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Abstract

Rigorous reasoning about implementations of software systems requires a detailed math-
ematical model of the behavior of the programming language. However, real-world pro-
gramming languages are rich in features, and their mathematical models are complex and
unfeasible to reason about directly. We need powerful mathematical machinery to alle-
viate this complexity and make it viable to reason formally about programs implemented
in real-world programming languages.

This Ph.D. dissertation is a collection of five papers that develop and apply higher-
order separation logics to tame the complexity of mathematical models for rich program-
ming languages in the context of distributed systems, a type system for information-flow
control, and contextual equivalence of probabilistic programs.

The first part of the dissertation develops a higher-order distributed separation logic
that allows us to reason modularly about network-connected distributed applications that
run on multiple machines while communicating over an unreliable network. We argue
through several case studies that the logic is a solid foundation that makes verifying a
range of distributed systems and protocols feasible. We also show how distributed systems
can be verified and specified by establishing simulation relations with abstract models.

The second part of the dissertation is concernedwith an expressive static information-
flow control type system that guarantees that a well-typed program’s public behavior is
independent of its secret inputs. We develop a semantic model of the type system in a
higher-order separation logic that allows us to prove that the type system is sound. Using
the model, we also show how to compositionally integrate syntactically ill-typed—but
semantically secure—components with well-typed programs.

The third and final part of the dissertation develops a relational higher-order sepa-
ration logic for reasoning about contextual equivalence of probabilistic programs imple-
mented in an expressive programming language with higher-order local state and poly-
morphism. We develop a proof method for relating asynchronous probabilistic samplings
in a program logic and demonstrate the approach’s usefulness with several case studies.
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Resumé

Stringentmatematisk ræsonnering om computerprogrammer kræver en detaljeretmatem-
atisk model af programmeringssprogets opførsel. Realistiske programmeringsprog har
mange funktionaliteter, og deres modeller er komplicerede og tilnærmelsesvist umulige
at ræsonnere direkte om. Vi har brug for kraftfulde matematiske værktøjer til at håndtere
kompleksiteten og for at gøre det muligt at ræsonnere formelt om programmer imple-
menteret i realistiske programmeringssprog.

Denne Ph.D.-afhandling er en samling af fem forskningsartikler, der udvikler og an-
vender højereordens separationslogik til at håndtere matematiske modeller af realistiske
programmeringsprog i kontekst af distribuerede systemer, et typesystem, der garanterer
informationssikkerhed, og kontekstuel ækvivalens af probabilistiske programmer.

Første del af afhandlingen udvikler en højereordens distribueret separationslogik, der
tillader os at ræsonnere modulært om netværksforbundne distribuerede applikationer, der
bliver afviklet på flere maskiner, og som kommunikerer over et upålideligt netværk. Gen-
nem flere casestudier argumenterer vi for, at logikken er et solidt fundament, der gør det
muligt at verificere en række distribuerede systemer og protokoller. Vi viser også, hvordan
distribuerede systemer kan verificeres og specificeres ved hjælp af simuleringsrelationer
og abstrakte modeller.

Anden del af afhandlingen beskæftiger sig med et statisk typesystem, der garanterer,
at den offentligt observerbare opførsel af programmer, der typetjekker, er uafhængig af
deres hemmelige input. Vi konstruerer en semantisk model af typesystemet i en højere-
ordens separationslogik, hvilket tillader os at vise, at typesystemet er sundt. Ved brug
af modellen viser vi også, hvordan man kompositionelt kan integrere programmer, der
typetjekker, med programmer, der ikke typetjekker, men som er semantisk sikre.

Den tredje og sidste del af afhandlingen udvikler en relationel højereordens sep-
arationslogik til at ræsonnere omkring kontekstuel ækvivalens af probabilistiske pro-
grammer implementeret i et udtryksfuldt programmeringssprog med blandt andet lokal
hukommelse og typepolymorfi. Vi udvikler en bevisteknik til at relatere asynkrone pro-
babilistiske prøvetagelser i en programlogik, og vi demonstrerer brugbarheden af vores
tilgang gennem flere casestudier.
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Part I

Overview



1 Introduction

Formal reasoning about software systems requires precise mathematical specifications of how
they behave. While crucial, it is not enough to only verify the high-level algorithm or protocol
in an abstract model of computation—we also need to show that the program implementing
an algorithm does so correctly and does not introduce errors or vulnerabilities not visible
at the abstract algorithmic level. Many software system errors and security breaches stem
from subtle problems introduced by the implementation, and it is hence necessary to consider
detailed models of the actual program execution. However, semantic models of execution
for rich and realistic programming languages introduce an abundance of complexity that is
difficult to handle and contain.

This Ph.D. dissertation is a collection of five papers that develop and apply higher-order sep-
aration logics to tame the complexity of detailed operational models of program execution in
the context of distributed systems, a type system for information-flow control, and contextual
equivalence of probabilistic programs. This chapter explains the background and motivation
for considering each of the problems addressed in the included papers, and we give a concise
overview of the key concepts and ideas that will make the technical details considered in these
works more accessible. We will discuss related work throughout the introduction as needed,
but detailed comparisons are left to the individual chapters.

1.1 Background

The correctness of computer programs has been the subject of much scientific interest since
the dawn of computer science. From the endeavors of Turing [Tur49], Floyd [Flo67], andHoare
[Hoa69] to Owicki-Gries [OG76], O’Hearn [ORY01], and Reynolds [Rey02], many efforts have
been devoted to not only writing correct programs but also proving with mathematical rigor
that the programs are indeed correct.

To mathematically prove properties of systems, one must have a precise mathematical
specification of what the system actually is. Structural operational semantics [Plo04] gives
formal meaning to programming languages through a sequence of syntax-oriented and induc-
tively defined computational steps of a hypothetical computer. Operational semantics are sim-
ple first-order state-transition systems that are easy to define and manipulate even for feature-
rich languages as evidenced by, e.g., formalizations of real-world languages like C [Ler09]. This
fact stands in stark contrast to other approaches, such as denotational semantics [SS71; Sco70],
that attach mathematical meanings to its terms more directly by mapping syntactical terms
of the language to—often very sophisticated—mathematical objects. Operational semantics
has the benefit of being very easy to define and understand, but reasoning directly about pro-
grams quickly becomes unfeasible as the number of cases to consider increases dramatically
when phenomena, such as non-determinism, are introduced in the semantics to model, e.g.,

2
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concurrency and distribution. To mitigate this complexity, one can develop a program logic, a
mathematical tool with much more high-level reasoning principles, to reason about programs
and programming languages with a detailed and challenging operational model.

Not only do we want mathematical machinery to reason about complicated systems, but
the machinery we develop must allow us to reason modularly for our tools to scale to large
and complex real-world systems. Just as large software systems are programmed by composing
many different software components (using features such as objects, interfaces, higher-order
functions, andmodule systems), modular verification allows us to specify and verify individual
software modules in isolation—specifications of the individual components are then combined
to specify and verify larger systems. To realize this vision, program specifications and proofs
must concentrate on the resources that a program component acts upon instead of, e.g., the
entire state of the system. The underlying hypothesis explored and developed in this disserta-
tion is that higher-order separation logic is a crucial ingredient and fundamental building block
to achieving this goal.

With the rise of higher-order separation logic [Din+13; Din+10; Jun+16; Jun+18b; Jun+15;
Kre+17; LN13; Nan+14; OHe07; RDG14; SB14; TDB13], recent years have seen considerable
progress on modular reasoning using program logics for programming languages with oper-
ational models and increasingly sophisticated features such as local and higher-order state,
concurrency, weak memory, effect handlers, polymorphism, etc. [Ahm+10; App11; Car+22;
Dan+22; JTD21; Jun+18a; Kai+17a; MP22; MJ21; Spi+21; TB19; Tim+18; TVD14; Tur+13;
VP21], to name just a few. Much of this work is concerned with partial correctness or safety,
i.e., that “bad things do not happen,” such as the program crashing. But there are many more
properties that one might be interested in showing—such as liveness (“good things will hap-
pen”), security, and refinement—and many more aspects to consider—such as distribution and
randomization—for which existing approaches do not apply. This dissertation not only tests
the hypothesis that higher-order separation logic is essential to modular program verification,
but it pushes the frontiers of what properties we can prove and what systems we can verify.

In 2010, Matthew Parkinson’s position paper The Next 700 Separation Logics [Par10] ob-
served that, at the time, each new application or primitive seemed to require a new separation
logic. He hypothesized that “by finding the right core logic” we would be able to “concentrate
on the difficult problems.” Iris [Jun+16; Jun+18b; Jun+15; Kre+17] is a proposal for such a core
logic and framework for building higher-order separation logics. Iris lets users introduce their
own notion of ownership based on the idea of fictional separation [JB12] and with built-in
support for advanced semantic features such as step-indexing [AM01], impredicative invari-
ants [SB14], and higher-order ghost state [Jun+16], the framework allows users to derive new
reasoning principles inside the core logic. This fact avoids having to reprove many variations
of the same semantic arguments. The framework acts as a unifying foundation into which
various specifications can be encoded and exploited via the abstraction facilities offered by
the logic. Iris also has extensive support for interactive machine-checked proofs in the Coq
proof assistant [Kre+18; KTB17] which allows you to get the highest level of assurance that
all details and results are indeed correct.

The Iris separation logic framework is the semantic bedrock underlying this dissertation.
The framework comes with a program logic for shared-memory concurrent programs but—as
will be evident by the end of this dissertation—this program logic does not suffice for all the
kinds of properties and systems that we would want. On top of the Iris foundations, however,
we will build new program logics, new notions of ownership, and new logical abstractions to
reason modularly about distributed systems and security.
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1.2 Distributed separation logic

Separation logic [ORY01; Rey02] is a resource-oriented logic that supports local reasoning
about shared mutable state. Propositions denote not only facts but ownership of resources that
can be manipulated through the basic connectives of bunched implications [OP99], namely
separating conjunction (P ∗Q) and its adjoint sibling magic wand (P ∗ Q), in that

P ∗Q ⊢ R iff P ⊢ Q ∗ R

The quintessential idea of separation logic is that we can give a Hoare-logic style local spec-
ification {P} e {Q} to a program e involving only the resources (e.g., parts of the heap) that
are used by e. By using the frame rule, one can extend a local specification with arbitrary
predicates that are not modified or mutated by e:

{P} e {Q}
{P ∗R} e {Q ∗R}

Concurrent separation logic [OHe07] further develops the idea of separation to support
thread-local reasoning in the presence of concurrency. The specification for each program
component continues to concentrate on only the resources used by the component, not men-
tioning the states of other threads or resources—in a way, the “frame” includes the execution
of other threads which can be interleaved throughout the execution. This manifests in the rule
for disjoint concurrency:

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 || e2 {Q1 ∗Q2}

where e1 || e2 denotes disjoint concurrency execution of expressions e1 and e2. The original
formulation of concurrent separation logic adds the ability to share resources between threads
through a form of shared resource invariants [OHe07]. Higher-order concurrent separation
logic [SB14; SBP13] further generalizes the logical machinery with impredicative invariants to
facilitate even more modular reasoning principles. In either case, the fundamental reasoning
principle is to govern shared resources by invariants through an invariant assertion P that
can be shared freely in that P ⊢ P ∗ P . Concurrently running threads may then rely on
the proposition P to hold at all times as long as they guarantee not to violate it themselves.

Higher-order distributed separation logic, as developed in this dissertation throughout
Chapter 3, Chapter 4, and Chapter 5 in the shape of the Aneris program logic, further devel-
ops the idea of separation to support both node-local and thread-local reasoning in distributed
systems where communication among nodes is unreliable. Concretely, we consider a commu-
nication model with datagram-like sockets and socket-based communication with guarantees
at the User Datagram Protocol (UDP) level. The quintessential principle of separation for dis-
tributed systems manifests in the rule for starting distributed nodes:

{P1 ∗ FreePorts(ip1,P)} e1 {True} {P2 ∗ FreePorts(ip2,P)} e2 {True}
{P1 ∗ P2 ∗ FreeIp(ip1) ∗ FreeIp(ip2)} (e1; ip1) ||| (e2; ip2) {True}

where (e1; ip1) ||| (e2; ip2) denotes execution of expressions e1 and e2 on nodes with ad-
dresses ip1 and ip2.1 Besides a “frame” that includes the execution of other threads and

1This presentation is not entirely correct in details but serve to illustrate the core principles and intuitions.
For instance, in the concrete language studied in this dissertation only a distinguished primordial node may spawn
nodes and expressions include a node identifier as further detailed in Chapter 3.
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nodes, the rule also requires that two nodes may never have the same address and that freshly
spawned nodes may assume that all communication ports are available. For modular reason-
ing, ownership of free ports is splittable, i.e.,

FreePorts(ip, P ⊎ {p}) ⊣⊢ FreePorts(ip, P ) ∗ FreePort(ip, p)

Note that the identity of communication endpoints in distributed systems is essential: to com-
municate with a particular party, we must unambiguously know where it is located; hence no
endpoints may use the same identifier. This fact also surfaces in the rule for binding addresses
to sockets by requiring and consuming ownership of the address being bound:

{z ↪→ − ∗ FreePort(a)} socketbind z a {v.v = 0 ∗ z ↪→ a}

The assertion z ↪→ a expresses that the socket z is bound to the address a.

Distributed communication

Where concurrently running threads communicate through shared memory, distributed nodes
communicate via messages that may be arbitrarily delayed, dropped, duplicated, or reordered
during transmission.2 To reason about communication, Aneris introduces the notion of socket
protocols embodied by the separation logic assertion a Z⇒ Φ and the notion of socket history
through the resource a ⇝ (R, T ). The protocol assertion a Z⇒ Φ states that messages sent
to the address a are governed by a protocol Φ : Message → iProp where iProp is the type of
propositions in the logic. This means that nodes receiving messages on an address a may rely
on Φ to hold for any received message; conversely, nodes sending messages to the address a
have to guarantee that the messages satisfy the protocol. The history assertion a ⇝ (R, T )
tracks the sets R and T of received and sent messages on socket address a.

Formally, to send a message m to a destination address d through a socket z bound to an
address a, we are required to establish that m satisfies the protocol Φ:

{z ↪→ a ∗ a⇝ (R, T ) ∗ d Z⇒ Φ ∗ Φ(m)}

sendto z m d

{v. v = |m| ∗ z ↪→ a ∗ a⇝ (R, T ∪ {(m, d)})}

In the postcondition, we get back the ownership of the socket handle z as well as an updated
message history that reflects that the message has been sent.

Retransmitting already sent messages, on the other hand, is free—intuitively, the receiving
party should already be able to handle message duplication happening during transmission so
resending messages will always be safe:

{z ↪→ a ∗ a⇝ (R, T ) ∗ (m, d) ∈ T}

sendto z m d

{v. v = |m| ∗ z ↪→ a ∗ a⇝ (R, T )}
2The Aneris logic as presented in Chapter 3 assumes duplicate protection but this assumption has since been

lifted and the technical development used in Chapter 4 and Chapter 5 and described in this introduction makes no
such assumption. For this reason, some logical connectives and rules vary.
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When trying to receive a message, three scenarios are logically possible as encoded in the
postcondition of the rule below:

{z ↪→ a ∗ a⇝ (R, T ) ∗ a Z⇒ Φ}

receivefrom zv. z ↪→ a ∗


(v = None ∗ a⇝ (R, T ))∨

(∃m, s. v = Some (m, s) ∗ a⇝ (R, T ) ∗ (m, s) ∈ T )∨

(∃m, s. v = Some (m, s) ∗ a⇝ (R ⊎ {(m, s)}, T ) ∗ Φ(m))




Either (1) no message is available, (2) a message is received from address s, but it is a duplicate
of a previously receivedmessage, or (3) a newmessage is received, and it satisfies the protocol.3

As the possibility of message duplication and omission failure is inevitable for communi-
cation over an unreliable network, it will often be natural to specify communication protocols
that reflect knowledge rather than actual ownership. Logically, this means that socket protocols
will be persistent, which implies that the resources being transferred are duplicable, i.e.,

∀m.Φ(m) ⊣⊢ Φ(m) ∗ Φ(m)

When this is the case, one can derive a unified persistent socket protocol connective, written
a⇝Φ

� (R, T ), that allows us to ignore message duplication altogether in the rules of the logic:{
z ↪→ a ∗ a⇝Φ

� (R, T )
}

receivefrom z{
v. z ↪→ a ∗

(
(v = None ∗ a⇝Φ

� (R, T ))∨

(∃m, s. v = Some (m, s) ∗ a⇝Φ
� (R ∪ {(m, s)}, T ) ∗ Φ(m))

)}
Whereas socket histories are primordial, socket protocols can be decided and allocated

dynamically during proofs. The permission to allocate a socket protocol for an address a is
represented by the assertion a Z⇒ −. This assertion is exclusive, i.e., a Z⇒ − ∗ a Z⇒ − ⊢ False.
Protocols can be allocated at any time using the following rule:

{P ∗ a Z⇒ Φ} e {Q}
{P ∗ a Z⇒ −} e {Q}

This could be, e.g., dynamically based on run-time information or primordially before nodes
have been started if it is necessary or convenient that the protocol is statically known a priori.
Once a protocol has been allocated, the resource becomes duplicable, i.e.,

a Z⇒ Φ ⊣⊢ a Z⇒ Φ ∗ a Z⇒ Φ

and hence freely sharable among nodes.
In Chapters 4 and 5, we will argue that the Aneris program logic and the higher-order

distributed separation logic principles are solid foundations for modular verification of a large
variety of distributed systems and protocols. More extensive realistic case studies include at
the time of writing a distributed key-value store with causal consistency guarantees (Chap-
ter 4), the Paxos consensus protocol (Chapter 5), op-based CRDTs [Nie+22], and session-type-
inspired abstractions for reliable communication [Gon+22].

3The full development also supports blocking message receival in the style of UNIX sockets where the
receivefrom operation blocks until a message is available. This is reflected in the logic with a similar rule where
the case where no message is available is absent.
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1.3 Simulation

Higher-order distributed separation logic makes it feasible to specify and verify complex dis-
tributed systems. Nevertheless, even using high-level separation logic abstractions, complex
systems are naturally complex to reason about when all details must be accounted for, one way
or another. More abstract formal verification systems such as SPIN [Hol97] and TLA+ [Lam92]
have been widely used to design, model, and verify complex concurrent and distributed sys-
tems. In these tool suites, systems are typically modeled as state transition systems, and the
tools can usually semi-automatically check both safety and liveness properties. As such, they
offer much more abstract and high-level means for specifying and verifying algorithms and
protocols. However, they offer no guarantees about the implementations of systems nor the
relationship between an implementation and its abstract specification. A natural question is
whether it is possible to exploit or connect an abstract specification to verify an actual imple-
mentation. This methodology would allow us to split the verification of distributed systems
into two independent parts: first, we model the protocol abstractly and verify in an idealized
setting that it solves the problem at hand. Then we show that the implementation correctly
implements the model while dealing with implementation issues and details.

The Trillium separation logic framework developed in Chapter 5 answers this question
positively by developing a program logic that allows us show that an implementation in a rich
programming language correctly implements an abstract state-transition model.

What does it mean for a program to implement a model?

Consider the example program inc below that makes use of a reference that it increments
concurrently in two infinite loops using an atomic compare-and-set (CAS) operation:

1 let l = ref 0 in
2 let rec inc () =
3 let n = !l in
4 cas(l, n, n + 1);
5 inc ()
6 in inc () || inc ()

The reference takes successively the values 0, 1, 2, . . .without skipping any numbers. We can
express this property using a state-transition system modelMinc :

0 1 2 . . .

and require that inc simulatesMinc : for every program step of inc according to the oper-
ational semantics there must be a corresponding model transition inMinc and the reached
states correspond by agreeing on the contents of the reference. Such simulation properties do,
however, not follow from most Iris-based program logics.

To demonstrate that a program logic makes the expected statements about program ex-
ecutions, one often proves an adequacy theorem. The adequacy theorem of program logics,
such as Aneris and many other Iris-based logics, allows us to extract safety properties but also
properties that can be derived from invariant assertions using a strengthened soundness the-
orem. The invariant P guarantees that proposition P is guaranteed to hold at all times. For
example, a specification

∃n. ℓ 7→ n ∗ Even(n) ⊢ {P} e {Q}
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will allow us to conclude that e is safe and that the location ℓ only contains even numbers at
all times. This approach allows us to express and “extract” extrinsic properties about what is
achieved, but not generally intrinsic properties about how it is achieved, which is essential for
proving simulations.

A strategy for carrying out relational reasoning in a unary program logic is to embed a
model (or “specification”) in the unary logic as two resourcesModel•(δ) andModel◦(δ), where
δ is a state of the model, such that

Model•(δ) ∗Model◦(δ
′) ⊢ δ = δ′

and guarantee that only valid transitions according to the transition relation of the model are
permitted. This approach is used in Chapter 7, by Krebbers et al. [KTB17], and many others
to prove contextual refinements; for proving simulation properties it does not suffice. For the
example at hand, such a specification would have the shape

∃n. ℓ 7→ n ∗Model•(n) ∗ 0→∗ n ⊢ {Model◦(n) ∗ P} inc {Q}

where→∗ denotes the reflexive transitive closure of the transition relation of the model. Sadly,
this approach does not allow us to extract a simulation relation through the adequacy theorem.
This is immediately realized by observing that if inc had incremented the counter in steps
of two, it would also satisfy the specification—an implementation that obviously does not
simulate the model as it skips transitions.

Using the adequacy theorem of a program logic aimed at safety properties, we can prove
that at every step k of the program execution, there exists a state δk of the model that is reach-
able from the initial state such that the mapping relation holds, i.e., the contents of location
ℓ agrees with the model state. This is precisely the kind of result needed to prove contextual
refinement as done by, e.g., Krebbers et al. [KTB17]—contextual refinement is about the “what,”
not the “how.” What is missing is proof that the sequence δ1, . . . , δn of model state witnesses
denote a valid sequence of transitions in the model. In essence, the approach only allows us
to talk about the reachability of states but not how the states are reached.

To further convince ourselves why this is important and why it does not suffice to just talk
about the reachability of states when implementing a model, consider the following example:

1 let l = ref (true, 0) in
2 let rec inc () =
3 let (_, n) = !l in
4 let m = n + 1 in
5 l := (isEven m, m);
6 inc ()
7 in inc ()

The program continuously increments a reference in a loop but together with a Boolean that
indicates the parity. Surprisingly, when only talking about the reachability of states, the pro-
gram does refine the following model if we map the location to states of the model:

(−, 0)

(⊥, 0) (⊥, 1) (⊥, 2) (⊥, 3) . . .

(⊤, 0) (⊤, 1) (⊤, 2) (⊤, 3) . . .
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Notice how the model immediately decides on a Boolean value whereas the program switches
back and forth as the parity of the counter changes—the program and the model are not pro-
gressing in the same way. The “refinement” is witnessed by the following sequence of model
states indicated in blue:

(−, 0)

(⊤, 0) (⊤, 1) (⊤, 2) (⊤, 3) . . .

(⊥, 0) (⊥, 1) (⊥, 2) (⊥, 3) . . .

However, the program is not a faithful implementation of the model. Every state in the se-
quence is reachable from the initial state, and the mapping to the program holds all along, but
the sequence does not correspond to a valid sequence of transitions in the model. The tech-
nical achievement of Chapter 5 is the construction of a program logic, Trillium, that provides
precisely this kind of guarantee. To do so, we have to establish a closer connection between
the program and the model than achieved by only embedding the model in an invariant.

The formal notion of correspondence between programs and models that we consider is
simulation. This approach becomes sensible when observing that the small-step operational
semantics of a programming language defines a state-transition system (STS).

Definition 1.3.1 (Simulation). Let (M1,→1) and (M2,→2) be two STSs. A relation R ⊆
M1 ×M2 is a simulation if and only if for all (δ1, δ2) ∈ M1 ×M2, if δ1 →1 δ′1 then there
exists a δ′2 such that δ2 →2 δ

′
2 and (δ′1, δ

′
2) ∈ R.

Let a trace of (M,→) be a sequence δ0δ1δ2 . . . of model states δi ∈ M such that δi → δi+1.
Any STSM induces an STS, written Tr(M), where its states are traces and transitions

δ0δ1 · · · δn →Tr(M) δ0δ1 · · · δnδn+1

if and only if δn →M δn+1. This allows us to define the notion of history-sensitive simulation.

Definition 1.3.2 (History-sensitive simulation). LetM1 andM2 be STSs. A history-sensitive
simulation is a simulation of Tr(M1) and Tr(M2).

The Trillium program logic developed in Chapter 5 allows us to prove, given proof of a Hoare
Triple {P} e {Q}M, that some user-chosen relationR contains a history-sensitive simulation
relating the program e and the modelM. In Section 5.4, we pick a relation such that history-
sensitive simulation reduces to “just” simulation and show how two implementations of the
distributed protocols two-phase commit and single-decree Paxos simulate their TLA+ models.
Finally, in Section 5.6, we sketch how one can use Trillium to prove history-sensitive simula-
tions that are fairness and termination preserving and, as a consequence, prove fair termina-
tion for concurrent programs by proving termination of an abstract model. This dissertation
only briefly touches upon proving such liveness properties using Trillium, and we refer to
Stefanesco [Ste21] for more details on these aspects.
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1.4 Termination-insensitive noninterference

Many important program properties are not only relational but phrased as a relation between
two programs. It is prevalent to say, e.g., that an implementation of a fine-grained concurrent
queue is correct if it is contextually equivalent to a coarse-grained “obviously” correct queue
implementation, that a program is secure if it is indistinguishable from another trivially se-
cure implementation; or that a program is information-flow secure if two instantiations of the
program but with different secret inputs always give the same observable outputs. This stands
in contrast to unary properties, such as safety (“the program does not crash”) and liveness
(“the program eventually terminates”), that are phrased using a single program. Many unary
properties are, unsurprisingly, targeted by unary program logics or unary models, whereas
relational properties are often established using relational logics or binary logical relations.

Work on logical relations has made much progress in building step-indexed logical rela-
tions [Ahm04; Ahm+10; AM01; App01; Bir+11] that can handle many of the program and type
system features of modern languages. Recent works give a “logical” account of step-indexed
logical relations [DAB09] by interpreting types as relations expressed in a suitably powerful
logic, such as Iris, and typing judgments as logical entailment between these relations. This
approach allows us to define and reason about logical-relations models at a much higher level
of abstraction. Relational separation logics and relational models have been developed for a
range of contexts and properties, e.g., contextual refinement [FKB21b; KTB17; TB19; Tim+18],
simulation [Cha+19; Gäh+22; Tim+21], and security [FKB21a; Geo+21; GTB22] to name a few.

As suggested in the previous section, an approach to proving relational properties is to
encode the relational model in a unary logic with resources that track the specification pro-
gram. One tracks the specification program (the “right-hand side”) in an invariant assertion
which guarantees that the specification resource only progresses in valid ways (in this case
according to the operational semantics):

∃e′′. spec•(e′′) ∗ e′ →∗ e′′ ⊢
{
spec◦(e

′)
}
e
{
v.∃v′. spec◦(v

′) ∗ R(v, v′)
}

By requiring in the postcondition of the unary Hoare triple that the specification program has
reached a value, we may conclude properties of the shape “if e terminates then so does e′.”
This is precisely what is needed for contextual refinement: Intuitively, e contextually refines
e′ if whenever e terminates with some value v, then e′ must also terminate with some value
v′, and v and v′ should be suitably related. In symbols:

e −→∗ v =⇒ e′ −→∗ v′ ∧ v ≈ v′

This is crucially different from the idea of termination-insensitive noninterference that we con-
sider in Chapter 6 where two programs are considered equivalent if, assuming that both e and
e′ terminate, then their resulting values should be suitably related:

e −→∗ v ∧ e′ −→∗ v′ =⇒ v ≈ v′

This is a subtle, yet pivotal commutation of operators that leaves the approach ineffective.
Static information-flow control enforcement is often specified as a special-purpose static

type system (e.g., [Aba+99; AM16b; HR98; LC15; Mye99; Sim03b]) or via an encoding into an
existing type system (e.g., [AR17; GTA19; LZ06; PS03; Rus15; RCH08; Vas+18]). A prevalent
idea is to label syntactic types t with a security label ι drawn from a lattice that classifies the
security level of the typed term, such as “public” or “secret”. The lattice order ⊑ determines
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the security policy such that if ι1 ⊑ ι2 then ι1 is interpreted as being “less sensitive” informa-
tion than ι2. The typing judgment Γ ⊢pc e : tι guarantees that secret information does not
influence public (or “less sensitive”) information. The program counter label pc classifies the
context in which the expression is getting evaluated in—if the execution branches on secret
information just before evaluating e, it is important that no publicly observable side-effects
happen in e. If that was the case, it would constitute an implicit leak as one might learn in-
formation about the secret based on the publicly observable side-effects—even if the program
is not explicitly leaking anything. To counter this, the pc label is raised accordingly when-
ever execution branches on sensitive information and side-effects are restricted in sensitive
contexts relative to the pc label.

The security property satisfied by this kind of information-flow control type system is
often (a variation of) noninterference. Exactly which notion is the right one for a system at
hand is a balance between permissiveness (which programs can you write) and your attacker
model (which attackers do you care about and what can they observe). In Chapter 6 we con-
sider termination-insensitive noninterference of sequential programs written in a rich language
where the observable behaviour is the return value of the program. Termination-insensitive
noninterference requires that if you have a publicly (⊥) observable program e that depends on
some secret (⊤) variable x, i.e.,

x : B⊤ ⊢⊥ e : B⊥

and given two secrets v1 and v2 such that ⊢⊥ v1 : B⊤ and ⊢⊥ v2 : B⊤, then whether you
execute e with v1 or v2 will yield the same results in the following sense:

(∅, e[v1/x]) −→∗ (σ1, v
′
1) ∧ (∅, e[v2/x]) −→∗ (σ2, v

′
2) =⇒ v′1 = v′2.

Due to its termination-insensitive nature, however, existing approaches for constructing such
“logical” logical relations do not allow us to establish this property.

The key technical novelties of Chapter 6 that allows us to model the type system using a
“logical” logical relation and prove termination-insensitive noninterference is (1) a newmodal
weakest precondition theory and (2) a binary logical relations model that incorporates a unary
logical relation inside of it.

The modal weakest precondition predicate

mwpM e {Φ}

is a novel language-agnostic program logic construct that is parameterized by amodal operator
M. Intuitively, it says that if the program e reduces to a value v in n steps, then Φ(v, n) holds
under modality M. Different instantiations of the theory automatically inherit a set of basic
structural rules, such as the “bind” rule for weakest preconditions, that hold irrespective of the
particular modality or language instantiation. Most importantly, the theory is flexible enough
so that we can use a modal weakest precondition predicate as the modality of another modal
weakest precondition predicate. This allows defining both a unary and a binary predicate for
reasoning about computations using a single unified theory and the different instantiations
interact suitably to allow for termination-insensitive reasoning in a model with both binary
and unary predicates.

Logical-relations models of static information-flow control type systems with termination-
insensitive noninterference guarantees seem to require the use of both a unary and a binary
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model in the presence of effects such as state. This has been realized by others as well [RG20].
Too see why, let us consider a typing rule for typing conditional expressions showcased below.

Γ ⊢pc e : boolι ∀i ∈ {1, 2} . Γ ⊢pc⊔ι ei : τ τ ↘ ι

Γ ⊢pc if e then e1 else e2 : τ

When branching on the expression e : boolι, the pc label is raised with ι when type-checking
the branches ei—this reflects that the computation now depends on something of label ι as
discussed above. Moreover, the label of τ is required to be at least as high as ι: the protected-at
relation τ ↘ ι is defined as tι′ ↘ ι ≜ ι ⊑ ι′. This implies that if ι is ⊤, then the label of
τ—the label of the whole conditional and hence its branches—has to be ⊤ as well. Practically
speaking, the fact that something has the label ⊤ means that the two programs that we are
relating in the proof of noninterference (or in the model that captures it) need not be related
at all: we only care about publicly observable outputs, so the secret outputs do not matter.
What we do care about, however, is that the two branches ei, independently, do not produce
publicly observable side-effects such as writing to references that have a public label. If they
did, a continuation would be able to observe secret-dependent public values, and the program
would not be noninterfering. The fact that the type system satisfies this property is often called
a confinement lemma in proofs of noninterference.

To reflect this intuition in a logical-relations model we make use of both a binary and a
unary model where the binary model captures that two programs “behave the same” and the
unary model captures that a program does not have public side-effects. The main point of
interaction between the two models appears in the interpretation of a labeled type tι:

JtιK(v, v′) ≜

{
JtK(v, v′) if ι = ⊥
JtK(v) ∗ JtK(v′) if ι = ⊤

If the label is publicly observable, the two values v and v′ are required to inhabit the binary
relation which guarantees that they behave the same. On the other hand, if the label is not
publicly observable, we only require that v and v′ inhabit the unary relation which guarantees
that they do not produce any public side-effects.

In Chapter 6, we build a “logical” logical-relationsmodel for proving termination-insensitive
noninterference for a rich language that also includes features such as higher-order state, re-
cursive types, and impredicative polymorphism. Here we also address how to hide properly
the details of step-indexing and recursive Kripke worlds (as needed to model such a rich lan-
guage) when using a unary and a binary “logical” logical-relations model in combination.

1.5 Asynchronous probabilistic couplings

In network-connected distributed applications, communication happens across a network that
can generally not be trusted, as some machines in the network might act on behalf of an adver-
sary with malicious intent. Cryptographic protocols constitute one of the essential classes of
distributed algorithms for ensuring security properties such as data confidentiality, integrity,
and authentication in Byzantine settings where parties cannot be trusted. For a concrete ex-
ample, consider the Transport Layer Security (TLS) protocol that makes web (HTTPS) con-
nections more secure.
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Higher-order distributed separation logic, as developed in this dissertation, makes com-
positional reasoning about effects such as state, concurrency, and unreliable distributed com-
munication viable. However, it relies on the fundamental assumption that all components are
verified and act according to the specification. Moreover, for cryptographic protocols, random-
ization is a crucial effect needed to implement secure protocols, and cryptographic security is
many times phrased as an observational equivalence of two probabilistic programs—one im-
plementing the actual system and one implementing an “ideal” and trivially secure system.
In Chapter 7 we take the first steps towards modular reasoning principles for such protocols
by developing a relational higher-order separation logic for reasoning about the contextual
equivalence of probabilistic sequential programs.

Probabilistic couplings [Lin02; Tho00; Vil08] is a mathematical tool for reasoning about
pairs of probabilistic processes, and the method has been applied in a variety of settings to
relate probabilistic programs, e.g., in pRHL [Bar+15], Polaris [TH19], and HO-RPL [Agu+21].
In Chapter 7, we will establish step-wise probabilistic couplings between the distribution of
individual execution steps through a relational separation logic. In this section, we give a
high-level intuition for how this mechanism semantically works.

To account for the non-terminating behavior of programs, we will work with probability
sub-distributions over discrete countable sets to define our operational semantics.

Definition 1.5.1 (Sub-distribution). A (discrete) sub-distribution over a countable set A is a
function µ : A → [0, 1] such that

∑
a∈A µ(a) ≤ 1. We write D(A) for the set of all sub-

distributions over A.

For example, the function µcoin(b ∈ B) ≜ 1
2 denotes the distribution of a fair coin flip—a

uniform distribution on Booleans that gives equal probability to both heads and tails. The
support of a sub-distribution µ ∈ D(A) is the set of elements supp(µ) = {a ∈ A | µ(a) > 0}
and D can be given monadic structure.

Lemma 1.5.2 (Probability Monad). Let µ ∈ D(A), a ∈ A, and f : A→ D(B). Then

1. bind(f, µ)(b) ≜
∑

a∈A µ(a) · f(a)(b)

2. ret(a)(a′) ≜

{
1 if a = a′

0 otherwise

gives sub-distributions monadic structure. We write µ≫= f for bind(f, µ).

Probabilistic couplings are useful to prove relations between probability distributions. In-
tuitively, couplings correlate outputs of two processes by coordinating corresponding samples
through a joint distribution with marginals that are equal to the processes being related.

Definition 1.5.3 (Coupling). Let µ1 ∈ D(A), µ2 ∈ D(B). A sub-distribution µ ∈ D(A×B)
is a coupling of µ1 and µ2 if

1. ∀a.
∑

b∈B µ(a, b) = µ1(a)

2. ∀b.
∑

a∈A µ(a, b) = µ2(b)

Given relation R : A × B we say µ is an R-coupling if furthermore supp(µ) ⊆ R. We write
µ1 ∼ µ2 : R if there exists an R-coupling of µ1 and µ2.
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For example, the distribution µcoins ∈ D(B× B) where

µcoins(b1, b2) ≜

{
1
2 if b1 = b2

0 otherwise

is a witness of the coupling µcoin ∼ µcoin : (=) as can be easily verified. Once a coupling
has been established, we can often extract a concrete relation from it between the probability
distributions. In particular, for (=)-couplings, we have that if µ1 ∼ µ2 : (=), then µ1 = µ2.

One of the key strengths of the coupling approach is that they can be derived piece by
piece as couplings can be constructed and composed along the monadic structure of the sub-
distribution monad, which will allow us to do compositional proofs.

Lemma 1.5.4 (Composition of couplings). LetR : A×B, S : A′×B′, µ1 ∈ D(A), µ2 ∈ D(B),
f1 : A→ D(A′), and f2 : B → D(B′).

1. If (a, b) ∈ R then ret(a) ∼ ret(b) : R.

2. If ∀(a, b) ∈ R. f1(a) ∼ f2(b) : S and µ1 ∼ µ2 : R then µ1 ≫= f1 ∼ µ2 ≫= f2 : S

For example, if we were to construct a coupling for a system that uses a fair coin flip, say,
between µcoin ≫= f1 and µcoin ≫= f2 for some f1 and f2, the second condition will allow us to
continue reasoning about f1(b) and f2(b) since µ1 ∼ µ2 : (=), i.e., as if the two coin flips had
had the same outcome. This is a powerful method that we will incorporate into our logic and
it integrates well with existing reasoning principles from non-probabilistic relational logics.

In Chapter 7, we develop a higher-order probabilistic relational separation logic named
Clutch. The main component of Clutch is a logical refinement judgment ⊨ e1 ≾ e2 : τ . In-
tuitively, this judgment will imply that the expression e1 contextually refines the expression
e2 at type τ , which means that, for all well-typed program contexts C expecting something of
type τ , then the termination probability of C[ e1 ] is bounded by the termination probability
of C[ e2 ]. Semantically, this is established through a logical-relations model built on top of a
new program logic that constructs probabilistic couplings between the distribution of individ-
ual computation steps of the two programs. In the logic’s soundness theorem, we construct
a coupling between the full program executions by composing the individual couplings along
the monadic structure of the sub-distribution monad using Lemma 1.5.4.

The refinement judgment satisfies a range of structural and computational rules. For ex-
ample, the following rule allows us to “symbolically execute” the right-hand side program for
pure execution steps, i.e., steps that do not involve state.

e′1
pure
⇝ e′2 ⊨ e1 ≾ K[ e′2 ] : τ

⊨ e1 ≾ K[ e′1 ] : τ

where K denotes an evaluation context. The semantic justification of this rule constructs
a trivial coupling between the distribution ret(e1, σ1) and the one-step program execution
distribution step(e′1, σ

′
1) where σ1 and σ′

1 are the states of the programs. The couplings that
are constructed from successive applications of this rule are illustrated by the diagram below.
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...

ρ1

ρ2

ρ3

...

...

ρ′1

ρ′2

ρ′3

...

The diagram illustrates the evolution of the symbolic configuration of the two programs as
considered during proofs. The red squiggly line represents a coupling. When applying the
rule for pure reductions on the right-hand side, we fix the left-hand side but progress the
right-hand side independently using a trivial coupling witnessed by the product distribution.

The language considered in Chapter 7 has a single probabilistic primitive flip that reduces
uniformly at random to either true or false, just like µcoin. To relate two flips across two
programs, we construct a coupling similar to µcoins as embodied by the following rule

∀b. ⊨ K[ b ] ≾ K ′[ b ] : τ

⊨ K[ flip() ] ≾ K ′[ flip() ] : τ

which allows us to continue reasoning as if the two sampling statements had the same out-
come. More concretely, the semantic justification of this rule constructs a coupling

step(flip(), σ) ∼ step(flip(), σ′) : R

where R(ρ, ρ′) ≜ ∃b ∈ B. ρ = (b, σ) ∧ ρ′ = (b, σ′) with a witness similar to µcoins. An
application of this rule is illustrated diagrammatically below.

...

K[ flip() ], σ

K[ b ], σ

ρ3

...

...

ρ′1

K ′[ flip() ], σ′

K ′[ b ], σ′

...

Notice how applying the coupling rule allows the proof to progress as if the outcomes of the
samplings are the same b on both sides.

Coupling rules that relate two sampling statements are useful and powerful aswitnessed by
its many application in pRHL-like logics [Agu+21; Bar+15; Bar+18; Bar+16a; Bar+16b; Bar+12].
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However, this kind of coupling rule requires aligning or “synchronizing” the sampling state-
ments of the two programs: both programs have to be executing the sample statements we
want to couple for their next step. Nevertheless, it is not always possible with the rules from
existing logics. For example, consider the following program that eagerly performs a proba-
bilistic coin flip and returns the result in a thunk:

let b = flip() in λ_. b

An indistinguishable—but lazy—version of the program does the probabilistic coin flip only
when the thunk is invoked for the first time, and then stores the result in a reference that is
read from in future invocations:

let r = ref(None) in

λ_. match ! r with
Some (b)⇒ b
| None ⇒ let b = flip() in

r ← Some (b);
b

end

The flip() expression in the first program is evaluated immediately, but the flip() expres-
sion in the second program only gets evaluated when the thunk is invoked. To relate the
two thunks, one is forced first to symbolically evaluate the eager sampling, but this makes it
impossible to construct a coupling with the lazy sampling on the right.

Clutch supports asynchronous probabilistic couplings to resolve this issue by introducing
a novel kind of ghost state called presampling tapes. Presampling tapes let us reason about
sampling statements as if they were executed ahead of time and stored their results for later
use. Presampling tapes surface in the program’s syntax and state but can be entirely erased
through refinement, as shown and discussed in Chapter 7.

Operationally, a tape is a finite sequence of Booleans, representing future outcomes of spe-
cific flip commands. Each tape is labeledwith an identifier ι, and a program’s state is extended
with a finite map from labels to tapes. A fresh tape can be dynamically (and deterministically)
allocated using a tape language primitive:

tape, σ −→1 ι, σ[ι 7→ ϵ] if ι = fresh(σ)

which extends themappingwith an empty tape and returns its fresh label ι. The flip primitive
can then be annotated with a tape label ι. If the corresponding tape is empty, flip(ι) reduces
uniformly:

flip(ι), σ −→1/2 b, σ if σ(ι) = ϵ and b ∈ {true, false}

but if the tape is not empty, flip(ι) reduces deterministically by taking off the first element
of the tape and returning it:

flip(ι), σ[ι 7→ b · b⃗ ] −→1 b, σ[ι 7→ b⃗ ]

However, no primitives in the language operationally add values to the tapes. The key technical
constructions of the logic, however, allows us to add coupled presampled values to the tapes.
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The Clutch logic comes with a ι ↪→ b⃗ assertion that denotes ownership of the tape ι and its
contents b⃗, analogously to how the traditional points-to-connective ℓ 7→ v of separation logic
denotes ownership of the location ℓ and its contents on the heap. By owning a tape ι we can
couple samplings onto ι with a physical flip() on the opposite side as enabled by rules like

ι ↪→ b⃗ ∀b. ι ↪→ (⃗b · b) ∗⊨ K[ b ] ≾ e : τ

⊨ K[ flip() ] ≾ e : τ

The rule gives back the ownership of ι ↪→ (⃗b · b) and requires us to show ⊨ K[ b ] ≾ e : τ .
When we, in the future, encounter a sampling statement with label ι on the right-hand side
we simply read off the presampled b from the tape.

ι ↪→ b · b⃗ ι ↪→ b⃗ ∗⊨ e1 ≾ K[ b ] : τ

⊨ e1 ≾ K[ flip(ι) ] : τ

An application of the asynchronous coupling rule is illustrated diagrammatically below.

...

K[ flip() ], σ

K[ b ], σ

ρ

...

...

e′, σ′

e′, σ′[ι 7→ b]

ρ′

...

Notice how the coupling is established between a physical sampling on the left and a ghost sam-
pling (indicated with a dashed red arrow) on the right for an arbitrary configuration (e′, σ′).
The justification of this asynchronous coupling rule is a coupling

step(flip(), σ) ∼ stepι(σ
′) : R

where stepι(σ) is the distribution that with equal probability adds either true or false to the
ι tape in σ and R(ρ, σ′′) ≜ ∃b ∈ B. ρ = (b, σ) ∧ σ′′ = σ′[ι 7→ b]. This allows us to continue
reasoning as if the program sampled the same value as was presampled onto the tape. The key
to the soundness theorem is that these tape samplings do not affect the final result of program
execution—they merely act as a logical proof device without any operational effect. Chapter 7
provides more details on how this is proved, and we demonstrate the approach’s usefulness
with several case studies.
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The following list details the origin of the text of the individual chapters and sections.

• Chapter 3 reproduces Krogh-Jespersen et al. [Kro+20a] with the additional inclusion
of Section 3.5 and extensions to Sections 3.6 and 3.7 using material from the technical
appendix [Kro+20b] accompanying the paper.

• Chapter 4 reproduces Gondelman et al. [Gon+21a] with the addition of Figure 4.4 from
the technical appendix [Gon+21b] accompanying the paper. Appendix A and B are re-
produced verbatim from the technical appendix.

• Chapter 5 is a heavily revised version of the Timany et al. [Tim+21] manuscript.

• Chapter 6 reproduces Gregersen et al. [Gre+21a] with extensions to Section 6.1 using
material from the technical appendix [Gre+21b] accompanying the paper.

• Chapter 7 reproduces Gregersen et al. [Gre+23]. Appendix C to F are reproduced verba-
tim from this work.

2.1 Collaborations and contributions

The work presented in this dissertation is the result of collaborative projects. The individual
chapters of the dissertation are presented in (almost) chronological order, with the extent of
my1 contributions increasing throughout. Below I explain the nature of my contributions to
each chapter in terms of both scientific work and writing.

The initial development of the Aneris logic, as described in Chapter 3, was led by Morten
Krogh-Jespersen, and I joined the project in its later stages. I contributed the case study pre-
sented in Section 3.5 and revised multiple aspects of the paper and its presentation, eventually
leading to its publication.

In collaboration with Léon Gondelman, I subsequently lifted the duplicate protection as-
sumption from the initial Aneris development, developed new logical machinery for a new
and refined logic, and improved multiple aspects of the technical development. This work
culminated in a substantial verification effort presented in Chapter 4, which was led by Léon
and Amin Timany. I partook in technical discussions, independently developed the client-side
examples presented in Section 4.4 and Appendix A, and contributed to the writing phase.

The Trillium program logic presented in Chapter 5 is a joint achievement, where my main
technical contribution is the TLA+ axis presented in Section 5.4. In particular, I independently
implemented and carried out the refinement proofs for the two-phase commit protocol and
single-decree Paxos, including proving the correctness of the transcribed TLA+ models in the
Coq proof assistant. In addition, I was the lead on the majority of the writing phase.

I spear-headed all aspects of the work presented in Chapters 6 and 7.

1Only in this section I will use the first person singular to refer specifically to my own contributions in contrast
to those of my collaborators. Following common scientific practice, I otherwise use the first person plural to refer
to work done by the author, whether done in collaboration with others or not.
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2.2 Coq mechanization

All of the work presented in this dissertation is foundational [App01] in that all results, includ-
ing the operational semantics, program logics, underlying mathematics, and all the examples,
are formalized in the Coq proof assistant [Coq22]. This gives the highest assurance that all
details and results are correct. In addition, all the developments are open source and available
online through the links below.

Chapter 3 https://iris-project.org/artifacts/2020-esop-aneris.tar.gz

Chapters 4 and 5 https://github.com/logsem/aneris

Chapter 6 https://github.com/logsem/iris-tini

Chapter 7 https://github.com/logsem/clutch
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3 Aneris

Abstract

Building network-connected programs and distributed systems is a powerful way to pro-
vide scalability and availability in a digital, always-connected era. However, with great
power comes great complexity. Reasoning about distributed systems is well-known to be
difficult.

In this work we present Aneris, a novel framework based on separation logic support-
ing modular, node-local reasoning about concurrent and distributed systems. The logic is
higher-order, concurrent, with higher-order store and network sockets, and is fully mech-
anized in the Coq proof assistant. We use our framework to verify an implementation of
a load balancer that uses multi-threading to distribute load amongst multiple servers and
an implementation of the two-phase-commit protocol with a replicated logging service
as a client. The two examples certify that Aneris is well-suited for both horizontal and
vertical modular reasoning.

Reasoning about distributed systems is notoriously difficult due to their sheer complexity. This
is largely the reason why previous work has traditionally focused on verification of protocols
of core network components. In particular, in the context of model checking where safety and
liveness assertions [Pnu77] are considered, tools such as SPIN [Hol97], TLA+ [Lam92], and
Mace [Kil+07] have been developed. More recently, significant contributions have been made
in the field of formal proofs of implementations of challenging protocols, such as two-phase-
commit, lease-based key-value stores, Paxos, and Raft [Haw+15; LBC16; Rah+15; SWT18;
Wil+15]. All of these developments define domain specific languages (DSLs) specialized for
distributed systems verification. Protocols and modules proven correct can be compiled to an
executable, often relying on some trusted code-base.

Formal reasoning about distributed systems has often been carried out by giving an ab-
stract model in the form of a state transition system or flow-chart in the tradition of Floyd
[Flo67] and Lamport [Lam77; Lam78]. A state is normally taken to be a view of the global
state and events are observable changes to this state. State transition systems are quite versa-
tile and have been used in other verification applications. However, reasoning based on state
transition systems often suffer from a lack of modularity due to their very global perspective.
As a consequence, separate nodes or components cannot be verified in isolation and the system
has to be verified as a whole.

IronFleet [Haw+15] is the first system that supports node-local reasoning for verifying the
implementation of programs that run on different nodes. In IronFleet, a distributed system is
modeled by a transition system. This transition system is shown to be refined by the compo-
sition of a number of transition systems, each pertaining to one of the nodes in the system.

22
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Each node in the distributed system is shown to be correct and a refinement of its correspond-
ing transition system. Nevertheless, IronFleet does not allow you to reason compositionally; a
correctness proof for a distributed system cannot be used to show the correctness of a larger
system.

Higher-order concurrent separation logics [Din+13; Din+10; Jun+16; Jun+15; Kre+17;
LN13; Nan+14; OHe07; RDG14; SNB15; SB14; TDB13] simplify reasoning about higher-order
imperative concurrent programs by offering facilities for specifying and proving correctness
of programs in a modular way. Indeed, their support for modular reasoning (a.k.a. composi-
tional reasoning) is the key reason for their success. Disel [SWT18] is a separation logic that
does support compositional reasoning about distributed systems, allowing correctness proofs
of distributed systems to be used for verifying larger systems. However, Disel struggles with
node-local reasoning in that it cannot hide node-local usage of mutable state. That is, the use
of internal state in nodes must be exposed in the high-level protocol of the system and changes
to the internal state are only possible upon sending and receiving messages over the network.

Finally, both Disel and IronFleet restrict nodes to run only sequential programs and no
node-level concurrency is supported.

In this work we present Aneris, a framework for implementing and reasoning about func-
tional correctness of distributed systems. Aneris is based on concurrent separation logic and
supports modular reasoning with respect to both nodes (node-local reasoning) and threads
within nodes (thread-local reasoning). The Aneris framework consists of a programming lan-
guage, AnerisLang, for writing realistic, real-world distributed systems and a higher-order
concurrent separation logic for reasoning about these systems. AnerisLang is a concurrent
ML-like programming language with higher-order functions, local state, threads, and network
primitives. The operational semantics of the language, naturally, involves multiple hosts (each
with their own heap and multiple threads) running in a network. The Aneris logic is build on
top of the Iris framework [Jun+16; Jun+15; Kre+17] and supports machine-verified formal
proofs in the Coq proof assistant about distributed systems written in AnerisLang.

Networking. There are several ways of adding network primitives to a programming lan-
guage. One approach is message-passing using first-class communication channels á la the
π-calculus or using an implementation of the actor model as done in high-level languages like
Erlang, Elixir, Go, and Scala. However, any such implementation is an abstraction built on top
of network sockets where all data has to be serialized, data packets may be dropped, and packet
reception may not follow the transmission order. Network sockets are a quintessential part of
building efficient, real-world distributed systems and all major operating systems provide an
application programming interface (API) to them. Likewise, AnerisLang provides support for
datagram-like sockets by directly exposing a simple API with the core methods necessary for
socket-based communication using the User Datagram Protocol (UDP) with duplicate protec-
tion. This allows for a wide range of real-world systems and protocols to be implemented (and
verified) using the Aneris framework.

Modular reasoning in Aneris. In general, there are two different ways to support modular rea-
soning about distributed systems corresponding to how components can be composed. Aneris
enables simultaneously both:

• Vertical composition: when reasoning about programs within each node, one is able to
compose proofs of different components to prove correctness of the whole program. For
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instance, the specification of a verified data structure, e.g. a concurrent queue, should
suffice for verifying programs written against that data structure, independently of its
implementation.

• Horizontal composition: at each node, a verified thread is composable with other verified
threads. Similarly, a verified node is composable with other verified nodes which po-
tentially engage in different protocols. This naturally aids implementing and verifying
large-scale distributed systems.

Node-local variants of the standard rules of CSLs like, for example, the bind rule and the frame
rule (as explained in Section 3.1) enable vertical reasoning. Section 3.6 showcases vertical
reasoning in Aneris using a replicated distributed logging service that is implemented and
verified using a separate implementation and specification of the two-phase commit protocol.

Horizontal reasoning in Aneris is achieved through the Thread-par-rule and the Node-
par-rule (further explained in Section 3.1) which intuitively says that to verify a distributed
system, it suffices to verify each thread and each node in isolation. This is analogous to how
CSLs allow us to reason about multi-threaded programs by considering individual threads in
isolation; in Aneris we extend this methodology to include both threads and nodes. Where
most variants of concurrent separation logic use some form of an invariant mechanism to rea-
son about shared-memory concurrency, we abstract the communication between nodes over
the network through socket protocols that restrict what can be sent and received on a socket
and allow us to share ownership of logical resources among nodes. Section 3.4 showcases
horizontal reasoning in Aneris using an implementation and a correctness proof for a simple
addition service that uses a load balancer to distribute the workload among several addition
servers. Each node is verified in isolation and composed to form the final distributed system.

Contributions. In summary, we make the following contributions:

• We present AnerisLang, a formalized higher-order functional programming language
for writing distributed systems. The language features higher-order store, node-local
concurrency, and network sockets, allowing for dynamic creation and binding of sockets
to addresses with serialization and deserialization primitives for encoding and parsing
messages.

• We define the Aneris logic, the first higher-order concurrent separation logic with sup-
port for network sockets and with support for node-local and thread-local reasoning.

• We introduce a simple and novel approach to specifying network protocols; a mecha-
nism that supports separation-logic-style modular specifications of distributed systems.

• We conduct two case studies that showcase how our framework aids the implementation
and verification of real-world distributed systems using compositional reasoning:

– A replicated logging service that is implemented and verified using a separate im-
plementation and specification of the two-phase commit protocol, demonstrating
vertical compositional reasoning.

– A load balancer that distributes work on multiple servers by means of node-local
multi-threading. We use this to verify a simple addition service that uses the load
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balancer to distribute its requests over multiple servers, demonstrating horizontal
compositional reasoning.

We have formalized all of the theory and examples on top of Iris in the Coq proof assistant
using the MoSeL framework [KTB17].

Outline. We start by describing the core concepts of the Aneris framework (Section 3.1).
We then describe the AnerisLang programming language (Section 3.2) before presenting the
Aneris logic proof rules and stating our adequacy theorem, i.e., soundness of Aneris (Sec-
tion 3.3). Subsequently, we use the logic to verify a load balancer (Section 3.4), a bag service
(Section 3.5), and a two-phase-commit implementation with a replicated logging client (Sec-
tion 3.6). Finally, we discuss related work in (Section 3.8 and conclude (Section 3.9).

3.1 The core concepts of Aneris

In this section we present our methodology to modular verification of distributed systems. We
begin by recalling the ideas of thread-local reasoning and protocols from concurrent separa-
tion logic and explain how we lift those ideas to node-local reasoning. Finally, we illustrate
the Aneris methodology for specifying, implementing, and verifying distributed systems by
developing a simple addition service and a lock server. The distributed systems are composed
of individually verified concurrently running nodes communicating asynchronously by ex-
changing messages that can be reordered or dropped.

3.1.1 Local and thread-local reasoning

The most important feature of (concurrent) separation logic is, arguably, how it enables scal-
able modular reasoning about pointer-manipulating programs. Separation logic is a resource
logic, in the sense that propositions denote not only facts about the state, but ownership of
resources. Originally, separation logic [Rey02] was introduced for modular reasoning about
the heap—i.e. the notion of resource was fixed to be logical pieces of the heap. The essential
idea is that we can give a local specification {P} e {v.Q} to a program e involving only the
footprint of e. Hence, while verifying e, we need not consider the possibility that another piece
of code in the program might interfere with e; the program e can be verified without concern
for the environment in which e may occur. Local specifications can then be lifted to more
global specifications by framing and binding:

{P} e {v.Q}
{P ∗R} e {v.Q ∗R}

{P} e {v.Q} ∀v.{Q}K[v] {w.R}
{P}K[e] {w.R}

where K denotes an evaluation context. The symbol ∗ denotes separating conjunction. In-
tuitively, P ∗ Q holds for a given resource (in this case a heap) if it can be divided into two
disjoint resources such that P holds for one and Q holds for the other. Thus, the frame rule
essentially says that executing e for which we know {P} e {x.Q} cannot possibly affect parts
of the heap that are separate from its footprint. Another related separation logic connective is
∗ , the separating implication. Proposition P ∗ Q describes a resource that, combined with

a disjoint resource satisfying P , results in a resource satisfying Q.
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Since its introduction, separation logic has been extended to resources beyond heaps and
with more sophisticated mechanisms for modular control of interference. Concurrent sepa-
ration logics (CSLs) [OHe07] allow reasoning about concurrent programs and a preeminent
feature of these program logics is again the support for modular reasoning, in this case with
respect to concurrency through thread-local reasoning. When reasoning about a concurrent
program we consider threads one at a time and need not reason about interleavings of threads
explicitly. In a way, our frame here includes, in addition to the shared fragments of the heap
and other resources, the execution of other threads which can be interleaved throughout the
execution of the thread being verified. This can be seen from the following disjoint concur-
rency rule:

Thread-par
{P1} e1 {v.Q1} {P2} e2 {v.Q2}

{P1 ∗ P2} e1 || e2 {v.∃v1, v2.v = (v1, v2) ∗Q1[v1/v] ∗Q2[v2/v]}

where e1 || e2 denotes parallel composition of expressions e1 and e2.1
Inevitably, at some point threads typically have to communicate with one another through

some kind of shared state, an unavoidable form of interference. The original CSL used a simple
form of resource invariant in which ownership of a shared resource can be transferred between
threads.

A notable program logic in the family of concurrent separation logics is Iris that is specif-
ically designed for reasoning about programs written in concurrent higher-order imperative
programming languages. Iris has already proven to be versatile for reasoning about a number
of sophisticated properties of programming languages [Jun+18a; Kai+17b; Tim+18]. In order
to support modular reasoning about concurrent programs Iris features (1) impredicative in-
variants for expressing protocols on shared state among multiple threads and (2) allows for
encoding of higher-order ghost state using a form of partial commutative monoids for reason-
ing about resources. We will give examples of these features and explain them in more detail
as needed.

3.1.2 Node-local reasoning

Programs written in AnerisLang are higher-order imperative concurrent programs that run on
multiple nodes in a distributed system. When reasoning about distributed systems in Aneris,
alongside heap-local and thread-local reasoning, we also reason node-locally. When proving
correctness of AnerisLang programs we reason about each node of the system in isolation,
akin to how we in CSLs reason about each thread in isolation.

By virtue of building on Iris, reasoning in Aneris is naturally modular with respect to
separation logic frames and with respect to threads. What Aneris adds on top of this is support
for node-local reasoning about programs. This is expressed by the following rule:

Node-par
{P1 ∗ IsNode(n1) ∗ FreePorts(ip1,P)} ⟨n1; e1⟩ {True}
{P2 ∗ IsNode(n2) ∗ FreePorts(ip2,P)} ⟨n2; e2⟩ {True}

{P1 ∗ P2 ∗ FreeIp(ip1) ∗ FreeIp(ip2)} ⟨S; (n1; ip1; e1) ||| (n2; ip2; e2)⟩ {True}
1In a language with fork-based concurrency, the parallel composition operator is an easily defined construct

and the rule is derivable from a more general fork-rule.
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where ||| denotes parallel composition of two nodes with identifier n1 and n2 running expres-
sions e1 and e2 with IP addresses ip1 and ip2.2 The set P = {p | 0 ≤ p ≤ 65535} denotes a
finite set of ports.

Note that only a distinguished system node S can start new nodes (as elaborated on in
Section 3.2). In Aneris, the execution of the distributed system starts with the execution of
S as the only node in the system. In order to start a new node associated with ip address ip
one provides the resource FreeIp(ip) which indicates that ip is not used by other nodes. The
node can then rely on the fact that when it starts, all ports on ip are available. The resource
IsNode(n) indicates that the node n is a node in the system and keeps track of abstract state
related to ourmodeling of noden’s heap and allocated sockets. To facilitatemodular reasoning,
free ports can be split: if A ∩B = ∅ then

FreePorts(ip, A) ∗ FreePorts(ip, B) ⊣⊢ FreePorts(ip, A ∪B)

where ⊣⊢ denotes logical equivalence of Aneris propositions (of type iProp). We will use
FreePort(a) as shorthand for FreePorts(ip, {p}) where a = (ip, p).

Finally, observe that the node-local postconditions are simply True, in contrast to the arbi-
trary thread-local postconditions in the Thread-par-rule that carry over to the main thread. In
the concurrent setting, shared memory provides reliable communication and synchronization
between the child threads and the main thread; in the rule for parallel thread composition, the
main thread will wait for the two child processes to finish. In the distributed setting, there are
no such guarantees and nodes are separate entities that cannot synchronize with the distin-
guished system node.

Socket protocols. Similar to how classical CSLs introduce the concept of resource invariants
for expressing protocols on shared state among multiple threads, we introduce the simple and
novel concept of socket protocols for expressing protocols among multiple nodes. With each
socket address—a pair of an IP address and a port—a protocol is associated, which restricts
what can be communicated on that socket.

A socket protocol is a predicate Φ : Message→ iProp on incoming messages received on a
particular socket. One can think of this as a form of rely-guarantee reasoning since the socket
protocol will be used to restrict the distributed environment’s interference with a node on a
particular socket. In Aneris we write a Z⇒ Φ to mean that socket address a is governed by the
protocol Φ. In particular, if a Z⇒ Φ and a Z⇒ Ψ then Φ and Ψ are equivalent.3 Moreover, the
proposition is duplicable: a Z⇒ Φ ⊣⊢ a Z⇒ Φ ∗ a Z⇒ Φ.

