are not: not
only are we reasoning about unknown code, the desired robust safety property can
be subtle, and highly specific to the particular implementation of a robustly safe
module. We emphasize that we do not seek to either define or prove encapsulation as
a meta-property, rather, we define and apply a methodology to prove robust safety of
specific modules.

WebAssembly’s modules are designed to allow trusted code to encapsulate its
local state (e.g. variables and memory), by limiting what is shared with untrusted
modules via imports and exports. This encapsulation is meant to hold no matter
what other modules do, either by accident or by malice, and thus does not rely on
compliance. Modules can take advantage of this encapsulation to guarantee various
safety properties. To prove those properties formally, we may need to reason about the
interaction between known, trusted code and unknown, untrusted code. We have thus
far presented a program logic to reason about known code only. In this case study, we
use the program logic to build a method to reason about the instantiation of unknown
code, and use it to prove the robust safety of known code, that is, safety even when
composed with adversarial code.

10Our Coq mechanization also includes another case study of a program that uses recursion through
the store, by applying a host call to mutate the function table, known as Landin’s Knot.

CHAPTER 5. IRIS-WASM 225

mclient ≜
(module ;; Another Stack Client
(import "adv" "f" (func $f (param i32) (result i32)))
(import "stack" "map" (func $map (param i32 i32)))

... ;; import global g and the remaining stack module
(elem (i32.const 0) $f) ;; populate table with imported function
(func $main (local $i i32)

call $new_stack; ... ; const 4; call $push;
local.get $i; const 2; call $push;
local.get $i; call $map;
local.get $i; call $stack_length; global.set $g))

stack_client≜
inst_decl [] "stack" ["tab"; ...;"pop"]
inst_decl [] "adv" ["f"]
inst_decl ["f";"g";"tab"; ...;"pop"] "client" []

Figure 5.7: Robust safety example: applying map on an imported function

5.5.1 A Relational Interpretation of WebAssembly Types

The methodology is based on a relational interpretation of WebAssembly types,
built on top of our Iris-Wasm program logic, by defining logical relations for each
WebAssembly type. The key idea is to interpret the types of primitives, functions,
etc., all the way to module types, as propositions in Iris-Wasm. The methodology
of defining logical relations in Iris is well known [55, 76, 83, 138], but here it is
for the first time applied to the type system of a full industrial standard, namely the
WebAssembly type system. We define semantic interpretations for all WebAssembly
types. That includes all the internals of a module, and in particular it includes the
types of exports and imports. We say that an import object is safe to share, or valid,
if it is in the appropriate relation. All the results in this section have been formally
proved in Coq. We give an overview here, and refer the reader to the accompanying
Coq code for the full definition of the relational interpretation of WebAssembly types.

5.5.1.1 The WebAssembly Type System

WebAssembly comes equipped with two core typing judgments, (1) a typing judgment
for instruction sequences, and (2) a typing judgment for modules.

(1) C ⊢ es : ts→ ts′

(2) ⊢ m : timps→ texps

The typing judgment for instructions assigns a function type to every sequence of
instructions es, under some typing context C. The typing judgment for modules holds
when all its individual components are well typed. A module is a closed definition, and
as such does not require a context for validation. Here, following the WebAssembly

CHAPTER 5. IRIS-WASM 226

formalization in Coq [160], we use the module typing judgment to explicitly specify
the types of imports and exports.

The typing of instructions In the typing of instructions, the assigned function type
ts→ ts′ specifies the required type of the input stack ts, and the type of the resulting
output stack ts′. Many simple instructions do not refer to the typing context. For
example, the rule for binary operations is defined as follows, where binop stands for
any WebAssembly binary operation:

C ⊢ t.binop : [t; t]→ [t]

However, other instructions refer to the ambient state of the surrounding module. For
instance, store and load instructions refer to the current memory state, and are valid
only such a memory exists within the current scope.

C.memory ̸= [] side conditions on flags

C ⊢ t.load flags : [i32]→ [t]

Under this interpretation, the typing context reflects the type of the enclosing
module instance. Indeed, its definition is a record that resembles the definition of a
module:

C ≜

types : ts, func : fts,
global : gts, table : tabs,
memory : mems,
locals : ts, labels : tss, return : ts?

The typing context specifies the list of declared types, the type of each function within
scope, the type of each global within scope, and the size limits of accessible function
tables and memories. In each of these cases, an empty list indicates that no object of
that category is within scope.

Beyond the type of the enclosing module, the typing context additionally tracks
the runtime information pertaining to the enclosing frame and evaluation context.
Recall that the frame tracks the local state of the currently executing function. When
invoking a new function closure, the frame is updated to store the enclosed local state,
and the body of the function is placed inside a local wrapper, to which the body can
then optionally return to via the return instruction, provided the value stack has the
proper return type. The typing context tracks the existence of such a return target in
the return field, where None indicates there is no valid return target, while Some ts
indicates that there is a return target, and that the expected return type is ts.

C.return= Some ts

C ⊢ return : ts1 ++ ts→ ts2

Note that the typing succeeds for any final output type ts2, since there are no restric-
tions to what gets executed after returning.

CHAPTER 5. IRIS-WASM 227

Similarly, the labels field tracks all the valid break targets, and their associated
block types. Each new block generates a new break target at the head of the list.

C[labels= ts2 :: C.labels] ⊢ es : ts1→ ts2

C ⊢ block (ts1→ ts2) es : ts1→ ts2

Thus, the ith element of the labels list corresponds to the expected value stack type
upon executing a br i instruction.

C.labels[i] = ts

C ⊢ br i : ts1 ++ ts→ ts2

Finally, the locals field tracks the types of the local variables of the current frame,
which is relevant for any local get or set instruction.

C.locals[i] = t

C ⊢ local.get i : []→ [t]

C.locals[i] = t

C ⊢ local.set i : [t]→ []

The typing of modules WebAssembly modules are valid if each of their components
are valid. Functions are valid if their body is well typed, globals are valid if their
initial value is well typed, while memories and tables are valid when their size fits
the optional maximum allowed sizes and when their initialization is well-formed.
In particular, that means tables are valid if they are initialized to valid functions (as
determined by the elem field). Imports are unknown, and thus statically unrestricted,
while exports must be differently named, and the declared export type must match the
type of the exported object.

The typing of functions and globals depend on a typing context C, which is
statically derived from a module definition m as follows (in which fts and gts are lists
of function types, that respectively correspond to the declared functions and globals
types):

imptsfunc = type of all the function import descriptions
imptstab = size limits of all the table import descriptions

imptsmem = size limits of all the memory import descriptions
imptsglob = type of all the global import descriptions

C ≜

types= m.types,
func= imptsfunc ++ fts,global= imptsglob ++gts,
table= imptstab ++m.tabs,
memory = imptsmem ++m.mems,
locals= [], labels= [], return= None

Note that each function is validated against a context that contains all available
function types, thus allowing functions to be mutually recursive. Recall that in the
instantiation of m, all functions are instantiated as function closures. When validating
the type of a declared function func i ts es, we thus want to validate not just the type

CHAPTER 5. IRIS-WASM 228

V JtsK : LogVal→ iProp

V0JtK(v) ≜ ∃c,v = t.const c
V J[t1, · · · , tn]K(w) ≜ w = trapV∨

∃v1, · · · ,vn,w = immV [v1, · · · ,vn]
∧V0Jt1K(v1)∧·· ·∧V0JtnK(vn)

FrameJtsKinst : Frame→ iProp

FrameJtsKinst(F) ≜ [NaInv :⊤]∗ FR↪−−→ F
∗∃vs,F = {inst;vs}∗ V JtsK(immV vs)

E0JtsK∗ : Expr→ iProp E JtsK∗∗ : Lholed×Expr→ iProp

E0JtsK(F,hfs)(es) ≜ wp es
{

w,
(V JtsK(w)∨H JtsKhfs(w))
∗[NaInv :⊤]∗ FR↪−−→ F

}

E JtsKτlbs,τret
(τl,inst,hfs)(lh,es) ≜ wp es

w,

 V JtsK(w)∨H JtsKτlbs,τret
(τl,inst,hfs)(w)

∨BrJτlbsKτret

(τl,inst,hfs)(w, lh)
∨RetJτretK(τl,inst)(w)

∗∃F,FrameJτlKinst(F)

Figure 5.8: Logical relations for values, frames and expressions

of es, but that of a local and labeled block enclosing es. As such, we update the typing
context C to reflect the generated local and label wrappers, as well as the type of its
locals (including both the input parameter type and the declared locals type). Finally,
its type must be the ith type of the module (which must correspond to the type declared
in fts). Let m.types[i] = ts1→ ts2. The function is then validated as follows:

C[locals= ts1 ++ ts, labels= [[ts2]], return= Some ts2] ⊢ es : ts1→ ts2

5.5.1.2 A Logical Relation for the WebAssembly Type System

The ultimate goal is to define relational interpretations for each WebAssembly primi-
tive, including that of a module, so we can define a semantic typing judgment, that we
can use to reason about the execution of unknown WebAssembly code. Note that one
particular goal is to keep all definitions host agnostic. To facilitate this goal, many
of the ensuing definitions will be parameterized by a list of possible host call targets.
This list is determined upon instantiation, from the list of imported functions.

We begin with the relational interpretation of value and function types, as unary
logical relations built on top of Iris-Wasm. Due to the intrinsic connection between
the execution of a function and its frame, the latter will depend on the relational

CHAPTER 5. IRIS-WASM 229

interpretation of the local value types of a particular function, which we interpret in
the frame relation. Henceforth, we will refer to a primitive as valid when it inhabits
the appropriate logical relation.

Figure 5.8 defines the unary logical relation for values, frames, and expressions.
The value relation V JtsK : LogVal→ iProp is inhabited either by values of type ts,
or by a trap expression (it is always valid for a program to trap). Recall that LogVal
is the logical values resulting from execution of WebAssembly program fragments,
and includes immediates, traps, and stuck break and return expressions. Such stuck
expressions are purposefully excluded from the value relation.

WebAssembly programs have local access to their particular frame. In the typing
judgment, the local variables in a frame are given a specific type. Well-typed programs
preserve these types. We define a frame relation FrameJtsKinst : Frame→ iProp to
capture all the non-persistent resources that are owned by the currently executing
program, and the invariants they must adhere to. This includes the key to open non
atomic invariants, [NaInv :⊤], the frame resource FR↪−−→ F , and the guarantee that the
local variables in F satisfy V JtsK. The frame relation is parametrised by an instance
inst, to enforce that F acts as the environment of that particular instance.

We present two expression relations;

E0JtsK(F,hfs) : Expr→ iProp and E JtsKτlbs,τret
(τl,inst,hfs) : Lholed×Expr→ iProp.

Both are parametrised by a list of possible host call identifiers and host function
type pairs, hfs. The former defines the valid execution of a closed WebAssembly
program, while the latter defines the valid execution of a WebAssembly program in
some nested evaluation context lh. In other words, the latter may contain a break
or return instruction that targets lh, while the former either loops, or reduces to an
immediate, a trap, or a suspended host call. Each is defined in terms of the weakest
precondition from Section 5.2, and differ merely in that the latter has cases for break
and return values in the postcondition. The relation for closed programs remembers
the previous frame, and reinstates it in the postcondition.

A suspended host call is handled by the host relation H JtsKhfs. Since our goal is
to keep the logical relation host-agnostic, the host relation uses the type of the host call
to impose a valid continuation of the suspended call. More precisely, a suspended host
call value call_host(ts→ ts′,h,vs, llh) is valid when: (h, ts→ ts′) ∈ hfs, V JtsK(vs),
and for any value of type ts′, the expression relation holds for that value, plugged into
evaluation context llh. Similar to the expression relation, there is a host relation both
for open and closed WebAssembly programs.

The break relation BrJτlbsKτret

(τl,inst,hfs)(w, lh) applies the expression relation to a
break instruction within the sub-context lh of appropriate size, and the remaining
layers as the new surrounding evaluation context.

Ret similarly applies the expression relation to the appropriate return target, as
described by the evaluation context. We refer to the Coq formalization for their formal
definitions.

