
Separation Logic for
Concurrency and Persistency

Simon Friis Vindum

PhD Dissertation

Department of Computer Science
Aarhus University

Denmark

Separation Logic for

Concurrency and Persistency

A Dissertation

Presented to the Faculty of Natural Sciences

of Aarhus University

in Partial Fulfillment of the Requirements

for the PhD Degree

by

Simon Friis Vindum

October 31, 2023

Abstract

Ensuring correctness of programs in the presence of concurrency and persistence is

extremely difficult. This thesis contributes to the field of formal verification of such

programs.

Chapter 2 considers the Michael-Scott queue (MS-queue), a concurrent non-

blocking queue. We use the Iris and ReLoC logics to show that the original MS-queue

contextually refines a coarse-grained queue. To simplify the proof, we extend sepa-

ration logic with a generally applicable persistent points-to predicate for representing
immutable pointers. This is based on a novel resource algebra of discardable fractions
that generalizes fractional permissions. Chapter 3 presents the first formal specifica-

tion and verification of an efficient concurrent queue from Meta’s C++ library Folly.

We use ReLoc to formally prove that the queue is a contextual refinement of a simple

coarse-grained queue. A key challenge of the MPMC queue is that it has a so-called

external linearization point, which ReLoC has no support for reasoning about. We

thus extend ReLoC with novel support for reasoning about external linearization

points.

Weak persistent memory (a.k.a. non-volatile memory) is an emerging technology

that offers fast byte-addressable durable main memory. Chapter 4 presents Spirea, the

first concurrent separation logic for verification of programs under a weak persistent

memory model. The logic combines features from Iris and Perennial with novel

techniques to support high-level modular reasoning about crash-safe and thread-

safe programs. We use Spirea to verify several challenging examples with modular

specifications, in particular non-blocking durable data-structures with null-recovery.

This is the first time durable data-structures have been verified with a program logic.

Chapter 5 proposes a novel nextgen modality that makes it possible to update

resources in ways that are non-frame-preserving. Among other things, this is usual

for reasoning about crashes. We develop the modality as an extension to Iris. We

show that two existing Iris modalities are special cases of the nextgen modality. The

modality can thus be seen as a generalization and simplification of the Iris base logic.

To demonstrate the utility of the nextgen modality we use it to construct a program

logic for a language with stack allocation and with function returns that clears entire

stack frames. The nextgen modality is used to great effect in the reasoning rule

for return, where a modular and practical reasoning rule is otherwise out of reach.

This is the first separation logic for a high-level programming language with stack

allocation.

i

ii

Chapter 6 proposes a more powerful nextgen modality that can be used to reason

about non-deterministic crashes. We show how themodality can be used in themodel

of Spirea. This is the first step towards an improved variant of Spirea that can be

used to show strong specifications for durable data-structures akin to HOCAP-style

or TaDA-style specifications.

All contributions and results are formalized in the Coq proof assistant.

Resumé

At sikre korrektheden af programmer i tilstedeværelsen af concurrency og persistens

er enormt vanskeligt. Denne afhandling bidrager til feltet af formæl verifikation af

sådanne programmer.

Kapitel 2 omhandlerMichael-Scott-køen (MS-køen), en concurrent ikke-blokerende

kø. Vi bruger Iris- og ReLoC-logikken til at vise det den originale MS-kø er en

contextual refinement af en coarsegrained kø. For at forenkle beviset, udvider vi

separationslogik med et generelt anvendeligt persistent point-to prædikat for at

repræsentere uforanderlige pointere. Dette er baseret på en ny ressource algebra

af kasserbare brøker, der generaliserer brøktilladelser. Kapitel 3 præsenterer den

første formelle specifikation og verifikation af en effektiv concurrent kø fra Metas

C++ bibliotek Folly. Vi bruger ReLoc til formelt at bevise, at køen er en contextual

refinement af en simpel, coarse-grained kø. En nøgleudfordring ved MPMC-køen er,

at den har et såkaldt eksternt lineariseringspunkt, som ReLoC har ikke understøtter at

ræsonnere omkring. Vi udvider derfor ReLoC med nye egenskaber til ræsonnement

om eksterne lineariseringspunkter.

Svag persistent hukkommelse (også kendt som non-volatile memory) er en ny

teknologi der tilbyder hurtig byte-adresserbar persistent primær hukommelse. Kapi-

tel 4 præsenterer Spirea, den første concurrent separationslogik til verifikation af

programmer under en svag persistent hukommelsesmodel. Logikken kombinerer

aspekter fra Iris og Perennial med nye teknikker til at understøtte modulær ræson-

nement på et højt niveau om nedbrugssikre og trådsikre programmer. Vi bruger

Spirea til at verificere flere udfordrende eksempler med modulære specifikationer,

inklusiv ikke-blokerende holdbare datastrukturer med nul-gendannelse. Dette er

første gang, holdbare datastrukturer er blevet verificeret med en programlogik.

Kapitel 5 foreslår en ny nextgen modalitet, der gør det muligt at opdatere

ressourcer på måder, der ikke er frame-preserving. Det er blandt andet brugbart til

at ræsonnere om systemnedbrud. Vi udvikler modaliteten som en udvidelse til Iris.

Vi viser, at to eksisterende Iris-modaliteter er særtilfælde af nextgen-modaliteten.

Modaliteten kan således ses som en generalisering og forenkling af Iris baselogikken.

For at demonstrere brugbagheden af nextgen-modaliteten bruger vi den til at kon-

struere en programlogik for et sprog med stakallokering og med funktionsreturner-

ing, der rydder hele stakrammer. Nextgen-modaliteten bruges med stor gevindst i

ræsonnementreglen for returnering, hvor en modulær og praktisk ræsoneringsregel

ellers er uden for rækkevidde. Dette er den første separationslogik for et højtniveaus

iii

iv

programmeringssprog med stakallokering.

Kapitel 6 foreslår en mere udtrykskraftig nextgen-modalitet, der kan bruges til

at ræsonnere om ikke-deterministiske systemnedbrud. Vi viser hvordan modaliteten

kan bruges i modellen af Spirea. Dette er det første skridt mod en forbedret variant af

Spirea, der kan bruges til at vise stærke specifikationer for holdbare datastrukturer,

tilsvarende HOCAP-stil eller TaDA-stil specifikationer.

Alle bidrag og resultater er formaliseret i Coq bevisassistenten.

Acknowledgments

I would like to thank my advisor Lars Birkedal for his support and guidance through-

out my PhD. Thank you for always being generous with your time and advice, and

for the great research environment you have created in Aarhus and that I have

enjoyed being a part of.

Thanks to all the people in the Logic and Semantics group and the Programming

Languages group. There are far too many to mention you all, but I will mention a few.

Thanks to my office mate Simon Gregersen for always being helpful with Coq and

many other things. Thanks to Zesen Qian for our many coffee chats—I missed you

when you left. Thanks to Philipp Stassen for our winter bathing sessions and sauna

conversations. Thanks to Amin Timany for always being able and willing to help

me out in a pinch with the most tricky Coq problems. Thanks to Léon Gondelman

for always cheering on my work and for being a great friend.

During my PhD I have had the opportunity of collaborating with some great

people: Dan Frumin, Yixuan Chen, and Aïna Linn Georges. Thanks to all of you, it

was a pleasure.

Thanks to François Pottier and Azalea Raad for agreeing to be on my thesis

committee. I am grateful for having such deeply qualified people, whose work I

admire, on the committee.

I would like to thank Viktor Vafeiadis for hosting me at MPI-SWS in Kaiser-

slautern. Thanks to all the wonderful people at MPI in Kaiserslautern who welcomed

me and included me in their social activities. It was a pleasure to meet all of you

and to be a part of your community. Thanks to your hospitality I never felt alone

even though I was far away from home. Even though I only knew you for a short

three months many of you have made a lasting impression. Thanks, in particular, to

Léo Stefanesco who helped me out a lot during my stay and who is such a fun and

interesting person to be around.

Thanks to the danish system surrounding subsidized education and PhD funding

that made it possible for me to spend slightly more than 8 years at the university for

free and with financial support.

Thanks to my friends and family. Most importantly to my parents, Bodil and

Knud. Thank you for always believing in me, for giving me the freedom to do my

own things and to pursue my own interests. I have learned a lot from both of you

and continue to draw inspiration from you. Thanks to my aunt Eva who, among

many things, sent me a birthday box containing danish rye bread, liver pâté, and

v

vi

homemade pickled beetroot while I was in Kaiserslautern.

Last and most definitely not least, thanks to my partner Gry who was always

there for me with her love and support during both the good times and the bad times.

Thank you for taking an interest in my work and for listening to my—sometimes

seemingly endless—ramblings about it.

Simon Friis Vindum,
Copenhagen, October, 2023.

Contents

Abstract i

Resumé iii

Acknowledgments v

Contents vii

I Overview 1

1 Introduction 2

1.1 Challenges: Concurrency and Persistency 3

1.2 Correctness Criteria for Concurrent and Durable Data-Structures . 10

1.3 Program Logics for Concurrency and Persistency 12

1.4 Contributions and Structure . 13

II Publications 18

2 Contextual Refinement of the Michael-Scott Queue 19

2.1 Introduction . 19

2.2 The MS-Queue . 23

2.3 Structure of a Refinement Proof . 26

2.4 Persistent Points-To Predicate . 31

2.5 Invariant for the Refinement Proof 33

2.6 Refinement Proof of the MS-Queue 36

2.7 Consistent Snapshots Can Be Omitted 41

2.8 Lagging-Tail MS-Queue . 42

2.9 Defining the Persistent Points-To Predicate 43

2.10 Related Work . 45

3 Mechanized Verification of a Fine-Grained Concurrent Queue from

Meta’s Folly Library 48

vii

CONTENTS viii

3.1 Introduction . 48

3.2 The Folly MPMC queue . 52

3.3 Linearizability of the MPMC queue 55

3.4 Specifications for the Turn Sequencer and the Single-Element Queue 57

3.5 Proof of Contextual Refinement . 62

3.6 Invariant for Refinement Proof . 64

3.7 Extending ReLoC with Support for External Linearization Points . . 69

3.8 Discussion: Conclusion, Related and Future Work 72

4 Spirea: A Mechanized Concurrent Separation Logic for Weak Per-

sistent Memory 75

4.1 Introduction . 75

4.2 Persistent Memory Verification Challenges 80

4.3 Operational Semantics . 84

4.4 Background: Crash Reasoning Features In Perennial 89

4.5 BaseSpirea – The Low-Level Logic 90

4.6 Spirea . 96

4.7 Soundness . 108

4.8 Case Studies . 110

4.9 Related and Future Work . 120

5 The Nextgen Modality: A Modality for Non-Frame-Preserving Up-

dates in Separation Logic 123

5.1 Introduction . 124

5.2 Background and Related Work . 127

5.3 The Basic Nextgen Modality . 133

5.4 Case Study of the Nextgen Modality 139

5.5 Related and Future Work . 151

6 A Nextgen Modality For Crashes In Spirea 153

6.1 Introduction . 153

6.2 Why Spirea Needs the Nextgen Modality 154

6.3 Requirements . 155

6.4 A Nextgen Modality With Picks . 156

6.5 Extending the Modality With Promises 159

6.6 A Generation-Aware State Interpretation for BaseSpirea 164

6.7 Model . 171

6.8 Conclusion and Future Work . 176

Bibliography 177

Part I

Overview

Chapter 1

Introduction

As anyone who has ever used software can attest to: software has bugs. This

can be of great wonder to laypeople. How come we can build so many amazing

technological marvels, and yet even the simplest of programs often misbehave?

The plain answer is that software is very intricate and complicated. Therefore,

getting it right is tremendously difficult. To address this fundamental problem,

many related fields of computer science are dedicated to the research of tools and

techniques that can help improve the reliability and correctness of programs. One

such “tool” is tomathematically prove that a given programworks—for somemeaning

of “works”. That is, similarly to how one can mathematically prove, for instance, that

Pythagoras’s theorem is true, one can (in theory) also prove results such as “Microsoft

Word does never crash”. However, as programs are immensely complicated, proofs

about them tends to be just as complicated or even much more complicated. This

means that carrying out such proofs is very hard and that, just as the program might

have a bug, the proof itself could contain mistakes. One solution to these challenges

is to usemechanized formal program logics. Let us unpack what this means. A formal
logic consists of a strict set of rules that can be used to build a proof. One can

imagine the rules as “puzzle pieces” that can be assembled together, and a proof is

valid if all the puzzle pieces fit together. If the logic is sound, then whenever one

has constructed a valid proof the proven thing is in fact true. One benefit of using a

formal logic as that the rules in the logic can make it much easier to prove properties

about program compared to using “normal” math. Another benefit is that checking

whether a proof is correct is quite easy as it merely amounts to checking if the rules

fit together. In fact, it is possible to create a “proof language”, where one can write

proofs using the rules in such a way that a computer program can check that all the

rules are used properly. Such a system is called a proof assistant and a logic or proof

that makes use of and is checked by a proof assistant is called mechanized. Taken
together, using a mechanized formal program logic to verify programs both makes

the task of proving easier, and gives the proofs a very high level of reliability as they

have been machine checked.

Simplifying and summarizing a lot, this thesis contributes to the field of mecha-

2

CHAPTER 1. INTRODUCTION 3

nized formal program logics by:

• Applying existing program logics to verify complicated, intricate, efficient, and

practically important data-structures. In particular, we verify the well known

Michael-Scott Queue and a less well known queue from Meta’s open source

library Folly. Verifying these data-structures is both a significant result on its

own and the verification effort contributes to a growing body of knowledge

about applying program logics.

• Developing a new program logic, Spirea, for the purpose of reasoning about

programs that use persistent memory (or non-volatile memory). This logic

is state-of-the-art and capable of verifying programs beyond the reach of

prior logics. For instance, we use it to verify several durable concurrent data-

structures with null-recovery.

• As a by-product of the above two activities we contribute several innovations

that are more widely and generally applicable. Most notably we introduce:

discardable fractions and a persistent points-to predicate, an extension to ReLoC

for external linearization points, and a nextgen modality that adds non-frame-
preserving updates to separation logic.

The remainder of this introduction explains the program verification challenges

pertinent to this thesis, gives an overview over existing program logics, provides

a more detailed account of the overall contributions, and finishes with a vision for

future work.

1.1 Challenges: Concurrency and Persistency

To illustrate the challenges one faces when programming for a modern CPU, Fig-

ure 1.1 contains a rough sketch of a CPU attached to a main memory. We use this

figure to explain two key verification challenges: concurrency and persistency.

1.1.1 Concurrency

The octagons at the top left of the figure depicts CPU cores. For ease of illustration,
the depicted CPU has 4 cores, but modern CPUs often have more. In fact, some of

the most expensive CPUs available to consumers today have as many as 64 cores. If

a CPU has n cores then it can carry out n tasks simultaneously. For a program to

take advantage of this, it needs to be written with concurrency and parallelism in

mind. One way to do this is by using threads, where several thread can be executed

in parallel on multiple cores. The upside to doing this is that the program can be

significantly faster as it make good use of all the cores available. The downside is

that ensuring the correctness of such a program can be quite difficult.

To illustrate the challenges from a programmers point of view, consider the code

examples in Figure 1.2. These four examples all depict a push operation implemented

CHAPTER 1. INTRODUCTION 4

CPU cores

L1 cache

memory

L2 cache

L3 cache

Figure 1.1: A modern CPU with memory attached

on a stack. The operation push stack v pushes the values v to the stack stack. To
keep the example simple the stack is implemented as a pointer to a list data struture.

The first implementation of push in Figure 1.2a works by

1. reading the stack pointer to obtain the head of the list,

2. prepending (or consing) the new value v to the list,

3. writing the updated list to the pointer,

4. and finally it returns unit (denoted by ()).

In a single-threaded setting without parallelism this straightforward implementation

of push is perfectly correct. However, if multiple threads might execute push in

parallel, then the implementation is incorrect. In this case we can imagine the

following interleaving where two threads execute push in parallel: Both the first and

the second thread execute the first two lines of push. This means that the value they

read from stack is the same. The first thread then executes the third line. Its value is

now in the stack. The second thread then executes the third line. It now erased the

first thread’s value from the stack. Hence, after executing push operations in parallel

the final effect is that only one element is added to the stack. This is incorrect, as

push should only add elements to a stack, not remove elements added previously.

When several threads execute in parallel they are, in a sense, racing against each

other. In the above example, which thread gets to execute which line first depends

on numerous variables that can not be precisely controlled. As such, we have to

assume that this order is non-deteministic and for a program to be correct it must be

CHAPTER 1. INTRODUCTION 5

push stack v ≜

let head = ! stack in
let newHead = v :: head in
stack← newHead;

()

(a) A simple implementation of push.

push stack v ≜

acquire lock;

let head = ! stack in
let newHead = v :: head in
stack← v :: head

release lock;

()

(b) A thread-safe blocking implemen-

tation of push.

push stack v ≜

let head = ! stack in
let newHead = v :: head in
if CAS stack head newHead

then ()

else push stack v

(c) A non-blocking thread-safe

implementation of push.

push stack v ≜

let head = ! stack in
let newHead = v :: head in
flush newHead;

fence;
if CAS stack head newHead

then ()

else push stack v

(d) A non-blocking thread-safe and

crash-safe implementation of push.

Figure 1.2: Various implementations of a push operation on a stack

correct for all interleavings. The non-determinism means that a program can work

as it should and appear correct, but then occasionally fail catastrophically. Hence, in

the presense of non-determinism the act of testing a program becomes a less reliable

method for identifying bugs.

The above example highlights another important point. Whether the code in

Figure 1.2a is correct depends on the context in which it is used. In a single-threaded

setting it is correct, but in a multi-threaded setting it is incorrect. If a data-structure

or program works in a multi-threaded setting it is said to be thread-safe.
One easy way to make a function thread-safe is to use a lock. Figure 1.2b shows

how to adapt the push operation to use a lock. The code in the example assumes that

there exists a lock associated with the stack with the name lock. The first line of push
now acquires the lock and the last line releases the lock. The lock itself ensures that

only one thread can have the lock at any given time. This means that if two threads

now execute push in parallel, then whoever executes acquire first will recieve the

CHAPTER 1. INTRODUCTION 6

lock. The other thread will be blocked on the first line, and only execute further into

the push operation once the former thread releases the lock. This ensures that only

one thread can ever execute the lines in between acquire and release at a given time.

This property is called mutual exclusion, and effectively “removes” any parallelism

inside push. With the lock in place the problem we identified before is now solved,

and this version of push is thread-safe.

An operation that uses a lock as above is called blocking since, once one thread

has acquired the lock, all other threads are blocked and has to wait. In practice

blocking can become a significant bottleneck and negatively impact performance.

The alternative to blocking operations are non-blocking operations. These avoid

the use of locks by instead relying on atomic read-modify-writ (RMW) operations.

Figure 1.2c shows how to implement a non-blocking push operation by using the

CAS RMW operation. The expression CAS ℓ v1 v2 performs, in a single atomic step,

the following:

1. It reads the current value of the location ℓ.

2. It compares whether the current value is equal to v1.

3. If the comparison is true, the v2 is written to the location, and the operation

evaluates to true to signify success. Otherwise, ℓ is left unchanged and false
is returned.

In the updated push operation CAS is used on the third line to write to the stack.

The use of CAS ensures that if the content of the stack changed in between reading

the stack and the attempted write, then nothing will happen. In this case CAS
evaluates to false, and the push operation is restarted from the beginning through

the recursive call to push. This simultaneously solves the problem with the first push

implementation, and avoids blocking as in the second push implementation. RWM

operations operation are essential to implementing any sort of parallel construction.

They are supported at the level of the CPU, and the CPU guarantees the atomicity

of the operations. These lock-free operations are sometimes called fine-grained (as

opposed to coarse-grained operations that make use of locks). Here fine-grained

refer to the fact that parallelism is not restricted into big exclusive sections protected

by locks, but only requires atomicity of “small” RMW operation. The downside to

fine-grained operations is that they are much harder to get right than lock based

ones and that they usually use RMW operations in very clever ways. Where the use

of a lock effectively got rid of interleavings, for fine-grained operations we are back

to worrying abut all possible interleavings.

1.1.2 Weak Memory

Over the last couple of decades CPUs have become much faster, but main memory
has not seen the same level of performance increases. This means that the CPU

is, comparatively, much faster than main memory on modern computers. As a

CHAPTER 1. INTRODUCTION 7

rough number to illustrate the point, on reading an address from the memory might

take around the same time as executing 100 instructions on the CPU. With this

discrepancy in performance the speed of most programs would be bound by the

speed of the memory and the CPU would spend most of its time waiting for the slow

memory. I write “would” because to (partially) avoid this problem modern CPUs

pull off all sorts of clever tricks to make up for the slow the memory. One these

tricks is to use CPU caches, these caches are small capacity storage that sits on the

CPU very close to the cores as depicted in Figure 1.1. Since this storage is so close

to the cores, it can be accessed much faster than the larger, but further away, main

memory. CPU caches are divided into several layers with the CPU depicted in the

figure having three layers of cache. With each increasing layer the cache becomes

larger and slower. To make use of the cache, memory operations carried out by the

CPU operate on the cache in favor of the memory if possible. For instance, to read

the value of a location ℓ a core first consults the L1 cache to see if it contains the

value. If the L1 cache contains the location, then the read returns this value for the

location. Otherwise, the core will proceed its search up the cache hierarchy. Only if

none of the caches contain the location, a cache miss, is a request sent to the memory

to fetch the location. The CPU is responsible for managing its caches. This involves

loading data from the memory into the caches, flushing data from caches into the

memory, invalidating caches, searching through the cache hierarchy, and more. All

of this might sound like overhead that would make operations slower, but, since the

CPU is so much faster than the memory, having the CPU perform additional work is

still beneficial in terms of performance if it can decrease usage of the slow memory.

Unfortunately, the CPU caches are not transparent to programs, they leak into

the way in which concurrent programs might behave. Usually programmers think

of the memory as one global shared heap of values. With this vies of the world, all

threads reading a given location in memory will always see the same value. And if

one threads writes a value to a location, then afterward all other threads will read

that write. This behavior of the memory is called sequential consistency. However, as
we can see on Figure 1.1 some of the cache layers are per-core. For instance, each core

has their own L1 cache. This means that different cores may not always see the same

“view” of the world. One core might have one value for ℓ in its L1 cache whereas

another core might have a different value in its L1 cache. This can cause behaviors

in multithreaded programs that are inconsistent w.r.t. sequential consistency. When

memory exhibit behavior that does not match sequential consistency, the memory
model is said to be weak or relaxed. A canonical example of this is the program:

x← 1;

!y // 0

∥∥∥∥∥ y ← 1;

!x // 0

In this program we assume that the location x and y both initially have the value

0. Thinking in terms of the possible interleavings when executing this program,

one of the two threads must execute its write before the other thread. The thread

that carries out its write last must then necessarily carry out its read after the other

CHAPTER 1. INTRODUCTION 8

thread has written to the location. Hence, we would expect that at least one of

the two reads results in the value 1 and sequential consistency would ensure this

expectation. Alas, in a weak memory model both threads might actually merely

write the value of 1 to their own L1 cache, and each write is then invisible to the

other thread. Hence, both threads might read 0 which is entirely unexpected.

CPU caches are not the only cause of weak memory behavior, another source is

compiler optimizations. Consider the following program:

x← 1;

y ← 1;

∥∥∥∥∥ if !y = 1;

then assert (!x = 1)

In this example assert denotes a function that crashes (or gets stuck) if the given

argument is not true. Assuming sequential consistency, this program would never

crash, as the write to y happens after the write to x, and hence if the right thread

reads the write of 1 to y it surely also reads the prior write of 1 to x. In fact, the

memory on x86 CPU would also never cause this program to crash, as the CPU

architecture ensures that writes by the same thread are seen in order by other threads

(this is enforced as part of the total store order that x86 guarantees). However, if this

program is written in a compiled programming language then in many cases (such

as C or Rust) the compiler is allowed to reorder independent writes such as the two

writes on the left. Due to this, the assertion is not guaranteed. Hence, weak memory

models for compiled languages are often even weaker than the machine-level ones as

they have to account for optimizations carried out by both the CPU and the compiler.