Conceptually, a socket is an abstract representation of a handle for a local endpoint of
some channel. We further restrict channels to use the User Datagram Protocol (UDP) which is
asynchronous, connectionless, and stateless. In accordance with UDP, Aneris provides no guar-
antee of delivery or ordering although we assume duplicate protection. We assume duplicate
protection to simplify our examples, as otherwise the code of all of our examples would have
to be adapted to cope with duplication of messages. One can think of sockets in Aneris as
open-ended multi-party communication channels without synchronization.

It is noteworthy that inter-process communication can happen in two ways. Thread-
concurrent programs can communicate both through the shared heap and by sendingmessages

2In the same way as the parallel composition rule is derived from a more general fork-based rule, this compo-
sition rule is also an instance of a more general rule for spawning nodes shown in Section 3.2.

3The predicate equivalence is under a later modality in order to avoid self-referential paradoxes. We omit it
for the sake of presentation as this is an orthogonal issue.
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through sockets. For memory-separated programs running on different nodes all communica-
tion is by message-passing over an unreliable network.

In the logic, we consider both static and dynamic socket addresses. This distinction is en-
tirely abstract and at the level of the logic. Static addresses come with primordial protocols,
agreed upon before starting the distributed system, whereas dynamic addresses do not. Pro-
tocols on static addresses are primarily intended for addresses pointing to nodes that offer a
service.

To distinguish between static and dynamic addresses, we use a resource Fixed(A) which
denotes that the addresses in A are static and should have a fixed interpretation. This propo-
sition expresses knowledge without asserting ownership of resources and is duplicable:

Fixed(A) ⊣⊢ Fixed(A) ∗ Fixed(A).

Corresponding to the two kinds of addresses we have two different rules, Socketbind-
static and Socketbind-dynamic, for binding an address to a socket as seen below. Both rules
consume an instance of Fixed(A) and FreePort(a) as well as a resource z ↪→n ⊥. The latter
keeps track of the address associated with the socket handle z on node n and ensures that the
socket is bound only once as further explained in Section 3.3. Notice that the protocol Φ in
Socketbind-dynamic can be freely chosen.

Socketbind-static
{Fixed(A) ∗ a ∈ A ∗ FreePort(a) ∗ z ↪→n ⊥}

⟨n; socketbind z a⟩

{x. x = 0 ∗ z ↪→n a}

Socketbind-dynamic
{Fixed(A) ∗ a ̸∈ A ∗ FreePort(a) ∗ z ↪→n ⊥}

⟨n; socketbind z a⟩

{x. x = 0 ∗ z ↪→n a ∗ a Z⇒ Φ}

In the remainder of the chapter we will use the following shorthands in order to simplify the
presentation of our specifications.

Static(a,A,Φ) ≜ Fixed(A) ∗ a ∈ A ∗ FreePort(a) ∗ a Z⇒ Φ

Dynamic(a,A) ≜ Fixed(A) ∗ a /∈ A ∗ FreePort(a)

3.1.3 Example: An addition service

To illustrate node-local reasoning, socket protocols, and the Aneris methodology for speci-
fying, implementing, and verifying distributed systems we develop a simple addition service
that offers to add numbers for clients.

Figure 3.1 depicts an implementation of a server and a client written in AnerisLang. No-
tice that the programs look as if they were written in a realistic functional language with
sockets like OCaml. Messages are strings to make programming with sockets easier (similar
to send_substring in the Unix module in OCaml).

The server is parameterized over an address on which it will listen for requests. The server
allocates a new socket and binds the address to the socket. Then the server starts listening for
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an incoming message on the socket, calling a handler function on the message, if any. The
handler function will deserialize the message, perform the addition, serialize the result, and
return it to the sender before recursively listening for new messages.

The client is parameterized over two numbers to compute on, a server address, and a client
address. The client allocates a new socket, binds the address to the socket, and serializes the
two numbers. In the end, it sends the serialized message to the server address and waits for a
response, deserializing the result of the addition on arrival.

1 let rec listen skt handler =
2 match receivefrom skt with
3 | Some m => handler (fst m) (snd m)
4 | None => listen skt handler
5 end
6
7 let server a =
8 let skt = socket () in
9 socketbind skt a;
10 let rec handler msg from =
11 let (x, y) = deserialize msg in
12 let res = serialize (x + y) in
13 sendto skt res from
14 in listen skt handler

15 let client x y srv a =
16 let skt = socket () in
17 socketbind skt a;
18 let m = serialize (x, y) in
19 sendto skt m srv;
20 listen skt (fun m _ -> deserialize m)

Figure 3.1: An implementation of an addition service and a client written in AnerisLang.

In order to give the server code a specification we will fix a primordial socket protocol that
will govern the address given to the server. The protocol will spell out how the server relies
on the socket. We will use m.orig and m.body for projections of the sender and the message
body, respectively, from the messagem. We define Φadd as follows:

Φadd(m) ≜ ∃Ψ, x, y.m.orig Z⇒ Ψ ∗m.body = serialize(x, y)∗
∀m′,m′.body = serialize(x+ y) ∗ Ψ(m′)

Intuitively, the protocol demands that the sender of a message m is governed by some pro-
tocol Ψ and that the message body m.body must be the serialization of two numbers x and
y. Moreover, the sender’s protocol must be satisfied if the serialization of x + y is sent as a
response.

Using Φadd as the socket protocol, we can give server the specification

{Static(a,A,Φadd) ∗ IsNode(n)} ⟨n; server a⟩ {False}.

The postcondition is allowed to be False as the program does not terminate. The triple guar-
antees safety which, among others, means that if the server responds to communication on
address a it does so according to Φadd.

Similarly, using Φadd as a primordial protocol for the server address, we can also give
client a specification

{srv Z⇒ Φadd ∗ srv ∈ A ∗ Dynamic(a,A) ∗ IsNode(m)}
⟨m; client x y srv a⟩
{v.v = x+ y}
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1 let lockserver a =
2 let lock = ref NONE in
3 let skt = socket () in
4 socketbind skt a;
5 listen skt (fun handler msg from ->
6 (if msg = "LOCK" then
7 match !lock with
8 | None => lock := Some ();
9 sendto skt "YES" from
10 | Some _ => sendto skt "NO" from
11 end
12 else lock := NONE;
13 sendto skt "RELEASED" from);
14 listen skt handler)

Figure 3.2: A lock server in AnerisLang.

that showcases how the client is able to conclude that the response from the server is the sum of
the numbers it sent to it. In the proof, when binding a to the socket using Socketbind-dynamic,
we introduce the proposition a Z⇒ Φclient where

Φclient(m) ≜ m.body = serialize(x+ y)

and use it to instantiate Ψ when satisfying Φadd. Using the two specifications and the Node-
par-rule it is straightforward to specify and verify a distributed system composed of, e.g., a
server and multiple clients.

3.1.4 Example: A lock server

Mutual exclusion in distributed systems is often a necessity and there are many different ap-
proaches for providing it. The simplest solution is a centralized algorithm with a single node
acting as the coordinator. We will develop this example to showcase a more interesting proto-
col that relies on ownership transfer of spatial resources between nodes to ensure correctness.
The code for a centralized lock server implementation is shown in Figure 3.2.

The lock server declares a node-local variable lock to keep track of whether the lock is
taken or not. It allocates a socket, binds the input address to the socket and continuously listens
for incoming messages. When a "LOCK"message arrives and the lock is available, the lock gets
taken and the server responds "YES". If the lock was already taken, the server will respond
"NO". Finally, if the message was not "LOCK", the lock is released and the server responds with
"RELEASED".

Our specification of the lock server will be inspired by how a lock can be specified in
concurrent separation logic. Thus we first recall how such a specification usually looks like.

Conceptually, a lock can either be unlocked or locked, as described by a two-state labeled
transition system.

unlocked locked

K

In concurrent separation logic, the lock specification does not describe this transition sys-
tem directly, but instead focuses on the resources needed for the transitions to take place. In
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the case of the lock, the resource is simply a non-duplicable resource K , which is needed in
order to call the lock’s release method. Intuitively, this resource corresponds to the key of
the lock.

A typical concurrent separation logic specification for a spin lock module looks roughly
like the following:

∃ isLock .
∧ ∀v,K. isLock(v,K) ⊣⊢ isLock(v,K) ∗ isLock(v,K)

∧ ∀v,K. isLock(v,K) ⊢ K ∗K ⇒ False

∧ {True} newLock () {v. ∃K. isLock(v,K)}
∧ ∀v. {isLock(v,K)} acquire v {v.K}
∧ ∀v. {isLock(v,K) ∗K} release v {True}

The intuitive reading of such a specification is:

• Calling newLockwill lead to the duplicable knowledge of the return value v being a lock.

• Knowing that a value is a lock, a thread can try to acquire the lock andwhen it eventually
succeeds it will get the keyK .

• Only a thread holding this key is allowed to call release.

Sharing of the lock among several threads is achieved by the isLock predicate being duplica-
ble. Mutual exclusion is ensured by the last bullet point together with the requirement of K
being non-duplicable whenever we have isLock(v,K). For a leisurely introduction to such
specifications, the reader may consult Birkedal and Bizjak [BB17].

Let us now return to the distributed lock synchronization. To give clients the possibility
of interacting with the lock server as they would with such a concurrent lock module, the
specification for the lock server will look like follows.

{K ∗ Static(a,A,Φlock)} ⟨n; lockserver a⟩ {False}.

This specification simply states that a lock server should have a primordial protocol Φlock and
that it needs the key resource to begin with. To allow for the desired interaction with the
server, we define the socket protocol Φlock as follows:

acq(m,Ψ) ≜ (m.body = "LOCK")∗
∀m′. (m′.body = "NO") ∨ (m′.body = "YES" ∗K) ∗ Ψ(m′)

rel(m,Ψ) ≜ (m.body = "RELEASE") ∗K∗
∀m′. (m′.body = "RELEASED") ∗ Ψ(m′)

Φlock(m) ≜∃Ψ.m.orig Z⇒ Ψ ∗ (acq(m,Ψ) ∨ rel(m,Ψ))

The protocol Φlock demands that a client of the lock has to be bound to some protocol Ψ and
that the server can receive two types of messages fulfilling either acq(m,Ψ) or rel(m,Ψ).
These correspond to the module’s two methods acquire and release respectively. In the case
of a "LOCK"message, the server will answer either "NO" or "YES" along with the key resource.
In either case, the answer should suffice for fulfilling the client protocol Ψ.
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Receiving a "RELEASE" request is similar, but the important part is that we require a client
to send the key resourceK along with the message, which ensures that only the current holder
can release the lock.

One difference between the distributed and the concurrent specification is that we allow
for the distributed lock to directly deny access. The client can use a simple loop, asking for
the lock until it is acquired, if it wishes to wait until the lock can be acquired.

There are several interesting observations one can make about the lock server example:

1. The lock server can allocate, read, and write node-local references but these are hidden
in the specification.

2. There are no channel descriptors or assertions on the socket in the code.

3. The lock server provides mutual exclusion by requiring clients to satisfy a sufficient
protocol.

3.2 AnerisLang

AnerisLang is an untyped functional language with higher-order functions, fork-based con-
currency, higher-order mutable references, and primitives for communicating over network
sockets. The syntax is as follows:

v ∈Val ::= () | b | i | s | ℓ | z | rec f x = e | . . .
e ∈ Expr ::= v | x | rec f x = e | e1 e2 | ref(e) | ! e | e1 := e2 | CAS e1 e2 e3

| find e1 e2 e3 | substring e1 e2 e3 | i2s e | s2i e
| fork {e} | start {n; ip; e} | makeaddress e1 e2
| socket e | socketbind e1 e2 | sendto e1 e2 e3 | receivefrom e | . . .

We omit the usual operations on pairs, sums, booleans b ∈ B, and integers i ∈ Z which are
all standard. We introduce the following syntactic sugar: lambda abstractions λx. e defined
as rec _ x = e, let-bindings let x = e1 in e2 defined as (λx. e2)(e1), and sequencing e1; e2
defined as let _ = e1 in e2.

We have the usual operations on locations ℓ ∈ Loc in the heap: ref(v) for allocating a new
reference, ! ℓ for dereferencing, and ℓ := v for assignment. CAS ℓ v1 v2 is an atomic compare-
and-set operation used to achieve synchronization between threads on a specific memory lo-
cation ℓ. Operationally, it tests whether ℓ has value v1 and if so, updates the location to v2,
returning a boolean indicating whether the swap succeeded or not.

The operation find finds the index of a particular substring in a string s ∈ String and
substring splits a string at given indices, producing the corresponding substring. i2s and
s2i convert between integers and strings. These operations are mainly used for serialization
and deserialization purposes.

The expression fork {e} forks off a new (node-local) thread and start {n; ip; e} will
spawn a new node n ∈ Node with ip address ip ∈ Ip running the program e. Note that it is
only at the bootstrapping phase of a distributed system that a special system-node S will be
able to spawn nodes.

We use z ∈ Handle to range over socket handles created by the socket operation. The
operation makeaddress constructs an address (ip, p) ∈ Address = Ip×Port given an ip address
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S(n)(z) = ⊥
p ̸∈ P(ip) S ′ = S[n 7→ S(n)[z 7→ (ip, p)]] P ′ = P[ip 7→ P(ip) ∪ {p}]

⟨n; socketbind z (ip, p)⟩, (H,S,P,M)⇝ ⟨n; 0⟩, (H,S ′,P ′,M)

S(n)(z) = orig i /∈ dom(M) M′ =M[i 7→ (orig , to,msg , Sent)]
⟨n; sendto z msg to⟩, (H,S,P,M)⇝ ⟨n; |msg |⟩, (H,S,P,M′)

S(n)(z) = to
M(i) = (orig , to,msg , Sent) M′ =M[i 7→ (orig , to,msg ,Received)]
⟨n; receivefrom z⟩, (H,S,P,M)⇝ ⟨n; Some (msg , orig)⟩, (H,S,P,M′)

S(n)(z) = to

⟨n; receivefrom z⟩, (H,S,P,M)⇝ ⟨n; None⟩, (H,S,P,M)

Figure 3.3: An excerpt of the rules for network-aware head reduction.

ip ∈ Ip and a port p ∈ Port, and the network primitives socketbind, sendto, and receivefrom
correspond to the similar BSD-socket API methods.

Operational semantics. We define the operational semantics of AnerisLang in three stages.
We first define a node-local, thread-local, head-step reduction (e, h) −→h (e′, h′) for e, e′ ∈

Expr and h, h′ ∈ Loc fin−⇀Val that handles all pure and heap-related node-local reductions. All
rules of the relation are standard.

Next, the node-local head step reduction induces a network-aware head step reduction
(⟨n; e⟩,Σ)⇝ (⟨n; e′⟩,Σ′).

(e, h) −→h (e′, h′)

⟨n; e⟩, (H[n 7→ h],S,P,M)⇝ ⟨n; e′⟩, (H[n 7→ h′],S,P,M)

Here n ∈ Node denotes a node identifier and Σ,Σ′ ∈ GState the global state. Elements of
GState are tuples (H,S,P,M) tracking heaps H ∈ Node fin−⇀ Heap and sockets S ∈ Node fin−⇀
Handle fin−⇀ Option Address for all nodes, ports in use P ∈ Ip fin−⇀ ℘fin(Port), and messages
sentM ∈ Id fin−⇀ Message where Message = Address × Address × String × Flag. The induced
network-aware reduction is furthermore extended with rules for the network primitives as
seen in Figure 3.3. The socket operation allocates a new unbound socket using a fresh handle
z for a node n and socketbind binds a socket address a to an unbound socket z if the address
and port p is not already in use. Hereafter, the port is no longer available in P ′(ip). For bound
sockets, sendto sends a message msg to a destination address to from the sender’s address
orig found in the bound socket. The message is assigned a unique identifier and tagged with
a status flag Sent indicating that the message has been sent and not received. The operation
returns the number of characters sent.

To model possibly dropped or delayed messages we introduce two rules for receiving mes-
sages using the receivefrom operation that on a bound socket either returns a previously
unreceived message or nothing. If a message is received the status flag of the message is up-
dated to Received
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Third and finally, using standard call-by-value right-to-left evaluation contextsK ∈ Ectxwe
lift the node-local head reduction to a distributed systems reduction↠ shown below. We write
↠∗ for its reflexive-transitive closure. The distributed systems relation reduces by reducing a
thread on some node, by forking off a thread on some node, or by starting a new node.

(⟨n; e⟩,Σ)⇝ (⟨n; e′⟩,Σ′)

(T⃗1 ++ [⟨n; K[e]⟩] ++ T⃗2,Σ)↠ (T⃗1 ++ [⟨n; K[e′]⟩] ++ T⃗2; Σ
′)

(T⃗1 ++ [⟨n; K[fork {e}]⟩] ++ T⃗2,Σ)↠ (T⃗1 ++ [⟨n; K[()]⟩] ++ T⃗2 ++ [⟨n; e⟩],Σ)

Σ = (H,S,P,M) Σ′ = (H[n 7→ ∅],S[n 7→ ∅],P,M)
n ̸= S n ̸∈ dom(H) n ̸∈ dom(S) ip ∈ dom(P)

(T⃗1 ++ [⟨S; K[start {n; ip; e}]⟩] ++ T⃗2,Σ)↠ (T⃗1 ++ [⟨S; K[()]⟩] ++ T⃗2 ++ [⟨n; e⟩],Σ′)

3.3 The Aneris logic

As a consequence of building on the Iris framework, the Aneris logic features all the usual
connectives and rules of higher-order separation logic, some of which are shown in the gram-
mar below.4 The full expressiveness of the logic can be exploited when giving specifications
to programs or stating protocols.

P,Q ∈ iProp ::= True | False | P ∧Q | P ∨Q | P ⇒ Q |
∀x. P | ∃x. P | P ∗Q | P ∗ Q | t = u |
ℓ 7→n v | P | a γ | {P} ⟨n; e⟩ {x. Q} | . . .

Note that in Aneris the usual points-to connective about the heap, ℓ 7→n v, is indexed by a
node identifier n ∈ Node, asserting ownership of the singleton heap mapping ℓ to v on node
n.

The logic features (impredicative) invariants P and user-definable ghost state via the
proposition a

γ , which asserts ownership of a piece of ghost state a at ghost location γ. The
logical support for user-defined invariants and ghost state allows one to relate (ghost and
physical) resources to each other; this is vital for our specifications as will become evident in
Section 3.4 and Section 3.6. We refer to Jung et al. [Jun+18b] for a more thorough treatment
of user-defined ghost state.

To reason about AnerisLang programs, the logic features Hoare triples.5 The intuitive
reading of the Hoare triple {P} ⟨n; e⟩ {x. Q} is that if the program e on node n is run in a
distributed system s satisfying P , then the computation does not get stuck and, moreover, if it
terminates with a value v and in a system s′, then s′ satisfies Q[v/x]. In other words, a Hoare
triple implies safety and states that all spatial resources that are used by e are contained in the
precondition P .

In contrast to spatial propositions that express ownership, e.g., ℓ 7→n v, propositions like
P and {P} ⟨n; e⟩ {x. Q} express knowledge of properties that, once true, hold true forever.

4To avoid the issue of reentrancy, invariants are annotated with a namespace and Hoare triples with a mask.
We omit both for the sake of presentation as they are orthogonal issues.

5In both Iris and Aneris the notion of a Hoare triple is defined in terms of a weakest precondition but this will
not be important for the remainder of this chapter.
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We call this class of propositions persistent. Persistent propositions P can be freely duplicated:
P ⊣⊢ P ∗ P .

3.3.1 The program logic

The Aneris proof rules include the usual rules of concurrent separation logic for Hoare triples,
allowing formal reasoning about node-local pure computations, manipulations of the the heap,
and forking of threads. Expressions e are annotated with a node identifier n, but the rules are
otherwise standard.

To reason about individual nodes in a distributed system in isolation, Aneris introduces
the following rule:

Start
{P ∗ IsNode(n) ∗ FreePorts(ip,P)} ⟨n; e⟩ {True}
{P ∗ FreeIp(ip)} ⟨S; start {n; ip; e}⟩ {x. x = ()}

whereP = {p | 0 ≤ p ≤ 65535}. This rule is the key rule allowing node-local reasoning; the
rule expresses exactly that to reason about a distributed system it suffices to reason about each
node in isolation.

As described in Section 3.2, only the distinguished system node S can start new nodes—
this is also reflected in the Start-rule. In order to start a new node associated with IP address
ip, the resource FreeIp(ip) is provided. This indicates that ip is not used by other nodes. When
reasoning about the node n, the proof can rely on all ports on ip being available. The resource
IsNode(n) indicates that the node n is a valid node in the system and keeps track of abstract
state related to the modeling of node n’s heap and sockets. IsNode(n) is persistent and hence
duplicable.

Network communication. To reason about network communication in a distributed system,
the logic includes a series of rules for reasoning about socket manipulation: allocation of sock-
ets, binding of addresses to sockets, sending via sockets, and receiving from sockets.

To allocate a socket it suffices to prove that the node n is valid by providing the IsNode(n)
resource. In return, an unbound socket resource z ↪→n ⊥ is provided.

Socket
{IsNode(n)} ⟨n; socket ()⟩ {z. z ↪→n ⊥}

The socket resource z ↪→n o keeps track of the address associated with the socket handle z on
node n and takes part in ensuring that the socket is bound only once. It behaves similarly to
the points-to connective for the heap, e.g., z ↪→n o ∗ z ↪→n o′ ⊢ False.

As briefly touched upon in Section 3.1, the logic offers two different rules for binding an
address to a socket depending on whether or not the address has a (at the level of the logic)
primordial, agreed upon protocol. To distinguish between such static and dynamic addresses,
we use a persistent resource Fixed(A) to keep track of the set of addresses that have a fixed
socket protocol.

To reason about a static address binding to a socket z it suffices to show that the address a
being bound has a fixed interpretation (by being in the “fixed” set), that the port of the address
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is free, and that the socket is not bound.
Socketbind-static
{Fixed(A) ∗ a ∈ A ∗ FreePort(a) ∗ z ↪→n ⊥}

⟨n; socketbind z a⟩

{x. x = 0 ∗ z ↪→n a}

In accordance with the BSD-socket API, the bind operation returns the integer 0 and the socket
resource gets updated, reflecting the fact that the binding took place.

The rule for dynamic address binding is similar but the address a should not have a fixed
interpretation. Moreover, the user of the logic is free to pick the socket protocol Φ to govern
address a.

Socketbind-dynamic
{Fixed(A) ∗ a ̸∈ A ∗ FreePort(a) ∗ z ↪→n ⊥}

⟨n; socketbind z a⟩

{x. x = 0 ∗ z ↪→n a ∗ a Z⇒ Φ}

To reason about sending a message on a socket z it suffices to show that z is bound, that
the destination of the message is governed by a protocol Φ, and that the message satisfies the
protocol.

Sendto
{z ↪→n orig ∗ to Z⇒ Φ ∗ Φ((orig , to,msg , Sent))}
⟨n; sendto z msg to⟩

{x. x = |msg | ∗ z ↪→n orig}

Finally, to reason about receiving a message on a socket z the socket must be bound to an
address governed by a protocol Φ.

Receivefrom
{z ↪→n to ∗ to Z⇒ Φ}

⟨n; receivefrom z⟩

{x. z ↪→n to ∗ (x = None ∨ (∃m. x = Some (m.body,m.orig) ∗ Φ(m) ∗ R(m)))}

When trying to receive a message on a socket, either a message will be received or no message
is available. This is reflected directly in the logic: if no message was received, no resources
are obtained. If a message m is received, the resources prescribed by Φ(m) are transferred
together with an unmodifiable certificate R(m) accounting logically for the fact that message
m was received. This certificate can in the logic be used to talk about messages that have
actually been received in contrast to arbitrary messages. In our specification of the two-phase
commit protocol presented in Section 3.6, the notion of a vote denotes not just a message
with the right content but only one that has been sent by a participant and received by the
coordinator.

3.3.2 Adequacy for Aneris

We now state a formal adequacy theorem, which expresses that Aneris guarantees both safety,
and, that all protocols are adhered to.



Case study: Load balancer 37

To state our theorem we introduce a notion of initial state coherence: A set of addresses
A ⊆ Address = Ip × Port and a map P : Ip fin−⇀ ℘fin(Port) are said to satisfy initial state
coherence if the following hold: (1) if (i, p) ∈ A then i ∈ dom(P), and (2) if i ∈ dom(P) then
P(i) = ∅.

Theorem 3.3.1 (Adequacy). Let φ be a first-order predicate over values, i.e., a meta logic predi-
cate (as opposed to Iris predicates), let P be a map Ip fin−⇀ ℘fin(Port), and A ⊆ Address such that
A and P satisfy initial state coherence. Given a primordial socket protocol Φa for each a ∈ A,
suppose that the Hoare tripleFixed(A) ∗∗

a∈A
a Z⇒ Φa ∗ ∗

i∈dom(P)

FreeIp(i)

 ⟨n1; e⟩ {v.φ(v)}

is derivable in Aneris.
If we have

(⟨n1; e⟩, (∅, ∅,P, ∅))↠∗ ([⟨n1; e1⟩, ⟨n2; e2⟩, . . . ⟨nm; em⟩],Σ)

then the following properties hold:

1. If e1 is a value, then φ(e1) holds at the meta-level.

2. Each ei that is not a value can make a node-local, thread-local reduction step.

Given predefined socket protocols for all primordial protocols and the necessary free IP ad-
dresses, this theorem provides the normal adequacy guarantees of Iris-like logics, namely
safety, i.e., that nodes and threads on nodes cannot get stuck and that the postcondition holds
for the resulting value. Notice, however, that this theorem also implies that all nodes adhere
to the agreed upon protocols; otherwise, a node not adhering to a protocol would be able to
cause another node to get stuck, which the adequacy theorem explicitly guarantees against.

3.4 Case study: Load balancer

AnerisLang supports concurrent execution of threads on nodes through the fork {e} prim-
itive. We will illustrate the benefits of node-local concurrency by presenting an example of
server-side load balancing.

Implementation. In the case of server-side load balancing, the work distribution is imple-
mented by a program listening on a socket that clients send their requests to. The program
forwards the requests to an available server, waits for the response from the server, and sends
the answer back to the client. In order to handle requests from several clients simultaneously,
the load balancer can employ concurrency by forking off a new thread for every available
server in the system that is capable of handling such requests. Each of these threads will then
listen for and forward requests. The architecture of such a system with two servers and n
clients is illustrated in Figure 3.4.

An implementation of a load balancer is shown in Figure 3.5. The load balancer is param-
eterized over an IP address, a port, and a list of servers. It creates a socket (corresponding to
z0 in Figure 3.4), binds the address, and folds a function over the list of servers. This function
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Load balancer

C1

...

Cn

Clients

z0

z1T1 : serve

z2T2 : serve

S1

S2

Servers

socket node
communication thread

Figure 3.4: The architecture of a distributed system with a load balancer and two servers.

1 let serve main ip port srv =
2 let skt = socket () in
3 let a = makeaddress ip port in
4 socketbind skt a;
5 let rec loop () =
6 match receivefrom main with
7 | Some m =>
8 sendto skt (fst m) srv;
9 listen skt (fun _ msg from ->
10 sendto main msg from; loop ())
11 | None => loop ()
12 end in
13 loop ()

14 let load_balancer ip port servers =
15 let skt = socket () in
16 let a = makeaddress ip port in
17 socketbind skt a;
18 List.fold (fun server acc ->
19 fork { serve skt ip acc server };
20 acc + 1) 1100 servers

Figure 3.5: An implementation of a load balancer in AnerisLang.

forks off a new thread (corresponding to T1 and T2 in Figure 3.4) for each server that runs the
serve function with the newly-created socket, the given IP address, a fresh port number, and
a server as arguments.

The serve function creates a new socket (corresponding to z1 and z2 in Figure 3.4), binds
the given address to the socket, and continuously tries to receive a client request on the main
socket (z0) given as input. If a request is received, it forwards the request to its server and
waits for an answer. The answer is passed on to the client via the main socket. In this way, the
entire load balancing process is transparent to the client, whose view will be the same as if it
was communicating with just a single server handling all requests itself as the load balancer
is simply relaying requests and responses.

Specification and protocols. To provide a general, reusable specification of the load balancer,
wewill parameterize its socket protocol by two predicatesPin andPout that are both predicates
on a messagem and a meta-language value v. The two predicates are application specific and
used to give logical accounts of the client requests and the server responses, respectively.
Furthermore, we parameterize the protocol by a predicate Pval on a meta-language value that
will allows us to maintain ghost state between the request and response as will become evident
in following.

In our specification, the sockets where the load balancer and the servers receive requests
(the blue sockets in Figure 3.4) will all be governed by the same socket protocol Φrel such
that the load balancer may seamlessly relay requests and responses between the main socket
and the servers, without invalidating any socket protocols. We define the generic relay socket
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protocol Φrel as follows:

Φrel (Pval , Pin , Pout)(m) ≜ ∃Ψ, v. m.orig Z⇒ Ψ ∗ Pin(m, v) ∗ Pval (v)∗
(∀m′. Pval (v) ∗ Pout(m

′, v) ∗ Ψ(m′))

When verifying a request, this protocol demands that the sender (corresponding to the red
sockets in Figure 3.4) is governed by some protocolΨ, that the request fulfills the Pin and Pval

predicates, and that Ψ is satisfied given a response that maintains Pval and satisfies Pout .
When verifying the load balancer receiving a request m from a client, we obtain the re-

sources Pin(m, v) and Pval (v) for some v according to Φrel . This suffices for passing the
request along to a server. However, to forward the server’s response to the client we must
know that the server behaves faithfully and gave us the response to the right request value
v. Φrel does not give us this immediately as the v is existentially quantified. Hence we define
a ghost resource LB(π, s, v) that provides fractional ownership for π ∈ (0, 1], which satisfies
LB(1, s, v) ⊣⊢ LB(12 , s, v) ∗ LB(

1
2 , s, v), and for which v can only get updated if π = 1 and

in particular LB(π, s, v) ∗ LB(π, s, v′) =⇒ v = v′ for any π. Using this resource, the server
with address s will have PLB(s) as its instantiation of Pval where

PLB(s)(v) ≜ LB(12 , s, v).

When verifying the load balancer, we will update this resource to the request value v when
receiving a request (as we have the full fraction) and transfer LB(12 , s, v) to the server with ad-
dress s handling the request and, according toΦrel , it will be required to send it back alongwith
the result. Since the server logically only gets half ownership, the value cannot be changed.
Together with the fact that v is also an argument to Pin and Pout , this ensures that the server
fulfills Pout for the same value as it received Pin for. The socket protocol for the serve func-
tion’s socket (z1 and z2 in Figure 3.4) that communicates with a server with address s can now
be stated as follows.

Φserve(s, Pout)(m) ≜ ∃v. LB(12 , s, v) ∗ Pout(m, v)

Since all calls to the serve function need access to the main socket in order to receive requests,
we will keep the socket resource required in an invariant ILB which is shared among all the
threads:

ILB(n, z, a) ≜ z ↪→n a

The specification for the serve function becomes:{
ILB(n,main, amain) ∗ Dynamic((ip, p), A) ∗ IsNode(n) ∗ LB(1, s, v) ∗
amain Z⇒ Φrel (λ_.True, Pin , Pout) ∗ s Z⇒ Φrel (PLB(s), Pin , Pout)

}
⟨n; serve main ip p s⟩

{False}

The specification requires the address amain of the socket main to be governed by Φrel with
a trivial instantiation of Pval and the address s of the server to be governed by Φrel with Pval

instantiated by PLB . The specification moreover expects resources for a dynamic setup, the
invariant that owns the resource needed to verify use of the main socket, and a full instance
of the LB(1, s, v) resource for some arbitrary v.
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With this specification in place the complete specification of our load balancer is immediate
(note that it is parameterized by Pin and Pout ):

Static((ip, p), A, ϕrel (λ_.True, Pin , Pout)) ∗ IsNode(n) ∗ ∗
p′∈ports

Dynamic((ip, p′), A)

 ∗
(∗

s∈srvs
∃v. LB(1, s, v) ∗ s Z⇒ ϕrel (PLB(s), Pin , Pout)

)


⟨n; load_balancer ip p srvs⟩
{True}

where ports = [1100, · · · , 1100+ |srvs|]. In addition to the protocol setup for each server as
just described, for each port p′ ∈ ports which will become the endpoint for a corresponding
server, we need the resources for a dynamic setup, and we need the resource for a static setup
on the main input address (ip, p).

In the accompanying Coq development we provide an implementation of the addition ser-
vice from Section 3.1.3, both in the single server case and in a load balanced case. For this
particular proof we let the meta-language value v be a pair of integers corresponding to the
expected arguments. In order to instantiate the load balancer specification we choose

P add
in (m, (v1, v2)) ≜ m.body = serialize(v1, v2)

P add
out (m, (v1, v2)) ≜ m.body = serialize(v1 + v2)

with serialize being the same serialization function from Section 3.1.3. We build and verify two
distributed systems, (1) one consisting of two clients and an addition server and (2) one includ-
ing two clients, a load balancer and three addition servers. We prove both of these systems safe
and the proofs utilize the specifications we have given for the individual components. Notice
that Φrel (λ_.True, P add

in , P add
out ) and Φadd from Section 3.1.3 are the same. This is why we can

use the same client specification in both system proofs. Hence, we have demonstrated Aneris’
ability and support for horizontal composition of the same modules in different systems.

3.5 Case study: Bag service

While the load balancer demonstrates the use of node-local concurrency, its implementation
does not involve shared memory concurrency, i.e., synchronization among the node-local
threads. In order to handle multiple client requests simultaneously servers may employ con-
currency by forking multiple threads. However, such servers may still have data structures
or resources that are not safe to use in a concurrent setting. It is therefore often necessary
to deploy synchronization mechanisms to ensure correctness. Figure 3.6 shows the architec-
ture of a concurrent bag service that exploits multiple threads in order to handle several client
requests at the same time while working on a shared bag data structure.

Figure 3.7 shows a thread-safe implementation of a bag module that uses a linked list as
its internal representation of the bag and a lock in order to guarantee that only one thread at
a time operates on the linked list. A weak, but still useful specification is the following: Given
a predicate Ω, the bag contains elements x for which Ω(x) holds. When inserting an element
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Figure 3.6: The architecture of a concurrent bag service with threads working on a shared data
structure governed by a lock.

1 let newbag () =
2 let l = ref None in
3 let lock = newLock () in (l, lock)
4
5 let insert b e =
6 let (l, lock) = b in
7 acquire lock;
8 l := Some (e, !l);
9 release lock

10 let remove b =
11 let (l, lock) = b in
12 acquire lock;
13 let res =
14 match !l with
15 | Some (h, tl) => l := tl; Some h
16 | None => None
17 end in
18 release lock;
19 res

Figure 3.7: A thread-safe bag implemented using a linked list and a lock.

we give away the resources, and when removing an element we give back an element plus the
knowledge that it satisfies the predicate. This looks as follows:

∃ isBag .
∧ ∀n, v,Ω. isBag(n, v,Ω) ⊣⊢ isBag(n, v,Ω) ∗ isBag(n, v,Ω)
∧ ∀n,Ω. {IsNode(n)} newbag () {v. isBag(n, v,Ω)}
∧ ∀v, e. {isBag(n, v,Ω) ∗ Ω(e)} insert v e {True}
∧ ∀n, v,Ω. {isBag(n, v,Ω)} remove b {v. v = None ∨ ∃x. v = Somex ∧ Ω(x)}

Note how the isBag predicate is duplicable and therefore sharable among multiple threads.
The isBag predicate is defined as follows:

Pbag ≜ ∃u. ℓ 7→n u ∗ bagList(Ω, u)
isBag(n, v,Ω) ≜ ∃ℓ, l. v = (ℓ, l) ∗ isLock(n, l, Pbag)

where bagList is defined by recursion as the unique predicate satisfying

bagList(Ω, u) ≜ u = None ∨ ∃x, r. u = Some (x, r) ∗ Ω(x) ∗ bagList(Ω, r).

Note that the isLock predicate is parameterized by a user-defined resource Pbag that follows
the key resource: when the lock is acquired, the resources described by Pbag are given and the
resources have to be given back when the lock is released.
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1 let rec serve skt bag =
2 match receivefrom skt with
3 | Some (m, from) =>
4 if m = "" then
5 match Bag.remove bag with
6 | Some v => sendto skt v from
7 | None => sendto skt "" from
8 end
9 else
10 Bag.insert bag m; sendto skt "" from
11 | None => ()
12 end in serve skt bag

13 let bag_service a =
14 let skt = socket () in
15 let bag = newbag () in
16 socketbind skt a;
17 fork { serve skt bag };
18 fork { serve skt bag }
19
20 let bag_client arg a server =
21 let skt = socket () in
22 socketbind skt a;
23 sendto skt arg server;
24 listen (fun _ m _ -> m)

Figure 3.8: An implementation of a concurrent bag service in AnerisLang. The bag service
forks multiple threads for concurrently processing requests.

Figure 3.8 shows an AnerisLang implementation of a concurrent bag service. The main
function creates a socket and a bag and forks two threads each executing the the serve func-
tion. This function listens for incoming messages. If the input message is an empty string it
tries to remove an element from the bag and, if any, it sends the element back to the client, oth-
erwise an empty string. If the input message is nonempty it inserts the message into the bag
and acknowledges with an empty string. A bag client simply sends an argument to a server
and returns the response.

In order to provide a specification for the bag service we define the socket protocol Φbag

that will govern the socket on which the service listens for requests. Similar to the thread-safe
bag implementation, the socket protocol will also be parameterized by a predicate Ω.

insert(Ω,Ψ,m) ≜ m.body ̸= "" ∗ Ω(m.body) ∗ ∀m′. m′.body = "" ∗ Ψ(m′)

remove(Ω,Ψ,m) ≜ m.body = "" ∗ ∀m′. (m′.body = "" ∨ Ω(m′.body) ∗ Ψ(m′))

Φbag(Ω)(m) ≜ ∃Ψ. m.orig Z⇒ Ψ ∗ (insert(Ω,Ψ,m) ∨ remove(Ω,Ψ,m))

The protocol Φbag demands that the client should be bound to some protocol Ψ and that the
server can receive two types ofmessages fulfilling either insert(Ω,Ψ,m) or remove(Ω,Ψ,m)),
corresponding to either inserting an element into the bag or removing one. To insert an ele-
ment, the resources described by Ω(m.body) has to be provided and it should suffice for the
client to receive an empty string as a response. When asking to retrieve an element, either the
answer is the empty string or the message will satisfy Ω(m.body).

Using the socket protocol we can specify and verify the bag service as follows.

{Static(a,A,Φbag(Ω)) ∗ IsNode(n)}
⟨n; bag_service a⟩
{False}

The client code can either add or remove an element from the bag service, and the specification
is straightforward given a server address srv governed by Φbag(Ω).{

srv Z⇒ Φbag(Ω) ∗ Dynamic(a,A) ∗ IsNode(n) ∗
arg = "" ∨ (arg ̸= "" ∧ Ω(arg))

}
⟨n; bag_client arg a srv⟩
{v.v = "" ∨ Ω(v)}
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3.6 Case study: Two-phase commit

A typical problem in distributed systems is that of consensus and distributed commit; an op-
eration should be performed by all participants in a system or none at all. The two-phase
commit protocol (TPC) by [Gra78] is a classic solution to this problem. We study this protocol
in Aneris as (1) it is widely used in the real-world, (2) it is a complex network protocol and thus
serves as a decent benchmark for reasoning in Aneris, and (3) to show how an implementation
can be given a specification that is usable for a client that abstractly relies on some consensus
protocol.

The two-phase commit protocol consists of the following two phases, each involving two
steps:

1. a) The coordinator sends out a vote request to each participant.
b) A participant that receives a vote request replies with a vote for either commit or

abort.

2. a) The coordinator collects all votes and determines a result. If all participants voted
commit, the coordinator sends a global commit to all. Otherwise, the coordinator
sends a global abort to all.

b) All participants that voted for a commit wait for the final verdict from the coordi-
nator. If the participant receives a global commit it locally commits the transaction,
otherwise the transaction is locally aborted. All participants must acknowledge.

To provide general, reusable implementations and specifications of the coordinator and par-
ticipants implementing TPC, we do not define how requests, votes, nor decisions look like.
We leave it to a user of the module to provide decidable predicates matching the application
specific needs and to define the logical, local pre- and postconditions, P andQ, of participants
for the operation in question.

Our specifications use fractional ghost resources to keep track of coordinator and partic-
ipant state w.r.t. the coordinator and participant transition systems indicated in the protocol
description above. Similar to our previous case studies, we exploit partial ownership to limit
when transitions can be made. When verifying a participant, we keep track of their state
and the coordinator’s state and require all participants’ view of the coordinator state to be in
agreement through an invariant.

In short, our specification of TPC

• ensures the participants and coordinator act according to the protocol, i.e.,

– the coordinator decides based on all the participant votes,
– participants act according to the global decision,
– if the decision was to commit, we obtain the resources described by Q for all par-

ticipants,
– if the decision was to abort, we still have the resources described by P for all

participants,

• does not require the coordinator to be primordial, so the coordinator could change from
round to round.
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Figure 3.9: The coordinator state transition system.
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Figure 3.10: The participant state transition system.

Implementation. The abstract protocol steps are shown as transition systems in Figures 3.9
and 3.10 and an implementation of a TPC module that satisfies the conceptual description is
shown in Figure 3.11. Our abstract model differs slightly from the traditional diagram as we
reuse the same code and sockets for communication between coordinators and participants.
Every state is therefore tagged with a unique round number and dashed arrows are local tran-
sitions allowing reuse of the state transition systems by incrementing round numbers. To
allow each participant to locally transition to the INIT state upon round completion and still
communicating commit or abort, the INIT state is tagged with the previous result pr (initially,
COMMIT suffices).

The tpc_coordinatemodule expects an initial request message to be provided, along with
a bound socket, a list of participants, and a function to make a decision when all votes have
been received. Internally, it uses two local references; one to collect all the votes and one to
count the number of acknowledgments.

The tpc_participantmodule expects a socket and two handlers—one to decide on a vote
and one to finalize the decision made by the coordinator. When invoked, the module listens
for incoming requests, decides on a vote and waits for a global decision from the coordinator.
Since each node can employ concurrency, the blocking wait for the decision does not prevent
the client from doing concurrent work, in particular engaging in other rounds of TPC with
other coordinators. Notice as well that there are no round numbers in the implementation; the
round numbers are only in the abstract model to strengthen the specification.

Specification and protocols. In order to specify and prove the TPC protocol correct, we will
use the following resources, having a coordinator c and participants p ∈ ps:

• Parts(ps): Accounts for the set ps of participants for a concrete TPC round. The resource
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1 let tpc_coordinate m skt ps dec =
2 let count = List.length ps in
3 let msgs = ref [] in
4 let ack = ref 0 in
5 List.iter (fun n -> sendto skt m n) ps;
6 listen skt (fun handler m from ->
7 msgs := m :: !msgs;
8 if List.length !msgs = count
9 then () else listen skt handler);
10 let res = dec !msgs in
11 List.iter (fun n -> sendto skt res n) ps;
12 listen skt (fun handler m from ->
13 ack := !ack + 1;
14 if !ack = count then res
15 else listen skt handler)

1 let rec tpc_participant skt vote fin =
2 listen skt (fun _ m from ->
3 let act = vote m in
4 sendto skt act from;
5 listen skt (fun _ m from ->
6 fin m;
7 sendto skt "ACK" from;
8 tpc_participant skt vote fin))

Figure 3.11: An implementation of the two-phase commit protocol in AnerisLang.

is duplicable and unmodifiable.

• Coord(p, r, sc): Accounts for participant p’s view of the coordinators current state sC
(cf. Figure 3.9) in round r. The coordinator c owns an assertion regarding its own state
Coord(c, r, sC). We require that all parties agree which round and state the coordinator
is in. Technically, this is stated in an invariant, ITPC .

• Part(π, p, r, sP ): Accounts with fraction π for participant p’s current state sP (cf. Fig-
ure 3.10) in round r.

We leave it to a user of the module to provide decidable predicates isReq , isVote , isAbort
and isGlobal of type (String× N)→ iProp. The user is free to pick P : (Address× String)→
iProp and Q : (Address × N) → iProp, the local pre- and postcondition for each participant.
The socket protocol for the coordinator is shown below.

Φvote(m) ≜∃p, r, ps. m.orig = p ∗ Parts({p} ∪ ps) ∗ isVote(m.body, r) ∗
Coord(p, r,WAIT) ∗ (isAbort(m.body, r) ∗ Part(34 , p, r,ABORT) ∨
¬isAbort(m.body, r) ∗ Part(34 , p, r,READY))

Φack(m) ≜∃p, r, ps,m′, cs, pr. m.orig = p ∗ Parts({p} ∪ ps) ∗ Part(34 , p, r, INIT pr) ∗
(Coord(p, r,COMMIT) ∗ pr = COMMIT ∗Q(p, r) ∨
Coord(p, r,ABORT) ∗ pr = READY ∗ P (p,m′))

Φcoord (m) ≜Φvote(m) ∨ Φack(m)

For a participant p to send a vote to the coordinator c, it has to show that it is indeed a partic-
ipant Parts({p} ∪ ps), that the message is a vote for that round, that it knows the coordinator
is in theWAIT state, Coord(p, r,WAIT), and that the logical state of pmatches p’s actual vote.
For the participant to send an acknowledgment, it has to prove it transitioned to the INIT pr
where pr shouldmatch the global decisionmade by the coordinator. If the decisionwas to com-
mit, the participant provides the updated resources for Q, otherwise it returns the resources
described by P .

The socket protocol for the participants is as follows:

Φreq(p)(m) ≜∃r, ps, sP .Parts({p} ∪ ps) ∗ P (m.body, p) ∗
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isReq(m.body, r + 1) ∗m.orig Z⇒ Φcoord ∗
Part(34 , p, r, INIT sP ) ∗ Coord(p, r + 1,WAIT)

Φglob(p)(m) ≜∃r, ps, ga,ms, sC , sP .Parts({m′.orig | m′ ∈ ms}) ∗
isGlobal(m.body, r) ∗m.orig Z⇒ Φcoord ∗
Part(34 , p, r, sP ) ∗ Coord(p, r, sC) ∗
ga = {m′ | m ∈ ms ∧ isAbort(m′, r)}∗(∗

m′∈ms

isVote(ms.body, r) ∗ R(m′)

)
∗

(ga = ∅ ∧ ¬isAbort(m.body, r) ∧ sC = COMMIT) ∨
(ga ̸= ∅ ∧ isAbort(m.body, r) ∧ sC = ABORT)

Φpart(p)(m) ≜Φreq(p)(m) ∨ Φglob(p)(m)

In order to send a request for a round r+1 of TPC to a participant p, a coordinator has to show
p is indeed a participant of this instance and provide the resource described by P . The request
should also be valid (through the isReq predicate) and the coordinator should be bound to the
coordinator protocol Φcoord . Furthermore, the coordinator has to show it is in theWAIT state
and give up Part(34 , p, r, INIT sP ) in order to allow the participant to make a transition.

The coordinator can broadcast a global decision when having received a message from all
the participants (where ms is the set of messages received) and the decision is a valid global
decision. All the messages has to have been received and be valid votes. The coordinator also
has to be honest: if any participant replied with an abort message (ga ̸= ∅), the global message
and the final state of the coordinator has to be ABORT.

Notice that for each message to a participant, the coordinator will provide the assertion
m.orig Z⇒ Φcoord . This means the coordinator do not have to be primordial since the partici-
pant does not need to have prior knowledge of the coordinator. The coordinator could change
from round to round.

With the TPC protocols in place, we can finally give a specification to the twoTPCmodules.
The tpc_participant specification is straightforward:{

ITPC ∗ isReqSpec(req) ∗ isFinSpec(fin) ∗ Parts(ps) ∗
z ↪→n p ∗ p Z⇒ Φpart(p) ∗ Part(14 , p, r, INIT sP )

}
⟨n; tpc_participant z req fin⟩
{True}

where req and fin are appropriate handlers for requests and finalization. The specification
requires ownership of a bound socket bound by the participant protocolΦpart(p) and fractional
ownership of its own state, initialized to be INIT. Furthermore, the handlers req and fin should
satisfy simple specifications that we elide to the Coq development.
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The specification for tpc_coordinate is more involved:
ITPC ∗ isDecSpec(dec) ∗ isReq(m, r + 1) ∗ Parts(ps) ∗ IsNode(n) ∗
z ↪→n c ∗ a Z⇒ Φcoord ∗ Coord(c, r, INIT sC) ∗(∗

p∈ps
p Z⇒ Φpart(p) ∗ Part(34 , p, r, INIT sP ) ∗ Coord(p, r, INIT sC) ∗ P (p,m)

)


⟨n; tpc_coordinate m z ps dec⟩

⟨n; v⟩.∃sC , sP . isGlobal(v, r + 1) ∗ Coord(c, r + 1, sC) ∗ z ↪→n c(∗
p∈ps

Coord(p, r + 1, sC) ∗ Part(34 , p, r, INIT sP )

)
∗(

isAbort(v, r + 1) ∗ sC = ABORT ∗ sP = ABORT ∗∗
p∈ps
∃m.P (p,m)

)
∨(

¬isAbort(v, r + 1) ∗ sC = COMMIT ∗ sP = COMMIT ∗∗
p∈ps

Q(p, r + 1)

)


To invoke tpc_coordinate, one has to provide a valid requestm, a socket z already bound to
some address guarded by theΦcoord protocol, a list of participants p, and a decision handler dec.
For each participant p, the address should be governed Φpart(p) and the resources describing
the participant’s view of its own and the coordinator’s state should be passed along. Finally,
the resources described by P (p,m) must also be provided.

The postcondition here is the most exciting part: it is exactly what one would expect.
Either all participants along with the coordinator agreed to commit in which case we obtain
Q(p, r) for each participant p or they all agreed to abort, in which case we get back P (p,m)
for each participant p.

3.7 Case study: Replicated logging

In a distributed replicated logging system, a log is stored on several databases distributed
across several nodes where the system ensures consistency among the logs through a con-
sensus protocol. We have verified such a system implemented on top of the TPC coordinator
and participant modules to showcase vertical composition of complex protocols in Aneris as
illustrated in Figure 3.12. The blue parts of the diagram constitute node-local instantiations of
the TPC modules invoked by the nodes to handle the consensus process. As noted by Sergey
et al. [SWT18], clients of core consensus protocols have not received much focus from other
major verification efforts [Haw+15; Rah+15; Wil+15].

Our specification of a replicated logging system draws on the generality of the TPC spec-
ification. In this case, we use fractional ghost state to keep track of two related pieces of
information. The first keeps a logical account of the log l already stored in the database at
a node at address a, LOG(π, a, l). The second one keeps track of what the log should be up-
dated to, if the pending round of consensus succeeds. This is a pair of the existing log l and the
(pending) change s proposed in this round, PEND(π, a, (l, s)). We exploit fractional resource
ownership by letting the coordinator, logically, keep half of the pending log resources at all
times. Together with suitable local pre- and postconditions for the databases, this prevents the
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Figure 3.12: The architecture of a replicated logging system implemented using the TPC mod-
ules (the blue parts of the diagram) with a coordinator and two databases (S1 and S2) each
storing a copy of the log.

databases from doing arbitrary changes to the log. Concretely, we instantiate P and Q of the
TPC module as follows:

Prep(p)(m) ≜∃l, s. (m = "REQUEST_" ++ s) ∗ LOG(12 , p, l) ∗ PEND(
1
2 , p, (l, s))

Qrep(p)(n) ≜∃l, s. LOG(12 , p, l ++ s) ∗ PEND(12 , p, (l, s))

where ++ denotes string concatenation. Note how the request message specifies the proposed
change (since the string that we would like to add to the log is appended to the requests
message) and how we ensure consistency by making sure the two ghost assertions hold for
the same log. Even though l and s are existentially quantified, we know the logs cannot be
inconsistent since the coordinator retains partial knowledge of the log. Due to the guarantees
given by TPC specification, this implies that if the global decision was to commit a change
this change will have happened locally on all databases, cf. LOG(12 , p, l ++ s) in Qrep, and if
the decision was to abort, then the log remains unchanged on all databases, cf. LOG(12 , p, l) in
Prep.

Implementation and specification. An implementation of a replicated logging system is shown
in Figure 3.13. logger creates a socket skt, binds the address a to it, and initiates a TPC round
for all databases in dbs. The decision handler dec is called by the TPC coordinator module
when all votes have been received.

From the perspective of the database, db, an internal reference log keeps the log.6 Upon
an incoming request, the message is parsed and the proposed change is stored in the wait
reference. If the global decision by logger is to commit, the string stored in wait will be
appended to the log. To give a logical account of the local state of each database we introduce
the fractional ghost resources LOG(π, p, l) and PEND(π, p, (l, s)) that keep track of the log l
and the proposed change s for each participant p. With the resources in place, the specification

6Ideally, this would be stable storage, however, for the sake of the example a reference suffices.
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1 let logger log a m dbs =
2 let skt = socket () in
3 let dec = fun msgs ->
4 let r = List.fold
5 (fun a m -> a && m = "COMMIT") true msgs in
6 if r then "COMMIT" else "ABORT" in
7 socketbind skt a;
8 tpc_coordinate ("REQUEST_" ^ m) skt dbs dec

9 let db addr =
10 let skt = socket() in
11 let wait = ref "" in
12 let log = ref "" in
13 let req = (fun m -> wait := m; "COMMIT") in
14 let fin = fun m ->
15 if m = "COMMIT"
16 then log := !log ^ !wait else () in
17 socketbind skt addr;
18 tpc_participant skt req fin

Figure 3.13: An implementation in AnerisLang of a replicated logging system that uses the
two-phase commit modules . ˆ denotes string concatenation in AnerisLang.

of db is straightforward and follows from the specification of the TPC participant module:{
ITPC ∗ Dynamic(a,Φpart(a)) ∗ IsNode(n) ∗
Part(14 , a, r, INIT sP ) ∗ LOG(12 , a, "")

}
⟨n; db a⟩
{True}

ITPC ∗ Parts(dbs) ∗ FreePort(a) ∗ isReq(m) ∗ Part(34 , p, r, INIT sP ) ∗∗
p∈dbs

∃sP , p Z⇒ Φpart(p) ∗ Coord(p, r, INIT sP ) ∗ Prep(p,m)


⟨n; logger log a m dbs⟩
⟨n; v⟩. ∃m, r.∗

p∈dbs
∃sP .Coord(p, r, INIT sP ) ∗ Part(34 , p, r, INIT sP ) ∗v = "COMMIT" ∗ ∗

p∈dbs
Qrep(p, r)

 ∨
v = "ABORT" ∗ ∗

p∈dbs
Prep(p,m))




Verification of our replicated logging client using two-phased-commit follows directly in a

modular, node-local fashion by applying the specification of tpc_coordinate. Due to the TPC
specification, this implies that if the global decision was to commit a change this change will
have happened locally on all databases, cf. LOG(12 , p, l@s) in Qrep, and if the decision was to
abort, then the log remains unchanged on all databases, cf. LOG(12 , p, l) in Prep.

3.8 Related work

Verification of distributed systems has received a fair amount of attention. In order to give a
better overview, we have divided related work into four categories.

Model-checking of distributed protocols. Previous work on verification of distributed systems
has mainly focused on verification of protocols or core network components through model-
checking. Frameworks for showing safety and liveness properties, such as SPIN [Hol97], and
TLA+ [Lam92], have had great success. A benefit of using model-checking frameworks is that
they allow to state both safety and liveness assertions as LTL assertions [Pnu77]. Mace [Kil+07]
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provides a suite for building and model-checking distributed systems with asynchronous pro-
tocols, including liveness conditions. Chapar [LBC16] allows for model-checking of programs
that use causally consistent distributed key-value stores. Neither of these languages provide
higher-order functions or thread-based concurrency.

Session types for giving types to protocols. Session types have been studied for a wide range
of process calculi, in particular, typed π-calculus. The idea is to describe two-party commu-
nication protocols as a type to ensure communication safety and progress [HVK98]. This
has been extended to multi-party asynchronous channels [HYC08], multi-role types [DY11]
which informally model topics of actor-based message-passing and dependent session types
allowing quantification over messages [TCP11]. Our socket protocol definitions are quite sim-
ilar to the multi-party asynchronous session types with progress encoded by having suitable
ghost-assertions and using the magic wand. Actris [HBK20] is a logic for session-type based
reasoning about message-passing in actor-based languages.

Hoare-style seasoning about distributed systems. Disel [SWT18] is a Hoare Type Theory for
distributed program verification in Coq with ideas from separation logic. It provides the novel
protocol-tailored rules WithInv and Frame which allow for modularity of proofs under the
condition of an inductive invariant and distributed systems composition. In Disel, programs
can be extracted into runnable OCaml programs, which is on our agenda for future work.

IronFleet [Haw+15] allows for building provably correct distributed systems by combining
TLA-style state-machine refinement with Hoare-logic verification in a layered approach, all
embedded in Dafny [Lei10]. IronFleet also allows for liveness assertions. For a comparison
of Disel and IronFleet to Aneris from a modularity point of view we refer to the Introduction
section.

Other distributed verification efforts. Verdi [Wil+15] is a framework for writing and verifying
implementations of distributed algorithms in Coq, providing a novel approach to network se-
mantics and fault models. To achieve compositionality, the authors introduced verified system
transformers, that is, a function that transforms one implementation to another implemen-
tation with different assumptions about its environment. This makes vertical composition
difficult for clients of proven protocols and in comparison AnerisLang seems more expressive.

EventML [Rah+15; Rah+17] is a functional language in the ML family that can be used for
coding distributed protocols using high-level combinators from the Logic of Events, and verify
them in the Nuprl interactive theorem prover. It is not quite clear how modular reasoning
works, since one works within the model, however, the notion of a central main observer is
akin to our distinguished system node.

3.9 Conclusion

Distributed systems are ubiquitous and hence it is essential to be able to verify them. In this
chapter we presented Aneris, a framework for writing and verifying distributed systems in
Coq built on top of the Iris framework. From a programming point of view, the important
aspect of AnerisLang is that it is feature-rich: it is a concurrentML-like programming language
with network primitives. This allows individual nodes to internally use higher-order heap and
concurrency to write efficient programs.
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Module Implementation Specification Proofs

Load balancer (Section 3.4)
Load balancer 18 78 95

Addition service (Section 3.1.3)
Server 11 15 38
Client 9 14 26
Adequacy (1 server, 2 clients) 5 12 62
Adequacy w. Load Balancing 16 28 175
(3 servers, 2 clients)

Two-phase commit (Section 3.6)
Coordinator 18 181 265
Participant 11 280

Replicated logging (Section 3.7)
Instantiation of TPC - 85 -
Logger 22 19 95
Database 24 20 190
Adequacy 13 - 137
(2 dbs, 1 coordinator, 2 clients)

Table 3.1: Sizes of implementations, specifications, and proofs in lines of code. When proving
adequacy, the system must be closed.

The Aneris logic provides node-local reasoning through socket protocols. That is, we can
reason about individual nodes in isolation as we reason about individual threads. We demon-
strate the versatility of Aneris by studying interesting distributed systems both implemented
and verified within Aneris. The adequacy theorem of Aneris implies that these programs are
safe to run.

Relating the verification sizes of the modules from Table 3.1 to other formal verification
efforts in Coq indicates that it is easier to specify and verify systems in Aneris. The total
work required to prove two-phase commit with replicated logging is 1,272 lines which is just
half of the lines needed for proving the inductive invariant for TPC in other works [SWT18].
However, extensive work has gone into Iris Proof Mode thus it is hard to conclude that Aneris
requires less verification effort and does not just have richer tactics.



4 Distributed Causal Memory

Abstract

We present the first specification and verification of an implementation of a causally-
consistent distributed database that supports modular verification of full functional cor-
rectness properties of clients and servers. We specify and reason about the causally-
consistent distributed database in Aneris, a higher-order distributed separation logic for
an ML-like programming language with network primitives for programming distributed
systems. We demonstrate that our specifications are useful, by proving the correctness
of small, but tricky, synthetic examples involving causal dependency and by verifying a
session manager library implemented on top of the distributed database. We use Aneris’s
facilities for modular specification and verification to obtain a highly modular develop-
ment, where each component is verified in isolation, relying only on the specifications
(not the implementations) of other components. We have used the Coq formalization of
the Aneris logic to formalize all the results presented in the chapter in the Coq proof
assistant.

The ubiquitous distributed systems of the present day internet often require highly available
and scalable distributed data storage solutions. The CAP theorem [GL02] states that a dis-
tributed database cannot at the same time provide consistency, availability, and partition (fail-
ure) tolerance. Hence, many such systems choose to sacrifice aspects of data consistency for
the sake of availability and fault tolerance [Bai+13; Cha+08; Llo+11; Tyu+19]. In those systems
different replicas of the database may, at the same point in time, observe different, inconsis-
tent data. Among different notions of weaker consistency guarantees, a popular one is causal
consistency. With causal consistency different replicas can observe different data, yet, it is
guaranteed that data are observed in a causally related order: if a node n observes an oper-
ation x originating at node m, then node n must have also observed the effects of any other
operation that took place on node m before x. Causal consistency can, for instance, be used
to ensure in a distributed messaging application that a reply to a message is never seen before
the message itself.

Two simple, illustrative examples of causal dependency are depicted in Figure 4.1; pro-
grams executed on different nodes are separated using double vertical bars. Notice that in our
setting all keys are uninitialized at the beginning and the read operation returns an optional
value indicating whether or not the key is initialized. In both examples, the read(x) command
returns the value 37, as indicated by the comment in the code, as the preceding wait command
waits for the effects of write(y, 1) to be propagated. In the example on the left (illustrating
direct causal dependence) the write(x, 37) command immediately precedes the write(y, 1)
command on the same node; hence any node that observes 1 for key y should also observe
37 for key x. However, in the example on the right, the write(y, 1) command is executed on
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write(x, 37)

write(y, 1)

∥∥∥∥∥ wait(y = 1)

read(x) // reads Some 37

write(x, 0)

write(x, 37)

∥∥∥∥∥ wait(x = 37)

write(y, 1)

∥∥∥∥∥ wait(y = 1)

read(x) // reads Some 37

Figure 4.1: Two examples of causal dependency: direct (left) and indirect (right, [Llo+11]).

the middle node only after the value of 37 is observed for key x on that node; hence, in this
example too, any node that observes 1 for key y should also observe 37 for key x.

Programming distributed systems is challenging and error-prone [Guo+13], especially in
the presence of weaker consistency models like causal consistency which allow concurrent
(causally independent) writes [BA12]. Consequently, there have been several efforts in recent
years to provide tools for analysis and verification of distributed database systems with weaker
notions of consistency, e.g., Gotsman et al. [Got+16], Kaki et al. [Kak+18], Lesani et al. [LBC16],
and Xiong et al. [Xio+19]. Those works give a high-level model of a (programming) language
with primitives for reading from and writing to a distributed database and provide semantics
for that language. The semantics is then used to build sound program analysis tools or to verify
correctness of implementations of distributed databases and/or their clients. The semantics
presented in the aforementioned works usually keeps track of the history of operations and
(directly or indirectly) their dependence graph. A common aspect of these works is that the
developed systems, be it a program logic, a program analysis tool, or both, are designed with
the express purpose of verifying correctness of closed programs w.r.t. a specific notion of
consistency. Thus they do not support general modular verification where components of the
program are verified separately, although Lesani et al. [LBC16] do support the verification of
databases and their clients independently. Moreover, importantly, the aforementioned works
do not scale to verification of full functional correctness of programs and do not scale to a
larger setting where the replicated database is just one component of a distributed system.