Next, we give the relational interpretation of module typing, primarily inhabited by
instances. As we will see, the interpretation of module types via the instance relation,

CHAPTER 5. IRIS-WASM 230

I JCKhfs : Instance→ iProp

I

u

ww
v

types= ts, func= fts,
global= gts, table= [tt, · · ·],
memory = [mt, · · ·],
locals, labels, return= · · ·

}

��
~

hfs

types= ts′, funcs= fs
globs= gs,
tabs= [t, · · ·]
mems= [m , · · ·]

≜

ts = ts′ ∗ ∗
f∈fs;ft∈tfs

FuncJ f tKhfs(f)∗ ∗
g∈gs;gt∈gts

G ℓobJgtK(g)

∗TabℓeJttK(t)∗M emJmtK(m)

CtxJCK(inst,hfs) : Lholed→ iProp

CtxJ{· · · ;τl;τlbs;τret}K(inst,hfs)(lh) ≜ StructuralCond(τlbs, lh)∗
∗

j 7→ts∈τlbs

K JtsKτlbs,τret
(τl,inst,hfs)(lh, j)

Figure 5.9: The instance relation. The interpretation K of continuations is given in
the Coq formalization.

denoted I JCKhfs, is the keystone to derive specifications for unknown functions.
Notice that we are defining a relational interpretation over C, rather than m itself. This
is so we can interpret the evaluation context. However, to distinguish between the
static and dynamic parts of C, we define two relations over C: the aforementioned
instance relation, and a context relation CtxJCK(inst,hfs) : Lholed→ iProp. Both are
parameterized by a host identifier list hfs, and the latter is additionally parameterized
by an instance inst. The instance relation is populated by instances, while the context
relation is populated by evaluation contexts. Again, we focus here on their most
salient features, and leave their complete formal definitions to the Coq formalization.

Figure 5.9 defines the instance and context relations. The instance relation takes
each field in the typing context, and applies a relation to the corresponding field in
the instance. The table and memory fields respectively contain a list (types of, for the
context) of tables and of memories. However, in Wasm 1.0, any table and memory
operation implicitly refer only to the first element of those lists, as module instances
are limited to at most one table and one memory. Likewise, the instance relation
extracts the head of the table and memory lists (which can be empty).

We focus on the key definition, that of the function table relation and function
relation, and refer to the Coq formalization for the other fields. In general, it suffices
to know that they each are defined in terms of (non-atomic) invariants containing the
appropriate resources, and some conditions on the state of those resources, according
to their type.

The table relation TabℓeJτtK(t) asserts ownership of a non-atomic invariant for
each entry in the table at table address t, which either points to None, or to some
function entry which is valid, that is, in the function relation. In Wasm, a table can

CHAPTER 5. IRIS-WASM 231

ClosJts→ ts′Khfs : Closure→ iProp

ClosJts→ ts′Khfs
(
{(inst, tlocs);e}NativeClts→ts′

)
≜

2∀vs, f ,V JtsK(immV vs)∗ [NaInv :⊤]∗ FR↪−−→ F −−∗
E Jts′K(F,hfs)(locallen(ts′){inst;vs ++ zeros(tlocs)} labellen(ts′){ε} e end end)

ClosJts→ ts′Khfs
(
{h}HostClts→ts′

)
≜ (h, ts→ ts′) ∈ hfs

FuncJts→ ts′Khfs : N→ iProp

FuncJts→ ts′Khfs(n) ≜ ∃cl,NaInvNwf .n(n wf7−−→ cl)∗▷ClosJts→ ts′Khfs(cl)

Figure 5.10: Function Relation

contain functions of different types, and the host can even replace a function in a
table by another of a different type. Therefore, the onus is on indirect calls, which
dynamically verify that the invoked function has the correct type (in call-indirect).
Hence, a table type τt merely gives the size limits of a table, but does not dictate any
function types for the table content itself. Accordingly, our table relation existentially
quantifies over the function type for each table entry.

The function relation (Figure 5.10) asserts ownership of a non-atomic invariant
containing the resource for function address n, invariantly pointing to a closure cl.
This closure is either a native WebAssembly closure, or a host closure. A native
closure is valid when for any parameter vs of the valid input type, and for any outer
frame F , the expression relation holds for the closed local expression surrounding the
body of cl. The new inner frame contains the environment of the closure; the instance
inst, and a list of locals consisting of the parameters vs, followed by a list of type tlocs
initialised to 0. A host closure is valid when the host identifier and function type pair
is an element of hfs.

Native function closures introduce circularity: an instance is valid insofar as each
closure it contains is safe to execute, but when a module is instantiated, each function
of that module is stored within the instance, as a closure around it. To break this
circularity, we guard the closure relation with a later modality, ▷.

The context relation Ctx asserts various structural conditions over the evaluation
context, according to τlbs. In particular, it applies a continuation relation on each break
target in τlbs. If τlbs is nil, the context is necessarily empty.

5.5.1.3 Fundamental Theorem of Logical Relations

Thus far, we have defined relational interpretations of all WebAssembly types. What
remains, is to assemble the pieces and define a relational interpretation of the typing

CHAPTER 5. IRIS-WASM 232

C ⊨ es : ts→ ts′ ≜ ∀inst, lh,hfs,I JCKhfs(inst)∗CtxJCK(inst,hfs)(lh)−−∗
∀F,vs,V JtsK(vs)∗FrameJτlKi(F)−−∗ E Jts′Kτlbs,τret

(τl,inst,hfs)(lh,vs++ es)

where τl =C.locals τlbs =C.labels τret =C.return n = len(ts′)

Figure 5.11: Semantic typing

judgment, in other words semantic typing, and prove that this definition is sound via
the fundamental theorem of logical relations.

In essence, the fundamental theorem states that syntactic typing implies semantic
typing, the latter being defined in terms of the expression relation. Intuitively, it means
that the resources accessible via the enclosed instance are sufficient for a well-typed
function to execute without getting stuck. Figure 5.11 defines semantic typing of
WebAssembly programs. C ⊨ es : ts→ ηs states that, for any instance inst that satisfies
the instance relation at type C, and for any evaluation context lh that is similarly valid,
the expression relation holds for the expression vs++es, where vs is any value of type
ts. The fundamental theorem is stated as follows:

Theorem 18 (FTLR). If C ⊢ es : ts→ ηs, then C ⊨ es : ts→ ηs.

Proof. The proof proceeds by induction over the typing judgment. We here go through
four illustrative cases, and refer to the Coq mechanization for the remaining ones.

• Case: C ⊢ t.binop : [t; t]→ [t]:

Upon unfolding the definition of semantic typing, we introduce the following into
our context (note that the first three hypotheses are persistent):

I JCKhfs(inst) (5.1)

∗ CtxJCK(inst,hfs)(lh) (5.2)

∗ V Jt; tK(vs) (5.3)

∗ FrameJτlKi(F) (5.4)

Our goal is to show the following weakest precondition, where · · · stands for the
remaining disjunctions in the postcondition for E , as defined in Figure 5.8.

wp vs++[t.binop]{w,V J[t]K(w)∨·· ·}

From hypothesis 5.3, we know that vs is either a trapV, or a list of two values of
type t: immV [t.const c1; t.const c2].

In the first case, we apply the Iris-Wasm proof rule for traps, which consumes
the surrounding evaluation context until the final value is trap. In this case, we
must show that the postcondition holds for trapV. This is easily established, since

CHAPTER 5. IRIS-WASM 233

V J·K(trapV) holds at all types. Henceforth, we will disregard this sub-case, as it
proceeds identically in the remaining cases.

In the second case, we apply the Iris-Wasm proof rule for binary operations, namely
wp_binop (Section 5.2). Let c be the result of the binary operation on c1 and c2. We
must now show that the postcondition holds for the logical value immV [t.const c],
in other words:

V J[t]K(immV [t.const c])

Which holds by definition of V , since the result is indeed a constant of type t.

• Case: C ⊢ t.load flags : [i32]→ [t]:

As in the previous case, we introduce hypotheses into the context, and unfold the
goal to reveal the following weakest precondition:

wp vs++[t.load flags]{w,V J[t]K(w)∨·· ·}

Given the assumption V J[i32]K(vs), we know that vs is either a trap, or a single
32-bit integer v. The trap case proceeds as usual, and we are left with the case
where we must reason about a memory load from address i32.const v. However, in
order to apply the proof rule for load, we must first acquire the memory points-to
predicates starting at v up to the number of bytes we are loading (as indicated by
flags).

From the typing of load, we know that C.memory ̸= []. Given the assumption
JCKhfs(inst), we can thus infer an instance of M emJmtK(m) for some m that happens
to be at the head of C.memory. The memory relation unfolds to a non atomic iris
invariant containing points to predicates for each byte of memory. Using the non
atomic token [NaInv : ⊤] from the FrameJτlKi(F) hypothesis, we can then open
the invariant, and extract the relevant points to predicates, so we can apply the proof
rule for load. Once applied, we close the invariant, and show that the postcondition
holds for the loaded value, which as in the previous case, follows from a successful
load.

What we have here omitted, are the cases in which the load dynamically fails, for
instance if v is out of bounds. In those cases, we apply versions of the proof rule
that assume a failing condition, and reason as usual about the resulting trap.

• Case: C ⊢ br i : ts1 ++ ts→ ts2:
Additional assumption: C.labels[i] = ts

We proceed as usual, and derive the following goal, in which we have asserted that
the value stack equals vs++ vs1, for some vs of type ts, and for some vs1 of type ts1.

wp vs++ vs1 ++[br i]{w, · · ·∨BrJC.labelsK∗∗(w, lh)∨·· ·}

Note that we have preemptively highlighted the disjunct in the postcondition that
will be of interest in this case, with the super- and sub- scripts left out for readability.

CHAPTER 5. IRIS-WASM 234

The expression in our goal is a stuck break expressions. In other words, we cannot
yet reason about taking a step, and must first go to the postcondition. The relevant
disjunct is the break relation, and we must now show the following:

BrJC.labelsK∗∗(vs++ vs1 ++[br i], lh)

Unfolding the break relation reveals a new weakest precondition, in which the
expression is the labeled evaluation context consisting of the innermost i+1 layers
of lh, where the hole has been filled by vs++vs1 ++[br i], with a postcondition that
resembles that of the expression relation, expect it now allows a final value of any
type, and the break relation is now instantiated to a new context lh′, representing
the remaining layers of lh.

Note that we rely on the condition, that lh is constructed of at least i+1 layers. This
follows from the definition of BrJC.labelsK(·, lh), which asserts that lh has at least
depth len(C.labels), and from the assumption that C.labels has length at least i+1.

Next, we reason as usual by applying the proof rule for br i. The result is a value,
namely the value stack vs, and we reason as usual about the new postcondition.

• Case: C ⊢ block (ts1→ ts2) es : ts1→ ts2: Induction Hypothesis: C[labels = ts2 ::
C.labels] ⊨ es : ts1→ as2

For the inductive cases, the proof proceeds by taking a step, and applying the
induction hypothesis to reason about the remaining execution.

The main difficulty lies in the two different typing contexts. Indeed, the block
instruction generates a new label, which means all existing break targets shift, and
the innermost label presents a new valid break target. Concretely, it means we must
reestablish the context relation on the new list of labels.

Upon introducing the expected assumptions into the context, we derive the following
goal:

wp vs++block (ts1→ ts2) es{w, · · ·}

We begin by applying the proof rule for block:

wp lh1[es]{w, · · ·}

where lh1 = vs++ labellen(ts2){[]} [_] end. The induction hypothesis provides a
weakest precondition statement for es. We thus need to bind into the evaluation
context lh1, by applying wp_ctx_bind:

wp lh1[es]
{

w,wp lh1[w]
{

w′, · · ·
}}

(5.5)

Next, we must derive a weakest precondition statement from the induction hypothe-
sis. This involves instantiating the semantic typing judgment with an instance, an
evaluation context, a list of host functions, and an input stack, along with the relevant
iris resources, most notably an assertion of the instance and context relations.

CHAPTER 5. IRIS-WASM 235

Only the labels field of the context C has changed. Thus, the main proof effort
lies in establishing the context relation on the new typing context, instantiated
to an evaluation context with a new innermost label. Let push(lh, lh′) denote an
evaluation context where we replace the base layer of lh with lh′. The main proof
obligation is to show the following:

CtxJCK(inst,hfs)(lh)−−∗ CtxJC[labels= ts2 :: C.labels]K(inst,hfs)(push(lh, lh1))

The structural conditions follow by construction of the new evaluation context.
What remains is to derive the continuation relation K for each element of C.labels,
now shifted on index up, and to prove K for the new break target in lh1.

Finally, once a weakest precondition statement for es has been established, the final
step is to show that its postcondition implies the postcondition of 5.5, by considering
each possible final value. In particular, it involves shifting the break target in case
of a stuck break value.

The fundamental theorem allows us to derive specifications for each declared
function in an arbitrary well typed module. However, these specifications can only
be applied, and are thus only useful, once we establish that the produced instance is
valid. The following key theorem states that the result of instantiating a well-typed
module ⊢ m : timps→ texps produces a valid instance, given that all imports are valid
according to timps.