The examples given here are both quite simple, but, as the reader can imagine, in

a larger program ensuring correctness under weak memory can be quite tricky as one

needs to take into account behavior that is quite counterintuitive and unexpected.

1.1.3 Persistent Memory

On contemporary computers the main memory is volatile. This means that when the

computer is powered off (or if it crashes and restarts) all data in the memory is lost.

This is because modern memory is implemented using a technology called DRAM

which requires constant power in order for the bits stored in it to remain there.

For data that needs to be stored permanently, secondary storage is used. Secondary
storage includes technology such as solid-state drives (SSDs) and hard-disk drives

(HDDs). These are slower than main memory and do not allow for efficient random

access, but they are non-volatile, or durable, meaning that the bits stored in them

remain there even in the absence of power.
1
The implications of the above are that

a program uses the main memory to store any data that it needs to access efficiently,

and the secondary storage for any data that it want permanently stored. For data

where both of these are required, copies are usually kept such that the data is in

both the memory and in secondary storage.

1

SSDs might in fact begin to lose bits if they are not powered on for several years though.

CHAPTER 1. INTRODUCTION 9

The above describes the traditional storage hierarchy. A new family of technolo-

gies called persistent memory (also called non-volatile memory) are disrupting this

hierarchy. Non-volatile memory covers new physical ways to implement memory

that are comparable to traditional main memory, in that they offer efficient random

access, but, unlike traditional memory, are also non-volatile. From a programmers

point of view, this means that they can now write programs that store things perma-
nently in memory. This can bring great performance benefits as persistent memory

is faster than other types of durable storage. Furthermore, it could simplify programs

that both need efficient access and durability as they can keep just one copy of their

data in the persistent memory.

Writing correct programs for persistent memory introduces to additional chal-

lenges that must be taken into account.

Crashes First of all, programs that make use of durable storage (whether that

be persistent memory or something else) must be crash-safe. Here a crash means

a full-system crash where a program is abruptly terminated, for instance due to a

hardware failure. In the real world, programs need to consider the possibilities of

crashes. For programs that do not store anything in persistent storage, crashes are

unimportant. At a crash the program looses all of its data and if executed after the

crash there is no trace of the prior execution. In contrast, when a program that do
use durable storage is executed after a crash, data from the prior execution remains.

A program that uses durable storage should of course attempt to recover data after a

crash such that the data is not lost. Since a crash can non-deterministically happen at

any time, when running after a crash the program might find the stored data to be

in a state that it would otherwise never be in. Crash-safety means that the program

is guaranteed not to get stuck even when executed after a crash.

Weak Persistency Secondly, the possible state of the persistent memory after a

crash is affected by the CPU caches. Even with persistent memory, CPU caches are

still volatile, and as we have seen, when a core carry out writes they are initially

store only in the cache. This means that when something is written to the memory,

it is not actually persisted until the write is eventually flushed from the caches into

the memory. On present day CPUs the order in which writes reach the memory is

weak and may happen out of order. This means that the code in Figure 1.2c as not
crash-safe. On the second line a list with the new value is allocated, and on the third

line the updated memory is assigned to the stack location. Since the two memory

operations might persist in any order, if there is a crash after the CAS operation

it might be the case that the write to stack persisted but the allocation of the new

list head did not. In this case the stack location would be pointing to unknown data

in the memory, and if code attempted to use the stack after a crash it would get

stuck. To avoid such issues, modern CPUs contain instructions that make it possible

for programs to ensure that writes persist in certain desired orders. An example of

using such instructions to make the push operation stack safe appears in Figure 1.2d.

CHAPTER 1. INTRODUCTION 10

Here the use of flush and fence in between the creation of the new list and the

CAS ensures that the former allocation is guaranteed to persist prior to the latter

write. We explain these operations in detail in Chapter 4, for now the point is merely

that these instructions are critical to get right in terms of correctness. On the other

hand, these operations are also expensive in terms of CPU time, so they should only

be used when necessary. Again, note how the setting affects whether a program is

correct. As explained, Figure 1.2c is correct in a setting with only concurrency, but if

we extend the setting to one with persistency, it is no longer correct.

1.2 Correctness Criteria for Concurrent and Durable

Data-Structures

We have now seen some of the challenges that arises due to concurrency and per-

sistency. We saw the example Figure 1.2a which is incorrect in a setting with

concurrency and Figure 1.2c which is correct. But what precisely makes the latter

correct? Concurrent and durable data-structures are so complicated that it not im-

mediately obvious what it would mean for one to be correct. In fact, there is not

just one criterion by which such a data-structure is correct. In this section we will

cover some of the most common correctness criteria for concurrent and durable data

structures, beginning with the most well known.

1.2.1 Linearizability

In 1987 Herlihy and Wing proposed the notion linearizability [HW90; HW87]. The

term linearizability has a precise meaning defined in terms of histories, or traces,

corresponding to executions. But, the term can also be understood and used on amore

intuitive level—which it often is. On this level linearizability states that a concurrent

operation should appear to take place instantaneously at some point after it is called

and before it returns. At this point it should have the same effect as a sequential

operation would have. The push operation in Figure 1.2a it not linearizable because,

as we observed, there exist executions of this operation that does not correspond

to any sequential execution of a push operation. The push operation in Figure 1.2c

is linearizable. Its linearization point is at the CAS operation, and, due to the

guarantees of the CAS operation, at this point the effect is certain to correspond to a

sequential push operation on a stack. Linearization points can be divided into three

categories [DD15]: fixed, future-dependent, and external linearization points. The

linearization point in Figure 1.2c is a fixed linearization point as the linearization

point is always exactly at the CAS operation. These linearization points are the

simplest to handle from a verification point of view. A future-dependent linearization
point is one where the exact location of the linearization point can only be known

in hindsight. An external linearization point is one where the linearization point

of an operation does not occur during the execution of the operation itself, but

during the execution of some other operation. In Chapter 2 we see an example of

CHAPTER 1. INTRODUCTION 11

a future-dependent linearization point and in Chapter 3 we see an example of an

external linearization point.

Linearizability is only about concurrency, for durability Izraelevitz et al. [IMS16]

extended the notion to durable linearizability. This states that a durable data-structure
must, in addition to it linearization point, have a persist point where it persists. The
meaning of the persist point depends on whether the data-structure is non-buffered
durable linearizable or buffered durable linearizable. The former is the strongest

notion, an means that after a crash the effect of all executed persist points has

persisted. The latter notion loosens this requirement by stating that only some prefix

of the executed persist points must have persisted.

1.2.2 Contextual Refinement

In Figure 1.2b we saw a simple example of an implementation of push made thread-

safe by using a lock. Using a lock in this way can in general be used to make simple

sequential data structures thread-safe, and it is quite easy to see that the resulting

implementation is correct. This is in contrast to fine-grained implementations that

can be quite intricate and hard to understand. One approach to verifying tricky

and intricate (but very efficient) thread-safe data structures is to show that they

are in fact contextual refinements of the simple easy to understand ones. Loosely

speaking, this means that they are “as correct”—if one accepts that the simple data

structure is correct then one is also forced to accept that the complicated one is.

Contextual refinement is defined as follows (this definition is slightly simplified to

for presentation):

⊢ e1 ≾ctx e2 : τ ≜ ∀K, v.K[e1]→∗ v ⇒ ∃v.K[e2]→∗ v

This reads: the program e1 is a contextual refinement of the program e2 if any

context K that when given e1 terminates in some value, thenK when given e2 also
terminates in some value. The use of termination is used as a proxy to determine

whether a context is able to tell e1 and e2 apart. Since this is proven for all contexts,

one can imagine K as being an adversary that tries to distinguish e1 and e2 by

terminating when seeing one and not terminating when seeing the other. With this

approach to verification one can think of the right-hand side in the definition of

contextual refinement (e2 above) as begin the specification. In terms of the push

example, behaving like Figure 1.2b is what it means to be a correct concurrent push

operation. In Chapter 2 and Chapter 3 we use the contextual refinement approach

to verify two concurrent data structures.

Contextual refinement has not been used to verify durable data-structures, but it

is quite likely that it could, if the stepping relation→∗
in the definition of contextual

refinement incorporates crashes. We will not consider that approach in this thesis.

CHAPTER 1. INTRODUCTION 12

1.2.3 Logical Specifications

A third correctness criteria for concurrent data-structures, is to give them a specifica-

tion phrased inside a program logic. Two such approaches are HOCAP-style [SBP13]
specifications and TaDA-style specifications [RDG14]. These approaches both cap-

ture a property of logically atomicity, which expresses what it means, withing the

logic, for an operation to appear to take place instantaneously. One could say that

these styles of specifications state which reasoning principles a client of a linearizable
operation can use, phrased in terms of a specification in a program logic. Given

this, the strength of this approach is naturally that they are readily applicable for

verifying clients that use a linearizable data structure. The downside is that these

specifications usually does not translate to a strong property about the data-structure

itself independently of the program logic. This is in contrast to linearizability and

contextual refinement which are a mathematical properties of a data-structure. In

a recent paper, however, it was shown that, in a certain first-order setting (more

restricted than what we consider in this thesis), a logically atomic specification for

an operation does imply that the operation is linearizable [Bir+21]

Logical specifications have not been explored for durable data-structures for

persistent memory.

1.3 Program Logics for Concurrency and Persistency

This section gives a brief overview of the program logics that are of particular

relevance to this thesis and explains how they relate to the challenges and correctness

criteria mentioned.

1.3.1 Iris

Iris is a state-of-the-art separation logic mechanized in the Coq proof assistant. Iris

contains both a particular program logic that can be used to reason about concurrent

programs. At the most fundamental level Iris contains a base logic that includes the
most primitive features of the logic: the BI connectives, ownership over higher-order

ghost state, the later modality, and more.

Iris has been used to give both HOCAP-style and TaDa-style specifications for

concurrent data-structures. It can verify linearizable data-structures with both fixed,

external, and future-dependent linearization points. The last type of linearization

point is supported by a feature called prophices [Jun+20a]. The Iris program logic

assumes sequential consistency, that is, it does not consider the weak behaviors

described earlier. Various other Iris-based logics consider weak memory [Dan+20;

Dan+22; Kai+17; MJP20].

CHAPTER 1. INTRODUCTION 13

1.3.2 ReLoC

ReLoC is a program logic for showing contextual refinement [FKB18; FKB20a].

ReLoC is based on Iris and makes it possible to use all the capabilities in Iris to

show a refinement judgment that implies contextual refinement. In Chapter 2 and

Chapter 3 we use ReLoC as our vehicle for the verifications that we carry out.

1.3.3 Perennial

Perennial is a program logic, based on Iris, that extends the Iris program logic

with novel features that makes it possible to reason about crashes and show crash-

safety. The Perennial program logic assumes a strong persistency model and does

not consider the weak behaviors arrising with persistent memory and volatile CPU

caches.

1.3.4 Owicki-Gries based Program Logics for Persistent Memory

No separation logics have been created that are able to reason aboutweak persistency
models. However, two ground-breaking Owicki-Gries based program logics for the

weak x86 persistency model [Bil+22; RLV20] have been created. These are the first

program logics that are able to verify and reason about programs that use persistent

memory.

Since these logics are not based on separation logic they lack some of the fea-

tures found in separation logics. One of these features is modularity derived from

separation logics notion of ownership. This means that these logics are not able to

give self-contained specifications of durable data-structures as modules that can be

used by independent clients.

1.4 Contributions and Structure

In this section I give an overview of the contributionsmade by this thesis, its structure,

the papers and manuscript on which it is based, and my personal contributions to

the individual chapters.

1.4.1 List Of Publications and Manuscripts

This thesis includes the following published papers:

[VB21] Simon Friis Vindum and Lars Birkedal. “Contextual refinement of the

Michael-Scott queue (proof pearl).” In: CPP ’21: 10th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, Virtual Event, Denmark,
January 17-19, 2021. ACM, 2021, pp. 76–90. doi: 10.1145/3437992.3439930

[VFB22] Simon Friis Vindum et al. “Mechanized verification of a fine-grained con-

current queue from meta’s folly library.” In: CPP ’22: 11th ACM SIGPLAN

https://doi.org/10.1145/3437992.3439930

CHAPTER 1. INTRODUCTION 14

International Conference on Certified Programs and Proofs, Philadelphia, PA,
USA, January 17 - 18, 2022. Ed. by Andrei Popescu and Steve Zdancewic. ACM,

2022, pp. 100–115. doi: 10.1145/3497775.3503689

[VB23c] Simon Friis Vindum and Lars Birkedal. “Spirea: A Mechanized Concurrent

Separation Logic for Weak Persistent Memory.” In: Proc. ACM Program. Lang.
7.OOPSLA2 (Oct. 2023). doi: 10.1145/3622820

Additionally, the thesis includes the following manuscript:

• Simon Friis Vindum, Aïna Linn Georges, and Lars Birkedal. “The Nextgen

Modality: A Modality for Non-Frame-Preserving Updates in Separation Logic.”

In submission.

1.4.2 Contributions

The contributions made by each chapter in Part II are as follows.

Note: Some of the description of the contributions are derived from the text in

the individual papers.

Chapter 2

This chapter uses the ReLoC logic to verify the well-known Michael-Scott queue.

The contributions in this chapter includes:

• A new resource algebra called discardable fractions. This generalizes the

resource algebra of fractions to allow for discarding of a non-zero fraction in

order to option a duplicable element proving that a fraction was discarded.

• A new persistent points-to predicate based on discardable fractions. This

is a general extension of separation logic that makes it simpler and more

convenient to express locations that are immutable.

• A proof that the Michael-Scott queue is a contextual refinement of a simple

lock-based coarse-grained queue. This is the first time that a result of this

strength for the full (non-simplified) MS-queue and in a higher-order setting

has been shown and mechanized.

• A claim that the proof is particularly elegant as it makes use of the persistent

points-to predicate and a notion of reachability that concisely captures the

invariants maintained by the various nodes in the MS-queue.

• All the contributions are mechanized in Coq.

After the publication of the paper underlying this chapter, discardable fractions

has replaced the use of fractions in many (or perhaps most) places in the Coq

mechanization of Iris. Furthermore, discardable fractions and persistent points-to

predicates has been used to great effect in several other bodies of research [Geo+23;

MP22; MWB24; Tim+21; VP23].

https://doi.org/10.1145/3497775.3503689
https://doi.org/10.1145/3622820

CHAPTER 1. INTRODUCTION 15

Chapter 3

This chapter uses ReLoC to verify a high-performance queue, called the MPMC

queue, from the open source library Folly developed and used at scale in production

by the company Meta. The contributions in this chapter includes:

• An informal analysis of the MPMC queue and description of how one of its

linearization points is external.

• The MPMC queue consists of two submodules: a turn sequencer and a single-

element queue. Hoare-style specifications are given for the two submodules.

• A proof that the MPMC queue contextually refines a coarse-grained queue.

Since the MPMC queue, unlike the MS queue, might block in some circum-

stances, the coarse-grained queue used here it not exactly the same as in the

last chapter.

• An explanation of why prior versions of ReLoC could not handle external

linearization points and an extension of ReLoC, both on paper and in Coq,

with support for reasoning about external linearization points. With this

addition ReLoC is now able to verify data-structures with all the three types

of linearization points.

• All the results in this paper are formalized in the Coq proof assistant.

Chapter 4

This chapter introduces the logic Spirea, a separation logic for reasoning about

progarms under a weak memory and persistency model. The contributions in this

chapter includes:

• A resource changing posts crashmodality that can account for the non-deterministic

changes in resources at crashes under weak persistency. This post-crash

modality supports rules of the form R ⊢ ⟨PC⟩R′
, where R′

reflects how R is

non-deterministically affected by the crash.

• Crash-aware invariants, which, in contrast to Iris-style and GPS-style invari-

ants, are sound under weak persistency. Soundness of Spirea crash-aware

invariants relies on having novel proof rules for transfer of resources in and

out of invariants. Our Spirea invariants are crash-aware, meaning that they

can be preserved under our post-crash modality and thus facilitate resource

transfer between code executing before and after a crash. This is the first time

a separation logic contains invariants that can be used to this end.

• An assortment of features to handle persistent memory instructions: Post-fence
modalities, a post-crash flush modality, and state lower-bounds w.r.t. fences.
These work in tandem to reason about weak flushes and synchronous and

asynchronous fences.

CHAPTER 1. INTRODUCTION 16

Chapter 5

This chapter a novel nextgen modality is proposed and a case study using it is

presented. The contributions in this chapter includes:

• An extension to the Iris base logic with a new modality: the nextgen modality.

This modality makes it possible to make non-frame-preserving changes to

resources in Iris which was previously not possible.

• An extension to the Iris implementation in Coq with the new modality.

• A program logic for a language StackLang which contains a call-stack and

stack allocated values. The nextgen modality is used in the proof rule for

returns and the result is a proof rule that is simple and easy to use.

• The program logic and examples using it are formalized in Coq.

Chapter 6

This chapter introduces a more advanced nextgen modality, intended for Spirea. The

contributions in this chapter includes:

• An explanation of why the post-crash modality used in Spirea in Chapter 4 is

insufficient for proving stronger specifications for durable data-structures.

• A more powerful nextgen modality that ties the generational transformation

to separation logic resources.

• A new model for BaseSpirea that uses the nextgen modality towards achieving

an improved version of the logic that reaps the benefit of the nextgen modality.

1.4.3 Statement of Personal Contributions

Below I list the correspondence between each chapter in Part II of this thesis and

the mentioned papers and manuscripts. Additionally, I list my own personal con-

tributions to each of the chapters and the respective paper and projects they relate

to.

• Chapter 2 is a verbatim inclusion of Vindum and Birkedal [VB21]. For this

paper I am the main author with my co-author PhD Lars Birkedal serving

an advisory role. I carried out the research, in particular the proof and its

mechanization in Coq. I wrote the paper with feedback and editing by my

co-author.

• Chapter 3 is a verbatim inclusion of Vindum et al. [VFB22]. I am the main

author of the paper, with Dan Frumin serving a minor role, and Lars Birkedal

an advisory role. I lead the research, in particular I verified the data-structure

and created the extension to ReLoC. I mechanized the proof in Coq with minor

CHAPTER 1. INTRODUCTION 17

help from Dan. Dan translated the C++ implementation of the MPMC queue

in Folly into HeapLang and mechanized the extension to ReLoC in Coq with

minor suggestions from me. I lead the writing of the paper and wrote the

majority of the paper. Lars wrote parts of Section 3.1 and Dan wrote parts of

Section 3.7. Both co-authors provided feedback and editing of the paper.

• Chapter 4 is a based on of Vindum and Birkedal [VB23c]. The text is unchanged

except that I have integrated the appendices from the original publications

into the main text and included Figure 4.6 and Figure 4.9 that did not fit with

the space requirements of the published paper. For this paper I am the main

author with my co-author Lars Birkedal serving an advisory role. I carried out

the research and the mechanization effort. I wrote the paper with feedback

and editing by my co-author.

• Chapter 5 is unchanged compared to above-mentioned manuscript. I lead

the research leading to the created of the nextgen modality with advice from

Lars. I mechanized the modality in Coq. Aïna Linn Georges lead the research

regarding the language with stack allocation described in Section 5.4 and

mechanized it in Coq. I lead the writing of the paper except for Section 5.4

which was written by Aïna. All co-authors provided feedback and editing of

the paper.

• Chapter 6 is not based on a publication. It is part of a larger ongoing project

carried out together with Yixuan Chen and Lars Birkedal. The part of the

project covered in the chapter was lead by me (with other parts, not men-

tioned in the chapter, being lead by Yixuan). I carried out the research and

mechanization with feedback from Yixuan and Lars. The text in the chapter is

written by me.

Part II

Publications

Chapter 2

Contextual Refinement of the

Michael-Scott Queue

Abstract

The Michael-Scott queue (MS-queue) is a concurrent non-blocking queue.

In an earlier pen-and-paper proof it was shown that a simplified variant of

the MS-queue contextually refines a coarse-grained queue. Here we use the

Iris and ReLoC logics to show, for the first time, that the original MS-queue

contextually refines a coarse-grained queue. Wemake crucial use of the recently

introduced prophecy variables of Iris and ReLoC. Our proof uses a fairly simple

invariant that relies on encoding which nodes in the MS-queue can reach

other nodes. To further simplify the proof, we extend separation logic with a

generally applicable persistent points-to predicate for representing immutable

pointers. This relies on a generalization of the well-known algebra of fractional

permissions into one of discardable fractional permissions. We define the

persistent points-to predicate entirely inside the base logic of Iris (thus getting

soundness “for free”).

We use the same approach to prove refinement for a variant of the MS-

queue resembling the one used in the java.util.concurrent library.

We have mechanized our proofs in Coq using the formalizations of ReLoC

and Iris in Coq.

2.1 Introduction

The Michael-Scott queue (MS-queue) is a fast and practical fine-grained concur-

rent queue [MS96b]. We prove that the MS-queue is a contextual refinement of a
coarse-grained concurrent queue. The coarse-grained queue, shown in Figure 2.1,

is implemented as a reference to a functional list and uses a lock to sequentialize

concurrent accesses to the queue. We thus prove that in any program we may replace

uses of the coarse-grained, but obviously correct, concurrent queue with the faster,

but more intricate, MS-queue, without changing the observable behaviour of the

program. We recall that, formally, an expression e contextually refines another

19

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 20

dequeue
CG

lock list () ≜
sync (lock) {
match ! list with
nil⇒ none
x :: xs ⇒ list← xs; some x }

enqueue
CG

lock list x ≜ sync (lock) { list← (! list++ [x]) }

queue
CG
≜ Λ.

let lock = newlock ()
list = ref nil in

(λ_. dequeue
CG

lock list (), λx. enqueue
CG

lock list x)

Figure 2.1: The coarse-grained queue.

expression e′, denoted ∆;Γ ⊢ e ≾ctx e
′ : τ , if for all contexts K , of ground type,

wheneverK[e] terminates with a value there exists an execution ofK[e′] that ter-
minates with the same value. One should think of e as the implementation (in our

case the MS-queue), e′ as the specification (in our case the coarse-grained queue),

andK as a client of a queue implementation.

Note that the contextual refinement implies that the internal states of the two

queues are encapsulated and hidden from clients who could otherwise tell the dif-

ference between the two implementations. Contextual refinement is also related

to linearizability, a popular correctness criterion considered for concurrent data

structures. Linearizability has mostly been considered for first-order programming

languages (without higher-order functions and abstract types). For a particular

first-order language and under strong assumptions, Filipovic et al. [Fil+10a] showed
that linearizability and contextual refinement coincide. Recently, Murawski and

Tzevelekos [MT19] proposed a notion of linearizability for a programming language

with higher-order functions, and they also proved that their notion of linearizability

is sound, that is, that it implies contextual refinement. To the best of our knowledge,

no sound notion of linearizability has been developed for the very rich programming

language we consider (with higher types, abstract types, general references, and

fork-based concurrency), so instead of using linearizability, we follow the approach

of Turon et. al., and show contextual refinement directly [Tur+13b].

Turon et. al. showed how the proof technique of logical relations can be used to

prove contextual refinement of fine-grained concurrent data structures [Tur+13b].

They also gave pen-and-paper proofs of contextual refinement for a simplified variant

of the MS-queue. Here we present a mechanized proof of contextual refinement for

the original MS-queue. This is more challenging, since proving refinement for it

requires, among other things, the use of prophecy variables. The implementation of

the MS-queue for which we prove refinement is faithful to the original, in the sense

that we do not simplify or change it.

To carry out the proof we use ReLoC [FKB20b], a logic for reasoning about

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 21

contextual refinement defined on top of Iris, a state-of-the-art higher-order con-

current separation logic framework [Jun+18a]. Our mechanization uses the Coq

implementations of ReLoC and Iris and the proof mode for Iris [Kre+18; KTB17a].

A key insight in our proof is to use a notion of reachability as a unifying concept

that concisely captures both the roles of the nodes in the MS-queue, the protocol for

how the queue may be modified, and the invariants that the queue maintain. This is

arguably simpler than the approach used in [Tur+13b].