In this work, we present the first specification and verification of an implementation of a
causally-consistent distributed database that supports modular verification of full functional
correctness of clients and servers. In the rest of the introduction we briefly discuss the im-
plementation, our verification methodology, and the examples of clients that we have verified
against our specification.

Implementation, programming language, and program logic. We implement the pseudo code
presented in the seminal work of [Aha+95] for a replicated, distributed database in Aneris-
Lang. AnerisLang [Kro+20a] is a concurrent (multiple threads on each node) ML-like pro-
gramming language with network primitives (UDP-like sockets) designed for programming
distributed systems.1 Our implementation makes use of a heap-allocated dictionary for stor-
ing the key-value pairs and uses networking primitives to propagate updates among replicas.
Each replica has an in-queue and an out-queue. On each replica, there are three concurrently
running threads: the send thread, the receive thread, and the apply thread. The send thread
sends updates from the out-queue (enqueued by the write operation) to other replicas. The

1AnerisLang as presented by Krogh-Jespersen et al. [Kro+20a] features duplicate protection, i.e., every sent
message is received at most once. This feature has since been relaxed.
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receiver thread receives updates from other replicas over the network and enqueues them in
the in-queue. The apply thread applies updates from the in-queue to the local key-value store.

The operational semantics of AnerisLang is formally defined in the Coq proof assistant
together with the Aneris program logic [Kro+20a]. The Aneris program logic is a higher-order
distributed concurrent separation logic which facilitates modular specification and verification
of partial correctness properties of distributed programs. The Aneris logic itself is defined on
top of the Iris program logic framework [Jun+16; Jun+18b; Jun+15]. We have used the Aneris
logic, Iris, and the Iris proof mode [Kre+18; KTB17] to formalize all the results presented in
this work in the Coq proof assistant.

Mathematical model and specification. Our Aneris specification of the distributed database is
based on a mathematical model tracking the abstract state of the local key-value stores, i.e., the
history of updates. Our specification represents this model using Iris’s ghost theory to track
auxiliary state (state that is not physically present at runtime and only tracked logically for
verification purposes). We then use Iris invariants to enforce that the physical state of each
replica is consistent with the tracked history at all times. We further enforce that the histories
tracked by the ghost state are valid. We will define validity later; for now it suffices to say
that, in our work, viewed at a high level of abstraction, causal consistency is a property of
valid histories.

The history of updates in our mathematical model consists of the following information:

1. For each replica, we track a local history of all memory updates that the replica has ob-
served since its initialization. It includes both local write operations (which are observed
immediately) and updates due to synchronization with other replicas.

2. We also track an abstract global memory that, for each key, keeps track of all write events
to that key (by any replica in the system).

We refer to the elements of local histories as apply events and to the elements of the abstract
global memory as write events. Both apply and write events carry all the necessary informa-
tion about the original update, including the logical time of the corresponding apply or write
operation. We model logical time using a certain partial order; see Section 7.5 for more details.
The ordering is defined such that it reflects causal order: if the time of event e is strictly less
than the time of e′, then e′ causally depends on e, and if the time of e and e′ are incomparable,
then e and e′ are causally independent. This allows us to formulate the causal consistency of
the distributed database as follows:

If a node observes an apply event a, it must have already observed
all write events of the abstract global memory that happened before
(according to logical time) the write event corresponding to a.

(Causal consistency)

Moreover, we can prove that this property is a consequence of the validity of histories.
The specifications we give to the read andwrite operations essentially reflect the behaviors
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of these operations into the histories. The intuitive reading of our specifications is as follows:2

• Either, read(k) returns nothing, in which case we know that the local history
contains no observed events for key k.

• Or, read(k) returns some value v, in which case we know that there is an
apply event a in the local history with value v; a has a corresponding write
event in the global memory; and a is a maximal element (w.r.t. time and hence
causality) in the local history.

(Read spec)

After the write operation write(k, v) there is a new write event w added to the
global memory and a new apply event a corresponding to it in the local history,
and a is the maximum element (w.r.t. time and hence causality) of the local
history, i.e., the event a causally depends on all other events in the local history.

(Write spec)

Note that the specification does not say anything about the inter-replica communication, nei-
ther does it refer to some explicit causal relation. It merely assert properties of the history
tracked in the ghost state. Indeed, it is our invariants that associate the ghost state of a valid
history with the physical states of the replicas that allow us to reason about causal consis-
tency. Crucially, this indirection through histories enables us to use the above specifications
modularly. This is essentially because our specifications only refer to the relevant parts of the
history, i.e., the global memory for the key in question and the local history for the replica
performing the operation.

We present our formal specifications for the read and write operations in Section 4.3.
However, the specification for write presented in Section 4.3, and used throughout most of
the chapter, is not general enough to support modular Iris-style reasoning about clients be-
cause it does not support reasoning about concurrent accesses to keys. The reason is that
the write operation is not atomic, as required for Iris-style (and, more generally, concurrent-
abstract-predicate-style [Din+10]) reasoning using invariants. The read operation is, of course,
not atomic either, but the specification for it only involves so-called persistent predicates and
hence is general enough. The issue with the write operation is an instance of the known chal-
lenge of how to give modular specifications for concurrent modules, see, e.g., Dinsdale-Young
et al. [DRG18] and Birkedal and Bizjak [BB17, Section 13]. Hence we use one of the solu-
tions to this modularity challenge and present our full specification for the write operation
in so-called HOCAP-style [SBP13], see Section 4.7. With our HOCAP-style specification we
do indeed support modular reasoning about clients using Iris invariants. (It does take a little
while to get used to HOCAP-style specifications; that is why we present the official specifica-
tion for the write operation relatively late in the chapter.) Note however that the specification
for the write operation given in Section 4.3 is not wrong but only weaker than the general
HOCAP-style specs given in Section 4.7, and can in fact be derived from it. This rule, as we
will see in Section 4.3, can be used in situations where there are no concurrent accesses to the
key being written to.

Clients verified. We demonstrate the utility of our specifications by verifying a number of
interesting examples, including the two examples presented in Figure 4.1. As a more realistic
case study, we implement a session manager library that allows clients to communicate with
a replica over the network, on top of our distributed database; we use our specifications to

2Notice that the read operation returns an optional value.
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prove that the session manager satisfies four session guarantees for client-centric consistency
[Ter+94].

Contributions. In summary, we make the following contributions:

• Wepresent a simple and novelmathematicalmodel of distributed causalmemory amenable
to building appropriate abstractions for reasoning about implementing and using such
memory.

• On top of this model, we define high-level modular specifications for reading from and
writing to a causally-consistent distributed database. Our specifications are node-local
and thread-local: in the client’s codewheremultiple threads (possibly on different nodes)
interact with the database, all components can be verified separately from each other.

• We show that those high-level specifications are actually met by the original descrip-
tion of a causally-consistent distributed database from the 1995 seminal paper [Aha+95]
which we have implemented in a realistic ML-like language with explicit network prim-
itives.

• We show that our specifications provide the expected causality guarantees on standard
examples from the literature. Moreover, we implement a session manager library that
allows clients and replicas to run on different nodes, and show that our specifications
imply the session guarantees for library clients.

• We have formalized all results on top of the Aneris Logic in the Coq proof assistant.

Outline. We start by presenting our implementation of a causally-consistent distributed database
in AnerisLang in Section 4.1. This allows us to match the intuition behind the key ideas of our
approach with concrete code. Then, in Section 7.5 we present those parts of our model of
causality that are needed for client-side reasoning. In Section 4.3 we show how to turn the
model into abstract program logic predicates and present the specifications of the distributed
database operations. We also show how the specifications can be used to reason about the
client program examples presented above. In Section 4.5 we present a more extensive case
study of a client program, a sesssion-manager library, and show how we can use our specifica-
tions to reason about session guarantees. In Section 4.6 we then prove that the implementation
of the distributed database meets our specification. In Section 4.7 we present the HOCAP-style
specification for the write operation. After discussing related work in Section 5.7 we conclude
and discuss future work in Section 7.9.

4.1 A causally-consistent distributed database

In this section we present our AnerisLang implementation3 of the causally-consistent dis-
tributed database described by Ahamad et al. [Aha+95]. See Figure 4.2 for the implementation.
Conceptually, the implementation can be split into two parts:

3AnerisLang is an ML-like language with a syntax close to OCaml. For readability purposes, the code we show
here makes use of some OCaml constructs that are formally slightly different in AnerisLang (e.g., we write [], :: for
lists, which are implemented in AnerisLang using pairs).
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1 let init l i =
2 let db = ref (Dict.empty ()) in
3 let t = ref (VC.make (length l) 0) in
4 let (iq, oq) = (ref [], ref []) in
5 let lock = newlock () in
6 let skt = socket () in
7 socketbind skt (List.nth l i);
8 fork (apply db t lock iq i);
9 fork (send_thread i skt lock l oq);
10 fork (receive_thread skt lock iq);
11 (read db lock, write db t oq lock i)
12
13 let read db lock k =
14 acquire lock;
15 let r = Dict.lookup k !db in
16 release lock; r
17
18 let write db t oq lock i k v =
19 acquire lock;
20 t := VC.incr !t i;
21 db := Dict.insert k v !db;
22 oq := (k, v, !t, i) :: !oq;
23 release lock
24
25 let receive_thread skt lock iq =
26 listen skt (fun handler m from ->
27 acquire lock;
28 iq := (we_deser m) :: !iq;
29 release lock;
30 listen skt handler)

31 let check t i w =
32 let (wt, wo) = (pi3 w, pi4 w) in
33 let rec aux l r j = match (l, r) with
34 | a :: l’, b :: r’ ->
35 (if j = wo then a = b + 1 else a <= b)
36 && aux l’ r’ (j + 1)
37 | [], [] -> true
38 | _ -> false
39 in (i != wo) && (wo < length t) && (aux wt t 0)
40
41 let rec apply db t lock iq i =
42 acquire lock;
43 match (find (check !t i) !iq) with
44 | Some (w, iq’) ->
45 iq := iq’;
46 db := Dict.insert (pi1 w) (pi2 w) !db;
47 t := VC.incr !t (pi4 w)
48 | None -> ()
49 end;
50 release lock; apply db t lock iq i ()
51
52 let rec send_thread i skt lock l oq =
53 acquire lock;
54 match !oq with
55 | [] -> release lock
56 | w :: oq’ ->
57 oq := oq’; release lock;
58 broadcast skt (we_ser w) i l
59 end;
60 send_thread i skt lock l oq

Figure 4.2: Implementation of a causally-consistent distributed database replica.

• Three operations, init, read, and write allow clients respectively to initialize a local
database, and read from and write to the distributed database on a particular replica i.

• Three other operations, send_thread, receive_thread, and apply are spawned during
the initialization as non-terminating concurrently running threads that propagate up-
dates between initialized replicas and which enforce that every replica applies locally
all other replicas’ updates in some order that respects causal dependencies.

Because init returns to the user a pair of partially applied read and write functions, the user
only needs to supply readwith a key on which the local store db should be read and to supply
write with a key and value for which the db should be updated. The sending, receiving, and
apply threads, which are running in a loop concurrentlywith the user’s calls to read and write,
are hidden from the user, who does not need to know about the underlying message-passing
implementation. Thus once a replica is initialized, the user will access the local memory on
the replica as if they were manipulating locally one global distributed memory.

Each replica has a local heap on which it allocates and further makes use of the following
data:

• a dictionary db for storing the key-value pairs to implement causal memory locally;

• a vector clock t to timestamp outgoing updates and check dependencies of incoming
updates. A vector clock t consists of a vector ofn natural numbers, where the jth number
t[j] indicates how many updates has been applied locally so far from the replica j;
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• an in-queue iq and an out-queue oq for receiving/sending local updates among replicas;

• a UDP socket skt bound to the socket address of the replica;

• and a lock to control sharing of above-mentioned data among different concurrent
threads.

Vector clocks are the key mechanism by which the implementation enforces that the order
in which updates are applied locally on each replica respects the causal order of the entire
system. This is enforced in the following way.

Tomake use of vector clocks, each write k v call is associated with awrite event (k, v, t, i)
where projection t[i] describes the number of calls to write executed on a replica i (including
the current call itself), and all other projections t[j] describe the number of updates received
from replica j and applied locally on replica i at the time when the update write k v takes
place.

When the dictionary db and the vector clock t are updated by the call write k v on a
replica i, before the call terminates, it adds the associated write event (k, v, t, i) to the outgoing
queue oq. Once the send_thread acquires the lock to get access to the queue oq, it serializes
the write event into a message and broadcasts to all other replicas.

To receive those update messages, each replica runs a receive_thread which listens on
the socket skt, and when it gets a new message msg from the replica o, it deserializes it back
to a write eventw = (k, v, t, o), and adds it to the incoming queue iq. As a matter of notation,
for a write event w = (k, v, t, o), we write w.k for the key k, w.v for the value v, etc.

When the apply operation acquires the lock, it consults the incoming queue iq in search
of a write event that can be applied locally. To this end, it calls the find (check !t i) !iq
subroutine with the current value of the vector clock !t and the index of the replica i. The
idea is to search through the queue iq until a write event w that passes the test is found
(check !t i w holds) and retrieved from iq, which is the case when the following conditions
are satisfied:

1. The origin w.o of the event w must be different from i, so that w corresponds indeed
to an external write operation, and be within bounds [0, n[ (recall that t is a vector of
length n).

2. For the projection j = w.o (the event w’s own origin), the number w.t[j]must be equal
to !t[j] + 1, which captures the intuition that the event w must be the most recent write
from the replica j that the replica i did not yet observe.

3. For all other projections p different from j, the condition w.t[p] ≤!t[p] should hold,
which captures the intuition that if the write eventw passes the dynamic check, it means
that any memory update on which w causally depends has already been locally applied by
the replica i.

We remark that the pseudo-code in the original paper by Ahamad et al. [Aha+95] requires
a reliable network, e.g., that network communication happens using TCP. This is important
for showing liveness properties (e.g., every replica eventually applies all messages from other
replicas). In this work, we focus on safety properties and the properties we show (e.g., on any
replica, all updates that have been applied are causally consistent) are met by our implemen-
tation regardless of whether the network is reliable or not.
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Events

(k, v, t, o) ∈ WriteEvent ≜ Keys× Value×Time×N
(k, v, t, o,m) ∈ ApplyEvent ≜ Keys× Value×Time×N×N
Maximals(X) ≜ {x |x ∈ X ∧ ∀y ∈ X.¬(x.t < y.t)}

Maximum(X) ≜

{
Some x if x ∈ X ∧ ∀y ∈ X. x ̸= y =⇒ y.t < x.t

None otherwise

Observe : ℘fin(ApplyEvent) fin−⇀ ApplyEvent

⌊·⌋ : ApplyEvent fin−⇀ WriteEvent

Memory

si ∈ LocalHistory ≜ ℘fin(ApplyEvent)

M ∈ GlobalMemory ≜ Keys fin−⇀ ℘fin(WriteEvent)

States

{|M ; s1, . . . , sn |} ∈ GlobalState ≜ GlobalMemory× LocalHistory× . . .× LocalHistory

ValidG : GlobalState→ iProp

Properties of Valid States

(Local Extensionality) ∀a1, a2 ∈ si. vc(a1) = vc(a2) =⇒ a1 = a2

(Global extensionality) ∀k1, k2 ∈ dom(M), w1 ∈M(k1), w2 ∈M(k2).

vc(w1) = vc(w2) =⇒ w1 = w2

(Causal consistency) ∀k ∈ dom(M), w ∈M(k).

(∃a ∈ si. vc(w) < vc(a)) =⇒ ∃a′ ∈ si. ⌊a′⌋ = w

(Origin of write events) ∀k ∈ dom(M), w ∈M(k).

∃i ∈ {0..n− 1} , a ∈ si. i = origin(w) ∧ ⌊a⌋ = w

(Origin of apply events) ∀a ∈ si. ∃k ∈ dom(M), w ∈M(k). ⌊a⌋ = w

Figure 4.3: Mathematical terminology for a distributed causal memory with an abstract notion
of validity.

4.2 Mathematical model

In this section we formalize the key ideas of our mathematical model of causality. Figure 4.3
shows the model definitions and properties needed to reason about clients.

In the model, a write event is represented much as in the implementation, namely as a
four-tuple (k, v, t, o) consisting of a key, a value, the time, and the index of the replica on
which the write event happened. In the concrete implementation time is represented using
vector clocks, but to reason about client code, all we need is an abstract notion of time, and
therefore our model uses a notion of logical time, represented by a partial order ≤ (we write
< for the strict version of it). We can decide whether two write events w1 and w2 are causally
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related by comparing their times: if w1.t < w2.t, then w1 must have happened before w2, and
w2 is causally dependent onw1. Whenw1.t andw2.t are incomparable, then the eventsw1 and
w2 are causally unrelated.

To account for how write events are applied locally on each replica we use the notion of
an apply event. Thus an apply event only makes sense in the context of a particular replica.
Formally, given a replica i, an apply event is represented by a five-tuple a = (k, v, t, o,m),
where m is the number of write events applied on replica i. We refer to m as the sequence
identifier of a. When i = o, the apply event corresponds to a write operation invoked on the
replica itself, whereas if i ̸= o, then the apply event corresponds to a write event received from
replica i. Given an apply event a = (k, v, t, o,m), we denote by ⌊a⌋ the write event (k, v, t, o),
which we refer to as the erasure of a.

As explained in the introduction, we keep track of all write and apply events. The local
history of replica i, written si, is the set of all apply events observed by the replica since its
initialization. The abstract global memory, written M , is a finite map from keys to finite sets
of write events. We model the local key-value store for a replica i simply as a finite map from
keys to values.

Given a set X of write or apply events, Maximals(X) (resp. Maximum(X)) denotes the
set of maximal events (resp. the maximum event) w.r.t. the time ordering. Note that, for
any events e, e′ ∈ Maximals(X), the time of e and e′ are incomparable and hence e and e′

are causally unrelated. Given a non-empty set of apply events A, the event Observe(A) is
the maximum element of A w.r.t. the ordering of sequence identifiers. (If A is empty, we let
Observe(A) be some default apply event).

The global state {|M ; s1, . . . , sn |} consists of the abstract global memory and the local
histories of all replicas. Just keeping track of apply and write events is obviously not enough;
we also need to make sure that the local histories are always in a consistent state w.r.t. the
abstract global memory. This will be expressed using a notion of validity. The client need
not know the precise definition of validity, but only that there is some predicate ValidG on
global states, and that valid global states satisfy the properties listed in the figure. The local
and global extensionality properties express that apply events and write events are uniquely
identified by their times. The causal consistency property formalizes the intuitive description
of causality from the introduction. The origin of write property expresses that for every write
event there is at least one corresponding apply event on the replica where the write occurred.
The origin of apply event property says that every apply event must also be recorded in the
abstract global memory.

4.3 Specification

As discussed in the introduction, we use the Aneris program logic built on top of the Iris pro-
gram logic framework for our verification. In this section we present the Aneris specifications
of our distributed database operations: read, write, and init. A summary of the full specifi-
cation presented in the following is found in Figure 4.4.

In Section 4.3.1 we call to mind those aspects of Aneris and Iris that are necessary for fol-
lowing the rest of the chapter and introduce the abstract Iris predicates that are provided to
clients and used in the specification of the database operations. In Section 4.3.2 we present
some laws that hold for the abstract predicates and which the client may use for client-side
reasoning; the laws are the program logic version of the mathematical model from the previ-
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∃ GlobalInv : iProp.

∃ (·) ⇀s (·) : Keys→ ℘fin(WriteEvent)→ iProp.

∃ (·) ⇀u (·) : Keys→ ℘fin(WriteEvent)→ iProp.

∃ Seen : N→ LocalHistory→ iProp.

∃ Snap : Keys→ ℘fin(WriteEvent)→ iProp.

∃ initToken : N→ iProp.

∃ ΦDB : Message→ iProp.

Snap(x, h) ∗ Snap(x, h′) ⊢ Snap(x, h ∪ h′)

∧ x ⇀u h ⊢ x ⇀u h ∗ Snap(x, h)
∧ . . .

∧ GlobalInv
NGI ∗ Seen(i, s) ∗ x ⇀u h ⊢

|⇛E ∀a ∈ s, w ∈ h. vc(w) < vc(a)⇒ ∃a′ ∈ s|x. ⌊a′⌋ = w

∧ True ⊢ |⇛E GlobalInv
NGI ∗

( ∗
0≤i<length(Addrlist)

initToken(i)
)
∗

(∗
k∈Keys

k ⇀u ∅
)
∗ initSpec(init)

initSpec(init) ≜
initToken(i) ∗ Fixed(A) ∗ ∗Addrlist[i] = (ipi, p) ∗

(ipi, p) ∈ A ∗ isList(Addrlist, v) ∗ FreePorts(ipi, {p}) ∗ ∗
z∈Addrlist

z Z⇒ ΦDB


⟨ipi; init(i, v)⟩{
(rd,wr). Seen(i,∅) ∗ readSpec(rd, i) ∗ writeSpec(wr, i)

}
readSpec(read, i) ≜

{Seen(i, s)}
⟨ipi; read(x)⟩{
v.
∃s′ ⊇ s. Seen(i, s′) ∗ (v = None ∧ s′|x = ∅) ∨
(∃a ∈ s′|x. v = Some a.v ∗ Snap(x, {⌊a⌋}) ∗ a ∈ Maximals(s′|x) ∗ Observe(s′|x) = a)

}
writeSpec(write, i) ≜

∀E , k, v, s, P,Q.NGI ⊆ E ⇒

�


∀s′, a. (s ⊆ s′ ∗ a ̸∈ s′ ∗ a.k = k ∗ a.v = v ∗ P )

≡−∗⊤ E ∀h.

(
⌊a⌋ ̸∈ h ∗ ⌊a⌋ ∈ Maximals(h ⊎ {⌊a⌋}) ∗ k ⇀s h∗
Seen(i, s′ ⊎ {a}) ∗Maximum(s′ ⊎ {a}) = a

)
≡−∗E\NGI

k ⇀s h ⊎ {⌊a⌋} ∗ |⇛E ⊤Q a h s′

 ∗

{P ∗ Seen(i, s)} ⟨ipi; write(k, v)⟩
{
v.v = () ∗ ∃h, s′, a. s ⊆ s′ ∗Q a h s′

}
Figure 4.4: Summary of the full database specification.
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P,Q ∈ iProp ::= True | False | P ∧Q | P ⇒ Q | P ∨Q

| ∀x. P | ∃x. P | · · · (higher-order logic)
| P ∗Q | P ∗ Q | ℓ 7→n v | {P} ⟨n; e⟩ {x. Q} (separation logic)

| �P | P N | |⇛E1 E2P (Iris)

| z Z⇒ Φ | Fixed(A) | FreePorts(ip,P) (Aneris)

Figure 4.5: The fragment of Iris and Aneris relevant for this chapter.

ous section. Then we present the specifications for read and write operations in Section 4.3.3;
these specifications are node local and do not involve any distributed-systems-specific aspects.
In Section 4.3.4 we explain how the distributed database is initialized and present the specifica-
tion for the initialization operation; this specification naturally involves distributed-systems-
specific aspects. Finally, in Section 4.4 we give a proof sketch of the client programs from the
introduction.

4.3.1 Iris, Aneris, resources, and tracking the state of the distributed database

Figure 4.5 contains the fragment of the Iris andAneris logics that is relevant for this work. Here
P andQ range over Iris propositions. We write iProp for the universe of Iris propositions. Iris
is a higher-order logic that features separation logic primitives: separating conjunction, ∗, and
magic wand, ∗ , also known as the separating implication. The points-to proposition, ℓ 7→n v,
expresses exclusive ownership of memory location ℓ with value v in the heap of the node n.
The separating nature of the separating conjunction, and the exclusive nature of the points-to
propositions can be seen in the rule ℓ 7→n v ∗ ℓ′ 7→n v′ ⊢ ℓ ̸= ℓ′, where ⊢ is the entailment
relation on Iris propositions. This rule states that separating conjuncts assert ownership over
disjoint parts of the heap. The Hoare triple {P} ⟨n; e⟩ {x. Q} is used for partial correctness
verification of distributed programs. Intuitively, if the Hoare triple {P} ⟨n; e⟩ {x. Q} holds,
then whenever the preconditionP holds, e is safe to execute on node n and whenever e reduces
to a value v on node n then that value should satisfy the postcondition Q[v/x]; note that x
is a binder for the resulting value. The proposition P

N is an Iris invariant: it asserts that
the proposition P should hold at all times. The invariant nameN is used for bookkeeping, to
prevent the same invariant from being reopened in a nested fashion which is unsound. The
update modality, |⇛E1 E2P , asserts that Iris resources can be updated in such a way that P
would hold. The masks E1 and E2 (sets of invariant names) indicate which invariants can be
accessed during this update (those in E1) and which invariants should remain accessible after
the update (E2). Whenever both masks of an update modality are the same mask E , which is
most often the case, we write |⇛E instead of |⇛E E . We write P ≡−∗E1 E2 Q and P ≡−∗E Q as
a shorthand for P ∗ |⇛E1 E2Q and P ∗ |⇛EQ, respectively. We write ⊤ for the mask that
allows access to all invariants. We will explain the Aneris specific propositions later on.

Ephemeral versus persistent propositions. Iris, and by extension Aneris, is a logic of resources.
That is to say that propositions can assert (exclusive) ownership of resources. In this regards,
propositions can be divided into two categories: ephemeral propositions and persistent propo-
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Table 4.1: Propositions to track the state of the key-value store.

Proposition Intuitive meaning

Seen(i, s) The set s is a causally closed subset of the local history of replica i
Snap(k, h) The set h is a subset of the global memory for key k

k ⇀u h The global memory for key k is exactly h

We say s is a causally closed subset of s′ if:
s ⊆ s′ ∧ ∀a1, a2 ∈ s′. vc(a1) < vc(a2) ∧ a2 ∈ s⇒ a1 ∈ s.

sitions. Ephemeral propositions represent transient facts, i.e., facts that later stop from being
true. The quintessential ephemeral proposition is the points-to proposition; the value of the
memory location ℓ can change by performing a write on ℓ—this can be seen in the specs for
writing to a memory location:

{ℓ 7→n v} ⟨n; ℓ :=w⟩ {x. x = () ∗ ℓ 7→n w}

One important aspect of ephemeral propositions is that they give us precise information about
the state of the program: having ℓ 7→n v implies that the value stored in memory location ℓ
on node n is v. The upshot of this is that while we own a points-to proposition for a lo-
cation ℓ, no other concurrently running thread can update the value of ℓ. Hence, to allow
concurrent accesses to a location, its points-to proposition should be shared, e.g., using Iris
invariants. Persistent propositions, as opposed to ephemeral propositions, express knowl-
edge; these propositions never cease to be true. The persistently modality � is used to assert
persistence of propositions: �P holds, if P holds, and P is persistent. Hence, the logical en-
tailments �P ⊢ P and �P ⊢ � �P hold in Iris. Formally, we say a proposition is persistent
if P ⊣⊢ �P , where ⊣⊢ is the logical equivalence of Iris propositions. Persistent propositions,
unlike ephemeral ones, can be freely duplicated, i.e., �P ⊣⊢ �P ∗ �P . The quintessential
persistent propositions in Iris are Iris invariants. In addition, Hoare triples are also defined to
always be persistent. This intuitively means that all the requirements for the correctness of
the program with respect to the postcondition are properly captured by the precondition.

Iris predicates to represent the state of the key-value store. Recall the intuitive specifications
that we gave for the read and write operations on our distributed database in the introduction.
These specs only assert that certain write/apply events are added to the global memory/local
history. Hence, it suffices to have a persistent proposition in the logic that asserts the partial
information that certain events are indeed part of the local history or global memory. For
this purpose, we introduce the persistent abstract predicates Seen and Snap which intuitively
assert knowledge of a subset of the local history, and global memory, respectively. These
abstract predicates and their intuitive meaning are presented in Table 4.1. Notice that the Seen
predicates assert knowledge of a subset of the local history that is causally closed as defined in
the figure. We will discuss the significance of causal closure later.

In addition to the partial knowledge about the global memory represented using the Snap
predicate, it is also useful to track the precise contents of the global memory for each key—see
the example presented in Section 4.4. We do this using the ephemeral abstract proposition
k ⇀u h which, intuitively, asserts that the set of all write events for the key k is h. We can
track the precise contents of the global memory because all write events in the global memory
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Properties of global memory, i.e., Snap and⇀u predicates:

Snap(k, h) ∗ Snap(k, h′) ⊢ Snap(k, h ∪ h′) (Snap union)
k ⇀u h ⊢ k ⇀u h ∗ Snap(k, h) (Take Snap)

GlobalInv
NGI ∗ k ⇀u h ∗ Snap(k, h′) ⊢ |⇛E k ⇀u h ∗ h′ ⊆ h (Snap inclusion)

GlobalInv
NGI ∗ Snap(k, h) ∗ Snap(k, h′) ⊢

|⇛E ∀w ∈ h,w′ ∈ h′. vc(w) = vc(w′)⇒ w = w′ (Snap ext.)

Properties of local histories, i.e., the Seen predicate:

GlobalInv
NGI ∗ Seen(i, s) ∗ Seen(i, s′) ⊢ |⇛E Seen(i, s ∪ s′) (Seen union)

GlobalInv
NGI ∗ Seen(i, s) ∗ Seen(i′, s′) ⊢

|⇛E ∀a ∈ s, a′ ∈ s′. vc(a) = vc(a′)⇒ a.k = a′.k ∧ a.v = a′.v (Seen glo. ext.)

GlobalInv
NGI ∗ Seen(i, s) ∗ Seen(i, s′) ⊢

|⇛E ∀a ∈ s, a′ ∈ s′. vc(a) = vc(a′)⇒ a = a′ (Seen loc. ext.)

GlobalInv
NGI ∗ Seen(i, s) ∗ a ∈ s ⊢ |⇛E ∃h. Snap(a.k, h) ∗ ⌊a⌋ ∈ h (Seen provenance)

Causality in terms of resources and predicates:

GlobalInv
NGI ∗ Seen(i, s) ∗ Snap(k, h) ⊢

|⇛E ∀a ∈ s, w ∈ h. vc(w) < vc(a)⇒ ∃a′ ∈ s|k. ⌊a′⌋ = w (Causality)

Figure 4.6: Laws governing database resources. Themask E is any arbitrary mask that includes
NGI. s|k denotes the set of apply events in s with key k: s|k ≜ {a ∈ s | a.k = k}

can only originate from a write operation on the distributed database. On the other hand, we
cannot have precise knowledge about local histories because at any point in time, due to the
concurrent execution of a replica’s apply function, a replica may observe new events.

In addition to the abstract predicates just discussed, the client will also get access to a
global invariant GlobalInv

NGI which, intuitively, asserts that there is a valid global state, and
that the predicates Seen, Snap, and ⇀u track this global state.4 Clients need not know the
definition of this invariant and can just treat it as an abstract predicate.

(For Iris experts we remark that the abstract predicates in Table 4.1 are all timeless, which
simplifies client-side reasoning [Jun+18b]).

4.3.2 Laws governing database resources

The laws governing the predicates Seen, Snap, and⇀u, are presented in Figure 4.6. The laws
presented in this figure, with the exception of one law that we will discuss in Section 4.7, are
all the laws that are necessary for client-side reasoning about our distributed database. Notice

4 NGI is a fixed name of the global invariant.



Specification 65

that most of these laws only hold under the assumption that the global invariant holds. This
can also be seen in the fact that they are expressed in terms of an update modality with a mask
that enables access to the global invariant. All of these laws make intuitive sense based on
the intuitive understanding of the predicates Seen, Snap, and⇀u. For instance, the law (Snap
union) asserts that if we know that the sets h and h′ are both subsets of the global memory
for a key k, then so must the set h ∪ h′. The extensionality laws essentially state that events
are uniquely identifiable with their time: if two events have the same time, then they are the
same event. The only caveat is that in case of the law (Seen global extensionality): if two
apply events on two different replicas have the same time, then they must agree on their key
and value, but not on their sequence identifiers which represent the order in which events are
applied locally on the replica. Note that the law (Seen union), as opposed to the law (Snap
union), requires access to the invariant. This is because, we need to establish causal closure
(see Table 4.1) for s ∪ s′ in the conclusion of the law with respect to the local history tracked
in the global invariant.

The most important law in Figure 4.6 is the law (Causality). This law allows us to reason
about causality: if a replica i has observed an event a that has a time greater than a write
event w, w causally depends on a, then replica i must have also observed w (it must have a
corresponding apply event a′). Notice that the causal closure property of local histories s for
which we have Seen(i, s) in Table 4.1 is crucial for the (Causality) law to hold.

4.3.3 Specs for the read and write operations

Read specification. The read specification looks as follows.
ReadSpec
{Seen(i, s)}

⟨ipi; read(k)⟩v.

∃s′ ⊇ s. Seen(i, s′) ∗ (v = None ∧ s′|k = ∅) ∨

(∃a ∈ s′|k. v = Some a.v ∗ Snap(k, {⌊a⌋})∗

a ∈ Maximals(s′|k) ∗ Observe(s′|k) = a)


The post condition of the operation states formally, in the language or Aneris logic, the in-
tuitive explanation that we described in the introduction. It asserts that the client gets back
a set of apply events s′, Seen(i, s′), observed by replica i performing the read operation such
that s′ ⊇ s. The reason for the s′ ⊇ s relation is that during the time since performing the
last operation by replica i, i.e., when we had observed the set s, some write events from other
replicas may have been applied locally.

When read(k) is executed on a replica i, it either returns None or Some v for a value v.
If it returns None, then the local memory does not contain any values for key k. Hence the
local history s′ restricted to key k, s′|k should be empty cf. the definition of s′|k in Figure 4.6.
Otherwise, if it returns Some v, then the local memory contains the value v for key k. This
can happen only if the local memory of the replica at the key k has been updated, and the
latest update for that key has written the value v. Consequently, the local history s′ must have
recorded this update as the latest apply event a for the key k, i.e., Observe(s′|k) = a. Hence
a ∈ Maximals(s′|k).

One may wonder why a is not the maximum element, but only in the set of maximal
elements. To see why, suppose that just before the read operation was executed, two exter-
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nal causally-unrelated writes have been applied locally on replica i, so that the local history
recorded them as two distinct apply events whose times are incomparable. Naturally, one of
two writes must have been applied before the other and the latest observed apply event must
correspond to the subsequent second write event. However, as the apply operation is hidden
from the client, there is no way for the client to observe which of the two writes was the
last. Consequently, all the client can know is that the last observed event a is one of the most
recent local updates for key k, i.e., among the maximal elements. Naturally, the write event
⌊a⌋ should be in the abstract global memory. This is expressed logically by the proposition
Snap(k, {⌊a⌋}).

Write specification. The (simplified) write specification looks as follows.

WriteSpec
{Seen(i, s) ∗ k ⇀u h}

⟨ipi; write(k, v)⟩{
_.
∃s′ ⊇ s. ∃a. k = a.k ∗ v = a.v ∗ Seen(i, s′ ⊎ {a}) ∗ k ⇀u h ⊎ {⌊a⌋} ∗

a = Maximum(s′ ⊎ a) ∗ ⌊a⌋ ∈ Maximals(h ⊎ {⌊a⌋})

}

The postcondition of the specification ensures that after the execution of write(k, v), the client
gets back the resources k ⇀u h⊎{⌊a⌋} and Seen(i, s′⊎{a}), where a and ⌊a⌋ are respectively
the apply and write events that model the effect of the write operation. The mathematical
operation ⊎ is the disjoint union operation on sets; A ⊎B is undefined if A ∩B ̸= ∅.

As for read, the new set of apply events s′ can be a superset of s. Contrary to read, the
postcondition for write states that a = Maximum(s′⊎a), i.e., that a is actually the most recent
apply event. This matches the intuition that the update write(k, v) causally depends on any
other apply event previously observed at this replica.

While a is themaximum apply event locally, its erasure ⌊a⌋ is only guaranteed to be among
the maximal write events, i.e., ⌊a⌋ ∈ Maximals(h ⊎ {⌊a⌋}). Intuitively, this is because there
can be other write events in h, performed by other replicas, that we have not yet locally ob-
served. As those events are not observed on our replica, the newly added write event ⌊a⌋ does
not causally depend on them and hence does not have a strictly greater time—in practice those
write events have times that are incomparable to that of ⌊a⌋ as neither depend on the other.

4.3.4 Initializing the distributed database

Our distributed database must be initialized before it is used. Initialization takes place in two
phases:

1. Initialization of resources and establishing the global invariant. This phase is a logical
phase, i.e., it does not correspond to any program code.

2. Initialization of the replica. This phase corresponds to the execution of the init function—
see Figure 4.2.

Importantly, in the spirit of modular verification, our methodology for verifying client pro-
grams is to assume that the library is initialized when we verify parts of the client program
that interact with the read and write functions. We only later compose these proofs with the
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InitSpec
initToken(i) ∗ Fixed(A) ∗ ∗Addrlist[i] = (ipi, p) ∗

(ipi, p) ∈ A ∗ isList(Addrlist, v) ∗ FreePorts(ipi, {p}) ∗ ∗
z∈Addrlist

z Z⇒ ΦDB


⟨ipi; init(i, v)⟩{
(rd,wr). Seen(i,∅) ∗ readSpec(rd, i) ∗ writeSpec(wr, i)

}
Figure 4.7: Specification for init.

proof corresponding to the initialization of the system—we have indeed followed this method-
ology in verifying all the examples discussed in this chapter. Below we discuss initialization,
starting with phase 2.

The specification of the init function (Phase 2). Figure 4.7 shows the specification for the
init function. The postcondition states that the new replica has not observed any events, i.e.,
Seen(i,∅). Furthermore, the init function returns a pair of functions that satisfy, respectively,
the read and write specifications discussed earlier. This is formally written as readSpec(rd, i),
andwriteSpec(wr, i), respectively. The precondition of the init function is slightly more elab-
orate. Addrlist is the list of socket addresses (pairs of an ip address and a port) of all replicas
of the database, including the replica being initialized. Hence, the ith element of the list should
be the socket address (ipi, p) which this replica uses for communication with other replicas;
this is indicated in the precondition by the assertion Addrlist[i] = (ipi, p). The predicate
isList(Addrlist, v) asserts that the AnerisLang value v is a list of values corresponding to the
mathematical listAddrlist. The init function requires an initialization token, initToken(i); ini-
tialization tokens are produced by the first initialization phase. Distributed systemsmodeled in
Aneris always have a distinguished setA of fixed socket addresses, written using the persistent
proposition Fixed(A). The socket address (ipi, p) used by replica i should be a fixed address.
Moreover, on the ip address ipi, the port p must be free (i.e., must not have any socket bound
to it), as indicated by the ephemeral proposition FreePorts(ipi, {p}). In Aneris, fixed socket
addresses, as opposed to dynamic socket addresses, are those that have globally fixed so-called
socket protocols (explained in the following). Finally, the precondition of the init function re-
quires the knowledge that all socket addresses participating in the distributed database follow
the same socket protocol ΦDB. This is written as the persistent Aneris proposition z Z⇒ ΦDB.
In Aneris, a socket protocol is simply a predicate over messages which restricts what messages
can be sent over and/or may be received through a socket. The protocol ΦDB asserts that any
message sent over the socket is the serialization of a write event w = (k, v, t, o) that has been
recorded in the abstract global memory, i.e., for which Snap(k, {w}) holds.

Phase 1. The purely logical nature of the first phase can be seen in the fact that it is expressed
in terms of an update modality:
InitSetup

True ⊢ |⇛E GlobalInv
NGI ∗

 ∗
0≤i<length(Addrlist)

initToken(i)

 ∗
∗

k∈Keys

k ⇀u ∅

 ∗ initSpec(init)
The InitSetup rule simply asserts that resources can be allocated so as to initialize the abstract
global memory with an empty set for all keys (i.e., elements of Keys), to establish the global in-
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variant, and to provide initialization tokens for all declared replicas (i.e., elements of Addrlist).
Furthermore, after the InitSetup update is performed, we have that the init function meets
the specification given in Figure 4.7, formally written as initSpec(init).

4.4 Client reasoning about causality

To illustrate how clients can reason about interactions with the distributed database, we give
a proof sketch for the example of direct causal dependency from Figure 4.1. The core part
of the proof is sketched in Figure 4.8 and assumes local replicas have already been properly
initialized, that the specifications hold for the read and write functions, and that writing is an
atomic operation. Afterwards, we will show how to initialize local replicas and compose the
distributed system. Notice that in this example, while y is being accessed concurrently, x is
not; reading x on the right happens after the write to y on the left, and hence also after the
write to x. Therefore, we use the ruleWriteSpec to reason about write(x, 37)while we use the
HOCAP-style specification (which we present in Section 4.7) for reasoning about write(y, 1);
see the accompanying Coq formalization for the full formal proof. Appendix A provides a
proof sketch of the example of indirect causal dependency from Figure 4.1.

We remark that the proof of the example is quite similar in structure to the proof of a similar
message-passing example, but for a weak memory model with release-aquire and non-atomic
accesses [Kai+17a]; see Section 5.7 for a comparison to this related work.

For our presentation here, as a convention, we will only mention persistent assertions
(such as invariants and equalities) once and use them freely later.

Both nodes operate on the key y concurrently so ownership of y is put into an invariant
Invy . The invariant essentially says that y is in one of two states: either 1 has been written
to y or not. It will be the responsibility of node i to write 1 and advance the state. When node
j reads 1, it will expect to be able to gain ownership of key x. Thus when writing 1 to the key
y, node i will have to establish another invariant Invx(w

′) about x, for some write event w′

that has happened before the write of 1 to y.
The invariant Invx(w

′) asserts either ownership of x, and that the maximum event is
w′ with value 37, or a token ⋄ . The token is a uniquely ownable piece of ghost state (i.e.,
⋄ ∗ ⋄ ⊢ False). Intuitively, when the first node establishes the invariant, the ownership of
x is transferred into the invariant. The unique token is given to the second node and when it
learns of the existence of Invx(w

′) it can safely swap out the token for the ownership of x.
Node i initially has knowledge of its local history s and ownership of key x with history

hx such that hx ⊆ ⌊s⌋ where ⌊s⌋ ≜ {⌊a⌋ | a ∈ s}. Intuitively, this means that all writes to
x have been observed at node i and that any future writes to x will be causally dependent on
these. Using the specification for the write function, we obtain updated resources for the local
history and the key x, i.e., Seen(i, s′⊎{ax}) and x ⇀u (hx⊎{⌊ax⌋}), such thatMaximum(s′⊎
{ax}) = Some ax. From Snap extensionality, Seen global extensionality, and the definition of
Maximumwe concludeMaximum(hx⊎{⌊ax⌋}) = Some ⌊ax⌋, which suffices for establishing
the invariant for x, Invx(⌊ax⌋) . We then open the invariant for y in order to write 1 to y
(this is where we cheat in this sketch and use the assumption that write is atomic); using the
invariant we just established for x it is straightforward to reestablish the invariant for y after
writing 1 to y as vc(⌊ax⌋) < vc(⌊ay⌋) follows from ax ∈ s′′ and ay being the maximum of
s′′ ⊎ {ay}, cf. global extensionality of Seen.
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Invariants

Invx(w) ≜ (∃h. x ⇀u h ∗Maximum(h) = Some w ∗ w.v = 37) ∨ ⋄
Invy ≜ ∃h. y ⇀u h ∗ ∀w ∈ h. w.v = 1⇒ ∃w′. vc(w′) < vc(w) ∗ Invx(w

′)

Node i, proof outline{
Seen(i, s) ∗ x ⇀u hx ∗ hx ⊆ ⌊s⌋ ∗ Invy

}
write(x, 37){∃ax, s′ ⊇ s. Seen(i, s′ ⊎ {ax}) ∗ x ⇀u (hx ⊎ {⌊ax⌋})∗
Maximum(s′ ⊎ {ax}) = Some ax ∗ ax.v = 37

}
{
Seen(i, s′ ⊎ {ax}) ∗ Invx(⌊ax⌋)

}

op
en

In
v y

{
Seen(i, s′ ⊎ {ax}) ∗ y ⇀u hy ∗ . . .

}
write(y, 1){∃ay, s′′ ⊇ s′ ⊎ {ax} . Seen(i, s′′ ⊎ {ay}) ∗ y ⇀u (hy ⊎ {⌊ay⌋})∗
ay.v = 1 ∗Maximum(s′′ ⊎ {ay}) = Some ay

}
{
Seen(i, s′′ ⊎ {ay}) ∗ Invy

}
Node j, proof outline{

Seen(j, s) ∗ Invy ∗ ⋄
}

wait(y = 1){
∃s′ ⊇ s, ay ∈ s′, wx. Seen(j, s

′) ∗ Invx(wx) ∗ ⋄ ∗ vc(wx) < vc(⌊ay⌋)
}{

Seen(j, s′) ∗ x ⇀u hx ∗Maximum(hx) = Some wx ∗ wx.v = 37
}

read(x){
v. ∃s′′ ⊇ s′. Seen(j, s′′) ∗ x ⇀u hx ∗ v = Some 37

}
Figure 4.8: Proof sketch, example with direct causal dependency.

Node j initially has knowledge of its local history s and ownership of the token ⋄ . After
repeatedly reading y until we read 1 (call to the wait function5), the specification for the read
function gives us Snap(y, {⌊ay⌋}) such that ay.v = 1. By Snap inclusion and by opening the
invariant for ywe get Invx(wx) such that vc(wx) < vc(⌊ay⌋). We can nowopen the invariant
for x and swap out the token for the ownership of key x and knowledge about its maximum
write event. Intuitively, due to causality, as vc(wx) < vc(⌊ay⌋) and ay has been observed,
we are guaranteed to read something when reading from x; asMaximum(h) = Some wx and
wx.v = 37 the value we read has to be 37. Formally, this argument follows from extensionality
of Seen and Snap, Snap inclusion, and the definition of Maximum and Maximals—we refer
to the Coq formalization for all the details.

5The wait(k = n) operation is just a simple loop that repeatedly reads k until the read value is n. In particular,
there are no locks/other synchronization code in the wait implementation.
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The proof sketched in Figure 4.8 verifies the two nodes individually, assuming local replicas
have been properly initialized. To set up a distributed system, we spawn two nodes that each
initialize a local replica using the init function:

let (read, write) = init(i, ips) in

write(x, 37); write(y, 1)

∥∥∥∥∥ let (read, write) = init(j, ips) in

wait(y = 1); read(x)

where ips is the list of ip addresses of the participating replicas. The proof of the combined
system follows from the specification for the init function (cf. Figure 4.7) and the proof sketch
just given. In particular, the specification of init ensures that both the history for x and the
history for y are empty and hence the precondition for node i holds.6

Nowwe have a complete proof of the client program, under the assumption that the specifi-
cations for the distributed database operations hold. By combining this proof with the proof of
the implementation (in Section 4.6) we get a closed correctness proof of the whole distributed
system in Aneris. This means that we can apply the adequacy theorem of Aneris [Kro+20a,
Section 4.2] to conclude that the whole system is safe, i.e., that nodes and threads cannot get
stuck (crash) in the operational semantics. (Safety is enough to capture the intuitive desired
property for this example: if we included an assert statement after the read of x that would
crash if the return value is not 37, then the adequacy theoremwould guarantee that this would
never happen. We have included such an assert statement in the Coq formalization.)

4.5 Case study: towards session guarantees for client-centric consistency

In the examples in the introduction and Section 4.4, each client program is co-located on the
same node as the database replica that it reads from and writes to. By contrast, in a client-server
architecture, a client might interact with multiple replicas (servers), and clients and replicas
are located on different nodes.

The client-server setting is interesting for at least two reasons. First, it is a prevalent mode
of use of databases within cloud computing (e.g., MongoDB [CD10] and DynamoDB [Siv12]),
where client applications transparently interact with a geo-replicated database running in the
cloud. Second, there are consistencymodels that are tailored to the client-server setting [TS07].
In particular, session7 guarantees (read your writes,monotonic reads,monotonic writes, andwrites
follow reads) [Ter+94] describe properties that programmers can use to reason about client-
server interactions. For example, the monotonic writes (MW) guarantee ensures that writes
happening within a session are propagated to all replicas in program order.

In this section, we show that our distributed database can be used in a client-server set-
ting. Specifically, we build a session manager library that exposes the database’s read and
write operations to external clients. The library consists of two components: a client stub
that proxies requests to the server, and a request handler that handles the requests server-side.
Figure 4.9 illustrates how clients (C1A, C1B, and C2) on different nodes communicate with
database replicas (DB1 and DB2) via the session manager stub (SM) and request handler (RH).

We give specifications for the session manager library that rely exclusively on persistent
resources (as opposed to the database specifications WriteSpec and ReadSpec, which use the

6In AnerisLang there is a distinguished system node, which starts all the nodes in the distributed system.
Technically, phase 1 of the initialization happens in the proof of the system node, which is then composed with
the proof sketch given above for the two nodes.

7A session is a consecutive sequence of reads and writes issued by a particular client.
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Figure 4.9: Clients using the distributed
database via the session manager library.
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Figure 4.10: Vertical compositionality of
specifications.

exclusive ownership of the global memory predicate k ⇀u h). This is important as multiple
clients could be interacting with the same replica concurrently (and from different nodes) in
an uncoordinated way.

In spite of being weaker than the underlying replicated database specifications, our session
manager specifications are strong enough to prove versions of the four previously-mentioned
session guarantees. This result is in line with prior work showing that, at the model level,
causal consistency implies all four guarantees [BSW04]. In our case, we are able to establish
this connection while reasoning about concrete programs.

We illustrate the guarantees with four examples that use the session manager library. In
this way, the case study additionally illustrates the modularity of our approach, in particular
the vertical composability of our specifications, cf. Figure 4.10: we are able to verify each layer
using only the specifications of the layer below.

Sessionmanager library. As previouslymentioned, the sessionmanager exposes the database’s
operations to the network. The client stub provides its user with three operations: sconnect,
sread, and swrite. The client calls sconnect ipi to start interacting with the replica located
at ipi. Reading returns an option with the retrieved value, or None if the key is not populated.
All three operations are synchronous at the client-side and every call is blocking while waiting
for a server to reply.

Specifications. Figure 4.11 presents a high-level view of the session manager specifications,
focusing on how the resources are updated; the full specifications are found in Appendix B.
The client, located on the network node at address ipclient, reasons about session manager
operations using the snapshot predicates Seen(i, s) and Snap(k, h) for local and global histo-
ries, respectively. For example, to reason about the write swrite(ipi, k, v), the user provides
Seen(i, s) and Snap(k, h). Once the write operation completes (is processed by the server and
a reply is received), the user gets back updated snapshots Seen(i, s′) and Snap(k, h′), such that
s ⊆ s′, h ⊆ h′, and the written value v is stored in an apply (resp. write) event that is part
of s′ (resp. h′). This captures the idea that if we know that a replica observed at least a set
s of writes, then after we write v the replica will have observed at least the set s′ = s ⊎ {a},
where a.v = v. We can then reuse the updated snapshots in the precondition of subsequent
operations (we get the initial snapshots from the postcondition of sconnect).
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{⊤} ⟨ipclient; sconnect(ipi)⟩
{
∃s.Seen(i, s) ∗∗k∈Keys ∃hk.Snap(k, hk)

}
{Seen(i, s) ∗ Snap(k, h)} ⟨ipclient; sread(ipi, k)⟩ {∃s′ ⊇ s, h′ ⊇ h.Seen(i, s′) ∗ Snap(k, h′) ∗ . . .}
{Seen(i, s) ∗ Snap(k, h)} ⟨ipclient; swrite(ipi, k, v)⟩ {∃s′ ⊃ s, h′ ⊃ h.Seen(i, s′) ∗ Snap(k, h′) ∗ . . .}

Figure 4.11: Simplified specifications of session manager operations. Full specifications are
found in Appendix B.

Table 4.2: The four session guarantees.

Guarantee Program Description

read your writes swrite(ip,k,v);
sread(ip,k)

Reads observe writes not older than pre-
ceding writes.

monotonic reads sread(ip,k); sread(ip,k) Reads observe writes not older than
writes observed by preceding reads.

monotonic writes swrite(ip,k1,v1);
swrite(ip,k2,v2)

Writes propagate to all replicas in pro-
gram order.

writes follow reads sread(ip,k1);
swrite(ip,k2,v)

Writes and writes observed through
reads propagate to all replicas in program
order.

SM-monotonic-writes
{ipi Z⇒ Φi}

⟨ipclient; sconnect(ipi); swrite(ipi, k1, v1); swrite(ipi, k2, v2)⟩().

∃s1, a1, a2. a1.k = k1 ∗ a1.v = v1 ∗ a2.k = k2 ∗ a2.v = v2

∗ Seen(i, s1) ∗ a1, a2 ∈ s1 ∗ a1.t < a2.t

∗ (∀a, s′, j. Seen(j, s′) ∗ a ∈ s′ ∗ a2.t ≤ a.t

≡−∗⊤ ∃a′1, a′2. ⌊a′1⌋ = ⌊a1⌋ ∗ ⌊a′2⌋ = ⌊a2⌋ ∗ a′1, a′2 ∈ s′ ∗ a′1.t < a′2.t)


Figure 4.12: Specification for monotonic writes example.

Session guarantees. Table 4.2 shows the four session guarantees and corresponding client
programs we verify. Each guarantee describes what a client can infer from observing the
effect of a pair of (read or write) operations within the same session. We only describe our
monotonic writes (MW) example in detail and refer to Appendix B or the Coq formalization for
the remaining guarantees.

Figure 4.12 shows a simplified specification for the MW example (we omit some network-
related predicates from the precondition), which involves two consecutive writes to a replica
located at address ipi. The precondition for the Hoare triple is just knowledge that address ipi
behaves according to socket protocol Φi. The definition of this socket protocol is a key part of
verifying the session manager library, since it allows us to tie physical client requests to their
logical counterparts, but is relegated to the Coq formalization for space reasons. Let us now
unpack the postcondition. We obtain a snapshot Seen(i, s1) that represents the replica state
after the two writes. Both writes are recorded in the local history s through apply events a1
and a2 that respect program order (a1.t < a2.t). We ensure that the writes are propagated
in the same order to all replicas through the following implication. Suppose we observe the
snapshot Seen(j, s′) of a replica j. Now suppose that enough time has passed so that there
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exists an event a ∈ s′ such that a2.t ≤ a.t; that is, the event observed at a2 is as recent as the
second write at a1. Using the causality property from Figure 4.3 we show that the two writes
at node i have been propagated to node j as the apply events a′1 and a′2 that respect program
order (a′1.t < a′2.t). This way we express the MW guarantee.

We remark that our session manager library delegates the replica selection to clients. This
is a simplificationw.r.t practical implementations, where replica selection is done transparently
by the session manager. In this simplified setting, our notion of causality is strong enough to
provide session guarantees for the clients. Extending the case study to the general setting with
transparent replica selection will require exposing a notion of time (e.g., vector clocks) to the
session manager and clients.

4.6 Verification of the implementation

So far we have described how to use our specifications for client reasoning. In this section we
show that our implementation from Section 4.1 does satisfy our specifications. Conceptually,
the proof of the implementation can be split into the following three stages:

1. We define a concrete notion of validity tying together all layers of the model (abstraction
of the replicas’ physical states, local histories, and the abstract globalmemory), and show
that validity is preserved by the write and apply operations.

2. We define the meaning of the abstract predicates (Seen(i, s), Snap(k, h), k ⇀u h,
GlobalInv

NGI ) using Iris ghost state.

3. We define the lock invariant that governs replica-local shared data (the key-value dictio-
nary, vector clock, in- and out-queues) and prove the correctness of the implementation
of each operation.

In this section we discuss the key aspects of these three stages.

4.6.1 Local and global validity

Obviously, the local history si must be consistent with the physical state of the replica i for
which it tracks the updates. We model the physical state for replica i as a local state (δi, ti, si)
defined as

(δi, ti, si) ∈ LocalState ≜ (Keys fin−⇀
?

Value)× VectorClock×LocalHistory.

Here δi is a model of the local key-value store db used by the implementation at replica i, and
ti is the vector clock stored in the reference vc in the implementation.

We express consistency of the physical state as a validity property of the corresponding
local state. To this end, we first observe that a local history at replica i can be partitioned
into sections according to the origin of the apply events. Concretely, given a local history
si, we define its jth section, denoted by si,j , to be the subset of si events whose origin is j,
i.e., si,j ≜ {a ∈ si | origin(a) = j}. Intuitively, for j ∈ {0..n− 1}\{i}, each section si,j
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local history s1
section s1,0
section s1,1
section s1,2

vector clock t1

Figure 4.13: A valid history s1 partitioned into sections s1,0, s1,1, s1,2, and a vector clock t1
evolving through time. Each cell contains the time of apply events. For example, the apply
events at section s1,1 (in blue color) are those events that come from the writes of replica 1.
For each s1,j , the jth component of the vector clock is depicted in bold. The numbers in bold
reflect condition (2) in Definition 4.6.1.

describes the external updates from replica j applied locally on i, while the “diagonal” section
si,i describes the write operations executed on the replica i itself.8

Definition 4.6.1 (Valid Local Histories). Local history si is valid if 9

1. ∀a1, a2 ∈ si.vc(a1) = vc(a2) =⇒ a1 = a2

2. ∀k.1 ≤ k ≤ |si,j | =⇒ ∃a ∈ si,j .vc(a)[j] = k

3. ∀a ∈ si,i.∀j′ ∈ {0..n− 1}\{i} .vc(a)[j′] = Sup
{
vc(b)[j′] | b ∈ si,j′ ∧ b.m < a.m

}
4.
∀a ∈ si,j .∀j′ ∈ {0..n− 1}\{j} .j ̸= i =⇒

vc(a)[j′] ≤ Sup
{
vc(b)[j′] | b ∈ si,j′ ∧ b.m < a.m

}
The conditions above capture the fact that all apply events in the local history must have valid
times. For instance, condition (2) reflects the fact that the set of apply events of a given section
si,j is downwards closed and complete w.r.t. the projection j of the vector clocks they carry.
The most subtle are conditions (3) and (4), which ensure that for any event a that we have
in our local history, we have observed all the events it depends on before observing a. To see
this, note that vc(a)[j′] corresponds to the number of write events originating from replica j′
that a depends on, and Sup

{
vc(b)[j′] | b ∈ si,j′ ∧ b.m < a.m

}
corresponds to the number of

events we have observed from replica j′ before a. Figure 4.13 illustrates the notion of validity
with a concrete example.

Valid histories satisfy the following theorem which expresses the causality relation of the
origin and the time projection of apply events:

Theorem 4.6.2. If local history si is valid, then the following properties hold:

• si,j = ∅ ⇐⇒ ∀a ∈ si.vc(a)[j] = 0 (Empty sect.)

• ∀a ∈ si.∀j′ ∈ {0..n− 1} .∀p ∈ N+.p ≤ vc(a)[j′] =⇒
∃a′ ∈ si,j′ .vc(a

′)[j′] = p (Local causality)

• ∀a1, a2 ∈ si,j .vc(a1)[j] = vc(a2)[j] =⇒ a1 = a2 (Component extensionality)
8 In the following, we assume that all local histories and sections are well-formed: when we write si,j , we

assume i, j ∈ {0..n− 1}, and for any a ∈ si, the vector clock vc(a) is of length n, the key a.k belongs to the
fixed set of keys, and the sequence identifier a.m is less than or equal to the size of si.

9Here Sup is the supremum function. Note that Sup(∅) = 0.
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• ∀k.1 ≤ k ≤ |si,j | ⇐⇒ ∃a ∈ si,j .vc(a)[j] = k (Strong completeness)

Having defined the validity of local histories, we can now state the validity for local state
(δi, ti, si) as a predicate ValidL(δi, ti, si) defined below.

Definition 4.6.3 (Valid local states). ValidL(δi, ti, si) holds if the following conditions hold:

1. ∀k ∈ dom(δi), ∀v. δi(k) = Some v =⇒ ∃a ∈ si.a = Observe(si|k) ∧ a ∈
Maximals(si|k)

2. ∀k. δi(k) = None =⇒ si|k = ∅

3. ∀j ∈ {0 . . . n− 1} .ti[j] = Sup {vc(a)[j] | a ∈ si,j}

4. si is a valid local history

Here conditions (1) and (2) express the consistency of the local history si with the local store
δi, capturing the correctness argument of the read specification. Condition (3) states that in
the local time of replica i, each projection ti[j] is equal to the projection vc(a)[j], where a is
the most recent event from section si,j , if such a exists, otherwise vc(a)[j] = 0. In particular,
we have ∀a ∈ si. vc(a) ≤ ti.

Using the notion of validity for local histories, we finally define validity for global states.

Definition 4.6.4 (Valid global states). ValidG({|M ; s1, . . . , sn |}) holds if

1. (∀k ∈ dom(M), w ∈M(k).∃a ∈ sorigin(w),origin(w).w = ⌊a⌋) ∧

(∀a ∈
n⋃

i=1
si. ∃w ∈M(a.k). w = ⌊a⌋)

2. All local histories s1, . . . , sn are valid.

Condition (1) defines a provenance relation between apply andwrite events in both directions.
All the properties listed for valid global states in Figure 4.3 follow from this definition.

Crucially, the correctness argument for the write and apply operations relies on the fol-
lowing validity preservation theorem (which we here state only informally; see the Coq de-
velopment for the formal statement):

Theorem 4.6.5 (Validity preservation). Consider a valid global state {|M ; s1, . . . , sn |} and
a replica i whose local state (δi, ti, si) is valid. The effects of both write and apply operations
intuitively described below preserve both local and global validity.

• The effect of write event: adding a new apply event a with time incri(ti) to si and a new
write event ⌊a⌋ to M(a.k), where incrj(ti) is ti with jth incremented.

• The effect of apply event: adding a new apply event a to si such that a has passed the
dynamic check and ⌊a⌋ is already inM(a.k).
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Table 4.3: Predicates tracking abstract state of the distributed database defined in terms of
resources.

Predicate Intuitive definition

Snap(k, h) ownership of ◦S {(k, h)}
k ⇀u h ownership of ◦M {(k, h)} and ◦S {(k, h)}
GM(M) ownership of •MM and •SM

Predicate Intuitive definition

Seen(i, s) ownership of ◦Ci s and ◦Li s

LHG(i, s) ownership of ◦Ci s and •Li s

LHL(i, s) ownership of •Ci s and ◦Li s

4.6.2 Ghost state

The theory of resource algebras in Iris [Jun+16] can be used to define so-called ghost theories,
i.e., to define resources and Iris propositions that assert ownership over resources. The exact
combination of resource algebras and how they are used to define Iris propositions determines
the properties of the ghost theories, e.g., which propositions are persistent/ephemeral, the way
resources can be updated, e.g., allowing monotonic growth, allowing (de)allocation, etc. We
refer the reader to Jung et al. [Jun+18b] and discussions therein for details of how resource
algebras work.