Theorem 19 (Valid Instance Allocation). If ⊢ m : timps→ texps, and inst is the result
of instantiating module m with imports imps, then

resources(m, imps, timps, · · · , inst)−−∗ validJtimpsK(imps)−−∗I JCK(inst)

where C is the module type, determined syntactically, resources(· · · , inst) corresponds
to the ghost resources allocated by module instantiation as depicted by Lemma 27,
and validJtimpsK(imps) unfolds the list of imports, and applies the relevant relation
on each import object.

Proof. By unfolding the definition of module typing, inferring properties about the
result of instantiating m, and component-wise proving the instance relation. Validity
of imported types is established by the validJtimpsK(imps) assumption, while the rest
are established using typing information, and the definition of the logical relation. In
particular, the fundamental theorem of logical relations (Theorem 18) is applied to
prove the validity of each module function.

5.5.2 Illustrative Example

To illustrate the application of the logical relation, we present a synthetic example
that depends on the encapsulation of locally declared memory, against an unknown

CHAPTER 5. IRIS-WASM 236

(module ;; LSE of memory
(import "adv" "f" (func $f))
(memory 1)
(global $ret (import "host" "ret")

i32)
(func $main

const 0; const 42; store; const 0;
call $f;

load i32; global.set $ret))

inst_decl [] "adv" ["f"]
inst_decl ["f";"ret"] "lse" []
get_global $ret

Figure 5.12: Robust safety example: testing the local state encapsulation of memory.
We refer to imports and modules via names rather than indices, for the sake of
readability.

but well-typed function. Figure 5.12 depicts a WebAssembly module "lse" (for ‘local
state encapsulation’) that imports a function "f" from an arbitrary module called
"adv" (for ‘adversary’), declares a memory, and imports a global variable "ret" from
the host to store the return value of its $main function.

The $main function stores 42 to memory address 0, calls the imported function
$f, after which it loads from memory address 0 and stores the result into $ret. Since
the memory is encapsulated in the module, the integrity of the memory is preserved
during the call to $f. We should therefore be able to prove that $ret contains 42 upon
return. In short, our goal is to prove the following specification, where main refers to
the body of $main, and we use $f and $ret to refer to the indices of their respective
names:

NaInvNwf .$f($f wf7−−→ {(inst, tlocs);es}NativeCl[]→[]) ⊢

{ $ret wg7−−→ {mut;−}∗
FR↪−−→ F ∗

F.inst.mems wm7−−−→0 − }main {w, w = trap∨ w = immV []∗
$ret wg7−−→ {mut;42}∗

FR↪−−→ F ∗ F.inst.mems wm7−−−→0 42

 }
We will refer to this specification as mainSpec(es, tlocs, inst). Note that the resource
for $f is in a non-atomic invariant, such that it matches the expected definition of
function validity.

Figure 5.12 depicts the host code that instantiates and links the two modules.
Recall that the host type checks any module during instantiation, which includes type
checking imports and exports. In this scenario, we expect the unknown module $adv
to require no imports, and export a single function of type []→ []. This function is
then passed as the import object to the instantiation of the $lse module, together with
the ambient global variable $ret.

Thus, in the above specification, es is the body of a native closure of type []→ [].
In order to prove the above triple, we need a specification to reason about the call to
$f inside of main. More precisely, we need a specification that does not break the
integrity of F.inst.mems. Since es is arbitrary and possibly adversarial, we cannot

CHAPTER 5. IRIS-WASM 237

assume the existence of such a specification. Instead, we will rely on the fact that the
imported closure has been type checked. Because of that, it will (by the fundamental
theorem) satisfy the semantic invariants of the module system, captured by the logical
relation, and those suffice to carry out our proof.

However, in order to get a weakest precondition statement out of the fundamental
theorem, we need to assert that the enclosed instance is valid. We therefore split
the proof into two stages. First, we assume that the adversary instance is valid, and
prove the specification for the WebAssembly code. Next, we show that the host code
instantiating the adversarial and trusted module produces a valid adversary instance.

The following theorem captures, that, as long as the unknown function is syntac-
tically well-typed (which is ensured by instantiation), it cannot break the local state
encapsulation of our module.

Theorem 20 (Robust Safety of the motivating example). If C.labels= []∧C.return=
None and C[locals← tlocs][labels← []][return← Some([])] ⊢ es : []→ [], then

I JCK[](inst)−−∗ [NaInv :⊤]−−∗mainSpec(es, tlocs, inst)

Proof. The proof largely consists of applying weakest precondition rules for each
known instruction. For adversary invocation, we open the invariant to apply Theo-
rem 18 to get a specification for the adversary code. Since the specification depends
only the resources in I JCK[](inst) (the context relation Ctx is manually established
for the known evaluation context of one layer), we keep the remaining resources
separate, and we can easily step through the remainder of the program.

Next, we need to show that module instantiation indeed lets us fulfill the assump-
tions and preconditions of Theorem 20. We assume relatively little about the adversary
module, only that it is well-typed against an empty import list and a single function
export, that it does not have a start function, and that instantiating it will succeed (see
restrictions on instantiation described in Section 5.3). The host owns a preallocated
global variable for the return value of the main function, which it will read from post
instantiation. It first instantiates the adversary module, given the assumptions above.
It then uses the exported adversary function as the import for the instantiation of the
trusted module, jumping to its main function. The specification uses sugared syntax,
and corresponds to a triple in the host program logic.

Theorem 21 (Full Host and WebAssembly Specification). If ⊢ madv : [] [funce ([]→
[])] and the syntactic restrictions on madv hold, then

{"adv" mod↪−−−→ madv ∗
"lse" mod↪−−−→ mlse ∗
"ret" vis7−−→ $ret∗
"f" vis7−−→−∗
$ret wg7−−→−∗
[NaInv :⊤]

} inst_decl [] "adv" ["f"]
inst_decl ["f";"ret"] "lse" []
get_global $ret {hw,

hw = (trap, [])∨
hw = ([i32.const 42], [])}

CHAPTER 5. IRIS-WASM 238

Proof. Given the typing assumption on the adversary module madv, its instantiation
successfully allocates an instance inst, with all the resources that go with it. In
particular, given the export type of the module, we know that instantiation allocates a
function pointer for some well-typed function of type []→ []. This resource is then
used to instantiate the trusted module mlse. Once each module has been instantiated,
we establish the validity of inst by Theorem 19. The remaining assumptions are
derived from the typing of madv, and we conclude by applying Theorem 20.

5.5.3 Applications of the Logical Relation on the Stack Module

Next we describe two scenarios, each involving our stack module interacting with
some unknown function. In each case, the two modules interact via imported closures.
We will therefore employ the closure relation Clos as the principal logical relation in
our reasoning.

The two applications highlight a conceptual distinction between two kinds of
scenarios in which known code interacts with unknown code. In the first example,
known code imports functions from an unknown module, and has a certain amount
of control over how these are applied. The second example exports known code to
an unknown module, and in that case, exported closures must carefully guard against
misuse.

Figure 5.7 depicts a client of the stack module, which imports a closure "f" of type
[i32]→ [i32] from an unknown module. The client creates a new stack, pushes two
values, then applies map using the imported unknown function, and finally computes
the length of the stack by calling a function from the stack module. The stack module
hides its internal representation from the context. Likewise, the host makes sure
to hide the stack module operations from the unknown module. WebAssembly’s
coarse grained encapsulation thus guarantees that the integrity of the allocated stack
is maintained, no matter what the unknown imported function does: as long as it does
not trap, the final length operation succeeds and returns the original size of the stack,
namely 2. We refer to imports and modules via names rather than indices, for the sake
of readability. The following theorem expresses robust safety formally:

Theorem 22 (Top-level Host Specification). If ⊢ madv : [] [funce ([i32]→ [i32])] and
the syntactic restrictions on madv hold, then

{"stack" mod↪−−−→ mstack ∗
"adv" mod↪−−−→ madv ∗
"client" mod↪−−−→ mclient ∗
"g" vis7−−→ $g ∗
$g wg7−−→−∗ [NaInv :⊤]∗
"f","tab1","map",

...,"pop" vis7−−→−

} stack_client {hw,
(hw = ([]; [])∧$g wg7−−→ 2)∨
hw = (trap; []) }

Proof. Once the host has allocated the unknown module, we apply Theorem 19 to
conclude that its instance is valid, which guarantees that each of its components,

CHAPTER 5. IRIS-WASM 239

including the exported closure of type [i32]→ [i32], is valid. As a result, we know that
the unknown import of our client is in the closure relation Clos, which by definition
of the relational interpretation includes a specification for the unknown function.
Crucially, this specification does not depend on the stack internals, and thus we are
able to prove that the stack size is maintained.

Next we consider a scenario in which an unknown module imports operations
from the stack module, namely new_stack, push and pop. The encapsulation of
the stack module’s internal state, alongside careful checks at the boundaries of each
operation, which we will elaborate on below, should guarantee that the stack module
memory indeed stores and maintains stacks, as defined by the isStack predicate,
irrespectively of what the unknown module does. Henceforth we will refer to this as
the representation invariant, denoted by stackInvariant(m), where m is the index of
the encapsulated memory. Roughly, the representation invariant is an Iris (non-atomic)
invariant containing a big separation of isStack predicates, one for each allocated
stack.

The basic type system of WebAssembly guarantees that the adversary code does
not get stuck. However, our goal is to reason about integrity of the data representation
enforced by the module system. While the type system defines the typing of an
individual module, it does not consider interweaving of module instantiations, since
instantiation is handled by a host, typically written in untyped JavaScript. Therefore,
the type system is too weak to capture the data abstraction enforced by the module
system, which we are relying on here. As such, our interpretation of the type system
does not capture the refined interpretation (with the representation invariant) of the
stack module.

We use the standard type interpretation of the adversary module to reason about
its execution. However, we want this interpretation to depend on the refined represen-
tation invariant of the stack module internals, rather than the default interpretation
granted by the logical relation. Since each import must be valid when applying
Theorem 19, we manually prove that, given the representation invariant, each exported
function (new_stack, push, and pop) is in the closure relation.

As a result, we must now consider the case where a stack operation is applied on
an arbitrary input value. Consider, for instance, push – it takes two arguments, one
of which is a stack value, which is interpreted as a memory address. A malicious
adversary could apply push to a masked stack value (a bogus memory address), thus
breaking the expected internal behavior of the stack module. push must thus guard
against such a situation by dynamically checking the validity of all safety-critical pa-
rameters. These dynamic checks ensure that no stack gets corrupted. Relying on those
dynamic checks, we can then prove specifications that maintain the representation
invariant:

CHAPTER 5. IRIS-WASM 240

Theorem 23 (Validity of Select Stack Module Operations). If inst.mems= [m] then,

stackInvariant(m)→ ClosJ[i32; i32]→ []K({(inst, [i32]);push}NativeCl)
∗ ClosJ[i32]→ [i32]K({(inst, [i32]);pop}NativeCl)
∗ ClosJ[]→ [i32]K({(inst, [i32]);new_stack}NativeCl)

The representation invariant is allocated upon instantiation of the stack module,
at which point there are no allocated stacks. Theorem 23 is then applied on each of
the relevant stack module exports, such that we can apply Theorem 19, and conclude
with the standard type interpretation of the adversary module, while maintaining the
now allocated representation invariant.

5.6 Related work

Watt et al. [159] develop a mechanised first-order separation logic for what they call
“encapsulated” WebAssembly, that is, code limited to a single module, with no exports
or imports, and no uses of the call_indirect instruction or the host, and they do not
handle instantiation. For their subset of the language, our proof rules are similar
up to presentational details, except for the handling of breaks, where, as mentioned
in §5.2.2, we use a novel approach with a bind rule which scales to higher-order
programs, unlike the approach taken by Watt et al. [159].

WebAssembly provides coarse-grained memory safety, at the boundary of memory
objects, and coarse-grained isolation, at the boundary of modules. Lehmann et al. [88]
show that many of the classical attacks against memory unsafe languages, targeting
a finer granularity, also work against Wasm programs that not specifically written
to take advantage of module isolation. We show in our examples that, when Wasm
programs are written with module isolation in mind, the language specification does
indeed enforce expected isolation guarantees.

MSWasm [38, 95] (Memory-Safe Wasm) is a proposed extension of WebAssembly
that adds first-class support for CHERI-like [154] fine-grained runtime-checked mem-
ory capabilities. The logical relation of Cerise [55, 58–60], mechanised in Iris,
captures encapsulation for hardware capabilities in an idealised assembly model and
may be used as a starting point to formalise the guarantees of MSWasm on top of
Iris-Wasm.

CapableWasm [53] is a (work-in-progress) extension of the type system of
WebAssembly to support compositional compilation from different languages. They
rely on their type system to enforce finer-grained encapsulation than at the module
boundary.