Like many data structures, the MS-queue contains locations that are never

mutated after a certain point. To further simplify our proof we thus extend separation

logic, in particular Iris, with better support for reasoning about locations that never

change, by representing them as immutable pointers in the logic. To explain what

this means at a high level, recall the points-to predicate ℓ ↪→ v, which has been

present in separation logic since its inception for reasoning about shared mutable
state [Rey02]. The points-to predicate denotes ownership over location ℓ and the

knowledge that ℓ points to the value v. It has been generalized to the fractional
points-to predicate ℓ ↪→q v where one can own a fraction, q ∈ (0, 1]∩Q, of a points-

to predicate [Bor+05; Boy03]. Changing a pointer is only possible when q = 1,
whereas reading a location is possible with any fraction. This makes it possible

to split access to a location and later reassemble it for further mutation. One can
existentially quantify over the fraction (∃q.ℓ ↪→q v) which makes it impossible to

reassemble the entire fraction. This predicate, however, is only duplicable whereas
we seek a predicate that is persistent—a strictly stronger notion [BB18]. Hence neither
of these existing points-to predicates gives a satisfying way to reason about locations

that arrive at a final value, after which they never change. To support reasoning

about such locations, we generalize the points-to predicate further and introduce a

persistent points-to predicate, ℓ ↪→� v. In contrast to the beforementioned points-to

predicates, our new persistent points-to predicate does not represent ownership

over a resource; it only denotes the knowledge that ℓ always points to v. Since this
predicate is persistent in the Iris-technical sense, it satisfies additional properties

in comparison to the standard (fractional) points-to predicate and reasoning about

immutable locations therefore becomes simpler when this predicate is used. We show

that one can obtain a persistent points-to predicate by generalizing the notion of

fractional permissions to one that allows discarding a fraction. One can then discard

a fraction of the fractional points-to predicate and obtain a persistent points-to

predicate; intuitively this makes sense since changing a location requires the entire

fraction of the points-to predicate.

In summary, we make the following contributions:

• We show how the invariants maintained by the MS-queue can be expressed in

a simple and unifying way by a notion of reachability.

• We show that a faithful implementation of the original MS-queue contextually

refines a coarse-grained queue.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 22

· · ·

ℓ→s

x1 xnℓs

ℓ→t

ℓs→ ℓn ℓn→ ℓl ℓl→− xn-1ℓt ℓt→ ℓnil

Figure 2.2: The MS-queue consists of a singly linked list. Here the tail pointer is

lagging as it points to the second to last node.

• We extend separation logic (Iris and ReLoC in particular) with a persistent

points-to predicate and demonstrate how it simplifies reasoning about the

MS-queue.

• We show how the persistent points-to predicate and its associated proof rules

can be defined and proven entirely inside the Iris base logic.

• To define the persistent points-to predicate we construct two novel resource

algebras. The resource algebra of discardable fractions, which generalizes

the well-known notion of fractions in separation logic, and the authoritative

resource algebra with projections.

• Based on our formal proof, we discover that the use of consistent snapshots
in the MS-queue is not necessary for the correctness of the algorithm in a

garbage collected language.

• Finally, we use the same approach based on reachability to prove refinement for

a variant of theMS-queue resembling the one used in the java.util.concurrent
library.

All our results are formalized in Coq and we have extended the Coq implementation

of Iris and ReLoC to support the persistent points-to predicate [VB20].

Outline We explain the fine-grained MS-queue algorithm and its implementation

in Section 2.2 and then proceed to describe the structure of a refinement proof in

ReLoC in Section 2.3, where we also present the coarse-grained queue that serves as

a specification. The persistent points-to predicate and its proof rules are introduced

in Section 2.4. Here we also further motivate why we seek a points-to predicate

that is persistent and not merely duplicable. In Section 2.5 we detail the key ideas of

the refinement proof and the invariant used. In Section 3.5 we present the actual

refinement proof. In Section 2.7 we observe that the so-called consistent snapshots

used in the MS-queue can be omitted without compromising the correctness of

the algorithm, and in Section 2.8 we quickly comment on how we have used the

same proof technique to prove refinement for a variant of the MS-queue. Finally, in

Section 2.9 we detail how the persistent points-to predicate and its properties are

actually defined and proved in the Iris base logic, by introducing two novel resource

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 23

τ ::= α | 1 | bool | int | τ × τ | τ + τ | τ → τ
| ∀α.τ | ∃α.τ | µα.τ | ref τ

v ::= i ∈ Z | ℓ ∈ Loc | true | false | (v, v) | inj1 v | inj2 v
| rec f(x) = e | Λ.e | pack v | fold v

e ::= x | v | if e then e else e | (e, e) | π1 e | π2 e | inj1 e | inj2 e
| match e with inj1 x⇒ e | inj2 x⇒ e | e e | e⟨⟩
| pack e | unpack e in x.e | fold e | unfold e
| ref e | !e | e← e | CAS(e, e, e) | fork {e} | . . .

Syntactic sugar

Option τ ≜ 1 + τ none ≜ inj1 1 some v ≜ inj2 v

λx. e ≜ rec _ x = e let x = e1 in e2 ≜ (λx. e2) e2

Figure 2.3: Syntax of the types and terms of HeapLang.

algebras. While we do recall the notion of a resource algebra, some familiarity with

the Iris notion of resource algebras is probably needed to understand the details of

(only) this section. We end by discussing related work in Section 3.8.

2.2 The MS-Queue

As depicted in Figure 2.2, the MS-queue consists of a singly linked list that contains

the values (x1, . . . , xn in the figure) in the queue. The first node (ℓs) is called the

sentinel and its content is not a value in the queue. The queue maintains two pointers,

the sentinel pointer (ℓ→s), which points to the sentinel, and the tail pointer (ℓ→t), which

points to the tail (ℓt). The tail is either equal to the last node (ℓl) or the second to

last node. In the latter case, we say that the tail pointer is lagging behind. Note that
ℓt = ℓl when the tail pointer is not lagging behind.

We adopt the following naming convention: If ℓn is a location representing a

node, then a location pointing into that node is denoted ℓ→n and the location pointing

out from that node to the next node is denoted ℓn→. If ℓn is a node and ℓm its successor,

then the pointer between the nodes can be denoted both ℓn→ or ℓ→m depending on

the circumstances.

The implementation of the MS-queue is shown in Figure 2.7. It is written in

HeapLang, a language included in themechanization of Iris andwhich ReLoC extends

with a type system to facilitate refinement proofs. The syntax of the language is

presented in Figure 4.1, it is a λ-calculus with impredicative polymorphism, iso-

recursive types, higher-order store, and thread-based concurrency. The language

and its type system are standard; further details can be found in [FKB20b].

We have kept our implementation as faithful as possible to the original im-

plementation. In order to emphasize this, we have annotated the code with line

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 24

numbers in direct correspondence with the line numbers in Michael and Scott’s

original code [MS96b]. All differences are minor and stem from inherent differences

between HeapLang and the C-like language used in the original.

Initialization The queue
MS

function is the constructor for the queue and the

entry point to the implementation. It uses a type abstraction, Λ, such that the queue

is generic in the type of elements that it stores. This lambda also serves to ensure

that the internal state of the queue is encapsulated in a closure. The initialization

allocates an initial node, a sentinel pointer, and a tail pointer. The latter two points

to the initial node. A newly constructed queue is illustrated in Figure 2.4.

A node is a pointer to either none or some of a pair of a value and a pointer to

the next node. The pointer serves to make nodes comparable by pointer equality

such that pointers to nodes can be changed with CAS.
Since there is no value to put in the initial sentinel, which queue

MS
must construct,

none is used. All other nodes contain an actual value v and hence contains some v.
Thus we often need to get the value of an Option which is known to be a some. This
is the purpose of the getValue function.

Dequeue Dequeue reads the sentinel pointer and then the pointer to the sentinel’s

successor. If no successor exists the queue is empty and none is returned. If a

succeeding node is found, dequeue attempts to change the sentinel pointer to the

succeeding node with CAS. If the CAS is successful, the value in the new sentinel is

returned. If the CAS is unsuccessful the operation is restarted. Figure 2.5 shows how

successfully dequeuing an element from a non-empty queue swings the sentinel

pointer forward.

The implementation contains prophecy annotations on line D4b and D5. These

do not affect the execution of the program and can be ignored for now.

Enqueue Enqueue constructs a new node with the value that is to be enqueued. It

then reads the tail pointer and obtains a node that may be the last. To determine if it

is, enqueue checks whether or not the node has a successor. If a successor exists the

tail pointer is lagging behind, and enqueue attempts to move the tail pointer forward

with a CAS after which it restarts. If no successor exists then the node is currently

the last. By means of a CAS enqueue then attempts to change the outgoing pointer

of the node such that it points to the new node. If the CAS is successful, the tail

pointer now lags behind, and enqueue attempts to advance the tail pointer to the

new node. If, on the other hand, the CAS is unsuccessful, the operation restarts, and

the tail pointer is read anew. Figure 2.6 illustrates how a successful enqueue inserts

a new node and then swings the tail pointer forward.

Highlights We highlight a few aspects of the MS-queue that are of particular

interest in terms of the verification.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 25

ℓ→s

ℓs

ℓ→t

ℓs→−

Figure 2.4: A newly constructed queue.

· · ·

ℓ→s

xnℓs

ℓ→t

ℓs→ ℓn ℓn→−

CAS

Figure 2.5: dequeue on the MS-queue.

· · ·

ℓ→s

xn

ℓ→t

ℓt ℓt→

xn′ℓt′ ℓt′→

1. CAS

2. CAS

Figure 2.6: enqueue on the MS-queue.

On D6 the sentinel and tail are compared to each other. This is a rather indirect

way of checking whether or not the queue is empty. If they are equal the queue

is either empty or the tail pointer lags behind. Otherwise, the else branch on line

D13 assumes that the queue is guaranteed to be non-empty. In our proof, we must

formalize why this assumption is correct.

On line D5, a so-called consistent snapshot is performed: the value of toSent read
on line D2 is compared to a newly read value of toSent. This ensures that toSent has
not changed in the meantime and is intended to ensure that the values of tail and
next are consistent. Similarly, enqueue performs a consistent snapshot on line E7.

Line D7 checks whether the next node is none or not. If it is not, then the tail

pointer is lagging behind because an unfinished enqueue operation has not yet

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 26

updated it. Dequeue then attempts to update the tail pointer on D10. Likewise, on

E13 enqueue also detects a lagging tail and attempts to update it. These are instances

of helping, a pattern where the execution of one operation helps another.

As we will see, a contextual refinement proof for a fine-grained concurrent

data-structure involves finding its linearization points. It is fairly clear that enqueue’s
linearization point is the CAS on E9 and that dequeue has a linearization point on

line D13. What is less obvious is that when dequeue finds the queue empty and

returns none on D8, its linearization point is at the load on D4c. However, line D4c is

only a linearization point if next points to none and if the consistent snapshot on the

next line succeeds. Because of this, it was conjectured by Morten Krogh-Jespersen
1

that one would need some kind of prophecy variables to reason about this; and

indeed, in our proof, to know whether or not the check on the next line succeeds we

use the recently introduced prophecy variables of Iris and ReLoC.

2.3 Structure of a Refinement Proof

In this section, we describe how to carry out a refinement proof of a fine-grained

concurrent data-structure such as the MS-queue using ReLoC. We first consider the

ingredients that such a proof consists of.

Persistently modality Iris has a persistently modality � and �P means that

P always holds. A proposition P is per definition persistent if P ⊢ �P , i.e., if one
from P alone can show that P always holds. Therefore persistent propositions

represent knowledge. Propositions that are not persistent are called ephemeral—they
represent ownership over resources. To show a goal of the form �P one can only

use persistent assumptions (persistent-� in Figure 2.8). The intuition being that to

show that something always holds one can only depend on other facts that always

hold.

Specification In a proof of refinement, the specification should be a simple imple-

mentation of the same interface that the implementation is intended to implement.

As mentioned in the Introduction, our specification is a coarse-grained concurrent

queue, implemented using a pointer to a functional list and where the operations

are guarded by a lock, which is included in ReLoC. The official definition of the

coarse-grained queue is given in Figure 2.9; the version shown in the Introduction

used a modicum of syntactic sugar.

Refinement judgment To prove a contextual refinement ReLoC offers a refine-
ment judgment |= e1 ≾ e2 : τ which denotes that e1 refines e2 at the type τ . The
ReLoC soundness theorem states that if such a judgment holds inside the logic,

then the corresponding contextual refinement holds in the surrounding meta-logic.

1

When he attempted to verify the MS-queue in 2014 using the iCap logic, a precursor to Iris.

Private communication.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 27

getValue x ≜ match x with none⇒ () () | some v ⇒ v

1: queue
MS
≜ Λ.

2: let node = ref (some(none, (ref (ref none))))
3: tail = ref node
4: sent = ref node
5: in (dequeue

MS
sent tail, enqueue

MS
tail)

D1: dequeue
MS

toSent toTail ≜ rec loop () =
D2: let sent = !toSent
D3: tail = !toTail
D4a: toNext = π2 (getValue !sent)
D4b: p = NewProph
D4c: next = !toNext in
D5: if sent = Resolve(!toSent, p, ()) then
D6: if sent = tail then
D7: match !next with
D8: none⇒ none
D10: some _⇒ CAS toTail tail next; loop ()
D11: else
D13: if CAS toSent sent next
D14: then some (getValue(π1(getValue !next)))
D15: else loop ()
D16: else loop ()

enqueue
MS

toTail x ≜
E1-E3: let node = ref (some (some x, ref (ref none))) in
E4: (rec loop() =
E5: let tail = !toTail
E6a: toNext = π2 (getValue !tail)
E6b: next = !toNext in
E7: if tail = !toTail then
E8: match !next with
E9: none⇒ if CAS toNext next node
E17: then CAS toTail tail node; ()
E11: else loop ()
E13: some _⇒ CAS toTail tail next; loop ()
E14: else loop ()) ()

Figure 2.7: Implementation of the MS-queue in HeapLang.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 28

�-sep-and

�(P ∧Q)

�(P ∗Q)

�-exists

∃x.�P

�∃x. P

persistent-�
P persistent P ⊢ Q

P ⊢ �Q

inv-alloc

P

|⇛E E P
ι

löb

Q ∧ ▷P ⊢ P
Q ⊢ P

Structural rules
rel-return

JτK∆(v1, v2)
∆ |= v1 ≾ v2 : τ

rel-tlam

∀R :Val×Val→ iProp. �
(
[α := R] ,∆ |= e1 ≾ e2 : τ

)
∆ |= Λ.e1 ≾ Λ.e2 : ∀α.τ

rel-pair

∆ |= e1 ≾ e2 : τ ∆ |= e′1 ≾ e
′
2 : σ

∆ |= (e1, e
′
1) ≾ (e2, e

′
2) : τ × σ

rel-rec

�
(
∀v1, v2. JτK∆(v1, v2) −∗ ∆ |= (rec f1(x1) = e1) v1 ≾ (rec f2(x2) = e2) v2 : σ

)
∆ |= (rec f1(x1) = e1) ≾ (rec f2(x2) = e2) : τ → σ

Symbolic execution rules

rel-pure-r

e2
pure
⇝ e′2 ∆ |=E e1 ≾ K[e′2] : τ

∆ |=E e1 ≾ K[e2] : τ

rel-load-r

ℓ ↪→s v ℓ ↪→s v −∗ ∆ |=E e1 ≾ K[v] : τ

∆ |=E e1 ≾ K[! ℓ] : τ

rel-store-r

ℓ ↪→s − ℓ ↪→s v −∗ ∆ |=E e1 ≾ K[()] : τ

∆ |=E e1 ≾ K[ℓ← v] : τ

Rules for prophecy variables

rel-newproph-l

∀v, p.Proph1(p, v) −∗ ∆ |= K[p] ≾ e2 : τ

∆ |= K[NewProph] ≾ e2 : τ

rel-resolveproph-l

Proph1(p, v) wp e {u. v = (u,w) −∗ ∆ |=E K[v] ≾ e2 : τ}
∆ |= K[Resolve(e, p, w)] ≾ e2 : τ

Figure 2.8: Selected rules from ReLoC (some are simplified for the sake of presenta-

tion).

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 29

dequeue′
CG

list ≜
match ! list with
none⇒ none
some p⇒ list← (π2 p); some (π1 p)

dequeue
CG

lock list () ≜
acquire lock; let v = dequeue′

CG
list in release lock; v

enqueue′
CG
≜ rec loop x list =

match list with
none⇒ some (x, none)
some p⇒ some (π1 p, loop x (π2 p))

enqueue
CG

lock list x ≜
acquire lock; list← enqueue′

CG
x ! list; release lock

queue
CG
≜ Λ.

let lock = newlock ()
list = ref none in

(λ_. dequeue
CG

lock list (), λx. enqueue
CG

lock list x)

Figure 2.9: Implementation of the coarse-grained queue.

ReLoC provides high-level rules for working with these refinement judgments that

result in simpler proofs than other approaches (e.g.,directly using logical relations).

The structural rules apply when each side of the refinement is of the same syntactic

form—it then suffices to show refinement of the sub-expressions that constitute the

constructions. One such rule is rel-pair, which states that to show that two pairs

are related it suffices to show that they are pair-wise related. Note that to show that

two functions are related, using rel-rec, one must do so persistently, that is, without

relying on any ephemeral resources. This is because a context could call a function

an arbitrary number of times, and thus the functions must always be related at any

point in the future.

When the two sides of the refinement are not of the same syntactic form, one

must use symbolic execution rules to step either side forward. Note that the i and s in
the points-to predicates denote if they are for the implementation or the specification.

Invariants As mentioned, to show that two functions are related one can only

use persistent propositions. Non-persistent propositions can be made persistent by

establishing an invariant using the rule inv-alloc. The proposition P
ι
denotes

knowledge of an invariant with the name ι and is persistent even if P is not. During

a refinement proof, one can open an invariant around a single atomic expression

e on the left-hand side. The contents of the invariant can be used to symbolically

execute e, but, afterward it is an obligation to close the invariant by showing that it

still holds. Crucially this restriction does not apply to the right-hand side, here it

is allowed to take several steps of symbolic execution with an invariant open. The

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 30

ICG(ℓcg, lk , xs) ≜ ℓcg ↪→s isList(xs) ∗ isLocked(lk , False)
isList([]) ≜ none

isList(x :: xs) ≜ some (x, isList(xs))

deqeueCG-nil-r

ICG(ℓcg, lk , []) ICG(ℓcg, lk , []) −∗ ∆ |=E e1 ≾ K[none] : τ

∆ |=E e1 ≾ K[dequeue
CG

lk ℓcg ()] : τ

deqeueCG-cons-r

ICG(ℓcg, lk , x :: xs) ICG(ℓcg, lk , xs) −∗ ∆ |=E e1 ≾ K[some x] : τ

∆ |=E e1 ≾ K[dequeue
CG

lk ℓcg ()] : τ

enqeueCG-r

ICG(ℓcg, lk , xs) ICG(ℓcg, lk , xs ++ [x]) −∗ ∆ |=E e1 ≾ K[()] : τ

∆ |=E e1 ≾ K[enqueue
CG

lk ℓcg x] : τ

Figure 2.10: Right-hand side relational specification for the coarse-grained queue.

way the above restrictions are enforced is rather technical, so we omit the details,

but note that the modality |⇛ is used to denote when invariants can be opened.

Linearization points During a refinement proof, one must maintain a link be-

tween the state of the implementation and the specification such that upon termi-

nation one can show that the two values are related. For a fine-grained concurrent

data-structure, such as the MS-queue, operations “take effect” at specific points,

namely the linearization points. At these points, the specification should be sym-

bolically executed from start to end; this is possible even while an invariant is open

per the above. To this end we use the rules for the coarse-grained queue shown in

Figure 2.10; these are easy to prove using the lock specification that ReLoC includes,

and our definition of the representation predicate ICG for the coarse-grained queue,

also shown in the figure. The representation predicate states that the physical state

of the coarse-grained queue (the pointer to a list and the lock) corresponds to a

logic-level sequence.

Prophecy variables For the MS-queue in particular we also need prophecy vari-
ables. These are a recent addition to Iris and ReLoC [FKB20b; Jun+20b]. Recall how

the load at D4c may be a linearization point depending on the result of the load

on the next line, D5. Hence, when we symbolically execute the load at D4c we

need to know the result of a future expression. This is what prophecy variables

make possible. They rely on code annotations, which do not affect the execution

of the program but aids in reasoning. A prophecy is created with NewProph and

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 31

Mapsto-intro-�
ℓ ↪→q

i v

|⇛ℓ ↪→�
i v

Mapsto-agree-�
ℓ ↪→�

i v ℓ ↪→�
i v′

v = v′

persistent

ℓ ↪→�
i v

� ℓ ↪→�
i v

Ht-load-�

{ℓ ↪→�
i u} !ℓ{v.v = u}

rel-load-r-�
ℓ ↪→□i v ∆ |= K[v] ≾ e2 : τ

∆ |= K[! ℓ] ≾ e2 : τ

rel-cas-l

|⇛⊤ E ∃v.

(
v ̸= v1 −∗
(ℓ ↪→□i v ∗∆ |=E K[false] ≾ e2 : τ) ∨
∃q. (ℓ ↪→q

i v ∗
(ℓ ↪→q

i v −∗ ∆ |=E K[false] ≾ e2 : τ))
)
∧(

v = v1 −∗
(ℓ ↪→i v ∗ (ℓ ↪→i v2 −∗ ∆ |=E K[true] ≾ e2 : τ))

)

∆ |= K[CAS(ℓ, v1, v2)] ≾ e2 : τ

Figure 2.11: Rules for the persistent points-to predicate.

per rel-newproph-l it results in a resource Proph1(p, v) where p is the name of the

prophecy and v is a value. Intuitively, v is equal to the value which the prophecy is

eventually resolved to. A prophecy is resolved with an atomic prophecy resolution:
Resolve(e, p, w). This expression behaves computationally exactly as the atomic

expression e. Its rule rel-resolveproph-l requires Proph1(p, v), and hence one can

think of this resource as giving one the right to resolve the prophecy. It then states

that v is equal to (u,w) where u is that value that e evaluates to. In our case we

create a prophecy at D4b, hence at this point we get a value v that can be thought of

as the result of the future expression !toSent.
Given these ingredients, the overall structure of a refinement proof is: (a) Decide

on a specification and prove right-hand side lemmas for each operation (Figure 2.10

in our case). (b) Define an invariant that relates the state of the specification to that

of the implementation (Section 2.5) (c) Use symbolic execution rules to step through

the initialization of each side. (d) Establish the invariant and use structural rules to

get the goals to show that each operation is related. (e) Show that each operation is

related by using the invariant; at each linearization point apply the corresponding

lemma for the specification.

2.4 Persistent Points-To Predicate

Consider the depiction of the MS-queue in Figure 2.2 on page 22. All the pointers,

except ℓ→s, ℓ→t, and ℓl→, are never changed, and, once ℓl→ is changed it is never

changed again. As we will see, expressing precisely which parts of the MS-queue

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 32

change, and which do not, is central to our approach. Since data-structures with

locations that are or become immutable are common, it makes sense to develop

a generally applicable tool for reasoning about immutable pointers. To this end,

we introduce the persistent points-to predicate, denoted ℓ ↪→□i v as mentioned in

the Introduction. In contrast to the normal points-to predicate, which allows for

mutation but no sharing, the persistent points-to predicate allows for free sharing

but no mutation.

The reader may wonder whether there is an already existing alternative to a new

persistent points-to predicate. Perhaps ∃q. ℓ ↪→q
i v? This predicate, however, is only

duplicable whereas we want a points-to predicate that is persistent. This is because

persistence is a strictly stronger notion and persistent propositions enjoy additional

properties. The persistent modality commutes with all the logical connectives (e.g.,�-

exists) and under it conjunction and separating conjunction coincides (�-sep-and).

Hence persistent propositions form a sublogic with non-substructural properties.

This is not the case for duplicable propositions: for instance, ℓ ↪→ v is not duplicable
but ∃q.ℓ ↪→q v is. Persistent propositions are utilized to great effect in the Coq

mechanization of Iris, see [KTB17a].