One of the most important and versatile resource algebras is the so-called authoritative
resource algebra, Auth(A), where A is itself a resource algebra. The elements of the authori-
tative resource algebra are resources that are divided into two parts: the full part, of the form
•Am, and the fragment part, of the form ◦Am, for a resource m ∈ A. The idea is that •Am
is the central authoritative view of the ghost state, while ◦Am′ represents fragments of •Am;
we write this as m′ ⪯A m, where ⪯A is the resource inclusion relation for resources in A.
Hence, owning resource •Am is ephemeral, while ◦Am can possibly be split up into multiple
parts, depending on how elements of A can be split. Moreover, the ownership of ◦Am may
be ephemeral or persistent depending on whether ownership of elements of A is ephemeral
or persistent.

Abstract global memory. We use two instance of the authoritative resource algebra, namely
Auth(S) and Auth(M), for modeling the abstract global memory. The resource algebra S is the
resource algebra of finite maps from keys to finite sets of write events. It is defined so that the
inclusion relation M ′ ⪯S M holds if, and only if, ∀x. x ∈ dom(M ′) =⇒ M ′(x) ⊆ M(x).
That is, in Auth(S) fragments track lower bounds of the sets of write events tracked in the
authoritative part. Hence, ownership of fragments in Auth(S) is persistent. The resource
algebra M is the resource algebra of finite maps from keys to exclusive finite sets of write
events. It is defined so that the inclusion relation M ′ ⪯M M holds if, and only if, ∀x. x ∈
dom(M ′) =⇒ M ′(x) = M(x). That is, in Auth(M) fragments track precisely the sets of
write events tracked in the authoritative part. Ownership of fragments in Auth(M) is thus
ephemeral. The authoritative parts of Auth(S) and Auth(M) are used to define GM(M)which
is used in the global invariant to track the abstract global memory. The fragments are used
to define Snap(k, h) and k ⇀u h. Table 4.3 gives the intuitive definition of these predicates.
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GM(M) ∗ Snap(k, h) ⊢ ∃h′.M(k) = h′ ∧ h ⊆ h′ (Snapshot inclusion)
LHG(i, s′) ∗ Seen(i, s) ⊢ s is a causally-closed subset of s′ (Seen inclusion)
LHL(i, s) ∗ LHG(i, s′) ⊢ s = s′ (Local hist. agreement)
GM(M) ∗ k ⇀u h ∗ h ⊆ h′ ⊢ |⇛EGM(M [k := h′]) ∗ k ⇀u h′ (Global mem. update)
LHL(i, s) ∗ LHG(i, s) ∗ a ∈ Maximals(s ∪ {a}) ⊢
|⇛E LHL(i, s ∪ {a}) ∗ LHG(i, s ∪ {a}) (Local hist. update)

Figure 4.14: Selected laws of the concrete ghost state.

Note that fragments of both Auth(S) and Auth(M) are used in the definition of k ⇀u h. This
is why we can prove the rule (Take Snap) in Figure 4.6. An excerpt of the laws governing the
use of predicates tracking ghost resources are presented in Figure 4.14.

Local history. We track local histories using two different kinds of resource algebras,Auth(C)
and Auth(L), one instance of each per replica. When necessary, we write Ci and Li instead of
just C and L to distinguish instances used for replica i. Both C and L are similar in that they
track sets of apply events. Moreover, the ownership of the fragments in both Auth(C) and
Auth(L) are persistent. The main difference between C and L is in their inclusion relation:

s′ ⪯L s if and only if s′ ⊆ s

s′ ⪯C s if and only if s′ is a causally-closed subset of s

We need to track local history of a replica both in the global invariant and in the local lock
invariant of the replica (see below). For this reason we define propositions LHG(i, s), and
LHL(i, s), respectively. Table 4.3 gives the intuitive definition of these predicates as well as
that of the Seen(i, s). Note that LHG(i, s), and LHL(i, s) each have the full part of one of the
two resource algebras and the fragment of the other. This fact, together with the inclusion
relations above, is why we can prove the rule (Local hist. agreement) in Figure 4.14.

Global invariant. The global invariant defined below simply states that there should exist an
abstract global memory M and local histories s1, . . . , sn that we track using Iris resources
such that the global state {|M ; s1, . . . , sn |} is valid.

GlobalInv ≜ ∃M, s1, . . . , sn. ValidG({|M ; s1, . . . , sn |}) ∗ GM(M) ∗
n∗

i=1

LHG(i, si)

4.6.3 Proof of the implementation

To verify the operations of the implementation, a crucial aspect is the choice of lock invari-
ant. We use an Aneris lock module, which itself is implemented as a spin lock, and whose
specification is very similar to a standard Iris lock, see, e.g., Birkedal and Bizjak [BB17, Section
7.6]. The lock module uses an abstract predicate isLock(ip, ℓ, P ) to assert that the memory
location ℓ is a lock on node ip protecting resources described by P .
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The lock invariant for our distributed database is defined by the predicate

Ψ(i, db, vc, iq, oq) ≜

∃vd, vt, viq, voq. ∃δi, ti, si. ∃qin, qout. ∃ipi, p.
Addrlist[i] = (ipi, p) ∗ db 7→ipi

vd ∗ vc 7→ipi
vt ∗ iq 7→ipi

viq ∗ oq 7→ipi
voq ∗

isDictionary(vd, δi) ∗ isVectorClock(vt, ti) ∗ InQueue(viq, qin)∗
OutQueue(voq, qout) ∗ LHL(i, s) ∗ValidL(δi, ti, si)

The predicate asserts that the dictionary db, the vector clock vc, and the queues iq, and oq are
all allocated in the local heap of the replica i with values vd, vt, viq , and voq , respectively.
It also enforces that the representation predicates isDictionary , isVectorClock , InQueue ,
OutQueue tie together those program values with their logical counterparts δi, ti, qin, and
qout, respectively. Moreover, the predicateΨ asserts that the local history s tracked for replica
i (cf. LHL(i, s)) together with the dictionary δi and vector clock ti forms a valid local state,
i.e., ValidL(δi, ti, si) holds. The InQueue(viq, qin) and OutQueue(voq, qout) predicates en-
force that the contents of both queues are write events a for which we have Snap(a.k, {a}).

With the lock invariant defined as above, we verify all operations of the database. The
init function can use its precondition to establish the lock invariant—in fact, initToken(i)
is defined as LHL(i,∅). For the write operation we essentially need to prove that, given the
precondition, it preserves the lock invariant and the global invariant, and that we can establish
the post condition afterwards. The bulk of the proof, apart from reasoning about Iris resources,
involves showing preservation of validity which follows directly from Theorem 4.6.5. For the
read operation we only need to access the lock invariant and the global invariant in order to
establish the postcondition—the lock invariant and the global invariant are trivially preserved
as we do not change the state of the database. Recall that the postcondition of the read function
almost follows from the definition of local state validity (Definition 4.6.3).

For the apply operation we essentially need to prove that it preserves the lock invariant
and the global invariant. This follows from Theorem 4.6.5.

For the send thread we only need to show that the write events we send over the network
adhere to the socket protocol ΦDB. This immediately follows from OutQueue(voq, qout) in
the lock invariant. For the receive thread we need to show that the write events we receive
over the network can be enqueued in qin, i.e., these are write events w for which we have
Snap(w.k, {w}). This immediately follows from the socket protocol ΦDB.

4.7 HOCAP-style specification for the write operation

In this section we present our HOCAP-style specification for the write operation, cf. the earlier
discussion in the introduction and in Section 4.3. Recall that the need for this more general
specification comes from the fact that the natural specification of write involves ephemeral
resources (the k ⇀u h resource used in the WriteSpec), which the clients should be able to
govern by an Iris invariant in case the clients concurrently access keys. For a client to use
invariants, the write operation must be atomic since otherwise the client cannot open and
close invariants around the write operation. But since the write operation is not atomic, we
need to use another approach—and thus we use the HOCAP-style specification approach (see
[BB17] for an introduction to this style of specification).

In the HOCAP-style approach, there are in fact two views of the abstract state of the global
memory of the key-value store: the client view k ⇀u h, which we have seen before, and the
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module view k ⇀s h; both of the abstract predicates are provided to the client as part of the
modular specification interface of the replicated database. These two views always agree on
the abstract state of the global memory, i.e., k ⇀s h ∗ k ⇀u h′ ⊢ h = h′. One of the key ideas
is that neither the client nor the module can update its own view of the abstract global memory
on their own. Instead, the module delegates updating the abstract global memory to the client
(so that the client can control what happens in case the client needs to coordinate concurrent
accesses using invariants). Thus the HOCAP-style write specification is parametrized by view
shifts (update modalities) which the client has to prove and which allow the client to update
the module’s view of the abstract global memory k ⇀s h by combining it with its own view
k ⇀u h of the abstract global memory. The latter is done using the following law

∀w, E . k ⇀s h ∗ k ⇀u h ⊢ |⇛E k ⇀s h ⊎ {w} ∗ k ⇀u h ⊎ {w} (System User Update)

which we provide to the client as part of the modular interface describing the laws govern-
ing database resources. This law is in fact the single law that is missing in Figure 4.6 from
Section 4.3.2.10

With this defined, the HOCAP-style specification for write is formally stated as follows:

∀E , k, v, s, P,Q.NGI ⊆ E ⇒

�


∀s′, a. (s ⊆ s′ ∗ a ̸∈ s′ ∗ a.k = k ∗ a.v = v ∗ P )

≡−∗⊤ E ∀h.

(
⌊a⌋ ∈ Maximals(h ⊎ {⌊a⌋}) ∗ k ⇀s h∗
Seen(i, s′ ⊎ {a}) ∗Maximum(s′ ⊎ {a}) = a

)
≡−∗E\NGI

k ⇀s h ⊎ {⌊a⌋} ∗ |⇛E ⊤Q a h s′

 ∗

{P ∗ Seen(i, s)} ⟨ipi; write(k, v)⟩
{
v.v = () ∗ ∃h, s′, a. s ⊆ s′ ∗Q a h s′

}
where P : iProp and Q : ApplyEvent→ ℘fin(WriteEvent)→ LocalHistory→ iProp.

Consider the view shifts before the Hoare triple for write. The client has to show, for the
client’s choice of predicates P andQ, that, given P and an apply event a corresponding to the
write, if the client opens up invariants from the mask X = ⊤ \ E and then additionally gets
access to the module’s view of the abstract state k ⇀s h, then the client must be able to (1)
update the abstract state to k ⇀s h ⊎ {⌊a⌋}, and, in doing so, they may open (and close) all
invariants in E , except for the global invariant NGI (which makes sense since that invariant is
used internally by the implementation), and (2) close the invariants in X and then establish
Q.

We remark that this use of view shifts is slightly more advanced than standard HOCAP-
style specifications because here the client is allowed to open some invariants (those in X)
before updating the abstract state and then close the invariants in X again to establish the
postcondition Q.

This HOCAP-style specification of the write operations is the actual specification and the
one we have proved and use in our Coq formalization to verify client programs in a modular
way.

As we mentioned earlier, the simplified specification for the write operation (WriteSpec)
is derivable from the HOCAP-style specification above. To prove this, take E to be ⊤, let

10We define the meaning of these abstract predicates using appropriate Iris resource algebras and prove this
law when verifying the implementation of the database.
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P ≜ k ⇀u h (provided in the precondition of WriteSpec) and let

Q a h′ s′ ≜ h = h′ ∗ a.k = k ∗ a.v = v ∗ ⌊a⌋ ∈ Maximals(h′ ⊎ {⌊a⌋})∗
k ⇀u h′ ⊎ {⌊a⌋} ∗ Seen(i, s′ ⊎ {a}) ∗ a = Maximum(s′ ⊎ {a}).

We can prove the equality h = h′ in Q because we have k ⇀u h (as P ) and we know that the
client and themodule always agree on the view of the abstract globalmemory. Additionally, we
use the rule System User Update with w = ⌊a⌋ and E = ⊤\NGI to prove the update modality
≡−∗E\NGI

in HOCAP-style spec above and obtain k ⇀s h′ ⊎ {⌊a⌋} and k ⇀u h′ ⊎ {⌊a⌋}
(needed to prove Q).

4.8 Related work

Lesani et al. [LBC16] present an abstract causal operational semantics for replicated key-value
store implementations and their client programs. Through a refinement argument, two im-
plementations in Coq’s functional language, Gallina, are shown to realize this semantics. As a
result of their approach, client programs can automatically be verified by model checking. In
comparison, our work allows both the distributed database and clients to be implemented in a
realistic ML-like language and verified using a separation logic in a completely modular way.
This mean we can build libraries and provide abstractions on top of clients, as exemplified by
our session manager library, and compose the database with other components to build and
verify larger distributed systems. It is unclear how the approach of Lesani et al. [LBC16] would
scale to a larger setting where a key-value store is just one component of a distributed system.

Several approaches exist for reasoning about weaker consistency models of distributed
databases and their clients, including declarative approaches [ALO00; Aha+95; Bur+12; CBG15;
CGY17; Coo+08; Got+16] as well as operational approaches [Cro+17; Kak+18; SZ18; Xio+19].
Common for all these works is that they reason about high-level models of distributed repli-
cated databases and protocols with tools tailored for reasoning about databases, specific combi-
nations of consistency models, and specific consistency guarantees. In constrast, our approach
is aimed at the verification of concrete implementations and allows databases and clients to
be composed with other components to build and verify larger distributed systems while also
allowing us to reason about the weak consistency offered by the implementation.

Formal specification and verification of distributed systems and algorithms has been car-
ried out by means of model checking [Hol97; Kil+07; Lam92; Pnu77] and, more recently, using
a variety of program logics: Disel [SWT18] is a Hoare Type Theory for distributed program
verification in Coq with ideas from separation logic. IronFleet [Haw+15] allows for building
provably correct distributed systems by combining TLA-style state-machine refinement with
Hoare-logic verification in a layered approach, all embedded in Dafny [Lei10]. Verdi [Wil+15]
is a framework for writing and verifying implementations of distributed algorithms in Coq.
Here we build on the Aneris logic, which supports horizontal and vertical composability of
distributed systems implemented using sockets, node-local state and concurrency, and higher-
order functions. Moreover, we rely on the Coq formalization of Aneris to mechanize all of our
program correctness proofs.

In recent years, there has been a lot of work on formally specifying memory models of
modern processors [Alg+10; Arm+19; CS15; LB20; Mad+12; Sev+11], and there has also been
work on program logics for formal reasoning on top of such memory models [AM16a; BAP15;
DV16; TVD14; VN13]. In particular, Kaiser et al. [Kai+17a] provide a framework for proving
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programs in a fragment of C11 containing release-acquire (RA) and non-atomic (NA) accesses.
Their specifications for read and write rely on a global view of the weak memory and a lo-
cal view of each thread. While our specifications of read and write are at a very different
level (for an implementation of a distributed database rather than for an operational seman-
tics model of a processor), our specifications follow a similar pattern, as we track both the
abstract global memory and the local history of each replica in our specifications. However,
in Kaiser et al. [Kai+17a] each update is explicitly tracked only globally, and the local thread
view only associates each location with the time of its latest update. We further note that their
consistency model corresponds to RA consistency of the weak memory, while our model de-
scribes causal consistency for a distributed system implementation. Bouajjani et al. [Bou+17]
show that causal consistency is equivalent to a WRA (weak release acquire) model which is
strictly weaker than RA consistency. According to Lahav [Lah19], understanding how con-
current separation logics for the RA model can be weakened to the causal consistency is an
interesting research question, and we hope that our specifications may serve as inspiration for
future investigations in that direction.

4.9 Conclusion

Wehave presented amodular formal specification of a causally-consistent distributed database
in Aneris, a higher-order distributed separation logic, and proved that a concrete implemen-
tation of the distributed algorithm due to Ahamad et al. [Aha+95] meets our specification. We
have demonstrated that our specifications are useful, by proving the correctness of small, but
tricky, synthetic examples involving causal dependency and by verifying a sesssion-manager
library implemented on top of the distributed database. For the session-manager we have,
moreover, verified formal program logic versions of the session guarantees known from the
distributed systems literature.

We have relied onAneris’s facilities formodular specification and verification, in particular
node-local reasoning qua socket protocols, to achieve a highly modular development, where
each component is verified in isolation, relying only on the specifications (not the implementa-
tions) of other components. In particular, the distributed database is specified in the same style
as other libaries and data structures are specified in distributed/concurrent separation logics,
and thus it can be freely combined with other client programs and libraries (as evidenced by
the session-manager library case study).

Future work includes implementing and verifying a strengthened session-manager library
with transparent replica selection. It would also be interesting to verify other implementations
of causally-consistent databases.



5 Trillium

Abstract

Formal verification systems such as TLA+ have been widely used to design, model, and
verify complex concurrent and distributed systems. In many of these tool suites, systems
are modeled as state transition systems, and both safety and liveness properties can usu-
ally be checked. This enables users to reason about abstract system specifications and
uncover design flaws, but it offers no guarantees about the implementations of systems
nor about the relation between an implementation and its abstract specification.

In this work, we show how to connect concrete implementations of concurrent and
distributed systems to abstract system models. We develop Trillium, a separation logic
framework for establishing history-sensitive refinement relations between programs and
models. We use our logic to prove correctness of implementations of two-phase commit
and single-decree Paxos by showing that they refine their abstract TLA+ specifications.
We further use our notion of refinement to transfer fairness assumptions on program ex-
ecutions to model traces and then transfer liveness properties of fair model traces back to
program executions. This enables us to prove liveness properties such as strong eventual
consistency of a concrete implementation of a Conflict-Free Replicated Data Type and fair
termination of a concurrent program.

Formal verification systems such as SPIN [Hol97] and TLA+ [Lam92] have been widely used
to design, model, and verify complex concurrent and distributed systems with successful in-
dustrial applications in organizations like NASA [HLP01], Intel [Bee08], Amazon [New14;
New+15], and Microsoft [Lar17]. In many of these tool suites, systems are modeled as state
transition systems and the tools can usually check both safety and liveness properties. This
enables users to reason about abstract system specifications and uncover design flaws, but it
offers no guarantees about the implementations of systems nor about the relation between an
implementation and its abstract specification.

Concurrent separation logic [OHe07] and itsmodern variants, such as Iris [Jun+16; Jun+18b;
Jun+15; Kre+17], provide powerful andmodular reasoning principles for concurrent programs,
thanks to mechanisms such as ghost state and invariants. They have been used to verify a wide
range of implementations of sophisticated fine-grained concurrent data structures [Car+22;
Cha+21; Kri+20; MJ21; VPJ20; VB21; VFB22] and distributed systems [Gon+21a; Kro+20a].

In this work, we show how to connect concrete implementations of concurrent and dis-
tributed systems to abstract systemmodels. We develop Trillium, amodular language-agnostic
separation logic framework for establishing history-sensitive refinement relations between pro-
grams and models, which relate traces of program executions to traces of a model. Not only
does the refinement relation establish a formal connection and hence a specification of the pro-
gram in its own right, but it makes it possible to transfer both safety and liveness properties of

82



83

1 let rec inc_loop () =
2 let n = !ℓ in
3 cas(ℓ, n, n + 1);
4 inc_loop ()
5 in
6 inc_loop () || inc_loop ()

0 1 2 . . .

Figure 5.1: A concurrent counter inc and its corresponding modelMinc.

a model to its implementation. Consequently, this allows us to exploit existing properties of
abstract models to establish properties about programs that are not expressible using ordinary
concurrent separation logics.

Our development is foundational [App01], in that all our results, including the operational
semantics, the models, and the logic, are formalized in the Coq proof assistant on top of the
Iris base logic while using the Iris Proof Mode [KTB17] for reasoning within the logic. In
Section 5.4 we show how concrete implementations of two distributed protocols, two-phase
commit [Gra78] and single-decree Paxos [Lam98; Lam01], formally refine their abstract TLA+

specifications, and how safety properties of the models can be transferred to the implemen-
tations. Moreover, we explain in Section 5.5 and Section 5.6 how to prove liveness properties
of distributed and concurrent programs through refinement: we prove strong eventual consis-
tency of an implementation of a Conflict-Free Replicated Data Type (CRDT) [Sha+11] and fair
termination of a concurrent program.

The Trillium methodology. Consider the example in Figure 5.1 that shows a program inc
written in an ML-like imperative language. The program uses a global reference ℓ, with an
initial value of zero, that it increments concurrently in two infinite loops using compare-and-
set operations. Our goal is to prove that the reference ℓ takes successively the values 0, 1, 2,
. . .without skipping any number. To do so, we will establish a refinement between the program
and an abstract modelMinc, depicted on the right-hand side of Figure 5.1. Amodel in Trillium
is an arbitrary state transition systemM = (AM,⇀M) where AM denotes a set of states
and⇀M⊆ AM ×AM the transition relation on states. In this particular model, at each step,
either the state does not change, or it is increased by one. The refinement will express that, at
all times, the value stored at location ℓ is equal to the current value of the model and no value
is skipped. Note that prior techniques for proving refinements in Iris could not express the
fact that the program never skips a number (see Section 5.2.1 for a more elaborate discussion)
and that our techniques also allow us to prove the same property about programs that allocate
locations dynamically (see Section 5.3).

As Trillium is a separation logic, propositions denote not only facts but ownership of re-
sources. For example, the proposition ℓ 7→ v asserts exclusive ownership of location ℓ storing
value v. When, as in the example of Figure 5.1, two threads access the same location, the re-
source P can be shared by placing it into an invariant, e.g., P . Invariants are guaranteed to
hold a every computation step and they are duplicable, i.e., P ⊢ P ∗ P , which means
invariants can be shared among multiple threads. The separating conjunction P ∗Q holds for
resources that can be split into two disjoint sub-resources which satisfy P andQ respectively.

When instantiated with a programming language, Trillium provides a new notion of Hoare
triple {P} e {Q}M and a special resource Model◦(δ : M) that represents the current state
of the abstract modelM and asserts that it is equal to δ. We omitM from the connectives
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when it is clear from the context. The refinement we want to show can be established in
Trillium by proving, using the logical predicates and rules of the Trillium logic, the validity of
the following Hoare triple:{

∃n. ℓ 7→ n ∗Model◦(n)
}
inc {False}Minc

where inc is the example program. The invariant ties the contents of the reference ℓ to the
current state of the model and enforces that they always agree. The postcondition of the Hoare
triple is False as the program does not terminate.

Intuitively, a Hoare triple like the above means the program is safe, i.e., it does not crash,
and that the post condition holds for its end-state. To prove this formally, Trillium comes with
an adequacy theorem. In Trillium, however, the adequacy theorem additionally concludes a
history-sensitive refinement relation between all traces generated by the program and the
model and, as such, that the model state and the reference ℓ progress in a lock-step fashion.

Definition 5.0.1 (History-Sensitive Refinement). Let τ be a program execution trace, κ a
model trace, and ξ a binary relation on traces. τ is a history-sensitive refinement of κ under ξ
whenever τ ≾ξ κ holds, where τ ≾ξ κ is coinductively defined by:

τ ≾ξ κ ≜ ξ(τ, κ) ∧ ∀c. last(τ) −→ c ⇒ ∃δ. τ :: c ≾ξ κ :: δ

where :: denotes trace extension, and −→ is the stepping-relation of the operational semantics
of the programming language.

That is, an execution trace τ is a history-sensitive refinement of a model trace κ under ξ if
ξ(τ, κ) holds and for all configurations that the last configuration of τ may step to, there ex-
ists a model state δ such that the extended traces refine each under ξ as well. This relation
straightforwardly extends to all finite prefixes of all possibly-infinite traces generated by pro-
gram execution as detailed in Section 5.2.2. This will be crucial for properties, such as liveness,
that we consider. Figure 5.2 graphically illustrates history-sensitive refinement.

ξ
δ0 δ1 . . . δi δi+1 . . .

c0 c1 . . . ci ci+1 . . .

Figure 5.2: Illustration of Definition 5.0.1. Trace τ = c0 :: c1 :: . . . :: ci refines κ = δ0 :: δ1 ::
. . . :: δi under ξ, written τ ≾ξ κ if ξ(τ, κ) and for any ci+1 that ci may step to there exists
δi+1 such that τ :: ci+1 ≾ξ κ :: δi+1 holds.

For our running example, we pick the predicate ξinc to express that the value of the ref-
erence ℓ in the current state of the program (the last state of the trace) is equal to the current
state of the model and does not skip model states:

ξinc(τ, κ) ≜ heap(last(τ))(ℓ) = last(κ) ∧ stuttering(κ)

where the operator last returns the last element of a (non-empty) trace, heap(c) returns the
heap component of a program configuration c, and

stuttering(κ) =

{
last(κ′) = δ ∨ last(κ′) ⇀Minc

δ if κ = κ′ :: δ

True otherwise



85

In this simple example, the relation ξinc only depends on the last elements of the two traces,
in which case history-sensitive refinement reduces to the usual notion of simulation. We will
see in Section 5.5 and Section 5.6 situations where the additional expressive power of history-
sensitive relations is needed.

We can now state a simplified version of the adequacy theorem, saving the full statement
of the adequacy theorem for Section 5.2.

Theorem 5.0.2 (Simplified adequacy). Let e be a program, σ0 a program state, and Φ an Iris
predicate on values. Let δ0 ∈ M be a model state and ξ a finitary binary relation on program
and model traces. Suppose{

P1 ∗ · · · ∗ Pk

}
e {Φ}M and AlwaysHolds(ξ, e, σ0, δ0)

can be proved in the Trillium logic, then (e, σ0) ≾ξ δ0 holds in the meta-logic, e.g. Coq, and the
program e is safe when started in the initial heapσ0. The Trillium predicateAlwaysHolds(ξ, e, σ0, δ0)
expresses that the invariants P1 , . . . , Pk imply that ξ holds at the current state.

We emphasize that the Trillium Hoare triple is an extension of the usual Iris-style Hoare
triple and we can seamlessly reuse Iris program logic proofs in Trillium. The proof rules of
Trillium include all the usual rules of program logics built on top of Iris; there is just one
additional proof rule for reasoning about refinement. It also means that the same Hoare triple
can be used to capture refinement as well as functional correctness. In particular, it is possible
to use properties of the model when proving a Hoare triple as it is embedded in the logic as
a resource. The specification can, e.g., be used by clients to show safety, which might rely on
properties of the model; see Section 5.4.3 for an example and a more detailed discussion.

Composing refinements. One of the aspects that makes refinements a powerful tool in study-
ing programs and computer systems is their composability. That is, one can prove that a system
A refinesB and thatB refinesC in order to establishA refinesC . This concept is useful espe-
cially in cases where the gap, e.g., in implementation details, between A and B, and between
B and C , are smaller than the gap between A and C which makes those refinements easier
to establish. What we are interested in, especially in verification of distributed systems, is a
tower of composable refinements where one end is a low-level, realistic program implemen-
tation while the other end is a high-level, abstract state transition system (STS) that captures
the essence of the implementation.

The literature on reasoning about both programs and systems includes many works on
proving refinements between pairs of programs [BST12; KTB17; TDB13; Tur+13], includ-
ing reasoning in program logics, and pairs of STSs [Lam92]. In this work, we focus on the
transition-point refinement where we only consider refinements between programs and STSs.
See Section 5.7 for a comparison of the present work with other works that also involve
transition-point refinements. In this regard, Trillium enables incorporation of different tools
as different refinements need not be proven in the same formalism in order for them to be
composed. An example of this fact is illustrated in our example where we show refinement
between the implementation of single-decree Paxos and its TLA+ spec (see Section 5.4). The
TLA+ spec that we use in this example is in fact Lamport’s low-level TLA+ spec [Lam19] which
itself is shown to refine another high-level TLA+ model. Hence, our proof also establishes that
the single-decree Paxos implementation we consider refines this more high-level TLA+ model.
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We believe, but have not formally established, that Trillium can be combined with other ap-
proaches for refinements between a pair of programs, e.g., Krebbers et al. [KTB17], in order to
establish a refinement between a program and an STS.

Instantiations. In Section 5.2.3 we instantiate Trillium with AnerisLang, an OCaml-like im-
perative programming language with network socket primitives, and recover an extension of
the Aneris program logic [Kro+20a] for reasoning about distributed systems. The extension
inherits from Aneris both (1) horizontal modularity via node-local and thread-local reason-
ing, which allows one to verify—and now refine—distributed systems by verifying each thread
and each node in isolation, and (2) veritical modularity via separation logic features such as
the frame rule and the bind rule, which allow one to compose proofs of different components
within each node. Using the Trillium instantiation, we extend these principles to history-
sensitive refinement which additionally allows us to prove liveness properties of distributed
systems. In Section 5.6 we consider an instantiation of Trillium with HeapLang, a concurrent
(non-distributed) language, and show how Trillium can also be used to reason about termi-
nation of concurrent programs by establishing a fair termination-preserving refinement of a
suitable model. Figure 5.3 gives an overview of the different components and concepts devel-
oped in this work, how they depend on each other, and which formal system is used to reason
about each part.

Contributions. In summary, we make the following contributions:

• We introduce Trillium, a language-agnostic separation logic framework for establishing
history-sensitive refinement among traces of program executions and traces of abstract
models through Hoare-style reasoning.

• We instantiate Trillium with AnerisLang to get an extension of Aneris that allows us
prove refinements for distributed systems. We prove soundness of a wide collection of
proof rules, including all the earlier proof rules of Aneris, with respect to the notion of
Hoare triple provided by Trillium.

• We use this instantiation to prove the correctness of concrete implementations of two
distributed protocols, two-phase commit and single-decree Paxos, by showing that they
refine abstract TLA+ specifications. To the best of our knowledge, this is the first founda-
tionally verified proof that a concrete implementation of a distributed protocol correctly
implements an abstract TLA+ specification. We also demonstrate how to use the same
specification to prove properties about the implementation, by relying on correctness
theorems of the TLA+ specification, and to show functional correctness of clients.

• We further show functional correctness and strong eventual consistency of a concrete
implementation of a Conflict-Free Replicated Data Type (CRDT). To the best of our
knowledge, this is the first such proof that takes into account the inter-replica commu-
nication at the level of the implementation; the concurrent interactions with the user-
exposed operations makes it non-trivial to reason about eventual consistency.

• We instantiate Trillium with HeapLang, a higher-order non-distributed concurrent im-
perative programming language and use the resulting logic to show fair termination
of a concurrent program by establishing a fair termination-preserving refinement of a
model.
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Iris base logic & Iris proof mode

Trillium framework

Aneris instantiation
of Trillium

2PC, Paxos (Section 5.4),
CRDTs (Section 5.5), . . .

Program refinements Functional correctness

Liveness properties, e.g., strong
eventual consistency of CRDTs

HeapLang instantiation
of Trillium

yes-no (Section 5.6), . . .

Program refinements Functional correctness

Liveness properties, e.g., termi-
nation of concurrent programs

Coq

Iris proof rules

Iris base logic &
Trillium proof rules

Trillium proof rules

Adequacy of Trillium

Simple arguments
formalized in Coq

Components Formal system used

This work

The foundation we build upon

Program logic
designer

Figure 5.3: An overview of the components described and developed in this work with arrows
indicating dependency. The column to the right describes the formal system used to reason
about the components in the row.

5.1 A trace program logic framework

The Trillium program logic is language agnostic and is defined with respect to an operational
semantics given by a notion of expression e ∈ Expr, value v ∈Val ⊆ Expr, evaluation context
K ∈ Ectx, program state σ ∈ State (a model of, e.g., the heap and/or the network), and a
primitive reduction relation e1, σ1 −→h e2, σ2, e⃗f that relates an expression e1 and a state σ1 to
an expression e2, a state σ2, and a list e⃗f of expressions, corresponding to the threads forked by
the reduction. The top-level reduction relation c −→ c′ on system configurations c, c′ ∈ Cfg =
List(Expr) × State is a standard interleaving small-step semantics using evaluation contexts,
where the first component of a configuration is a list of expressions which denotes the threads
of the system.

When concerned with program execution traces, we will only be interested in valid traces,
written valid(τ), over configurations where each configuration reduces to the next according
to the reduction relation of the operational semantics.

5.1.1 Program logic

When instantiated with a programming language, the Trillium program logic comes with a
set of low-level proof rules which relate the validity of some Hoare triples with the semantics
of the language. When Trillium is instantiated with a concrete programming language, such
as AnerisLang, the usual high-level proof rules are proved using the low-level rules. Once this
work has been done, which happens only once for a given language, Trillium can be used like
any Hoare-style logic.

A selection of the proof rules for the AnerisLang instantiation is shown in Figure 5.4; the
notion of expression in Aneris also includes an ip address on which the expression is running.
AnerisLang is an OCaml-like programming language with network primitives for creating and
binding network sockets as well as sending (sendto) and receiving (receivefrom) messages.
The operational semantics is designed so that the primitives closely model Unix sockets and
UDP networking.

The proof rules include all of the earlier proof rules of Aneris. We write {P} e {v.Q}M to
explicate that the post condition is a predicate λv. Q on the result of evaluating e. Ht-frame
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and Ht-bind constitute the quintessential rules for modular reasoning in separation logic: the
frame rule says that executing e for which we know {P} e {Q}M cannot possibly affect parts
of the heap that are separate from its footprint and the bind rule lifts a local specification to
a more global specification in evaluation context K . The rules Ht-alloc and Ht-load are for
reasoning about allocating and reading from references, respectively, on a nodewith ip-address
ip. The rule Ht-sendto reasons about sending a messagem over a socket z; both the pre- and
postcondition contains Aneris-specific network resources concerned with the status of socket
handles, which messages that have been sent (T ) and received (R) at a particular address (a),
and Aneris communication protocols (Φ). We refer to Krogh-Jespersen et al. [Kro+20a] for a
detailed description of the Aneris resources and more proof rules.

Ht-frame
{P} ⟨ip; e⟩ {Q}M

{P ∗R} ⟨ip; e⟩ {Q ∗R}M

Ht-bind
{P} ⟨ip; e⟩ {v.Q}M ∀v.{Q} ⟨ip; K[v]⟩ {R}M

{P} ⟨ip; K[e]⟩ {R}M

Ht-alloc
{True} ⟨ip; ref(v)⟩ {v. ∃ℓ. v = ℓ ∗ ℓ 7→ip v}M

Ht-load
{ℓ 7→ip w} ⟨ip; ! ℓ⟩ {v.v = w ∗ ℓ 7→ip w}M

Ht-sendto
{z ↪→ip Some a ∗ a⇝ (R, T ) ∗ to Z⇒ Φ ∗ Φ(m, a, to) ∗ a.ip = ip}

⟨ip; sendto z m to⟩

{v. v = |to| ∗ z ↪→ip Some a ∗ a⇝ (R, T ∪ {(m, a, to)})}M

Figure 5.4: Selected proof rules of the Aneris instantiation of Trillium.

To reason about model refinement, Trillium admits one additional proof rule. For conve-
nience, we show its AnerisLang instantiation Ht-take-step.

Ht-take-step
{P} e {Q}M δ ⇀M δ′ Atomic(e) e ̸∈Val

{P ∗Model◦(δ)} e
{
Q ∗Model◦(δ

′)
}M

The rule allows the state of the model to be updated during atomic operations by updating the
Model◦(δ) resource according to the stepping relation of the model. The rule can, naturally, be
combined with other rules, such as Ht-inv-open which we show later in this section, to access
the Model◦(δ) resource from inside invariants. Note how the rule also requires the program
to take a single step: it is atomic, so it takes at most a single step, and it is not a value, hence it
must take a step. Symmetrically, the rule also prevents us from taking two consecutive steps
in the model.

As a consequence of building on the Iris framework, the Trillium logic features all the
usual connective and rules of high-order separation logic, some of which are summarized in
Figure 6.5; the type of Iris propositions is iProp.1

1To avoid the issue of reentrancy, invariants are annotated with a namespace and Hoare triples and update
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σ ::= 0 | 1 | B | N |Val | Expr | iProp | σ × σ | σ + σ | σ → σ | . . . (Types)
P,Q ::= x | λx : σ. P | True | False | P ∧Q | P ∨Q | P ⇒ Q (Propositional logic)

| ∀x : σ. P | ∃x : σ. P | t = u (Higher-order logic)
| P ∗Q | P ∗ Q | ℓ 7→ v (Separation logic)
| P | ▷P | |⇛P | a γ | . . . (Iris connectives)
| {P} e {v.Q}M |Model◦(δ :M) (Trillium connectives)

Figure 5.5: Syntax of Iris and Trillium. t and u represent arbitrary terms.

As as a separation logic, it has a separating conjunctionP ∗Q and the corresponding notion
of implication, the magic wand P ∗ Q, in that it satisfies modus ponens: P ∗ (P ∗ Q)
entails Q.

The Iris base logic allows one to allocate invariants P and user-defined ghost state a
γ .

The logical support for both user-defined invariants and ghost state allows us to relate (ghost
and physical) resources to each other. This is crucial for our specifications as already exempli-
fied in the introduction.

The contents of invariants may be accessed in a carefully restricted way in Trillium using
Ht-inv-open while verifying a program e. The rule permits us to access the contents of an in-
variant, which involves acquiring ownership of P before the verification of e and giving back
ownership of P afterwards. Crucially, e is required to be atomic, meaning that the compu-
tation completes in a single step. Notice that invariants are just another kind of proposition
and it can be used anywhere that normal propositions can be used, including invariants them-
selves, referred to as impredicativity. This is the reasonP appears under a “later” modality ▷P ;
without, the rule for opening invariants is unsound. However, if one does not store invariants
inside invariants or make similar impredicative constructions, one can generally ignore the
later modality as we will do throughout the chapter.

Ht-inv-open
Atomic(e) {▷P ∗Q1} e {▷P ∗Q2}M{

P ∗Q1

}
e
{
P ∗Q2

}M
User-definable ghost state can be introduced via the proposition a

γ which asserts own-
ership of a piece of ghost state a at ghost location γ. Resources can be updated through the
update modality |⇛P . The update modality provides a way, inside the logic, to talk about the
resources we could own after performing an update to what we do own. The intuition is that
|⇛P holds for a resource r, if from r we can do an update to some r′ that satisfies P while not
invalidating any existing resources. Using Ghost-update, we can update a user-defined ghost
resource from a

γ to b
γ under the update modality if the particular user-defined ghost re-

source algebra permits it (a ↣ b). In a similar spirit, Inv-alloc allocates an invariant P by

modalities with masks. We omit both for the sake of presentation in most of the paper as they are orthogonal to
the novelties of Trillium.
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giving up ownership of P .

Ghost-update
a↣ b

a
γ ⊢ |⇛ b

γ
Inv-alloc
P ⊢ |⇛ P

We refer to Jung et al. [Jun+18b] for a thorough treatment of how user-defined ghost state
is constructed in Iris. In the remainder of this chapter, we will simply describe user-defined
ghost state in terms of the rules that govern the concrete instantiations that we use.

5.2 The semantics of Hoare triples

In Trillium, Hoare triples are defined using more primitive notions as:

{P} e {Q}M ≜ �(P ∗ wpM e
{
Q
}
)

where wpM e
{
Q
}
is the weakest precondition that is required for e to terminate safely in a

value v satisfying Q and such that the execution of e refines the modelM. A technicality is
that it is necessary to wrap the implication in a persistence modality � to ensure that Hoare
triples are duplicable and can be used repeatedly.

The Trillium weakest precondition is defined using the Iris base logic, similarly to how the
weakest precondition of the Iris program logic is defined using the Iris base logic [Jun+18b].
The key idea and novelty of the Trillium weakest precondition is to track a model trace along-
side a program execution trace and enforce that whenever the program takes a step according
to the operational semantics, there is a state in the model that corresponds to the program
step. Importantly, it does not mention an explicit model state or traces as the relationship be-
tween the program and the model trace is encapsulated inside the definition of the weakest
precondition.

In order to avoid reentrancy issues, where invariants are opened in a nested (and unsound)
fashion, Iris features invariant namespaces N ∈ InvName and invariant masks E ⊆ InvName.
Up until now, these matters have been omitted but to fully state and comprehend the definition
of the weakest precondition—and consequently our adequacy theorem—they are necessary
evils. We emphasize that their use is entirely standard and identical to the use in the definition
of the Iris weakest precondition.

The Iris base logic annotates each invariant P
N with a namespace N to identify the

invariant and we annotate the weakest precondition with a mask E to keep track of which
invariants are enabled and may be opened. In order to work with invariants formally in Iris,
the update modality is annotated with two masks: |⇛E1 E2 . We write |⇛E when E1 = E2 = E
and |⇛ when E = ⊤, the set of all masks. As discussed earlier, the update modality is used to
reason about ghost state akin to how a weakest precondition is used to reason about physical
state. On top of this, the mask annotations E1 and E2 denote which invariants are enabled
and may be opened before and after the modality is introduced, respectively. Intuitively, the
proposition |⇛E1 E2P holds for resources that—given the invariants in E1 are enabled—can be
updated to resources that satisfy P—with the invariants in E2 enabled—without violating the
environment’s ownership of resources. The contents of invariants may be accessed in a care-
fully restricted way (Inv-open-upd): to prove |⇛EQwe map open an invariant with namespace
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N and assume ▷P as long as N ∈ E and we can re-establish the invariant as well.

Inv-open-upd
N ∈ E

P
N ∗ (▷P ∗ |⇛E\N (▷P ∗Q)) ⊢ |⇛EQ

As we will see, the careful placement of the update modalities in the definition of the
weakest precondition will require all invariants in the mask annotation E to be enabled after
every physical step in the operational semantics, corresponding to the intuition that invariants
can only be opened atomically. For more details on invariants and the update modality in Iris
we refer to Birkedal and Bizjak [BB17] and Jung et al. [Jun+18b].

As a consequence of the Trillium framework’s generality and parameterization by both a
language and a model, we have no knowledge of the physical state, model, and how theymight
be related and reflected in the logic. Therefore, we parameterize the weakest preconditions by
a trace interpretation relation S : Trace(Cfg)×Trace(AM)→ iProp that ties program execution
traces and model traces to Iris resources. In contrast, the standard Iris weakest precondition
uses a state interpretation predicate S : State → iProp for reflecting the physical state, such
as a heap, as resources in the logic to give meaning to, for example, the points-to connective
ℓ 7→ v. The trace interpretation relation subsumes this notion and is able to reflect both the
current physical state and model state, but also their histories and relation, as resources.

Given a trace interpretation S, the definition of the weakest precondition is defined by
guarded recursion in the Iris base logic as follows (highlighting the novel aspects in blue):

wpME e
{
Φ
}
≜
(
e ∈Val ∗ |⇛EΦ(e)

)
∨(

e ̸∈Val ∗ ∀τ, τ ′, κ, σ,K, T1, T2.

valid(τ) ∗ τ = (τ ′ :: (T1 ++K[e] ++ T2, σ)) ∗ S(τ, κ) ∗ |⇛E ∅
reducible(e, σ)∗(
∀e2, σ2, e⃗f . (e, σ)⇝ (e2, σ2, e⃗f ) ∗ ▷ |⇛∅ E

∃δ. S(τ :: (T1 ++K[e2] ++ T2 ++ e⃗f , σ
′), κ :: δ)∗

wpME e2
{
Φ
}
∗∗
e′∈e⃗f

wpME e′
{
True

}))
where E is a mask,M is a model, and Φ ∈Val→ iProp a predicate on values. The definition is
by case distinction. If the program has already terminated (i.e., e is a value) the postcondition
should hold. If the program is not a value, then for all model traces κ and valid execution
traces τ where e is about to take a step on some thread and the trace interpretation holds,
there are two requirements. First, the program should be reducible, which means it is able to
take a thread-local step, ensuring safety. Second, with access to all the invariants in E , for any
possible configuration that e might step to, there should exist a model state δ such that the
trace interpretation holds for the extended trace. Additionally, if the program makes a step,
then the weakest precondition must hold for the reduced program as well as for all threads it
might have forked-off.

In summary, the Trillium weakest precondition is a conservative generalization of the
usual Iris-style weakest precondition that admits all the usual rules that you would expect
from program logics built on top of Iris. In addition, it offers Hoare-style reasoning about the
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relationship between program execution traces and model traces through the addition of a
single rule Ht-take-step.

5.2.1 Adequacy

Given a weakest precondition for a program e and binary relation ξ on execution traces and
model traces, the adequacy theorem of Trillium concludes that e is a history-sensitive refine-
ment of the model and that ξ holds for all possible traces generated by the program and the
model. Importantly, the refinement property only relies on the definition of the operational
semantics and the traces over model states: when a refinement property is established using
Trillium, one does not need to trust Iris nor Trillium, but only that the operational semantics
and the model are as intended.

The adequacy theorem shown below involves a technical condition that requires the ξ
relation to be finitary: the set {δ | ξ(τ :: c, κ :: δ)} has to be finite, for any τ , κ, and c. This
condition is necessary as the underlying model of the base logic of Iris is step-indexed over
the natural numbers.2 The property is generally straightforward to prove: often, as in all our
examples, either the model itself is finitely branching or the program configuration determines
exactly the current state of the model.

Theorem 5.2.1 (Adequacy). Let e be a program, σ0 a program state, and Φ an Iris predicate on
values. Let δ0 ∈ M be a model state and ξ a finitary binary relation on execution traces and
traces ofM. If

|⇛⊤S((e, σ0), δ0) ∗ wpM⊤ e
{
Φ
}
∗AlwaysHolds(ξ, e, σ0, δ0)

then (e, σ0) ≾ξ δ0 holds in the meta-logic. HereAlwaysHolds(ξ, e, σ, δ) is the Trillium predicate

∀τ, κ.


S(τ, κ) ∗ valid(τ) ∗ |τ | = |κ| ∗ first(τ) = (e, σ0) ∗ first(κ) = δ0 ∗(
∀τ ′, κ′, c′, δ′. τ = τ ′ :: c′ ∧ κ = κ′ :: δ′ ⇒ ξ(τ ′, κ′)

)
∗(

∀e1, . . . , en, σ. last(τ) = (e1, . . . , en;σ)⇒
(∀1 ≤ i ≤ n. ei ∈Val ∨ reducible(ei, σ)) ∧ (e1 ∈Val⇒ Φ(e1))

)
 ∗ |⇛⊤ ∅ ξ(τ, κ)

Intuitively, theAlwaysHolds predicate simply says that ξ should follow from all invariants,
cf., the update modality masks. When proving this, one is additionally allowed to assume that
the trace interpretation S holds, the execution trace is valid and the trace starts from e, σ0,
and δ0; ξ holds for the prefixes of the traces; none of the threads at the current execution
point are stuck; and if the first thread (corresponding to e) has evaluated to a value, then the
postcondition Φ holds.

5.2.2 Refinements for infinite executions

The adequacy theorem concludes a refinement relation for finite program executions, how-
ever, it straightforwardly extends to infinite executions as well. A possibly-infinite trace (over

2The finiteness condition does not restrict the properties we can transport along a refinement, see Section 5.5
and Section 5.6. One possible approach to avoid the finiteness condition is to use the recently proposed Transfinite
Iris [Spi+21] as the base logic. However, it is not obvious that one can carry out our development in Transfinite
Iris, since Transfinite Iris does not include all of the basic reasoning principles of standard Iris; in particular, it lacks
commutation rules for the later modality.
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some set) is a finite or infinite sequence (of elements from the set). For possibly-infinite traces,
refinement is a predicate on pairs of traces: a finite trace, corresponding, intuitively, to the
trace up until now and a possibly-infinite trace corresponding to the remaining execution. Let
τ and κ denote finite traces and τ̇ and κ̇ possibly-infinite traces. We define history-sensitive
refinement between possibly-infinite execution traces and model traces coinductively as fol-
lows:

(τ, τ̇) ≾̇ξ (κ, κ̇) ≜

{
ξ(τ, κ) if τ̇ = ∅ and κ̇ = ∅
ξ(τ, κ) ∧ (τ :: c, τ̇ ′) ≾̇ξ (κ :: δ, κ̇′) if τ̇ = c :: τ̇ ′ and κ̇ = δ :: κ̇′

Intuitively, this states that all finite prefixes of the possibly-infinite traces preserve ξ.

Corollary 5.2.2 (Possibly-Infinite Refinement). Let τ , κ be finite traces such that τ ≾ξ κ,
and let τ̇ be a possibly-infinite program trace such that τ and τ̇ are valid. Then there exists a
possibly-infinite model trace κ̇ such that (τ, τ̇) ≾̇ξ (κ, κ̇) holds.

Note that it is not be possible to extract history-sensitive refinement relations from the
usual weakest precondition in an Iris-style program logic. To see why, consider the example
from the introduction. Using Iris’s mechanism for user-defined ghost state, one can easily
definite ghost state modelling a monotonically increasing counter, e.g., a resource n

γ such
that

n
γ ⊢ |⇛ n+ 1

γ

is the only way it can be updated. Using this ghost theory, one could also prove a similarly-
looking specification of the shape{

∃n. ℓ 7→ n ∗ n
γ
}
inc {. . .}

using the standard weakest precondition theory from Iris. However, this specification would
also be satisfied by, for example, an implementation with threads that increment the counter
by two, which clearly does not satisfy our refinement notion. If the counter represents a digital
clock, for example, it would be far from ideal if it was allowed to skip every other minute.

The fundamental problem is that resource updates are transitive which means that if a
particular resource algebra allows a resource update from a to b and from b to c it will also
allow it to be updated directly from a to c; in particular, a ghost theory that allows our counter
to progress as 0-1-2-. . .will also allow it to progress directly from 0 to 2. In Trillium, the model
is encapsulated in the weakest precondition whose definition forces us to match up exactly one
model step per computation step. In the Aneris instantiation (as detailed in the next section)
we consider the reflexive closure, however in Section 5.6 we do not, which is crucial for the
soundness of our method for showing fair termination-preserving refinement.

5.2.3 Aneris Instantiation of Trillium

To instantiate Trillium with AnerisLang, we define the trace interpretation using three com-
ponents:

S(τ, κ) ≜ physSI(last(τ)) ∗Model•(last(κ)) ∗ stuttering(κ)

The physSI predicate corresponds to a state interpretation and associates the physical Aneris
state, i.e., the heap and the network, to Aneris resources, akin to how the heap is associated to
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1 let rec incr_loop l =
2 let n = !l in
3 cas(l, n, n + 1);
4 incr_loop l
5 in
6 let l = ref<s> 0 in
7 fork (incr_loop l); incr_loop l

0 1 2 . . .

Figure 5.6: A concurrent counter inc′ with dynamically allocated memory and its modelMinc.

the ℓ 7→ v resource in standard Iris instantiations. TheModel• predicate ties the current state of
the model to an instance of the authoritative resource algebra [Jun+18b]. TheModel• predicate
(the authoritative part of the model) comes with a counterpartModel◦ (the fragmental part of
the model) satisfying

Model•(δ) ∗Model◦(δ
′) ⊢ δ = δ′.

As discussed in the introduction, this gives the user a way of connecting the model’s cur-
rent state to other separation logic resources through theModel◦(δ) resource. The stuttering
predicate is defined as

stuttering(κ) =

{
last(κ′) = δ ∨ last(κ′) ⇀M δ if κ = κ′ :: δ

True otherwise

which allows the model trace to stutter : a model state in the trace is either the same as the
previous or it is related to the previous state by a single step of the transition relation. When
refining implementations of distributed systems, it is natural to allow stuttering on the model
side given that we wish to relate a detailed program execution to a more abstract model.

5.3 Events

Trace properties and relations among traces may depend on certain events to have happened
to be meaningful. Figure 5.6 shows an augmented version of our initial examples from the
Introduction that uses a dynamically allocated reference cell in favor of a global reference. We
would like to express that the contents of the reference refine the model, however, a priori,
we do not know which concrete memory location gets assigned during allocation. Depending
on scheduling, concurrently running code may or may not allocate memory beforehand and
hence affect the concrete location. To remedy this issue, we introduce trace events. Concretely,
we introduce a notion of labels that may be used to annotate operations, such as reference
allocation, cf. the label s in Figure 5.6 together with a resource for reasoning about them. We
can then express that the contents of the reference allocated at label s refines the model.

We introduce two predicates AllocEvss(evs) and eventSI(τ) satisfying

AllocEvss(evs) ∗ eventSI(τ) ⊢ TraceAllocss(τ) = evs

whereTraceAllocss is a function that maps an execution trace to the list of its allocation steps
labeled by s. By keeping eventSI(τ) in the trace interpretation, intuitively, AllocEvss(evs)
means evs is the list of allocations labeled by s that have taken place so far during the execu-
tion.
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To establish a refinement relation for the example we use the following invariant:

Iincr ≜
(AllocEvss([]) ∗ IncrLoc•(None) ∗Model◦(0)) ∨
(∃ℓ, n.AllocEvss([allocated(ℓ)]) ∗ IncrLoc•(Some ℓ) ∗ ℓ 7→ n ∗Model◦(n))

Nincr

The invariant states that either there has been no allocation with label s, in which case the
model has value 0, or there has been exactly one location ℓ allocated with label s, and its value
corresponds to the state of the model. The predicates IncrLoc• and IncrLoc◦ are user-defined
ghost state that is used for tracking in the proof whether the location has been allocated or
not: by owning IncrLoc◦(None) one can deduce that the location has not been allocated yet.
The two predicates satisfy the following rules:

incr-loc-create
⊢ |⇛IncrLoc•(None) ∗ IncrLoc◦(None)

incr-loc-agree
IncrLoc•(a) ∗ IncrLoc◦(b) ⊢ a = b

incr-loc-update
IncrLoc•(None) ∗ IncrLoc◦(None) ⊢ |⇛IncrLoc•(Some ℓ) ∗ IncrLoc◦(Some ℓ)

Using these rules togetherwith the proof rules of the Trillium instantiation it is straightforward
to prove a specification

{Iincr ∗ IncrLoc◦(None)} inc′ {False}Minc

where inc’ is the program from Figure 5.6. As before, the postcondition can be False as the
program loops indefinitely.

5.4 Refinement of TLA+ specifications

In the following, we discuss how to establish a refinement relation between implementations
of two classical distributed algorithms, two-phase commit and single-decree Paxos (SDP), and
their TLA+ models. As simple corollaries of the refinement relation and our adequacy theorems
we establish using the same modular specification

1. that clients are safe, i.e., they do not crash,

2. a formal proof that the AnerisLang implementation correctly implements the protocol
specification, and

3. correctness of the implementation by leveraging already-established correctness prop-
erties of the models.

Both the TLA+ specification of transaction commit3 and the TLA+ specification of single-
decree Paxos4 can also be found in the official TLA+-examples repository on GitHub. In our
formalization, we havemanually translated the TLA+ system specifications into transition sys-
tems in Coq and proved their correctness properties. We argue that the translations are faithful
and straightforward, however, it is not crucial for soundness that the translation is correct as
the translated models have been proven correct independently in Coq.5

3https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit
4https://github.com/tlaplus/Examples/tree/master/specifications/Paxos
5A user that does not aim to be foundational could, however, reuse the existing TLA+ proofs.

https://github.com/tlaplus/Examples/blob/master/specifications/transaction_commit
https://github.com/tlaplus/Examples/tree/master/specifications/Paxos


Refinement of TLA+ specifications 96

5.4.1 Two-phase commit

The two-phase commit protocol [Gra78] is one of the best-known practical algorithms for
solving the transaction-commit problem where a collection of processes, called resource man-
agers, have to agree on whether a transaction ought to be committed or aborted. A protocol
that solves the problem has to ensure agreement, i.e., no two processes may decide differently.

In this development, we consider a TLA+ model of transaction commit and show that a
distributed implementation of the two-phase commit protocol refines it. As a corollary of the
refinement and the agreement theorem for the model we show that the implementation also
ensures agreement.

Model. The transaction commit model is summarized in Figure 5.7. The model is parame-
terized by a set RMs of resource managers that are each in either an initial Working state,
a preparation state Prepared, or in a final state Committed or Aborted. The full state of the
model is a finite mapping from resource managers to one of these states. The transition re-
lation allows resource managers to transition freely from the Working to the Prepared state
(TC-Prepare). A resource manager may transition from the Prepared to the Committed state if
all resourcemanagers are either in thePrepared or theCommitted state (TC-Commit), and from
theWorking or Prepared state to the Aborted state if no resource manager is in the Committed
state (TC-Abort).

RMStates ≜ {Working,Prepared,Committed,Aborted}
δ ∈ RMs fin−⇀ RMStates

CanCommit(δ) ≜ ∀r ∈ RMs. δ(r) = Prepared ∨ δ(r) = Committed

NotCommitted(δ) ≜ ∀r ∈ RMs. δ(r) ̸= Committed

TC-Prepare
δ(r) = Working

δ ⇀TC δ[r 7→ Prepared]

TC-Commit
δ(r) = Prepared CanCommit(δ)

δ ⇀TC δ[r 7→ Committed]

TC-Abort
δ(r) = Working ∨ δ(r) = Prepared NotCommitted(δ)

δ ⇀TC δ[r 7→ Aborted]

Figure 5.7: TLA+ specification of the transaction-commit (TC) problem.

By induction on the transition relation one can easily show that the model satisfies the
agreement property when starting from an initial state where all resource managers are in the
Working state.

Theorem 5.4.1 (Agreement of TC). Let δInit(r) ≜Working. If δInit ⇀∗
TC δ then for all r1, r2 ∈

RMs it is not the case that δ(r1) = Committed and δ(r2) = Aborted.
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Implementation. The two-phase commit protocol relies on a transaction manager to orches-
trate the agreement process; the transaction manager may either be a distinguished resource
manager or a separate process. Listing 5.1 and Listing 5.2 show implementations inAnerisLang
of the transaction manager and resource manager roles, respectively. The transaction man-
ager uses a simple library functionality for removing duplicate messages; the functionality is
initialized with the nodup_init invocation that returns a wrapped receivefrom primitive that
removes duplicate messages but is otherwise not important.

Listing 5.1: Transaction manager.
1 let wait_receive skt test =
2 let rec loop () =
3 let msg = receivefrom skt in
4 if test msg then msg else loop ()
5 in loop ()
6
7 let resource_manager RM TM =
8 let skt = socket () in
9 socketbind skt RM;
10 let (m, _) = receivefrom skt in
11 if m = "ABORT"
12 then sendto skt "ABORTED" TM
13 else
14 let local_abort = coin_flip () in
15 if local_abort
16 then sendto skt "ABORTED" TM
17 else
18 sendto skt "PREPARED" TM;
19 let (decision, _) =
20 wait_receive skt
21 (fun (_, m) => m = "COMMIT" ||
22 m = "ABORT") in
23 if decision = "COMMIT" then
24 sendto skt "COMMITTED" TM
25 else
26 sendto skt "ABORTED" TM

Listing 5.2: Resource manager.
1 let broadcast skt X msg =
2 Set.iter (fun x -> sendto skt msg x) X
3
4 let recv_resps recv skt RMs =
5 let rec loop prepared =
6 Set.equal prepared RMs ||
7 let (msg, sndr) = recv skt in
8 msg = "PREPARED" &&
9 loop (Set.add sndr prepared) in
10 loop (Set.empty ()) in
11
12 let transaction_manager TM RMs =
13 let skt = socket () in
14 socketbind skt TM;
15 let recv = nodup_init () in
16 broadcast skt RMs "PREPARE";
17 let ready = recv_resps recv skt RMs in
18 if ready then
19 broadcast skt RMs "COMMIT";
20 receive_all skt recv RMs;
21 "COMMITTED"
22 else
23 broadcast skt RMs "ABORT";
24 "ABORTED"

The transaction manager implementation starts by allocating a socket and binding it to the
socket address TM given as argument. It continues by sending a "PREPARE" message to all the
resource manager socket addresses given in RMs, asking the resource managers to transition
to the preparation phase. If all the resource managers respond with "PREPARED"—signifying
that they are all ready to commit—the transaction manager continues by sending a "COMMIT"
message, telling the resource managers the decision is to commit, after which it awaits their
responses and returns. If a single resource manager responds with "ABORTED", the transaction
manager stops receiving responses, relays the information, and returns.

The resource manager implementation starts by allocating a socket and binding it to the
socket address RM given as argument. It continues by listening for an initial request from the
transaction manager; in case another resource manager already aborted and this information
arrived prior to the initial "PREPARE" request, the resource manager aborts. If asked to prepare,
the resourcemanagermakes a local decision—herewith a nondeterministic coin flip–and sends
the decision to the transaction manager. If the resource manager decides to abort, it imme-
diately returns; otherwise it awaits the final decision from the transaction manager, confirms
the transition, and returns.
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Refinement. To show that the two-phase commit implementation refines the transaction-
commit model we instantiate the Aneris logic with the model; this gives us a handle to the cur-
rent model state δ that we can manipulate through the separation logic resource Model◦(δ).
The key proof strategy is to keep this resource in an invariant that ties together the model
state and the physical with enough information such that the continued simulation is strong
enough for proving our final correctness theorem (Corollary 5.4.2). In this development, we
will tie sending a message (such as "COMMITTED") from resource manager r to the correspond-
ing transition in the model (such as TC-Commit). Additionally, the invariant will have to keep
sufficient ghost resources and information for us to establish the conditions (CanCommit(δ)
and NotCommitted(δ)) for progressing the model.

To state a sufficient invariant for the two-phase commit refinement we will make use of
two resource algebras: a variation of the oneshot algebra [Jun+18b] with discardable fractions
[VB21] as well as a monotone ghost map algebra.

The oneshot algebra with discardable fractions allows us to define resources pending(q),
discarded, and shot(a) governed by the rules listed below.

pending(q) ⊢ |⇛discarded

shot(a) ∗ pending(q) ⊢ False

shot(a) ∗ discarded ⊢ False

shot(a) ∗ shot(b) ⊢ a = b

pending(1) ⊢ |⇛shot(a)

pending(p) ∗ pending(q) ⊣⊢ pending(p+ q)

shot(a) ∗ shot(a) ⊣⊢ shot(a)

discarded ∗ discarded ⊣⊢ discarded

Intuitively, pending(q) corresponds to owning a q-sized share in making some decision; only
by owning all shares a unique decision can be made as witnessed by owning shot(a). By
discarding a share a party can ensure that no decision can ever be made. Notice how this
construction can be used to model the two-phase commit protocol (in particular the condition
CanCommit(δ) and NotCommitted(δ)) by picking the decision value a to be the unit value:
each party initially owns an evenly sized share of the decision and transfers this share to
the transaction manager when preparing to commit. By receiving a share from all resource
managers, the transaction manager can make the decision to commit. By discarding a share,
a resource manager can ensure that no decision to commit will ever be made and safely abort.

Using the monotone resource algebra [TB21], we construct a logical points-to connective
r

q7→• s that will track q-fractional ownership of the current model state s of resource manager
r, but where s may only evolve monotonically according to the internal resource manager
transition relation given by Working ⇝ Prepared ⇝ Committed and Working,Prepared ⇝
Aborted. The construction is accompanied by a duplicable r 7→◦ s resource that gives a lower-
bound on the current state of resource manager r as seen from the rules below.

r
q7→• s ∗ r 7→◦ s

′ ⊢ s′ ⇝∗ s

r
17→• s ∗ s⇝∗ s′ ⊢ |⇛r

17→• s
′ ∗ r 7→◦ s

′

r 7→◦ s ∗ r 7→◦ s ⊣⊢ r 7→◦ s
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Equipped with the two constructions from above we can define the refinement invariant
for the two-phase commit implementation:

ITPC ≜ ∃δ.Model◦(δ) ∗ ∗
r∈RMs

∃R, T, s. r
1
27→• s ∗ δ(r) = s ∗ TokenCoh(s)∗

r ⇝ϕRM
� (R, T ) ∗ModelCoh(r, s, T )

The invariant owns the current model state δ and for each resource manager r it owns half
of the corresponding monotone points-to connective for some state s such that δ(r) = s; the
resource manager itself will own the remaining half. This ensures that the resource manager
itself knows exactly which state it is in and that the resource cannot be updated without updat-
ing the model as well. We moreover tie being in the model states Committed and Aborted to
ownership of, respectively, the shot and discarded resources as given by TokenCoh(s) below.