Kolosick et al. [81] use a logical relation to show that WebAssembly programs
naturally compile to unsafe platform assembly in such a way that the compiled code
obeys a safe calling convention and certain isolation properties with respect to the
rest of the system. Narayan et al. [105] rely on this result to implement a sandboxing
technique whereby C code is first compiled to WebAssembly which is then ultimately

CHAPTER 5. IRIS-WASM 241

compiled to native assembly for linking. They use this technique to sandbox a number
of Firefox libraries.

The λRust calculus of the RustBelt project [76] explores features of a modern
industrial language in Iris. Their aim is to investigate Rust’s novel ownership-based
type system, using a core calculus that captures the essence of Rust, and define a
logical relation which characterises a discipline for composing safe code which obeys
the Rust type system with untyped unsafe code.

In Iris-Wasm, we exploit the higher-order features of Iris. In particular, we use
that weakest preconditions can be nested inside other weakest preconditions to specify
higher-order functions and WebAssembly control structures, and quantification over
predicates to get abstract modular specifications of modules. These features of Iris
stem from earlier work on higher-order separation logic, starting with Biering et al.
[19]. To show robust safety, we further rely on Iris’ invariants, the idea of which can
be traced back at least to recursively-defined Kripke models of type systems [7] and
separation logics with hidden state [125].

Many related works deal with the mechanized formalization of low-level lan-
guages. RockSalt [101] is a verified checker that validates code binaries against a
sandbox policy, similar to that of Google’s Native Client (NaCl). RockSalt is me-
chanically verified using a formalization of a subset of x86 in Coq. Kennedy et al.
[79] use Coq to build a macro assembler for x86, while relating machine code to
separation-logic formulas suitable for program verification.

The Certified Assembly Programming (CAP) family of frameworks [51, 107, 164,
165] support the definition of second-order Hoare logics for verifying modular specifi-
cations of low-level assembly programs, using expressive features such as embedded
code pointers, concurrency, and dynamic thread creation. As such, CAP focuses on
features that are abstracted away by Wasm. Built on top of these frameworks, Gu
et al. [63] presents CertiKOS, an extensible architecture for certifying concurrent
OS kernels. Using CertiKOS, Gu et al. [63, 64] develop and verify a concurrent
OS kernel consisting of both C and x86 assembly code. By leveraging CompCertX
[62], CertiKOS is able to reason about interactions between C and x86 assembly.
As is the case with Iris-Wasm, the setup assumes that the two languages share the
same memory model. The recent DimSum [123] framework supports reasoning about
multilingual programs between languages with different memory models. However,
while Iris-Wasm focuses on mechanizing the full language of a real industrial standard,
the DimSum approach has so far only been applied to a simple high-level imperative
language and an idealized assembly language.

The W3C have announced a Public Working Draft for WebAssembly 2.0. It
includes several features orthogonal to our focus on security, such as extra numeric
operations. The two relevant features are: the lifting of the artificial restriction to one
table per module (we have done this too), which corresponds to a simple update to the
relation on instances; and the addition of opaque reference types to objects of the host
language, which adds new WebAssembly values, but no actual complexity because of
their opacity (this is trivial to do).

CHAPTER 5. IRIS-WASM 242

5.7 Conclusion

We have presented Iris-Wasm, a practical higher-order, mechanised program logic
for the W3C WebAssembly 1.0 official language standard [119], building on the
mechanized WasmCert-Coq specification [160]. We show how the reasoning of
Iris-Wasm can handle the intricacies of WebAssembly, including interaction with its
host language and the higher-order programs and reentrancy that it enables, going
far beyond the ‘encapsulated’ fragment of WebAssembly in previous work [159].
We then leverage our program logic to build a logical relation which enforces ro-
bust safety, demonstrating that we can prove properties of encapsulation at module
boundaries. This example illustrates the potential of what can be done with formal
methods. We hope other researchers will use our formalisation to further investigate
the WebAssembly ecosystem, and that industrial language communities will thereby
be further enticed to embrace the formalisation of language specifications.

Bibliography

[1] Martín Abadi. Protection in programming-language translations. In Secure
Internet Programming, Security Issues for Mobile and Distributed Objects,
pages 19–34, 1999. URL https://doi.org/10.1007/3-540-48749-2_2.
196

[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Trans. Inf. Syst.
Secur., 13(1):4:1–4:40, 2009. doi: 10.1145/1609956.1609960. URL https:
//doi.org/10.1145/1609956.1609960. 2

[3] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora
Evans, Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Benjamin C. Pierce,
Marco Stronati, and Andrew Tolmach. When good components go bad:
Formally secure compilation despite dynamic compromise. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018,
pages 1351–1368, 2018. doi: 10.1145/3243734.3243745. URL https:
//doi.org/10.1145/3243734.3243745. 22, 141, 197

[4] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Pa-
trignani, and Jérémy Thibault. Journey beyond full abstraction: Exploring
robust property preservation for secure compilation. In 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28,
2019, pages 256–271. IEEE, 2019. doi: 10.1109/CSF.2019.00025. URL
https://doi.org/10.1109/CSF.2019.00025. 22

[5] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game se-
mantics for general references. In Thirteenth Annual IEEE Symposium on Logic
in Computer Science, Indianapolis, Indiana, USA, June 21-24, 1998, pages
334–344. IEEE Computer Society, 1998. doi: 10.1109/LICS.1998.705669.
URL https://doi.org/10.1109/LICS.1998.705669. 97

[6] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton
University, 2004. 120, 197

243

https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1109/LICS.1998.705669

BIBLIOGRAPHY 244

[7] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent rep-
resentation independence. In Zhong Shao and Benjamin C. Pierce, editors,
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23,
2009, pages 340–353. ACM, 2009. doi: 10.1145/1480881.1480925. URL
https://doi.org/10.1145/1480881.1480925. 241

[8] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent rep-
resentation independence. In Zhong Shao and Benjamin C. Pierce, editors,
Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23,
2009, pages 340–353. ACM, 2009. doi: 10.1145/1480881.1480925. URL
https://doi.org/10.1145/1480881.1480925. 123, 161

[9] Akram El-Korashy. A Formal Model for Capability Machines: An Illustrative
Case Study towards Secure Compilation to CHERI. Master thesis, Saarland
University, September 2016. 150

[10] Sean Noble Anderson, Leonidas Lampropoulos, Roberto Blanco, Benjamin C.
Pierce, and Andrew Tolmach. Security properties for stack safety. CoRR,
abs/2105.00417, 2021. URL https://arxiv.org/abs/2105.00417. 154,
155, 156, 158, 160, 161, 196, 197

[11] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992. ISBN 0-521-41695-7. 70

[12] Arm. Morello project, 2021. URL https://www.morello-project.org/.
7, 153

[13] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Shaked Flur, Jon
French, Kathryn E. Gray, Gabriel Kerneis, Neel Krishnaswami, Prashanth
Mundkur, Robert Norton-Wright, Christopher Pulte, Alastair Reid, Peter
Sewell, Ian Stark, and Mark Wassell. The Sail instruction-set architecture
(isa) specification language, 2013–2019. 17, 103

[14] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon
French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and
Peter Sewell. ISA semantics for armv8-a, risc-v, and CHERI-MIPS. Proc.
ACM Program. Lang., 3(POPL):71:1–71:31, 2019. doi: 10.1145/3290384.
URL https://doi.org/10.1145/3290384. 11, 17, 96

[15] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine De-
mange, Catalin Hritcu, David Pichardie, Benjamin C. Pierce, Randy Pol-
lack, and Andrew Tolmach. A verified information-flow architecture. In
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21,

https://doi.org/10.1145/1480881.1480925
https://doi.org/10.1145/1480881.1480925
https://arxiv.org/abs/2105.00417
https://www.morello-project.org/
https://doi.org/10.1145/3290384

BIBLIOGRAPHY 245

2014, pages 165–178, 2014. doi: 10.1145/2535838.2535839. URL https:
//doi.org/10.1145/2535838.2535839. 197

[16] Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Catalin
Hritcu, Benjamin C. Pierce, Antal Spector-Zabusky, and Andrew Tolmach.
Micro-policies: Formally verified, tag-based security monitors. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 813–830, 2015. doi: 10.1109/SP.2015.55. URL
https://doi.org/10.1109/SP.2015.55. 197

[17] Arthur Azevedo de Amorim, Catalin Hritcu, and Benjamin C. Pierce. The
meaning of memory safety. In Lujo Bauer and Ralf Küsters, editors, Principles
of Security and Trust - 7th International Conference, POST 2018, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10804
of Lecture Notes in Computer Science, pages 79–105. Springer, 2018. doi:
10.1007/978-3-319-89722-6_4. URL https://doi.org/10.1007/978-3-
319-89722-6_4. 197

[18] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong,
Lawrence Esswood, Ian Stark, Graeme Barnes, Robert N. M. Watson, and Peter
Sewell. Verified security for the Morello capability-enhanced prototype Arm
architecture. In Proceedings of the 31st European Symposium on Programming,
April 2022. 11, 196

[19] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. Bi-hyperdoctrines, higher-
order separation logic, and abstraction. ACM Trans. Program. Lang. Syst.,
29(5):24, 2007. doi: 10.1145/1275497.1275499. URL https://doi.org/
10.1145/1275497.1275499. 241

[20] Lars Birkedal and Aleš Bizjak. Lecture notes on iris: Higher-order concurrent
separation logic. Technical report, Aarhus University, 2017. 117, 217

[21] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob
Thamsborg, and Hongseok Yang. Step-indexed kripke models over recursive
worlds. In Thomas Ball and Mooly Sagiv, editors, Proceedings of the 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 119–132. ACM,
2011. doi: 10.1145/1926385.1926401. URL https://doi.org/10.1145/
1926385.1926401. 120, 197

[22] Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. Jump-
oriented programming: a new class of code-reuse attack. In Bruce S. N.
Cheung, Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong, edi-
tors, Proceedings of the 6th ACM Symposium on Information, Computer and

https://doi.org/10.1145/2535838.2535839
https://doi.org/10.1145/2535838.2535839
https://doi.org/10.1109/SP.2015.55
https://doi.org/10.1007/978-3-319-89722-6_4
https://doi.org/10.1007/978-3-319-89722-6_4
https://doi.org/10.1145/1275497.1275499
https://doi.org/10.1145/1275497.1275499
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/1926385.1926401

BIBLIOGRAPHY 246

Communications Security, ASIACCS 2011, Hong Kong, China, March 22-
24, 2011, pages 30–40. ACM, 2011. doi: 10.1145/1966913.1966919. URL
https://doi.org/10.1145/1966913.1966919. 3

[23] Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Andrew
Wright, and Adam Chlipala. A Multipurpose Formal RISC-V Specifica-
tion. arXiv:2104.00762 [cs], April 2021. URL http://arxiv.org/abs/
2104.00762. 96

[24] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified self-modifying
code. In Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’07, page 66–77,
New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595936332. doi: 10.1145/1250734.1250743. URL https://doi.org/
10.1145/1250734.1250743. 151

[25] Nicholas Carlini, Antonio Barresi, Mathias Payer, David A. Wagner,
and Thomas R. Gross. Control-flow bending: On the effectiveness
of control-flow integrity. In Jaeyeon Jung and Thorsten Holz, editors,
24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015, pages 161–176. USENIX Association,
2015. URL https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/carlini. 3

[26] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware support
for fast capability-based addressing. In Forest Baskett and Douglas W. Clark,
editors, ASPLOS-VI Proceedings - Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, San Jose,
California, USA, October 4-7, 1994, pages 319–327. ACM Press, 1994. doi:
10.1145/195473.195579. URL https://doi.org/10.1145/195473.195579.
7

[27] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware
Support for Fast Capability-based Addressing. In International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 319–327. ACM, 1994. doi: 10.1145/195473.195579. URL http:
//doi.acm.org/10.1145/195473.195579. 3, 26, 30, 35, 104, 105, 149, 153,
161

[28] Shuo Chen, Jun Xu, and Emre Can Sezer. Non-control-data at-
tacks are realistic threats. In Patrick D. McDaniel, editor, Pro-
ceedings of the 14th USENIX Security Symposium, Baltimore, MD,
USA, July 31 - August 5, 2005. USENIX Association, 2005. URL
https://www.usenix.org/conference/14th-usenix-security-
symposium/non-control-data-attacks-are-realistic-threats. 3

https://doi.org/10.1145/1966913.1966919
http://arxiv.org/abs/2104.00762
http://arxiv.org/abs/2104.00762
https://doi.org/10.1145/1250734.1250743
https://doi.org/10.1145/1250734.1250743
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://doi.org/10.1145/195473.195579
http://doi.acm.org/10.1145/195473.195579
http://doi.acm.org/10.1145/195473.195579
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats
https://www.usenix.org/conference/14th-usenix-security-symposium/non-control-data-attacks-are-realistic-threats