Maybe one could remedy this issue by wrapping the existentially quantified

fractional points-to predicate in an invariant, that is, use ∃q.ℓ ↪→q v
ι
? This would

result in a persistent predicate, but, we want a persistent points-to predicate that

can be used as a normal points-to predicate, including being put inside invariants,

and with this definition, we would be led to nested invariants. And while Iris does

support nested invariants, reasoning about such would involve the later modality

and, as a result, it would make the use of the persistent points-to predicates more

restrictive.

Other approaches to modeling immutable locations exist, e.g., one may use a

combination of invariants and additional ghost state, as done in [KTB17a], but this

approach is more complex and our points-to predicate would have simplified the

proofs in [KTB17a].

A selection of the rules for the persistent points-to predicate is shown in Fig-

ure 2.11. Since the persistent points-to predicate represents locations that never

change, it is persistent (persistent). Given any fraction of a normal points-to pred-

icate, one can obtain a persistent points-to predicate (Mapsto-intro-�)—one can
think of the fractional points-to predicate as being discarded in exchange for a per-

sistent points-to predicate. The modality |⇛ is there because discarding the fraction

requires updating ghost state. Persistent points-to predicates for the same location

must point to the same value (Mapsto-agree-�). Finally, the predicate can be used

for read-only operations, such as loading a pointer (Ht-load-�).

In Section 2.9 we show how to define the persistent points-to predicate and

derive its rules entirely within the Iris base logic. This automatically guarantees

soundness of the rules. We have additionally extended the Coq formalization of

Iris and ReLoC to support the persistent points-to predicate as seamlessly as they

support the normal points-to predicate. Among other things, this means that the

tactics in the proof mode automatically use the persistent points-to predicate when

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 33

possible.

The last rule in Figure 2.11, rel-cas-l, is an improved version of a corresponding

rule in ReLoC [FKB20b]. It now allows using the persistent points-to predicate

to show that a failed CAS is safe. This makes sense since it is sufficient to have

read-only access to a location as long as one is not actually successful in mutating it.

The other change to the rule is in the ordering of connectives. This change is subtle

but makes the rule more complete. The original rule for CAS in ReLoC is structured

as

∃v. ℓ ↪→i v ∗ ((v ̸= v1 −∗ . . .) ∨ (v = v1 −∗ . . .))

whereas our rule allows one to first offer a witness v, then assume either v = v1 or
v ̸= v1, and then use this (in)equality to show the points-to predicate. This turns out

to be essential in the proof of refinement of enqueue.

2.5 Invariant for the Refinement Proof

We now present the invariant used in the refinement proof.

2.5.1 Reachability

A key insight of our approach is how the invariants that the MS-queue maintains can

be expressed in terms of which nodes are reachable from other nodes. Reachability

is expressed with an inductive predicate:

ℓn ; ℓm ≜ ∃ℓn→, v. ℓn ↪→□i some(v, ℓn→) ∗
(ℓn = ℓm ∨ ∃ℓp. ℓn→ ↪→□i ℓp ∗ ℓp ; ℓm)

It is persistent as the definition uses the persistent points-to predicate to express

that the sequence of nodes is immutable.

Reachability is a preorder on nodes in the sense that for all ℓn and ℓm:

ℓn ↪→□i some (v, ℓn→) ∗−∗ ℓn ; ℓn (reachable-reflexive)

ℓn ; ℓm −∗ ℓm ; ℓo −∗ ℓn ; ℓo (reachable-transitive)

Note, that ℓn ; ℓn is not trivial, it implies that ℓn is actually a node, in the sense

that it points to some of a pair. More generally, ℓn ; ℓm implies that both ℓn and

ℓm are nodes.

2.5.2 Abstract Reachability

A crucial property of the MS-queue is that the sentinel and tail pointers are only

moved forward to succeeding nodes. Additionally, the linked list is never mutated

except when new nodes are added at the very end. This implies that if a node can

reach the current sentinel, tail, or last node then it can reach any future sentinel, tail,
or last node.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 34

abs-reach-alloc

ℓn ; ℓn

∃γn. γn Z⇒ ℓn ∗ ℓn 99K γn

abs-reach-concr

ℓn 99K γm γm Z⇒ ℓm

ℓn ; ℓm ∗ γm Z⇒ ℓm

abs-reach-abs

ℓn ; ℓm γm Z⇒ ℓm

|⇛ (ℓn 99K γm ∗ γm Z⇒ ℓm)

abs-reach-advance

γm Z⇒ ℓm ℓm ; ℓo

|⇛(γm Z⇒ ℓo ∗ ℓo 99K γm)

Figure 2.12: Rules for abstract reachability.

To model this we use three ghost variables, γs, γt, and γl, as abstract nodes that
give fixed names to the idea of the “current” sentinel, tail, and last node respectively.

We then introduce abstract reachability, ℓn 99K γm, capturing that the physical node
ℓn can reach the abstract node γm. To realize this intention, our invariant will tie
the three abstract nodes to the locations that are currently the sentinel, tail, and last

nodes. This is done using a predicate γn Z⇒ ℓm representing that the abstract node

γn is currently tied to the physical node ℓm.

These predicates satisfy the rules given in Figure 2.12. The first rule serve as

an introduction rule for abstract reachability. The second and third rule state that

given γm Z⇒ ℓm one can go from ℓn ; ℓm to ℓn 99K γm, and vice versa. The last

rule makes it possible to change which physical node an abstract node is tied to as

long as the new node is reachable from the current node.

For the reader familiar with Iris resource algebras we remark that the above can

be realized using the resource algebra Auth(P(Loc)) and the following definitions:

ℓn 99K γm ≜ ◦{ℓn}
γm

γn Z⇒ ℓn ≜ ∃s. •s
γn ∗∗

ℓm∈s
ℓm ; ℓn

Here P(A) denotes the resource algebra of sets of A, with union as the operation,

and the core being the identity function.

2.5.3 The Invariant

The top-level invariant in Figure 2.13 is parameterized by a value relation, τi, and the
values that the implementation and specification consist of. It states the existence

of two mathematical lists xsi and xss that, through IMS and ICG, are related to the

physical representation of each queue. The big separating conjunction relates the

lists pair-wise by τi. This way of relating the implementation and specification

is arguably simpler than the approach used in [KTB17a; Tur+13b], which would

have intermingled the physical representations of the two queues with the pair-wise

relatedness of the elements in the queues.

ICG is as previously seen and IMS states the existence of ℓs, ℓt, and ℓl and ties the

abstract nodes to these. It contains the points-to predicates for the three mutable

locations in the queue. It states that the sentinel can reach the abstract tail: ℓs 99K γt.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 35

Top-level invariant
I(τi, ℓ→s, ℓ→t, ℓcg, lk) ≜ ∃xs i, xss.

IMS(ℓ→s, ℓ→t, xs i) ∗ ICG(ℓcg, lk , xss) ∗∗
(xi,xs)∈(xsi,xss)

τi(xi, xs)

Invariant for the MS-queue
IMS(ℓ→s, ℓ→t, xs i) ≜ ∃ℓs, ℓs→, ℓt, ℓt→, ℓl, ℓl→.

ℓ→s ↪→i ℓs ∗ ℓ→t ↪→i ℓt ∗ isQueueMS
(ℓl→, ℓs→, xsi) ∗

γs Z⇒ ℓs ∗ ℓs ↪→□i some (−, ℓs→) ∗ ℓs 99K γt ∗
γt Z⇒ ℓt ∗ ℓt ↪→□i some (−, ℓt→) ∗ ℓt 99K γl ∗
γl Z⇒ ℓl ∗ ℓl ↪→□i some (−, ℓl→) ∗ ℓl→ ↪→i ℓn ∗ ℓn ↪→□i none

isQueue
MS

(ℓl→, ℓ→n, []) ≜ ℓl→ = ℓ→n

isQueue
MS

(ℓl→, ℓ→n, x :: xs) ≜ ∃ℓn, ℓn→.
ℓ→n ↪→□i ℓn ∗ ℓn ↪→□i some (some x, ℓn→) ∗
isQueue

MS
(ℓl→, ℓn→, xs)

Figure 2.13: The invariant and auxiliary definitions.

This knowledge is key to proving the else branch in dequeue starting on line D13,

which we previously discussed. In fact, the reason why the check on D6 ensures that

the queue is empty is exactly that the tail pointer can not fall behind the sentinel

pointer. Additionally, ℓt 99K γl ensures that the tail can reach the abstract last node.

Finally, isQueue
MS

relates the linked list to the mathematical list xsi.
Note how the only non-persistent things in IMS are the three points-to predicates

and the resource tieing the abstract nodes to the physical nodes. Clearly, these can

not be persistent. Hence, our invariant precisely captures and separates the changing

parts of the MS-queue from the unchanging parts.

Before moving on to the refinement proof, we demonstrate how the invariant

and abstract reachability is used by proving a lemma which is to be used whenever

the MS-queue attempts to swing the tail pointer forward.

Lemma 2.5.1. Swing tail pointer forward.

I(. . .)
ι

ℓn ; ℓm ∀v. |= K[v] ≾ e : α

|= K[CAS ℓ→t ℓn ℓm] ≾ e : α

Proof. We apply rel-cas-l and open the invariant. Since the invariant contains

ℓ→t ↪→ ℓt for some ℓt we offer the witness ℓt. If the CAS fails we can simply close

the invariant again. If the CAS succeeds we know that ℓn = ℓt and we now get

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 36

ℓ→t ↪→ ℓm. When we close the invariant we supply ℓm as the witness for ℓt. To do
that we have to show

γt Z⇒ ℓm ∗ ℓm ↪→□i some (−, ℓm→) ∗ ℓm 99K γl

The middle conjunction follows from ℓn ; ℓm. We have γt Z⇒ ℓn and ℓn ; ℓm
which per the last rule in Figure 2.12 gets us the rest.

2.6 Refinement Proof of the MS-Queue

We now prove that the MS-queue contextually refines the coarse-grained queue:

|= queue
MS
≾ queue

CG
: ∀α.(1→ Option α)× (α→ 1)

Since both queue
MS

and queue
CG

are type abstractions we apply rel-tlam to show

that in a context extended with α interpreted using any value relation R. We

symbolically execute the code on the left-hand side to the resources:

ℓnil ↪→i none ∗ ℓs→ ↪→i ℓnil ∗
ℓs ↪→i some(none, ℓs→) ∗ ℓ→s ↪→i ℓs ∗ ℓ→t ↪→i ℓs

From stepping through the right-hand side we get

ℓlist ↪→s none ∗ isLocked(lk , False).

Together with abs-reach-alloc this is enough to establish the invariant. We thus

now have I(τi, ℓ→s, ℓ→t, ℓcg, lk)
ι
in the context.

Both sides step to a pair and we apply the structural rule rel-pair. We are then

required to show that the fine-grained dequeue and enqueue are logical refinements

of their coarse-grained counterparts. We do this in the next two sections.

2.6.1 Dequeue

We are to show the logical refinement:

[α := R] |= dequeue
MS
ℓ→s ℓ→t ≾ dequeue

CG
lk ℓCG : 1→ Option α.

Since both sides are functions we use rel-rec and have to show that for any two

values v1 and v2, where J1K∆(v1, v2), it is the case that the left-hand side applied to

v1 is related to the right-hand side applied to v2. Since v1 and v2 are related at the

type 1 they must both be equal to the unit value (). Hence we are to show

[α := R] |= dequeue
MS
ℓ→s ℓ→t () ≾ dequeue

CG
lk ℓCG () : Option α.

As the left-hand side is a recursive function we apply the löb rule. This gives us

the induction hypothesis that the refinement holds for any recursive calls. We then

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 37

apply structural rules to symbolically execute the left implementation until we arrive

at the first load:

sent = !ℓ→s

The yellow background indicates the expression currently being symbolically exe-

cuted and which we open the invariant around. We open the invariant and from the

points-to predicate for ℓ→s we know that the load steps to some ℓs and that we can

assume the following persistent propositions for some ℓs→ and v:

ℓs ↪→□i some (v, ℓs→) ∗ ℓs 99K γs ∗ ℓs 99K γt ∗ ℓs 99K γl (2.1)

On the next line, the tail is loaded.

tail = !ℓ→t

By opening the invariant, we can conclude that the load evaluates to some ℓt. We

know that ℓs can reach the current tail (ℓs 99K γt in Equation (2.1)) and that ℓt is the
current tail (γt Z⇒ ℓt from the invariant) hence per abs-reach-concr we get ℓs ; ℓt.

On the next line (D4a) ℓs is read:

toNext = π2 (getValue !ℓs)

We can evaluate this, without opening the invariant, using the points-to predicate

from Equation (2.1). Thus, the load evaluates to some (v, ℓs→). With this information,

we can symbolically execute the getValue and the projection.

We then arrive at the creation of the prophecy variable at line D4b. Using rel-

newproph-l we get the prophecy assertion Proph1(p, v). Since the prophecy variable
is resolved with !toSent on line D5, the value v is, intuitively, equal to the result of

that load. Hence, whether or not v is equal to ℓs, determines the outcome of the check

on line D5. If they are equal, we will be able to show that the check succeeds, and

otherwise, the check will fail. We consider these two cases separately. In the latter

case, where v ̸= ℓs, dequeue restarts and we only have to show that the execution

up to the recursive call on the last line is safe. This is straightforward so we consider

only the first case where v = ℓs.
We proceed to the next load on D4c:

next = !ℓs→

This load reads the pointer out of the sentinel. Intuitively, if this leads to none then
the queue must be empty and the pointer read is the mutable pointer that enqueue

MS

may modify. Hence, if this is the case, this is a linearization point and we must then

conclude that the queue is empty.

To do this, we open the invariant and introduce the existentially quantified

locations with the names ℓs, ℓt and ℓl as ℓs′ , ℓt′ and ℓl′ respectively. Using ℓs 99K γs
from Equation (2.1) and abs-reach-concr we can determine that ℓs can reach all

these nodes:

ℓs ; ℓs′ ∗ ℓs ; ℓt′ ∗ ℓs ; ℓl′ (2.2)

Since ℓs can reach ℓl′ they are either equal or ℓs has a successor node which can

reach ℓl′ .

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 38

First case: We have ℓs = ℓl′ . The sentinel read earlier is equal to the current tail.

Then all the nodes in Equation (2.2) reachable from ℓs are reachable from ℓl′ . But, ℓl′

has no successors (ℓl′→ points to none) hence any node it can reach must be itself:

ℓs = ℓt = ℓl′ = ℓs′ (2.3)

Per Mapsto-agree-� this implies that ℓs→ = ℓl′→. We thus find that the pointer being

loaded is ℓl′→ and the points-to predicates

ℓl′→ ↪→i ℓnil ∗ ℓnil ↪→□i none

are in the invariant. Hence the load results in ℓnil.
By combining the above with the following fact

isQueue
MS

(ℓs→, ℓs→, xs) −∗
ℓs→ ↪→i ℓnil −∗ ℓnil ↪→□i none −∗ xs = [].

we conclude that xsi = [] and hence also (from the big separating conjunction in I)
that xss = []. Using xss = [] we can now apply deqeue

CG
-nil-r. After this our goal

is to show the refinement whereK represents the code of dequeue from line D5.

[α := R] |= K[!ℓs→] ≾ none : Option α.

We must show that the left-hand side steps to none which we can do as follows: On

line D5 we know that the check in the if-statement is true since we know that the

prophecy variable is resolved to ℓs. Hence symbolic execution proceeds to line D6

where ℓs is compared to ℓt. From Equation (2.3) we know that these are equal. On

line D7 the location ℓnil is loaded; it points-to none and thus the function returns

none on line D8.

Second case: There exists a node ℓn for which we have

ℓs→ ↪→□i ℓn ∗ ℓn ↪→□i some (v, ℓn→) ∗ ℓn ; ℓl′ .

The load evaluates to ℓn and we close the invariant.

On line D6 the location ℓs is compared to ℓt and we case on whether or not these

locations are equal:

Case ℓs = ℓt: The if-statement succeeds, we step to D7 which loads ℓn and thus

evaluates to a some. Therefore thematch takes the second branch to D10:

CAS ℓ→t ℓt ℓn ; loop ()

Here we apply Lemma 2.5.1, and for the last expression we apply the induction

hypothesis.

Case ℓs ̸= ℓt: We step to D13 where dequeue attempts to swing the sentinel

pointer forward:

if CAS ℓ→s ℓs ℓn

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 39

We know that the CAS is safe since the invariant contains the points-to predicate

ℓ→s ↪→i ℓs′ for some ℓs′ .
If theCAS fails we have not changed anything and can simply close the invariant,

step to D15, and apply the induction hypothesis.

If the CAS succeeds then ℓs = ℓs′ and this is a linearization point. After the

CAS we have ℓ→s ↪→i ℓn. Since ℓs is equal to ℓs′ the pointer out of ℓs′ must be equal

to ℓs→. As such we have isQueue
MS

(ℓs→, ℓl→, xsi) from the invariant for some xsi.
If xsi was [] then ℓs would be equal to the last node, which points to none. But,

this is in contradiction with the knowledge that ℓs is succeeded by ℓn. Hence xsi
cannot be []. Thus there exists xi and xs ′i such that xsi = xi :: xs

′
i; and xs and xs ′s

such that xss = xs :: xs
′
s. For these:

τi(xi, xs) ∗ ∗
(xi,xs)∈(xs′i,xs′s)

τi(xi, xs)

Moreover, xi must be exactly the value in the node ℓn (i.e., v = some xi).
With the knowledge that the list is non-empty we can use deqeue

CG
-cons-r

after which we get ICG(ℓcg, lk , xs′i) and must show the refinement:

[α := R] |=E K[true] ≾ some xs : τ

When we close the invariant we offer ℓn as a witness for the existentially quan-

tified variable ℓs. To do this we must show γs Z⇒ ℓn and ℓn 99K γt—this is fairly
easy.

After theCASwe arrive at D14. We know that the load evaluates to some (somexs, ℓn→).
Hence the entire expression on line D14 steps to some xs and we are to show

[α := R] |=E some xi ≾ some xs : τ

which we can do because we have τi(xi, xs).

2.6.2 Enqueue

To conclude the proof we show refinement of enqueue:

[α := R] |= enqueue
MS
ℓ→t ≾ enqueue

CG
lk ℓlist : α→ 1.

As both sides of the refinement are lambda-values we must show that these are

related when applied to any two values, xi and xs, related by τi.
We first step over the construction of the new node on line E1. This gives us the

resources:

ℓn ↪→i some (some xi, ℓn→) ∗ ℓn→ ↪→i ℓnil ∗ ℓnil ↪→i none

Line E4 is an application of a recursive function. We therefore apply the löb rule

as we did in the proof of dequeue.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 40

To step over the load of ℓ→t on line E5 we open the invariant which contains

the points-to predicate ℓ→t ↪→i ℓt for some ℓt. The load evaluates to ℓt and when we

close the invariant we keep the following persistent knowledge:

ℓt 99K γl ∗ ℓt ↪→□i some (v, ℓt→), (2.4)

for some v and ℓt→. The persistent points-to predicate for ℓt is used for the load

on the next line, E6a. Since its contents match the operations applied to it, we can

symbolically execute the rest of the line, and toNext is assigned to the value ℓt→.

The next line (E6b) loads ℓt→ and we open the invariant again. The invariant

contains γl Z⇒ ℓl for some ℓl. By using abs-reach-concr we get ℓt ; ℓl. We case on

whether or not ℓt is equal to ℓl.

First case, ℓt = ℓl: We rewrite with the equality in the points-to predicate in

Equation (2.4) and get ℓl ↪→□i some (v, ℓt→,). From the invariant we have ℓl ↪→□i
some (v′, ℓl→) and thus, by Mapsto-agree-�, we get ℓt→ = ℓl→. From the invariant

we further have

ℓl→ ↪→i ℓnil ∗ ℓnil ↪→□i none (2.5)

Hence we can conclude that the load evaluates to ℓnil. We close the invariant.

Symbolic execution continues to line E7. On this line ℓ→t is loaded again. We

have already seen how the invariant ensures that such a load is safe. The newly read

value is then compared to the old value read at line E5. If these are not equal symbolic

execution proceeds to line E14 where we can conclude the proof by applying the

induction hypothesis. If they are equal execution proceeds to line E8 where ℓnil is
loaded. We use the points-to predicate from Equation (2.5) and conclude that the

load evaluates to none.
Therefore, the match takes the first branch to the CAS on line E9:

if CAS ℓt→ ℓnil ℓn

To show that the CAS is safe we must have a points-to predicate for ℓt→. We can

open the invariant and get a points-to predicate ℓl′→ ↪→i ℓnil for some ℓl′→. Intuitively,

if the CAS succeeds it is because ℓt→ is still the last node in the linked list and in that

case ℓt→ is equal to ℓl′→.

This is where we apply our novel rel-cas-l, which is quite subtle. This rule asks

us to supply a witness which we must later show that ℓt points-to. To find such a

witness observe that ℓt can reach ℓl′ . If they are equal then ℓt→ is equal to ℓl′→ and

ℓt→ points to ℓnil. If they are not equal then ℓt→ must point to some other node. In

both cases ℓt→ points to something, but in the first case the reasoning relies on the

resource ℓl′→ ↪→i ℓnil. Hence, by giving up this resource we can conclude that there

exists some ℓm such that

∃ℓm→. ℓt→ ↪→□i ℓm ∗ ℓm ↪→□i some (−, ℓm→) ∗ ℓl→ ↪→i ℓnil

∨ ℓt→ ↪→i ℓm ∗ ℓt = ℓl′ ∗ ℓm = ℓnil.
(2.6)

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 41

We offer this ℓm as a witness. We now have two cases corresponding to whether the

CAS fails or succeeds and to the disjunction in rel-cas-l.

CAS succeeds If the CAS succeeds then this is a linearization point. We must

show the full points-to predicate (not just a persistent points-to) for ℓt→, but we only

have the full points-to predicate in one of the disjuncts in Equation (2.6). Fortunately,

from the rule we can assume that ℓm is equal to ℓnil, which points to none. This
leads to a contradiction in the first disjunct in Equation (2.6) which states that ℓm
points to a some. We can therefore assume the last disjunct. This does not only give

us the full points-to predicate we need, it also tells us that ℓt is equal to the current

last node ℓl′ which is important to ensure that our change affects the queue correctly.

Notice the subtlety involving equality, used to conclude that we had the full points-to

predicate. Since we have now changed ℓl′→ we can use isQueue
MS

(ℓl′→, ℓs→, xsi) to
show isQueue

MS
(ℓl′→, ℓs→, xsi ++ [x]). We have changed the last node from ℓt into

ℓn. So we need to change γl Z⇒ ℓt into γl Z⇒ ℓn. Clearly ℓt ; ℓn, so we can use

abs-reach-advance to achieve this.

Since this is the linearization point we use enqeue
CG

-r to step the specification

forward. We then have everything needed to close the invariant.

We continue to E17 where we apply Lemma 2.5.1 to show that the attempt at

advancing the tail pointer is safe. The final expression is then () which matches the

right-hand side at this point.

CAS fails In this case we, can assume that ℓl′ ̸= ℓl. Following the rule rel-cas-l
we have to provide either a persistent or fractional points-to predicate for ℓt→. And

from Equation (2.6) we know that we have one of these. We therefore consider each

case in the disjunction and pick the corresponding case to show. This shows that

the CAS is safe, and since nothing changed, it is trivial to close the invariant again.

Execution steps to E11 where we apply the induction hypothesis.

Second case, ℓt ̸= ℓl: . In this case, the tail pointer was lagging behind when we

read it and there exists a node ℓm for which we have

ℓt→ ↪→□i ℓm ∗ ℓm ↪→□i some (v′, ℓm→) ∗ ℓm ; ℓl.

Hence the load evaluates to ℓm. We close the invariant.

Line E7 is handled as before. The load is safe, and if the two locations are not

equal we apply the induction hypothesis at line E14. If the locations are equal we

proceed to line E8 where ℓm is loaded. Since ℓm points to a some we step to E13. At

E13 we apply Lemma 2.5.1 and then the induction hypothesis.

2.7 Consistent Snapshots Can Be Omitted

Recall the consistent snapshots in dequeue (line D5) and enqueue (line E7). The

consistent snapshots are meant to solve the ABA problem by ensuring that the values

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 42

read are still up-to-date. However, with the insights gained from our formal proof, it

becomes evident that these snapshots are actually not needed for correctness: from

the way we have constructed the invariant we do not need to use the information

gained from these checks. This is because the instance of the ABA problem that the

consistent snapshot solves does in fact not occur in a garbage collected setting. And

since the semantics of the language of our implementation, HeapLang, models a

garbage collected language, we can formally prove that the atomic snapshots are

not needed.