TokenCoh(s) ≜


shot if s = Committed

discarded if s = Aborted

True otherwise

The remaining two clauses constitute the key component in connecting the model to the phys-
ical state; the persistent socket protocol r ⇝ϕRM

� (R, T ) tracks the history T of sent messages
from resource manager r andModelCoh(r, s, T ) requires that if the resource manager r is in
state s then a corresponding message must have been sent to the transaction manager t and if
a message corresponding to a state s′ has been sent, the resource manager must be in at least
that state:

MessageCoh(r, s, T ) ≜


(r, t, "PREPARED") ∈ T if s = Prepared

(r, t, "COMMITTED") ∈ T if s = Committed

(r, t, "ABORTED") ∈ T if s = Aborted

True otherwise
ModelCoh(r, s, T ) ≜ MessageCoh(r, s, T ) ∧ ∀s′.MessageCoh(r, s′, T )→ s′ ⇝∗ s

The socket protocol ϕTM governing the communication with the transaction manager is de-
fined below. It follows the intuitive description given earlier: when preparing to commit, the
pending resource is transferred to the transactionmanager, and in order to commit or abort, the
resources shot and discardedmust be transferred as well, respectively. Moreover, the resource
manager has to prove that its model state has (at least) been progressed to the corresponding
states. The socket protocol for ϕRM for the resource manager follows a similar pattern.

ϕTM(r, t, b) ≜ r ∈ RMs∗(
b = "PREPARED" ∗ pending( 1

|RMs|+1) ∗ r 7→◦ Prepared
)
∨

(b = "COMMITTED" ∗ shot ∗ r 7→◦ Committed)∨
(b = "ABORTED" ∗ discarded ∗ r 7→◦ Aborted)

ϕRM(r, t, b) ≜ b = "PREPARE" ∨(
b = "COMMIT" ∗ shot ∗∗r∈RMs r 7→◦ Prepared

)
∨

(b = "ABORT" ∗ discarded)
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The transaction manager implementation can be given the specification below; notice how
it does not rely on the refinement invariant but only on the socket protocols and resources as
described. {

Fixed(A) ∗ t ∈ A ∗ FreePort(t) ∗ t⇝ (∅, ∅)∗
pending( 1

|RMs|+1) ∗ t Z⇒ ϕTM ∗∗r∈RMs r Z⇒ ϕRM

}
⟨t; transaction_manager t RMs⟩{
v.

(
v = "COMMITTED" ∗∗r∈RMs r 7→◦ Committed

)
∨

(v = "ABORTED" ∗ ∃r ∈ RMs. r 7→◦ Aborted)

}
The specification for the resource manager as seen below, however, relies on the invariant

as well as fractional ownership of the resource manager’s model state.Fixed(A) ∗ r ∈ A ∗ FreePort(r) ∗ ITPC
NTPC∗

r Z⇒ ϕRM ∗ t Z⇒ ϕTM ∗ pending( 1
|RMs|+1) ∗ r

1
27→• Working


⟨r; resource_manager r t⟩
{True}

By combining the adequacy theorem (Theorem 5.2.1) with our model correctness theorem
(Theorem 5.4.1) we obtain the following corollary that only talks about the execution of the
two-phase commit implementation.

Corollary 5.4.2. If (e; ∅) −→∗ (T ; Σ) and ms1 ,ms2 ∈ messages(Σ) such that msi is the
physical message corresponding to state si then it is not the case that s1 = Committed and
s2 = Aborted.

5.4.2 Single-decree Paxos

The Paxos algorithm is a consensus protocol and its single-decree version allows a set of dis-
tributed nodes to reach agreement on a single value by communicating through message-
passing over an unreliable network. In the followingwe omit network-relatedAneris resources
and focus on the core parts of showing the refinement. We note that the approach is similar
to the one taken for two-phase commit.

In SDP, each node in the system adopts one or more of the roles of either proposer, acceptor,
or learner. A value is chosen when a learner learns that a quorum (e.g., a majority) of acceptors
have accepted a value proposed by some proposer. The algorithm works in two phases: in the
first phase, a proposer tries to convince a quorum of acceptors to promise that they will later
accept its value. If it succeeds, it continues to the second phase where it asks the acceptors
to fulfill their promise and accept its value. To satisfy the requirements of consensus, each
attempt to decide a value is distinguished with a unique totally-ordered round number or
ballot. Each acceptor stores its current ballot and the last value it might have accepted, if any.
Acceptors will only give a promise to proposers with a ballot greater than their current one,
and in that case they switch to the proposer’s ballot; proposers only propose values that ensure
consistency, if chosen. By observing that a quorum of acceptors have accepted a value for the
same ballot, learners will learn that a value has been chosen. We refer to Lamport [Lam01] for
an elaborate textual description of the protocol.
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Model. The TLA+ model of SDP is summarized in Figure 5.8. The model is parameterized
over a set of acceptors, Acceptor, and a type of values, Value, among which values are chosen.
The state of the model consists of a set of sent messages S ∈ ℘(PaxosMessage) and two maps
B : Acceptor→ Ballot? and V : Acceptor→ Ballot×Value? that for each acceptor record the
greatest ballot promise and the last accepted value together with its ballot, respectively. The
message type is defined using a datatype-like notation as

PaxosMessage ≜ msg1a(b) | msg1b(a, b, o) | msg2a(b, v) | msg2b(a, b, v)

where a ∈ Acceptor, b ∈ Ballot, v ∈ Value, and o ∈ Ballot× Value?.

Q1bv(S, Q, b) ≜ {m ∈ S | ∃a, v. m = msg1b(a, b, Some v) ∧ a ∈ Q}
HavePromised(S, Q, b) ≜ ∀a ∈ Q. ∃m ∈ S, o. m = msg1b(a, b, o)

IsMaxVote(S, Q, b, v) ≜ ∃m0 ∈ Q1bv(S, Q, b), a0, b0. m = msg1b(a0, b, Some b0, v)∧
∀m′ ∈ Q1bv(S, Q, b).

∃a′, b′, v′. m′ = msg1b(a′, b, Some b′, v′) ∧ b0 ≥ b′

ShowsSafeAt(S, Q, b, v) ≜ HavePromised(S, Q, b) ∧ (Q1bv(S, Q, b) = ∅ ∨
IsMaxVote(S, Q, b, v))

SDP-Phase1a

S,B,V ⇀SDP S ∪ {msg1a(b)} ,B,V

SDP-Phase1b
msg1a(b) ∈ S b > B(a) V(a) = o

S,B,V ⇀SDP S ∪ {msg1b(a, b, o)} ,B[a 7→ Some b],V

SDP-Phase2a
̸ ∃v′.msg2a(b, v′) ∈ S Quorum(Q) ShowsSafeAt(S, Q, b, v)

S,B,V ⇀SDP S ∪ {msg2a(b, v)} ,B,V

SDP-Phase2b
msg2a(b, v) ∈ S b ≥ B(a)

S,B,V ⇀SDP S ∪ {msg2b(a, b, v)} ,B[a 7→ Some b],V[a 7→ Some b, v]

Figure 5.8: TLA+ specification of single-decree Paxos (SDP).

The SDP-Phase1a transition adds a msg1a(b) message to the set of sent messages; this
corresponds to the proposer asking the acceptors to not accept values for ballots smaller than
b. If a msg1a(b) message has been sent and b is greater than acceptor a’s current ballot B(a)
then the SDP-Phase1b transition updates a’s state and sends amsg1b(a, b, o)message where o
is a’s last accepted value, if any. This corresponds to an acceptor responding to a proposer’s
promise request.

The second phase is initiated using the SDP-Phase2a transition that corresponds to the pro-
poser proposing a value v for ballot b by sending a msg2a(b, v) message. However, the tran-
sition can only be made if no value has previously been proposed for ballot b and if a quorum
Q of acceptors exists such that the ShowsSafeAt(S, Q, b, v) predicate holds; this predicate is
at the heart of the Paxos algorithm. Intuitively, the predicate holds if all acceptors in Q have
promised not to accept values for any ballot less than b (HavePromised(S, Q, b)) and either
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none of the acceptors have accepted any value for all ballots less than b or v is the value of
the largest ballot that acceptors from Q have accepted. Following the SDP-Phase2b transition,
acceptor a may accept a proposal for value v and ballot b by sending a msg2b(a, b, v) mes-
sage and updating its state to reflect this fact. A value v has been chosen when a quorum of
acceptors have sent a msg2b(a, b, v) message for some ballot b:

Chosen(S, v) ≜ ∃b,Q.Quorum(Q) ∧ ∀a ∈ Q.msg2b(a, b, v) ∈ S

As follows from the theorem below, it is not possible for the protocol to choose two different
values at the same time and hence SDP solves the consensus problem.

Theorem 5.4.3 (Consistency, SDPmodel). Let ιSDP = (∅, λ_.None, λ_.None). If ιSDP ⇀∗
SDP

(S,B,V) and both Chosen(S, v1) and Chosen(S, v2) hold then v1 = v2.

Implementation. Figure 5.9 shows an implementation inAnerisLang of the acceptor, proposer,
and learner roles.

The acceptor implementation receives as input a set of learner socket addresses and an
address to communicate on. It creates a fresh socket, binds it to the address, and allocates two
local references to keep track of its current ballot and last accepted value. In a loop, it listens for
the two different kinds of messages that it may receive from the proposers. Given a phase one
message, it only considers the message if the ballot is greater than its current ballot in which
case it responds with its last accepted value. Given a phase two message, it only considers the
message if the ballot is greater than or equal to its current ballot in which case it accepts the
value and broadcasts the fact to all the learners. The learner implementation simply waits for
such a message for the same ballot from a majority of acceptors.

The proposer implementation receives as input a set of acceptor socket addresses, a bound
socket, a ballot number and a value to (possibly) propose in the ballot. First phase is initiated
by sending a message to all the acceptors and after receiving a response from a majority of
the acceptors it continues to the second phase. In the second phase it picks the value of the
maximum ballot among the responses; if no such value exist, it picks its own. The candidate
is finally sent to all acceptors.

Note that this proposer implementation only proposes a value for a single ballot; typi-
cally, proposers will issue new ballots when learning that no decision has been reached due
to messages being dropped or nodes crashing. Moreover, it is crucial that proposers do not
issue proposals for the same ballot. In our Coq formalization, proposer p repeatedly issues
new ballots of the form k · |Proposer|+ p for k ∈ N by keeping track of the last issued k in a
local reference.

5.4.3 Consensus by refinement

To show that the SDP implementation refines the SDP model we instantiate the Aneris logic
with themodel; the key part of the proof is to keep theModel◦(δ) resource in a global invariant
that ties together the model state and the physical state with enough information to verify the
implementation and for the refinement relation established through the adequacy theorem
to be strong enough for proving our final correctness theorem (Corollary 5.4.4). Under this
invariant we will modularly verify each Paxos role and each component in isolation.

To state the invariant, we use three kinds of resources corresponding to:
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1 let acceptor learners addr =
2 let skt = socket () in
3 socketbind skt addr;
4 let maxBal = ref None in
5 let maxVal = ref None in
6 let rec loop () =
7 let (m, sndr) = receivefrom skt in
8 match acceptor_deser m with
9 | inl bal =>
10 if !maxBal = None ||
11 Option.get !maxBal < bal then
12 maxBal := Some bal;
13 sendto skt
14 (proposer_ser (bal, !maxVal)) sndr
15 else ()
16 | inr (bal, v) =>
17 if !maxBal = None ||
18 Option.get !maxBal <= bal then
19 maxBal := Some bal;
20 maxVal := Some accept;
21 broadcast skt learners
22 (learner_ser (bal, v))
23 else ()
24 end; loop () in loop ()

1 let learner acceptors addr client =
2 let skt = socket () in
3 socketbind skt addr;
4 let majority =
5 Set.cardinal acceptors / 2 + 1 in
6 let votes = ref (Map.empty ()) in
7 let rec go () =
8 let (m, sndr) = receivefrom skt in
9 let (bal, v) = learner_deser m in
10 let bal_votes =
11 match Map.find_opt bal !votes with
12 | Some vs => vs
13 | None => Set.empty ()
14 end in
15 let bal_votes’ = Set.add sndr bal_votes in
16 if Set.cardinal bal_votes’ = majority
17 then (bal, v)
18 else
19 votes <- Map.add bal bal_votes’ votes;
20 go () in
21 let result = go () in
22 sendto skt (client_ser result) client

1 let recv_promises skt n bal0 =
2 let promises = ref (Set.empty ()) in
3 let senders = ref (Set.empty ()) in
4 let rec loop () =
5 if Set.cardinal !senders = n
6 then !promises
7 else
8 let (m, sndr) = receivefrom skt in
9 let (bal, mval) = proposer_deser m in
10 if bal = bal0 then
11 senders <- Set.add !senders sndr;
12 promises <- Set.add !promises mval
13 else ();
14 loop ()
15 in loop ()
16
17 let find_max_promise s =
18 let max_promise acc promise =
19 match promise, acc with
20 | Some (b1, _), Some (b2, _) =>
21 if b1 < b2 then acc else promise
22 | None, Some _ => acc
23 | _, _ => promise
24 end
25 in Set.fold max_promise s None
26
27 let proposer acceptors skt bal v =
28 broadcast skt acceptors
29 (acceptor_ser (inl bal));
30 let majority =
31 (Set.cardinal acceptors) / 2 + 1 in
32 let promises =
33 recv_promises skt majority bal in
34 let max_promise =
35 find_max_promise promises in
36 let av = Option.value max_promise v in
37 broadcast skt acceptors
38 (acceptor_ser (inr (bal, av)))

Figure 5.9: Implementation of the acceptor, proposer, and learner roles of the Paxos protocol.
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1. sets of messages with predicatesMsgs•(S) and Msgs◦(m) such that

Msgs•(S) ∗Msgs◦(m) ⊢ m ∈ S
Msgs•(S) ⊢ |⇛ (Msgs•(S ∪m) ∗Msgs◦(m))

2. maps, e.g., with predicatesMaxBal•(B) andMaxBal◦(a, b) such that

MaxBal•(B) ∗MaxBal◦(a, b) ⊢ B(a) = b

MaxBal•(B) ∗MaxBal◦(a, b) ⊢ |⇛
(
MaxBal•(B[a 7→ b′]) ∗MaxBal◦(a, b

′)
)

3. ballots with predicates pending(b) and shot(b, v) such that

pending(b) ∗ shot(b, v) ⊢ False

pending(b) ∗ pending(b) ⊢ False

pending(b) ⊢ |⇛shot(b, v)

shot(b, v1) ∗ shot(b, v2) ⊢ v1 = v2

Equipped with these resource we can state the invariant:

ISDP ≜ ∃S,B,V.Model◦(S,B,V) ∗Msgs•(S) ∗MaxBal•(B)∗
MaxVal•(V) ∗ BalCoh(S) ∗MsgCoh(S)

The first part of the invariant ties the current state of the model (S,B,V) to its logical
authoritative counterparts which means that by owning a fragmental part you own a piece of
the model: e.g., by owningMaxBal◦(a, b) you may open the invariant and conclude B(a) = b
where B is the current map of ballots. Intuitively, we will give acceptor a exclusive own-
ership of the parts of the model that should correspond to its local state (through resources
MaxBal◦(a, b) andMaxVal◦(a, o)). Similarly, by owningMsgs◦(m) one may conclude that the
message m has in fact been added to the set of messages in the model; this predicate we will
transfer when sending physical messages corresponding tom.

In the last part of the invariant, the BalCoh(S) predicate simply requires that if
msg2a(b, v) ∈ S then shot(b, v) holds. This implies that by owning pending(b) you are the
only entity that may propose a value for ballot b and it may never change. The MsgCoh(S)
predicate ties the physical state of the program to the model using Aneris-specific predicates
for tracking the state of the network in a similar was as for the two-phase commit verification.
This, for instance, forces acceptors and proposers to also add to the model state S any message
they send over the network. Hence, to verify a proposer or an acceptor that sends a message,
the proof must open the invariant, use Ht-take-step to take a step in the model, and update
the corresponding logical resources to close the invariant. Following this methodology, we
give specifications of the following shape to the proposer and acceptor components:

{ISDP ∗MaxBal◦(a,None) ∗MaxBal◦(a,None) ∗ . . .} ⟨ip; acceptor L a⟩ {False}
{ISDP ∗ pending(b) ∗ . . .} ⟨ip; proposer A skt b v⟩ {True}

omitting Aneris-specific network connectives in the precondition; the postcondition for
acceptor may be False as it does not terminate. We give a similar specification to the learner.
Working in amodular program logic, we can compose these specifications to get a single Hoare
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1 let client addr =
2 let skt = socket () in
3 socketbind skt addr;
4 let (m1, sndr1) = receivefrom skt in
5 let (_, v1) = client_deser m1 in
6 let (m2, _) = wait_receive skt
7 (fun (_, sndr2), sndr2 <> sndr1) in
8 let (_, v2) = client_deser m2 in
9 assert (v1 = v2); v1.

Figure 5.10: An example of a client implementation.

triple for a distributed system with both proposers, acceptors, and learners. By applying the
adequacy theorem to this specificationwe get that the implementation indeed refines the TLA+

model of SDP.6

Consensus for the implementation. Given the specification has been established for the im-
plementation, we can state and prove that the consistency property holds for all executions by
transporting the consistency property of the model. Let

ChosenI (M,v) ≜ ∃b,Q.Quorum(Q) ∧ ∀a ∈ Q. ∃m ∈M.m ∼ msg2b(a, b, v)

whereM is a set of physical messages and m ∼ s holds when m is the serialization of the
message s. By picking a trace relation ξSDP that requires messages in the model to correspond
to messages in the program state (as implied byMsgCoh(S)):

ξSDP(τ, κ) ≜ ∃S. last(κ) = (S, _, _) ∧messages(last(τ)) ∼ S ∧ stuttering(κ)

we combine the adequacy theorem (Theorem 5.2.1) with our model correctness theorem (The-
orem 5.4.3) to obtain the following corollary that only talks about the execution of the SDP
implementation.

Corollary 5.4.4. Let e be a distributed system obtained by composing n proposers,m acceptors,
and k learners. For any T and Σ, if (e; ∅) −→∗ (T ; Σ) and both ChosenI (messages(Σ), v1) and
ChosenI (messages(Σ), v2) hold then v1 = v2.

Functional correctness of clients. Corollary 5.4.4 is ameta-logic theorem (e.g., in Coq) that only
talks about the program execution and it follows as a consequence of the adequacy theorem
and the model theorem. However, it is not only in the meta-logic that we can exploit properties
of the model to prove properties about programs as the model is also embedded as a resource
in the logic.

Figure 5.10 shows a client application that receives a message from two different learners
and asserts that the two values are equal; if the two values do not agree, the program crashes.
We can prove a specification for the client of the shape {ISDP ∗ . . .} ⟨ip; client a⟩ {. . .}. From
the adequacy theorem it follows that the program is safe, i.e., it does not crash, which means
the asserted statement must always hold. In the proof of this specification, the client will re-
ceive ghost resources from the learners conveying that v1 and v2 have been chosen (i.e., that

6The full Coq proof amounts to about 1100 lines of proof scripts.
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a quorum of acceptors have accepted vi). By opening the invariant ISDP and hence obtaining
the model resource Model◦(S,B,V), we can combine this knowledge with Theorem 5.4.3—a
property exclusively of the model—and conclude that v1 = v2. Naturally, we may still com-
pose a distributed system containing the client together with proposers, acceptors, and learner
nodes and derive a specification for the full system. This single specification for the full dis-
tributed system entails both the refinement of the TLA+ model and the safety of the programs
running on all nodes.

5.5 Specification and verification of CRDTs using refinement

According to the CAP theorem [Bre00] no distributed system can, simultaneously, satisfy all
the three desired properties of distributed systems: consistency (all replicas always agree),
availability (responsiveness), and partition tolerance (can function even if some nodes have
crashed/disconnected). Hence, different distributed systems choose to sacrifice (parts of) one
of these three properties. Conflict-free replicated data types [Sha+11] weaken the consistency
of the system to so-called eventual consistency [Vog09], which, loosely speaking, states that all
replicas are guaranteed to be consistent once they have received the same set of updates from
other replicas.

In this section we use Trillium to reason about a CRDT called G-Counter (a grow-only
replicated counter). Despite their simplicity, G-Counters illustrate subtle and salient aspects
of specification and verification of eventual consistency of CRDTs when (a) it is done fully
formally (b) for an actual implementation including replicas’ intercommunication, (c) along
with specifying and proving node-local functional correctness within the same formal setting
(in Aneris and Coq).7

Implementation. The implementation of the G-Counter in Figure 5.11 consists of the follow-
ing:

• The install method is used to initialize instances of G-Counter on different replicas
and returns two methods: query, to read the value, and incr, to increment it.

• The broadcast loop, forked by install, repeatedly sends the local state to other replicas.

• The apply loop, also forked by install, repeatedly updates the local state based on the
states of the other replicas it receives over the network.

In the code of the install function the s in ref<s> is the so-called label of allocation used to
identify so-called allocation events. See Section 5.3 for more details on allocation events and
how they allow us to state and prove properties regarding memory locations even before they
are allocated. For instance, here we enforce that the state of a replica in the model should be
zero before the local state of the replica is physically allocated and that it must match the state
stored physically on the replica after its allocation.

The state of a G-Counter replicas is a vector (an array), one element for each replica (in-
cluding themselves), with the jth element of the vector tracking the number of increments
performed on the jth replica. Note how the incr method on the ith replica increments the ith
element of the vector, and the query function returns the sum of the vector. The applymethod

7The full Coq proof amounts to about 2000 lines of proof scripts.
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updates the local state by taking, for each replica, the maximum value of its current state and
the value it has received from the network—the vect_join_max function computes point-wise
maximum of two vectors.

1 let install addrlst i s =
2 let n = List.length addrlst in
3 let m = ref<s> (vect_mk n 0) in
4 let sh = socket () in
5 socketbind sh (List.nth addrlst i);
6 fork (apply m sh);
7 fork (broadcast m sh addrlst i);
8 (query m, incr m i)
9
10
11 let rec incr m i () =
12 let t = !m in
13 if cas m t (vect_inc t i)
14 then ()
15 else incr m i ()
16
17 let query m () = vect_sum !m

18 let rec perform_merge m m2 =
19 let t = !m in
20 if cas m t (vect_join_max t m2) then ()
21 else perform_merge m m2
22
23 let apply m sh =
24 let rec loop () =
25 let (b, _) = receivefrom sh in
26 let m2 = vect_deserialize b in
27 perform_merge m m2; loop ()
28 in loop ()
29
30 let broadcast m sh nodes i =
31 let rec loop () =
32 let msg = vect_serialize !m in
33 send_to_all sh msg nodes i; loop ()
34 in loop ()

Figure 5.11: Implementation of a global counter.

Note the inherent node-local concurrency in this implementation; the broadcast and
apply methods running concurrently alongside the client code which invokes increment and
query methods. Hence, in this example we use advanced features of Aneris, e.g., support for
node-local concurrency. The idea of eventual consistency for G-Counters, which we will make
formal later, is that if at some point no increment operation takes place on any replica, assum-
ing some fairness properties about the network and scheduling, the states of all replicas will
converge.

Functional correctness. Unsurprisingly, the node-local guarantees that clients can get for
querying and incrementing are much weaker than for two-phase commit or Paxos. In the
absence of coordination, the G-Counter merely enforces that each client always observes the
effect of its calls to increment, but cannot know the exact value of the counter; we only know
that it is monotonically increasing. Figure 5.12 shows the formal specifications for incr and
query that we have proved and used to prove both safety and eventual consistency of CRDTs
and their clients.8 In the specs for both methods, the local state of the ith replica is represented
by an abstract predicate gcounter(i, k) where k is an under approximation of its current value
(the sum of all elements of the vector).

{gcounter(i, k)} ⟨ipi; query()⟩ {m. k ≤ m ∗ gcounter(i,m)} QuerySpec
{gcounter(i, k)} ⟨ipi; incr()⟩ {(). ∃m. k < m ∗ gcounter(i,m)} IncrSpec

Figure 5.12: G-Counter query and increment node-local specification.

8We omit the spec for install whose postcondition is straightforward (it returns a pair of methods (qr, ic)
that satisfy the specifications QuerySpec and IncrSpec respectively), but whose precondition contains network-
specific initialization conditions which are not relevant here, e.g. the address List.nth addrlst i being a pair (ip, p)
where p is a free port.
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5.5.1 Specifying and proving eventual consistency by refinement

In this section we show that G-Counter has the eventual consistency property. That is, any
execution trace that is network-fair, defined below, and has a stability point, a point after which
there is no increment, also has a convergence point, a point after which all replicas have the
same local state.

The eventual consistency property is a property about the entire execution of a program.
Hence, we need to be able to formally define traces that capture the entire execution of a
program, or its corresponding trace in the model, which can also include infinite executions.
For this reason, we introduce possibly-infinite traces. These traces, like finite traces we have
seen before, are sequences of elements with the difference that they can be finite, or infinite,
or even empty. We will use possibly-infinite traces in conjunction with finite traces, often as
a pair. The idea is that this captures the program execution (or a model trace) up to a certain
point, the finite trace being the past while the possibly-infinite trace is the future. We denote
possibly-infinite traces with letters with a dot on top, i.e., τ̇ and κ̇ for possibly-infinite program
and model traces, respectively. We will also use similar notation to finite traces for operations
on possibly-infinite traces, e.g., we write c :: τ̇ for extending the possibly-infinite trace τ̇ with
configuration c.

The high-level idea of our proof is as follows. We consider a simple model for G-Counter.
We define eventual consistency (stability point implies convergence point) for both possibly-
infinite execution traces and possibly-infinite model traces. We show that any possibly-infinite
trace of the model that is model-fair, defined below, is eventually consistent. The refinement
relation that we obtain between possibly-infinite traces of the program and the model allows
us to show

• That any possibly-infinite model trace corresponding to a possibly-infinite execution
trace that satisfies network fairness properties is model-fair.

• That given a possibly-infinite execution trace and its corresponding model trace, if the
model trace is eventually consistent, then so is the execution trace.

Putting all of the above together we can conclude that all program traces that satisfy network
fairness properties are eventually consistent.

Model and model fairness. The state of the model we take for G-Counter with n replicas is
simply a vector (of length n) of vectors (of length n), i.e. a square matrix. That is, for each
replica we take a vector representing its local state. As expected, the initial state for our model
is a square matrix where all elements are 0. We write ιGC

n for this initial state where n is
the number of G-Counter replicas. The model STS has two kinds of transitions (Figure 5.13)
corresponding to the two state-changing operations on G-Counter: incrementing andmerging
a message received from the network. The GC-IncrStep transition updates the state δ such
that the ith element of the ith vector, δi,i is incremented. This is precisely what happens in
the program during the increment operation. The GC-ApplyStep transition, on the other hand,
updates the ith vector to be the result of merging (point-wise maximum) of the ith vector with
some vector v⃗ which is, point-wise, less than (⊑) the vector for some other (jth) replica. The
idea is that the vector being merged corresponds to the state of jth replica in the past—the
jth replica could have been incremented after its state was sent over the network and before
getting merged.
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GC-IncrStep

δ →GC δ[i 7→ δi[i 7→ δi,i + 1]]

GC-ApplyStep
v⃗ ⊑ δj

δ →GC δ[i 7→ δi ⊔ v⃗]

Figure 5.13: Transition relation for the global counter model.

In order to support simpler and more compact writing we introduce the following nota-
tion. Given a finite trace t and a possibly-infinite trace ṫ, we write Unrolln(t, ṫ) for the finite
trace obtained by taking the first n elements of ṫ (if there are n elements, otherwise as many
as available) and appending them on t. (Recall the intuition we gave when we introduced
possibly-infinite traces. The Unrolln function simply computes the execution trace n steps
into the future.) As an example, we have Unroll1(t, a :: ṫ) = t :: a. We write Dropn for drop-
ping the first n elements of a possibly-infinite trace. For example, we have Drop1(a :: ṫ) = ṫ.

We define fairness for a model trace and a possibly-infinite model trace as follows:

ModelFair(κ, κ̇) ≜ ∀i, j, k. ∃k′. last(Unrollk(κ, κ̇))i ⊑ last(Unrollk′(κ, κ̇))j

Note that here we write vi for the ith row of the matrix v and vi,j for the jth component of the
ith vector. This definition simply states that for any replicas i and j, for any number of steps
k, there is a k′ such that the vector for replica j at step k′ is greater than or equal to the vector
for replica i at step k. In other words, it is always the case that the current state of ith replica
is eventually merged into the jth replica. We define eventual consistency, stability point, and
convergence point as follows:

ModelStabv⃗(κ, κ̇) ≜ ∃k. ∀k′. ∀i. last(Unrollk+k′(κ, κ̇))i,i = v⃗i

ModelConvv⃗(κ, κ̇) ≜ ∃k. ∀k′. ∀i. last(Unrollk+k′(κ, κ̇))i = v⃗

ModelEvCons(κ, κ̇) ≜ ∀v⃗. ModelStabv⃗(κ, κ̇)⇒ ModelConvv⃗(κ, κ̇)

The predicateModelStabv⃗ states that there exists a point k after which the diagonal of the state
is exactly v⃗. Similarly, the predicate ModelConvv⃗ states that there is a point k after which all
local states are exactly v⃗.

Theorem 5.5.1 (Model Eventual Consistency). For all κ and κ̇, if ModelFair(κ, κ̇) then
ModelEvCons(κ, κ̇).

Closed system, network fairness, and eventual consistency. For the rest of this section we as-
sume that we have a closed system consisting of a number of nodes where each node runs a
client of G-Counters after initializing a local instance. That is, each node in the system runs a
program

let (qr, ic) = install addrlst i i in clienti qr ic

where addrlist is the list of socket addresses of all replicas and clienti is some arbitrary
code that runs on the ith node as a client of the G-Counter—note how the label of the allocated
location for the state of the ith node is i. For clients we only assume that they satisfy a Hoare
triple where the precondition requires the query and the increment functions satisfy their
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specs given in Figure 5.12. We write cGCn for the initial configuration of the closed system of n
replicas of G-Counter.

We now proceed to show that any closed system of G-Counters has the eventual consis-
tency property. As expected from earlier high-level informal proofs [Sha+11], this is based on
a fairness assumption on the network. Since we are considering a concrete implementation
here, we additionally assume some liveness properties of the implementation (including fair-
ness of schedulers on different nodes in the system), e.g., that a message is eventually received
if the network has not dropped it. The assumptions are as follows:

NetFairSend(τ, τ̇) ≜ ∀i, j, n. ∃k. n ≤ |TraceSendsi,j(Unrollk(τ, τ̇))|
NetFairRec(τ, τ̇) ≜ ∀i, n. ∃k. n ≤ |TraceRecsi(Unrollk(τ, τ̇))|
NetFairDel(τ, τ̇) ≜ ∀i, j, sev , k. sev ∈ TraceSendsi,j(Unrollk(τ, τ̇))⇒

∃k′, sev ′, rev . same_or_happens_after(sev ′, sev) ∧msg(sev ′) = msg(rev) ∧
sev ′ ∈ TraceSendsi,j(Unrollk+k′(τ, τ̇)) ∧

rev ∈ TraceRecsj(Unrollk+k′(τ, τ̇))

NetFair(τ, τ̇) ≜ NetFairSend(τ, τ̇) ∧NetFairRec(τ, τ̇)∧
NetFairDel(τ, τ̇)

where TraceSendsi,j is the list of all send events from the ith replica to the jth replica and
TraceRecsi is the list of all receive events on ith replica. The fairness criterion NetFairDel
simply says that for any send event sev from ith replica to jth replica, there is a send event
sev ′ also sent from ith replica to jth replica that is received by the jth node. Moreover, sev ′ is
either the same as sev or it is sent after it. Note how this definition allows for messages to be
dropped but essentially only requires that always eventually a message is delivered from any
node to any other node.

We define eventual consistency, stability point, and convergence point for a closed system
just as we defined them for the model; instead of the state of the model we refer to the values
stored on the heap of each replica. However, this is not immediately expressible as at the
beginning of execution the memory is not allocated. Hence, we follow an approach similar to
the example in Section 5.3 using allocation events. The eventual consistency theorem that we
prove about our implementation is as follows:

Theorem 5.5.2 (Eventual Consistency). Let τ̇ be a valid possibly-infinite trace starting from
cGCn such that NetFair(cGCn , τ̇) holds. Then there exist k ∈ N, κ̇, and n locations ℓ1, . . . , ℓn such
that after k steps of computation (of the entire distributed system) all the locations storing local
states of all replicas are allocated and these are exactly locations ℓ1, . . . , ℓn (ℓi storing the state of
the ith replica). Furthermore, we have

EvConsℓ1,...,ℓn
(
Unrollk

(
cGCn , τ̇

)
,Dropk(τ̇)

)
where EvConsℓ1,...,ℓn is the predicate stating that if there is a stability point (a point after which
the jth component of the state stored in ℓj does not change for any j) then there is a convergence
point (a point after which the values stored in all locations is the same).

This theorem essentially says that there eventually is a point where all replicas have allo-
cated their locations and that as of that point if there is a stability point, there must also be a
convergence point.
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Proof sketch of Theorem 5.5.2. The proof is divided into two parts. We first show that a certain
relation GcMainRel holds between the program trace and the model trace; this is essentially a
simple consequence of the refinement relation that we have established, and which we obtain
by the adequacy theorem. Afterwards, we prove that GcMainRel together with the network
fairness properties implies EvCons.

We begin by showing that there exists k ∈ N, κ̇, and n locations ℓ1, . . . , ℓn as described in
the theorem and that the following holds:

∀k′. GcMainRel
(
(ℓ1, . . . , ℓn),Unrollk+k′

(
cGCn , τ̇

)
,Unrollk+k′

(
ιGC
n , κ̇

))
This simply states that GcMainRel holds for ever after the kth step. Intuitively, the relation
GcMainRel holds when:

1. For any vector v⃗ sent from node i to node j, v⃗ is point-wise greater than or equal to the
vector stored on the heap at node i at the time of all previous sent messages from node i
to node j.

2. At all times, the vector stored on the heap of node i is point-wise greater than or equal
to all vectors received by node i, except possibly for the very last received message.

3. At all times, the vectors stored on the heap and the model agree.

Note the subtlety of condition (1) as it is capturing precisely the interaction between the pro-
gram scheduler and the network steps: the vector on heap at the time of a send operation
might be larger than the vector being sent as increment operations can take place in between
the reading and the sending operations. Also, for condition (2), since the program receives
messages in a loop and then subsequently merges them it might be that the last vector re-
ceived is not yet merged.

As for the second part of the proof, i.e., proving EvConsℓ1,...,ℓn , note how GcMainRel to-
gether withNetFair impliesModelFair . Assume that v⃗ is the current state of ith replica (both
in the model and the heap as they agree). At some point in the future, there is a vector v⃗′ sent
from ith replica to jth replica that is received, such that v⃗ ⊑ v⃗′. On the other hand, the jth

replica keeps receiving messages and once it gets a message after v⃗′, its state is guaranteed to
be greater than or equal to v⃗′ and therefore also greater than or equal to v⃗. Moreover, since the
vectors on the heap and the vectors in the model correspond at all times, the stability point
and convergence point of the program and the model also correspond.

The invariant. The invariant that we use for establishing the refinement relation between
G-Counters and their models is as follows:

∃locs, δ. Model◦(δ) ∗HeapRel(locs, δ) ∗ SentRel(locs, δ) ∗ RecRel(locs, δ)

Here the predicate HeapRel states that either the ith replica has allocated its location and it
stores exactly δi or δi is all 0’s. See the example in Section 5.3 for a detailed example where allo-
cation events are used to establish a property similar to this property. This invariant captures
the relation GcMainRel above using allocation, send, and receive events. Here, locs is a list of
optional locations (instead of a list of locations inGcMainRel). The SentRel andRecRel predi-
cates, respectively, use send and receive events to state the criteria (2) and (3) in the explanation
above for GcMainRel. In order to maintain the invariant above, we use the rule Ht-take-step
to update the state of the model whenever the cas operations in the perform_merge or incr
methods succeed—note that the cas operation is an atomic operation.
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let rec yes b n =
if cas b 1 0 then n := !n-1;
if !n > 0 then yes b n

let rec no b m =
if cas b 0 1 then m := !m-1;
if !m > 0 then no b m

let start k =
let b = ref 0 in
(yes b (ref k) || no b (ref k))

· · · m, 1 m, 0 m−1, 1 · · ·No

No

Yes

Yes

No

No

Yes

Figure 5.14: The Yes and No threads and the model Fyn.

5.6 Fair termination of concurrent programs

We now consider an instantiation of Trillium to the HeapLang language, a concurrent higher-
order language without network capabilities. We explain how instantiating Trillium with a
suitable model allows proving fair termination of concurrent programs.

In a concurrent setting, the generally relevant notion of termination is fair termination,
as most concurrent programs only terminate if the scheduler is fair. For example, the pro-
gram presented in Figure 5.14, where two threads yes and no flip back and forth a shared
Boolean b, does intuitively terminate. However, it does not terminate if, after some point,
only one thread is ever scheduled; this should not happen under a reasonable scheduler. By
definition, fair termination of a program means that all its fair traces are finite. An execution
trace (T1, σ1)

tid1−−→ (T2, σ2)
tid2−−→ · · · , whose transitions are labeled with the indices tid of the

threads which take steps, is fair if it is finite, or if every reducible thread eventually takes a
step.

Fair termination is a liveness property, and hence we cannot prove it directly in a step-
indexed logic such as Iris (as discussed by Spies et al. [Spi+21] and Tassarotti et al. [TJH17]).
Our solution is to prove a reduction from the fair termination of an abstract model F to that
of the program e:

F is fairly terminating ∧ e refines δ ∈ F =⇒ e is fairly terminating (5.1)

where the fact that e refines δ is proved in Trillium. To express fairness, we use an instantiation
of Trillium where models are labeled transition systems. Thus the model F above should be
a fairness model: an STS labeled with roles which act similarly to thread ids in the definition
of fair traces of F . Each state δ ∈ F has a finite set of enabled roles. For the example above,
we define in Figure 5.14 a model Fyn with two roles, Yes and No corresponding to the two
threads, and whose states are pairs (m, b) ∈ N × B which represent respectively the value
of m and of b. Intuitively, the states of Fyn summarize the states of the program; note that if,
initially, n = m = k and b = 0, then n = m+ b. Loops in Fyn represent failed cas operations
and rightward arrows successful ones. This model is fairly terminating: at each state, one of
the two roles decreases the state ordered lexicographically.

We need the refinement relation between the program e and the state δ of the fairness
model F to induce a relation ≾ on their traces which entails that (5.1) holds, since fair termi-
nation is a trace property. The relation ≾ is complicated, as it needs to maintain an evolving
mapping between thread ids and roles and to ensure finiteness of stuttering. We define it as
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the composition of two simpler relations≾f and≾s on traces so that te ≾ tm iff there exists a
trace t of an intermediate labeled STS Live(F) such that the two following refinements hold:

te t tm≾f

fair fair

≾s

finite finite

(5.2)

The first relation≾f is defined as history-sensitive refinement of a model Live(F) for a certain
fixed relation ξ. The flexibility of Trillium’s notion of refinement means that, by carefuly
choosing the model and the relation ξ, it can be made to be a fairness-preserving termination-
preserving refinement. A state of Live(F) is a triple (δ, F, T ) where δ ∈ F , F associates a
natural number F (ρ) to each role ρ enabled in δ which is called its fuel, and T associates each
role with a thread id of the program. The idea is that a stutter step of thread tid decreases
the fuels of all the roles associated to it according to T , and that a tid-step in the program
which corresponds to a ρ step in F , with F (ρ) = tid, can increase the fuel of ρ but must
decrease the fuel of all the other roles ρ′ ∈ T−1(tid). This decreasing-fuel discipline ensures
that there exists a computable function which extracts a trace tm inF from a trace t of Live(F)
by ignoring stuttering steps. The relation ≾s is the graph of this function.

The correctness of this construction is represented by the gray arrows in Equation (5.2):
for example, the arrow from te to t means that if te ≾f t and if te is fair, then t is fair. Thus
if te is fair, then tm is fair as well. If F is fairly terminating, we then get that tm is finite, and
therefore te is finite.

Coming back to our example, since Fyn is fairly terminating, it only remains to establish
the refinement te ≾f t , which we do by proving a weakest precondition for the program e in
Trillium instantiated with the model Live(F). We use an instantiation of Trillium where the
weakest precondition is parameterized by the current thread id (allowing to match thread ids
to roles). Wemake use of ghost resources corresponding to the states of Live(M): in particular,
ρ 7→F f means that role ρ has fuel f , and tid 7→T R means that the thread tid is associated
to the set R of roles. Finally,Model◦(δ) states that the current state of the underlying fairness
model F is δ. Because fuel needs to decrease at each step, every program step of thread tid
needs to be justified by owning the predicate tid 7→T R (with R ̸= ∅) and ρ 7→F fρ + 1 for
each ρ ∈ R; the + 1 is consumed when tid takes a step. We can specialize the adequacy
theorem of Trillium and use Equation (5.2) to get:

Theorem 5.6.1. Given a program e, a finitely branching fairness model F , a state δ0 ∈ F , ifModel◦(δ0) ∗ 0 7→T R ∗∗
ρ∈R

ρ 7→F finit

 e @ 0 {0 7→T ∅}F

holds for any finit , R, and if F is fairly terminating, then e is fairly terminating. (0 above is the
initial thread id).

We remark that the hypothesis that F is fairly terminating can be proved without quantifying
over all fair traces: there is a simple criterion presented by Stefanesco [Ste21] based on a well-
founded order which can be checked locally by considering transitions individually.

A technical inconvenience is that threads need to have at least one role to take a step, but
must have none when they end. In turn, this means that the last step of tid must take a step
to a state in the model where its roles are not enabled. For our example, this leads to adding
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to the model Fyn depicted in Figure 5.14 two Booleans ye and ne to the states, where ye = 0
means Yes has finished, and ne = 0 means No has.

We use the theorem above to prove that the program in Figure 5.14 is fairly terminating
by establishing the weakest precondition, with R :− {Yes,No} and finit :− 30. The proof
of the weakest precondition is fairly simple and follows the methodology explained for the
minimal example in the introduction. We refer to Stefanesco [Ste21] for full definitions and
more details on the methodology.

The approach presented here is similar in spirit to the one in the work of Tassarotti et al.
[TJH17] but for reasoning about refinement of general concurrent programs with respect to
abstract models. To the best of our knowledge, the expressiveness of the logics is roughly
similar. The main difference is that Tassarotti et al. [TJH17] augments the Iris base logic with
linear propositions, which requires modifying the definition of resource algebra to add a tran-
sition relation. We achieve similar results without heavy modifications, using that the author-
itative state of the model is threaded through the weakest precondition, and by putting an
exclusive structure on the set of roles owned by a thread, which prevents the weakening of
tid 7→T R1 ∪R2 to tid 7→T R1, a limited form of linearity.

5.7 Related work

We discuss some further related work not already discussed throughout the chapter.

Refinement-based verification of distributed systems. There is a lot of work on verification of
high-level models of distributed systems, but here we focus on works that, as ours, aim at
proving that concrete implementations refine abstract models. The most closely related works
are IronFleet [Haw+15] and Igloo [Spr+20]. IronFleet uses the Dafny verifier to verify the im-
plementation of a system and encode the relation to the STS being refined in preconditions
and postconditions of programs. IronFleet does not support node-local concurrency and hence
would not be applicable to our CRDT example. IronFleet uses a pen-and-paper argument for
proving liveness of simple programs (programs that consist of a simple event loop which calls
event handlers that are terminating), which does not scale to proving eventual consistency of
our CRDT example. Igloo proves only safety properties about programs and not liveness prop-
erties like eventual consistency. Igloo starts with a high-level STS which is refined (possibly in
multiple steps) to a more low-level STS for each node of the system. These STSs are annotated
with IO operations which are used to generate IO specifications for network communications
of the node in the style of Penninckx et al. [PJP15]. The program (each node) is then verified
against this generated specification. Hence, the relationship between the implementation and
the model considered in Igloo is a fixed relation, i.e. producing the same IO behavior. In con-
trast, our work allows an arbitrary (history-sensitive) refinement relation to be specified and
established between the program and the model. In contrast to both IronFleet and Igloo our
verification approach is foundational: the operational semantics of the distributed program-
ming language, the abstract models, and themodel of the program logic are all formally defined
in Coq, and through adequacy theorems of the program logic, the end result of a verification
is a formal theorem expressed only in terms of the operational semantics of the programming
language and the model.



Related work 115

Refinement in Iris. There has been earlier work on proving refinements using Iris. Most of this
work, however, has focused on contextual refinement, where a (higher-order concurrent im-
perative, but not distributed) program is related to another program [FKB18; KTB17; KSB17;
Spi+21; Tim+18] or termination-preserving refinements among programs [Gäh+22; Spi+21;
TJH17]. Perennial [Cha+19] defines correctness of a system using concurrent recovery refine-
ment, requiring that the (possibly crashing) implementation and specification STS has the same
external I/O. This notion of refinement is much coarser and does not allow you to prove, e.g.,
fair termination. Tassarotti and Harper [TH19] relates concurrent probabilistic programs to
abstract specifications denoting indexed valuations, exhibiting a probabilistic coupling when
assuming that the implementation terminates.

Non-refinement-based verification of distributed systems. [Woo+16] verify the Raft consensus
protocol [OO14] in the Verdi framework [Wil+15] for implementing and verifying distributed
systems in Coq. In Verdi, the programmer provides a specification, implementation, and proof
of a distributed system under an idealized network model in a high-level language. The appli-
cation is automatically transformed into one that handles faults via verified system transform-
ers: this makes vertical composition difficult for clients and the high-level language does not
include features such as node-local concurrency. The Disel framework [SWT18] also allows
users to implement distributed systems using a domain specific language and verify them us-
ing a Hoare-style program logic in Coq; the work includes a case study on two-phase commit.
Disel struggles with node-local reasoning as the use of internal mutable state in nodes must be
exposed in the high-level system protocol and state changes are tied to sending and receiving
messages.

Paxos verification efforts. Paxos and its multiple variants have been considered by many ver-
ification efforts using, e.g., automated theorem provers and model checkers [CLS16; JM05;
Kel04; Kra+20; MSB17; Pad+17]. These efforts all consider abstract models or specifications in
high-level domain-specific languages of Paxos(-like) protocols and not actual implementations
in a realistic and expressive programming language.

García-Pérez et al. [Gar+18] devise composable specifications for a pseudo-code imple-
mentation of Single-Decree Paxos and semantics-preserving optimizations to the protocol on
pen-and-paper but without a formal connection to their implementation in Scala; it would be
interesting future work to implement and verify the same optimizations in our setting.

CRDTs. Zeller et al. [ZBP14] present an Isabelle/HOL framework for verifying state-based
CRDTs, including verifying that a CRDT implementation refines its specification. Unlike in our
work, CRDT implementations are defined at a high level of abstraction using state-transition
systems. Zeller et al. [ZBP14] do not reason about inter-replica communication. Gomes et
al. [Gom+17] present the first mechanized proof of eventual consistency of operation-based
CRDTs but do not consider network communications as part of the program. Moreover, unlike
our work on a state-based CRDT, Gomes et al. [Gom+17] do not consider functional correct-
ness. Nair et al. [NPS20] present proof rules to reason about functional correctness of several
state-based CRDTs that have richer safety guarantees than the CRDT we have studied because
some operations of those CRDTs require coordination between replicas. However, they show
safety and eventual consistency based on an abstract operational semantics which ignores
inter-replica communication and node-local concurrency. Liang and Feng [LF21] propose an
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approach to verify implementation of operation-based CRDTs where they show both func-
tional correctness and strong eventual consistency within the same theoretical framework.
They use a rely-guarantee-style program logic to reason about client programs, but do so at
a higher “algorithmic” level of abstraction than our work, ignoring inter-replica communica-
tion. Furthermore, Liang and Feng [LF21] do not mechanize their work in a proof assistant. On
the other hand, they consider many more examples of CRDTs than we do. Here, we have just
focused on a single example, to illustrate how Trillium may be used to reason about CRDTs.
In future work, it would be interesting to apply Trillium to other, more complex examples as
well.

Fair termination of concurrent programs. We have already discussed the most closely related
work on fair termination via termination-preserving refinement in Section 5.6. Liang and
Feng [LF16; LF18] have also used refinement to show a wider range of liveness properties
of concurrent programs, including programs with partial methods, but focusing on first-order
logic and first-order programs. It would be interesting to investigate if Trillium could serve as a
basis for generalizing the verification methods of Liang and Feng [LF16; LF18] to higher-order
logic and higher-order programs.

5.8 Conclusion

We have introduced Trillium, a mechanized generic program logic that unifies Hoare-style
reasoning with local reasoning about history-sensitive refinement relations among execution
traces and traces of a model. We have shown how to use an instantiation of Trillium to a dis-
tributed higher-order concurrent imperative programming language to give modular proofs
of correctness of concrete implementations of two-phase commit and single-decree Paxos by
showing that they refine their abstract TLA+ specifications. Moreover, we have shown how
our notion of refinement can be used to reason about liveness properties such as strong even-
tual consistency of a concrete implementation of a CRDT and fair termination of concurrent
programs.



6 Mechanized Logical Relations for
Termination-Insensitive Noninterference

Abstract

We present an expressive information-flow control type system with recursive types, ex-
istential types, label polymorphism, and impredicative type polymorphism for a higher-
order programming language with higher-order state. We give a novel semantic model
of this type system and show that well-typed programs satisfy termination-insensitive
noninterference. Our semantic approach supports compositional integration of syntacti-
cally well-typed and syntactically ill-typed—but semantically sound—components, which
we demonstrate through several interesting examples. We define our model using logical
relations on top of the Iris program logic framework; to capture termination-insensitivity,
we develop a novel language-agnostic theory of Modal Weakest Preconditions. We for-
malize all of our theory and examples in the Coq proof assistant.

Systems for information-flow control put restrictions on how a program’s outputs are re-
lated to its inputs. Such systems establish various notions of noninterference [GM82], convey-
ing that observable aspects of the program’s behavior is independent of its sensitive inputs.
Information-flow control enforcement is often specified as a static type system (e.g., [Aba+99;
AM16b; HR98; LC15; Mye99; Sim03b]) or via an encoding into an existing type system (e.g.,
[AR17; GTA19; LZ06; PS03; Rus15; RCH08; Vas+18]). Modern programming languages have
rich type systems featuring, e.g., higher types, reference types, and abstract types, which are
all essential for modern software engineering practice and for implementing reusable software
components. Naturally, modern practical information-flow secure languages have to meet the
same demands, but as the complexity of the type system increases, so does the burden of prov-
ing the type system sound.

In this work, we prove soundness of an expressive information-flow control type sys-
tem for a higher-order language with higher-order state. The type system is an extension
of the fine-grained type system of Rajani and Garg [RG20] and the type system of Flow Caml
[Sim03a] with recursive types, existential types, and impredicative type polymorphism (in ad-
dition to existing reference types and function types). The main high-level goal of our work is
to prove that the type system satisfies termination-insensitive noninterference using a seman-
tic model. Since such type soundness results for expressive type systems involve myriads of
details (as exhibited by a 100 pp. chapter in a technical appendix [RG20]), we formalize our
model in a proof assistant and use it to give a full mechanization of all our technical results.

Even with a very expressive type system, any static type system is necessarily overly con-
servative. This entails that there is a large body of programs that cannot be type-checked while
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still being information-flow secure for reasons too subtle for the type system to verify. This in-
cludes, e.g., low-level implementations of data structures that are optimized for efficiency and
systems governed by security policies that rely on value-dependency or dynamic run-time
information. Our semantic approach to establishing noninterference enables compositional
integration of syntactically well-typed components with syntactically ill-typed but semanti-
cally sound components: only the syntactically ill-typed parts need to be carefully verified to
show that the entire program enjoys the security property.

To meet our goals, we define a novel logical-relations model of our proposed type system.
We define our logical-relations model in the Iris separation logic framework [Jun+16; Jun+18b;
Jun+15; Kre+17]. We do this to

1. define and reason about our logical-relations model at a high level of abstraction,

2. side-step the well-known problem of type-world circularity1 [Ahm04; AAV02; Bir+11]
when defining logical-relations models of programming languages with higher-order
state in the presence of impredicative polymorphism, and

3. to leverage the Coq formalization and theMoSeL framework [Kre+18] to fullymechanize
all examples and technical results.

Challenges. Extending the earlier type systems is mostly straightforward: similarly to how
ordinary functions in languages with effects may have latent effects, polymorphic functions
may also have latent effects and thus they must be annotated with a label expressing a lower
bound on these effects. So what is new and challenging about our semantic model? In sum-
mary, we address three major challenges:

1. combining unary and binary logical-relations models in the presence of impredicative
polymorphism, and

2. constructing “logical” [DAB09] logical-relations models for termination-insensitive rea-
soning while

3. soundly allowing syntactically ill-typed but semantically secure programs to be com-
posed with syntactically well-typed programs.

To construct a logical-relations model of a termination-insensitive information-flow con-
trol type system in the presence of state, it is necessary to combine both a unary and a binary
model; when branching on high-labeled information, it is crucial that that the two branches,
independently, do not modify low-labeled references, to avoid implicit leaks through the store.
This is commonly know as the confinement lemma in proofs of noninterference.

When developing logical-relations models for languages with state in the presence of im-
predicative polymorphism, one needs to work with so-called step-indexed recursive Kripke
worlds which are used to describe the semantics of the contents of the heap [Ahm04; Bir+11].
These step-indexed Kripke worlds imply that both the binary and the unary logical relations

1To ensure that heap updates are type-preserving, the model of mutable references types ref(τ) needs to
keep track of the semantics of τ ; this is usally done using a store typing (a World) Θ mapping locations to types.
The model of ref(τ) then needs to refer to Θ to check whether a location maps to the appropriate type. This in
turn means the model of all types has to take Θ as an argument, introducing what is known as the type-world
circularity—this kind of recursive domain equation has no solution in the category of sets.
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have to be step-indexed. Binary logical relations usually tie the logical steps of the recur-
sive Kripke worlds to the physical steps taken by only one of the two programs in the relation.
However, this causes a mismatch in the number of steps whenwewant to combine the individ-
ual unary logical relatedness of two programs to conclude that they are in the binary relation.
To solve this problem, one novelty of our binary logical-relations model is that we count the
steps taken by the programs on both sides of the relation. Rajani and Garg [RG20] circumvent
this problem by using syntactic worlds which does not scale to impredicative polymorphism.
This also means that their logical relations are defined over syntactically well-typed programs
and hence cannot be used for reasoning about syntactically ill-typed but semantically well-
typed programs as we do in this work.

The idea of using a more expressive logic to simplify the definition of logical-relations
models is not novel and goes back to Plotkin and Abadi [PA93] who used second order logic
for modeling System F and Dreyer et al. [DAB09] who used a logic with step-indexing to model
recursive types. It has since been used for defining logical relations models for a variety of
programming languages and features, e.g., an ML-style language with concurrency [KTB17],
a Haskell style ST monad [Tim+18], a concurrent ML-style language featuring continuations
[TB19], and the Rust programming language [Jun+18a]. All these models are either unary
logical-relations models used for proving type safety or binary logical-relations models for
proving traditional contextual program refinement. Intuitively e contextually refinenes e′ if
whenever e terminates with some value v, then e′ must also terminate with some value v′ and
v and v′ should be suitably related. In symbols:

e ⇓ v ⇒ e′ ⇓ v′ ∧ v ≈ v′.

This is crucially different from the idea of termination-insensitive noninterference where two
programs are equivalent if, assuming that both e and e′ terminate, then their resulting values
should be suitably related:

e ⇓ v ∧ e′ ⇓ v′ ⇒ v ≈ v′.

The termination-insensitive nature of the equivalence is the reason why the approaches taken
heretofore on expressing logical-relations models in program logics cannot be extended to
support reasoning about termination-insensitive noninterference. Moreover, these works do
not consider logical-relations models that incorporate both a unary and a binary relation.

The core challenge here is to properly hide the details of step-indexing and recursive
Kripke worlds. To this end, the base logic of Iris provides modalities to reason about step-
indices and ghost resources (logical counterparts of recursive Kripke worlds). Yet, using these
logical facilities directly, while hiding a lot of details, still requires us to think and work in
terms of step-indices and explicit resource updates (manipulating ghost resources). Previous
work [KTB17; TB19; TDB13], addressed this problem by defining the logical relation models
using Iris’ weakest precondition predicates, which themselves are defined using logical step-
indexing and ghost resource modalities but which, importantly, come with high-level reason-
ing principles that hide those details. Iris’ weakest precondition predicates were a good match
for contextual refinement: we can express “if e terminates then so does e′” as a weakest precon-
dition for e where the post condition states that e′ terminates, i.e., wp e {v. e′ ⇓ v ∧ v = v′}.
As discussed above, this is crucially different from termination-insensitive noninterference:
“if both programs terminate then . . . ”. This prevents us from using weakest preconditions to
model our logical relations. One might be tempted to consider nested weakest preconditions:
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wp e {v. wp e′ {v′. v = v′}}. This formulation does indeed imply that if both programs ter-
minate then their results are equal, however, this formulation is too strong and in particular
makes it impossible to employ the kind of modular reasoning that is essential to proving the
fundamental theorem of logical relations. Intuitively, this is because such a formulation re-
quires us to reason about the execution of e′ only after the full execution of e. Technically, this
formulation does not admit the so-called binary bind rule (see Lemma 6.2.3).

In place of weakest preconditions we introduce and use a novel program logic construct
that we call Modal Weakest Preconditions (MWP). Our Modal Weakest Precondition theory is
language agnostic, parameterized by a modal operator, and general enough to allows us to
define both a unary and a binary predicate for reasoning about computations using the same
theory. Indeed, the generality is one of the key strengths of our theory. Different instantiations
automatically inherit a set of basic structural proof rules that hold irrespective of the partic-
ular modality and programming language. For particular instantiations, one can then prove
more specific proof rules, e.g., for heap-manipulating operations and for how the instantia-
tion interacts with other instantiations with different modal operators. We use three different
instantiations for our logical-relations model and two more for concrete examples. The gen-
erality of our MWP theory allows us to define our binary logical relations model to be weak
enough so as to allow us to reason modularly as discussed above. Yet, the interaction between
different instantiations of MWP’s (which is proven generally and not particularly for our pro-
gramming language) allows us to strengthen this definition, in order to combine unary and
binary logical relations (see Lemma 6.2.4) and to prove certain examples that require stronger
reasoning principles (see Section 6.4).

Another challenge worth noting is the modeling of reference types. Intuitively, two values
are related at the reference type ref(τ) if they are both locations that invariantly store values
that are related at type τ . Previous work used Iris invariants to formalize this idea. In our case,
we can only use Iris invariants for our binary logical relation; for the unary logical relation we
need to use a more refined approach as discussed in Section 6.2.

Contributions. In summary, we make the following contributions:

• We present the first logical-relations model of an information-flow type system with
recursive types, existential types, and impredicative polymorphism for a language with
higher-order state. To the best of our knowledge, this is also the first soundness proof
of such an expressive information-flow type system irrespective of method.

• We present the first “logical” logical-relations model that incorporates both a unary and
a binary relation and termination-insensitive reasoning.

• We introduce a new theory of Modal Weakest Preconditions (MWP) that allows us to
construct novel logical-relations models for proving relational properties of programs
that were out of reach of existing techniques.

• We propose a methodology that allows us to establish termination-insensitive noninter-
ference of syntactically ill-typed but semantically secure programs while allowing these
programs to be composed with syntactically well-typed programs and showcase multi-
ple examples.

• We show that our logical-relations model allows us to prove “free theorems” for our
information-flow control type system.
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• We formalize all of the theory and examples on top of the Iris program logic framework
in the Coq proof assistant using the MoSeL framework [Kre+18].

6.1 The λsec language

We present the syntax and operational semantics of λsec, the subject of our study: a higher-
order functional call-by-value language with higher-order state which we equip with an
information-flow control type system with recursive types, existential types, label polymor-
phism, and impredicative type polymorphism.

6.1.1 Syntax and semantics

The syntax of λsec is defined by the BNF below.

⊚ ::= + | − | ∗ | = | <
e ∈ Expr ::= x | () | true | false | n ∈ N | e⊚ e | λx. e | e e | Λ e | Λ e | e _ |

| if e then e else e | (e, e) | πi e | inji e | match ewith inji ⇒ ei end

| ref(e) | ! e | e← e | fold e | unfold e | pack e | unpack e as x in e

v ∈Val ::= () | true | false | n ∈ N | ℓ ∈ Loc | λx. e | Λ e | Λ e | fold v | pack v
| (v, v) | inji v

ι ::= κ | l ∈ L | ι ⊔ ι

τ ∈ LType ::= tι

t ∈ Type ::= α | 1 | B | N | τ × τ | τ + τ | τ ι→ τ | ∀ι α. τ | ∀ ι κ. τ | ∃α. τ | µα. τ | ref(τ)

The term language is mostly standard but note that there are no types in terms; we write
Λ e for (unlabeled) type abstraction and e _ for type application. Similarly, we write Λ e
for label abstraction and e _ for label application. fold e and unfold e are the special term
constructs for iso-recursive types. ref(e) allocates a new reference, ! e dereferences the location
e evaluates to, and e1 ← e2 assigns the result of evaluating e2 to the location that e1 evaluates
to. We introduce syntactic sugar for let-bindings let x = e1 in e2 defined as (λx. e2)(e1), and
sequencing e1; e2 defined as let _ = e1 in e2.

The state is modeled as a finite partial map σ ∈ Loc fin−⇀Val. Using evaluation contexts

K ∈ Ectx ::= − |K ⊚ e | v ⊚K | if K then e else e | (K, e) | (v,K)

| π1 K | π2 K | inj1 K | inj2 K | matchK with inji ⇒ ei end |K e | v K
| ref(K) | !K |K ← e | v ← K | foldK | unfoldK
| packK | unpackK as x in e

we define a call-by-value small-step operational semantics (σ, e) −→ (σ′, e′) in Figure 6.1.
The set of types of λsec is parameterized over an arbitrary bounded join-semilattice L

with ordering ⊑. The lattice ordering ⊑ defines the security policy: if ι1 ⊑ ι2 and ι2 ̸⊑ ι1
then information with label ι1 may influence information with label ι2 but not the other way
around. We write ⊥ for the least element. Syntactically, a label ι is either a label variable κ, a
label l drawn from the lattice L, or the formal least upper bound (join) of two labels.