BIBLIOGRAPHY 247

[29] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joan-
nou, Jonathan Woodruff, A. Theodore Markettos, J. Edward Maste, Robert
Norton, Stacey Son, Michael Roe, Simon W. Moore, Peter G. Neumann, Ben
Laurie, and Robert N.M. Watson. CHERI JNI: Sinking the Java Security Model
into the C. In International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 569–583. ACM, 2017. doi:
10.1145/3037697.3037725. 26, 95, 149

[30] Adam Chlipala. Mostly-automated verification of low-level programs in com-
putational separation logic. In Mary W. Hall and David A. Padua, editors,
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, pages 234–245. ACM, 2011. doi: 10.1145/1993498.1993526. URL
https://doi.org/10.1145/1993498.1993526. 15

[31] Adam Chlipala. Mostly-automated verification of low-level programs in com-
putational separation logic. In Mary W. Hall and David A. Padua, editors,
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8,
2011, pages 234–245. ACM, 2011. doi: 10.1145/1993498.1993526. URL
https://doi.org/10.1145/1993498.1993526. 151

[32] Chromium. Memory safety, 2020. URL https://www.chromium.org/Home/
chromium-security/memory-safety. 2, 153

[33] DC Cosserat. A capability oriented multi-processor system for real-time
applications. In ICC Conf., Washington, DC, 1972. 7

[34] JM Cotton. The operational requirements for future communications control
processors. In lnternat. Switching Symp., Cambridge, Mass, 1972. 7

[35] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and
Grigore Rosu. A complete formal semantics of x86-64 user-level instruction set
architecture. In Kathryn S. McKinley and Kathleen Fisher, editors, Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages
1133–1148. ACM, 2019. doi: 10.1145/3314221.3314601. URL https://
doi.org/10.1145/3314221.3314601. 17

[36] Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multipro-
grammed Computations. Commun. ACM, 9(3):143–155, March 1966. ISSN
0001-0782. doi: 10.1145/365230.365252. 3, 4, 5, 6, 26, 101, 153

[37] Dominique Devriese, Lars Birkedal, and Frank Piessens. Reasoning about
object capabilities with logical relations and effect parametricity. In IEEE
European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016, pages 147–162. IEEE, 2016. doi: 10.1109/

https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/1993498.1993526
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601

BIBLIOGRAPHY 248

EuroSP.2016.22. URL https://doi.org/10.1109/EuroSP.2016.22. 11,
14, 97, 150, 196

[38] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy, and
Deian Stefan. Position paper: Progressive memory safety for webassembly. In
Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy, HASP ’19, New York, NY, USA, 2019. Asso-
ciation for Computing Machinery. ISBN 9781450372268. doi: 10.1145/
3337167.3337171. URL https://doi.org/10.1145/3337167.3337171.
240

[39] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order
state and control effects on local relational reasoning. In Paul Hudak and
Stephanie Weirich, editors, Proceeding of the 15th ACM SIGPLAN interna-
tional conference on Functional programming, ICFP 2010, Baltimore, Mary-
land, USA, September 27-29, 2010, pages 143–156. ACM, 2010. doi: 10.1145/
1863543.1863566. URL https://doi.org/10.1145/1863543.1863566. 14,
97, 103, 123, 144, 145, 150, 157, 161, 197

[40] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. A re-
lational modal logic for higher-order stateful adts. In Proceedings of the
37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2010, Madrid, Spain, January 17-23, 2010, pages 185–198,
2010. doi: 10.1145/1706299.1706323. URL https://doi.org/10.1145/
1706299.1706323. 197

[41] Derek Dreyer, Amal Ahmed, and Lars Birkedal. Logical step-indexed logical
relations. LMCS, 7(2:16):1–37, June 2011. 197

[42] Sophia Drossopoulou, James Noble, Julian Mackay, and Susan Eisenbach.
Holistic specifications for robust programs. In Heike Wehrheim and Jordi Cabot,
editors, Fundamental Approaches to Software Engineering - 23rd International
Conference, FASE 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, volume 12076 of Lecture Notes in Computer Science,
pages 420–440. Springer, 2020. doi: 10.1007/978-3-030-45234-6_21. URL
https://doi.org/10.1007/978-3-030-45234-6_21. 150

[43] Daniel Ehrenberg. WebAssembly JavaScript interface W3C recommendation.
Technical report, W3C, December 2019. URL https://www.w3.org/TR/
wasm-js-api-1/. 200, 201

[44] Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese,
Deepak Garg, and Frank Piessens. Capableptrs: Securely compiling par-
tial programs using the pointers-as-capabilities principle. In 2021 IEEE
34th Computer Security Foundations Symposium (CSF), pages 421–436, Los

https://doi.org/10.1109/EuroSP.2016.22
https://doi.org/10.1145/3337167.3337171
https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.1007/978-3-030-45234-6_21
https://www.w3.org/TR/wasm-js-api-1/
https://www.w3.org/TR/wasm-js-api-1/

BIBLIOGRAPHY 249

Alamitos, CA, USA, jun 2021. IEEE Computer Society. doi: 10.1109/
CSF51468.2021.00036. URL https://doi.ieeecomputersociety.org/
10.1109/CSF51468.2021.00036. 22, 26, 95, 196

[45] Akram El-Korashy, Roberto Blanco, Jérémy Thibault, Adrien Durier, Deepak
Garg, and Catalin Hritcu. Secureptrs: Proving secure compilation with data-
flow back-translation and turn-taking simulation. In 35th IEEE Computer
Security Foundations Symposium, CSF 2022, Haifa, Israel, August 7-10, 2022,
pages 64–79. IEEE, 2022. doi: 10.1109/CSF54842.2022.9919680. URL
https://doi.org/10.1109/CSF54842.2022.9919680. 22

[46] Dhammika Elkaduwe, Philip Derrin, and Kevin Elphinstone. Kernel design
for isolation and assurance of physical memory. In Michael Engel and Olaf
Spinczyk, editors, Proceedings of the 1st Workshop on Isolation and Integration
in Embedded Systems, IIES ’08, Glasgow, Scotland, April 1, 2008, pages 35–
40. ACM, 2008. doi: 10.1145/1435458.1435465. URL https://doi.org/
10.1145/1435458.1435465. 7

[47] R Fabry. Preliminary description of a supervisor for a machine oriented around
capabilities. Inst. Comput. Res. Quart. Rep, 18, 1968. 7

[48] Robert S Fabry. A user’s view of capabilities. ICR Quarterly Report, 15:1–8,
1967.

[49] Robert S Fabry. List-structured addressing. Technical report, Univ. of Chicago,
IL (United States), 1971. 7

[50] Richard J. Feiertag and Peter G. Neumann. The foundations of a provably
secure operating system (PSOS). In 1979 International Workshop on Managing
Requirements Knowledge, MARK 1979, New York, NY, USA, June 4-7, 1979,
pages 329–334. IEEE, 1979. doi: 10.1109/MARK.1979.8817256. URL
https://doi.org/10.1109/MARK.1979.8817256. 6

[51] Xinyu Feng and Zhong Shao. Modular verification of concurrent assembly
code with dynamic thread creation and termination. In Olivier Danvy and Ben-
jamin C. Pierce, editors, Proceedings of the 10th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2005, Tallinn, Estonia, Septem-
ber 26-28, 2005, pages 254–267. ACM, 2005. doi: 10.1145/1086365.1086399.
URL https://doi.org/10.1145/1086365.1086399. 15, 241

[52] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam
Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz
Napierala, Alexander Richardson, John Baldwin, David Chisnall, Jessica
Clarke, Khilan Gudka, Alexandre Joannou, A. Theodore Markettos, Alfredo
Mazzinghi, Robert M. Norton, Michael Roe, Peter Sewell, Stacey Son, Timothy
M. Jones, Simon W. Moore, Peter G. Neumann, and Robert N. M. Watson.

https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00036
https://doi.ieeecomputersociety.org/10.1109/CSF51468.2021.00036
https://doi.org/10.1109/CSF54842.2022.9919680
https://doi.org/10.1145/1435458.1435465
https://doi.org/10.1145/1435458.1435465
https://doi.org/10.1109/MARK.1979.8817256
https://doi.org/10.1145/1086365.1086399

BIBLIOGRAPHY 250

Cornucopia: Temporal Safety for CHERI Heaps. In IEEE Symposium on
Security and Privacy. IEEE, May 2020. 67, 149, 195

[53] Michael Fitzgibbons. CapableWasm: Bringing better interop down to
WebAssembly, January 2022. URL https://www.youtube.com/watch?v=
E44lTaa2qHk. POPL’22 student research competition presentation. 240

[54] Dan Frumin, Robbert Krebbers, and Lars Birkedal. Reloc: A mechanised
relational logic for fine-grained concurrency. In Anuj Dawar and Erich Grädel,
editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 442–
451. ACM, 2018. doi: 10.1145/3209108.3209174. URL https://doi.org/
10.1145/3209108.3209174. 86, 183

[55] Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,
Alix Trieu, Sander Huyghebaert, Dominique Devriese, and Lars Birkedal.
Efficient and provable local capability revocation using uninitialized capa-
bilities. Proc. ACM Program. Lang., 5(POPL):1–30, 2021. URL https:
//doi.org/10.1145/3434287. 13, 21, 25, 29, 71, 95, 96, 97, 154, 157, 160,
161, 165, 167, 169, 170, 171, 174, 183, 223, 225, 240

[56] Aïna Linn Georges, Alix Trieu, and Lars Birkedal. Artifact for le temps des
cerises: Efficient temporal stack safety on capability machines using directed
capabilities, 2022. URL https://doi.org/10.5281/zenodo.5821862. 155

[57] Aïna Linn Georges, Alix Trieu, and Lars Birkedal. Le temps des cerises: effi-
cient temporal stack safety on capability machines using directed capabilities.
Proc. ACM Program. Lang., 6(OOPSLA):1–30, 2022. doi: 10.1145/3527318.
URL https://doi.org/10.1145/3527318. 21

[58] Aïna Linn Georges, Armaël Guéneau, Thomas Van-Strydonck, Amin Timany,
Dominique Trieu, Alix Devriese, and Lars Birkedal. Cap’ ou pas cap’ ?:
Preuve de programmes pour une machine à capacités en présence de code
inconnu. In Journées Francophones des Langages Applicatifs 2021, April
2021. URL https://cris.vub.be/ws/portalfiles/portal/55081793/
paper.pdf. 240

[59] Aïna Linn Georges, Armaël Guéneau, Thomas van Strydonck, Amin Timany,
Alix Trieu, Dominique Devriese, and Lars Birkedal. Cerise: Program verifi-
cation on a capability machine in the presence of untrusted code. Technical
report, Aarhus University, 2022. URL https://cs.au.dk/~birke/papers/
cerise.pdf. 21

[60] Aïna Linn Georges, Alix Trieu, and Lars Birkedal. Le temps des cerises:
Efficient temporal stack safety on capability machines using directed capabil-
ities. Technical report, Aarhus University, 2022. URL https://cs.au.dk/
~ageorges/publications_pdfs/monotone-technical.pdf. 240

https://www.youtube.com/watch?v=E44lTaa2qHk
https://www.youtube.com/watch?v=E44lTaa2qHk
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1145/3434287
https://doi.org/10.1145/3434287
https://doi.org/10.5281/zenodo.5821862
https://doi.org/10.1145/3527318
https://cris.vub.be/ws/portalfiles/portal/55081793/paper.pdf
https://cris.vub.be/ws/portalfiles/portal/55081793/paper.pdf
https://cs.au.dk/~birke/papers/cerise.pdf
https://cs.au.dk/~birke/papers/cerise.pdf
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf

BIBLIOGRAPHY 251

[61] Paolo Giarrusso, Leo Stefanesco, Amin Timany, Lars Birkedal, and Robbert
Krebbers. Scala step-by-step — soudness for DOT with step-indexed logical
relations in iris. Proc. ACM Program. Lang., (ICFP), 2020. 150

[62] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep
specifications and certified abstraction layers. In Sriram K. Rajamani and David
Walker, editors, Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai,
India, January 15-17, 2015, pages 595–608. ACM, 2015. doi: 10.1145/
2676726.2676975. URL https://doi.org/10.1145/2676726.2676975.
16, 241

[63] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim,
Vilhelm Sjöberg, and David Costanzo. CertiKOS: An extensible architecture
for building certified concurrent os kernels. In Kimberly Keeton and Timothy
Roscoe, editors, 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages
653–669. USENIX Association, 2016. URL https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/gu. 16, 241

[64] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie
Koenig, Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananan-
dro. Certified concurrent abstraction layers. In Jeffrey S. Foster and Dan
Grossman, editors, Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, pages 646–661. ACM, 2018. doi: 10.1145/
3192366.3192381. URL https://doi.org/10.1145/3192366.3192381.
241