In the Coq formalization of our proofs, we have shown that theMS-queuewithout

the consistent snapshots still contextually refines the coarse-grained queue. We

have also shown that the coarse-grained queue refines the MS-queue both with

and without the consistent snapshots. This implies that the coarse-grained queue is

contextually equivalent to both queues, and, per transitivity of contextual refinement,

that the MS-queue with consistent snapshots is contextually equivalent to one

without.

We speculate that omitting the consistent snapshots may result in better perfor-

mance as dequeue may still succeed even if the consistent snapshot fails. Hence this

can lead to earlier success. As one can see in our Coq formalization, for the refine-

ment proof of the MS-queue without the consistent snapshots it is not necessary to

use prophecy variables in the proof.

2.8 Lagging-Tail MS-Queue

Our Coq formalization also contains a HeapLang implementation and a refinement

proof for what we name the lagging-tail MS-queue. It resembles how the queue

included in the Java standard library works and is a slightly more realistic version

of the queue covered in [Tur+13b]. This variant is quite different from the original

MS-queue in that it allows the tail pointer to lag behind arbitrarily, a change affecting

both how dequeue and enqueue works: Dequeue can no longer rely on the sentinel

being able to reach the tail and enqueue must read the tail pointer and, to account for

the lagging tail, then iterate through the linked list until it finds the last node. While

this is in many ways a simpler algorithm to prove correct, we find it remarkable

that our notion of reachability also suffices to prove contextual refinement for this,

very different, variant with only a very small change to the invariant. As the tail

pointer may lag behind arbitrarily, it may, in particular, be further behind than even

the sentinel pointer. Hence to prove contextual refinement for this variant we can

no longer include ℓs 99K γt in the invariant. However, by simply changing this part

to ℓs 99K γl, we can prove refinement of the variant. No other changes are required

to the invariant!

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 43

2.9 Defining the Persistent Points-To Predicate

This section describes how we implement the persistent points-to predicate. In

Iris, Hoare triples, the weakest precondition, and the points-to predicate are not

primitives in the logic. Instead, they are defined inside the logic, using what is called

the Iris base logic. Hence, we can implement the persistent points-to predicate

entirely inside Iris, by changing a definition (heapCtx below) that is used in the

weakest precondition. An advantage of this approach is that soundness of the rules

for the persistent points-to predicate follows directly from soundness of the Iris base

logic.

The biggest challenge in adding the persistent points-to predicate is to ensure that

it satisfies Mapsto-intro-�. The existing points-to predicate is defined as ownership

of some ghost state. Hence to make this rule true we need to use a resource algebra

(RA) that supports a frame-preserving update from the ghost state owned by the

normal points-to predicate to the ghost state owned by the persistent points-to

predicate. We solve this by introducing the discardable fractions RA.
For space reasons, in the rest of this section we assume that the reader is familiar

with ghost state and resource algebras in Iris. For the details, we refer to [Jun+18a].

Encoding of the heap To extend Iris as described we need to change two existing

definitions: heapCtx and ↪→q . The former is a predicate on heaps

heapCtx : (Loc fin−⇀Val)→ iProp.

which is part of the state interpretation used in the definition of the weakest pre-

condition. For every step of execution, starting in a heap σ and ending in heap σ′,
heapCtx(σ) holds before and |⇛heapCtx(σ′) holds after the step.

In the current version of Iris, heapCtx is defined using the RA

Auth(Loc fin−⇀ (Q01 × Ag(Val))), (2.7)

whereQ01 is the RA of fractions with the carrier (0, 1], and the following definitions2:

heapCtx(σ) = •σ γheap
ℓ ↪→q v = ◦[ℓ← (q, ag(v))]

γheap

We note that ℓ ↪→q v is not persistent since Q01 has no core. Updates to the heap

are possible since 1 ∈ Q01 is exclusive (it has no frame).

Recall that we want Mapsto-intro-� to hold without depending on heapCtx. This
is because heapCtx is internal to the definition of weakest precondition and not

exposed to clients of it. We therefore need to use an RA that makes it possible to

make a frame-preserving update from the ghost state owned by ↪→q to the ghost

state owned by ↪→�. The core should be undefined for the former while defined

for the latter. We define such an RA in the next section. But, even with such an

RA we have the problem that ↪→ denotes ownership of a fragment, and with the

authoritative RA it is not clear how to make a suitable frame-preserving update from

a fragment. We therefore also need to introduce a generalized authoritative RA.

2

This is simplified—but covers what is relevant for our purpose.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 44

Discardable fractions RA We introduce the RA of discardable fractions, which
is a generalization of the normal fractional RA. Whereas elements of the fractional

RA denote ownership over some strictly positive fraction, elements of the discard-

able fractional RA can additionally denote knowledge about a fraction having been

discarded.

Let Q>0 denote the set of strictly positive rationals. The carrier for the RA is:

DFrac ≜ own(q) | disc(p) | both(q, p) q, p ∈ Q>0

One should think of this as pairs where one, but not both, of the values might be

absent. The element own(q) is equivalent to an element of the normal fractional

RA and the element disc(p) denotes the knowledge that the fraction p has been

discarded.

The valid elements are those where the sum of the two numbers are less than or

equal to 1:

V(own(p)) ≜ p ≤ 1 V(disc(q)) ≜ q ≤ 1

V(both(q, p)) ≜ q + p ≤ 1

The operation adds together the owned fractions and takes the maximum of the

fractions known to be discarded. We do not specify all cases in the operation, the

remaining cases are determined by the requirement that the operation is commutative

and associative.

disc(p) · disc(p′) ≜ disc(max(p, p′))

own(q) · own(q′) ≜ own(q + q′)

own(q) · disc(p) ≜ both(q, p)

The core of an element is the discarded part of the element if any. This ensures

that knowledge about discarded fractions is persistent.

|disc(p)| = disc(p) |own(q)| = ⊥ |both(q, p)| = disc(p)

We now have the following frame-preserving update.

Lemma 2.9.1. Discarding is possible: own(q)⇝ disc(q).

Proof. Suppose own(q) · both(q′, p′) is valid. Then q + q′ + p′ ≤ 1, which implies

that q′+max(q+ p′) ≤ 1 showing that disc(q) · both(q′, p′) is valid. The remaining

cases are similar.

Heap RA We would now like to replace the use of the fractional RA in Equa-

tion (2.7), the RA currently used for the heap, with the discardable fractional RA.

However, this alone is not enough because, as mentioned, the authoritative RA does

not make it possible to make the frame-preserving update from a fragment that we

need.

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 45

We therefore need a slightly generalized variant of the authoritative RA that

allows us to update the discardable fraction in fragments. For RA’s A and B and a

function π : B → A we define

PAuth(A,B, π) = Ex(A)? ×B
V((⊥, b)) = V(b)
V((a, b)) = V(a) ∧ V(b) ∧ π(b) ≼ a

(a, b) · (a′, b′) = (a · a′, b · b′)

|(a, b)| =

{
(⊥, |b|) if |b| ≠ ⊥
⊥ otherwise

The full and fragmental view is defined as usual.

•a ≜ (a, ε) ◦b ≜ (⊥, b)

For this construction to satisfy the laws of a RA π must be expansive with respect to

the inclusion order.

The difference between this construction and the normal authoritative RA is

that the authoritative and fragmental view can contain two different RA’s and that

in the definition of validity π(b), and not b itself, should be included in a.
To model the heap we then instantiate the above construction by using

PAuth(Loc fin−⇀ Ag(Val),Loc fin−⇀ (DFrac× Ag(Val), π2).

The definitions for the heap are then

heapCtx(σ) ≜ •σ γheap

ℓ ↪→q v ≜ ◦[ℓ← (own(q), v))]
γheap

ℓ ↪→� v ≜ ∃p. ◦[ℓ← (disc(p), v)]
γheap

This ensures that the fraction in the fragment is independent of the full authoritative

view and hence that it can be updated without the full authoritative view.

Lemma 2.9.2. If q, q′ ∈ DFrac and q ⇝ q′ then ◦[k ← (q, v)]⇝ ◦[k ← (q′, v)].

Finally, from Lemma 2.9.1 and Lemma 2.9.2 we have the frame-preserving update

◦[ℓ← (own(q), v))]⇝ ◦[ℓ← (disc(p), v)]

and can thus show Mapsto-intro-�.

2.10 Related Work

We now discuss related work that has not already been treated in the paper. The only

related work that directly shows contextual refinement is the already mentioned

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 46

pen-and-paper proof by Turon et. al. However, they only consider a simplification

of the less challenging lagging-tail MS-queue. Their approach relies on assigning

to each node a state in a state transition system. However, they have no notion of

reachability, which appears to be necessary for reasoning about the original MS-

queue. And since reachability is a relationship between two nodes and not a state of

one particular node, it is not clear how to extend their approach to the MS-queue.

Our approach on the other hand applies to both the MS-queue and the lagging-tail

MS-queue.

We now cover related work that shows linearizability of the MS-queue. Doherty

et al. proved that a slightly modified MS-queue is linearizable by using a simulation

proof formalized in the PVS proof system [Doh+04]. Their simulation proof makes

use of both a forward simulation and a backwards simulation; this is comparable

to our use of prophecy variables. They make several changes to the queue which

they argue improve performance. Their changes preserve the future dependent

linearization point, but they also remove the check on line D6, which we found

challenging in our proof. Schellhorn et al. later showed that backwards simulation

suffices to show linearizeability of the MS-queue [SDW14].

Vafeiadis proposed an automatic verification procedure for proving linearizability

for first-order programs [Vaf10]. His approach handles certain non-fixed linearization

points, namely those that are pure, meaning that the linearization points do not

change the state of the queue. The non-fixed linearization point in dequeue in the

MS-queue is pure, as dequeueing an element from an empty queue does not change

the state of the queue. Vafeiadis’s approach depends on this to obtain a verification

procedure for proving linearizability which can handle the MS-queue. His approach

is also based on prophecy variables. As mentioned in the Introduction, this notion

of linearizability does not imply contextual refinement for our rich higher-order

language. We further remark that ReLoC also supports future dependent linearization

points even when these are not pure.

Liang and Feng propose a program logic to verify linearizability [LF13a]. They

use their approach to verify an impressive number of concurrent data structures,

with the MS-queue being one of them. To handle the non-fixed linearization points

they use speculation. This approach is related to prophecy variables and does not

rely on annotations in the implementation. The program logic and their verification

of the MS-queue are not mechanized.

There exists several other approaches to verifying linearizability which can

handle non-fixed linearization points, and which should therefore also be able to

verify the MS-queue. For these, we refer to the excellent survey [DD14].

Related to the persistent points-to predicate, Charguéraud and Pottier showed

how to extend separation logic with a general read-only modality [CP17]. This

modality makes it possible to temporarily give read-only access to a points-to predi-

cate, without having to keep track of fractions as one needs to do with the fractional

points-to predicate. However, even though they remark that it should be possible

to construct a predicate for immutable data, they explicitly do not do that. Their

approach is for temporarily making locations read-only while ours is for permanently

CHAPTER 2. CONTEXTUAL REFINEMENT OF THE MS-QUEUE 47

making locations read-only.

Chapter 3

Mechanized Verification of a

Fine-Grained Concurrent Queue

from Meta’s Folly Library

Abstract

We present the first formal specification and verification of the fine-grained

concurrent multi-producer-multi-consumer queue algorithm from Meta’s C++
library Folly of core infrastructure components. The queue is highly optimized,

practical, and used by Meta in production where it scales to thousands of con-

sumer and producer threads. We present an implementation of the algorithm

in an ML-like language and formally prove that it is a contextual refinement of

a simple coarse-grained queue (a property that implies that the MPMC queue

is linearizable). We use the ReLoC relational logic and the Iris program logic

to carry out the proof and to mechanize it in the Coq proof assistant. The

MPMC queue is implemented using three modules, and our proof is similarly

modular. By using ReLoC and Iris’s support for modular reasoning we verify

each module in isolation and compose these together. A key challenge of the

MPMC queue is that it has a so-called external linearization point, which ReLoC

has no support for reasoning about. Thus we extend ReLoC, both on paper and

in Coq, with novel support for reasoning about external linearization points.

3.1 Introduction

It is well-known that it is challenging to program, specify, and verify fine-grained

concurrent algorithms, and in recent years we have seen much progress on pro-

gram logics for specifying and verifying such algorithms, e.g.,[Din+10; FKB18; JP11;
Jun+15a; LF13b; SNB15; SB14; TDB13; Tur+13a; TW11; Vaf08; VP07]. In this pa-

per, we present the first formal specification and verification of the highly efficient

and practical concurrent multi-producer-multi-consumer queue algorithm found

in Meta’s open-source library Folly (or, simply, the MPMC queue in the rest of the

paper).

48

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 49

The Folly library is an open-source collection of key infrastructure components

implemented in C++ and used extensively in production at Meta [Met21]. The

library contains, among many other things, the MPMC queue.
1
The queue was

originally developed by Nathan Bronson to connect two thread pools inside TAO,

Meta’s distributed data store for their social graph [Bro+13]. One of the key ideas

used in the algorithm is to improve scalability by decreasing the contention found

in other lock-free algorithms, such as the Michael-Scott queue [MS96a], by striping

the queue across q “smaller” sub-queues. To avoid the overhead of maintaining q
sub-queues, the striping is taken to the extreme by letting each sub-queue store

only a single element. These single-element queues can then be simpler and faster.

In fact, they are implemented merely as a reference to a value and a so-called turn
sequencer. The latter is a synchronization mechanism used by the single-element

queue to guard access to its value. The enqueue and dequeue operations on the

MPMC queue are delegated to one of the single-element queues by taking a ticket

from one of two ticket dispensers using an atomic increment (FAA). After receiving
a ticket, up to q separate enqueue or dequeue operations can proceed in parallel,

completely independent of each other as they operate on different single-element

queues. The FAA instruction thus becomes the main point of contention, but since an

FAA instruction (unlike CAS) always succeeds, this design, in the words of Bronson,

“makes contention count” as its cost always pays off in significant progress being

made in the algorithm [Bro20]. Altogether, this makes the queue scalable to hundreds

of thousands of producer and consumer threads.

More concretely, in this paper we present an implementation of the MPMC queue

and all its components in an ML-like language with concurrency primitives. The

implementation captures the essence and the key verification challenges of the algo-

rithm while eliding some of the low-level details of the original C++ implementation.

We prove that the MPMC queue contextually refines a coarse-grained concurrent

queue. The coarse-grained queue uses a lock to ensure that only one thread at a time

access the queue. We take this simple queue to be the specification of a queue and the
MPMC queue to be an implementation of the specification. Informally, the contextual

refinement property then means that in any program we may replace uses of the

“obviously correct” coarse-grained concurrent queue with the more efficient, but also

more complicated, MPMC queue, without changing the observable behavior of the

program. More precisely, an expression e contextually refines another expression

e′, if for all contexts C of a ground type, if C[e] terminates with a value, then there

exists an execution of C[e′] that terminates with the same value.

We prove the contextual refinement using the recently proposed relational logic

ReLoC [FKB18; FKB20a], which builds on top of the Iris separation logic [Jun+16;

Jun+18b; Jun+15a; Kre+17a] and greatly simplifies proofs of contextual refinement

by offering rules that allows one to reason about refinements at a high level of

abstraction. Additionally, it is mechanized in Coq and allowed us to develop our

1

The source code is available online at https://github.com/facebook/folly/blob/main/
folly/MPMCQueue.h.

https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h
https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 50

mechanized proof interactively using the Iris proof mode [Kre+18; KTB17b].

To verify a fine-grained concurrent algorithm, one of the key steps is to identify

the linearization points of its operations: the point during execution where the

operation “appears to take place”. In our analysis of the MPMC queue we discover

that, in some cases, the linearization point of the dequeue operation is external. A
linearization point is external if it happens during the execution of another operation.

For dequeue, its linearization point may happen within the execution of an enqueue

operation, which is not immediately obvious by looking at the code. As we explain in

detail later, the external linearization points arise because the algorithm, in contrast

to other fine-grained concurrent queues, is not entirely non-blocking: if all the

single-element queues are full (resp. empty) then enqueue (resp. dequeue) is blocked.

One may categorize linearization points into three classes [DD15]: fixed, future-

dependent, and external. The first version of ReLoC [FKB18] had support for reason-

ing about fixed linearization points only, and ReLoC Reloaded [FKB20a] added sup-

port for future-dependent linearization points, through its use of Iris-style prophecy

variables [Jun+20a]. However, we observe that neither version of ReLoC supports

reasoning about external linearization points. The high-level reason is that ReLoC

ties the state of the implementation with the state of the specification as a single

judgment. At an external linearization point (in our case in dequeue) the state of

the specification must be transferred to the other operation where the linearization

point takes place (in our case enqueue). This is not possible with ReloC’s existing

rules. Hence, to verify the MPMC queue we extend ReLoC with new proof rules and

generalize its existing proof rules to be able to reason about external linearization

points. The extension is simple but elegant and “completes the picture” by making

ReLoC able to handle all three classes of linearization points. External linearization

points often occur due to helping and our extension makes ReLoC able to handle

these concurrent data structures with helping as well.

As mentioned, the MPMC queue is implemented as three submodules: the MPMC

queue is implemented using the single-element queue, which is implemented using

the turn-sequencer. A strength of our approach is that our contextual refinement

proof is similarly modular: it makes use of (unary) Hoare-style specifications of

the turn-sequencer and the single-element queue. Here we leverage the fact that

ReLoC allows for compositional reasoning and that it, following [TDB13], includes

a proof rule that allows one to use Hoare-style specifications, written in the Iris

program logic, to simplify reasoning about the left-hand side in a relational proof

[FKB18, Section 7.4]. We thus end up not only with a refinement proof of the MPMC

queue but also with reusable specifications for the single-element queue and the

turn sequencer.

To arrive at sufficiently composable specifications we make use of a proof pattern

involving a resource algebra over infinite sets, to keep track of which turns are

“still available” (see Section 3.4). The idea of using infinite structures to improve

composability is well-known in the context of functional programming [Hug89]. In

our case, the specification of the turn-sequencer supplies its client with an infinite
set of turns and the specification of the single-element queue gives its client two

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 51

infinite sets of tickets. This approach greatly simplifies the proofs and makes it

possible to reason about the single-element queue in the refinement proof with the

details of the turn sequencer having been abstracted away. We believe this proof

pattern could also be used to simplify reasoning about other algorithms based on

these components, and have used it to additionally verify a ticket lock based on the

turn sequencer.

Another challenge in verifying the MPMC queue is that its physical state (i.e., the
actual content in the underlying array) does not immediately determine the abstract
state of the queue (i.e., the state that is observable through the queue interface).

In particular, a value may be present in the physical state of the queue without

actually being in the queue (i.e., not observable with a dequeue operation), and vice

versa. This lies in contrast with other data structures, even those with non-fixed

linearization points (such as the Herlihy-Wing queue [HW90] and the Michael-Scott

queue [MS96a]).

In summary, we believe that verifying the MPMC queue serves as an interesting

case study, as it is challenging to verify, used at scale in the industry, has not been

treated in the literature before, and it provides motivation for extending ReLoC with

support for external linearization points.

Outline and contributions.

• Since the MPMC queue has not been treated in the literature before, we give a

detailed description of it (Section 3.2).

• We informally analyze the linearization points of theMPMC queue and observe

that one of them is external (Section 3.3).

• We define and prove Hoare-style specifications for the turn sequencer and

single-element queue (Section 3.4).

• We show that the MPMC queue contextually refines a coarse-grained queue.

(Sections 3.5 and 3.6). Our proof is modular and makes use of the aforemen-

tioned Hoare-style specifications for the submodules.

• We explain why prior versions of ReLoC can not handle external linearization

points and extend ReLoC, both on paper and in Coq, with support (including

tactics) for reasoning about external linearization points (Section 3.7).

• We have formalized all the results in this paper, and two additional exam-

ples of algorithms with external linearization points in the Coq proof assis-

tant [VFB21]. The formalization is part of the ReLoC git repository and can

be found online at https://gitlab.mpi-sws.org/iris/reloc/-/tree/
master/theories/examples/folly_queue. The version that we specifi-

cally refer to in this paper corresponds to the commit with the git hash

b6df47f9.

We discuss related and future work in Section 3.8.

https://gitlab.mpi-sws.org/iris/reloc/-/tree/master/theories/examples/folly_queue
https://gitlab.mpi-sws.org/iris/reloc/-/tree/master/theories/examples/folly_queue

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 52

3.2 The Folly MPMC queue

We now describe the three data structures, starting with the turn sequencer and

proceeding bottom-up.

3.2.1 Turn Sequencer

A turn sequencer is a data structure that implements mutual exclusion by sequential-
izing access to a critical section among threads ordered by a monotonically increasing

turn. The turn sequencer implementation is shown in Figure 3.1a.

The turn sequencer provides two operations: wait and complete. These are

similar to the acquire and release operations on a lock, but they take an additional

natural number as an argument. The natural number specifies which turn to wait

for or to complete. The turn sequencer guarantees that if a thread waits for the nth
turn, then it will only proceed once all the preceding turns have been completed.

For this to hold, the turn sequencer assumes that its clients never wait for the same

turn several times. As such, it is the responsibility of clients to manage the turns,

i.e., which natural numbers they wait for. Compared to a lock, this places a greater

demand on the client, but in return the client is given precise control over the order

in which threads run their critical sections.

We implement the turn sequencer as a pointer ts to a number, which represents

the current turn. The functionwait ts n simply spins on that pointer until its value is

equal to n. The implementation of complete ends the current turn by incrementing

ts .

3.2.2 Single-Element Queue

A single-element queue (SEQ) is a queue with a capacity of one. Our implementation

is shown in Figure 3.1b. It is a blocking queue: if it is empty (full) then any subsequent

dequeue (enqueue) is blocked until the queue becomes non-empty (non-full).

Similarly to the turn sequencer, the SEQ’s operations take a turn as an argument,

however the turns are separate for enqueue and dequeue. The turn argument specifies

the order of the operations: an enqueue or dequeue operation is carried out only

after all operations with a lower number have been carried out. For an enqueue

and a dequeue operation with the same turns, the enqueue is carried out first. This

ordering ensures that when an enqueue operation is carried out, the queue is always

empty, and when dequeue is run the queue is non-empty.

The SEQ is implemented as a reference to an Option type, protected by a single

turn sequencer. To ensure that the turn sequencer operations are called with correct

turns, the implementations of the enqueue and dequeue operations adhere to the
following discipline. The even turns of the turn sequencer correspond to the enqueue

operations and the odd turns correspond to the dequeue operations. Hence when

enqueueSEQ (dequeueSEQ, respectively) is called with turn n, the corresponding turn

for the turn sequencer is 2n (2n+ 1, respectively). Not only does this allow for a

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 53

newTS : 1→ ref int
newTS () = ref 0
complete : ref int→ int→ 1
complete ts turn =
ts ← turn + 1;
()

wait : ref int→ int→ 1
wait ts turn =
let turn ′ = ! ts in
if turn′ = turn
then ()
else wait ts turn

(a) Turn sequencer.

type SEQ α = ref int× ref (Option α)

queueSEQ : ∀α. 1→ SEQ α

queueSEQ () = (newTS (), ref none)

enqueueSEQ : SEQ α→ int→ α→ 1

enqueueSEQ (ts, r) enqTurn v =

let turn = enqTurn ∗ 2 in
wait ts turn;
r ← some(v);
complete ts turn

dequeueSEQ : SEQ α→ int→ α

dequeueSEQ (ts, r) deqTurn =

let turn = deqTurn ∗ 2 + 1 in
wait ts turn;
let v = match ! r with
| some(x)⇒ x
| none⇒ assert(false)

in complete ts turn; v

(b) Single-element queue.

newQueue : ∀α. int→ (1→ α)× (α→ 1)
newQueue q = Λ.
let slots = arrayInit q queueSEQ in
let pushTicket = ref 0 in
let popTicket = ref 0 in
(λv. enqueue slots q pushTicket v,
λx. dequeue slots q popTicket)

enqueue : array (SEQ α)→
int→ int→ α→ 1

enqueue slots q pushTicket v =
let t = FAA(pushTicket, 1) in
let idx = t mod q in
let ticket = t/q in
enqueueSEQ (slots[idx]) ticket v

dequeue : array (SEQ α)→ int→ int→ α
dequeue slots q popTicket =
let t = FAA(popTicket, 1) in
let idx = t mod q in
let ticket = t/q in
dequeueSEQ (slots[idx]) ticket v

(c) MPMC queue.

queue
CG

: ∀α. (1→ α)× (α→ 1)
queue

CG
= Λ.

letw = (newlock (), ref []) in
(λv. enqueue

CG
w v,

λx. dequeue
CG
w)

enqueue
CG

: lock× list α→ α→ 1
enqueue

CG
(lk , hd) v =

let rec go v ls =
match ls with
| []⇒ [v]
| h :: t⇒ h :: go v t

in acquire lk ;
hd ← go v (! hd);
release lk

dequeue
CG

: lock× list→ α
dequeue

CG
(lk , hd) =

acquire lk ;
match ! hd with
| []⇒ assert(false)
| h :: t⇒ hd ← t;

release lk ;
h

(d) Coarse-grained queue.