Types are syntactically either labeled or unlabeled; we use τ to range over labeled types
and t to range over unlabeled types. A term of (labeled) type tι is a term of the (unlabeled) type
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v ⊚ v′
pure
⇝ v′′ if v′′ = v ⊚ v′

if true then e1 else e2
pure
⇝ e1

if false then e1 else e2
pure
⇝ e2

πi (v1, v2)
pure
⇝ vi i ∈ {1, 2}

match inji v with inji ⇒ e end
pure
⇝ e[v/x] i ∈ {1, 2}

(λx. e) v
pure
⇝ e[v/x]

(Λ e) _ pure
⇝ e

(Λ e) _ pure
⇝ e

unfold (fold v)
pure
⇝ v

unpack (pack v) as x in e
pure
⇝ e[v/x]

(σ, e) −→h (σ, e′) if e pure
⇝ e′

(σ, ref(v)) −→h (σ[ℓ 7→ v], ℓ) if ℓ ̸∈ dom(σ)

(σ, ! ℓ) −→h (σ, σ(ℓ)) if ℓ ∈ dom(σ)

(σ, ℓ← v) −→h (σ[ℓ 7→ v], ()) if ℓ ∈ dom(σ)

(σ, e) −→h (σ′, e′)

(σ,K[e]) −→ (σ′,K[e′])

Figure 6.1: Small-step operational semantics (σ, e) −→ (σ′, e′) for λsec.

t labeled with the security label ι. Note that type abstraction, existential types, and recursive
types abstract over unlabeled types.

The unlabeled types of λsec include basic types such as the unit type, Booleans, natural
numbers, products, and sums. The function type τ

ι→ τ is annotated with a label ι. This
label, which we refer to as a latent effect label, denotes a lower bound on the write effects
of the function body. The type system will ensure that any reference that the function may
write to has a label that is ι or higher according to the lattice ordering. This is necessary to
prevent implicit information leaks through the store where programs have write effects that
conditionally depend on sensitive information. Let ℓ be a reference with contents of type N⊥

and h a variable of typeB⊤ with⊤ ̸⊑ ⊥. When control flow depends on h, invoking a function
like f ≜ λ_. ℓ← 1 implicitly leaks h through the store, e.g.,

if h then f () else ()

by subsequently observing whether the write effects happened or not. The label ⊥ is a lower
bound of the side-effects of f and it may not be invoked when control flow depends on h
with label ⊤ as ⊤ ̸⊑ ⊥. For the same reason, type-polymorphic types ∀ι α. τ and label-
polymorphic types ∀ ι κ. τ also include a latent effect label annotation ι. Finally, types also
include existential types ∃α. τ , recursive types µα. τ , and the type ref(τ) of memory locations
storing values of type τ .
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6.1.2 Information-flow control type system

The type system of λsec is mostly similar to the fine-grained type system of Rajani and Garg
[RG20] and the type system of Flow Caml [Sim03a] but extended with recursive types, existen-
tial types, and impredicative polymorphic types. We write Ξ |Ψ |Γ ⊢pc e : τ for the syntactic
typing judgment which expresses that expression e has type τ under typing contexts Γ, Ξ,
and Ψ. A typing context Γ maps free variables that may appear in e to their types. The type-
level contexts Ξ and Ψ are sets of free type and label variables, respectively, that may appear
in τ and Γ. The annotation pc is a label, often called the program counter label, denoting a
lower bound on the write effects of e, cf., how function types and the polymorphic types are
annotated with a latent effect label.

The typing relation is shown in Figure 6.2 and 6.3 and we discuss some of the most im-
portant rules below. The syntactic label ordering relation Ψ ⊢ ι1 ⊑ ι2 is straightforward and
shown below.

F-refl
FV(ι) ⊆ Ψ

Ψ ⊢ ι ⊑ ι

F-trans
Ψ ⊢ ι1 ⊑ ι2 Ψ ⊢ ι2 ⊑ ι3

Ψ ⊢ ι1 ⊑ ι3

F-bottom
FV(ι) ⊆ Ψ

Ψ ⊢ ⊥ ⊑ ι

F-label
l1 ⊑ l2

Ψ ⊢ l1 ⊑ l2

F-join
Ψ ⊢ ι1 ⊑ ι3 Ψ ⊢ ι2 ⊑ ι3

Ψ ⊢ ι1 ⊔ ι2 ⊑ ι3

The protected-at relation τ ↘ ι is defined as tι′ ↘ ι ≜ ι ⊑ ι′, meaning that the label of the
type is at least as high as ι.

When applying a function expression e1 of type
(
τ1

ιe→ τ2
)ι to an argument e2 of type τ1

the rule for function application (T-app) requires that the program counter label pc is lower
than the latent effect label ιe to avoid implicit leaks through the store. In addition, the label ι
of the function value must be below ιe and the return type τ2 must be protected at ι in order
to prevent implicit leaks arising from the identity of the function that e1 evaluates to: If not,
then, for example, given ℓ is a reference of type ref(N⊥) and h a variable of type B⊤ both
programs Equation (6.1) and Equation (6.2) would be typeable at N⊥ while both leaking h.

let f = if h then λ_. 1 else λ_. 0 in f () (6.1)
let f = if h then λ_. ℓ← 1 else λ_. ℓ← 0 in (f (); ! ℓ) (6.2)

Our type system correctly handles these situations in two different ways: in Equation (6.1) the
leak is captured in the output type of f , and in Equation (6.2) it is captured in the label of f itself.
Indeed, according to our typing rules, since the identity of the function f in Equation (6.1)
depends on h, the type of the output of f will have a label that is at least⊤. On the other hand,
in Equation (6.2), the latent effect label for f is⊥ but the label of the function value itself must
be ⊤ as it depends on h and the function may not be invoked. Similar considerations apply to
the rules T-tapp and T-lapp for type and label application.

The rules for case analysis (T-match and T-if) demand that both branches are typed with
program counter label pc ⊔ ι to account for the fact that control flow depends on the infor-
mation with label ι of the expression e being cased on. This ensures that the branches do not
have write effects below ι, which would otherwise be dependent on more sensitive informa-
tion. Similarly, the result type τ has to be protected at ι.
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T-Var
x : τ ∈ Γ

Ξ |Ψ |Γ ⊢pc x : τ

T-unit
Ξ |Ψ |Γ ⊢pc () : 1⊥

T-bool
b ∈ {true, false}

Ξ |Ψ |Γ ⊢pc b : B⊥

T-nat
n ∈ N

Ξ |Ψ |Γ ⊢pc n : N⊥

T-binop
Ξ |Ψ |Γ ⊢pc e1 : Nι1 Ξ |Ψ |Γ ⊢pc e2 : Nι2 ⊚ : N× N⇒ t

Ξ |Ψ |Γ ⊢pc e1 ⊚ e2 : t
ι1⊔ι2

T-lam
Ξ |Ψ |Γ, x : τ1 ⊢ιe e : τ2

Ξ |Ψ |Γ ⊢pc λx. e :
(
τ1

ιe→ τ2
)⊥

T-app
Ξ |Ψ |Γ ⊢pc e1 :

(
τ1

ιe→ τ2
)ι

Ξ |Ψ |Γ ⊢pc e2 : τ1 Ψ ⊢ τ2 ↘ ι Ψ ⊢ pc ⊔ ι ⊑ ιe

Ξ |Ψ |Γ ⊢pc e1 e2 : τ2

T-tlam
Ξ, α |Ψ |Γ ⊢ιe e : τ

Ξ |Ψ |Γ ⊢pc Λ e :
(
∀ιe α. τ

)⊥
T-llam
Ξ |Ψ, κ |Γ ⊢ιe e : τ FV(ιe) ⊆ Ψ ∪ {κ}

Ξ |Ψ |Γ ⊢pc Λ e :
(
∀ ιe κ. τ

)⊥
T-tapp
Ξ |Ψ |Γ ⊢pc e :

(
∀ιe α. τ

)ι
Ψ ⊢ pc ⊔ ι ⊑ ιe FV(t) ⊆ Ξ

Ξ |Ψ |Γ ⊢pc e _ : τ [t/α]

T-lapp
Ξ |Ψ |Γ ⊢pc e :

(
∀ιe κ. τ

)ι
Ψ ⊢ pc ⊔ ι ⊑ ιe[ι

′/κ] Ψ ⊢ τ [ι′/κ]↘ ι FV(ι′) ⊆ Ψ

Ξ |Ψ |Γ ⊢pc e _ : τ [ι′/κ]

T-if
Ξ |Ψ |Γ ⊢pc e : Bι ∀i ∈ {1, 2} .Ξ |Ψ |Γ ⊢pc⊔ι ei : τ Ψ ⊢ τ ↘ ι

Ξ |Ψ |Γ ⊢pc if e then e1 else e2 : τ

T-inj
Ξ |Ψ |Γ ⊢pc e : τi i ∈ {1, 2}
Ξ |Ψ |Γ ⊢pc inji e : (τ1 + τ2)

⊥

T-pair
Ξ |Ψ |Γ ⊢pc e1 : τ1 Ξ |Ψ |Γ ⊢pc e2 : τ2

Ξ |Ψ |Γ ⊢pc (e1, e2) : (τ1 × τ2)
⊥

T-proj
Ξ |Ψ |Γ ⊢pc e : (τ1 × τ2)

ι Ψ ⊢ τi ↘ ι i ∈ {1, 2}
Ξ |Ψ |Γ ⊢pc πi e : τi

T-match
Ξ |Ψ |Γ ⊢pc e : (τ1 + τ2)

ι ∀i ∈ {1, 2} .Ξ |Ψ |Γ, x : τi ⊢pc⊔ι ei : τ Ψ ⊢ τ ↘ ι

Ξ |Ψ |Γ ⊢pc match ewith inji ⇒ ei end : τ

Figure 6.2: Typing relation, part 1.
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T-fold
Ξ |Ψ |Γ ⊢pc e : τ [µα. τ/α]

Ξ |Ψ |Γ ⊢pc fold e : (µα. τ)⊥

T-unfold
Ψ ⊢ τ [µα. τ/α]↘ ι Ξ |Ψ |Γ ⊢pc e : (µα. τ)ι

Ξ |Ψ |Γ ⊢pc unfold e : τ [µα. τ/α]

T-pack
Ξ |Ψ |Γ ⊢pc e : τ [t/α]

Ξ |Ψ |Γ ⊢pc pack e : (∃α. τ)⊥

T-unpack
Ψ ⊢ τ ↘ ι Ξ |Ψ |Γ ⊢pc pack e1 : (∃α. τ ′)ι Ξ, α |Ψ |Γ, x : τ ′ ⊢pc⊔ι e2 : τ

Ξ |Ψ |Γ ⊢pc unpack e1 as x in e2 : τ

T-alloc
Ξ |Ψ |Γ ⊢pc e : τ Ψ ⊢ τ ↘ pc

Ξ |Ψ |Γ ⊢pc ref(e) : ref(τ)⊥

T-store
Ξ |Ψ |Γ ⊢pc e1 : ref(τ)

ι Ξ |Ψ |Γ ⊢pc e2 : τ Ψ ⊢ τ ↘ pc ⊔ ι

Ξ |Ψ |Γ ⊢pc e1 ← e2 : 1
⊥

T-load
Ξ |Ψ |Γ ⊢pc ref(e1) : ref(τ)

ι Ξ |Ψ ⊢ τ <: τ ′ Ψ ⊢ τ ′ ↘ ι

Ξ |Ψ |Γ ⊢pc ! e : τ ′

T-sub
Ξ |Ψ |Γ ⊢pc′ e : τ ′ Ψ ⊢ pc ⊑ pc′ Ξ |Ψ ⊢ τ ′ <: τ

Ξ |Ψ |Γ ⊢pc e : τ

Figure 6.3: Typing relation, part 2.

The rule for assignment (T-store) captures that the pc label acts as an effect lower bound.
It requires that when assigning an expression of type τ to a reference of type ref(τ)ι then the
label of τ is protected at both pc and ι. The former enforces pc as a lower bound on effects
and the latter prevents implicit leaks arising from the identity of the reference. If not, then,
for example, given ℓ1 and ℓ2 are references of type ref(N⊥) and h a variable of type B⊤, the
program in Equation (6.3) would be typeable at N⊥ while leaking h.

ℓ1 ← 0; ℓ2 ← 0; let r = if h then ℓ1 else ℓ2 in r ← 1; ! ℓ1 (6.3)

Note that all expressions typed with an introduction rule gets a type with label ⊥. Intu-
itively, introducing, e.g., a pair with components τ1 and τ2 has no observable effect nor does
it leak any information, and the label of τi already captures the information that may have
influenced the component. The label can, however, freely be raised using T-sub and the sub-
typing relation in Figure 6.4. The rule S-labeled allows a term with label ι1 to be treated as
a term with label ι2 if ι1 ⊑ ι2; the rest of the subtyping rules are standard. Notice that T-sub
also allows the pc label to be freely weakened.
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S-refl
FV(t) ⊆ Ξ

Ξ |Ψ ⊢ t <: t

S-trans
Ξ |Ψ ⊢ t1 <: t2 Ξ |Ψ ⊢ t2 <: t3

Ξ |Ψ ⊢ t1 <: t3

S-arrow
Ξ |Ψ ⊢ τ ′1 <: τ1 Ξ |Ψ ⊢ τ2 <: τ ′2 Ψ ⊢ ι2 ⊑ ι1

Ξ |Ψ ⊢ τ1
ι1→ τ2 <: τ ′1

ι2→ τ ′2

S-tforall
Ψ ⊢ ι2 ⊑ ι1 Ξ, α |Ψ ⊢ τ1 <: τ2

Ξ |Ψ ⊢ ∀ι1 α. τ1 <: ∀ι2 α. τ2

S-lforall
Ψ, κ ⊢ ι2 ⊑ ι1 Ξ |Ψ, κ ⊢ τ1 <: τ2

Ξ |Ψ ⊢ ∀ ι1 κ. τ1 <: ∀ ι2 κ. τ2

S-prod
Ξ |Ψ ⊢ τ1 <: τ ′1 Ξ |Ψ ⊢ τ2 <: τ ′2

Ξ |Ψ ⊢ τ1 × τ2 <: τ ′1 × τ ′2

S-sum
Ξ |Ψ ⊢ τ1 <: τ ′1 Ξ |Ψ ⊢ τ2 <: τ ′2

Ξ |Ψ ⊢ τ1 + τ2 <: τ ′1 + τ ′2

S-labeled
Ψ ⊢ ι1 ⊑ ι2 Ξ |Ψ ⊢ t1 <: t2

Ξ |Ψ ⊢ t1
ι1 <: t2

ι2

Figure 6.4: Subtyping relation.

6.2 Semantic model

In this section we define our semantic model of λsec’s type system. The model formalizes
an observer-sensitive equivalence which only relates computations from the perspective of some
observer. Concretely, the observer is modelled by a fixed but arbitrary label ζ drawn from the
lattice L. The intuition is that terms typed with a label higher than ζ are indistinguishable to
the observer whereas terms typed with a label lower than ζ are not.

Our semantic model captures all invariants necessary to prove that the type system guar-
antees that well-typed programs satisfy noninterference (Theorem 6.3.4). In Section 6.4 we
demonstrate that our model can also be used to prove that syntactically ill-typed programs are
semantically secure—this allows us to safely compose syntactically ill-typed but semantically
secure programs with syntactically well-typed programs. In Section 6.4.5, we show that the
model can also be used to prove “free” theorems.

A central idea in the model is to interpret each type both as a binary relation (Figure 6.6)
and as unary relation (Figure 6.8). The binary relation relates expressions that are observa-
tionally equivalent to a ζ observer, and the unary relation relates expressions that do not have
any ζ-observable side-effects. The unary relation is used within the binary relation to relate
terms independently when the label of the type is higher than the observer—such terms are
indistinguishable to the observer as long as they do not have any visible side-effects.

In this section, we will show step-by-step how to define our model in Iris. The syntax of
Iris is shown in Figure 6.5; Iris is a higher-order separation logic with propositions of type
iProp and some custom connectives that we will explain as we go along.

We start by defining the binary and unary value relations (Section 6.2.1) followed by a
brief intermezzo, where we present the Modal Weakest Precondition theory (Section 6.2.2).
We then turn to the expression relation (Section 6.2.3), the fundamental theorem of logical
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relations, and the soundness theorem (Section 6.3).

σ ::= 0 | 1 | B | N |Val | Expr | iProp | σ × σ | σ + σ | σ → σ | . . . (Types)

P,Q ::= x | λx : σ. t | t(u) | True | False | P ∧Q | P ∨Q | P ⇒ Q (Propositional logic)
| ∀x : σ. P | ∃x : σ. P | t = u (Higher-order logic)
| P ∗Q | P ∗ Q | ℓ 7→L v | ℓ 7→R v | mwpME e {Φ} (Separation logic)

| �P | ▷P | µx : σ. t | |⇛E1 E2P | P
N | . . . (Iris-specific connectives)

Figure 6.5: Syntax of Iris. t and u represent arbitrary terms.

6.2.1 Value relations

The binary value relation is an Iris relation of type Rel ≜ Val ×Val → iProp
□
where iProp

□

denotes the class of persistent propositions in Iris:

iProp
□
≜ {P : iProp | persistent(P )}

persistent(P ) ≜ P ⊢ �P

Similarly, the unary value relation is an Iris predicate of type Pred ≜Val→ iProp
□
.

By default, since Iris is a separation logic, propositions denote sets of resources and P ∗Q
holds for resources that can be split into two disjoint parts satisfying P and Q, respectively.
The proposition P ∗ Q describes those resources which, if we combine them with a disjoint
resource satisfying P , satisfies Q. As such, Iris propositions assert ownership of ephemeral
(non-persistent) resources. For example, the points-to connectives ℓ 7→L v and ℓ 7→R v asserts
exclusive ownership of location ℓ storing value v in the state of the programs on the left- and
right-hand side, respectively. Such proposition may cease to hold, e.g., when ℓ is updated to
point to some other value than v. Intuitively, persistent propositions are propositions that do
not assert exclusive ownership of resources and once they hold, they hold forever. In Iris, this
is expressed using the persistence modality �. The proposition�P (read “persistentlyP ") says
P holds without asserting any ephemeral propositions and thus P can be freely duplicated,
i.e., �P ⊢ �P ∗ �P , and eliminated, i.e., �P ⊢ P . It is important that our value relations
are defined using persistent predicates as our type system is intuitionistic, in the sense that
it admits the usual structural rules, which, e.g., means that the assumption that a value has a
type τ may be used repeatedly.

Binary value relation. The binary value relations JτKρΘ and JtKρΘ for a labeled type τ and
an unlabeled type t are defined by mutual induction on τ and t. Here ρ : LabelVar → L
is a semantic label environment mapping label variables to labels, and Θ is a semantic type
environment for type variables, as is usual for interpretations of languages with parametric
polymorphism. However, for every type variable we keep both a binary relation and two unary
relations, one for each of the two sides:

Θ : TypeVar→ Rel× Pred× Pred.
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We useΘL,ΘR : TypeVar→ Pred as shorthand for π2◦Θ and π3◦Θ, respectively, where πi(x)
denotes the ith projection of x. It will be a property of the binary relation that the following
binary-unary subsumption property (Lemma 6.3.2) holds:

∀v, v′. JτKρΘ(v, v
′) ∗ JτKρΘL

(v) ∗ JτKρΘR
(v′),

where JτKρΘL
(v) and JτKρΘR

(v′) denote the unary interpretation of τ at v and v′. This property
is crucial: Intuitively, even though two values are observationally equivalent to a ζ observer,
they are also—independently—not supposed to have any latent ζ-observable side-effects. We
elaborate further on this in Section 6.3 with more technical details. However, for the property
to hold, the binary value relation has to be set up carefully, and the binary relation on open
terms (explained in Section 6.2.3) requires that Θ is coherent in the following sense:

Coh(Θ) ≜ ∗
(Φ,ΦL,ΦR)∈Im(Θ)

�
(
∀v, v′. Φ(v, v′) ∗ ΦL(v) ∗ ΦR(v

′)
)
.

The big iterated separating conjunction quantifies over all triples (Φ,ΦL, ΦR) in the image of
Θ and demands that the binary-unary subsumption property holds for the relations. The full
definition of the binary interpretation is shown in Figure 6.6.

The value interpretation of labeled types makes use of an interpretation JιKρ of syntactic
labels ι defined as follows:

JκKρ ≜ ρ(κ)

JlKρ ≜ l

Jι1 ⊔ ι2Kρ ≜ Jι1Kρ ⊔ Jι2Kρ.

As above, ρ is an environment mapping label variables to labels. Notice that in the last equa-
tion, the ⊔ on the left is the formal syntactic least upper bound whereas the ⊔ on the right is
the least upper bound in the lattice L.

The interpretation of labeled types now follows the intuition given in the beginning of
this section: low-labeled types (where JιKρ ⊑ ζ) are distinguishable to the observer, and
thus values should be related by the binary relation; high-labeled types (where JιKρ ̸⊑ ζ)
are indistinguishable to the observer and thus values should individually satisfy the unary
interpretation to ensure that any latent effects will not be ζ-observable.

JtιKρΘ(v, v
′) ≜

{
JtKρΘ(v, v

′) if JιKρ ⊑ ζ

JtKρΘL
(v) ∗ JtKρΘR

(v′) if JιKρ ̸⊑ ζ

This is the key point of interaction between the unary and binary relation.
The value interpretation of unlabeled types follows a structure that readers familiar with

previous logical-relations models in Iris will find familiar. However, we also need to guarantee
that the relation satisfies the binary-unary subsumption property.

If t is an (unlabeled) ground type (1, B, or N), two values are related at t if they are equal
and compatible with the type. For products τ1 × τ2, two values are related if they are both
pairs with components related at their respective types. Similarly for sums τ1+ τ2, two values
are related if they are both inji for the same i and their contents are related at τi.
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Value relation

JαKρΘ ≜ π1 (Θ(α))

J1KρΘ(v, v
′) ≜ v = v′ = ()

JBKρΘ(v, v
′) ≜ v = v′ ∈ {true, false}

JNKρΘ(v, v
′) ≜ v = v′ ∈ N

Jτ1 × τ2K
ρ
Θ(v, v

′) ≜ ∃v1, v2, v′1, v′2. v = (v1, v2) ∗ v′ = (v′1, v
′
2) ∗ Jτ1K

ρ
Θ(v1, v

′
1) ∗ Jτ2K

ρ
Θ(v2, v

′
2)

Jτ1 + τ2K
ρ
Θ(v, v

′) ≜
∨

i∈{1,2}

∃w,w′. v = inji w ∗ v′ = inji w
′ ∗ JτiK

ρ
Θ(w,w

′)

Jτ1
ιe→ τ2K

ρ
Θ(v, v

′) ≜ � (∀w,w′. Jτ1K
ρ
Θ(w,w

′) ∗ EJτ2KρΘ(v w, v′ w′)) ∗
Jτ1

ιe→ τ2K
ρ
ΘL

(v) ∗ Jτ1
ιe→ τ2K

ρ
ΘR

(v′)

J∀ιe α. τKρΘ(v, v
′) ≜ �

(
∀Φ : Rel. ∀ΦL, ΦR : Pred.

� (∀v, v′. Φ(v, v′) ∗ ΦL(v) ∗ ΦR(v
′)) ∗ EJτKρΘ,α7→(Φ,ΦL,ΦR)

(v _, v′ _)
)
∗

J∀ιe α. τKρΘL
(v) ∗ J∀ιe α. τKρΘR

(v′)

J∀ ιe κ. τKρΘ(v, v
′) ≜ �

(
∀l ∈ L. EJτKρ,κ 7→l

Θ (v _, v′ _)
)
∗ J∀ ιe κ. τKρΘL

(v) ∗ J∀ ιe κ. τKρΘR
(v′)

J∃α. τKρΘ(v, v
′) ≜ �

(
∃Φ : Rel. ∃ΦL, ΦR : Pred.

� (∀v, v′. Φ(v, v′) ∗ ΦL(v) ∗ ΦR(v
′)) ∗

∃w,w′. v = packw ∗ v′ = packw′ ∗ JτKρΘ,α 7→(Φ,ΦL,ΦR)
(w,w′)

)
Jµα. τKρΘ ≜ µΦ : Rel. λ(v, v′).∃w,w′. v = foldw ∗ v′ = foldw′∗

▷JτKρ
Θ,α 7→(Φ,Jµα. τKρΘL

,Jµα. τKρΘR
)
(w,w′)

Jref(τ)KρΘ(v, v
′) ≜ ∃ℓ, ℓ′. v = ℓ ∗ v′ = ℓ′ ∗ ∃w,w′. ℓ 7→L w ∗ ℓ′ 7→R w′ ∗ JτKρΘ(w,w

′)
Nroot .(ℓ,ℓ

′)

JtιKρΘ(v, v
′) ≜

{
JtKρΘ(v, v

′) if JιKρ ⊑ ζ

JtKρΘL
(v) ∗ JtKρΘR

(v′) if JιKρ ̸⊑ ζ

Expression relation

EJτKρΘ(e, e
′) ≜ mwp e ∼ e′ {JτKρΘ}

Environment relation

GJ·KρΘ(ϵ, ϵ) ≜ True

GJΓ, x : τKρΘ(v⃗w, v⃗′w
′) ≜ GJΓKρΘ(v⃗, v⃗′) ∗ JτKρΘ(w,w

′)

Semantic typing judgment

Coh(Θ) ≜ ∗
(Φ,ΦL,ΦR)∈Θ

� (∀v, v′. Φ(v, v′) ∗ ΦL(v) ∗ ΦR(v
′))

Ξ |Ψ |Γ ⊨ e ≈ζ e′ : τ ≜ �

(
∀Θ, ρ, v⃗, v⃗′. dom(Ξ) ⊆ dom(Θ) ∗ dom(Ψ) ⊆ dom(ρ) ∗

Coh(Θ) ∗ GJΓKρΘ(v⃗, v⃗′) ∗ EJτKρΘ(e[v⃗/x⃗], e
′[v⃗′/x⃗])

)

Figure 6.6: Binary interpretations.
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The first clause of the interpretation of the function type is a slight variation of the classical
function type interpretation in logical-relations models: two values v and v’ are related at type
τ1

ιe→ τ2 if they map inputs related at τ1 to related results at τ2.

Jτ1
ιe→ τ2K

ρ
Θ(v, v

′) ≜ �
(
∀w,w′. Jτ1K

ρ
Θ(w,w

′) ∗ EJτ2KρΘ(v w, v′ w′)
)
∗

Jτ1
ιe→ τ2K

ρ
ΘL

(v) ∗ Jτ1
ιe→ τ2K

ρ
ΘR

(v′).

Note that we ignore the latent effect label and that wewrap the clause in a persistencemodality
in order to ensure that the relation is persistent. The former will only be important for the
unary interpretation. The two following clauses require that v and v′ individually satisfy the
unary interpretation to ensure that the binary-unary subsumption property holds.

For type-polymorphic types we use the semantic type environment which maps type vari-
ables to triples consisting of an Iris relation on values and two unary relations. We define the
interpretation JαKρΘ of type variable α by looking up the variable in Θ and taking the first
projection.

Universal types are interpreted using logical propositions that are also universally quan-
tified but over semantic predicates, heavily relying on Iris’s support for higher-order impred-
icative quantification.

J∀ιe α. τKρΘ(v, v
′) ≜ �

(
∀Φ : Rel. ∀ΦL, ΦR : Pred.

�
(
∀v, v′. Φ(v, v′) ∗ ΦL(v) ∗ ΦR(v

′)
)
∗

EJτKρΘ,α 7→(Φ,ΦL,ΦR)(v _, v′ _)
)
∗

J∀ιe α. τKρΘL
(v) ∗ J∀ιe α. τKρΘR

(v′).

However, we quantify not only over a binary relation but also two unary relations for whichwe
require the subsumption property to hold. This ensures that the semantic type environment
is coherent. Two value v and v′ are then related at type ∀ιe α. τ when type applications v _
and v′ _ are related at τ in a semantic environment mapping α to the binary relation and the
two unary relations. As in the case for the function type, we also require that v and v′ satisfy
the unary interpretation.

Label abstraction is interpreted following a similar pattern:

J∀ ιe κ. τKρΘ(v) ≜ �
(
∀l ∈ L. EJτKρ,κ 7→l

Θ (v _)
)
.

We quantify over semantic labels—which are just labels from the lattice L—and express that v
and v′ are related at type ∀ ιe κ. τ when the applications v _ and v′ _ are related at type τ in
an extended semantic label environment mapping κ to the label l.

The interpretation of existential types ∃α. τ quantifies existentially over a binary relation
and two unary relations satisfying the subsumption property and relates values of the form
packw and packw′ ifw andw′ are related at type τ in an extended semantic type environment.

J∃α. τKρΘ(v, v
′) ≜ �

(
∃Φ : Rel. ∃ΦL, ΦR : Pred.

�
(
∀v, v′. Φ(v, v′) ∗ ΦL(v) ∗ ΦR(v

′)
)
∗

∃w,w′. v = packw ∗ v′ = packw′ ∗ JτKρΘ,α 7→(Φ,ΦL,ΦR)(w,w
′)
)

To interpret recursive types wemake use of Iris’s guarded recursive predicates. The guarded
fixed-point operator µx : σ. t of Iris can be used to define recursive predicates (without re-
strictions on variance for occurrences of x) by requiring that all recursive occurrences of x are
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guarded by a later modality ▷. Intuitively, the later modality asserts that something holds “one
step of computation later”. It is monotone (P ⊢ Q implies ▷P ⊢ ▷Q) and can be introduced
(P ⊢ ▷P ). In Iris, with the restriction of guardedness, the fixed-point operator satisfies the
expected equation: µx : σ. t = t[µx : σ. t/x]. The key proof principle associated with the
later modality is the Löb rule: (▷P ⇒ P ) ⇒ P , which is used to prove the binary-unary
subsumption property (Lemma 6.3.2) in the case of recursive types.

Using this fixed-point property, two values are related at type µα. τ if they are of the form
foldw and foldw′, and ifw andw′ are related at τ (under a later modality) in an extended type
environment mapping α to the triple (Jµα. τKρΘ, Jµα. τKρΘL

, Jµα. τKρΘR
).

Jµα. τKρΘ ≜ µΦ : Rel. λ(v, v′).∃w,w′. v = foldw ∗ v′ = foldw′∗
▷JτKρ

Θ,α 7→(Φ,Jµα. τKρΘL
,Jµα. τKρΘR

)
(w,w′).

The unary relations again ensure that the extended semantic type environment is coherent.
Recall that the binary relation is intended to relate terms that are observationally equiva-

lent to a ζ-observer. Hence related values of reference type ref(τ) should be locations ℓ and ℓ′
such that their contents may change but the contents should always stay related at type τ . To
express this requirement, we make use of Iris’s invariant assertion

P
N

which expresses the (persistent) knowledge that a proposition P holds at all times. In order
to avoid reentrancy issues, where invariants are opened in a nested (and unsound) fashion,
Iris features invariant namespaces N ∈ InvName and invariant masks E ⊆ InvName. Iris
annotates invariants with a namespace N to identify the invariant and, as we shall explain
later, we annotate modal weakest preconditions mwpME e {Φ} with a mask E to keep track
of which invariants are enabled and may be opened. If the mask is omitted we consider the
modal weakest precondition with mask ⊤, the set of all invariant names.

In order toworkwith invariants formally in Iris wemake use of the updatemodality |⇛E1 E2 .
We write |⇛E if E1 = E2 = E . Akin to how a weakest precondition is used to reason about
physical state, the update modality is used to reason about ghost state. The update modal-
ity is annotated with masks E1 and E2 that denote which invariants are enabled and may be
opened before and after the modality is introduced. Intuitively, the proposition |⇛E1 E2P holds
for resources that (given the invariants in E1 are enabled) can be updated to resources that
satisfy P (with the invariants in E2 enabled) without violating the environment’s knowledge
or ownership of resources.

Some formal rules for invariants in Iris can be found in Figure 6.7. An invariant can be al-

inv-alloc
▷P ⊢ |⇛E P

N
inv-persist
P

N ⊢ � P
N

inv-open-upd
N ⊆ E

P
N ∗ (▷P ∗ |⇛E\N (▷P ∗Q)) ⊢ |⇛EQ

Figure 6.7: Rules for invariants.

located (inv-alloc) by giving up ownership of P , a possibly ephemeral proposition. Invariants
are persistent (inv-persist) and hence duplicable. The contents of invariants may be accessed
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in a carefully restricted way (inv-open-upd): to prove |⇛EQ, we may open an invariant and
assume ▷P as long as we re-establish the invariant ▷P . For more details on invariants in Iris,
including the role of the later modality in the rules, see Birkedal and Bizjak [BB17] and Jung
et al. [Jun+18b].

With the invariant connective at hand, the binary relation for reference types ref(τ) is
straightforward and relates locations that invariantly have contents related at type τ .

Jref(τ)KρΘ(v, v
′) ≜

∃ℓ, ℓ′. v = ℓ ∗ v′ = ℓ′ ∗ ∃w,w′. ℓ 7→L w ∗ ℓ′ 7→R w′ ∗ JτKρΘ(w,w
′)

N .(ℓ,ℓ′)
.

Here N .(ℓ, ℓ′) is some namespace designated to the invariant on the locations ℓ and ℓ′.

Unary value relation. The unary value relations JτKρ∆ and JtKρ∆ for a labeled type τ and an
unlabeled type t are defined by mutual induction on τ and t; however, the label on labeled
types is ignored since, as mentioned earlier, the point of the unary relation is to ensure that
computations embedded in values have no ζ-observable side-effects.

JtιKρ∆(v) ≜ JtKρ∆(v).

Here∆ is a semantic type environment mapping type variables to unary relations of type Pred
and ρ is a semantic label environment mapping label variables to labels. The full relation is
shown in Figure 6.8.

The only values of ground type are values compatible with the type. Similarly, values of
type τ1×τ2 are pairs with components inhabiting the interpretation of τ1 and τ2, respectively.
Values of type τ1 + τ2 are inji with contents related at τi.

The unary interpretation of function type τ1
ιe→ τ2 follows the canonical pattern and takes

related input at τ1 to related results at τ2.

Jτ1
ιe→ τ2K

ρ
∆(v) ≜ �

(
∀w. Jτ1Kρ∆(w) ∗ EιeJτ2K

ρ
∆(v w)

)
However, notice that the unary expression relation is indexed with the latent effect label of
the function. The unary relation is only concerned with expressions in high-labeled contexts;
low-labeled contexts are ζ-observable and the unary relation poses no requirements on these.
We will return to these matters in Section 6.2.3 when discussing the expression relations.

Both type- and label-polymorphic types are interpreted by quantifying over their semantic
counterparts and a value v inhabits the polymorphic type if application v _ inhabits τ in the
extended semantic environment. As for function types, the expression relation is indexed with
the latent effect label of the polymorphic binder. The interpretation of existential types and
recursive types follows the same pattern as in the binary interpretation.

J∀ιe α. τKρ∆(v) ≜ �
(
∀Φ : Pred. EιeJτKρ∆,α 7→Φ(v _)

)
J∀ ιe κ. τKρ∆(v) ≜ �

(
∀l ∈ L. EιeJτKρ,κ7→l

∆ (v _)
)

J∃α. τKρ∆(v) ≜ �
(
∃Φ : Pred. ∃w. v = packw ∗ JτKρ∆,α 7→Φ(w)

)
Jµα. τKρ∆ ≜ µΦ : Pred. λv.∃w. v = foldw ∗ ▷JτKρ∆,α 7→Φ(w)

The interpretation of reference types is the central part of the unary interpretation and
states that terms have no ζ-observable side-effects. Intuitively, a reference containing data
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Value relation

JαKρ∆ ≜ ∆(α)

J1Kρ∆(v) ≜ v = ()

JBKρ∆(v) ≜ v ∈ {true, false}
JNKρ∆(v) ≜ v ∈ N

Jτ1 × τ2K
ρ
∆(v) ≜ ∃v1, v2. v = (v1, v2) ∗ Jτ1K

ρ
∆(v1) ∗ Jτ2K

ρ
∆(v2)

Jτ1 + τ2K
ρ
∆(v) ≜

∨
i∈{1,2}

∃w. v = inji w ∗ JτiK
ρ
∆(w)

Jτ1
ιe→ τ2K

ρ
∆(v) ≜ � (∀w. Jτ1Kρ∆(w) ∗ EιeJτ2K

ρ
∆(v w))

J∀ιe α. τKρ∆(v) ≜ �
(
∀f : Pred. EιeJτKρ∆,α7→f (v _)

)
J∀ ιe κ. τKρ∆(v) ≜ �

(
∀l ∈ L. EιeJτKρ,κ7→l

∆ (v _)
)

J∃α. τKρ∆(v) ≜ �
(
∃Φ : Pred. ∃w. v = packw ∗ JτKρ∆,α7→Φ(w)

)
Jµα. τKρ∆ ≜ µΦ : Pred. λv.∃w. v = foldw ∗ ▷JτKρ∆,α 7→f (w)

Jref(tι)Kρ∆(v) ≜ ∃ℓ,N . v = ℓ ∗ R(∆, ρ, ℓ, ι,N )

R(∆, ρ, ℓ, ι,N ) ≜



�∀E .N ⊆ E ⇒(
|⇛E E\N ▷

(
∃w. ℓ 7→i w ∗ JτKρ∆(w) ∗(
(▷ ℓ 7→i w ∗ JτKρ∆(w)) ∗ |⇛E\N E True

))) if JιKρ ⊑ ζ

�∀E .N ⊆ E ⇒(
|⇛E E\N ▷

(
∃w. ℓ 7→i w ∗ JτKρ∆(w) ∗(
(▷ ∃w′. ℓ 7→i w

′ ∗ JτKρ∆(w
′)) ∗ |⇛E\N E True

))) if JιKρ ̸⊑ ζ

JtιKρ∆(v) ≜ JtKρ∆(v)

Expression relation

EpcJτKρ∆(e) ≜ JpcKρ ̸⊑ ζ ⇒ mwpM|⇛▷ e {JτKρ∆}

Environment relation

GJ·Kρ∆(ϵ) ≜ True

GJΓ, x : τKρ∆(v⃗w) ≜ GJΓKρ∆(v⃗) ∗ JτKρ∆(w)

Semantic typing judgment

Ξ |Ψ |Γ ⊨pc e : τ ≜ �

(
∀∆, ρ, v⃗. dom(Ξ) ⊆ dom(∆) ∗ dom(Ψ) ⊆ dom(ρ) ∗

GJΓKρ∆(v⃗) ∗ EpcJτKρ∆(e[v⃗/x⃗])

)

Figure 6.8: Unary interpretations.
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with a label lower than ζ is not allowed to change when execution conditionally depends on
higher-labeled information as this would implicitly leak the high-labeled information through
the state. The contents of references with a label higher than ζ , however, can always be mod-
ified as long as the new contents are compatible with the types.

In order to state this intuition formally in Iris, while at the same time ensuring that the
binary-unary subsumption property holds, we make use of the update modality to encode a
relaxed form of semantic invariants. Instead of using an Iris invariant to capture the meaning
of a reference type, we essentially use the key properties of Iris invariants (that they can be
opened and closed again) and, depending on the label of the contents of the reference, we can
express whether the value stored in the reference is allowed to change or not. As such, values
v of type ref(tι) are locations for which there exists a namespaceN such thatR(∆, ρ, ℓ, ι,N )
holds.

Jref(tι)Kρ∆(v) ≜ ∃ℓ,N . v = ℓ ∗ R(∆, ρ, ℓ, ι,N ).

The namespace N is some namespace associated with ι. The R(∆, ρ, ℓ, ι,N ) proposition
states that if the content of the reference is of a low-labeled type (JιKρ ⊑ ζ) then the content
of ℓ is not allowed to change in an observable way:

�∀E .N ⊆ E ⇒

 |⇛E E\N ▷

∃w. ℓ 7→i w ∗ JτKρ∆(w) ∗((
▷ ℓ 7→i w ∗ JτKρ∆(w)

)
∗ |⇛E\N E True

) .

If we ignore the later modalities, intuitively, this says that if the namespace N is currently
enabled we can, by disabling N , get ownership of the points-to connective ℓ 7→i w with
i ∈ {L,R} such that w inhabits JτKρ∆. Moreover, the namespaceN can only be enabled again
by giving back the ownership of the points-to connective with unmodified contents w.

In a similar fashion, if the content of the reference is of a high-labeled type (JιKρ ̸⊑ ζ) then
the content is allowed to change:

�∀E .N ⊆ E ⇒

 |⇛E E\N ▷

∃w. ℓ 7→i w ∗ JτKρ∆(w) ∗((
▷ ∃w′. ℓ 7→i w

′ ∗ JτKρ∆(w
′)
)
∗ |⇛E\N E True

) .

Intuitively, as before, if the namespace N is currently enabled we can, by disabling N , get
ownership of the points-to connective ℓ 7→i w such that w inhabits τ . However, we can
enableN again by giving back the ownership of the points-to connective with any content w′

as long as it still inhabits type τ .

6.2.2 Modal Weakest Precondition

We now turn to the theory of the Modal Weakest Precondition (MWP) connective. Recall from
the Introduction that due its termination-insensitive nature, existing approaches using Iris’
weakest preconditions do not suffices for defining our expression relations. Moreover, we will
need both a binary and a unary connective that interact in a reasonable way. As will be clear by
the end of this section, the MWP theory accommodates all of this while providing high-level
reasoning principles.

Similarly to how the standard weakest precondition in Iris is defined [Kre+17], our new
definition of a modal weakest precondition is language agnostic; it is not tied to a particular
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programming language and it is defined generically over any suitable notion of expression,
state, and reduction relation. As a consequence of this generality, we do not make any as-
sumptions on how the state of the programming language is defined; instead, as for standard
Iris weakest preconditions, we parameterize modal weakest preconditions by a state interpre-
tation S : State → iProp. The S predicate interprets the state of the programming language
using Iris propositions, e.g., as a resource for modeling the heap of the program.

The modal weakest precondition connective is also parameterized by a modal operator
and, indeed, one of the key strengths of the the connective is its generality and the fact that
instantiations of it automatically inherit a set of basic structural proof rules (cf. Figure 6.9)
that hold irrespective of the particular modality and programming language. For a particular
instantiation of the connective, one can then prove soundness of more specific proof rules,
e.g., for heap-manipulating operations (cf. Lemma 6.2.1) and for the interaction with other
instantiations with different modal operators (cf. Lemma 6.2.4).

In this work, we will use the generality of modal weakest preconditions to reason about
the λsec programming language: we will use three different instantiations with three different
modalities for our logical-relations model; in fact, one of these modalities will be defined in
terms of an earlier instantiation. We start by giving a simplified presentation before giving the
definition in its full generality. Finally, we use the theory of modal weakest preconditions in
the subsequent Section 6.2.3 to define and reason about the expression relations of our logical-
relations model.

Modal Weakest Precondition (simplified)

We define a predicatemwpME e {Φ} which intuitively says that if program e reduces to a value
v in n steps then Φ(v, n) holds under modality M. The predicate is parameterized over a
mask E ∈ Masks = ℘(InvName) and the modality M : Masks → N → iProp → iProp. The
modalityM is indexed by amask E and a natural number n. The invariant names in E are those
invariants the modality may allow to be opened, if the modality allows the use of invariants
at all. The number n is the number of logical steps that the modality allows which we tie to
the physical steps of the program execution in the definition ofmwpME e {Φ}; the preliminary
definition is as follows:

mwpME e {Φ} ≜ ∀σ1, σ2, v, n. (e, σ1) −→n (v, σ2) ∗ S(σ1) ∗ ME;n(Φ(v, n) ∗ S(σ2)).

The predicate expresses that if (e, σ1) reduces to (v, σ2) in n steps and S(σ1) holds then under
modality M both Φ(v, n) and S(σ2) will hold. Note that the predicate does not require that
the program is safe to execute, nor that it terminates. In particular, if the program gets stuck
or diverges then mwpME e {Φ} holds trivially.

The connective can be used for a range of different modalities; we only require that the
modalityM satisfies two conditions:

E ⊆ E ′ ⇒ P ∗ Q ⊢ ME;n(P ) ∗ ME ′;n(Q) (monotone)
ME;0(P ) ⊢ ME;n(P ) (introducable)

We say that the modalityM is valid if it satisfies the two conditions.
Given a valid modality, themwpME e {Φ} predicate satisfies several general structural rules.

We present a selection of such rules in Figure 6.9. Most of these are self-explanatory, but we
point out the importance of the MWP-bind rule which is crucial for local reasoning.
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MWP-pure-step
∀σ. (σ, e) −→ (σ′, e′) mwpME e′ {Φ}

mwpME e {Φ}

MWP-value
ME;0(Φ(v, 0))

mwpME v {Φ}

MWP-mono
∀v, n. Φ(v, n) ∗ Ψ(v, n) mwpME e {Ψ}

mwpME e {Φ}

MWP-mask-mono
E ⊆ E ′ mwpME e {Φ}

mwpME ′ e {Φ}

MWP-bind
mwpME e

{
v, n. mwpME K[v] {w,m. Φ(w, n+m)}

}
mwpME K[e] {Φ}

Figure 6.9: Excerpt of rules for themodal weakest precondition connective given a validmodal-
ity.

Example 1 (MWP instance: Update modality). Let M|⇛
E,n(P ) ≜ |⇛E P . This is a valid modal-

ity. The modality does not allow any logical steps (and ignores its index n). When proving
mwpM

|⇛
E e {Φ}, however, all invariants in E may be opened before establishing the post con-

dition Φ but must be immediately closed.
The simplified presentation given so far suffices for defining the modal weakest precondi-

tion instance that we will use for the unary expression interpretation. This is the point of the
following example.
Example 2 (MWP instance: Step-taking update modality). Let

M
|⇛▷
E,n(P ) ≜

(
|⇛E ∅ ▷ |⇛∅ E

)n |⇛E P.

where
(
|⇛E ∅ ▷ |⇛∅ E

)n is n times repetition of |⇛E ∅ ▷ |⇛∅ E . The modality M
|⇛▷
E,n is valid and

can be thought of as a step-taking update modality. Intuitively,M|⇛▷
E,n(P ) expresses that n steps

into the future, we can update our resources to satisfy P , and, moreover, for every step, all
invariants in E may be opened to reason about progress as long as they are immediately closed
afterwards. In practice, the later modality allows stripping later modalities from assumptions
that we get when opening invariants.

Using the structural rules for MWP in Figure 6.9, in particular the MWP-bind rule, one
can see that the modality distributes over compound expressions such that when proving
mwpM

|⇛▷

E e {Φ}, one is allowed to open invariants atomically, i.e., for the duration of a sin-
gle atomic step.

When instantiating the modal weakest precondition theory with λsec and theM
|⇛▷
E,n modal-

ity we can derive the following properties for reasoning about heap-manipulating operations.

Lemma 6.2.1 (Properties of step-taking updateMWP with λsec).

1. ▷ ∀ℓ. ℓ 7→i v ∗ Q ℓ ⊢ mwp
M|⇛▷

E ref(v) {v. Q}

2. ▷ ℓ 7→i v ∗ ▷(ℓ 7→i v ∗ Q v) ⊢ mwp
M|⇛▷

E ! ℓ {v. Q}
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3. ▷ ℓ 7→i v ∗ ▷(ℓ 7→i w ∗ Q ()) ⊢ mwp
M|⇛▷

E ℓ← w {v. Q}

Lemma 6.2.1 state properties that allow us to allocate, read, and modify the heap. They all
express that the postcondition Q will hold if the resources needed are given and Q holds for
the updated resources.

Modal Weakest Precondition (full definition)

The definition of themodalweakest precondition connective presented so far suffices for unary
reasoning about programs. A specific instance of it has already been used in previous work
by Timany et al. [Tim+18] who considered an instantiation with a so-called future modality.
However, in order to facilitate termination-insensitive reasoning about two programs at the
same time, we generalize the definition further such that we can use anMWP connective as the
modality of anotherMWP connective. In Section 6.2.3, we will see how this general connective
is particularly useful for defining and working with our binary logical-relations model.

The key idea behind the generalization is to let the modality—apart from the number of
steps of the execution and the mask—have its own “state” embodied in an index and to let the
proposition that the modality acts on be parameterized over some information provided by
the modality. For unary reasoning, both of these indices will just be the unit type, meaning
the modality has no state and provides no information to the postcondition (in which case we
recover the simplified presentation from the above). However, when used for binary reasoning,
as in our binary logical-relations model, the index of the modality will be the second program,
and the postcondition parameter will be the return value of the second program.

Formally, we parameterize the modality by two types, A and B , and a predicate BindCond
that determines when and how the modality will change “when the binding lemma applies”
(explained below). We bundle these parameters together with the modalityM : A→ Masks→
N→ (B → iProp)→ iProp as a tupleM.

Definition 6.2.2 (Modal Weakest Precondition). LetM = (A,B ,M,BindCond) and a ∈ A.
Then

mwpM;a
E e {Φ} ≜ ∀σ1, σ2, v, n. (e, σ1) −→n (v, σ2) ∗ S(σ1) ∗ Ma

E;n(λb. Φ(v, n, b) ∗ S(σ2)).

For the modality defined byM to be valid it has to satisfy the two conditions from above
(monotonicity and introducability) and, moreover, whenever BindCond(a, a′, f, g) holds, then
we should also have

Ma′
E;n(λb.M

f(b)
E;m(λb′. Φ(g(b, b′)))) ⊢ Ma

E;n+m(Φ). (binding)

Intuitively, BindCond(a, a′, f, g) defines when and how the modality can be chained together
through binding; a modality with index a and n+m logical steps can be split into the sequence
of themodality with index a′ and n steps followed by themodality with index f(b) andm steps
given the postcondition is updated according to g. This will allow us to suitably generalize
MWP-bind to take into account the new indices and how the modality may evolve.

MWP-bind-gen
BindCond(a, a′, f, g)

mwpM;a′

E e
{
v, n, b. mwp

M;f(b)
E K[v]

{
w,m, b′. Φ(w, n+m, g(b, b′))

}}
mwpM;a

E K[e] {Φ}
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The generalized modal connective allows us to use a modal weakest precondition connec-
tive as the modality of another modal weakest precondition. This not only allows us to define
a relational predicate on two computations (as we will see below), but also to have a collection
of proof rules (cf. Figure 6.9) for reasoning about the individual computations.
Example 3 (MWP instance: Binary step-taking update modality). The relational predicate used
in our binary logical-relations model has the following shape when unfolding the definition:

mwpE e1 ∼ e2 {v, w. Φ} = ∀σ1, σ′
1, v, n. (e1, σ1) −→n (v, σ′

1) ∗ S1(σ1) ∗
∀σ2, σ′

2, w,m. (e2, σ2) −→m (w, σ′
2) ∗ S2(σ2) ∗(

|⇛E ∅ ▷ |⇛∅ E
)n+m|⇛E

(
Φ(v, w) ∗ S1(σ

′
1) ∗ S2(σ

′
2)
)

(6.4)

and is, as it seems, a binary version of the instance from Example 2. Intuitively, if e1 terminates
in n steps with value v and e2 terminates in m steps with value w then n +m steps into the
future, we can update our resources to satisfyΦ(v, w)while being able to open all invariants in
E atomically during every step. Note that this is a termination-insensitive relation; we assume
both relations terminate and then the postcondition should hold. This is in contrast to the
earlier relational models in Iris which have been termination-sensitive and definable using the
standard weakest preconditions of Iris. Moreover, notice that we count the steps taken on both
sides of the relation by including later modalities for both executions—Rajani and Garg [RG20]
and earlier relational models in Iris only count steps for one of the programs.

Formally, we define this predicate using two modal weakest precondition instances where
the latter is defined in terms of the former. We use this approach rather than defining the binary
predicate directly as it will allow us to re-use the proof rules for modal weakest preconditions
to reason about the individual programs when arguing binary relatedness. The definitions are
somewhat technical and can easily be skipped on a first reading.

LetMI be defined by

Mm
E;n(Φ) ≜

(
|⇛E ∅ ▷ |⇛∅ E

)n+m|⇛EΦ()

BindCond(n,m, f, g) ≜ m ≤ n ∧ ∀x, f(x) = m− n ∧ λ_, g = id.

The modality’s index is a natural numberm that addsm extra logical steps to the step-taking
update modality and the postcondition parameter is unit. The bind condition ensures that
the logical steps “add up” and that the post condition is otherwise unmodified. The modality
defined byMI is valid.

Now, letM×|⇛▷ be defined by

Me
E;n(Φ) ≜ mwpMI ;n

E e {w,m. Φ(w,m)}
BindCond(e1, e2, f, g) ≜ ∃K. e1 = K[e2] ∧ g = λ(v1, n1), (v2, n2).(v2, n1 + n2) ∧

∀v, k. f(v, k) = K[v].

The modality is the MWP connective instantiated withMI . The bind condition reflects the
preconditions for the binding lemma for the inner connective and that the steps taken are
propagated to the postcondition. The modality defined byM×|⇛▷ is valid. We now define

mwpE e ∼ e′ {v, w. Φ} to bemwp
M×|⇛▷,e

′

E e {v, _, (w, _). Φ}; by unfolding the definitions one
can see that it indeed satisfies the desired relational predicate in Equation (6.4).
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A crucial property of the binary relation defined in the above example is the following
binary version of the bind rule, which intuitively means that we can do relational reasoning
in a local way.

Lemma 6.2.3 (Binary step-taking updateMWP - bind).

mwp e ∼ e′
{
v, v′. mwpK[v] ∼ K ′[v′] {Φ}

}
mwpK[e] ∼ K ′[e′] {Φ}

At the same time, essential for our logical-relations model, we have all the proof rules for rea-
soning about the two computations individually. This is embodied in Lemma 6.2.4 that allows
us to reason about each computation using the unary modal weakest precondition instance
from Example 2.

Lemma 6.2.4 (Unary-binary step-taking update MWP).

mwp
M|⇛▷

E e1

{
v. mwp

M|⇛▷

E e2 {w. Φ(v, w)}
}
∗ mwp e1 ∼ e2 {Φ}

mwp
M|⇛▷

E e2

{
w. mwp

M|⇛▷

E e1 {v. Φ(v, w)}
}
∗ mwp e1 ∼ e2 {Φ}

Recall that the modal weakest precondition connective is defined as a proposition in Iris
of type iProp. To demonstrate that the theory actually makes the expected statements about
program execution in the meta logic, once and for all, for any language and for any modality,
we prove a general adequacy theorem for the modal weakest precondition theory. The details
of this general theorem is relegated to the Coq formalization. For concrete languages and
modalities, specific adequacy theorems such as the following hold as simple corollaries.

Theorem 6.2.5 (Adequacy of binary step-taking update MWP with λsec). Let φ be a first-
order (meta-logic) predicate over values. SupposemwpE e1 ∼ e2 {φ} is derivable. If (σ1, e1) −→∗

(σ′
1, v1) and (σ2, e2) −→∗ (σ′

2, v2) then φ(v1, v2) holds at the meta-level.

6.2.3 Expression relations

We now return to the expression relations of our logical-relations model, which are defined
using modal weakest preconditions; see Figure 6.8 and Figure 6.6.

The binary interpretation relates expressions at τ that only terminate with related values
at τ . This is defined directly using the binary connective derived in Example 3.

EJτKρΘ(e, e
′) ≜ mwp e1 ∼ e2

{
JτKρΘ

}
.

Recall that the unary interpretation is intended to be inhabited by terms that have no ζ-
observable side-effects. We observe that only expressions in high-labeled contexts (where
control flow depends on high-labeled data) are critical; low-labeled contexts are ζ-observable
and should not be considered. To incorporate this observation, the unary expression relation
is annotated with a pc label. The unary value interpretation of the function type and the poly-
morphic types pass on the latent effect label as this parameter. If pc is a high label (JpcKρ ̸⊑ ζ),
then e is in the expression interpretation of τ if e satisfies the unary modal weakest precondi-
tion from Example 2.

EpcJτKρ∆(e) ≜ JpcKρ ̸⊑ ζ ⇒ mwpM|⇛▷ e
{
JτKρ∆

}
.
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With the value and expression relations for closed values and expressions defined, logical
relatedness for open terms is now defined by closing them by related substitutions, as is usual
for logical relations. Substitutions are related using the environment relation interpretations
denoted G in Figure 6.8 and Figure 6.6.

The unary semantic typing judgment (logical relation) is defined as

Ξ |Ψ |Γ ⊨pc e : τ ≜ �

(
∀∆, ρ, v⃗. dom(Ξ) ⊆ dom(∆) ∗ dom(Ψ) ⊆ dom(ρ) ∗

GJΓKρ∆(v⃗) ∗ EpcJτKρ∆(e[v⃗/x⃗])

)
and the binary semantic typing judgment as

Ξ |Ψ |Γ ⊨ e ≈ζ e
′ : τ ≜

�

(
∀Θ, ρ, v⃗, v⃗′. dom(Ξ) ⊆ dom(Θ) ∗ dom(Ψ) ⊆ dom(ρ) ∗

Coh(Θ) ∗ GJΓKρΘ(v⃗, v⃗′) ∗ EJτKρΘ(e[v⃗/x⃗], e
′[v⃗′/x⃗])

)
.

Notice that the binary judgment additionally requires the semantic type environment to be
coherent.

6.3 Fundamental theorems and soundness

It is straightforward to show the unary fundamental theorem by structural induction on the
typing derivation. All proofs are carried out at an abstraction level similar to the structural
rules shown in this chapter. This is enabled by our formulation of the modal weakest pre-
condition theory and the MoSeL framework [Kre+18] for manipulating the Iris connectives.

Theorem 6.3.1 (Unary fundamental theorem).

Ξ |Ψ |Γ ⊢pc e : τ ⇒ Ξ |Ψ |Γ ⊨pc e : τ

Similarly, the binary fundamental theorem also follows by structural induction in the typ-
ing derivation and the structural rules of the binary modal weakest precondition and its in-
teraction with the unary modal weakest precondition. However, it also relies heavily on the
binary-unary subsumption property which is the content of the following lemma.

Lemma 6.3.2 (Binary-unary subsumption).

Coh(Θ) ∗ JτKρΘ(v, v
′) ∗ JτKρΘL

(v) ∗ JτKρΘR
(v′).

To see why this property is crucial and to exemplify how the binary and unary relations in-
teract, consider the compatibility lemma for conditional expressions. This lemma concludes

Ξ |Ψ |Γ ⊨ if e then e1 else e2 ≈ζ if e
′ then e′1 else e

′
2 : τ

given well-typed sub-terms and Ξ |Ψ |Γ ⊨ e ≈ζ e′ : Bι, Ξ |Ψ |Γ ⊨ ei ≈ζ e′i : τ , and τ ↘ ι,
cf., T-if for conditional expressions in Figure 6.2.

Unfolding the definition of the binary semantic typing judgment, this means that given
related substitutions v⃗ and v⃗′, i.e., GJΓKρΘ(v⃗, v⃗′), and Coh(Θ) it suffices to show

EJτKρΘ(if e[v⃗/x⃗] then e1[v⃗/x⃗] else e2[v⃗/x⃗], if e
′[v⃗′/x⃗] then e′1[v⃗

′/x⃗] else e′2[v⃗
′/x⃗]).
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The proof continues by considering whether label ι of the branch condition is ζ-observable or
not, i.e., whether ι ⊑ ζ or ι ̸⊑ ζ . In the case where the label is not observable this means that
given τ = tι

′ then ι′ ̸⊑ ζ as well and hence the values that e and e′ evaluate to are (potentially)
different, cf., the binary value interpretation of labeled Booleans. In turn, this means evaluation
of the two conditional expressions might continue through different branches, i.e., we end up
having to show EJτKρΘ(e1[v⃗/x⃗], e

′
2[v⃗

′/x⃗]) and EJτKρΘ(e2[v⃗/x⃗], e
′
1[v⃗

′/x⃗]).
Using Lemma 6.2.4 we can reason about the two expressions individually, and the state-

ments follow from the unary fundamental theorem (Theorem 6.3.1). However, the assumption
GJΓKρΘ(v⃗, v⃗′) on substitutions v⃗ and v⃗′ is binary—in order to use the unary fundamental theo-
rem, the related substitutions individually need to satisfy the unary environment interpreta-
tions, i.e., GJΓKρΘL

(v⃗) and GJΓKρΘR
(v⃗′). This fact follows from Lemma 6.3.2.

Theorem 6.3.3 (Binary fundamental theorem).

Ξ |Ψ |Γ ⊢pc e : τ ⇒ Ξ |Ψ |Γ ⊨ e ≈ζ e : τ.

By composing the binary fundamental theorem and the adequacy theorem for the binary
modal weakest precondition instance (Theorem 6.2.5) we show our final soundness theorem,
which shows that our type system does indeed imply termination-insensitive noninterference.

Theorem 6.3.4 (Termination-Insensitive Noninterference). Let ζ , ⊤ and ⊥ be labels drawn
from a join-semilattice such that ⊥ ⊑ ζ and ⊤ ̸⊑ ζ . If

· | · |x : B⊤ ⊢⊥ e : B⊥,

· | · | · ⊢⊥ v1 : B⊤, and · | · | · ⊢⊥ v2 : B⊤

then

(∅, e[v1/x]) −→∗ (σ1, v
′
1) ∧ (∅, e[v2/x]) −→∗ (σ2, v

′
2)⇒ v′1 = v′2.

6.4 Examples of semantic typing

By the soundness theorem (Theorem 6.3.4) we now know that any syntactically well-typed
program satisfies noninterference. Our model also allows us to semantically type programs
that are not syntactically well-typed but are nevertheless secure, for reasons too subtle for
the syntactic type system to discover. Semantically well-typed programs can then be safely
composed with syntactically well-typed programs while maintaining noninterference. To see
how this works in practice, we will first examine a few small programs that are safe to execute
but untypable in our static type system. Later, we will move on to more intricate examples
and show how we can prove that these are secure and therefore also safe to compose with
other syntactically typed programs. The examples in this section thus illustrate some of the
strengths of our semantic approach to noninterference. The proofs of the examples rely both
on our semantic model of types (in particular abstract types) and also on our ability to use Iris
ghost state and Iris invariants to reason about intricate invariants on local state. Proof can be
found in the accompanying Coq formalization.

In the following examples we will often omit labels on composite types to simplify the
presentation. An omitted label should always be read as being label ⊥.
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To start off, consider the trivial program λ v. v ∗ 0 that multiplies its input by zero. Syntac-
tically, it cannot be typed at N⊤ → N⊥ as its output seemingly depends on its input which is
at a high security label. But, by simple arithmetic, the output is always constant and the func-
tion can thus be shown to be in the semantic interpretation JN⊤ → N⊥K of the type. Hence
it can be safely composed with any syntactically well-typed code that relies on a function of
this type.

Next, consider the programs shown in Equation (6.5) and Equation (6.6)

let x = ! ℓ in ℓ← !h; . . . ; ℓ← x (6.5)
(if !h = 42 then ℓ← 0 else ℓ← 1); ℓ← 0 (6.6)

which both temporarily store information (both explicitly and implicitly) from a sensitive ref-
erence h into a public reference ℓ. Due to the flow-insensitive nature of the syntactic type
system, both of the programs cannot be type checked, as sensitive information is not allowed
to flow into a public reference. However, by restoring public information in the reference, both
programs are in fact secure. In both cases, location ℓ inhabits type ref(N⊥)

⊥ which, cf. Fig-
ure 6.6, means that its contents must invariantly be binary related at N⊥. To prove that these
examples are semantically well-typed, it is necessary to keep the invariant open for the full
execution of the program. Recall that the modal weakest precondition (Example 3) used to
define the binary expression relation only allows invariants to be opened atomically during
every step, so it seems that it might be difficult to show semantic well-typedness. But, fortu-
nately, we can prove semantic well-typedness of these examples using a binary version of the
modal weakest precondition instance from Example 1 that allows invariants to stay open for
the full execution of the program.