[65] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing
the web up to speed with webassembly. In Albert Cohen and Martin T. Vechev,
editors, Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June
18-23, 2017, pages 185–200. ACM, 2017. doi: 10.1145/3062341.3062363.
URL https://doi.org/10.1145/3062341.3062363. 3

[66] Norman Hardy. The confused deputy (or why capabilities might have been
invented). ACM SIGOPS Oper. Syst. Rev., 22(4):36–38, 1988. doi: 10.1145/
54289.871709. URL https://doi.org/10.1145/54289.871709. 6

[67] Pat Hickey. How Fastly and the developer community are invest-
ing in the WebAssembly ecosystem, May 2020. URL https:
//www.fastly.com/blog/how-fastly-and-developer-community-
invest-in-webassembly-ecosystem. 202

https://doi.org/10.1145/2676726.2676975
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/54289.871709
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem

BIBLIOGRAPHY 252

[68] Sander Huyghebaert. A secure calling convention with uninitialized capabilities.
Master’s thesis, Vrije Universiteit Brussel, 2020. URL https://doi.org/
10.5281/zenodo.4073111. 104

[69] Sander Huyghebaert, Steven Keuchel, and Dominique Devriese. Semi-
automatic verification of isa security guarantees in the form of universal con-
tracts. In Workshop on the Security of Software/Hardware Interfaces (SILM),
2021. 23

[70] Koen Jacobs, Dominique Devriese, and Amin Timany. Purity of an ST monad:
full abstraction by semantically typed back-translation. Proc. ACM Program.
Lang., 6(OOPSLA1):1–27, 2022. doi: 10.1145/3527326. URL https://
doi.org/10.1145/3527326. 201

[71] Jonas B. Jensen, Nick Benton, and Andrew Kennedy. High-level separation
logic for low-level code. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, page
301–314, New York, NY, USA, 2013. Association for Computing Machinery.
ISBN 9781450318327. doi: 10.1145/2429069.2429105. URL https://
doi.org/10.1145/2429069.2429105. 151

[72] A. Joannou, J. Woodruff, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia,
R. N. M. Watson, D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin,
K. Gudka, P. G. Neumann, A. Mazzinghi, A. Richardson, S. Son, and A. T. Mar-
kettos. Efficient Tagged Memory. In IEEE International Conference on Com-
puter Design (ICCD). IEEE, November 2017. doi: 10.1109/ICCD.2017.112.
14, 102

[73] Nicolas Joly, Saif ElSherei, and Saar Amar. Security analysis of
cheri isa, 2020. URL https://msrc-blog.microsoft.com/2020/10/14/
security-analysis-of-cheri-isa/. 153

[74] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an or-
thogonal basis for concurrent reasoning. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, January 15-17, 2015, pages 637–650,
2015. doi: 10.1145/2676726.2676980. URL https://doi.org/10.1145/
2676726.2676980. 20, 103, 155, 200

[75] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order
ghost state. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming, ICFP 2016, Nara, Japan, September 18-22,
2016, pages 256–269, 2016. doi: 10.1145/2951913.2951943. URL https:
//doi.org/10.1145/2951913.2951943. 20, 103, 123, 155

https://doi.org/10.5281/zenodo.4073111
https://doi.org/10.5281/zenodo.4073111
https://doi.org/10.1145/3527326
https://doi.org/10.1145/3527326
https://doi.org/10.1145/2429069.2429105
https://doi.org/10.1145/2429069.2429105
https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943

BIBLIOGRAPHY 253

[76] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rust-
belt: securing the foundations of the Rust programming language. Proc. ACM
Program. Lang., 2(POPL):66:1–66:34, 2018. doi: 10.1145/3158154. URL
https://doi.org/10.1145/3158154. 3, 99, 225, 241

[77] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular founda-
tion for higher-order concurrent separation logic. J. Funct. Program., 28:e20,
2018. doi: 10.1017/S0956796818000151. 11, 28, 43, 103, 117, 123, 155, 171,
200, 207, 222, 223

[78] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Safe
systems programming in rust. Communications of the ACM, 64(4):144–152,
2021. 3

[79] Andrew Kennedy, Nick Benton, Jonas Braband Jensen, and Pierre-Évariste
Dagand. Coq: the world’s best macro assembler? In Ricardo Peña and
Tom Schrijvers, editors, 15th International Symposium on Principles and
Practice of Declarative Programming, PPDP ’13, Madrid, Spain, September
16-18, 2013, pages 13–24. ACM, 2013. doi: 10.1145/2505879.2505897. URL
https://doi.org/10.1145/2505879.2505897. 17, 241

[80] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David A.
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
formal verification of an os kernel. In Jeanna Neefe Matthews and Thomas E.
Anderson, editors, Proceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14,
2009, pages 207–220. ACM, 2009. doi: 10.1145/1629575.1629596. URL
https://doi.org/10.1145/1629575.1629596. 7

[81] Matthew Kolosick, Shravan Narayan, Evan Johnson, Conrad Watt, Michael
Lemay, Deepak Garg, Ranjit Jhala, and Deian Stefan. Isolation without taxation:
Near-zero-cost transitions for WebAssembly and SFI. In ACM SIGPLAN
Symposium on Principles of Programming Languages (POPL). ACM, January
2022. doi: 10.1145/3498688. URL https://doi.org/10.1145/3498688.
197, 240

[82] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, and Lars Birkedal. The essence of higher-order concurrent separation
logic. In Programming Languages and Systems - 26th European Symposium
on Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, pages 696–723, 2017. doi: 10.1007/978-3-662-
54434-1_26. URL https://doi.org/10.1007/978-3-662-54434-1_26.
20, 103, 155

https://doi.org/10.1145/3158154
https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3498688
https://doi.org/10.1007/978-3-662-54434-1_26

BIBLIOGRAPHY 254

[83] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in
higher-order concurrent separation logic. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, pages 205–217. ACM, 2017. doi: 10.1145/3009837.3009855. URL
https://doi.org/10.1145/3009837.3009855. 20, 86, 103, 120, 155, 183,
197, 225

[84] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-
Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. MoSeL:
a general, extensible modal framework for interactive proofs in separation
logic. PACMPL, 2(ICFP):77:1–77:30, 2018. doi: 10.1145/3236772. URL
https://doi.org/10.1145/3236772. 103, 155

[85] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. A relational
model of types-and-effects in higher-order concurrent separation logic. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 218–231. ACM,
2017. doi: 10.1145/3009837.3009877. URL https://doi.org/10.1145/
3009837.3009877. 86, 183

[86] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
Cakeml: a verified implementation of ML. In Suresh Jagannathan and Pe-
ter Sewell, editors, The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA, Jan-
uary 20-21, 2014, pages 179–192. ACM, 2014. doi: 10.1145/2535838.2535841.
URL https://doi.org/10.1145/2535838.2535841. 16

[87] Butler W. Lampson. Dynamic protection structures. In American Federa-
tion of Information Processing Societies: Proceedings of the AFIPS ’69 Fall
Joint Computer Conference, November 18-20, 1969, Las Vegas, Navada, USA,
volume 35 of AFIPS Conference Proceedings, pages 27–38. AFIPS / ACM,
1969. doi: 10.1145/1478559.1478563. URL https://doi.org/10.1145/
1478559.1478563. 5, 6, 8, 12, 18

[88] Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything old
is new again: Binary security of webassembly. In Srdjan Capkun and
Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 217–234. USENIX Association,
2020. URL https://www.usenix.org/conference/usenixsecurity20/
presentation/lehmann. 240

[89] Xavier Leroy. A formally verified compiler back-end. J. Autom. Reason., 43(4):
363–446, 2009. doi: 10.1007/s10817-009-9155-4. URL https://doi.org/
10.1007/s10817-009-9155-4. 16, 194, 195

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3236772
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/3009837.3009877
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1478559.1478563
https://doi.org/10.1145/1478559.1478563
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4

BIBLIOGRAPHY 255

[90] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand. Compcert-a formally verified optimizing
compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th
European Congress, 2016. 16

[91] Henry M. Levy. Capability-Based Computer Systems. Digital Press, 1984.
ISBN 978-1-4831-0106-4. URL https://homes.cs.washington.edu/
~levy/capabook/. 3, 26, 101, 149, 153

[92] Barbara H. Liskov, Alan Snyder, Russell R. Atkinson, and Craig Schaffert.
Abstraction mechanisms in CLU. Commun. ACM, 20(8):564–576, 1977. doi:
10.1145/359763.359789. URL https://doi.org/10.1145/359763.359789.
86

[93] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object capabilities and
isolation of untrusted web applications. In 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California, USA,
pages 125–140. IEEE Computer Society, 2010. doi: 10.1109/SP.2010.16. URL
https://doi.org/10.1109/SP.2010.16. 11, 149

[94] Adrian Mettler, David A. Wagner, and Tyler Close. Joe-e: A security-
oriented subset of java. In Proceedings of the Network and Dis-
tributed System Security Symposium, NDSS 2010, San Diego, Califor-
nia, USA, 28th February - 3rd March 2010. The Internet Society, 2010.
URL https://www.ndss-symposium.org/ndss2010/joe-e-security-
oriented-subset-java. 6

[95] Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan
Denlinger, Craig Disselkoen, Conrad Watt, Bryan Parno, Marco Patrignani,
Marco Vassena, and Deian Stefan. Mswasm: Soundly enforcing memory-safe
execution of unsafe code. Proc. ACM Program. Lang., 7(POPL):425–454,
2023. doi: 10.1145/3571208. URL https://doi.org/10.1145/3571208.
20, 22, 201, 240

[96] Microsoft. Data execution prevention, 2006. Retrieved February 2023
from https://learn.microsoft.com/en-us/windows/win32/memory/
data-execution-prevention. 2

[97] Mark S. Miller. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. PhD thesis, Johns Hopkins University, 2006.
6, 101

[98] Mark S Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja:
Safe active content in sanitized javascript. Google, Inc., Tech. Rep, 2008. 6

[99] Mark Samuel Miller. Robust Composition: Towards a Unified Approach
to Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006. 11

https://homes.cs.washington.edu/~levy/capabook/
https://homes.cs.washington.edu/~levy/capabook/
https://doi.org/10.1145/359763.359789
https://doi.org/10.1109/SP.2010.16
https://www.ndss-symposium.org/ndss2010/joe-e-security-oriented-subset-java
https://www.ndss-symposium.org/ndss2010/joe-e-security-oriented-subset-java
https://doi.org/10.1145/3571208
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://learn.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

BIBLIOGRAPHY 256

[100] James H. Morris Jr. Protection in programming languages. Commun. ACM,
16(1):15–21, 1973. doi: 10.1145/361932.361937. URL https://doi.org/
10.1145/361932.361937. 6, 86

[101] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward
Gan. Rocksalt: better, faster, stronger SFI for the x86. In Jan Vitek, Haibo
Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 -
16, 2012, pages 395–404. ACM, 2012. doi: 10.1145/2254064.2254111. URL
https://doi.org/10.1145/2254064.2254111. 16, 17, 241

[102] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F
to typed assembly language. In David B. MacQueen and Luca Cardelli, editors,
POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Diego, CA, USA, January 19-
21, 1998, pages 85–97. ACM, 1998. doi: 10.1145/268946.268954. URL
https://doi.org/10.1145/268946.268954. 3

[103] Ike Mulder, Robbert Krebbers, and Herman Geuvers. Diaframe: automated ver-
ification of fine-grained concurrent programs in iris. In Ranjit Jhala and Isil Dil-
lig, editors, PLDI ’22: 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, San Diego, CA, USA, June
13 - 17, 2022, pages 809–824. ACM, 2022. doi: 10.1145/3519939.3523432.
URL https://doi.org/10.1145/3519939.3523432. 224

[104] Magnus O. Myreen and Michael J. C. Gordon. Hoare logic for realistically
modelled machine code. In Proceedings of the 13th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’07, page 568–582, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
9783540712084. 151

[105] Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm,
Sorin Lerner, Hovav Shacham, and Deian Stefan. Retrofitting fine grain isola-
tion in the firefox renderer. In Proceedings of the 29th USENIX Conference on
Security Symposium, USA, 2020. USENIX Association. ISBN 978-1-939133-
17-5. 202, 240

[106] George C. Necula. Proof-carrying code. In Peter Lee, Fritz Henglein, and
Neil D. Jones, editors, Conference Record of POPL’97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Papers Presented at the Symposium, Paris, France, 15-17 January 1997,
pages 106–119. ACM Press, 1997. doi: 10.1145/263699.263712. URL
https://doi.org/10.1145/263699.263712. 3