Figure 3.1: Implementation of the various data structures.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 54

single turn sequencer to provide turns for both of the operations, it also ensures

that the enqueue and dequeue operations are carried out in the correct order. The

first enqueue gets the first even turn, 0, the first dequeue gets the first odd turn, 1,
and so on. Hence the enqueue and dequeue operations alternately get access to the

pointer, and the dequeue operation can be sure that a value is present when it reads

the pointer.

3.2.3 MPMC queue

The MPMC queue is a blocking queue of a fixed capacity q. The implementation

of the MPMC queue is shown in Figure 3.1c. The binary operator “mod” denotes
modulo (or remainder) and “/” denotes integer division (i.e., 3/2 = 1). The Λ is a

type abstraction (or a generic) making the queue polymorphic in the type of values

it can store.

Upon initialization, an array of length q is created, with each entry containing a

SEQ. The function arrayInit constructs an array of the given length, calls the given

function once for each entry, and sets the entry to the result. In addition to the array,

the queue contains two ticket dispensers (references to natural numbers): pushTicket
and popTicket . The first keep track of tickets for the enqueue operation, and the

second does the same for the dequeue operation.
The enqueue operation first takes a ticket by incrementing the value of pushTicket

with FAA, which atomically increments the ticket and leaves enqueue with a ticket

t. From this ticket, we calculate an index (t mod q) in the array for a SEQ. Then,

enqueue writes an element into the SEQ by using the turn ⌊t/q⌋. The dequeue oper-
ation proceeds in a similar way. It atomically increments popTicket and calculates

an index and a turn in the same way. It dequeues a value from the SEQ and returns

this value.

3.2.4 Relationship to original C++ code

Our implementation of the MPMC queue in ReLoC’s ML-like language is faithful

to the original algorithm, but does omit some low-level details of the original C++

implementation.

• The C++ implementation takes into account the C++ relaxed-memory model

whereas the memory model of ReLoC’s ML-like language is sequentially

consistent. ReLoC does not support weak memory so verifying the MPMC

queue in a weak memory setting would have required a different verification

methodology.

• The C++ turn sequencer gracefully handles integer overflow of the turn counter.

As the ML-like language included with ReLoC only support unbounded inte-

gers our implementation does not handle overflow.

• When waiting for a turn, the C++ turn sequencer uses a heuristic consisting

of spinning with a back-off and suspending the thread (using futexes [FRK02])

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 55

for increased performance. Our implementation only uses spinning. This

difference only affects efficiency and not the safety or linearizability of the

algorithm. Additionally, to manage the use of futexes the integer in the turn

sequencer stores not only the current turn but also uses some bits to manage

sleeping threads. Due to this, the turn is incremented using compare-and-set

and not FAA as in our implementation.

• The C++ implementation supports additional operations in addition to the

queue operations dequeue and enqueue. For instance, an enqueue operation

that fails instead of blocking when the queue is full.

• The use of closures in our implementation can be seen as corresponding to

the use of objects in C++.

3.3 Linearizability of the MPMC queue

In this section, we analyze the MPMC queue informally and identify its linearization

points. As a first guess, one might think that the linearization point for enqueue is

when enqueue writes its value into the SEQ and, similarly, for dequeue when it reads

the value from the SEQ. After all, these are the points where a value is physically

inserted into or read from the data structure. However, placing the linearization

points in this way does not work, as the following example shows:

enq(1)

enq(2) deq(1)

FAA

FAA write

write

This diagram represents two threads executing operations on the queue. The filled

segments represent the duration of the operations. In the example, the first enqueue

executes its FAA and receives ticket 0. Afterward the second enqueue executes its

FAA, receives ticket 1, and writes its value to the queue. Then the first enqueue

writes its value. Finally, a dequeue executes; gets ticket 0, and therefore returns 1.

To make this consistent, the linearization point of the first enqueue should happen

before the linearization point of the second enqueue. But, the second enqueue

writes its value into the queue before the first enqueue does so. Hence, making the

linearization points at that time in enqueue is too late.

As the example suggests, the linearization point of the enqueue operation hap-

pens at the FAA. If an enqueue operation receives a ticket i, then clearly the value

that it inserts into the queue is eventually read and returned by the dequeue opera-

tion that also receives the ticket i. This means that exactly when the FAA in enqueue

is executed, it is determined where in the queue its value is inserted. It thus makes

sense to place the linearization point at the FAA. Following this line of argument,

we say that the enqueue that receives ticket i is the ith enqueue. Moreover, we call

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 56

the dequeue that receives ticket i the ith dequeue, and we say that the ith enqueue

and the ith dequeue correspond to each other.

It might seem that the linearization point in dequeue is similarly at the FAA
operation. This, however, does not always work, as the following example shows:

deq(1)

enq(1)

FAA

FAA write

read

The crux of the example is that dequeue receives ticket 0 before the corresponding
enqueue takes its ticket. It is therefore not consistent to put the linearization point of

dequeue at its FAA, as dequeue would then take place before the value it returns is

enqueued in the first place. However, in general, one can not place the linearization

point at when dequeue reads the value either, as that would lead to the same problems

as for enqueue.

Thus, the linearization point of the dequeue operation is not always fixed. Look-

ing at the example, we see that we could place the linearization point for the waiting

dequeue just after the linearization point for the enqueue operation that unblocks it.

This means that the linearization point of dequeue happens during the execution of

enqueue — an external linearization point.

In summary, we conclude the following. If the ith dequeue arrives after its corre-
sponding enqueue then it has a fixed linearization point at its FAA. If, on the other

hand, it arrives before its corresponding enqueue then it has an external linearization

point, which happens right after the corresponding enqueue’s linearization point.

Observe that even with the external linearization point, it is the case that the ith
dequeue always has its linearization point before the (i+ 1)’th dequeue.

Abstract state. Given the placement of the linearization points as above, we can

talk about the abstract state of the queue, which is determined by the linearized

order of the operations. Note that as soon as enqueue receives a ticket, the enqueued

element becomes a part of the abstract state, before it is even written into the array.

Symmetrically, when a dequeue receives a ticket, it removes an element from the

logical queue, even though that value is still present in the physical queue. Thus, the

physical state of the underlying array does not determine the abstract state of the

queue, e.g., the queue might physically contain no values, while logically it contains

arbitrarily many values (and vice versa).

Calculating the abstract state of the queue is important in the refinement proof

(Sections 3.5 and 3.6), but it is not related directly to the physical state of the array. The

abstract state is, however, directly related to the values of pushTicket and popTicket.
If popTicket ≤ pushTicket, then there are exactly pushTicket− popTicket elements in

the logical queue. Otherwise the queue is empty and there are popTicket−pushTicket
dequeue operations that have arrived before their corresponding enqueue. We will

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 57

Turn Sequencer
{R(0)} newTS () {v. ∃γ. isTS(γ,R, v) ∗ turns(γ,N)}

{isTS(γ,R, v) ∗ turn(γ, n)}wait v n {R(n) ∗ close(v, n)}

{isTS(γ,R, v) ∗R(n+ 1) ∗ close(v, n)} complete v n {True}

Single-ElementQueue

{True} queueSEQ ()

{
v.∃γ. isSEQ(γ,Q, v) ∗

turnse(γ, 0) ∗ turnsd(γ, 0)

}
{isSEQ(γ,Q, v) ∗ turne(γ, n) ∗Q(n, x)} enqueueSEQ v n x {True}

{isSEQ(γ,Q, v) ∗ turnd(γ, n)} dequeueSEQ v n {x.Q(n, x)}

Figure 3.2: Unary specifications for turn sequencer and SEQ.

see how these considerations are formalized as part of the refinement proof in

Section 3.6.

3.4 Specifications for the Turn Sequencer and the

Single-Element Queue

In this section, we define suitable Hoare triple specifications for the turn sequencer

and the SEQ. We also sketch how these are proved. We emphasize that the proof

of the SEQ only uses the specification (and not the implementation) of the turn

sequencer. Similarly, when we prove contextual refinement for the MPMC queue, we

only make use of the specification for the SEQ. Thus our specifications and proofs

are modular, and we observe that to prove contextual refinement for the MPMC

queue, a unary specification for the SEQ suffices.

3.4.1 Turn Sequencer

As mentioned earlier, the turn sequencer is a mechanism for mutual exclusion. There-

fore, our specification of the turn sequencer (shown in Figure 3.2) is an extension of

a typical concurrent separation logic specification for a lock [BB21; Got+07], and

the verification process is similar to the verification of a ticket-based lock [MS91,

Section 2.2]. There are two key differences though. The first difference is that it is

up to the client of the turn sequencer to ensure that the turns are used correctly.

For instance, wait should never be invoked with a past turn. The second difference

is that the resource protected by the turn sequencer is indexed by a turn number,

which allows for a more dynamic treatment of resources protected behind a critical

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 58

turn-alloc

X ⊆ N
|⇛∃γ. turns(γ,X)

turn-disj

turns(γ,X) turns(γ, Y)

X ∩ Y = ∅

turn-sep

X ∩ Y = ∅
turns(γ,X) ∗ turns(γ, Y) ⊣⊢ turns(γ,X ∪ Y)

Figure 3.3: Rules for turns.

section. In some sense, this makes the specification for the turn sequencer stronger

than that for a lock, and in our Coq formalization we have implemented and verified

a lock based on the turn sequencer.

The specification uses two predicates “close” and “isTS”, which are abstract to

clients of the specification (as in [BBT07; PB05]). The latter, “isTS”, is the representa-

tion predicate. It is persistent, which intuitively means that, unlike other separation

logic propositions, it is freely duplicable and not consumed by preconditions.

The predicateR describes the resource that the turn sequencer protects. Whereas

a lock protects a resource R : iProp, the turn sequencer protects a N-indexed family
of resources, that is, R : N→ iProp, where the index represents the current turn.

This generalization of the protected resource is possible since the turn sequencer

guarantees to run clients in the order of their turns. When it becomes a client’s turn

to enter its critical section, it can rely on all earlier turns having been carried out.

This allows for “threading” the resource through all the clients, as depicted in the

diagram below where the turn sequencer is at the top and its clients at the bottom.

wait n

turn(n)R(0) R(n) R(n+1)

complete nnewTS

turns(N)

TheR(0) in the precondition of newTS ensures that when a turn sequencer is created,
the turn sequencer owns the resource for the initial turn. When wait is called with

turn n, the client receives the resource for that turn, R(n). When completing the

turn, the client must give back R(n+ 1) and not R(n). This makes it possible for

the turn sequencer to give R(n+ 1) to the next thread in line (which is waiting for

the turn n+ 1).
We now consider the handling of turns in the specification. To represent turns

we use ghost state, an Iris feature also found in other separation logics [Din+13;

Jun+15a; Nan+14]. Ghost state are resources that do not correspond to any physical

state of the program. In our case, we want a resource representing ownership over

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 59

turns—where owning the turn n implies that one has the “right” to wait for the nth
turn. For that purpose, we use a predicate turns(γ,X) that denotes ownership over

the set of turns X ⊆ N, and the singular turn(γ, n) ≜ turns(γ, {n}) that denotes
ownership over a turn n ∈ N. These turns can be manipulated, for instance by a

client of the turn sequencer, using the rules in Figure 3.3. The update modality, |⇛,

in these rules represents the possibility of updating ghost state and can safely be

ignored. The rule tokens-alloc states that for any set of natural numbers one can

construct a resource for them with a fresh ghost name γ. The ghost name can be

thought of as a location or variable for the ghost state. Ownership over two sets of

turns implies that the sets are disjoint (turn-disj). Ownership over two disjoint sets

of turns is equivalent to ownership of their union (turn-sep).

As depicted in the diagram above, when a client creates a new turn sequencer,

it acquires ownership over all turns: turns(γ,N). To call wait for a turn n the

client must own turn(γ, n), the ownership of which is then transferred into the turn

sequencer, ensuring that the client can only wait for the same turn once. This is

necessary for safety of the turn sequencer, as previously mentioned.

Finally, when a client acquires the current turn, it gets close(v, n), an exclusive

resource giving permission to complete the turn.

Proof of Specification (Sketch). To prove that the implementation of the turn

sequencer meets the specification, we use the following definitions of the predicates:

close(ℓ, n) ≜ ℓ
1/2
↪−→ n

isTS(γ,R, ℓ) ≜ ∃n. ℓ
1/2
↪−→ n ∗ turns(γ, {m ∈ N | m < n}) ∗

(R(n) ∗ close(ℓ, n) ∨ turn(γ, n))

N

The predicate “isTS” is defined as an invariant. An invariant P
N

represents the

knowledge that the proposition P always holds. Since an invariant is knowledge

and not a resource that one owns, this definition satisfies the previously mentioned

property that “isTS” is persistent.

With these definitions, we now sketch how the specifications are proved.

For newTS, we have the resource R(0) from the precondition and we obtain

ℓ ↪→ 0 from stepping through the implementation. We can then allocate the ghost

state turns(γ,N) using turn-alloc. This allows us to establish the invariant by

picking the left disjunct therein.

For wait, we open the invariant around the load. We then have the points-to

predicate for the location, and can consider whether the value stored in the location is

equal to the turn thatwaitwas called with. In the latter case, we can use induction to

handle the recursive call when the check in if fails. In the former case, the turn(γ, n)
in the right disjunct in the invariant leads to a contradiction, due to the turn(γ, n)
in the precondition. We thus have the resources in the left disjunct which we can

use to show the postcondition, and then close the invariant by showing the right

disjunct.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 60

Finally, for complete, we use close(ℓ, n) in the precondition to conclude that n is

still the current turn, i.e., the existential is equal to n. This is the case since close(ℓ, n)
is in fact half of the points-to predicate for ℓ. We then have a contradiction in the

right disjunct in the disjunction, and symmetrically to what we did for wait, we “flip”
the disjunction when we close the invariant.

3.4.2 Single-Element Queue

Similar to the specification for the turn sequencer, in the specification for the SEQ

(shown in Figure 3.2) we must ensure that no two dequeue or enqueue operations are

performed with the same turn. As such, creating a new SEQ gives ownership over

two sets of turns: one for enqueue and another one for dequeue. These, turnse(γ, n)
and turnsd(γ, n), denote ownership over all the turns for enqueue and dequeue, re-

spectively, except for the first n such turns. Additionally, turne(γ, n) and turnd(γ, n)
represent ownership over the nth turn for enqueue and dequeue, respectively. When

calling enqueueSEQ or dequeueSEQ with n, the specification requires the correspond-

ing turn.

The representation predicate isSEQ is parameterized by a predicate Q : N →
Val → iProp. If x is the nth value added to the queue, then Q(n, x) should hold.

Correspondingly, the specification for enqueueSEQ requires this in its precondition.

This in turn allows the specification for dequeueSEQ to ensure, in its postcondition,

that the returned value satisfies the predicate.

Proof of Specification (Sketch). First, we consider the definition of turnse(, a)nd
turnsd(, .) These are defined to be ownership over all the even and the odd turns,

respectively, except for the first n even or odd numbers:

turnse(γ, n) ≜ turns(γ, {m ∈ N | even(m) ∧ 2n ≤ m})
turnsd(γ, n) ≜ turns(γ, {m ∈ N | odd(m) ∧ 2n+ 1 ≤ m})
turne(γ, n) ≜ turn(γ, 2n)

turnd(γ, n) ≜ turn(γ, 2n+ 1)

Notice how these definitions are only possible because the specification for the

underlying turn sequencer allows for ownership over any infinite sets of turns.
Next, we define the representation predicate isSEQ by instantiating the turn

sequencer specification:

RSEQ(Q, ℓ)(n) ≜

{
ℓ ↪→ none if even(n)

∃v. ℓ ↪→ some v ∗Q(n−1
2 , v) otherwise

isSEQ(γ,Q, v) ≜ ∃ts, ℓ. v = (ts, ℓ) ∗ isTS(γ,RSEQ(Q, ℓ), ts)

The predicate isSEQ(γ,Q, v) states that the value v making up the SEQ is a pair of a

location ℓ and a turn sequencer ts . The representation predicate for the underlying

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 61

Ghost-alloc

a ∈ V
|⇛∃γ. a γ

Own-op

a
γ ∗ b γ ⊣⊢ a · b γ

Own-valid

a
γ ⊢ a ∈ V

set-alloc

X ⊆ N
|⇛∃γ. 1X

γ

set-sep

X ∩ Y = ∅
1X

γ ∗ 1Y
γ ⊣⊢ 1X ∪ 1Y

γ

set-disj

X ∩ Y ̸= ∅ 1X
γ

1Y
γ

False

Figure 3.4: Rules for ghost state and the resource algebra of (infinite) sets.

turn sequencer is instantiated with the resourceRSEQ, which states that if the current

turn is even, then the location points to None, and otherwise it points to a Some v.
Since the n given to RSEQ is a turn for the turn sequencer, we must convert it to get

a turn for the SEQ. This is why RSEQ applies Q to (n− 1)/2.
With these definitions, the SEQ specification can be derived from the turn

sequencer specification.

3.4.3 Ghost state for Turns and Tickets.

We now detail the construction of the ghost state used to represent turns. This

section can be skipped—understanding the derived rules presented in the previous

two sections suffices for the rest of the paper.

In Iris ghost state is represented using a form of partial commutative monoids

called a resource algebra. The monoid operation (·) combines elements of the

resource algebra and a subset of elements V are valid. In the logic the ownership

assertion a
γ
denotes ownership over an element a of some resource algebra for a

ghost name γ. Any valid element can be allocated for a fresh ghost name γ (Ghost-

alloc), ownership of two elements combine into ownership of their combination per

the operation (Own-op), and owned elements are always valid (Own-op).

We want to represent ownership of, potentially, infinite sets of turns. Since

ownership of a turn should be exclusive, we want the combination of two sets to be

invalid if the sets are not disjoint. The naive approach of letting the elements of the

resource algebra be sets and defining the operation as

A ·B ≜

{
A ∪B if A ∩B = ∅
⊥ otherwise

where⊥ is invalid, does notwork The operationmust be computable, but determining

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 62

if two arbitrary infinite sets intersect is not.
2

Instead, we represent sets using a function resembling a characteristic function.

We assemble a resource algebra using three standard resource algebras: the exclusive

resource algebra, the option resource algebra, and the resource algebra of functions.

InfSet(X) = X → Option(Ex(1))

For the resource algebra of functions, the operation is defined point-wise as (f ·
g)(a) = f(a) · g(a). Its elements are valid f ∈ V if and only if f(a) ∈ V for all a in

the function’s domain. The codomain Option(Ex(1)) has two valid elements none
and some(ex()); and one invalid element some(⊥). These combine in the following

way:

none · some(ex()) = some(ex())

some(ex()) · some(ex()) = some(ex() · ex()) = some(⊥)

For any A ⊆ X we can define an element 1A ∈ InfSet(X) as

1A(a) =

{
some(ex()) if a ∈ A
none if a ̸∈ A

The idea being that 1A serves as a sort of characteristic function. Given two disjoint
sets A and B it is then the case that 1A · 1B = 1A∪B . On the other hand, given A
and B that are not disjoint, then for a ∈ A ∩B it is the case that (1A · 1B)(a) = ⊥
and hence the combination is invalid. The three last rules in Figure 3.4 then follow

immediately.

With this in place “turns” is defined simply as

turns(γ,X) ≜ 1X
γ
.

With this definition the previously seen rules for turns in Figure 3.3 follow from the

rules in Figure 3.4.

3.5 Proof of Contextual Refinement

As mentioned, our main result is that the MPMC queue is a contextual refinement

of a coarse-grained queue. We can succinctly state this as the following ReLoC

proposition:

|= newQueue q ≾ queue
CG

: ∀α.(1→ α)× (α→ 1)

2

This type of ghost state was used in the GPS logic [TVD14] to verify a ticket lock. But, since

the proof was on paper only, the non-computability of the operation was not an issue. A variant of

the GPS proof was later mechanized in the iGPS logic [Kai+17], using a type of ghost state based on

cofinite sets and not arbitrary infinite sets.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 63

rel-lam

�
(
∀v1, v2. JτK∆(v1, v2) −∗ ∆ |= (λx1. e1) v1 ≾ (λx2. e2) v2 : σ

)
∆ |= (λx1. e1) ≾ (λx2. e2) : τ → σ

rel-load-r

ℓ ↪→s v ℓ ↪→s v −∗ |=E e1 ≾ K[v] : τ

|=E e1 ≾ K[! ℓ] : τ

rel-load-l

ℓ ↪→ v ℓ ↪→ v −∗ ∆ |= K[v] ≾ e2 : τ

∆ |= K[! ℓ] ≾ e2 : τ

rel-qeue-r

∀w. ICG(w, x⃗) −∗ |= t ≾ K[w] : τ

|= t ≾ K[(newlock (), ref [])] : τ

rel-deqeue-r

ICG(w, v :: x⃗) (ICG(w, x⃗) −∗ |= t ≾ K[v] : τ)

|= t ≾ K[dequeue
CG
w] : τ

Figure 3.5: ReLoC rules (selection).

for any q > 0. In such a refinement judgment the left expression is called the

implementation and the right expression the specification.
A refinement judgment is manipulated using ReLoC’s high-level rules. While the

details are not important, a few such rules appear in Figure 3.5. The key principle is

that the implementation and specification can be symbolically executed, similarly to

how it is done in a unary program logic with a Hoare triple or a weakest precondition

judgment. The rules rel-load-l and rel-load-r show how to symbolically execute

a load operation in the implementation and specification respectively. When the

implementation and specification are both values one must show that the values

are related. What this means depends on the type of the values; for integers, for

instance, it means that they are equal.

Proofs of refinements, like the one above, consist of three parts: (a) Symbolically

execute the initialization (i.e., the constructor) of the implementation and specifi-

cation, and collect the resources. (b) Establish an invariant, using the resources

obtained from the first step. The invariant typically relates the internal states of the

data structures on the both sides of the refinement. Picking the right invariant is the

key to the proof, and we discuss it in details in Section 3.6. (c) Using the invariant,

verify refinement of each operation that is part of the data structure. In this stage we

verify separately that MPMC’s dequeue operation refines the coarse-grained queue’s

dequeue operation, and similarly for the enqueue operation.

For the first step, due to the polymorphic type ∀α.(1 → α) × (α → 1) of the
queue, we must assume a binary predicateR that represents what it means for values

of a type τ to be related. Then, we symbolically execute the initialization code for

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 64

the MPMC queue and obtain the resources:

(ℓpush ↪→ 0) ∗ (ℓpop ↪→ 0) ∗ (ℓarr ↪→∗ map π2 SEQs) ∗

∗
(v,γ)∈SEQs

isSEQ(γ,Q, v) ∗ turnse(γ, 0) ∗ turnsd(γ, 0).