Lemma 6.4.1 (Binary update MWP implies binary step-update MWP). If either e1 or e2 are
able to make progress then(

|⇛E1 E2 ▷mwp
M×|⇛ ;e2
E2 e1

{
v, n, b. |⇛E2 E1Φ(v, n, b)

})
∗ mwpE1 e1 ∼ e2 {Φ}.

We relegate the details to the Coq formalization, however, we emphasize that this example
illustrates the generality and flexibility offered by our modal weakest precondition theory.

6.4.1 Static semantic typing instead of dynamic enforcement

We now consider an example adapted from Fennell and Thiemann [FT13], namely a report
processing application containing security-typed operations that process reports by reference.
The example contains code fragments that the type system of Fennell and Thiemann cannot
statically type check. Instead, they propose to use a gradual security type system where se-
curity levels are checked at run-time. Those code fragments cannot be type checked by our
syntactic type system either, but we can prove that they are semantically well-typed. Not
only does this prove the example secure, it also avoids unnecessary run-time cost while still
allowing the code to be composed with the remainder of the syntactically well-typed report
processing application.

The basic operations of the report processing application include

sendToManager : ref(Report⊤) ⊤→ 1

sendToFacebook : ref(Report⊥) ⊥→ 1
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where the idea is that sendToManager can process sensitive reports and send those to trusted
managers (by assigning to a reference, cf. the ⊤ latent effect label) whereas sendToFacebook
can only process public reports and thus has a ⊥ latent effect label.

Fennell and Thiemann consider an extension of the application with a utility function
addPrivileged, which adds privileged information to a report before passing it to a worker (like
one of the basic operations in the above):

addPrivileged ≜ λ isPrivileged,worker, report.

if isPrivileged then report← ! report+ !h else ()

worker report

The flag isPrivileged indicates whether the worker argument has a sufficient security level to
handle a privileged report. If the flag is true, sensitive information is retrieved from a global
reference h and appended to the report. Otherwise, the worker is invoked with an unmodified
report. Both addPrivileged itself and the application addPrivileged true sendToManager syntac-
tically type checks, the former at the type ref(Report⊤) ⊤→ 1, as sendToManager can safely op-
erate on sensitive information. However, the code fragment addPrivileged false sendToFacebook
does not type check, even though it is safe and no sensitive information is leaked. The code
does not type check because the type system does not track the dependency between the
isPrivileged flag and the worker’s security clearance. Using our model, however, we can prove
that it can be semantically typed at type ref(Report⊥) ⊥→ 1, meaning that the code can be com-
posed with other syntactically well-typed report operations, without introducing any runtime
labels.

Proposition 6.4.2. Let addPFB ≜ addPrivileged false sendToFacebook then

· | · | · ⊨ addPFB ≈ζ addPFB : ref(Report⊥) ⊥→ 1
⊥

The proof is straightforward and follows by symbolic execution of the program.

6.4.2 Value-dependent classification and modularity

Traditionally, information-flow control systems partition the heap into compartments for each
security level. This is impractical for realistic settings where resources, such as the heap,
can be shared. To address this issue, some recent information-flow systems [GTA19; LC15;
Mur+16; NBG11; ZM07] support value-dependent classification policies. These policies describe
a relationship between two values, such that the value of one decides the classification-level
of the other. We now demonstrate that our semantic model supports reasoning about value-
dependent classification policies; we also use this example to show an application of existential
types to increase modularity by hiding the value dependency.

Consider the example of a program with value-dependent classification below.

valDep ≜ λ f. let dep = ref(true, secret) in

f dep;

let tmp = ! dep in

if π1 tmp then 42 else π2 tmp
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The program allocates a reference dep which points to a pair consisting of a Boolean and a
number. If the Boolean is true, the contents of the second component should be regarded as
secret; otherwise public. The reference is passed to the function fwhich therefore must uphold
this invariant for the program to be secure. Finally, the contents of dep is inspected and if the
Boolean is true (i.e., the content is secret), we ignore the second component and return 42 and
otherwise it is safe to return the second component. Ideally, we would like to show that given
a function f, the pair (valDep f, valDep f) is in the binary interpretation JN⊥K. Obviously this
does not hold for an arbitrary function f; to prove it we need to know that f maintains the
following invariant on dep:

∃b, dL, dR.depL 7→L (b, dL) ∗ depR 7→R (b, dR) ∗ JNif b then ⊤ else ⊥K(dL, dR)

The invariant ensures that f cannot write a secret to dep without also setting the Boolean to
true.

This example shows how we can encode value-dependent classifications in our system
but with the cost of burdening the client of the above program with showing that f upholds
the invariant. The issue is that the client’s code gets direct access to the reference with the
classification, but the static type system is oblivious to the semantic meaning of it.

To alleviate this problem, we can instead hide the reference in an existential package. This
allows us to only expose accessor- and mutator methods to the client, such that the client only
needs to statically type check against these methods. The code for this variant is seen below.

valDepPack ≜ let get = λ dep.

let c = ! dep in if π1 c then inj1 (π2 c) else inj2 (π2 c) in

let setL = λ dep, v. dep← (false, v) in

let setH = λ dep, v. dep← (true, v) in

pack (ref(true, secret), get, setL, setH)

Using our semantic model, we can prove that this program inhabits an existential type.

Proposition 6.4.3.

· | · | · ⊨ valDepPack ≈ζ valDepPack :

∃α.
(
α⊥ ×

(
α⊥ ⊤→ N⊤ + N⊥

)
×
(
α⊥ ⊤→ N⊥ ⊥→ 1

)
×
(
α⊥ ⊤→ N⊤ ⊥→ 1

))
This allows statically typed clients to store both secret and public information in the ref-

erence, but they must do so through the mutators setL and setH. When clients want to read
the reference, they can do so with the get function which gives a value of type N⊤ + N⊥.

6.4.3 Computing with memoization

The following example shows an implementation of a service for computing a function with
memoization. The service takes a function f as input and then allows clients to compute f on
client-provided inputs; when doing so, the service remembers the last input and corresponding
result and returns this directly if the client asks for the same input again. The idea, of course,
would be that the function f is very expensive to compute, so the client would therefore like
to memoize the already computed values in case they are needed again. This behavior is
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implemented with a single reference that points to a tuple consisting of the last input value
and the corresponding result. The code for this service is shown below.

memoize ≜ λ f, init.

let cache = ref(init, f init) in

let recompute = λ v. let result = f v in cache← (v, result); result in

λ v. let (w, result) = ! cache in

if v = w then result else recompute v

First, let us see why we cannot give a static type to this program. Suppose we have a function f
of type N⊥ ⊤→ N⊥. The issue then is giving a reasonable type to the reference for the cache. If
we type it at ⊥, then the returned function will necessarily have a latent effect label at ⊥, and
it is therefore not interchangeable with the input function. If we instead type the reference at
⊤, then we must label the output of the resulting function to ⊤ as well.

Clearly, we cannot hope to give a reasonable type to this program using our static type
system, so we will instead try to define a security condition for it. For a suitable function f
from Nι to Nι, we would like to show that memoize f 0 has the semantic type JNι ⊤→ NιK, so
any well-typed client can use this to compute f with caching.

Note that the latent effect label of the returned function is ⊤ even though the function
writes to the cache. The secrecy of the cache itself is independent of the secrecy of the outputs
of the function f, but instead varies based on the secrecy of the context the last call that updated
the cache happened in.

For this to be secure, memoize relies on the input function f to “act” purely. Intuitively,
the function must behave as if it was a pure function on all terminating inputs. This rules out
programs such as the following that tries to exploit the memoization by counting the number
of times f has been called:

let counter = ref(0) in

let f’ = memoize (λ _. counter← (! counter+ 1); ! counter) 0 in

if secret then f’ 0 else ();

f’ 0

This allows us to prove that memoize f 0 is semantically secure and we can therefore link
this with any piece of statically typed code that makes use of this function with memoization,
while maintaining security of the whole program.

Proposition 6.4.4. For any purely acting function f from Nι to Nι, we have that

· | · | · ⊨ memoize f 0 ≈ζ memoize f 0 : Nι ⊤→ Nι

6.4.4 Higher-order functions and dynamicly allocated references

Consider the following variation by Frumin et al. [FKB21a] of the “awkward” example, orig-
inally given by Pitts and Stark [PS98] when studying the challenges of proving contextual
equivalence about higher-order functions and state:

awk ≜ λ v. let x = ref(v) in λ f. x← 1; f(); !x



Related work 146

When applied to a value v, the program returns a closure that, when invoked with a function
f , always returns the constant value 1. From an information-flow control perspective this
means that even if awk is invoked with a sensitive argument, it will always be safe to consider
the output of the closure as public. This fact crucially relies on the reference x being local to
the closure. The program is not well-typed using the syntactic type system as x has to contain
both sensitive and public values. However, we can semantically type awk.

Proposition 6.4.5. · | · | · ⊨ awk ≈ζ awk : N⊤ ⊥→ (1
⊥→ 1)

⊥→ N⊥

To prove that the contents of the reference is in fact public after invoking the function, we
use an invariant with a two-state protocol (defined using Iris ghost state) on the contents of
the reference; see the accompanying Coq code for more details.

6.4.5 Parametricity and free theorems

We can use our model to prove free theorems; here are two simple examples. As far as we
know, such properties have not been shown for information-flow control type systems before.

Proposition 6.4.6. If Ξ |Ψ |Γ ⊢pc e : ∀ι1 α. αι2
ι3→ αι2 and (σ, e _ v) −→∗ (σ′, v′) then v = v′.

Proposition 6.4.7. There does not exist a non-diverging e where

Ξ |Ψ |Γ ⊢pc e : ∀⊤ α. α⊤ ⊤→ α⊥

6.5 Related work

Logical relations for information-flow security. Sabelfeld and Sands [SS99; SS01] present a
model of information-flow security based on partial-equivalence relations; they establish var-
ious semantic properties about the model and use it to prove a termination-sensitive notion of
noninterference for a calculus equipped with a simple security type system, first-order state,
and probabilistic choice. Zdancewic [Zda02] proves a security-typed simply-typed lambda cal-
culus sound using a logical-relations argument but uses a translation-based argument when
considering mutable state. Abadi et al. [Aba+99] introduce the dependency core calculus (DCC),
a pure calculus designed to capture the central notion of dependency arising in a setting like
information-flow security. They prove noninterference using a denotational semantics based
on partial equivalence relations. Heintze and Riecke [HR98] also prove noninterference of
the pure fragment of the SLam calculus using logical relations. Pottier and Conchon [PC00]
conjecture that the noninterference proofs of Abadi et al. [Aba+99] and Heintze and Riecke
[HR98] cannot easily deal with recursive or polymorphic types. Compared to our work, all of
the above consider simpler settings with respect to language features and type systems.

Using Iris, Frumin et al. [FKB21a] present a separation logic for proving a timing-sensitive
notion of noninterference for concurrent programs. On top of this logic, they build a logical-
relations model of a simple type system that allows them to compositionally verify and in-
tegrate syntactically well-typed and ill-typed parts. In contrast to Frumin et al. we focus on
termination-insensitive noninterference and (in part for this reason) our type system is more
permissible.
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Our models are directly inspired by Rajani and Garg [RG20] that describe a step-indexed
Kripke-style logical-relations model for two information-flow control type systems for a se-
quential language with higher-order state similar to ours. However, their type system does
not support impredicative polymorphism and their semantic model cannot easily be extended
to support this due to their use of syntactic worlds. Our semantic handling of label polymor-
phism is also different due to our use of semantic worlds. Rajani and Garg use their relation
to prove that the fine-grained and coarse-grained static IFC systems are equivalent; Vassena
et al. [Vas+19] show a similar result for dynamic information-flow control systems.

Noninterference and polymorphism. Abadi [Aba06] introduces a polymorphic DCC in the
style of System F for access control in distributed systems. Inspired by the polymorphic
DCC, Arden and Myers [AM16b] study a pure authorization calculus with polymorphic type-
abstraction. Pottier and Simonet [PS03] study an ML-like language with let-polymorphism,
recursion, references, and exceptions. In contrast to our work, these works consider less ex-
pressive notions of polymorphism than us or study pure calculi and prove noninterference
using a syntactic approach which does not scale to relational reasoning for impredicative
polymorphism in the presence of higher-order state. Morever, they do not benefit from the
semantic approach with compositional integration of syntactically well-typed and syntacti-
cally ill-typed components.

The proof technique for noninterference of DCC by Abadi et al. [Aba+99] suggests that
it is possible to use the parametric polymorphism in System F to model the dependency of
DCC. Based on previous work of Tse and Zdancewic [TZ04], Bowman and Ahmed [BA15]
provide a translation from the recursion-free fragment of DCC to Fω , translating noninterfer-
ence into parametricity. Algehed and Bernardy [AB19] leverage parametricity of the Calculus
of Constructions to prove noninterference for a polyvariant variation of DCC and Algehed
et al. [ABH20] show noninterference of a dynamic information-flow control library using a
parametricity theorem. All these works model information-flow properties using parametric-
ity whereas we add impredicative type polymorphism to a security-typed language.

6.6 Conclusion

We present the first semantic model of an information-flow control type system with im-
predicative polymorphism (universal and existential types), recursive types, and general ref-
erence types, and show how we can use our model to reason about syntactically ill-typed but
semantically sound code. We showcase our methodology on multiple interesting examples
and how our approach allows for compositional integration. Our semantic model guarantees
termination-insensitive noninterference and we formalize it using logical relations on top of
the Iris program logic framework. To do so, we introduce a novel re-usable program logic
construct and theory of Modal Weakest Preconditions.



7 Asynchronous Probabilistic Couplings in
Higher-Order Separation Logic

Abstract

Probabilistic couplings are the foundation formany probabilistic relational program logics
and arise when relating random sampling statements across two programs. In relational
program logics, this manifests as dedicated coupling rules that, e.g., say we may reason as
if two sampling statements return the same value. However, this approach fundamentally
requires aligning or “synchronizing” the sampling statements of the two programs which
is not always possible.

In this paper we develop Clutch, a higher-order probabilistic relational separation
logic that addresses this issue by supporting asynchronous probabilistic couplings. We
use Clutch to develop a logical step-indexed logical relational to reason about contextual
refinement and equivalence of higher-order programs written in a rich language with
higher-order local state and impredicative polymorphism. Finally, we demonstrate the
usefulness of our approach on a number of case studies.

All the results that appear in the paper have been formalized in the Coq proof assistant
using the Coquelicot library and the Iris separation logic framework.

7.1 Introduction

Relational reasoning is a useful technique for proving properties of probabilistic programs. By
relating a complex probabilistic program to a simpler one, we can often reduce a challenging
verification task to an easier one. In addition, certain important properties of probabilistic
programs are naturally expressed in a relational form, such as stability of machine learning
algorithms [BE02], differential privacy [DR13], and provable security [GM84]. Consequently,
a number of relational program logics and models have been developed for probabilistic pro-
grams, e.g., pRHL [Bar+15], approximate pRHL [Bar+16a; Bar+16b; Bar+12], EpRHL [Bar+18],
HO-RPL [Agu+21], Polaris [TH19], logical relations [BB15; JSV10; Wan+18], and differential
logical relations [LG22].

Many probabilistic relational program logics make use of probabilistic couplings [Lin02;
Tho00; Vil08], a mathematical tool for reasoning about pairs of probabilistic processes. Infor-
mally, couplings correlate outputs of two processes by specifying how corresponding sampling
statements are correlated.

To understand how couplings work in such logics, let us consider a pRHL-like logic. In
pRHL and its variants, we prove Hoare quadruples of the form {P} e1 ∼ e2 {Q}, where e1
and e2 are two probabilistic programs, and P andQ are pre and post-relations on states of the
two programs. Couplings arise when reasoning about random sampling statements in the two
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programs, such as in the following rule:

prhl-couple

{P [v/x1, v/x2]} x1
$←− d ∼ x2

$←− d {P}

Here, the two programs both sample from the same distribution d and store the result in vari-
able x1 and x2, respectively. The rule says that we may reason as if the two sampling state-
ments return the same value v in both programs, and one says that the sample statements
have been “coupled”. This is a powerful method that integrates well with existing reasoning
principles from relational program logics .

However, this coupling rule requires aligning or “synchronizing” the sampling statements
of the two programs: both programs have to be executing the sample statements we want to
couple for their next step. To enable this alignment, pRHL has various rules that enable taking
steps on one side of the quadruple at a time or commuting statements in a program. Never-
theless, with the rules from existing logics, it is not always possible to synchronize sampling
statements.

For example, consider the following program written in an ML-like language that eagerly
performs a probabilistic coin flip and returns the result in a thunk:

eager ≜ let b = flip() in λ_. b

An indistinguishable—but lazy—version of the program does the probabilistic coin flip only
when the thunk is invoked for the first time, and then stores the result in a reference that is
read from in future invocations:

lazy ≜ let r = ref(None) in

λ_. match ! r with
Some (b)⇒ b
| None ⇒ let b = flip() in

r ← Some (b);
b

end

The usual symbolic execution rules of relational program logics will allow us to progress the
two sides independently according to the operational semantics, but they will not allow us to
line up the flip() expression in eager with that in lazy so that a coupling rule like prhl-couple
can be applied. Intuitively, the flip() expression in eager is evaluated immediately but the flip()
expression in lazy only gets evaluated when the thunk is invoked—to relate the two thunks
one is forced to first symbolically evaluate the eager sampling, but this makes it impossible to
couple it with the lazy sampling.

While the example may seem contrived, these kinds of transformations of eager and lazy
sampling are widely used, e.g., in proofs in the Random Oracle Model [BR93] and in game
playing proofs [BR04; BR06]. For this reason, systems like EasyCrypt [Bar+13] and CertiCrypt
[BGB09; BGB10] support reasoning about lazy/eager sampling through special-purpose rules
for swapping statements that allows alignment of samplings; the approach is shown to work
for a first-order language with global state and relies on syntactic criteria and assertions on
memory disjointness. However, in rich enough languages (e.g. with general references and
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closures) these kinds of swapping-equivalences are themselves non-trivial, even in the non-
probabilistic case [DNB10; PS98].

In this paper we develop Clutch, a higher-order probabilistic relational separation logic
that addresses this issue by supporting asynchronous probabilistic couplings. To do so, Clutch
introduces a novel kind of ghost state, called presampling tapes. Presampling tapes let us reason
about sampling statements as if they executed ahead of time and stored their results for later
use. This converts the usual alignment problem of coupling rules into the task of reasoning
about this special form of state. Fortunately, reasoning about state is well-addressed with the
tools of modern separation logics.

Clutch provides a logical step-indexed logical relation [DAB09] to reason about contex-
tual refinement and equivalence of probabilistic higher-order programs written in F

flip
µ,ref, a rich

language with a probabilistic choice operator, higher-order local state, recursive types, and
impredicative polymorphism. Intuitively, expressions e1 and e2 of type τ are contextually
equivalent if no well-typed context C can distinguish them, i.e., if the expression C[ e1 ] has the
same observable behaviors as C[ e2 ]. Contextual equivalence can be decomposed into contex-
tual refinement: we say e1 refines e2 at type τ , written e1 ≾ctx e2 : τ , if, for all contexts C, if
C[ e1 ] has some observable behavior, then so does C[ e2 ]. As our language is probabilistic, here
’observable behavior’ means the probability of observing an outcome, such as termination. Us-
ing the logical approach [Tim+22], in Clutch, types are interpreted as relations expressed in
separation logic. The resultingmodel allows us to prove, among other examples, that the eager
program above is contextually equivalent to the lazy program.

The work presented in this paper is foundational [App01] in the sense that all results, in-
cluding the semantics, the logic, the analysis results, the relational model, and all the examples
are formalized in the Coq proof assistant [Coq22] using the Coquelicot library [BLM15] and
the Iris separation logic framework [Jun+16; Jun+18b; Jun+15; Kre+17].

In summary, we make the following contributions:

• A higher-order probabilistic relational separation logic, Clutch, for reasoning about
probabilistic programs written in F

flip
µ,ref, an ML-like programming language with local

state, recursive types, and impredicative polymorphism.

• A proof method for relating asynchronous probabilistic samplings in a program logic;
a methodology that allows us to reason about sampling as if it was state and to exploit
existing separation logic mechanisms such as ghost state and invariants to reason about
probabilistic programs. We demonstrate the usefulness of the approach with a number
of case studies.

• The first coupling-based relational program logic to reason about contextual refinement
and equivalence of programs in a higher-order languagewith local state, recursive types,
and impredicative polymorphism.

• Novel technical ideas, namely, refinement couplings, a coupling modality, and a tape era-
sure argument, that allow us to prove soundness of the relational logic.

• Full mechanization in the Coq proof assistant using Coquelicot and the Iris separation
logic framework.
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7.2 Key ideas

The key conceptual novelties of the Clutch logic are twofold: a logical refinement judgment
and a novel kind of ghost resource, called presampling tapes. The refinement judgment ∆ ⊨E
e1 ≾ e2 : τ should be read as “the expression e1 refines the expression e2 at type τ ” and it
satisfies a range of structural and symbolic execution rules as showcased in Figure 7.2 and
further explained in Section 7.4. Just like contextual refinement, the judgment is indexed by
a type τ—the environment ∆ assigns semantic interpretations to type variables in τ and E is
an invariant mask as elaborated on in Section 7.4. Both are safely ignored in this section. The
intuitive meaning of the judgment is formally reflected by the following soundness theorem.

Theorem 7.2.1 (Soundness). If ∅ ⊨ e1 ≾ e2 : τ is derivable in Clutch then e1 ≾ctx e2 : τ .

The refinement judgment is internal to the ambient Clutch separation logic. This means
that we can combine the judgment in arbitrary ways with other logical connectives: e.g., the
separating conjunction P ∗ Q and its adjoint separating implication (magic wand) P ∗ Q.
All inference rules that we present can be internalized as propositions in the logic and
we will use an inference rule with premises P1, . . . , Pn and conclusion Q as notation for
(P1 ∗ . . . ∗ Pn) ⊢ Q.

The language Fflip
µ,ref contains a single probabilistic primitive flip that reduces uniformly to

either true or false:

flip(), σ −→1/2 b, σ b ∈ {true, false}

where σ is the current program state and −→⊆ Cfg × [0, 1] × Cfg is a small-step transition
relation, annotated with a probability that a transition occurs. To reason relationally about
probabilistic choices that can be synchronized, Clutch admits a classical coupling rule that
allows us to continue reasoning as if the two sampled values are related by a bijection f :
bool→ bool.

rel-couple-flips
f bijection ∀b.∆ ⊨E K[ b ] ≾ K ′[ f(b) ] : τ

∆ ⊨E K[ flip() ] ≾ K ′[ flip() ] : τ

whereK andK ′ are arbitrary evaluation contexts.
To support asynchronous couplings we introduce presampling tapes. Reminiscent of how

prophecy variables [AL88; AL91; Jun+20] allow us to talk about the future, presampling tapes
give us themeans to talk about the outcome of probabilistic choices in the future. Operationally,
a tape is a finite sequence of Booleans, representing future outcomes of flip commands. Each
tape is labeled with an identifier ι, and a program’s state is extended with a finite map from
labels to tapes. A tape can be allocated using a tape primitive:

tape, σ −→1 ι, σ[ι 7→ ϵ] if ι = fresh(σ)

which extends the mapping with an empty tape and returns its fresh label ι. The flip primitive
can then be annotated with a tape label ι. If the corresponding tape is empty, flip(ι) reduces
to true or false with equal probability:

flip(ι), σ −→1/2 b, σ if σ(ι) = ϵ and b ∈ {true, false}
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...

e, σ

e, σ[ι 7→ b]

...

...

K[ flip() ], σ′

K[ f(b) ], σ′

...

Figure 7.1: Illustration of an asynchronous coupling established through the rule rel-couple-
tape-l.

but if the tape is not empty, flip(ι) reduces deterministically by taking off the first element of
the tape and returning it:

flip(ι), σ[ι 7→ b · b⃗ ] −→1 b, σ[ι 7→ b⃗ ]

However, no primitives in the language operationally add values to the tapes. Instead, values
are added to tapes as part of presampling steps that are ghost operations used in the logic. This
is purely a proof-device that has no operational effect: in the end, tapes can in fact be erased
through refinement.

The Clutch logic comes with a ι ↪→ b⃗ assertion that denotes ownership of the tape ι and its
contents b⃗, analogously to how the traditional points-to-connective ℓ 7→ v of separation logic
denotes ownership of the location ℓ and its contents on the heap. When a tape is allocated,
ownership of a fresh empty tape is acquired, i.e.,

rel-alloc-tape-l
∀ι. ι ↪→ ϵ ∗ ∆ ⊨E K[ ι ] ≾ e : τ

∆ ⊨E K[ tape ] ≾ e : τ

Asynchronous couplings between probabilistic choices can be established in the refinement
logic by coupling ghost presamplings with program steps. For example, the rule below allows
us to couple an (unlabeled) probabilistic choice on the right with a presampling on the ι tape
on the left:

rel-couple-tape-l
f bijection e ̸∈Val ι ↪→ b⃗ ∀b. ι ↪→ b⃗ · b ∗ ∆ ⊨E e ≾ K ′[ f(b) ] : τ

∆ ⊨E e ≾ K ′[ flip() ] : τ

Intuitively, as illustrated in Figure 7.1, the rule allows us to couple a logical ghost presampling
step on the left (illustrated using a red dashed arrow) with a physical sampling on the right. A
symmetric rule holds for the opposite direction and two ghost presamplings can be coupled as
well. When we—in the future—reach a presampled flip(ι), we simply read off the presampled
value from the ι tape, i.e.,

rel-flip-tape-l
ι ↪→ b · b⃗ ι ↪→ b⃗ ∗ ∆ ⊨E K[ b ] ≾ e2 : τ

∆ ⊨E K[ flip(ι) ] ≾ e2 : τ
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If we do not perform any presamplings, tapes and labels can be ignored and we can couple
labeled sampling commands as if they were unlabeled:

rel-flip-erase-r
ι ↪→s ϵ ∀b.∆ ⊨E K[ b ] ≾ K ′[ b ] : τ

∆ ⊨E K[ flip() ] ≾ K ′[ flip(ι) ] : τ

To show that lazy is a contextual refinement of eager from Section 7.1, that is, lazy ≾ctx
eager : unit→ bool, we first define an intermediate labeled version of lazy :

lazy ′ ≜ let ι = tape in

let r = ref(None) in

λ_. match ! r with
Some (b)⇒ b
| None ⇒ let b = flip(ι) in

r ← Some (b);
b

end

By transitivity of contextual refinement and Theorem 7.2.1 it suffices to show ⊨ lazy ≾ lazy ′ :
unit→ bool and ⊨ lazy ′ ≾ eager : unit→ bool. The former follows straightforwardly using
symbolic execution rules and rel-flip-erase-r. To show the latter we allocate a tape ι and a
reference ℓ on the left by symbolic execution and couple the presampling of a Boolean b on
the ι tape with the flip() on the right using rel-couple-tape-l. This establishes an invariant

(ι ↪→ b ∗ ℓ 7→ None) ∨ ℓ 7→ Some (b)

that expresses how either b is on the ι tape and the location ℓ is empty or ℓ contains b. Invariants
are particular kinds of propositions in Clutch that, in this particular case, are guaranteed to
always hold at the beginning and at the end of the function evaluation. Under this invariant, we
show that the two thunks are related by symbolic execution and rules for accessing invariants
that we detail in Section 7.4. Similar arguments allow us to show the refinement in the other
direction and consequently the contextual equivalence.

This example illustrates how presampling tapes are simple and powerful, yet merely a
proof-device: the final equivalence does in fact hold for programs without any mention of
tapes. One might be tempted to believe, though, that as soon as the idea of presampling arises,
the high-level proof rules as supported by Clutch are straightforward to state and prove. This
is not the case: As we will show throughout the paper, a great deal of care goes into defining a
system that supports presampling while being sound. In Appendix C we discuss a counterex-
ample that illustrates some of the subtleties.

Because the only probabilistic sampling primitive inFflip
µ,ref is flip, tapes in Clutch only store

Boolean values. However, we believe the idea can be generalized to languages with sampling
primitives for arbitrary discrete distributions by having tapes indexed with the distribution
whose samples they draw from.

7.3 Preliminaries and the language Fflip
µ,ref

To account for non-terminating behavior, we will define our operational semantics using prob-
ability sub-distributions.
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Definition 7.3.1 (Sub-distribution). A (discrete) sub-distribution over a countable set A is a
function µ : A → [0, 1] such that

∑
a∈A µ(a) ≤ 1. We write D(A) for the set of all sub-

distributions over A.

Definition 7.3.2 (Support). The support of µ ∈ D(A) is the set of elements supp(µ) =
{a ∈ A | µ(a) > 0}.

Discrete probability subdistributions form a monad.

Lemma 7.3.3 (Probability Monad). Let µ ∈ D(A), a ∈ A, and f : A→ D(B). Then

1. bind(f, µ)(b) ≜
∑

a∈A µ(a) · f(a)(b)

2. ret(a)(a′) ≜

{
1 if a = a′

0 otherwise

gives D monadic structure. We write µ≫= f as notation for bind(f, µ).

The syntax of Fflip
µ,ref is defined by the grammar below.

v, w ∈Val ::= z ∈ Z | true | false | () | ℓ ∈ Loc | ι ∈ Label |
rec f x = e | (v, w) | inl(v) | inr(v)

e ∈ Expr ::= v | x | e1(e2) | ⊚1 e | e1 ⊚2 e2 | if e then e1 else e2 | fst(e) | snd(e) |
match ewith inl(v)⇒ e1 | inr(w)⇒ e2 end | ref(e) | ! e | e1 ← e2 |
Λe | e _ | fold e | unfold e | pack e | unpack e as x in e | tape | flip(e)

⊚1 ::= − | ¬
⊚2 ::= + | − | = | . . .

σ ∈ State ≜ (Loc fin−⇀Val)× (Label fin−⇀ B∗)

ρ ∈ Cfg ≜ Expr× State

τ ∈ Type ::= α | unit | bool | int | τ × τ | τ + τ | τ → τ | ∀α. τ | ∃α. τ | µα. τ | ref τ | tape

The term language is mostly standard but note that there are no types in terms; we write
Λe for type abstraction and e _ for type application. fold e and unfold e are the special term
constructs for iso-recursive types. ref(e) allocates a new reference, ! e dereferences the location
e evaluates to, and e1 ← e2 assigns the result of evaluating e2 to the location that e1 evaluates
to. We introduce syntactic sugar for lambda abstractions λx. e defined as rec _ x = e, let-
bindings let x = e1 in e2 defined as (λx. e2)(e1), and sequencing e1; e2 defined as let _ =
e1 in e2.

We implicitly coerce from σ ∈ State to heaps and tapes, e.g., σ(ι) = π1(σ)(ι) and σ(ℓ) =
π2(σ)(ℓ). We define a call-by-value single step reduction relation−→⊆ Cfg× [0, 1]×Cfg using
evaluation contexts. The reduction relation is standard: all the non-probabilistic constructs
reduce as usual with weight 1 and flip reduces uniformly as discussed in Section 7.2.

Let step(ρ) ∈ D(Cfg) denote the induced distribution of the single step reduction of con-
figuration ρ. We define a stratified execution probability execn by induction on n:

execn(e, σ) ≜


ret(e) if e ∈Val
0 if e ̸∈Val, n = 0

step(e, σ)≫= exec(n−1) otherwise
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where 0 denotes the zero distribution. That is, execn(e, σ)(v) denotes the probability of step-
ping from the configuration (e, σ) to a value v in less than n steps. The probability that a full
execution, starting from configuration ρ, reaches a value v is the limit of its stratified approx-
imations, which exists by monotonicity and boundedness:

exec(ρ)(v) ≜ limn→∞ execn(ρ)(v)

The probability that a full execution from a starting configuration ρ terminates then becomes
exec⇓(ρ) ≜

∑
v exec(ρ)(v).

Typing judgments have the form Θ | Γ ⊢ e : τ where Γ is a context assigning types
to program variables, and Θ is a context of type variables that may occur in Γ and τ . The
inference rules for the typing judgments are standard (see, e.g., [FKB21b]) and omitted, except
for the straightforward rules for typing tapes and samplings shown below:

t-tape

Θ | Γ ⊢ tape : tape

t-flip
Θ | Γ ⊢ e : τ τ = unit ∨ τ = tape

Θ | Γ ⊢ flip(e) : bool

The notion of contextual refinement that we use is also mostly standard (see, e.g., [BB15])
and uses the termination probability exec⇓ as observation predicate. Since we are in a typed
setting, we consider only typed contexts. A program context is well-typed, written C : (Θ |
Γ ⊢ τ)⇒ (Θ′ | Γ′ ⊢ τ ′), if for any term e such that Θ | Γ ⊢ e : τ we have Θ′ | Γ′ ⊢ C[ e ] : τ ′.
We say expression e1 contextually refines expression e2 if for all well-typed program contexts
C resulting in a closed program then the termination probability of C[ e1 ] is bounded by the
termination probability of C[ e2 ]:

Θ | Γ ⊢ e1 ≾ctx e2 : τ ≜ ∀τ ′, (C : (Θ | Γ ⊢ τ)⇒ (∅ | ∅ ⊢ τ ′)), σ.

exec⇓(C[ e1 ], σ) ≤ exec⇓(C[ e2 ], σ)

Note that contextual refinement is a precongruence, and that the statement itself is in the
meta-logic (e.g., Coq) and makes no mention of Clutch or Iris. Contextual equivalence Θ |
Γ ⊢ e1 ≃ctx e2 : τ is defined as the symmetric interior of refinement: (Θ | Γ ⊢ e1 ≾ctx e2 :
τ) ∧ (Θ | Γ ⊢ e2 ≾ctx e1 : τ).

7.4 The Clutch relational logic

In the style of ReLoC [FKB21b], we define a relational logical refinement judgment ∆ ⊨E e1 ≾
e2 : τ as an internal notion in the Clutch separation logic by structural recursion over the
type τ rather than by quantification over all contexts. The fundamental theorem of logical
relations will then show that logical refinement implies contextual refinement; this means
proving contextual refinement can be reduced to proving logical refinement, which is gener-
ally much easier. When defining and proving logical refinement we can leverage the features
of modern separation logic, e.g., (impredicative) invariants and (higher-order) ghost state as
inherited from Iris, to model and reason about complex programs and language features.

Clutch is based on higher-order intuitionistic separation logic and the most important
propositions are shown below.

P,Q ∈ iProp ::= True | False | P ∧Q | P ∨Q | P ⇒ Q | ∀x. P | ∃x. P |

P ∗ Q | P ∗ Q | �P | ▷P | µx. P | P N | P N |

ℓ 7→ v | ℓ 7→s v | ι ↪→ b⃗ | ι ↪→s b⃗ |∆ ⊨E e1 ≾ e2 : τ | JτK∆(v1, v2) | . . .
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As Clutch is an extension of Iris, it includes all the connectives of Iris such as the later modal-
ity ▷, the persistence modality �, invariants P

N , and non-atomic invariants [The22], written
P

N , which we will introduce as needed throughout the paper. Some propositions are anno-
tated by invariant masks E ⊆ InvName and invariant names N ∈ InvName which are needed
for bookkeeping of Iris’s invariant mechanism in order to avoid reentrancy issues, where in-
variants are opened in a nested (and unsound) fashion. Ordinary Iris invariants can only be
opened around atomic expressions (that evaluate to a value in a single step); this is crucial
for soundness in a concurrent setting. Since Fflip

µ,ref is a sequential language, we will generally
favor the more flexible non-atomic invariants P

N , which can be kept open during multiple
execution steps—our use of non-atomic invariants will only require invariants to be closed at
the end of proofs, as will become clear in Section 7.4.2.

Like ordinary separation logic, Clutch has heap assertions but since the logic is relational,
these come in two forms: ℓ 7→ v for the left-hand side and ℓ 7→s v for the right-hand side. For
the same reason, tape assertions come in two forms as well, ι ↪→ b⃗ and ι ↪→s b⃗ respectively.

7.4.1 Refinement judgments

The refinement judgment ∆ ⊨E e1 ≾ e2 : τ should be read as “the expression e1 refines the
expression e2 at type τ under the non-atomic invariants in the mask E”. The environment ∆
assigns interpretations to type variables occurring in τ given by Clutch relations of typeVal×
Val → iProp. One such relation is the value interpretation JτK∆(−,−) of a syntactic type
τ ∈ Type which is used to define the refinement judgment, as discussed in Section 7.5. We
discuss the use of invariants and the invariant mask further in Section 7.4.2. We refer to e1 as
the implementation and to e2 as the specification.

In Figure 7.2, we present a selection of the type-directed structural and computational rules
for proving logical refinement for deterministic reductions. Our computational rules resemble
the typical backwards-style rules for symbolic execution from, e.g., the weakest precondition
calculus in Iris [Jun+18b], but come in forms for both the left-hand side and the right-hand side.
For example, rel-pure-l and rel-pure-r allow us to symbolically execute “pure” reductions, i.e.
reductions that do not depend on the state, such as β-reductions and projections. rel-store-l
and rel-store-r on the other hand depends on state and require ownership of a location to
store values to it.

The rules in Figure 7.3 showcase the computational rules for non-coupled probabilistic re-
ductions and for interactions with presampling tapes. For example, the rules rel-flip-tape-l
and rel-flip-tape-r allows us to read off values from a presampled tape as explained in Sec-
tion 7.2; if the tapes are empty, rel-flip-tape-empty-l and rel-flip-tape-empty-r continue with
a fresh sampling just like for unlabeled flips in rel-flip-l and rel-flip-r. Notice how the rules
resemble the rules for interacting with the heap.

The main novelty of Clutch is the support for both synchronous and asynchronous cou-
plings for which rules are shown in Figure 7.4. rel-couple-flips is a classical coupling rule
that relates two samplings that can be aligned. rel-couple-tape-l and rel-couple-tape-r, on
the other hand, are asynchronous coupling rules; they both couple a sampling reduction with
an arbitrary expression on the opposite side by presampling a coupled value to a tape, as dis-
cussed in Section 7.2. Finally, rel-couple-tapes couples two ghost presamplings to two tapes,
and hence offers full asynchrony.
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rel-pure-l
e1

pure
⇝ e′1 ▷(∆ ⊨E K[ e′1 ] ≾ e2 : τ)

∆ ⊨E K[ e1 ] ≾ e2 : τ

rel-pure-r
e2

pure
⇝ e′2 ∆ ⊨E e1 ≾ K[ e′2 ] : τ

∆ ⊨E e1 ≾ K[ e2 ] : τ

rel-alloc-l
∀ℓ. ℓ 7→ v ∗ ∆ ⊨E K[ ℓ ] ≾ e2 : τ

∆ ⊨E K[ ref(v) ] ≾ e2 : τ

rel-alloc-r
∀ℓ. ℓ 7→s v ∗ ∆ ⊨E e1 ≾ K[ ℓ ] : τ

∆ ⊨E e1 ≾ K[ ref(v) ] : τ

rel-load-l
ℓ 7→ v ℓ 7→ v ∗ ∆ ⊨E K[ v ] ≾ e2 : τ

∆ ⊨E K[ !ℓ ] ≾ e2 : τ

rel-load-r
ℓ 7→s v ℓ 7→s v ∗ ∆ ⊨E e1 ≾ K[ v ] : τ

∆ ⊨E e1 ≾ K[ !ℓ ] : τ

rel-store-l
ℓ 7→ v ℓ 7→ w ∗ ∆ ⊨E K[ () ] ≾ e2 : τ

∆ ⊨E K[ ℓ← w ] ≾ e2 : τ

rel-store-r
ℓ 7→s v ℓ 7→s w ∗ ∆ ⊨E e1 ≾ K[ () ] : τ

∆ ⊨E e1 ≾ K[ ℓ← w ] : τ

rel-pack
∀v1, v2. persistent(R(v1, v2)) ∆, α 7→ R ⊨⊤ e1 ≾ e2 : τ

∆ ⊨⊤ pack e1 ≾ pack e2 : ∃α. τ

rel-rec
� (∀v1, v2. JτK∆(v1, v2) ∗ ∆ ⊨⊤ (rec f1 x1 = e1) v1 ≾ (rec f2 x2 = e2) v2 : τ → σ)

∆ ⊨⊤ rec f1 x1 = e1 ≾ rec f2 x2 = e2 : τ → σ

rel-return
JτK∆(v1, v2)

∆ ⊨⊤ v1 ≾ v2 : τ

rel-bind
∆ ⊨E e1 ≾ e2 : τ ∀v1, v2. JτK∆(v1, v2) ∗ ∆ ⊨⊤ K[ v1 ] ≾ K ′[ v2 ] : σ

∆ ⊨E K[ e1 ] ≾ K ′[ e2 ] : σ

Figure 7.2: Selected structural and symbolic execution rules for the refinement judgment.

7.4.2 Invariants

Because the type system ofFflip
µ,ref is not substructural, types denote knowledge, not ownership.

For example, closures can be invoked arbitrarily many times and hence ephemeral resources
that may change over time cannot always be guaranteed to be available. For this reason, the
persistence modality � plays a crucial role in, for example, the rule rel-rec to guarantee that
only persistent resources are used to verify the closure’s body. We say P is persistent, written
persistent(P ) if P ⊢ �P ; otherwise, we say that P is ephemeral. Persistent resources can
freely be duplicated (�P ⊣⊢ �P ∗ �P ) and eliminated (�P ⊢ P ). For example, invariants
P

N and non-atomic invariants P
N are persistent: once established, they will remain true
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rel-flip-l
∀b.∆ ⊨E K[ b ] ≾ e2 : τ

∆ ⊨E K[ flip() ] ≾ e2 : τ

rel-flip-r
∀b.∆ ⊨E e1 ≾ K[ b ] : τ

∆ ⊨E e1 ≾ K[ flip() ] : τ

rel-alloc-tape-l
∀ι. ι ↪→ ϵ ∗ ∆ ⊨ K[ ι ] ≾ e : τ

∆ ⊨ K[ tape ] ≾ e : τ

rel-alloc-tape-r
∀ι. ι ↪→s ϵ ∗ ∆ ⊨ e ≾ K[ ι ] : τ

∆ ⊨ e ≾ K[ tape ] : τ

rel-flip-tape-l
ι ↪→ b · b⃗ ι ↪→ b⃗ ∗ ∆ ⊨E K[ b ] ≾ e2 : τ

∆ ⊨E K[ flip(ι) ] ≾ e2 : τ

rel-flip-tape-r
ι ↪→s b · b⃗ ι ↪→s b⃗ ∗ ∆ ⊨E e1 ≾ K[ b ] : τ

∆ ⊨E e1 ≾ K[ flip(ι) ] : τ

rel-flip-tape-empty-l
ι ↪→ ϵ ∀b. ι ↪→ ϵ ∗ ∆ ⊨E K[ b ] ≾ e2 : τ

∆ ⊨E K[ flip(ι) ] ≾ e2 : τ

rel-flip-tape-empty-r
ι ↪→s ϵ ∀b. ι ↪→s ϵ ∗ ∆ ⊨E e1 ≾ K[ b ] : τ

∆ ⊨E e1 ≾ K[ flip(ι) ] : τ

Figure 7.3: Symbolic execution rules for tapes for the refinement judgment.

forever. On the contrary, ephemeral propositions like the points-to connective ℓ 7→ v for the
heapmay be invalidated in the future when the location is updated. For exactly this reason, the
rule rel-pack also requires the interpretation of the type variable to be persistent, to guarantee
that it does not depend on ephemeral resources.

To reason about, e.g., functions that make use of ephemeral resources, a common pattern
is to “put them in an invariant” to make them persistent, as sketched in Section 7.2 for the
lazy/eager example. Since our language is sequential, when a function is invoked, no other
code can execute before the function returns. This means that we can soundly keep invariants
“open” and temporarily invalidate them for the entire duration of a function invocation—as
long as the invariants are reestablished before returning. Non-atomic invariants allow us to
capture exactly this intuition.

Figure 7.5 shows structural rules for the refinement judgment’s interaction with non-
atomic invariants. An invariant P

N can be allocated (rel-na-inv-alloc) by giving up owner-
ship of P . When opening an invariant (rel-na-inv-open) one obtains the resources P together
with a resource closeNaInvN (P ) that allows you to close the invariant again (rel-na-inv-close)
by reestablishing P . The mask annotation E on the refinement judgment keeps track of which
invariants have been opened to avoid opening invariants in an (unsound) nested fashion. We
guarantee that all invariants are closed by the end of evaluation by requiring ⊤, the set of
all invariant names, as mask annotation on the judgment in all value cases (see, e.g., rel-rec,
rel-pack, and rel-return in Figure 7.2).
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rel-couple-flips
f bijection ∀b.∆ ⊨E K[ b ] ≾ K ′[ f(b) ] : τ

∆ ⊨E K[ flip() ] ≾ K ′[ flip() ] : τ

rel-couple-tape-l
f bijection e ̸∈Val ι ↪→ b⃗ ∀b. ι ↪→ (⃗b · b) ∗ ∆ ⊨E e ≾ K[ f(b) ] : τ

∆ ⊨E e ≾ K[ flip() ] : τ

rel-couple-tape-r
f bijection ι ↪→s b⃗ ∀b. ι ↪→s (⃗b · f(b)) ∗ ∆ ⊨E K[ b ] ≾ e : τ

∆ ⊨E K[ flip() ] ≾ e : τ

rel-couple-tapes
f bijection

e1 ̸∈Val ι ↪→ b⃗ ι′ ↪→s b⃗
′ ∀b. ι ↪→ (⃗b · b) ∗ ι′ ↪→s (⃗b

′ · f(b)) ∗ ∆ ⊨E e1 ≾ e2 : τ

∆ ⊨E e1 ≾ e2 : τ

Figure 7.4: Coupling rules for the Clutch refinement judgment.

rel-na-inv-alloc
▷P P

N ∗ ∆ ⊨E e1 ≾ e2 : τ

∆ ⊨E e1 ≾ e2 : τ

rel-na-inv-open
N ∈ E P

N
▷P ∗ closeNaInvN (P ) ∗ ∆ ⊨E\N e1 ≾ e2 : τ

∆ ⊨E e1 ≾ e2 : τ

rel-na-inv-close
▷P closeNaInvN (P ) ∆ ⊨E e1 ≾ e2 : τ

∆ ⊨E\N e1 ≾ e2 : τ

Figure 7.5: Non-atomic invariant access rules for the Clutch refinement judgment.

Clutch invariants are inherited from Iris and hence they are impredicative [SB14] which
means that the proposition P in P

N is arbitrary and can, e.g., contain other invariant asser-
tions. To ensure soundness of the logic and avoid self-referential paradoxes, invariant access
guards P by the later modality ▷. When invariants are not used impredicatively, the later
modality can mostly be ignored. The later modality is essential for the soundness of the log-
ical relation and taking guarded fixpoints µx. P that require the recursive occurrence x to
appear under the later modality, but our use is entirely standard. We refer to [Jun+18b] for
more details on the later modality and how it is used in Iris.
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7.5 Model of Clutch

In this section we show how the connectives of Clutch are modeled through a shallow embed-
ding in the base logic of the Iris separation logic [Jun+18b]. We describe how the refinement
judgment∆ ⊨E e1 ≾ e2 : τ is modeled (Section 7.5.1) using a new unary weakest precondition
theory (Section 7.5.3 and Section 7.5.4) and a specification resource (Section 7.5.5) construction
in combination with a binary value interpretation JτK∆ :Val×Val→ iProp that describes how
values are related (Section 7.5.2). Finally, we summarize how the final soundness theorem is
proven (Section 7.5.6).

We note that the general skeleton of our model mimics prior work [FKB21b; KTB17; TH19;
TDB13; Tur+13] but that the soundness theorem, howwe prove it, andmultiple technical facets
are novel as we will highlight throughout this section. There are many details and layers to
keep track of and for this reason, we will present the model using a top-down approach to not
lose track of the bigger picture when working through the model.

7.5.1 Refinement judgment

Recall how the intuitive reading of the refinement judgment ∆ ⊨E e1 ≾ e2 : τ is that the
expression e1 refines the expression e2 at type τ under the invariants in the mask E with
interpretations of type variables in τ taken from ∆. This intuition is formally captured in
Clutch as follows:

∆ ⊨E e1 ≾ e2 : τ ≜ ∀K. specCtx ∗ spec(K[ e2 ]) ∗ naTok(E) ∗
wp e1 {v1.∃v2. spec(K[ v2 ]) ∗ naTok(⊤) ∗ JτK∆(v1, v2)}

This definition has quite a few components and we will go over them bit by bit. First, note
that we encode a relational specification into a unary specification by proving a unary weakest
precondition about e1 (the implementation), in which e2 (the specification) is treated as a ghost
resource spec(e) that can be updated to reflect execution steps. The weakest precondition
connective wp e {v.Φ} is a new probabilistic weakest precondition that we formally define
and discuss in Section 7.5.3. In isolation it simply means that the execution of e is safe (i.e., the
probability of crashing is zero), and for every possible return value v of e, the postcondition
Φ(v) holds. Note however, that it does not imply that the probability of termination is itself
one. Next, the definition involves the resource naTok(E) that keeps track of the set of non-
atomic invariants that are currently closed. Hence the definition gives the prover access to open
the invariants in E but it requires all invariants (⊤) to have been closed whenever e1 returns.
Finally, it involves the ghost specification connective spec(e) that states that the right-hand
side program is currently executing the program e.

Putting everything together (ignoring specCtx for now), the full definition assumes that
the right-hand side program is executing e2 and that we have access to the invariants in E ,
and concludes that the two executions can be coupled so that if e1 reduces to some value
v1 then there exists a corresponding execution of e2 to a value v2 and all invariants have
been closed. Moreover, the values v1 and v2 are related via the binary value interpretation
JτK∆(v1, v2) that we discuss in Section 7.5.2. By quantifying over K we close the definition
under evaluation contexts on the right-hand side. For the left-hand side this is not needed as
the weakest precondition satisfies the bind rule wp e {v.wpK[ v ] {Φ}} ⊢ wp K[ e ] {Φ} for
all evaluation contexts K .
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The ghost specification connective spec(e), togetherwith the specCtx proposition, satisfies
a number of symbolic execution rules following the operational semantics. For brevity, we
elide these rules—they correspond directly to all the right-hand side rules (ending in -R) shown
in Figure 7.2 and Figure 7.3. The specCtx proposition is an Iris invariant that ties together the
ghost specification resource spec(e) and the heap and tape assertions, ℓ 7→s v and ι ↪→s b⃗,
with an execution on the right-hand side as we discuss further in Section 7.5.5.

7.5.2 Binary value interpretation

The binary value interpretation JτK∆ characterizes the set of pairs of closed values (v1, v2)
of type τ such that v1 contextually refines v2. The definition follows the usual structure of
(“logical”) logical relations, see, e.g., [FKB21b], by structural recursion on τ and uses corre-
sponding logical connectives. Functions are interpreted via (separating) implication, universal
types are interpreted through universal quantification, etc., as shown in Figure E.1 found in
the appendix. The only novelty is the interpretation of the new type of tapes shown below:

JtapeK∆(v1, v2) ≜ ∃ι1, ι2. (v1 = ι1) ∗ (v2 = ι2) ∗ ι1 ↪→ ϵ ∗ ι2 ↪→s ϵ
N .ι1.ι2

The interpretation requires that the values are tape labels, i.e., references to tapes, and that they
are always empty as captured by the invariant. Intuitively, this guarantees through coupling
rules and the symbolic execution rules from Figure 7.3 that we always can couple samplings on
these tapes as needed in the compatibility lemma for t-flip as discussed in Section 7.5.6. Point-
wise equality of the two tapes would also have been sufficient for the compatibility lemma but
by requiring them to be empty we can prove general equivalences about label erasure such as
ι : tape ⊢ flip() ≃ctx flip(ι) : bool.

7.5.3 A unary coupling weakest precondition

In most Iris-style program logics, the weakest preconditionwp e {Φ} is a predicate stating that
either the program e is a value satisfyingΦ or it is reducible such that for any other term e′ that
it reduces to, then wp e′ {Φ}must hold as well. The weakest precondition connective that we
define in this section has—in isolation—the same intuition but it is fundamentally different. It is
still a unary predicate used to interpret the left-hand side program, but in order to do relational
reasoning, our definition of the weakest precondition pairs up the probability distribution of
individual program steps of the left-hand side with the probability distribution of individual
steps of some other program in such a way that there exists a probabilistic coupling among
them. Through ghost resources and the specCtx invariant we will guarantee that this “other”
program is connected to the specification program tracked by the spec(e) resource.

We recall that probabilistic couplings are used to prove relations between distributions.
They are based on sampling from a joint distribution so that we can force the samples to be
related in a particular manner:

Definition 7.5.1 (Coupling). Let µ1 ∈ D(A), µ2 ∈ D(B). A sub-distribution µ ∈ D(A×B)
is a coupling of µ1 and µ2 if

1. ∀a.
∑

b∈B µ(a, b) = µ1(a)

2. ∀b.
∑

a∈A µ(a, b) = µ2(b)
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Given relation R : A × B we say µ is an R-coupling if furthermore supp(µ) ⊆ R. We write
µ1 ∼ µ2 : R if there exists an R-coupling of µ1 and µ2.

Couplings can be constructed and composed along the monadic structure of the sub-
distribution monad.

Lemma 7.5.2 (Composition of couplings). LetR : A×B, S : A′×B′, µ1 ∈ D(A), µ2 ∈ D(B),
f1 : A→ D(A′), and f2 : B → D(B′).

1. If (a, b) ∈ R then ret(a) ∼ ret(b) : R.

2. If ∀(a, b) ∈ R. f1(a) ∼ f2(b) : S and µ1 ∼ µ2 : R then µ1 ≫= f1 ∼ µ2 ≫= f2 : S

Once a coupling has been established, we can extract a concrete relation from it between the
probability distributions. In particular, for (=)-couplings, we have the following result.

Lemma 7.5.3. If µ1 ∼ µ2 : (=) then µ1 = µ2.

The weakest precondition connective that we define is given by a guarded fixpoint of the
equation below—the fixpoint exists because the recursive occurrence of the connective appears
under the later modality.1

wp e1 {Φ} ≜ (e1 ∈Val ∧ Φ(e1)) ∨
(e1 ̸∈Val ∧ ∀σ1, ρ′1. S(σ1) ∗ G(ρ′1) ∗
execCoupl((e1, σ1), ρ′1)(λ(e2, σ2), ρ

′
2.

▷ S(σ2) ∗ G(ρ′2) ∗ wpE e2 {Φ}))

The base case says that if the expression e1 is a value then the postcondition Φ(e1)must hold.
On the other hand, if e1 is not a value, we get to assume two propositions S(σ1) and G(ρ′1)
for any σ1 ∈ State, ρ′1 ∈ Cfg, and then we must prove execCoupl((e1, σ1), ρ′1)(. . .). The S(σ1)
proposition is a state interpretation that interprets the state (the heap and the tapes) of the
language as resources in Clutch and gives meaning to the ℓ 7→ v and ι ↪→ b⃗ connectives.
TheG(ρ1) proposition is a specification interpretation that allows us to interpret and track the
“other” program that we are constructing a coupling with—we return to the contents of the
predicate in Section 7.5.5.

The key technical novelty and the essence of our solution is the coupling modality: Intu-
itively, the proposition execCoupl(ρ1, ρ′1)(λρ2, ρ

′
2. P ) says that there exists a series of (com-

posable) couplings starting from configurations ρ1 and ρ′1 that ends up in configurations ρ2
and ρ′2 such that the proposition P holds. With this intuition in mind, the last clause of the
weakest precondition says that the execution of (e1, σ1) can be coupled with the execution
of ρ′1 such that the state and specification interpretations still hold for the end configurations,
and the weakest precondition holds recursively for the continuation e2.

1We omit from the definition occurrences of the fancy update modality needed for resource updates and nec-
essary book-keeping related to (regular) Iris invariants—these matters are essential but our use is standard. For the
Iris expert we refer to the appendix for the full definition.
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7.5.4 The coupling modality

The coupling modality is defined as the least fixpoint of a fairly large, daunting looking equa-
tion that we reserve for the appendix. It has been carefully designed to support both syn-
chronous and asynchronous couplings on both sides while still ensuring that the left program
takes at least one step. The structure is simple: the equation is a large disjunction between all
the different kinds of couplings we support. The fixpoint allows us to chain together multi-
ple couplings but it always ends in base cases that couple a single step of the left-hand side
program—this aligns with the usual intuition that each unfolding of the recursively defined
weakest precondition corresponds to one physical program step. For instance, we can couple
two physical program steps through the following rule:

red(ρ1) step(ρ1) ∼ step(ρ′1) : R ∀ρ2, ρ′2. R(ρ2, ρ
′
2) ∗ Z(ρ2, ρ

′
2)

execCoupl(ρ1, ρ′1)(Z)

Intuitively, this says that to show execCoupl(ρ1, ρ′1)(Z) we (1) have to show that the configu-
ration ρ1 is reducible which means that the program can take a step (this is to guarantee safety
of the left-hand side program), (2) pick a relation R and show that there exists an R-coupling
of the two program steps, and (3) for all configurations ρ2, ρ′2 in the support of the coupling,
the predicate Z(ρ2, ρ

′
2) holds. This part of the definition of the coupling modality is key to the

proof of the rule rel-couple-flips that couples two program samplings.
The coupling modality also allows to construct a coupling between a program step and a

trivial (Dirac) distribution; this is used to validate proof rules that symbolically execute just one
of the two sides. Indeed, the rule below allows us to progress the right-hand side independently
from the left-hand side, but notice the occurrence of the couplingmodality in the premise—this
allows us to chain multiple couplings together.

ret(ρ1) ∼ step(ρ′1) : R ∀ρ′2. R(ρ1, ρ
′
2) ∗ execCoupl(ρ1, ρ′2)(Z)

execCoupl(ρ1, ρ′1)(Z)

To support asynchronous couplings, we introduce a state step reduction relation −→ι⊆
State × [0, 1] × State that uniformly at random samples a Boolean b to the end of the tape
ι:

σ −→1/2
ι σ[ι→ b⃗ · b] if σ(ι) = b⃗ and b ∈ {true, false}

Let stepι(σ) denote the induced distribution of a single state step reduction of σ. The coupling
modality allows us to introduce couplings between stepι(σ) and a sampling step:

stepι(σ1) ∼ step(ρ′1) : R ∀σ2, ρ′2. R(σ2, ρ
′
2) ∗ execCoupl((e1, σ2), ρ′2)(Z)

execCoupl((e1, σ1), ρ′1)(Z)

This particular rule is key to the soundness of the asynchronous coupling rule rel-couple-tape-
l that couples a sampling to a tape on the left with a program sampling on the right. Similarly
looking consequence of the definition used to prove rel-couple-tape-r and rel-couple-tapes
exist as well. The crux is, however, that the extra state steps that we inject in the coupling
modality to prove the asynchronous coupling rules do not matter (!) in the sense that they
can be entirely erased as part of the adequacy theorem for the weakest precondition (Theo-
rem 7.5.7).
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7.5.5 A specification context with run ahead

The purpose of the specification context specCtx is to connect the spec(e) resource to the
program e′ that we are constructing a coupling with in the weakest precondition. We keep
track of the expression e′ with the specification interpretation G. When constructing a final
closed proof we will want e to be equal to e′, however, during proofs they are not always going
to be the same—we will allow e to run ahead of e′. As a consequence, it will be possible to
reason independently about the right-hand side without consideration of the left-hand side as
exemplified by the rule below.

spec-pure
specCtx e

pure
⇝ e′

spec(K[ e ]) ∗ spec(K[ e′ ])

To define specCtx we will use two instances of the authoritative resource algebra [Jun+15]
from the Iris ghost theory. Setting up the theory is out of scope for this paper; it suffices to
know that the instances satisfy F•(a) ∗ F◦(b) ⊢ a = b. To connect the two parts we will keep
specInterp•(ρ) in the specification interpretation (that “lives” in the weakest precondition),
and the corresponding specInterp◦(ρ) in specCtx:

G(ρ) ≜ specInterp•(ρ)

specInv ≜ ∃ρ, e, σ, n. specInterp◦(ρ) ∗ spec•(e) ∗ heaps(σ) ∗ execConfn(ρ)(e, σ) = 1

specCtx ≜ specInv
N .spec

This ensures that the configuration ρ tracked in the weakest precondition is the same as the
configuration ρ tracked in specCtx. On top of this, specCtx contains resources spec•(e) and
heaps(σ) while guaranteeing that the configuration (e, σ) can be reached in n determinis-
tic program steps from ρ. The heaps(σ) resource gives meaning—using standard Iris ghost
theory—to the heap and tape assertions, ℓ 7→s v and ι ↪→s b⃗, just like the state interpreta-
tion in the weakest precondition. execConfn(ρ) ∈ D(Cfg) denotes the distribution of n-step
partial execution of ρ. By letting spec(e) = spec◦(e) this construction permits the right-hand
side program to progress (with deterministic reduction steps) without consideration of the left-
hand side as exemplified by spec-pure. However, when applying coupling rules that actually
need to relate the two sides, the proof first “catches up” with spec(e) using the execCoupl rule
that only progresses the right-hand side, before constructing the actual coupling.

7.5.6 Soundness

The soundness of the refinement judgment hinges on the soundness of the weakest precondi-
tion in combination with the right-hand side specification connective spec(e). The intermedi-
ate goal is to show a coupling between the two programs. However, contextual refinement is
not defined as an equality between distributions, but rather as a pointwise inequality. For this
reason we introduce a new notion of refinement coupling.

Definition 7.5.4 (Refinement Coupling). Let µ1 ∈ D(A), µ2 ∈ D(B). A sub-distribution
µ ∈ D(A×B) is a refinement coupling of µ1 and µ2 if

1. ∀a.
∑

b∈B µ(a, b) = µ1(a)
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2. ∀b.
∑

a∈A µ(a, b) ≤ µ2(b)

Given relation R : A×B we say µ is an R-refinement-coupling if furthermore supp(µ) ⊆ R.
We write µ1 ≲ µ2 : R if there exists an R-refinement-coupling of µ1 and µ2.

Note that this means that, for any µ ∈ D(B) and any R ⊆ A × B, the zero distribution 0
trivially satisfies 0 ≲ µ : R. This reflects the asymmetry of both contextual refinement and
our weakest precondition—it allows us to show that a diverging program refines any other
program of appropriate type.

Refinement couplings can also be constructed and composed along the monadic structure
of the sub-distribution monad and are implied by regular couplings:

Lemma 7.5.5. If µ1 ∼ µ2 : R then µ1 ≲ µ2 : R.

Additionally, proving a (=)-refinement-coupling coincides with the relation between distri-
butions that will allow us to reason about contextual refinement.

Lemma 7.5.6. If µ1 ≲ µ2 : (=) then ∀a. µ1(a) ≤ µ2(a).

The adequacy theorem of the weakest precondition is stated using refinement couplings.