[107] Zhaozhong Ni and Zhong Shao. Certified assembly programming with embed-
ded code pointers. SIGPLAN Not., 41(1):320–333, January 2006. ISSN 0362-

https://doi.org/10.1145/361932.361937
https://doi.org/10.1145/361932.361937
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/268946.268954
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/263699.263712

BIBLIOGRAPHY 257

1340. doi: 10.1145/1111320.1111066. URL https://doi.org/10.1145/
1111320.1111066. 15, 151, 241

[108] Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to certify realistic
systems code: Machine context management. In Klaus Schneider and Jens
Brandt, editors, Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007,
Proceedings, volume 4732 of Lecture Notes in Computer Science, pages 189–
206. Springer, 2007. doi: 10.1007/978-3-540-74591-4_15. URL https:
//doi.org/10.1007/978-3-540-74591-4_15. 15

[109] Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony Fox,
Michael Roe, Brian Campbell, Matthew Naylor, Robert M. Norton, Simon W.
Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell.
Rigorous engineering for hardware security: Formal modelling and proof in the
CHERI design and implementation process. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (SP), May 2020. 11, 17, 27, 98, 150, 196

[110] Marco Patrignani and Deepak Garg. Robustly safe compilation. In Luís Caires,
editor, Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer Science,
pages 469–498. Springer, 2019. doi: 10.1007/978-3-030-17184-1_17. URL
https://doi.org/10.1007/978-3-030-17184-1_17. 22

[111] Marco Patrignani and Deepak Garg. Robustly safe compilation, an efficient
form of secure compilation. ACM Trans. Program. Lang. Syst., 43(1):1:1–1:41,
2021. doi: 10.1145/3436809. URL https://doi.org/10.1145/3436809.
22

[112] Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to secure
compilation: A survey of fully abstract compilation and related work. ACM
Comput. Surv., 51(6), February 2019. ISSN 0360-0300. doi: 10.1145/3280984.
URL https://doi.org/10.1145/3280984. 196

[113] Team PaX. Pax address space layout randomization (aslr), 2003. Retrieved
February 2023 from http://pax.grsecurity.net/docs/aslr.txt. 2

[114] Andrew Prout, William Arcand, David Bestor, Bill Bergeron, Chansup Byun,
Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein,
Peter Michaleas, Lauren Milechin, Julie Mullen, Antonio Rosa, Siddharth
Samsi, Charles Yee, Albert Reuther, and Jeremy Kepner. Measuring the
impact of spectre and meltdown. In 2018 IEEE High Performance Extreme
Computing Conference, HPEC 2018, Waltham, MA, USA, September 25-27,
2018, pages 1–5. IEEE, 2018. doi: 10.1109/HPEC.2018.8547554. URL
https://doi.org/10.1109/HPEC.2018.8547554. 2

https://doi.org/10.1145/1111320.1111066
https://doi.org/10.1145/1111320.1111066
https://doi.org/10.1007/978-3-540-74591-4_15
https://doi.org/10.1007/978-3-540-74591-4_15
https://doi.org/10.1007/978-3-030-17184-1_17
https://doi.org/10.1145/3436809
https://doi.org/10.1145/3280984
http://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1109/HPEC.2018.8547554

BIBLIOGRAPHY 258

[115] Xiaojia Rao, Aïna Linn Georges, Conrad Watt, Maxime Legoupil, Jean Pichon-
Pharabod, Philippa Gardner, and Lars Birkedal. Iris-wasm: Robust and modular
verification of webassembly programs. Technical report, 2023. URL https:
//zenodo.org/record/7708441. 21

[116] Alexander Richardson. Complete Spatial Safety for C and C++ Using
CHERI Capabilities. PhD thesis, University of Cambridge, Computer Labora-
tory, 2020. URL https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-
949.html. 95

[117] Nick Roessler and André DeHon. Protecting the stack with metadata policies
and tagged hardware. In 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-23 May 2018, San Francisco, California, USA, pages
478–495. IEEE Computer Society, 2018. doi: 10.1109/SP.2018.00066. URL
https://doi.org/10.1109/SP.2018.00066. 158, 170, 196

[118] Andreas Rossberg. Generativity and dynamic opacity for abstract types. In
Proceedings of the 5th International ACM SIGPLAN Conference on Princi-
ples and Practice of Declarative Programming, 27-29 August 2003, Uppsala,
Sweden, pages 241–252. ACM, 2003. doi: 10.1145/888251.888274. URL
https://doi.org/10.1145/888251.888274. 86

[119] Andreas Rossberg. WebAssembly core specification W3C recommendation.
Technical report, W3C, December 2019. URL https://www.w3.org/TR/
wasm-core-1/. 200, 242

[120] Jerome H. Saltzer. Protection and the control of information sharing in
MULTICS. In Herbert Schorr, Alan J. Perlis, Peter Weiner, and W. Don-
ald Frazer, editors, Proceedings of the Fourth Symposium on Operating Sys-
tem Principles, SOSP 1973, Thomas J. Watson, Research Center, Yorktown
Heights, New York, USA, October 15-17, 1973, page 119. ACM, 1973. doi:
10.1145/800009.808059. URL https://doi.org/10.1145/800009.808059.
3

[121] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. The high-
level benefits of low-level sandboxing. Proc. ACM Program. Lang., 4(POPL):
32:1–32:32, 2020. URL https://doi.org/10.1145/3371100. 95, 99

[122] Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell,
Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell. Is-
laris: verification of machine code against authoritative ISA semantics. In
Ranjit Jhala and Isil Dillig, editors, PLDI ’22: 43rd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implemen-
tation, San Diego, CA, USA, June 13 - 17, 2022, pages 825–840. ACM,
2022. doi: 10.1145/3519939.3523434. URL https://doi.org/10.1145/
3519939.3523434. 18, 23

https://zenodo.org/record/7708441
https://zenodo.org/record/7708441
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.html
https://doi.org/10.1109/SP.2018.00066
https://doi.org/10.1145/888251.888274
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://doi.org/10.1145/800009.808059
https://doi.org/10.1145/3371100
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3519939.3523434

BIBLIOGRAPHY 259

[123] Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert
Krebbers, Deepak Garg, and Derek Dreyer. Dimsum: A decentralized approach
to multi-language semantics and verification. Proc. ACM Program. Lang., 7
(POPL):775–805, 2023. doi: 10.1145/3571220. URL https://doi.org/
10.1145/3571220. 241

[124] Fred B. Schneider, J. Gregory Morrisett, and Robert Harper. A language-
based approach to security. In Reinhard Wilhelm, editor, Informatics - 10
Years Back. 10 Years Ahead, volume 2000 of Lecture Notes in Computer
Science, pages 86–101. Springer, 2001. doi: 10.1007/3-540-44577-3_6. URL
https://doi.org/10.1007/3-540-44577-3_6. 3

[125] Jan Schwinghammer, Hongseok Yang, Lars Birkedal, François Pottier, and
Bernhard Reus. A semantic foundation for hidden state. In C.-H. Luke Ong,
editor, Foundations of Software Science and Computational Structures, 13th
International Conference, FOSSACS 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,
March 20-28, 2010. Proceedings, volume 6014 of Lecture Notes in Computer
Science, pages 2–17. Springer, 2010. doi: 10.1007/978-3-642-12032-9_2.
URL https://doi.org/10.1007/978-3-642-12032-9_2. 241

[126] Thomas Sewell, Simon Winwood, Peter Gammie, Toby C. Murray, June An-
dronick, and Gerwin Klein. sel4 enforces integrity. In Marko C. J. D. van
Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Inter-
active Theorem Proving - Second International Conference, ITP 2011, Berg
en Dal, The Netherlands, August 22-25, 2011. Proceedings, volume 6898
of Lecture Notes in Computer Science, pages 325–340. Springer, 2011. doi:
10.1007/978-3-642-22863-6_24. URL https://doi.org/10.1007/978-3-
642-22863-6_24. 7

[127] Hovav Shacham. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In Peng Ning, Sabrina De Capitani
di Vimercati, and Paul F. Syverson, editors, Proceedings of the 2007 ACM
Conference on Computer and Communications Security, CCS 2007, Alexandria,
Virginia, USA, October 28-31, 2007, pages 552–561. ACM, 2007. doi: 10.1145/
1315245.1315313. URL https://doi.org/10.1145/1315245.1315313. 3

[128] Lau Skorstengaard. Formal Reasoning about Capability Machines. PhD thesis,
Aarhus University, 2019. 3, 12, 14, 15, 18, 149, 161

[129] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Reasoning about
a machine with local capabilities - provably safe stack and return pointer man-
agement. In Programming Languages and Systems - 27th European Symposium
on Programming, ESOP 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, pages 475–501, 2018. doi: 10.1007/978-3-319-

https://doi.org/10.1145/3571220
https://doi.org/10.1145/3571220
https://doi.org/10.1007/3-540-44577-3_6
https://doi.org/10.1007/978-3-642-12032-9_2
https://doi.org/10.1007/978-3-642-22863-6_24
https://doi.org/10.1007/978-3-642-22863-6_24
https://doi.org/10.1145/1315245.1315313

BIBLIOGRAPHY 260

89884-1_17. URL https://doi.org/10.1007/978-3-319-89884-1_17.
13, 14, 102, 103, 104, 109, 111, 112, 114, 115, 120, 123, 144, 150, 157, 160,
161, 165, 167, 183

[130] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Reasoning About
a Machine with Local Capabilities. In Programming Languages and Systems,
Lecture Notes in Computer Science, pages 475–501. Springer International
Publishing, 2018. 29, 95

[131] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Reasoning about
a Machine with Local Capabilities: Provably Safe Stack and Return Pointer
Management. ACM Transactions on Programming Languages and Systems, 42
(1):5:1–5:53, December 2019. ISSN 0164-0925. doi: 10.1145/3363519. 25,
29, 71, 95, 96, 98, 99, 112, 115, 123, 150, 153, 154, 165, 167

[132] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Stktokens: Enforc-
ing well-bracketed control flow and stack encapsulation using linear capabilities.
Proc. ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/3290332.
URL https://doi.org/10.1145/3290332. 14, 26, 71, 96, 97, 99, 111, 123,
149, 150, 154, 155, 157, 160, 161, 188, 191, 196

[133] Ray Spencer, Stephen Smalley, Peter A. Loscocco, Mike Hibler, Dave G.
Andersen, and Jay Lepreau. The flask security architecture: System support
for diverse security policies. In G. Winfield Treese, editor, Proceedings of the
8th USENIX Security Symposium, Washington, DC, USA, August 23-26, 1999.
USENIX Association, 1999. URL https://www.usenix.org/conference/
8th-usenix-security-symposium/flask-security-architecture-
system-support-diverse-security. 6

[134] Marc Stiegler. Emily: A high performance language for enabling secure coop-
eration. In Fifth International Conference on Creating, Connecting and Col-
laborating through Computing (C5 2007), 24-26 January 2007, Kyoto, Japan,
pages 163–169. IEEE Computer Society, 2007. doi: 10.1109/C5.2007.13. URL
https://doi.org/10.1109/C5.2007.13. 6

[135] Thomas Van Strydonck, Aïna Linn Georges, Armaël Guéneau, Alix Trieu,
Amin Timany, Frank Piessens, Lars Birkedal, and Dominique Devriese. Prov-
ing full-system security properties under multiple attacker models on ca-
pability machines. In 35th IEEE Computer Security Foundations Sympo-
sium, CSF 2022, Haifa, Israel, August 7-10, 2022, pages 80–95. IEEE, 2022.
doi: 10.1109/CSF54842.2022.9919645. URL https://doi.org/10.1109/
CSF54842.2022.9919645. 25, 29, 75, 95, 96, 97

[136] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. In
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004,

https://doi.org/10.1007/978-3-319-89884-1_17
https://doi.org/10.1145/3290332
https://www.usenix.org/conference/8th-usenix-security-symposium/flask-security-architecture-system-support-diverse-security
https://www.usenix.org/conference/8th-usenix-security-symposium/flask-security-architecture-system-support-diverse-security
https://www.usenix.org/conference/8th-usenix-security-symposium/flask-security-architecture-system-support-diverse-security
https://doi.org/10.1109/C5.2007.13
https://doi.org/10.1109/CSF54842.2022.9919645
https://doi.org/10.1109/CSF54842.2022.9919645

BIBLIOGRAPHY 261

pages 161–172, 2004. doi: 10.1145/964001.964015. URL https://doi.org/
10.1145/964001.964015. 79, 86

[137] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and
recursion. J. ACM, 54(5):26, 2007. doi: 10.1145/1284320.1284325. URL
https://doi.org/10.1145/1284320.1284325. 161