The first two points-to predicates are from allocating pushTicket and popTicket ,
while the remaining are from allocating the array and the SEQs it contains. We

obtain a pointer ℓarr to the array. For each element of the array, we invoke queueSEQ
and, using its specification from Figure 3.2, obtain the value v in the array that

satisfies isSEQ(γ,Q, v) ∗ turnse(γ, 0) ∗ turnsd(γ, 0) for some ghost name γ and a

predicate Q of our choosing. The list SEQs contain the value and ghost name for

each SEQ. We describe the appropriate choice of the predicate Q in the next section.

For the coarse-grained queue, we symbolically execute its initialization using

rel-qeue-r and obtain the resource ICG(w, []). The abstract predicate ICG(w, xs)
states that w is a coarse-grained queue containing the elements xs .

With these resources we have to prove the remainder of the refinement:

[α := R] |= (λv. enqueue ℓarr q ℓpush v, λx. dequeue ℓarr q ℓpop)

≾ (λv. enqueue
CG
w v, λx. dequeue

CG
w)

: (1→ α)× (α→ 1).

Naturally, it suffices to show that each operation refines its coarse-grained counter-

part. To this end, we use the rule rel-lam, which intuitively states that two functions

are related if they always (indicated by the �) evaluate to related values when given

related input. This reflects that for two implementations to be related they have to

be indistinguishable in any context – including a context that calls the functions

several times, potentially in parallel. However, the resources that we obtained from

the initialization process cannot be used “as is” as they are ephemeral resources

that do not always hold. Hence, we delegate those resources to an invariant. The
refinement proof of the operations can then proceed by symbolically executing the

implementation. Every step can assume and must preserve the invariant. The speci-

fication side is stepped forward only at linearization points as it is at these points

that the implementation changes its abstract state and hence what specification side

queue it corresponds to. At the linearization points we thus apply rules such as

rel-deqeue-r. We do not explain the refinement proof of the operations in any more

detail as defining a suitable invariant is the most challenging part of the refinement

proof and is explained in the next section. However, in Section 3.7 we explain how

the external linearization point is handled using our extension to ReLoC.

3.6 Invariant for Refinement Proof

The invariant we use is shown in Figure 3.6. It is non-trivial and key to the refinement

proof so we devote this section to explain its parts. Overall, the invariant keeps

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 65

I(R, γt, γm, γl, q, ℓpop, ℓpush, ℓarr, SEQs, w) ≜ ∃xs i, xss ∈ List(Val), popTicket, pushTicket ∈ N,m ∈ List(Val).

Physical state︷ ︸︸ ︷
ℓpop ↪→ popTicket ∗
ℓpush ↪→ pushTicket ∗
ℓarr ↪→�

∗ map π2 SEQs

∗

Ghost list︷ ︸︸ ︷
listγl(m) ∗ |m| = pushTicket ∗

drop(popTicket,m) = xs i
∗

Invariants for the SEQs︷ ︸︸ ︷
|SEQs| = q ∗

(
q∗

i=0

ISEQ(i, SEQsi)

)
∗

tokensFrom
γt(max(popTicket, pushTicket)) ∗ idsγm(popTicket) ∗pushTicket−1∗

i=0

enqueueObl(i)

 ∗
 popTicket−1∗

i=pushTicket

∃id.
idsAtγm(i, id) ∗
|= − ≾id dequeueCG w : −

︸ ︷︷ ︸

Handling of external linearization points

∗
ICG(w, xss) ∗∗

(xi,xs)∈(xs i,xss)

R(xi, xs)

︸ ︷︷ ︸
Relation to the

coarse-grained queue

where

enqueueObl(i) ≜ token
γt(i) ∨ (∃id, vi, vs. idsAtγm(i, id) ∗ listAtγl(i, vi) ∗R(vi, vs) ∗ (|= − ≾id vs : −))

ISEQ(i, (γ, v)) ≜ isSEQ(γ,Q(i), v) ∗ turnCtx(γ, i)
turnCtx(γ, i) ≜ turnse(γ, affectingOps(pushTicket, q)) ∗ turnsd(γ, affectingOps(popTicket, q))

affectingOps(ops, q) ≜ ⌊ops/q⌋+ (if (i < ops mod q) then 1 else 0)

Q(i)(j, v) ≜ listAtγl(jq + i, v)

Figure 3.6: Invariant for the MPMC queue

track of the physical state of the queues, ensures that the MPMC queue represents a

logic-level list of values corresponding to the coarse-grained queue, manages the

turns for all the SEQs, and handles the external linearization point.

The invariant is parameterized by the interpretation of the type of values stored

in the queue (R), ghost names (γt, γm, γl), the size of the queue (q), the values for
the MPMC queue (ℓpop, ℓpush, ℓarr, SEQs), and the value for the coarse-grained queue

(w).
We now cover each different annotated part of Figure 3.6 in turn.

Relation to the coarse-grained queue. The existentially quantified lists of values

xs i and xss represent the abstract state of the MPMC queue and the coarse-grained

queue respectively. The state of the coarse-grained queue is tied to xss by ICG(w, xss)
and xs i is tied to the MPMC queue by the rest of the invariant. The separating

conjunction over the two lists thus ensures that the abstract states of the two queues

are always related at type R. For example, if we store integers in the queue, then the

separating conjunction states that the xss and xs i both contain the same integers.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 66

ghost-list-alloc

|⇛∃γl. listγl([])

ghost-list-append

listγl(xs)

|⇛listγl(xs ++ [x]) ∗ listAtγl(|xs|, x)

ghost-list-agree

listAtγl(i, x) listAtγl(i, x′)

x = x′

ghost-list-lookup

listγl(xs) xs i = x

|⇛listγl(xs) ∗ listAtγl(i, x)

(a) Rules for the ghost list.

tokens-alloc

|⇛∃γt. tokensFromγt(0)

token-exclusive

token
γt(n) token

γt(n)

False

tokens-take

tokensFrom
γt(i)

tokensFrom
γt(i+ 1) ∗ tokenγt(i)

(b) Rules for tokens.

identifier-alloc

|⇛∃γm. idsγm(0)

identifier-decide

idsγm(n)

|⇛idsγm(n+ 1) ∗ idsAtγm(n, id)

identifier-skip

idsγm(n)

idsγm(n+ 1)

identifier-agree

idsAtγm(i, id) idsAtγm(i, id′)

id = id′

(c) Rules for identifier registry.

Figure 3.7: Ghost state rules.

Physical state. The physical state of the queue is rather simple. The queue consists

of three locations and the invariant contains points-to predicates for all three. As

the pointer to the array never changes we represent it using the persistent points-to

predicate ↪→�
∗ [VB21].

Ghost list. We previously explained how the physical state of the queue reveals

very little about the actual values stored in the queue. To connect the physical and

abstract states, we use a ghost list m. It contains all values that have been enqueued,

in particular, this includes both values that are no longer and not yet physically

present in the queue. Thus, while the physical state does not change when enqueue

executes its FAA, the ghost state does. And, since the linearization point of enqueue

is when it increments pushTicket, the number of values that have been added to

the queue is always exactly pushTicket. Hence, the ghost list is connected with the

physical state in part from the requirement that its length is equal to the value of

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 67

pushTicket.
Ownership of a ghost list xs is denoted by a proposition listγl(xs). Ghost list can

grow over time, when the new values are enqueued at the end. This is in fact the only
way in which the ghost list can change, and that means that once a value is part of

the ghost list it says there. To that extent, we have a persistent predicate listAtγl(i, x),
which denotes the knowledge that the ith element of the list (corresponding to the

the ith value added to the queue) is x. The ghost list satisfies a number of proof rules

presented in Figure 3.7a; these rules are sufficient to carry out the proof.

In the invariant we can see the ownership of the ghost list (listγl(m)) of the
size pushTicket (|m| = pushTicket). Moreover, if we remove the first popTicket
elements fromm, then the remaining list is exactly the abstract state of the queue

(drop(popTicket,m) = xs i). This makes sense since the ghost list contains all values

that have been enqueued and we remove exactly those that have also been dequeued.

Note that when pushTicket ≤ popTicket, then the above implies that xs i is empty.

Invariants for the Single-Element Queues. For each of the q single-element

queues in the array the invariant needs to include the invariant for the SEQ and to

manage its turns.

We need to instantiate the invariant for each SEQ with the predicate Q that

holds for the values in it. Recall that Q is parameterized both by the value in the

queue and its corresponding turn. We use this to define a Q that relates the value in

the queue to the “right” value in the ghost list:

Q(i)(j, v) ≜ listAtγl(jq + i, v),

were q is the capacity of the queue and 0 ≤ i < q is the index of the particular SEQ.
For the jth element v added to this SEQ we can then calculate the position of this

element in the whole queue as jq + i, which we record using the ghost list.

In addition to picking the predicate Q, we must keep track of the turns for each

SEQ. We must calculate these turns based on the current value of popTicket and
pushTicket. The affectingOps function aids in this. Given the “global” count ops of an
operation (dequeue or enqueue), it calculates how many times the SEQ in question

was affected.

Handling of external linearization points. The part of the invariant for han-

dling the external linearization point is rather intricate. For the ith pair of operations,

either enqueue or dequeue arrives first. In the former case, the invariant should

allow both enqueue and dequeue to carry out their own linearization point. In the

latter case, the invariant must facilitate handling of the external linearization point.

To do this we must intuitively encode the following: when dequeue opens the

invariant around its FAA it must transfer the requisite resources into the invariant

that will allow another thread to carry out its linearization point. Then, when

enqueue opens the invariant around its FAA it should be forced to carry out the

corresponding dequeue’s linearization point and transfer the result into the invariant.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 68

Later, dequeue needs to open the invariant again, conclude that its linearization

point has been carried out, and be able to transfer the resources for the executed

linearization point out of the invariant.

Came-first token. To keep track of which operation came first we use tokens—
custom ghost state theory similar to the one that we constructed for turns earlier. The

rules for this ghost state are in Figure 3.7b. The ith dequeue or enqueue that comes

first will be able to take the token token
γt(i). Hence, owning tokenγt(i) proves that

an operation came before its corresponding counterpart. The invariant owns all the

tokens where neither operation has taken a ticket:

tokensFrom
γt(max(popTicket, pushTicket)).

To see how this allows the operation that arrives first to take a ticket, note

that when enqueue and dequeue open the invariant around their FAA, they
will close the invariant by using pushTicket + 1 and popTicket + 1, respectively,
for the existential variable that they introduced. If enqueue comes first then

popTicket ≤ pushTicket. Hence max(popTicket, pushTicket) is equal to pushTicket,
and only tokensFrom

γt(pushTicket + 1) is required for closing the invariant and

one token can be kept by enqueue per the rule tokens-take. On the other hand,

if enqueue is last, then pushTicket < popTicket and max(popTicket, pushTicket) =
max(popTicket, pushTicket+ 1). Thus when closing the invariant, all the tokens are

required and none can be kept. For dequeue the situation is symmetric. All in all,

this means that this construction ensures that ith operation that comes first can take

the ith token.

Identifier registry. Concretely, for enqueue to carry out its corresponding de-

queue’s linearization point means that it should step dequeue’s specification forward.

To this end, |= − ≾id e : − represents that some thread, identified by id, needs
to show that its implementation refines e. This resource is part of the extensions
that we make to ReLoC which is explained in greater detail in Section 3.7 and the

approach here is an instance of the general proof pattern identified in Section 3.7.1.

For now, it suffices to know that the state of dequeue’s specification is associated

with an identifier, id, and that dequeue needs a way to ensure that enqueue steps

precisely the specification with that identifier forward. To support this, the invariant

contains a resource that lets the ith dequeue register which identifier it has. The rules
for this construction are shown in Figure 3.7c. The resource idsγm(n) represents
that only the n first dequeue operations might have registered an identifier. The

persistent resource idsAtγm(i, id) represents the knowledge that the ith dequeue

has registered the identifier id.

Pending dequeues. When pushTicket < popTicket, there are popTicket−pushTicket
dequeue operations blocked, waiting for a value to read. These blocked dequeues

are exactly those with external linearization points, and when an enqueue comes

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 69

along, it should carry out the corresponding dequeue’s linearization point. To this

end, enqueue needs some resources, which we store in the invariant:

popTicket−1∗
i=pushTicket

∃id. idsAtγm(i, id) ∗ (|= − ≾id dequeueCG w : −) .

This reads: every ith dequeue operation (where pushTicket ≤ i < popTicket), has
stored some identifier in the identifier registry and we have the corresponding right

refinement, which is ready to invoke dequeue on the coarse-grained queue.

Enqueue obligation. The final piece in the invariant is

pushTicket−1∗
i=0

enqueueObl(γl, γt, γm, i).

Since enqueue increments pushTicket its proofmust close the invariantwith pushTicket+
1 for the existential pushTicket and thus the big separating conjunction ranges over

one additional conjunct. Hence, in the proof one must show

enqueueObl(γl, γt, γm, pushTicket)

and one should think of enqueueObl(γl, γt, γm, i) as something which enqueue is

obliged to produce when it takes the ith ticket. Since the proposition enqueueObl is a

disjunction, there are two ways for enqueue to meet this obligation. When enqueue

comes first, the obligation is trivial: it can take the token token
γt(pushTicket), and

this is exactly the first disjunct. If, on the other hand, enqueue is last, then there is

no way to show the first disjunct and the only option is to show the second disjunct,

which involves carrying out the dequeue’s linearization point.

3.7 Extending ReLoC with Support for External

Linearization Points

As mentioned earlier, to show that an operation refines its specification with ReLoC,

one symbolically executes the implementation up to its linearization point. At the

linearization point, the specification is then symbolically executed to reflect the

change in the state of the implementation at the linearization point. However, for an

external linearization point this approach does not work as the linearization point

does not happen during the symbolic execution of the operation; instead, it happens

during the symbolic execution of some other operation. Intuitively, it is when we

symbolically execute this second operation that we should symbolically execute the

specification. This kind of reasoning is not supported by the current ReLoC rules.

To support such reasoning we extend ReLoC with additional rules, a selection

of which is shown in Figure 3.8. We explain how these rules are used by using the

external linearization point in the MPMC queue as an example.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 70

rel-split

∀id.(|= − ≾id e2 : −) −∗ ∆ |= e1 ≾id − : τ

∆ |= e1 ≾ e2 : τ

rel-combine

|= − ≾id e2 : − ∆ |= e1 ≾ e2 : τ

∆ |= e1 ≾id − : τ

rel-load-l’

ℓ ↪→ v (ℓ ↪→ v −∗ ∆ |= K[v] ≾id − : τ)

∆ |= K[! ℓ] ≾id − : τ

rel-right-load

ℓ ↪→s v |= − ≾id K[! ℓ] : −
|⇛(ℓ ↪→s v) ∗ (|= − ≾id K[v] : −)

rel-deqeue-detached

ICG(w, v :: x⃗) (|= − ≾id dequeueCG w : −)
|⇛ICG(w, x⃗) ∗ (|= − ≾id v : −)

Figure 3.8: Selected rules for external linearization points.

When we show the dequeue refinement, we symbolically execute the implemen-

tation until we reach the expression FAA(popTicket, 1). At this point, if pushTicket ≤
popTicket then the linearization point is external, and the specification should be

symbolically executed during the corresponding enqueue operation. To this end, we

apply the rule rel-split which splits a refinement judgment into a left refinement of
the form |= e1 ≾id − : τ and a right refinement of the form |= − ≾id e2 : −. These
represent the state of the implementation and the specification, respectively. When

we split a refinement judgment, we naturally want to keep track of the fact that

the two parts originate from the same refinement judgment. The split refinement

judgments is therefore parameterized by an identifier id from an opaque set Id of

identifiers. Since the right refinement (|= − ≾id e2 : −) appears on the left-hand

side of a wand −∗ in rel-split we can assume it as a resource.3 Hence, after applying
rel-split we obtain the right refinement |= − ≾id dequeueCG w : − for some id as
a proposition. We transfer this right refinement into the invariant, as described in

the previous section.

Our goal is now a left refinement with the state of the implementation. To be

able to symbolically execute the left refinement, we have generalized all the rules in

ReLoC for symbolically executing the implementation in a refinement judgment such

that they apply both in the presence and in the absence of a specification side. The

rule rel-load-l’ show the generalized rule rel-load-l specialized to a left refinement.

We can hence continue symbolically executing the implementation up to the point

where dequeue reads a value from its designated SEQ. Intuitively, by now an enqueue

operation must have carried out the linearization point, i.e., symbolically executed

the right refinement that we placed inside the invariant (we explain how this is

done below). We know this, as the enqueue obligation enqueueObl(i) corresponding
to our dequeue operation must have been fulfilled in the invariant. And since we

came first and thus were able to take the came-first token, we can conclude that

3

This treatment of the right refinement stems from the “specifications-as-resources” approach of

Turon et al. [TDB13] and is present in the model of ReLoC as well.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 71

the obligation contains |= − ≾id vs : −. The identifier registry ensures that the id

of this right refinement matches the left refinement in our goal. We take the right

refinement out of the invariant in exchange for our came-first token. To “re-insert”

this right refinement into our goal we use the rule rel-combine. This rule acts as

a counterpart to rel-split and combines a right refinement in the context with a

left refinement in the goal. After applying this rule our goal is again a standard

refinement judgment, but, with a fully evaluated specification. The remaining part

of proof can be completed using existing rules in ReLoC.

We now consider how the external linearization point is handled in the re-

finement proof of enqueue. We symbolically execute the implementation up to

FAA(pushTicket, 1). If pushTicket < popTicket then the corresponding dequeue’s

linearization point is external and we must step its specification forward. In the in-

variant this corresponds to producing a particular enqueue obligation enqueueObl(i).
Since we do not have a came-first token for this obligation, we must produce the

right refinement |= − ≾id vs : − for some id and vs. We can do this by symbolically

executing the right refinement |= − ≾id dequeueCG w : − present in the invariant

by using a new set of rules that applies to a right refinement in one’s context (rel-

right-load is one such rule). From these rules the required rel-deqeue-detached

can be derived.

3.7.1 Proof Pattern for External Linearization Points

Summarizing, the generally applicable pattern for external linearization points is as

follows. One must establish an invariant that allows transferring a right refinement

between the operation with an external linearization point and the operation during

which the external linearization point occurs. In the refinement proof of the operation

with the external linearization point, one symbolically executes the implementation

up to the point where another operation may carry out the linearization point. At

this point, one applies rel-split and transfers the right refinement into the invariant.

Then, one uses the generalized symbolic execution rules to step the implementation

forward until the point where it is certain that the external linearization point has

occurred. At that point, one extracts the advanced right refinement from the invariant

and applies rel-combine to merge it back into the left refinement. In the refinement

of the operation during which the linearization point happens, one steps forward

the implementation to the point where the external linearization point occurs, take

a right refinement from the invariant, steps it forward using the symbolic execution

rules for a right refinement, and puts it back into the invariant afterward.

This approach is general and in our Coq formalization we have applied it to two

other examples of data structures with external linearization points: a version of the

elimination-backoff stack from [HSY04], and the red flags versus blue flags example

from [Tur+13a].

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 72

3.7.2 Changes to the ReLoC Model

We now describe how the left and right refinement judgments are defined and how

the rules are encoded. The changes that we make to ReLoC rely on exposing and

encapsulating a suitable amount of capabilities already present in the underlying

model (described in [FKB20a]) and thus the soundness result of ReLoC is unaffected.

Recall, from [FKB20a], that the refinement judgment is defined
4
as:

|= e1 ≾ e2 : τ ≜ ∀j,K.
{specCtx ∗ j Z⇒ K[e2]} e1

{
v. ∃v′. j Z⇒ K[v′] ∗ JτK(v, v′)

}
That is, it is a particular Hoare triple for the left-hand side expression e1, specifi-
cations for which talk about the thread-pool resource j Z⇒ K[e′] and an invariant

specCtx (the latter can be ignored). These thread-pool resources are part of the ghost

thread-pool: the key element in the definition of the model.

In order to obtain a right refinement, we package this thread-pool resource

j Z⇒ K[e′] together with the invariant specCtx. The identifier for such a refinement

is then a pair of the thread id j and the evaluation context K . This hides all the

unnecessary details:

Id ≜ {j : nat,K : ctx}
|= − ≾id e2 : − ≜ specCtx ∗ id.j Z⇒ id.K[e2]

Finally, the left refinement judgment is obtained by taking the definition of a normal

refinement, and stripping away the information about the right refinement from the

precondition in the Hoare triple:

|= e1 ≾id − : τ ≜ {True} e1
{
v.∃v′, id.j Z⇒ id.K[v′] ∗ JτK(v, v′)

}
In the Coq formalization, we formalize a generalized definition that combines

the left refinement |= e1 ≾id − : τ and the regular refinement |= e1 ≾ e2 : τ . This
allowed us to make tactics that automatically apply the correct rule, depending on

whether we are proving a left refinement or a regular one. Tactics allow the user

to interactively carry out refinement proofs, without worrying too much about the

low-level details of the rules. For example, the user can invoke a tactic rel_load_l,
that applies either rel-load-l or rel-load-l’, depending on what is applicable. The

tactics automatically determine the evaluation contextK and the resource ℓ 7→ v (if
available).

3.8 Discussion: Conclusion, Related and Future Work

We now discuss related and future work along two dimensions: (1) specification and

verification of the MPMC queue, and (2) and the extension of ReLoC with support

for reasoning about external linearization points.

4

For reasons of clarity, the definitions given here are presented without masks and view-shifts;

see [FKB20a] for details.

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 73

Wrt. (1), ours is the first formal specification and verification of the highly-

efficient and practical MPMC queue algorithm used in Meta’s Folly library. Thanks

to our modular approach we also get specifications for its submodules. For example,

our specification for the turn sequencer can also be used to verify other clients

than the SEQ; indeed, in our Coq formalization we have used the turn sequencer to

implement and verify a ticket lock.

Recently a similar bounded queue was considered by Mével and Jourdan [MJ21a].

Theirmotivation, approach, and challenges are different from ours. They specified the

queue they considered in terms of logically atomic triples, while we prove contextual
refinement. They verify the queue with respect to the weak memory model of

multicore OCaml by using the Cosmo logic [MJP20] , while we assume sequential

consistency (a simplification compared to the C++ memory model). Their challenges

stem from the complexities of weak memory, but the queue operations they verify

are comparatively simpler than ours and have only fixed linearization points.

Wrt. (2), we emphasize that our extensions to ReLoC are generally applicable

and suitable to support mechanized verification of a wide range of fine-grained

concurrent algorithms with external linearization points. Indeed in our Coq formal-

ization we have applied our methodology to two other examples: a version of the

elimination-backoff stack from [HSY04], and the red flags versus blue flags example

from [Tur+13a].

The most closely related work not already discussed earlier in the paper is

Liang and Feng’s local rely/guarantee-style relational logic [LF13b], which can be

used to show refinement for fine-grained concurrent algorithms with non-fixed

linearization points, including algorithms with external linearization points. In

contrast to Liang and Feng’s logic, our extended version of ReLoC supports a more

expressive programming language with higher-order functions (we use them to

write out the constructors as closures encapsulating the internal state of the queue).

Recently, a variant of Liang and Feng’s logic has been formalized in Coq by Zou

et. al. [Zou+19], for the purposes of verifying a concurrent file system with external

linearization points. They extend the logic of Liang and Eng with abstract “helping”

mechanism, which allows one thread to carry out linearization points of several

other threads. It would be interesting to obtain the Coq formalization and investigate

a) how a proof of the MPMC queue in that setting would compare with our proof in

ReLoC; b) whether the mechanism of helpers can be implemented and applied in

ReLoC.

Another relational program logic that was used for verifying algorithms with

external linearization points is CaReSL [TDB13], which also supports a functional

programming language with higher-order functions and higher-order state. As

mentioned, our approach to handling external linearization points is closely inspired

by the “specifications-as-resources” approach of CaReSL present in the model of

ReLoC.

In addition to (relational) program logics, there are many alternative methods

for verifying concurrent data structures with external linearization points, including

generic methods like interval reasoning [DD13; DDH12], or data structure specific

CHAPTER 3. VERIFICATION OF A QUEUE FROM FOLLY 74

methods like aspect-oriented proofs for concurrent queues [Cha+15]. We refer an

interested reader to the survey article by Dongol and Derrick [DD15].