Theorem 7.5.7 (Adequacy). Let φ :Val×Val→ Prop be a predicate in the meta-logic. If

specCtx ∗ spec(e′) ⊢ wp e
{
v.∃v′. spec(v′) ∗ φ(v, v′)

}
is provable in Clutch then ∀n. execn(e, σ) ≲ exec(e′, σ′) : φ.

As a simple corollary it follows from continuity of execn that exec(e, σ) ≲ exec(e′, σ′) : φ.
The proof of the adequacy theorem goes by induction in both n and the execCoupl fixpoint,

followed by a case distinction on the big disjunction in the definition of execCoupl. Most
cases are simple coupling compositions along the monadic structure except the cases where
we introduce state step couplings that rely on erasure in the following sense:

Lemma 7.5.8 (Erasure). If σ1(ι) ∈ dom(σ1) then

execn(e1, σ1) ∼ (stepι(σ1)≫= λσ2. execn(e1, σ2)) : (=)

Intuitively, this lemma tells us that we can prepend any program execution with a state step
reduction and it will not have an effect on the final result. The idea behind the proof is that
if we append a sampled bit b at the end of a tape, and if we eventually consume this bit, then
we obtain the same distribution as if we never appended b in the first place. This is a property
that one should not take for granted: the operational semantics has been carefully defined
such that reading from an empty tape reduces to a bit as well, and none of the other program
operations can alter or observe the contents of the tape. This ensures that presampled bits are
untouched until consumed and that the proof and the execution is independent.

To show the soundness theorem of the refinement judgment, we extend the interpretation
of types to typing contexts—JΓK∆(v⃗, w⃗) iff for every xi : σi in Γ then JσiK∆(vi, wi) holds—and
the refinement judgment to open terms by closing substitutions as usual:

∆ | Γ ⊨ e1 ≾ e2 : τ ≜ ∀v⃗, w⃗. JΓK∆(v⃗, w⃗) ∗ ∆ ⊨ e1[v⃗/Γ] ≾ e2[w⃗/Γ] : τ
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where e1[v⃗/Γ] denotes simultaneous substitution of every xi from Γ in e1 by the value vi.
We then show, using the structural and symbolic execution rules of the refinement judg-

ment, that the typing rules are compatible with the relational interpretation: for every typing
rule, if we have a pair of related terms for every premise, then we also have a pair of related
terms for the conclusion. See for instance the compatibility rule for t-flip below in the case
τ = tape that follows using rel-bind and rel-couple-tapes.

flip-compat
∆ | Γ ⊨ e1 ≾ e2 : tape

∆ | Γ ⊨ flip(e1) ≾ flip(e2) : bool

As a consequence of the compatibility rules, we obtain the fundamental theorem of logical
relations.

Theorem 7.5.9 (Fundamental theorem). Let Ξ | Γ ⊢ e : τ be a well-typed term, and let ∆
assign a relational interpretation to every type variable α ∈ Ξ. Then∆ | Γ ⊨ e ≾ e : τ .

The compatibility rules, moreover, yield that the refinement judgment is a congruence, and
together with Theorem 7.5.7 we can then recover contextual refinement:

Theorem 7.5.10 (Soundness). Let Ξ be a type variable context, and assume that, for all ∆
assigning a relational interpretationVal ×Val → iProp to the type variables in Ξ we can derive
∆ | Γ ⊨ e1 ≾ e2 : τ . Then, Ξ | Γ ⊢ e1 ≾ctx e2 : τ .

7.6 Case studies

In this section, we give an overview of some of the example equivalences we have proven
with Clutch. Further details are found in Appendix F and our mechanized Coq development.
In particular, in Appendix F we discuss an example from Sangiorgi and Vignudelli [SV16],
which previous logical relations for probabilistic programs without asynchronous couplings
could not prove [Biz16, Sec. 1.5].

7.6.1 Hash functions

When analyzing data structures that use hash functions, one commonly models the hash func-
tion under the uniform hash assumption or the random oracle model [BR93]. That is, a hash
function h from a set of keys K to values V behaves as if, for each key k, the hash h(k) is
randomly sampled from a uniform distribution over V , independently of all the other keys. Of
course, hash functions are not known to satisfy this assumption perfectly, but it can neverthe-
less be a useful modeling assumption for analyzing programs that use hashes.

The function eager_hash in Figure 7.6 encodes such a model of hash functions in F
flip
µ,ref.

(We explain the reason for the “eager” name later.) Given a non-negative integer n, executing
eager_hash n returns a hash function withK = {0, . . . , n} and V = B. To do so, it initializes
a mutable map m and then calls sample_all , which samples a Boolean b with flip for each
key k and stores the results in m. These Booleans serve as the hash values. On input k, the
hash function returned by eager_hash looks up k in the mapm and returns the result, with a
default value of false if k ̸∈ K .
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eager_hash ≜
λn. letm = init_map () in

sample_all m (n+ 1);

(λk. match get m k with
Some (b)⇒ b
| None ⇒ false
end)

lazy_hash ≜
λn. let vm = init_map () in

let tm = init_map () in

alloc_tapes tm (n+ 1);

(λk. match get vm k with
Some (b)⇒ b
| None ⇒ match get tm k with

Some (ι)⇒
let b = flip(ι) in
set vm b;
b

| None⇒ false
end

end)

Figure 7.6: Eager and lazy models of hash functions.

However, this model of uniform hash functions can be inconvenient for proofs because all
of the random hash values are sampled eagerly when the function is initialized. To overcome
this, an important technique in pencil-and-paper proofs is to show that the hash values can be
sampled lazily [MF21]. That is, we only sample a key k’s hash value when it is hashed for the
first time. This lets us more conveniently couple that sampling step with some step in another
program.

Motivated by applications to proofs in cryptography, Almeida et al. [Alm+19] formalized
in EasyCrypt a proof of equivalence between an eager and lazy random oracle. Although suffi-
cient for their intended application, this proof was done in the context of a language that uses
syntactic restrictions to model the hash function’s private state. To the best of our knowledge,
no such equivalence proof between lazy and eager sampling has previously been given for a
language with higher-order state and general references.

As an application of Clutch, we prove such an equivalence in F
flip
µ,ref. The function

lazy_hash shown in Figure 7.6 encodes the lazy sampling version of the random hash gen-
erator. For its internal state, the lazy hash uses two mutable maps: the tape map tm stores
tapes to be used for random sampling, and the value map vm stores the previously sampled
values for keys that have been hashed. After initializing these maps, it calls alloc_tapes , which
allocates a tape for each key k ∈ K and stores the associated tape in tm, but does not yet sam-
ple hashes for any keys. The hash function returned by lazy_hash determines the hash for
a key k in two stages. It first looks up k in vm to see if k already has a sampled hash value,
and if so, returns the found value. Otherwise, it looks up k in the tape map tm. If no tape is
found, then k must not be inK , so the function returns false. If a tape ι is found, then the code
samples a Boolean b from this tape with flip, stores b for the key k in vm, and then returns b.

We prove that the eager and lazy versions are contextually equivalent, that is,

⊢ eager_hash n ≃ctx lazy_hash n : int→ bool

The core idea behind this contextual equivalence proof is to maintain an invariant between
the internal state of the two hash functions. Letm be the internal map used by the eager hash
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and let tm and vm be the tape and value maps, respectively, for the lazy hash. Then, at a high
level, the invariant maintains the following properties:

1. dom(m) = dom(tm) = {0, . . . , n}.

2. For all k ∈ {0, . . . , n}, ifm[k] = b then either

a) vm[k] = b, or
b) vm[k] = ⊥ and tm[k] = ι for some tape label ι such that ι ↪→ [b].

Case (a) and (b) of the second part of this invariant capture the two possible states each key k
can be in. Either the hash of k has been looked up before (case a), and so the sampled value
stored in vm must match that of m, or it has not been looked up (case b) and the tape for the
key must contain the same value asm[k] for its next value.

To establish this invariant when the hashes are initialized, we asynchronously couple the
eager hash function’s flip for key k with a tape step for the tape ι associated with k in the lazy
table. The invariant ensures that the values returned by the two hash functions will be the
same when a key k is queried. The cases of the invariant correspond to the branches of the
lazy function’s match statements: if the key k is in K and has been queried before, the maps
will return the same values found in m and vm. If it has not been queried before, then the
flip statement in the lazy version will sample the value on the tape for the key, which matches
m[k]. Moreover, the update that writes this sampled value to vm preserves the invariant,
switching from case (b) to case (a) for the queried key.

We have used this more convenient lazy encoding to verify examples that use hash func-
tions. For instance, one scheme to implement random number generators is to use a crypto-
graphic hash function [BK15]. The following implements a simplified version of a scheme:

init_hash_rng ≜ λ_. let f = lazy_hash MAX in

let c = ref 0 in

(λ_. let n = ! c in

let b = f n in

c← n+ 1;

b)

When run, init_hash_rng generates a lazy hash function f for the key space K =
{0, . . . , MAX} for some fixed constant MAX. It also allocates a counter c as a reference initial-
ized to 0. It returns a sampling function, let us call it h, that uses f and c to generate random
Booleans. Each time h is called, it loads the current value n from c and hashes n with f to
get a Boolean b. It then increments c and returns the Boolean b. Repeated calls to h return
independent, uniformly sampled Booleans, so long as we make no more than MAX calls.

We prove that init_hash_rng is contextually equivalent to the following “bounded” ran-
dom number generator that directly calls flip:

init_bounded_rng ≜ λ_. let c = ref 0 in

(λ_. let n = ! c in

let b = if n ≤ MAX then flip() else false in

c← n+ 1;

b)
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The proof works by showing that, so long as n ≤ MAX, then each time a sample is generated,
the value of n will not have been hashed before. Thus, we may couple the random hash value
with the flip call in init_bounded_rng . This argument relies on the fact that the counter c is
private, encapsulated state, which is easy to reason about using the relational judgment since
Clutch is a separation logic.

7.6.2 Lazily sampled big integers

Certain randomized data structures, such as treaps [SA96], need to generate random priorities
as operations are performed on the structure. One can view these priorities as an abstract
data type equipped with a total order supporting two operations: (1) a sample function that
randomly generates a new priority according to some distribution, and (2) a comparison oper-
ation that takes a pair of priorities (p1, p2) and returns −1 (if p1 < p2), 0 (if p1 = p2), or 1 (if
p2 < p1). The full details of how priorities are used in such data structures are not relevant
here. Instead, what is important to know is that it is ideal to avoid collisions, that is, sampling
the same priority multiple times.

A simple way to implement priorities is to represent them as integers sampled from some
fixed set {0, . . . , n}. However, to minimize collisions, we may need to make n very large. But
making n large has a cost, because then priorities requires more random bits to generate and
more space to store. An alternative is to lazily sample the integer that represents the priority.
Because we only need to compare priorities, we can delay sampling bits of the integer until
they are needed. A lazily-sampled integer can be encoded as a pair of a tape label ι and a linked
list of length at most N , where each node in the list represents a digit of the integer in base
B, with the head of the list being the most significant digit.

In the appendix, we describe such an implementation of lazily-sampled integers, withN =
8 andB = 232. Our Coq development contains a proof that this implementation is contextually
equivalent to code that eagerly samples a 256-bit integer by bit-shifting and adding 8 32-bit
integers. Crucially, this contextual equivalence is at an abstract existential type τ . Specifically,
we define the type of abstract priorities,

τ ≜ ∃α. (unit→ α)× ((α× α)→ int)

Then we have the following equivalence:

⊢ (sample_lazy_int , cmp_lazy) ≃ctx (sample256 , cmp) : τ

where cmp is just primitive integer comparison. The proof uses tapes to presample the bits
that make up the lazy integer and couples these with the eager version. The cmp_lazy function
involves traversal and mutation of the linked lists representing the integers being compared,
which separation logic is well-suited for reasoning about.

7.7 Coq formalization

All the results presented in the paper, including the background on probability theory, the
formalization of the logic, and the case studies have been formalized in the Coq proof as-
sistant [Coq22]. The results about probability theory are built on top of the Coquelicot li-
brary [BLM15], extending their results to real series indexed over arbitrary countable types.
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Although we build our logic on top of Iris [Jun+18b], significant work is involved in for-
malizing the operational semantics of probabilistic languages, our new notion of weakest pre-
condition that internalizes the coupling-based reasoning, and the erasure theorem that allows
us to conclude the existence of a coupling. Our logic integrates smoothly with the Iris Proof
Mode [KTB17] and we have adapted much of the tactical support from ReLoC [FKB21b] to
reason about the relational judgment.

7.8 Related work

Separation logic. Relational separation logics have been developed on top of Iris for a range
of properties, such as contextual refinement [FKB21b; KTB17; TB19; Tim+18], simulation
[Cha+19; Gäh+22; Tim+21], and security [FKB21a; GTB22; Gre+21a]. The representation of
the right-hand side program as a resource is a recurring idea, but our technical construction
with run ahead is novel. With the exception of Tassarotti and Harper [TH19], probabilistic
languages have not been considered in Iris. In Tassarotti and Harper [TH19], the authors de-
velop a logic to show refinement between a probabilistic program and a semantic model, not
a program. The logic relies on couplings, but it requires synchronization of sampling.

Batz et al. [Bat+19] presents a framework in which logical assertions are functions ranging
over the non-negative reals. The connectives of separation logic are given an interpretation
as maps from pairs of non-negative reals to the positive reals. This work focuses on proving
quantitative properties of a single program, e.g., bounding the probability that certain events
happen. A variety of works have developed separation logics in which the separating con-
junction models various forms of probabilistic independence [Bao+21; Bao+22; BHL20]. For
example, the statement P ∗ Q is taken to mean “the distribution of P is independent from the
distribution of Q”.

Prophecy variables [AL88; AL91] have been integrated into separation logic in both a
unary setting [Jun+20] and a relational setting [FKB21b]. The technical solution uses pro-
gram annotations and physical state reminiscent of our construction with presampling tapes,
but prophecy resolution is a physical program step, whereas presampling in our work is a
logical operation. Prophecies can also be erased through refinement [FKB21b].

Probabilistic couplings. Probabilistic couplings are a technique from probability theory that
can, e.g., be used to prove equivalences between distributions or mixing times of Markov
chains [Ald83]. In computer science, they have been used to reason about relational prop-
erties of programs such as equivalences [Bar+15] and differential privacy [Bar+16a]. These
techniques have also been extended to higher-order programs [Agu+21]. However, these log-
ics requires the sampling points on both programs to be synchronized in order to construct
couplings. In a higher-order setting, the logic in Aguirre et al. [Agu+18] allows to establish so-
called “shift couplings” between probabilistic streams that evolve at different rates, but these
rules are ad-hoc and limited to the stream type.

Logical relations. Step-indexed logical relations have been applied to reason about contextual
equivalence of probabilistic programs in a variety of settings. In Bizjak and Birkedal [BB15],
logical relations are developed for a language similar to ours, although only first-order state
is considered. This work has since been extended to a language with continuous probabilistic
choice (but without state and impredicative polymorphism) [Wan+18], for which equivalence
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is shown by establishing a measure preserving transformation between the sources of ran-
domness for both programs. Recently, this was further extended to support nested inference
queries [ZA22].

Another line of work [LG20; LG21; LG22] focuses on using so called differential logical
relations to reason about contextual distance rather than equivalence. Here programs are
related using metrics rather than equivalence relations, which allows to quantify how similar
programs are.

Cryptographic frameworks. CertiCrypt [BGB09; BGB10] is a framework for cryptographic
game-playing proofs written in a simple probabilistic first-order while-language (“pWhile”).
CertiCrypt formalizes a denotational semantics for pWhile in Coq and supports reasoning
about the induced notion of program equivalence via a pRHL, and provides dedicated tactics
for lazy/eager sampling transformations. These kind of transformations are non-trivial for
expressive languages like ours. CertiCrypt also provides a quantitative unary logic.

EasyCrypt [Bar+13] is a standalone prover for higher-order logic building on CertiCrypt’s
ideas. It leverages the first-order nature of pWhile for proof automation via SMT solvers.
EasyCrypt extends pWhile with a module system [Bar+21] to support reasoning about abstract
code as module parameters. It integrates a quantitative unary logic with pRHL, and supports
reasoning about complexity in terms of oracle calls [Bar+21]. Both automation and these kind
of properties are out of scope for our work but would be interesting future directions.

In FCF [PM15], programs are written as Coq expressions in the free sub-distribution
monad. Proofs are conducted in a pRHL-like logic, where successive sampling statements
can straightforwardly be swapped thanks to the commutativity of the monad.

SSProve [Aba+21; Has+21] supports modular crypto proofs by composing “packages” of
programs written in the free monad for state and probabilities. The swap rule in SSProve
allows exchanging commands which maintain a state invariant. Reasoning about dynamically
allocated local state is not supported.

IPDL [Gan+23] is a process calculus for stating and proving cryptographic observational
equivalences. IPDL is mechanized in Coq and targeted at equational reasoning about inter-
active message-passing in high-level cryptographic protocol models, and hence considers a
different set of language features.

7.9 Conclusion

We have presented Clutch, a novel higher-order probabilistic relational separation logic with
support for asynchronous probabilistic coupling-based proofs of contextual refinement and
equivalence of probabilistic higher-order programs with local state and impredicative poly-
morphism. We have proved the soundness of Clutch formally in Coq using a range of new
technical concepts and ideas such as refinement couplings, presampling tapes, and a coupling
modality. We have demonstrated the usefulness of our approach through several example
program equivalences that, to the best of our knowledge, were not possible to establish with
previous methods. Future work includes extending the ideas of Clutch to concurrency and
other probabilistic properties.
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A Indirect Causal Dependency

The proof of the indirect causal dependency example [Llo+11] makes use of predicates

pending : iProp

shot : WriteEvent→ iProp

hist : ℘fin(WriteEvent) fin−⇀ iProp

satisfying the laws below. The predicates pending and shot are defined using the oneshot
resource algebra [Jun+16] whereas the hist predicate is defined using a fractional agreement
resource algebra. We refer to the Coq formalization for all the details and the full proof.

Laws for ghost resources

pending ≡−∗ shot(w)

shot(w) ∗ shotw′ ⊢ w = w′

pending ∗ shot(w) ⊢ False

⋄ ∗ ⋄ ⊢ False

hist(h1) ∗ hist(h2) ⊢ h1 = h2

hist(h1) ∗ hist(h1) ⊢ hist(h2) ∗ hist(h2)

Invariants

Invx ≜ ∃h. x ⇀u h ∗ hist(h) ∗
(
(pending ∗ ∀w ∈ h. w.v ̸= 1) ∨(

⋄ ∗ ∃w. shot(w) ∗ w.v = 37 ∗Maximum(h) = Some w ∗
∀w′ ∈ h. w′.v = 37⇒ w = w′))

Invy ≜ ∃h. y ⇀u h ∗ ∀w ∈ h. w.v = 1⇒ ∃w′. vc(w′) < vc(w) ∗ shot(w′)
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Proof sketch

Node i, proof outline

{
Seen(i, s) ∗ hist(h) ∗ ⋄ ∗ h ⊆ ⌊s⌋ ∗ Invx

}

op
en

In
v x

{
hist(h) ∗ hist(h) ∗ x ⇀u h ∗ pending ∗ ⋄

}
write(x, 0){∃a, s′ ⊇ s. Seen(i, s′ ⊎ {a}) ∗ hist(h ⊎ {⌊a⌋})
∗ hist(h ⊎ {⌊a⌋}) ∗ x ⇀u h ⊎ {⌊a⌋} ∗ pending ∗ ⋄

}
{
∃h′, s′. Seen(i, s′) ∗ hist(h) ∗ ⋄ ∗ h′ ⊆ s′ ∗ Invx

}{
Seen(i, s′) ∗ hist(h′) ∗ ⋄ ∗ h′ ⊆ ⌊s′⌋ ∗ Invx

}

op
en

In
v x

{
hist(h) ∗ hist(h) ∗ x ⇀u h ∗ pending ∗ ⋄

}
write(x, 37){
∃s′′ ⊇ s′, a′. Seen(i, s′′ ⊎

{
a′
}
) ∗ hist(h ⊎

{
⌊a′⌋

}
) ∗ hist(h ⊎

{
⌊a′⌋

}
) ∗ x ⇀u h ⊎

{
⌊a′⌋

}
∗ ⋄ ∗Maximum(h ⊎

{
⌊a′⌋

}
) = Some ⌊a′⌋ ∗ shot(⌊a′⌋)

}
{
∃h′, s′′. Seen(i, s′′) ∗ hist(h′) ∗ Invx

}
Node j, proof outline

{
Seen(j, s) ∗ Invx ∗ Invy

}
wait(x = 37){
∃s′ ⊇ s, ax. Seen(j, s) ∗ shot(⌊ax⌋) ∗ wx ∈ s′ ∗ . . .

}{
Seen(j, s′) ∗ shot(wx)

}

op
en

In
v y

{
∃hy, s′. x ⇀u hy ∗ . . .

}
write(y, 1){∃ay, s′′ ⊇ s′. Seen(j, s′′ ⊎ {ay}) ∗ x ⇀u hy ⊎ {⌊ay⌋} ∗ shot(wx)∗
ay.v = 1 ∗ ay ∈ s′′ ∗ vc(⌊ax⌋) < vc(⌊ay⌋)

}
{
Seen(j, s′′) ∗ Invy

}
Node k, proof outline

{
Seen(k, s) ∗ Invx ∗ Invy ∗

}
wait(y = 1){
∃s′ ⊆ s, ay ∈ s′, wx. Seen(k, s

′) ∗ shot(wx) ∗ vc(wx) < vc(⌊ay⌋) ∗ ay.v = 1
}{

Seen(k, s′) ∗ shot(wx)
}

op
en

In
v x

{∃hx. x ⇀u hx ∗ shot(wx) ∗ shot(wx) ∗Maximum(hx) = Some wx ∗ wx.v = 37}
read(x){
v. ∃s′′. Seen(k, s′′) ∗ v = Some 37

}{
v. ∃s′′. Seen(k, s′′) ∗ v = Some 37

}



B Guarantees for Client-Centric Consistency

Session manager library implementation

1 (* Client stub *)
2 type db_key
3 type db_value
4
5 type sm_req =
6 IR
7 | RR of db_key
8 | WR of db_key * db_value
9
10 type sm_res =
11 InitRes
12 | ReadRes of db_value
13 | WriteRes
14
15 let rec listen_wait_seqid skt seq_id =
16 let res_raw = listen_wait skt in
17 let res = deser_res (fst res_raw) in
18 let tag = fst res in
19 let vl = snd res in
20 if (tag = !seq_id) then
21 seq_id := !seq_id + 1;
22 vl
23 else
24 listen_wait_seqid skt seq_id
25
26 let ses_exec skt seq_id lock A req =
27 acquire lock;
28 let msg = ser_req req in
29 sendTo skt msg A;
30 let res = listen_wait_seqid skt seq_id in
31 release lock;
32 res

33 (* Request handler *)
34 let rec request_handler skt rd_fn wr_fn =
35 let req_raw = listen_wait skt in
36 let sender = snd req_raw in
37 let req = deser_req (fst req_raw) in
38 let seq_id = fst req in
39 let res =
40 match (snd req) with
41 | Some IR -> InitRes
42 | Some RR k -> ReadRes (rd_fn k)
43 | Some WR (k, v) -> wr_fn k v; WriteRes
44 | None -> assert false
45 in
46 sendTo skt (ser_res (seq_id, res)) sender;
47 request_handler skt rd_fn wr_fn
48
49 let server dbs db_id req_addr =
50 let fns = init dbs db_id in
51 let rd_fn = fst fns in
52 let wr_fn = snd fns in
53 let skt = socket () in
54 socketbind skt req_addr;
55 request_handler skt rd_fn wr_fn
56
57 let sm_setup client_addr =
58 let skt = socket () in
59 socketbind skt client_addr;
60 let seq_id = ref 0 in
61 let l = newlock () in
62 let connect_fn A =
63 ses_exec skt seq_id l A IR; () in
64 let read_fn A key =
65 ses_exec skt seq_id l A (RR key) in
66 let write_fn A key vl =
67 ses_exec skt seq_id l A (WR (key, vl)) in
68 (connect_fn, read_fn, write_fn)
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Session manager specifications

SM-init

{⊤} ⟨ipclient; sconnect(ipi)⟩

∃s.Seen(i, s) ∗ ∗
k∈Keys

∃hk.Snap(k, hk) ∗ GlobalInv
NGI


SM-read
{ipi Z⇒ Φi ∗ Seen(i, s) ∗ Snap(k, h)}

⟨ipclient; sread(ipi, k)⟩v.

∃s′ ⊇ s, h′ ⊇ h. ∗ Seen(i, s′) ∗ Snap(k, h′)∗( (
v = None ∗ s′|k = ∅

)
∨
(
∃a,w. v = Some w ∗ a.v = w ∗ a.k = k ∗ a ∈ Maximals(s′|k) ∗ ⌊a⌋ ∈ h′

) )


SM-write
{ipi Z⇒ Φi ∗ Seen(i, s) ∗ Snap(k, h)}

⟨ipclient; swrite(ipi, k, v)⟩{
∃a, s′ ⊆ s, h′ ⊆ h. a.k = k ∗ a.v = v ∗ Seen(i, s′) ∗ Snap(k, h′)

∗ a ̸∈ s ∗ a′ ∈ s′ ∗ ⌊a⌋ ̸∈ h ∗ ⌊a′⌋ ∈ h′ ∗ ⌊a⌋ ∈ Maximals(h′) ∗Maximum(s′) = Some a

}

Session guarantees specifications

SM-read-your-writes
{ipi Z⇒ Φi}

⟨ipclient; sconnect(ipi); swrite(ipi, k, vw); sread(ipi, k)⟩{
vo.
∃s, aw, ar, vr. vo = Some vr ∗ aw.k = k ∗ aw.v = vw ∗ ar.k = k ∗ ar.v = vr

∗ Seen(a, s) ∗ aw, ar ∈ s ∗ ¬(ar.t < aw.t)

}

SM-monotonic-reads
{ipi Z⇒ Φi}

⟨ipclient; sconnect(ipi); let v1 = sread(ipi, k) in let v2 = sread(ipi, k) in (v1, v2)⟩
vo.

∃vo1, vo2. vo = (vo1, vo2)

∗



(∃s.vo1 = None ∗ vo2 = None ∗ Seen(a1, s) ∗ s|k = ∅) ∨

(∃s, v2, a2.vo1 = None ∗ vo2 = Some v2 ∗ Seen(a1, s)

∗ a2.k = k ∗ a2.v = v2 ∗ a2 ∈ Maximals(s|k)) ∨

(∃s, v1, v2, a1, a2.vo1 = Some v1 ∗ vo2 = Some v2 ∗ Seen(a1, s)

∗ a1.k = k ∗ a1.v = v1 ∗ a2.k = k ∗ a2.v = v2 ∗ a2 ∈ Maximals(s|k)

∗ ¬(a2.t < a1.t))
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SM-monotonic-writes
{ipi Z⇒ Φi}

⟨ipclient; sconnect(ipi); swrite(ipi, k1, v1); swrite(ipi, k2, v2)⟩
∃s1, a1, a2. a1.k = k1 ∗ a1.v = v1 ∗ a2.k = k2 ∗ a2.v = v2

∗ Seen(a1, s1) ∗ a1, a2 ∈ s1 ∗ a1.t < a2.t

∗ (∀a, s2, a2.Seen(a2, s2) ∗ a ∈ s2 ∗ a2.t ≤ e.t

≡−∗⊤ ∃a′1, a′2. ⌊a′1⌋ = ⌊a1⌋ ∗ ⌊a′2⌋ = ⌊a2⌋ ∗ a′1, a′2 ∈ s2 ∗ a′1.t < a′2.t)


SM-writes-follow-reads
{ipi Z⇒ Φi}

⟨ipclient; sconnect(ipi); let v = sread(ipi, kr) in swrite(ipi, kw, vw); v⟩
vo.

∃s1, aw. aw.k = kw ∗ aw.v = vw ∗ Seen(a1, s1) ∗ aw ∈ s1

∗


vo = None ∨

∃ar, vr. vo = Some vr ∗ ar.k = kr ∗ ar.v = vr ∗ ar ∈ s1 ∗ ar.t < aw.t

∗ (∀a, s2, a2.Seen(a2, s2) ∗ a ∈ s2 ∗ aw.t ≤ e.t

≡−∗⊤ ∃a′r, a′w. ⌊a′r⌋ = ⌊ar⌋ ∗ ⌊a′w⌋ = ⌊aw⌋ ∗ a′r, a′w ∈ s2 ∗ a′r.t < a′w.t)







C Counterexample

At a first glance, the high-level relational rules for reasoning about presampling tapes may
cause one to believe that once the idea of presampling arises, the rest is mostly straightforward
and obvious to state and define. But this is not the case: a great deal of care goes into phrasing
the rules of the operational semantics and the relational logic if you do not want to end up
with an unsound system! One may also wonder whether it is in fact necessary for tapes and
labels to appear in the program and program state, but as we will illustrate below, they do in
fact play a subtle yet crucial role.

Consider the following program flip_or that applies a logical disjunction to two freshly
sampled bits

flip_or ≜ let x = flip() in

let y = flip() in

x || y

and compare it to the program flip that just samples a bit

flip ≜ flip()

These two programs are obviously not contextually equivalent: with probability 3/4 the pro-
gram flip_or will return truewhereas the program flip only does so with probability 1/2. Yet,
if we introduce a rule for flip that could draw from any pre-sampled tape (i.e., without requir-
ing sampling statements to be annotated with the tape they will draw from), we would be able
to prove that they are equivalent.

Let us introduce the following (unsound!) rule:
rel-tape-unsound
ι ↪→ b · b⃗ ι ↪→ b⃗ ∗ ∆ ⊨E K[ b ] ≾ e2 : τ

∆ ⊨E K[ flip() ] ≾ e2 : τ

The rule says that when sampling on the left-hand side, we may instead draw a bit b from some
presampling tape ι. To see why this rule cannot be sound, we will show

⊨ flip ≾ flip_or : bool

First, we introduce two tapes with resources ι1 ↪→ ϵ and ι2 ↪→ ϵ on the left-hand side (either
explicitly in code as in Clutch or as pure ghost resources, if that is possible in our hypothetical
logic). Second, we couple the tape ι1 with the x-sampling and ι2 with the y-sampling using
rel-couple-tape-l such that we end up with ι1 ↪→ b1 and ι2 ↪→ b2 and the goal

⊨ flip() ≾ b1 || b2 : bool
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Finally, we do a case distinction on both b1 and b2: if both of them are true, or both are false,
it does not matter which tape we use when applying rel-tape-unsound. If, on the other hand,
only bi is true, we choose ιi and apply rel-tape-unsound which finishes the proof.

The crucial observation is that by labeling tapes in the program syntax, however, we pre-
vent the prover from doing case analysis on presampled values to decide which tape to read—
the syntax will dictate which tape to use and hence which value to read. Concretely, in F

flip
µ,ref,

unlabeled flips always reduce uniformly at random and only labeled sampling statements will
read from presampling tapes which prevents us from proving the unsound rel-tape-unsound.

Besides motivating why soundly allowing presampling is subtle, this counterexample also
emphasizes why the fact that labels appear in the program and in the program syntax is im-
portant. We do not claim that it is a necessity, but like for prophecy variables [Jun+20] where
similar “ghost information” is needed in the actual program code, it is not at all obvious how
to do without it.



D Lazy/eager coin

In this section we give a more detailed proof of the lazy-eager coin example from Section 7.1.
We will go through the proof step by step but omit the use of rel-pure-l and rel-pure-rwhich
should be interleaved with the application of most of the mentioned proof rules.

Recall the definitions

eager ≜ let b = flip() in λ_. b
lazy ≜ let r = ref(None) in

λ_. match ! r with
Some (b)⇒ b
| None ⇒ let b = flip() in

r ← Some (b);
b

end

The goal is to show ⊢ lazy ≃ctx eager : unit → bool which we do by first showing lazy ≾ctx
eager : unit→ bool and then eager ≾ctx lazy : unit→ bool.

To show lazy ≾ctx eager : unit→ bool, we first define an intermediate labeled version of
lazy :

lazy ′ ≜ let ι = tape in

let r = ref(None) in

λ_. match ! r with
Some (b)⇒ b
| None ⇒ let b = flip(ι) in

r ← Some (b);
b

end

By transitivity of contextual refinement and Theorem 7.2.1 it is sufficient to show ⊨ lazy ≾
lazy ′ : unit→ bool and ⊨ lazy ′ ≾ eager : unit→ bool.

The first refinement ⊨ lazy ≾ lazy ′ : unit→ bool is mostly straightforward. By applying
rel-alloc-l followed by rel-alloc-tape-r and rel-alloc-r we are left with the goal of proving
that the two thunks are related, given ι ↪→s ϵ, ℓ 7→ None and ℓ′ 7→s None for some fresh label
ι and fresh locations on the heap ℓ and ℓ′. Using rel-na-inv-alloc we allocate the invariant

ι ↪→s ϵ ∗ ((ℓ 7→ None ∗ ℓ′ 7→s None) ∨ (∃b. ℓ 7→ Some (b) ∗ ℓ′ 7→s Some (b)))

with some name N that expresses how the ι tape is always empty and that either both ℓ and
ℓ′ contain None or both contain Some (b) for some b. We continue by rel-rec after which
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we open the invariant and do a case distinction on the disjunction in the invariant. If ℓ and
ℓ′ are empty, this is the first time we invoke the function. We continue using rel-load-l and
rel-load-r:
rel-load-l
ℓ 7→ v ℓ 7→ v ∗ ∆ ⊨E K[ v ] ≾ e2 : τ

∆ ⊨E K[ !ℓ ] ≾ e2 : τ

rel-load-r
ℓ 7→s v ℓ 7→s v ∗ ∆ ⊨E e1 ≾ K[ v ] : τ

∆ ⊨E e1 ≾ K[ !ℓ ] : τ

after which we are left with the goal

⊨⊤\N
let b = flip() in

r ← Some (b); b
≾

let b = flip(ι) in

r ← Some (b); b
: unit→ bool

We continue using rel-flip-erase-r to couple the two flips, we follow by rel-store-l and rel-
store-r to store the fresh bit on the heaps, we close the invariant (now showing the right
disjunct as the locations have been updated) using rel-na-inv-close, and we finish the case
using rel-return as the program returns the same Boolean b on both sides.

If ℓ and ℓ′ were not empty, this is not the first time the function is invoked and we load
the same Boolean on both sides using rel-load-l and rel-load-r and finish the proof using
rel-na-inv-close and rel-return.

For the second refinement ⊨ lazy ′ ≾ eager : unit → bool we start by allocating the tape
on the left using rel-alloc-tape-l which gives us ownership of a fresh tape ι ↪→ ϵ. We now
couple the ι tape with the unlabeled flip() on the right using rel-couple-tape-l. This gives
us that for some b then ι ↪→ b and the flip() on the right returned b as well. We continue
by allocating the reference on the left using rel-alloc-l which gives us some location ℓ and
ℓ 7→ None. Now, we allocate the invariant

(ι ↪→ b ∗ ℓ 7→ None) ∨ ℓ 7→ Some (b)

for some name N which expresses that either the location ℓ is empty but b is on the ι tape,
or b has been stored at ℓ. We are now left with proving that the two thunks are related under
this invariant. We continue using rel-rec after which we open the invariant using rel-na-inv-
open, do a case distinction on the disjunction, and continue using rel-load-l. If the location ℓ
is empty, we have to show

⊨⊤\N
let b = flip(ι) in

r ← Some (b); b
≾ b : unit→ bool

But as we own ι ↪→ b we continue using rel-flip-tape-l, rel-store-l, rel-na-inv-close (now
establishing the right disjunct as ℓ has been updated), and rel-return as the return value b is
the same on both sides. If the location ℓ was not empty, we know ℓ 7→ Some (b) which means
rel-load-l reads b from ℓ and we finish the proof using rel-na-inv-close (reestablishing the
right disjunct) and rel-return.

The proof of eager ≾ctx lazy : unit→ bool is analogous andwe have shown the contextual
equivalence of the programs eager and lazy .



E Model of Clutch

The value interpretation of types is shown in Figure E.1.

Weakest precondition

The full definition of the weakest precondition, including the fancy update modality and in-
variant masks, is the guarded fixpoint of the equation found below.

wpE e1 {Φ} ≜ (e1 ∈Val ∧ |⇛EΦ(e1)) ∨
(e1 ̸∈Val ∧ ∀σ1, ρ1.
S(σ1) ∗ G(ρ1) ∗ |⇛E ∅
execCoupl(e1, σ1, ρ1)(λe2, σ2, ρ2.

▷ |⇛∅ E S(σ2) ∗ G(ρ2) ∗ wpE e2 {Φ}))

Coupling modality

To define the coupling modality, we define a stratified partial execution distribution
execConfn(e, σ) ∈ D(Cfg).

execConfn(e, σ) ≜

{
ret(e, σ) if e ∈Val or n = 0

step(e, σ)≫= execConf(n−1) otherwise

The couplingmodality used in the definition of the weakest precondition is found in Figure E.2.
Simple rules that follow by unfolding are found in Figure E.3.
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JαK∆(v1, v2) ≜ ∆(α)(v1, v2)

JunitK∆(v1, v2) ≜ v1 = v2 = ()

JintK∆(v1, v2) ≜ ∃z ∈ Z. v1 = v2 = z

JboolK∆(v1, v2) ≜ ∃b ∈ B. v1 = v2 = b

Jτ → σK∆(v1, v2) ≜ � (∀w1, w2. JτK∆(w1, w2) ∗ ∆ ⊨ v1 w1 ≾ v2 w2 : σ)

Jτ × σK∆(v1, v2) ≜ ∃w1, w
′
1, w2, w

′
2. (v1 = (w1, w

′
1)) ∗ (v2 = (w2, w

′
2)) ∗

JτK∆(w1, w2) ∗ JσK∆(w′
1, w

′
2)

Jτ + σK∆(v1, v2) ≜ ∃w1, w2. (v1 = inl(w1) ∗ v2 = inl(w2) ∗ JτK∆(w1, w2)) ∨
(v1 = inr(w1) ∗ v2 = inr(w2) ∗ JσK∆(w1, w2))

Jµα. τK∆(v1, v2) ≜ (µR. λ(v1, v2). ∃w1, w2. (v1 = foldw1) ∗ (v′ = foldw2) ∗
▷JτK∆,α 7→R(w1, w2))(v1, v2)

J∀α. τK∆(v1, v2) ≜ � (∀R. (∆, α 7→ R ⊨ v1 _ ≾ v2 _ : τ)

J∃α. τK∆(v1, v2) ≜ ∃R,w1, w2. (v1 = packw2) ∗ (v2 = packw2) ∗ JτK∆,α 7→R(w1, w2)

Jref τK∆(v1, v2) ≜ ∃ℓ1, ℓ2. (v1 = ℓ1) ∗ (v2 = ℓ2) ∗

∃w1, w2. ℓ1 7→ w1 ∗ ℓ2 7→s w2 ∗ JτK∆(w1, w2)
N .ℓ1.ℓ2

JtapeK∆(v1, v2) ≜ ∃ι1, ι2. (v1 = ι1) ∗ (v2 = ι2) ∗ ι1 ↪→ ϵ ∗ ι2 ↪→s ϵ
N .ι1.ι2

Figure E.1: Relational interpretation of types
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execCoupl(e1, σ1, e′1, σ
′
1)(Z) ≜ µΨ : Cfg×Cfg→ iProp.

(∃R. red(e1, σ1) ∗
step(e1, σ1) ∼ step(e′1, σ

′
1) : R ∗

∀ρ2, ρ′2. R(ρ2, ρ
′
2) ∗ |⇛∅Z(ρ2, ρ

′
2)) ∨

(∃R. red(e1, σ1) ∗
step(e1, σ1) ∼ ret(e′1, σ

′
1) : R ∗

∀ρ2. R(ρ2, (e
′
1, σ

′
1)) ∗ |⇛∅Z(ρ2, (e

′
1, σ

′
1))) ∨

(∃R,n. ret(e1, σ1) ∼ execConfn(e
′
1, σ

′
1) : R ∗

∀ρ′2. R((e1, σ1), ρ
′
2) ∗ |⇛∅Ψ((e1, σ1), ρ

′
2)) ∨(∨

ι∈σ1

∃R. stepι(σ1) ∼ step(e′1, σ
′
1) : R ∗

∀σ2, ρ′2. R(σ2, ρ
′
2) ∗ |⇛∅Ψ((e1, σ2), ρ

′
2)

)
∨(∨

ι′∈σ2

∃R. step(e1, σ1) ∼ stepι′(σ
′
1) : R ∗

∀ρ2, σ′
2. R(ρ2, σ

′
2) ∗ |⇛∅Z(ρ2, (e

′
1, σ

′
2))

)
∨∨ (ι,ι′)∈σ1×σ′

1

∃R. stepι(σ1) ∼ stepι′(σ
′
1) : R ∗

∀σ2, σ′
2. R(σ2, σ

′
2) ∗ |⇛∅

Ψ((e1, σ2), (e
′
1, σ

′
2))


Figure E.2: Full definition of execCoupl.
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red(ρ1) step(ρ1) ∼ step(ρ′1) : R ∀ρ2, ρ′2. R(ρ2, ρ
′
2) ∗ Z(ρ2, ρ

′
2)

execCoupl(ρ1, ρ′1)(Z)

red(ρ1) step(ρ1) ∼ ret(ρ′1) : R ∀ρ2. R(ρ2, ρ
′
1) ∗ execCoupl(ρ2, ρ′1)(Z)

execCoupl(ρ1, ρ′1)(Z)

ret(ρ1) ∼ execConfn(ρ
′
1) : R ∀ρ′2. R(ρ1, ρ

′
2) ∗ execCoupl(ρ1, ρ′2)(Z)

execCoupl(ρ1, ρ′1)(Z)

ret(ρ1) ∼ step(ρ′1) : R ∀ρ′2. R(ρ1, ρ
′
2) ∗ execCoupl(ρ1, ρ′2)(Z)

execCoupl(ρ1, ρ′1)(Z)

stepι(σ1) ∼ step(ρ′1) : R ∀σ2, ρ′2. R(σ2, ρ
′
2) ∗ execCoupl((e1, σ2), ρ′2)(Z)

execCoupl((e1, σ1), ρ′1)(Z)

red(ρ1)
step(ρ1) ∼ stepι(σ

′
1) : R ∀ρ2, σ′

2. R(ρ2, σ
′
2) ∗ execCoupl(ρ2, (e′1, σ

′
2))(Z)

execCoupl(ρ1, (e′1, σ
′
1))(Z)

stepι(σ1) ∼ stepι′(σ
′
1) : R ∀σ2, σ′

2. R(σ2, σ
′
2) ∗ execCoupl((e1, σ2), (e′1, σ

′
2))(Z)

execCoupl((e1, σ1, (e′1, σ
′
1))(Z)

Figure E.3: execCoupl unfolding rules.



F On Case Studies and Additional Examples

F.1 Eager/Lazy Hash Function

As explained in the body of the paper, it is common to model the hash function as if it satisfies
the so-called uniform hash assumption or the random oracle model. That is, a hash function
h from a set of keys K to values V behaves as if, for each key k, the hash h(k) is randomly
sampled from a uniform distribution over V , independently of all the other keys.

Figure F.1 gives the complete code for the eager hash function that was excerpted earlier.
Given a non-negative integer n, executing eager_hash n returns a hash function with K =
{0, . . . , n} and V = B. To do so, it first initializes a mutable mapm, and then calls sample_all
on m. For each key k ∈ K , the function sample_all samples a boolean b with flip and stores
the value b for the key k in the map m. This sampled boolean serves as the hash for b. The
function returned by eager_hash uses this map to look up the hash values of keys. On input k,
it looks up k in the map and returns the resulting value if one is found, and otherwise returns
false. Since sample_all adds every key inK to the map, this latter scenario only happens if k
is not inK .

Figure F.2 gives the full code for the lazy sampling version of the random hash generator.
Given a non-negative integer n, executing lazy_hash n returns a hash function for the key
spaceK = {0, . . . , n}. For its internal state, it uses two physical maps, the tapemap tm, stores
tapes to be used for random sampling, and the value map vm, stores the previously sampled
values for keys that have been hashed. After initializing these maps, it calls alloc_tapes , which
allocates a tape for each key k ∈ K and stores the associated tape in tm. The hash function
returned by lazy_hash determines the hash for a key k in two stages. It first looks up k in
vm to see if k already has a previously sampled hash value, and if so, returns the found value.
Otherwise, it looks up k in the tape map tm. If no tape is found, then k must not be in K , so

sample_all ≜ rec f m n =

let n′ = n− 1 in

if n′ < 0 then () else

let b = flip() in

set m n′ b;

f m n′

eager_hash ≜ λn. letm = init_map () in

sample_all m (n+ 1);

(λk. match get m k with
Some (b)⇒ b
| None ⇒ false
end)

Figure F.1: Eager hash function.
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alloc_tapes ≜ rec f m n =

let n′ = n− 1 in

if n′ < 0 then () else

let ι = tape in

set m n′ ι;

f m n′

lazy_hash ≜ λn.

let vm = init_map () in

let tm = init_map () in

alloc_tapes tm (n+ 1);

(λk. match get vm k with
Some (b)⇒

b
| None⇒ match get tm k with

Some (ι)⇒
let b = flip(ι) in
set vm b;
b

| None⇒ false
end

end)

Figure F.2: Lazy hash function.

the function returns false. If a tape ι is found, then the code samples a boolean b from this tape
with flip, stores b for the key k in vm, and then returns b.

We also prove that for any non-negative number n, the eager and lazy versions are con-
textually equivalent, that is, ⊢ eager_hash n ≃ctx lazy_hash n : int → bool. The core idea
behind this contextual equivalence proof is to maintain a particular invariant between the in-
ternal state of the two hash functions. Let m be the internal map used by the eager hash and
let tm and vm be the tape and value maps, respectively, for the lazy hash. Then, at a high
level, the invariant maintains the following properties:

1. dom(m) = dom(tm) = {0, . . . , n}.

2. For all k ∈ {0, . . . , n}, if m[k] = b then either

a) vm[k] = b, or
b) vm[k] = ⊥ and tm[k] = ι for some tape label ι such that ι ↪→ [b].

Case (a) and (b) of the second part of this invariant capture the two possible states each key k
can be in. Either hash of k has been looked up before (case a), and so the sampled value stored
in vm must match that of m, or it has not been looked up (case b) and the tape for the key
must contain the same value asm[k] for its next bit.

To establish this invariant when the hashes are initialized, we asynchronously couple the
eager hash function’s flip for key k with a tape step for the tape ι associated with k in the lazy
table. The invariant ensures that the values returned by the two hash functions will be the
same when a key k is queried. The cases of the invariant corresponding to the branches of the
lazy function’s match statements: if the key k is in K and has been queried before, the maps
will return the same values found inm and vm. If it has not been queried before, then the flip
statement in the lazy version will be draw the value on the tape for the key, which matches
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m[k]. Moreover, the update that writes this sampled value to vm preserves the invariant,
switching from case (b) to case (a) for queried key.

F.2 Random Generators from Hashes

Here we provide further details on generating a random boolean sampler from a lazy hash
function. The following function, init_hash_rng , returns a function that can be used to gen-
erate random booleans:

init_hash_rng ≜ λ_. let f = lazy_hash MAX in

let c = ref 0 in

(λ_. let n = ! c in

let b = f n in

c← n+ 1;

b)

When run, init_hash_rng generates a lazy hash function f for the key space K =
{0, . . . , MAX} for some fixed constant MAX. It then allocates a counter c as a mutable refer-
ence initialized to 0. The returned function, let us call it h, uses f and c to generate random
booleans. Each time h is called, it loads the current value n form c, hashes n with f to get a
boolean b. It then increments c and returns the boolean b, which serves as a random boolean.
Repeated calls to h return independent, uniformly sampled booleans, so long as we make no
more than MAX calls. The reason this works is that we have assumed the hash function f is
uniformly random, so the hashes of different keys are independently sampled. So long as we
make fewer than MAX calls to h, each call will hash a distinct number n (the current counter
value), so it will be independent of all previous and future calls. After MAX calls, c will exceed
MAX and so we will hash a key outside of f ’s key space. Recall from the previous example that
lazy_hash returns false on inputs outside its key space.

This example might at first seem artificial, but using cryptographic primitives such as
hashes or block ciphers to generate pseudorandom numbers is in fact commonly done [BK15].
Although the example here is simplified compared to real implementations, it captures one
of the core verification challenges common to real implementations. Namely, for correctness,
one must show that the “key” or “counter” being hashed or encrypted (here the values of n
obtained from c) are not re-used.

To capture the guarantees of init_hash_rng more formally, we prove that init_hash_rng
is contextually equivalent to the following “bounded” random number generator that directly
calls flip:

init_bounded_rng ≜ λ_. let c = ref 0 in

(λ_. let n = ! c in

let b = if n ≤ MAX then flip() else false in

c← n+ 1;

b)

With init_bounded_rng , the returned generator function again uses a counter c, however the
value of this counter is just used to track the number of samples generated. If the number of
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calls is less than or equal to MAX, it returns a boolean generated by a call to flip. Otherwise, it
just returns false. (In F

flip
µ,ref, integers are unbounded, so there is no issue with overflow.)

At a high level, the proof proceeds by maintaining the following invariant relating the
generator functions returned by both init_hash_rng and init_bounded_rng . Let f be the
hash function in the hash-based generator, nh be its counter value, and nb be the value of the
bounded generator’s counter. Then:

1. nh = nb.

2. The key space of f is {0, . . . , MAX}

3. For all k ∈ {0, . . . , MAX}, if k ≥ nh then f has not yet hashed k.

The first and second parts of the invariant guarantees that once nh exceeds MAX, and thus falls
outside f ’s key space, both generators will return the same value of false. In addition, based
on the third part of the invariant, so long as nh ∈ {0, . . . , MAX}when the hash-based generator
evaluates f nh, we will be able to couple the hash value it samples with the flip command in
the bounded generator, ensuring that both generators return the same value.

The init_hash_rng function above generates a single random generator from a hash func-
tion. However, in some scenarios, it is necessary to be able to generate multiple independent
streams of random numbers. For example, in a language with parallelism or concurrency,
using a single generator returned by init_hash_rng in multiple threads would mean sharing
mutable access to the counter c, so that synchronization primitives would be needed to prevent
racy accesses. Related issues have motivated the need to “split” a random number generator
into two streams in the context of a lazy language like Haskell [CP13].

While Fflip
µ,ref is sequential, we can still explore the question of how to create multiple in-

dependent random generators. One approach would be to call init_hash_rng multiple times.
But that assumes that we have the ability to initialize multiple random oracle hash functions.
In practice, if we instantiate the random oracle model with a particular concrete hash func-
tion, like SHA-256, we cannot feasibly use different hash functions each time init_hash_rng
is called. Instead, we would like a way to generate multiple independent random number
generators from a single hash function.

The solution is to get the illusion of multiple independent hash functions out of a single
hash function by partitioning the key space of the hash. Specifically, we use a wrapper around
the hash function so that it now takes two integers as input, instead of one, to obtain a so-called
keyed hash1:

lazy_keyed_hash ≜ λ_.
let f = lazy_hash (2(pk+pv) − 1) in

(λk v. f (k · 2pv + v))

The returned keyed hash function takes two inputs, a key k and a value v to be hashed, com-
bines them into a single integer, and calls the lazy hash function f on that single integer. The
values pk and pv are fixed constants that determine the range of the keys and values that can
be hashed. If h is the returned hash function, we can treat the partially-applied functions h k1

1In cryptographic settings, a similar construction is called a hash message authentication code (HMAC). How-
ever, HMACs typically use a different way of combining the two arguments to avoid certain vulnerabilities.
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and h k2 for k1 ̸= k2 as if they were two independent hash functions, so long as we do not
apply the functions to values v that are larger than 2pv − 1.

Using this, we have verified a version of the hash-based random number generator that
supports splitting multiple independent generators out of a single hash. Each generator has
a distinct key k its own internal counter c. When a sample is requested, it reads the value n
from the counter and computes the keyed hash of k and n to get a boolean. To ensure that
the keys used by the generators are distinct, we assign keys using a shared counter that is
incremented every time a new generator is initialized. The complete details can be found in
the accompanying Coq development.

F.3 Lazily Sampled Big Integers

Our last example is motivated by a data structure called a treap [SA96]. A treap is a binary
search tree structure that relies on randomization to ensure with high probability that the tree
will be balanced. One of the key aspects of the treap is that every key that is inserted into the
treap is first assigned a random numerical priority. During the insertion process, this priority
value is compared with the priorities of keys already in the treap. The exact details of this
comparison process are not relevant here; what is important to know is that, ideally, all of
the assigned priority values are different (that is, there are no collisions of priorities). Thus,
in analyzing the treap, it is common to treat these priorities as if they are sampled from a
continuous distribution, such as the uniform distribution on the interval [0, 1], to ensure that
the probability of collisions is 0. Eberl et al. [EHN20] have previously mechanized such an
analysis of treaps in Isabelle/HOL.

In actual implementations, the priorities are instead typically represented with some fixed
precision, say as an approximate floating point number sampled from [0, 1], or as an integer
sampled uniformly from some set {0, . . . , n}, so that there is some probability of collision.
However, in the latter case, as long as n is big enough relative to the number of keys added to
the tree, the probability of a collision can be kept low, and the performance properties of the
treap are preserved. The probability of a collision is an instance of the well-known “birthday
problem”.

But in some scenarios, wemay need to decide on nwithout knowing in advance howmany
keys will end up being added to the treap. If we err on the conservative side by making n very
large, say 2256 − 1, the probability of a collision will be very low, but we will need to use 256
bits to store the priorities, which is wasteful if we end up only storing a moderate number of
nodes.

An alternative is to lazily sample the integer that represents the priority. The insight is
that the actual numerical value of the priorities is not relevant: the only operation that they
must support is comparing two priorities to determine if they are equal, and if not, which
one is larger. Figure F.3 gives an implementation of a lazily-sampled integer A lazily-sampled
integer is encoded as a pair of a tape label ι and a linked list of length at most N , where each
node in the list represents a digit of the integer in base B, with the head of the list being the
most significant digit. For concreteness, here we consider N = 8 and B = 232, so that the
encoded numbers can be at most 2256−1. Rather than sampling all digits up front, we instead
only sample digits when needed as part of comparing a lazy integer to another.

The function sample_lazy_int samples a lazy integer by generating a tape and a reference
to an empty linked list. At this point, the sampled integer is entirely indeterminate. Given a
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sample_lazy_int ≜ λ_. (tape, ref None)

get_next ≜ λ ι r.

match ! r with
Some v⇒ v
| None ⇒ let z = sample32 ι in

let next = ref None in
r ← Some (z, next);
(z, next)

end

cmp_list ≜ rec f n ι1 l1 ι2 l2 =

if n = 0 then 0

else

let (z1, l
′
1) = get_next ι1 l1 in

let (z2, l
′
2) = get_next ι2 l2 in

let res = cmpz1 z2 in

if res = 0 then

f (n− 1) ι1 l
′
1 ι2 l

′
2

else res

cmp_lazy ≜ λ (x1, x2).

let (ι1, l1) = x1 in

let (ι2, l2) = x2 in

if l1 = l2 then 0

else cmp_list 8 ι1 l1 ι2 l2

Figure F.3: Implementation of lazily-sampled integers.
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tape label ι and a reference r to a digit in a lazy integer’s list, evaluating get_next ι r returns
the integer z for that digit and a reference next to the digit after r in the list. There are two
alternatives when getting the digit: either (1) the digit for r has already been sampled, so that
! r will be Some v, where v is a pair of the form (z, next); or (2) the digit for r has not yet been
sampled, so that ! r will beNone. In case 1, get_next ι r just returns v. In case 2, get_next will
first sample the value z for the digit by calling sample32 ι, which generates a 32 bit integer
by sampling it bit-by-bit with repeated calls to flip ι. It then allocates a new reference next for
the next digit in the list, initialized to a value None. Before returning (z, next) it stores this
pair in the reference r.

Evaluating cmp_list n ι1 l1 ι2 l2 compares the two lazy integers (ι1, l1) and (ι2, l2) by do-
ing a digit-by-digit comparison. It returns−1 if the first integer is smaller, 0 if the integers are
equal, and 1 if the first integer is larger. The first argument n tracks the number of remaining
digits in the integers. Let us consider the case that n > 0 first (the else branch). In that case,
cmp_list will call get_next on each integer to get the next digit. Let z1 and z2 be these digit
values, respectively. These digits are compared using cmp, which returns −1 (if z1 < z2), 0
(if z1 = z2), or 1 (z1 > z2). Because the lazy integers are stored with most-significant digits
earlier in the list, if cmp z1 z2 is non-zero we already know which lazy integer is larger, and
the result of cmp z1 z2 gives the correct ordering of the whole lazy integer. On the other hand
if cmp returns 0, then z1 = z2, in which case we cannot yet tell which lazy integer is larger.
Thus, cmp_list recursively calls itself to compare the next digits in the lists, decrementing the
n argument to track that there is one fewer digit remaining. In the base case of the recursion,
when n = 0, that means all digits of the integers have been equal, hence the value of the
integers are equal, so we return 0. Because get_next conveniently encapsulates the sampling
of unsampled digits, cmp_list looks like a normal traversal of the two linked lists, as if they
were eagerly sampled.

Note that if x is a lazy integer, then comparing x with itself using cmp_list unfortunately
forces us to sample all of the unsampled digits of x. The routine cmp_lazy is a wrapper to
cmp_list that implements a small optimization to avoid this. The function cmp_lazy takes
as input a pair of lazy integers (x1, x2). Before calling cmp_list , it first checks whether the
pointers to the heads of x1 and x2’s lists are equal; if they are the two integers must be equal,
so it returns 0 immediately without calling cmp_list .

We prove that this implementation of lazily-sampled integers is contextually equivalent to
code that eagerly samples an entire 256-bit integer by bit-shifting and adding 8 32-bit integers.
This contextual equivalence is at an abstract existential type τ . Specifically, we define

τ ≜ ∃α. (unit→ α)× ((α× α)→ int)

Then we have the following equivalence:

⊢ (sample_lazy_int , cmp_lazy) ≃ctx (sample256 , cmp) : τ

The starting point for the proof is that when sample256 samples the 8 32-bit integers needed
to assemble the 256-bit integer, we couple these samples with identical samples on the tape
ι generated by sample_lazy_int . Then, the key invariant used in the proof says that if we
combine the digits of a lazy int that have already been sampled, plus the remaining digits
on the tape ι, the result represents an integer that is equivalent to the corresponding one
generated by sample256 . This holds initially and is preserved by calls to get_next during
cmp_list , since it moves digits from the tape to the linked list representing the integer.
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L ≜ (λ_. true)⊕ (λ_. false)
I ≜ λ_. (true⊕ false)

K ≜ let x = ref 0 in (λ_. M)⊕ (λ_. N)

H ≜ let x = ref 0 in λ_. (M ⊕N)

Hι ≜ let x = ref 0 in let ι = tape in λ_. (M ⊕ι N)

where
M ≜ if !x = 0 then x← 1; true elseΩ

N ≜ if !x = 0 then x← 1; false elseΩ

Ω ≜ (rec f x = fx)()

e1 ⊕ e2 ≜ if flip() then e1 else e2

e1 ⊕ι e2 ≜ if flip(ι) then e1 else e2

Figure F.4: Sangiorgi and Vignudelli’s example.

F.4 Sangiorgi and Vignudelli’s “copying” example

Sangiorgi and Vignudelli prove a subtle contextual equivalence mixing probabilistic choice, lo-
cal references, and state using environmental bisimulations [SV16]. Under call-by-value eval-
uation, λ-abstraction fails to distribute over probabilistic choice. This is contrary to call-by-
name, and can easily be seen by considering the terms I and L in Figure F.4. When evaluated
in context (λf. f() = f())[ · ], I returns true (and false) with probability 1

2 , while L returns
true with probability 1. The non-linear use of f in the context is characteristic of examples
that behave differently under call-by-name and call-by-value. The equivalence ofK andH is
achieved by prohibiting such a “copying” use by exploiting local state.

The environmental bisimulation technique developed in [SV16] is sufficiently powerful to
prove the equivalence as it works directly with the resulting distributions, but, to our knowl-
edge, previous attempts at a proof working abstractly with programs via logical relations were
not successful [Biz16, Sec. 1.5].

Intuitively, K and H should be equivalent despite the fact that abstraction does not dis-
tribute over probabilistic choice because the closures they return are protected by a counter
that only allows them to be run once. On the first call, both have equal probability of returning
true or false. On subsequent calls, the counter x ensures that they both diverge.

The key insight that allows us to prove K and H contextually equivalent in Clutch is to
establish an asynchronous coupling between the two flip operations. Similarly to the proof
of the lazy/eager coin example, we employ an intermediary version Hι of the program H in
which the sampling is delayed until the closure is run. The equivalence of Hι and H follows
from rel-flip-erase-r and standard symbolic execution rules.

The refinement ∅ ⊨⊤ Hι ≾ K : unit → bool is established by allocating an empty tape
ι and coupling the (eager) flip() in K with the tape ι. Because allocation of ι is local to Hι,
we obtain exclusive ownership of the tape resource ι ↪→ ϵ. In particular, other parts of the
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program, i.e. the context in whichHι is evaluated in, cannot sample to or consume bits from ι.
By rel-couple-tape-l, we resolve the flip() to b inK and obtain ι ↪→ b forHι. We then allocate
the non-atomic invariant:

(ι ↪→ b ∗ x 7→s 0 ∗ x 7→ 0) ∨ (ι ↪→ ϵ ∗ x 7→s 1 ∗ x 7→ 1)

The invariant describes the two possible states of the programs. Either the closures returned
by K and Hι have not been run yet, in which case the presampled bit b is still on tape ι and
the counter x is 0 in both programs, or the bit has been consumed, and the counter is 1 in
both programs. It is worth noting here that we will rely crucially on a form of local state
encapsulation for tapes, which guarantees that once b has been read from ι, the tape remains
empty. We only consider the case where b = true ; the other case is analogous.

With the invariant in hand, we apply the proof rule for functions to work on the bodies of
the two closures. As a first step, we open our invariant, and are left to prove the equivalence in
both cases of the disjunction. By virtue of the non-atomic nature of the invariant, we can keep
it open for several steps of evaluation, involving flip, pure reductions, and state-manipulating
operations, until it is finally reestablished.

In the first case, we read b from ι, yielding ι ↪→ ϵ. We are left to prove the refinement of
two structurally equal programs:

if !x = 0 then x← 1; true elseΩ

We take the first branch and setx to 1. We have now reproven the invariant, and both programs
return true and conclude.

In the second case of the invariant, the closures have been invoked before, and we expect
them to both diverge. However, before evaluation reaches Ω in Hι, another flip(ι) has to be
resolved. Here we exploit the fact that the ι tape remains empty once we read b, as it is local to
Hι. Logically, this observation manifests in the fact that after the allocation of ι, its ownership
has been transferred into the invariant, and is now reclaimed. We can thus use rel-flip-tape-
empty-l to resolve the flip on an empty tape to a new random bit b′. Irrespectively of the value
of b′, both programs diverge because we know that x 7→s 1 and x 7→ 1. A diverging term
refines any other term; in particular we appeal to rel-rec to conclude the proof.
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