[138] David Swasey, Deepak Garg, and Derek Dreyer. Robust and compositional veri-
fication of object capability patterns. Proc. ACM Program. Lang., 1(OOPSLA):
89:1–89:26, 2017. doi: 10.1145/3133913. URL https://doi.org/10.1145/
3133913. 11, 27, 28, 75, 78, 79, 82, 95, 98, 99, 150, 196, 225

[139] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in
memory. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley,
CA, USA, May 19-22, 2013, pages 48–62, 2013. doi: 10.1109/SP.2013.13.
URL https://doi.org/10.1109/SP.2013.13. 2, 153

[140] Jérémy Thibault, Arthur Azevedo de Amorim, Roberto Blanco, Aïna Linn
Georges, Catalin Hritcu, and Andrew Tolmach. Secomp2cheri: Securely
compiling compartments from compcert c to a capability machine. 22

[141] Gavin Thomas. A proactive approach to more secure code, 2019.
URL https://msrc-blog.microsoft.com/2019/07/16/a-proactive-
approach-to-more-secure-code/. 2, 153

[142] Amin Timany and Lars Birkedal. Mechanized relational verification of concur-
rent programs with continuations. Proc. ACM Program. Lang., 3(ICFP), July
2019. doi: 10.1145/3341709. URL https://doi.org/10.1145/3341709.
150

[143] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal.
A logical relation for monadic encapsulation of state: Proving contextual
equivalences in the presence of runst. Proc. ACM Program. Lang., 2(POPL),
December 2017. doi: 10.1145/3158152. URL https://doi.org/10.1145/
3158152. 150

[144] Stelios Tsampas, Dominique Devriese, and Frank Piessens. Temporal safety for
stack allocated memory on capability machines. In 32nd IEEE Computer Secu-
rity Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019,
pages 243–255, 2019. URL https://doi.org/10.1109/CSF.2019.00024.
141, 154, 157, 158, 159, 160, 161, 168, 196

[145] Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and
hoare-style reasoning in a logic for higher-order concurrency. In ACM SIG-
PLAN International Conference on Functional Programming, ICFP’13, Boston,
MA, USA - September 25 - 27, 2013, pages 377–390, 2013. doi: 10.1145/
2500365.2500600. URL https://doi.org/10.1145/2500365.2500600.
197

https://doi.org/10.1145/964001.964015
https://doi.org/10.1145/964001.964015
https://doi.org/10.1145/1284320.1284325
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3133913
https://doi.org/10.1109/SP.2013.13
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3158152
https://doi.org/10.1145/3158152
https://doi.org/10.1109/CSF.2019.00024
https://doi.org/10.1145/2500365.2500600

BIBLIOGRAPHY 262

[146] Arjan van de Ven and Ingo Molnar. Exec shield, 2004. Retrieved Febru-
ary 2023 from https://people.redhat.com/mingo/exec-shield/docs/
WHP0006US_Execshield.pdf. 2

[147] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear
capabilities for fully abstract compilation of separation-logic-verified code.
Proc. ACM Program. Lang., ICFP, 2019. 26, 95, 99, 149

[148] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Lin-
ear capabilities for fully abstract compilation of separation-logic-verified
code. J. Funct. Program., 31:e6, 2021. URL https://doi.org/10.1017/
S0956796821000022. 196

[149] Alexander Vaynberg and Zhong Shao. Compositional verification of a baby
virtual memory manager. In Chris Hawblitzel and Dale Miller, editors, Certified
Programs and Proofs - Second International Conference, CPP 2012, Kyoto,
Japan, December 13-15, 2012. Proceedings, volume 7679 of Lecture Notes in
Computer Science, pages 143–159. Springer, 2012. doi: 10.1007/978-3-642-
35308-6_13. URL https://doi.org/10.1007/978-3-642-35308-6_13.
16

[150] Simon Friis Vindum and Lars Birkedal. Contextual refinement of the michael-
scott queue (proof pearl). In Catalin Hritcu and Andrei Popescu, editors, CPP

’21: 10th ACM SIGPLAN International Conference on Certified Programs and
Proofs, Virtual Event, Denmark, January 17-19, 2021, pages 76–90. ACM,
2021. doi: 10.1145/3437992.3439930. URL https://doi.org/10.1145/
3437992.3439930. 85

[151] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.
Efficient software-based fault isolation. In Proceedings of the Fourteenth
ACM Symposium on Operating System Principles, SOSP 1993, The Grove
Park Inn and Country Club, Asheville, North Carolina, USA, December 5-
8, 1993, pages 203–216, 1993. doi: 10.1145/168619.168635. URL https:
//doi.org/10.1145/168619.168635. 197

[152] Yuting Wang, Pierre Wilke, and Zhong Shao. An abstract stack based approach
to verified compositional compilation to machine code. Proc. ACM Program.
Lang., 3(POPL):62:1–62:30, 2019. doi: 10.1145/3290375. URL https:
//doi.org/10.1145/3290375. 16

[153] Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. Compcertelf:
verified separate compilation of C programs into ELF object files. Proc. ACM
Program. Lang., 4(OOPSLA):197:1–197:28, 2020. doi: 10.1145/3428265.
URL https://doi.org/10.1145/3428265. 16

[154] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch, R. Norton,

https://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
https://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
https://doi.org/10.1017/S0956796821000022
https://doi.org/10.1017/S0956796821000022
https://doi.org/10.1007/978-3-642-35308-6_13
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3428265

BIBLIOGRAPHY 263

M. Roe, S. Son, and M. Vadera. CHERI: A Hybrid Capability-System Archi-
tecture for Scalable Software Compartmentalization. In IEEE Symposium on
Security and Privacy, pages 20–37, 2015. doi: 10.1109/SP.2015.9. 7, 8, 9, 10,
101, 102, 104, 149, 153, 161, 240

[155] R. N. M. Watson, R. M. Norton, J. Woodruff, S. W. Moore, P. G. Neumann,
J. Anderson, D. Chisnall, B. Davis, B. Laurie, M. Roe, N. H. Dave, K. Gudka,
A. Joannou, A. T. Markettos, E. Maste, S. J. Murdoch, C. Rothwell, S. D. Son,
and M. Vadera. Fast Protection-Domain Crossing in the CHERI Capability-
System Architecture. IEEE Micro, 36(5):38–49, September 2016. ISSN
0272-1732. doi: 10.1109/MM.2016.84. 8, 101

[156] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
Capsicum: Practical capabilities for UNIX. In 19th USENIX Security Sym-
posium, Washington, DC, USA, August 11-13, 2010, Proceedings, pages 29–
46. USENIX Association, 2010. URL http://www.usenix.org/events/
sec10/tech/full_papers/Watson.pdf. 6

[157] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe,
Hesham Almatary, Jonathan Anderson, John Baldwin, David Chisnall, Brooks
Davis, Nathaniel Wesley Filardo, Alexandre Joannou, Ben Laurie, Simon W.
Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alex Richard-
son, Peter Sewell, Stacey Son, and Hongyan Xia. Capability Hardware En-
hanced RISC Instructions: CHERI Instruction-Set Architecture (Version 7).
Technical Report UCAM-CL-TR-927, University of Cambridge, Computer
Laboratory, 2019. URL https://www.cl.cam.ac.uk/techreports/UCAM-
CL-TR-927.html. 101, 102, 105, 149

[158] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe,
Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme Barnes, David
Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley Filardo,
Richard Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore Mar-
kettos, Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert
Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and
Hongyan Xia. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8). Technical Report UCAM-CL-TR-
951, University of Cambridge, Computer Laboratory, October 2020. URL
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf. 7, 26,
30, 39, 153, 169

[159] Conrad Watt, Petar Maksimovic, Neelakantan R. Krishnaswami, and Philippa
Gardner. A program logic for first-order encapsulated webassembly. In Alas-
tair F. Donaldson, editor, 33rd European Conference on Object-Oriented
Programming, ECOOP 2019, July 15-19, 2019, London, United Kingdom,
volume 134 of LIPIcs, pages 9:1–9:30. Schloss Dagstuhl - Leibniz-Zentrum

http://www.usenix.org/events/sec10/tech/full_papers/Watson.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Watson.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.pdf

BIBLIOGRAPHY 264

für Informatik, 2019. doi: 10.4230/LIPIcs.ECOOP.2019.9. URL https:
//doi.org/10.4230/LIPIcs.ECOOP.2019.9. 200, 207, 217, 240, 242

[160] Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa
Gardner. Two mechanisations of webassembly 1.0. In Marieke Huis-
man, Corina S. Pasareanu, and Naijun Zhan, editors, Formal Methods -
24th International Symposium, FM 2021, Virtual Event, November 20-26,
2021, Proceedings, volume 13047 of Lecture Notes in Computer Science,
pages 61–79. Springer, 2021. doi: 10.1007/978-3-030-90870-6_4. URL
https://doi.org/10.1007/978-3-030-90870-6_4. 200, 214, 223, 224,
226, 242

[161] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert M.
Norton, and Michael Roe. The CHERI capability model: Revisiting RISC
in an age of risk. In ACM/IEEE 41st International Symposium on Computer
Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, pages
457–468. IEEE Computer Society, 2014. doi: 10.1109/ISCA.2014.6853201.
URL https://doi.org/10.1109/ISCA.2014.6853201. 10

[162] Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony C. J.
Fox, Robert M. Norton, David Chisnall, Brooks Davis, Khilan Gudka,
Nathaniel Wesley Filardo, A. Theodore Markettos, Michael Roe, Peter G.
Neumann, Robert N. M. Watson, and Simon W. Moore. CHERI concentrate:
Practical compressed capabilities. IEEE Trans. Computers, 68(10):1455–1469,
2019. doi: 10.1109/TC.2019.2914037. URL https://doi.org/10.1109/
TC.2019.2914037. 10, 26, 113, 168

[163] Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W. Filardo,
Michael Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon W.
Moore, Robert N. M. Watson, and Timothy M. Jones. CHERIvoke: Charac-
terising Pointer Revocation using CHERI Capabilities for Temporal Memory
Safety. In IEEE/ACM International Symposium on Microarchitecture. ACM,
October 2019. doi: 10.1145/3352460.3358288. 67, 149, 195

[164] Dachuan Yu and Zhong Shao. Verification of safety properties for concur-
rent assembly code. In Chris Okasaki and Kathleen Fisher, editors, Pro-
ceedings of the Ninth ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2004, Snow Bird, UT, USA, September 19-21,
2004, pages 175–188. ACM, 2004. doi: 10.1145/1016850.1016875. URL
https://doi.org/10.1145/1016850.1016875. 15, 241

[165] Dachuan Yu, Nadeem Abdul Hamid, and Zhong Shao. Building certified
libraries for PCC: dynamic storage allocation. In Pierpaolo Degano, editor,
Programming Languages and Systems, 12th European Symposium on Pro-
gramming, ESOP 2003, Held as Part of the Joint European Conferences on

https://doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://doi.org/10.1007/978-3-030-90870-6_4
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1109/TC.2019.2914037
https://doi.org/10.1145/1016850.1016875

BIBLIOGRAPHY 265

Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-
11, 2003, Proceedings, volume 2618 of Lecture Notes in Computer Science,
pages 363–379. Springer, 2003. doi: 10.1007/3-540-36575-3_25. URL
https://doi.org/10.1007/3-540-36575-3_25. 15, 241

https://doi.org/10.1007/3-540-36575-3_25

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Memory Safety Vulnerabilities in Hardware Architectures
	Capabilities as Security Primitives
	Enforcing and Characterizing Capability-enabled Security Properties
	Mechanized Reasoning about Hardware Architectures
	Contributions and Structure
	Conclusion and Future Work

	Publications
	Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code
	Introduction
	Programming with capabilities
	Operational semantics of a capability machine
	Program logic
	Reasoning about Untrusted Code in Cerise
	Reasoning with capabilities: two examples
	Dynamic Memory Allocation and Closures
	Case study: a Library Implementing Dynamic Sealing and a Client
	Case study: Data Abstraction
	Discussion and Perspectives
	Related work

	Efficient and Provable Local Capability Revocation using Uninitialized Capabilities
	Introduction
	A capability machine with local capabilities
	Revocation using local capabilities
	Uninitialized Capabilities
	Program Logic
	Logical Relation Model
	Implementation
	Related Work
	Conclusion

	Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities
	Introduction
	On the Stack Safety of Capability Machines
	Capability Machine: Operational Semantics and Calling Convention
	A Unary Model for Integrity
	A Binary Model For Confidentiality
	Characterizing security using a fully abstract overlay semantics
	Related Work
	Conclusion and Future Work

	Iris-Wasm: Robust and Modular Verification of WebAssembly Programs
	Introduction
	Modular reasoning for WebAssembly modules
	Host Language and Proof Rules
	Mechanization in the Iris Framework
	Case Study
	Related work
	Conclusion

	Bibliography