Other alternatives to contextual refinement include logically atomic Hoare

triples [JP11; Jun+15a; RDG14] (whichwere used in the aforementionedwork [MJ21a])

and HOCAP-style specifications [SBP13], which aim at internalizing the notion

of atomicity. In particular, the Iris notion of logically atomic triples is a popular

correctness criterion that can handle data structures with external linearization

points [Jun+15a]. A logically atomic triple is a special kind of Hoare triple for a sin-

gle program—unlike ReLoC’s refinement judgment which relates an implementation

to a specification. One strong point of logically atomic triples is that they are easy

to use and build upon inside the Iris logic. On the other hand, they do not yield

as strong results outside the logic as ReLoC’s refinement judgment, which implies

contextual refinement. Recently, logically atomic triples have been shown to imply

linearizability[Bir+21], but only in a simpler first-order setting.

Contextual refinement is related to another popular correctness for concurrent

algorithms: linearizability [HW90]. While there is an abundance of methods for

verifying or checking linearizability, it has mainly been considered for first-order

languages and with certain restrictions placed on how clients can interact with the

concurrent algorithm.
5
To the best of our knowledge, linearizability has not even

been properly defined for a programming language with features that we consider

here (e.g.,higher-order functions, higher-order state, fork-based concurrency).

5

In such a setting contextual refinement and linearizability are equivalent [Fil+10b].

Chapter 4

Spirea: A Mechanized

Concurrent Separation Logic for

Weak Persistent Memory

Abstract

Weak persistent memory (a.k.a. non-volatile memory) is an emerging

technology that offers fast byte-addressable durable main memory. A wealth of

algorithms and libraries has been developed to explore this exciting technology.

As noted by others, this has led to a significant verification gap. Towards closing

this gap, we present Spirea, the first concurrent separation logic for verification

of programs under a weak persistent memory model. Spirea is based on the Iris

and Perennial verification frameworks, and by combining features from these

logics with novel techniques it supports high-level modular reasoning about

crash-safe and thread-safe programs and libraries. Spirea is fully mechanized

in the Coq proof assistant and allows for interactive development of proofs

with the Iris Proof Mode. We use Spirea to verify several challenging examples

with modular specifications. We show how our logic can verify thread-safety

and crash-safety of non-blocking durable data structures with null-recovery, in

particular the Treiber stack and the Michael-Scott queue adapted to persistent

memory. This is the first time durable data structures have been verified with

a program logic.

4.1 Introduction

In the traditional storage hierarchy programmers can choose between fast, but

volatile, main memory and non-volatile, but slower, secondary storage. Persistent

memory (a.k.a. non-volatile memory) is an exciting emerging technology that,

uniquely, offers both fast random access at byte granularity and persistence of data

in the absence of power and across system crashes. It thus shakes up the traditional

storage hierarchy with a new abstraction: storage that is suitable both as main

memory and as durable storage of data.

75

CHAPTER 4. SPIREA 76

A wealth of algorithms, libraries, and tools have been developed for persistent

memory, exploring the new potential. This includes durable data structures [Cai+21;

Fri+18], memory allocators [Sch+15], garbage collectors [Cai+20], transactions [RCF21;

VTS11], key-value stores [Che+20; Kai+19], and language-level support for persistent

memory [Geo+20], just to mention a few. An important class of data structures

that is new and unique to persistent memory is durable data-structures with null-
recovery [IMS16]. These reside in persistent memory and are preserved across crashes

with no recovery being needed after a crash to maintain their consistency.

Ensuring correctness when programming for persistent memory is, however,

extremely challenging. Since data stored in persistent memory is expected to be

permanent, programs for persistent memory must be crash-safe. Thus, programmers

must ensure that if the system crashes (which can happen non-deterministically at

any time, e.g.,due to power failure) then, after the crash, the content of the persistent
memory should be in a consistent state from which recovery is possible.

Moreover, due to the volatile caches on contemporary CPUs, writes to persistent

memory are buffered. They occur asynchronously and may reach persistent memory

in a different order than the one in which they were carried out. This persistent
memory order (or persist order) does not coincide with the weak memory order,
the order in which the CPU guarantees that writes by one thread are made visible

to other threads. Hence, a program can be correct for weak memory (by taking

into account the weak memory order), but not correct for persistent memory (by

failing to take the persistent memory order properly into account). To tame this

non-determinism, modern instruction sets such as x86 and ARM offer various flush

and fence instructions, which programmers can insert between writes to enforce a

desired persist order. These instructions are expensive, though, and should only be

used when necessary.

One solution to ensure correctness in the presence of these challenges is, of

course, to formally verify programs for persistent memory using a program logic.

However, as Raad et al. [RLV20] identified, there is a significant verification gap:
The development of algorithms and libraries for persistent memory is far ahead

of formal verification techniques for persistent memory. As a first step towards

closing this gap two program logics have been developed: Persistent Owicki-Gries

(POG) [RLV20] and Pierogi [Bil+22]. Both are adaptations of the Owicki-Gries proof

system and for reasoning about programs under the machine-level x86-TSO memory

model. However, since these logics are based on Owicki-Gries they only support a

very simple first-order sequential programming language and do not include features

such as separation, (user defined) ghost state, higher-order reasoning, and abstract

specifications. This results in a lack of modularity that is evident, for instance, in

[RLV20], where to verify an example using a lock, the lock and the client of the lock

are verified together using a global invariant with knowledge about the internals of

both. It is not possible to give the lock an abstract specification, verify it in isolation,

and reuse the specification with multiple clients. In contrast, modern concurrent

separation logics (CSLs), such as Iris [Jun+18a], scale to much richer programming

languages and support the aforementioned features. We thus think that the next

CHAPTER 4. SPIREA 77

step to closing the verification gap is to develop a CSL for persistent memory, and

that is exactly what we do in this paper.

4.1.1 Challenges

Prior work has explored the application of CSL to weak memory and to persistency

individually. The RSL and GPS logics has spawned a line of logics for weak (but not

persistent) memory [DV16; Kai+17; TVD14; VN13]. The Perennial logic, which is

a state-of-the-art CSL for reasoning about crash-safety, and its predecessor Crash

Hoare Logic applies to programs that use durable secondary storage (but without

any weak behaviors) [Cha22; Cha+19; Cha+21; Che+16]. These logics have been

successful in their respective domains but no CSL has been developed for the weak
persistency found in persistent memory. As persistent memory combines challenging

aspects from both weak memory and persistency a natural approach is to learn

from the above-mentioned logics and try to adapt their techniques into a logic for

persistent memory. As it turns out, there are however serious obstacles to such an

endeavor:

Non-deterministic crashes In a strong persistency model, such as the one con-

sidered for Crash Hoare Logic and Perennial, crashes are deterministic. This means

that if a crash occurs at a given program point the state of the machine after the

crash is uniquely determined by its state before the crash at that program point.

The durable storage is completely unaffected by the crash whereas the content of

volatile memory is entirely lost. At the program logic level this means that some

logical resources are kept unchanged at a crash while others are discarded. Perennial

includes a post-crash modality, ⟨PC⟩, that carries out this transformation. All rules

for their post-crash modality have the form R ⊢ ⟨PC⟩R, which means that the

resource R is preseved during a crash. If a resource P is lost at a crash this is simply

encoded by having no such rule for P .
For persistent memory the persistency model is weak due to the asynchronous

nature of writes and fences. This means that the crash step is non-deterministic.
As such, resources are not merely kept or lost at a crash; instead they are non-

deterministically kept, discarded, or changed. Hence, the straightforward behavior of
Perennial’s post-crash modality is no longer sufficient and its model, which relies on

changing ghost names for lost resources, is not applicable either! We thus introduce

a more sophisticated post-crash modality and prove it sound using a more subtle

model.

Sound invariants It is well-known that Iris-style invariants are unsound for

weak memory. To overcome this, CSLs for weak memory have had to restrict

invariants in various ways. One approach taken by GPS, iGPS and iRC11 is to

associate invariants with specific locations and only allow access to their content

when physically synchronizing with the location. We observe that in a persistent

memory setting even these restricted invariants allows for resource transfer that

CHAPTER 4. SPIREA 78

is unsound for persistent memory. In particular, in weak memory if a RMW (read-

modify-write) operation is successful then the overwritten value can never be read

again by another RMW operation. The weak memory invariants rely on this property

for certain types of resource transfer. But, in persistent memory, a write made by

an RMW operation might be lost at a crash, and the overwritten value will then be

observable again after the crash.

Additionally, we want invariants that are strong enough to handle durable data

structures with null-recovery. The obvious way to encode at the logic level that

a data-structure is preserved across crashed is to say that its invariant (inside its

representation predicate) is preserved under the post-crash modality. However, it

is not clear how an Iris invariant can soundly interact with a post-crash modality.

Indeed, in Perennial, which uses Iris invariants, one cannot use the post-crash

modality to establish that an invariant holds after a crash. Instead, Perennial relies

on recovery code to establish new invariants after a crash, but this approach does

not work for null-recovery where there is no recovery code.

A somewhat subtle point is that the issues with reconciling Iris invariants and

crashes also pose challenges regarding modeling of the logic. Prior Iris-based logics

for weak memory use Iris invariants internally to model their more restrictive user-

level invariants. But if invariants can not survive crashes, then they can not be used

in the model either.

Persistent memory instructions Persistent memory models usually involve

some combination of flushes and fences to restrict the persist order when necessary.

These instructions are specific to persistent memory and are not addressed by prior

separation logics. We consider a weak flush instruction that may be reordered with

respect to other instructions up to a fence. As noted by Raad et al. [RLV20] such a

flush instruction is difficult to reason about as its effect does not take place at the

program point of the flush. As for fences we consider both asynchronous fences and

synchronous fences.

4.1.2 Our Contributions

This paper contributes Spirea, the first CSL for weak persistency in general and persis-

tent memory in particular. We use the explicit epoch persistency model by Izraelevitz

et al. [IMS16].
1
This model is a slight generalization of the x86 and the ARM per-

sistency models which can be efficiently implemented on both processors. As the

model is slightly weaker than x86 and ARM, programs that are proven correct for

this model are correct for both x86 and ARM. Similarly, reasoning principles that

apply for this model are more general and are sound also for x86 and ARM. As such,

the ideas in Spirea are generally applicable and can also be used, for instance, in

logics specifically for x86 and ARM. In Section 4.2 we give an intuitive account of

1

Not to be confused with the (implicit) epoch persistency model which cannot be efficiently

implemented on x86 or ARM.

CHAPTER 4. SPIREA 79

the persistency model as well as the consistency model and explain the verification

challenges in more detail. Izraelevitz et al. [IMS16] define the explicit epoch persis-

tency model in a declarative style, as a number of ordering constraints on abstract

histories. Such a formulation is not well-suited for reasoning in a CSL, so we recast

their model as a view-based small-step operational semantics (see Section 4.7.1) that

can be used with the Perennial and Iris logical frameworks. As our focus in this

paper is squarely on the logic we do not establish a formal correspondence between

Izraelevitz et al.’s formulation and ours but instead leave this to future work.

Our logic improves the state-of-the-art both in terms the programming language

features it supports, the expressivity and power of the logic, and in the scope of the

case studies we have verified. Our programming language λpmem includes many

features that are not supported by the Owicki-Gries based logics, most importantly:

dynamic allocation of references, dynamic forking of threads, functions (including

higher-order recursive functions and closures), and compound data types. As for the

logic, Spirea is a higher-order separation logic and includes all the usual features in

Iris based separation logics (except for those that are unsound in our setting). For

reasoning about crashes Spirea contains features equivalent to those of Perennial.

We cover this background in Section 4.4.

To tackle the above-mentioned challenges, Spirea includes the following key

innovations:

1. A resource changing posts crashmodality that can account for the non-deterministic

changes in resources at crashes under weak persistency. Our post-crash modal-

ity supports rules of the form R ⊢ ⟨PC⟩R′
, where R′

reflects how R is non-

deterministically affected by the crash. We make this possible by modelling

our post-crash modality using an exchange resource. This can be seen as a

generalization of the model of Perennial’s post-crash modality: the Perennial

model is the special case where the exchange resource is the empty resource.

2. Crash-aware invariants, which, in contrast to Iris-style and GPS-style invari-

ants, are sound under weak persistency. Soundness of Spirea crash-aware

invariants relies on having novel proof rules for transfer of resources in and

out of invariants. Our Spirea invariants are crash-aware, meaning that they

can be preserved under our post-crash modality and thus facilitate resource

transfer between code executing before and after a crash. This is the first time

a separation logic contains invariants that can be used to this end. We devise

a novel model for our invariants that does not rely on Iris invariants.

3. An assortment of features to handle persistent memory instructions: Post-fence
modalities, a post-crash flush modality, and state lower-bounds w.r.t. fences.
These work in tandem to reason about weak flushes and synchronous and

asynchronous fences.

We explain these in depth in Section 4.6 where we give a high level introduction to

Spirea, explain its design, and present several examples.

CHAPTER 4. SPIREA 80

v ∈Val ::= () | i ∈ Z | ℓ ∈ Loc | True | False | (v, v)
| inj1 v | inj2 v | rec f(x) = e | · · ·

e ∈ Expr ::= x | v | if e then e else e | (e, e) | π1 e | π2 e | inj1 e | inj2 e | e e | · · ·
| match e with inj1 x⇒ e | inj2 x⇒ e | fork {e}
| refa e | !a e | e :=a e | CAS e e e | FAA e e e for a ∈ {na, at}
| flush e | fence | fencesync

Figure 4.1: The syntax of λpmem

Spirea and its high-level reasoning rule are modelled on top of a lower-level

logic called BaseSpirea. This logic, in turn, is modelled using an instantiation of the

Perennial program logic and using the Iris base logic. In Section 4.7 we state the

soundness result in terms of the operational semantics. We also give an overview of

the semantic model and the proof of soundness to the extent that space permits. For

the full details regarding the model and the soundness proof we refer the reader to

our mechanization.

Spirea and all our results are fully mechanized in the Coq proof assistant. The

mechanization allows for interactive development of proofs using the Iris proof mode.

The development is available online at https://github.com/logsem/spirea and
as an artifact [VB23b]. We have used the mechanization of our logic to formally

verify a range of examples and case studies. We cover a number of these in Section 4.8.

The case studies demonstrate how our logic is capable of verifying tricky synthetic

examples, that it can give modular and compositional specifications to thread-safe

and crash-safe libraries, and even verify entire durable data structures with null-

recovery. For the latter we have verified crash-safety and thread-safety of both a

durable version of the Treiber stack and the Michael-Scott queue. This is the first

time durable data structures have been verified with a program logic.

In Section 4.9 we discuss related and future work.

4.2 Persistent Memory Verification Challenges

Before we can introduce Spirea we must first understand the kinds of programs that

it aims to verify correctness of and the challenges involved in this. To this end we

introduce our programming language λpmem. Its syntax is seen in Figure 4.1. We use

highlighted text to indicate the parts of the language that are related to persistent

memory only. Loosely speaking, if we erased those parts we would get a language

for weak, but not persistent, memory.

λpmem is a lambda-calculus with standard features (recursive functions, booleans,

products, sums, etc.), fork-based concurrency, references with dynamic allocation,

and operations for weak persistent memory. The expression fork {e} spawns a
new thread that evaluates e in parallel with existing threads. We use the notation

e1 ∥ e2 for the parallel execution of e1 and e2, which is derivable from fork. We

https://github.com/logsem/spirea

CHAPTER 4. SPIREA 81

x :=na 37;

y :=at 1

∥∥∥∥∥∥∥
if !at y = 1

then
assert (!na x = 37)

(a) Message passing (MP)

x :=na 37;

flush x;
fence;
y :=at 1

∥∥∥∥∥∥∥∥∥
if !at y = 1

then
fence;
z :=na 1

⟲

if !at z = 1

then
assert (!na x = 37)

(b) Durable MP

x :=na 37;

flush x;
fence;
y :=na 1

⟲

if !na y = 1

then
assert (!na x = 37)

(c) Flush and fence

x :=na 37;

y :=at 1

∥∥∥∥∥∥∥∥∥
if !at y = 1

then flush x;
fence;
z :=na 1

⟲

if !at z = 1

then
assert (!na x = 37)

(d) Optimized durable MP

Figure 4.2: Examples of programs that use weak and persistent memory operations

define assert to be function that is unsafe (gets stuck) if its argument is not True.
The language features a weak persistent memory model. The full formal operational

semantics appears in Section 4.3. In this section we give an intuitive explanation of

the memory model illustrated by the examples in Figure 4.2. But first we fix some

terminology.

A consistency model specifies the semantics of shared memory by restricting the

weak memory order, the order of memory operations across threads. A concurrent

program that correctly accounts for interleavings and the weak memory order is

thread-safe. A persistency model specifies the semantics of persistent memory by

restricting the persist order, the order in which writes may reach the persistent

memory[PCW14]. A program using durable storage that correctly accounts for

crashes and the persist order is crash-safe. The mentioned orders are defined using

the program order, the order in which memory operations are issued by the program.

4.2.1 Release-Acquire and Non-Atomic Consistency

We use a highly relaxed consistency model closely resembling the release-acquire

and non-atomic fragment of C11.
2
The memory operations for allocations (refa),

writes (:=a), and reads (!a) are annotated with a memory access mode a ∈ {na, at}.
Allocations are considered a form of writes in the memory model. The access modes

na and at are non-atomic and atomic access, respectively.
2

The largest deviation from C11 is that we make no attempt to rule out data races on non-atomics

which is undefined behavior in C11. This can be done with a race-detector [Dan+20; Kai+17]—we avoid
that here for simplicity.

CHAPTER 4. SPIREA 82

Non-atomic access is to be used when there are no races on data. For instance,

when a thread uses a location exclusively or when synchronization has been es-

tablished through other means, e.g.,through a lock or atomic operations (explained

below). Non-atomic writes (:=na) performed by one thread give no guarantees on

the order in which other threads may see them. This implies that it would be unsafe

to use a non-atomic write to y in the example in Figure 4.2a. The right thread might

read 1 from y without also reading 37 from x.
To ensure a desired weak memory order across threads, atomic access must

be used. An atomic write (:=at) is called a release-write and an atomic read (!at) is
called an acquire-read. If an acquire-read reads a value written by a release-write

we say that the acquire-read synchronizes with the release-write. In this case, the

write is ordered before the read in the weak memory order. Furthermore, a release-

write is ordered after all preceding (in program order) memory operations, and an

acquire-read is ordered before all succeeding (in program order) reads and writes.

Together, this means that when a thread, call it t1, performs an acquire-read and

synchronizes with a release-write of another thread, say t2, then t1 becomes “aware

of” (or acquires) all the writes that t2 was aware of at the time of writing. This is

exemplified by the message passing (MP) example in Figure 4.2a where the use of

atomic operations make the assertion safe. When the sender thread writes 1 to y
it is aware of the write of 37 to x (since it wrote it itself, program order). Hence, if

the receiving thread reads 1 from y it also becomes aware of the write to x, thus the
following read of x is certain to yield 37, and the assert will succeed.

The read-modify-write (RMW) operations CAS (compare-and-set) and FAA
(fetch-and-add) count as both an acquire-read and a release-write at the same time.

4.2.2 Explicit Epoch Persistency

We use the examples in Figures 4.2b to 4.2d to explain the memory model we use.

The notation e ⟲ er denotes execution of e with er configured as recovery code.
3

We use the explicit epoch persistency model by Izraelevitz et al. [IMS16]. As they

argue this persistency model is a slight generalization of the x86 and ARM machine

level persistency models. The model includes three operations to manage the persist

order: an explicit flush, flush (also called a write-back), an asynchronous fence,

fence, and a synchronous fence, fencesync. In the absence of these instructions,

no guarantees are given on the persist order. For instance, it is not safe to run the

left-hand side of Figure 4.2a with the recovery code in Figure 4.2b. As there are

no flushes or fences, the two writes might persist in any order: after a crash the

recovery code might see y being 1 and x still being 0, even though, during normal

execution, this would never be observable due to the release-write.

To enforce a certain persist order one must explicitly flush writes and then end

an epoch with a fence. An asynchronous fence ensures that all writes that have been

flushed before the fence persist prior to any writes after the fence. The asynchronous

3

Note, that this is not syntax in the programming language.

CHAPTER 4. SPIREA 83

fence does not ensure that the flushed writes have actually been persisted; hence,

if a crash happens after the fence, the writes flushed prior to it might still be lost.

But, when a certain persist order has been established, recovery code can perform

a kind of “backwards reasoning”. For instance, in Figure 4.2c the flush and fence

implies that the write to x persists before the write to y. Hence, the recovery code

can read y, and then, if the read yielded 1, reason backwards through the persist

order and conclude that it is now certain to read 37 from x. This makes the assertion

in Figure 4.2c safe. A synchronous fence, is stronger, but also potentially slower,

than an asynchronous fence. It additionally blocks execution until all flushed writes

have actually reached persistent memory. This means that had Figure 4.2c used a

synchronous fence, then the write to x would have been persisted with certainty

after executing the program.

Flushes and fences interact with release-writes and acquires-reads as a way

to “connect” the weak memory order and the persist order. If an acquire-read

synchronizes with a release-write then anything flushed and fenced prior to the

release-write is guaranteed to persist before anything following a fence after the

acquire-read. In the durable MP example in Figure 4.2b this ensures that the write to

z in the right thread must persist after the write to x in the left thread and hence

that the assertion made at recovery is safe. Note that the fence after the acquire-read

of y is necessary. When performing an acquire-read a thread immediately gains

knowledge of the writes the releasing thread know about. But, only after a fence

does it gain knowledge about flushed and fenced writes known to the releasing

thread. Note also that flushes without fences provide no ordering guarantees with

respect to atomic operations.

The optimized durable MP example in Figure 4.2d is similar to the durable MP

example except that the left thread does not flush the write to x before sending it

through y. Hence, when the right threads read 1 from y it is still certain to know

about the write to x (as in Figure 4.2a), but it no longer receives knowledge about

the write being flushed. Hence, the right thread must flush x. With this being done

it is still the case that the write to z persists after the write to x. But, it is no longer

the case that the write to x will persist before the write to y. This brings us to
the crucial point regarding this example: reading 1 from y carries with it different

information to a concurrent thread (which gains knowledge that x holds 37) than
it does to recovery code (which gains nothing). In Figure 4.2b it would also have

been safe for the recovery code to read y instead of z, but here this would not be

safe. At the logic level, this means that the resources associated with the write to y
in Figure 4.2d must change at a crash, but it need not change in Figure 4.2b.

4.3 Operational Semantics

This section defines the full formal operational semantics of λpmem. The semantics

formalizes the consistency and persistency models described informally in prior

section.

CHAPTER 4. SPIREA 84

m ∈ MEvent ::= Ala(ℓ, v) | Ra(ℓ, v) |Wa(ℓ, v) |RMW(ℓ, vr, vw) | RMWfail(ℓ, v) | FL(ℓ) | F | FS

V,S,F ,P,B ∈ View ≜ Loc
fin−⇀ N σ ∈ Store ≜ Loc

fin−⇀ History

⟨S,F ,B⟩, T ∈ ThreadView ≜ View
3 h ∈ History ≜ N fin−⇀ Message

⟨σ,P⟩,M ∈ MemConf ≜ Store× View ⟨e, T ⟩, t ∈ ThreadState ≜ Expr× ThreadView

⟨v,Sm,Fm,Pm⟩ ∈ Message ≜Val× View
3 ⟨M , t⃗⟩, ρ ∈ MemConf× List(ThreadState)

Figure 4.3: Definitions of semantic objects used in the operational semantics

Note: This section and Section 4.5 where included as appendices in Vindum

and Birkedal [VB23c]. As such they are not essential to understand the rest of this

chapter. Readers who wish a quick path to the Spirea logic can skip both sections and

readers who want a deeper understanding are invited to read them. Both sections

are required to understand Chapter 6.

Memory Events

To define how expressions interact with the memory we use two labeled transition

systems (LTSs), one for expressions and one for the memory. This approach neatly

keeps the memory model considerations separate from the rest of the language

semantics. The labels for the LTSs arememory events, defined in Figure 4.3, describing
how expressions can interact with the memory.

4.3.1 Expression LTS

The LTS for expressions has the form e
m−→ e′; e⃗, meaning that the expression e can

step to e′ with the labelm ∈ MEvent ∪ {ϵ} while forking the sequence of threads
e⃗. The label ϵ is used for expressions that do not interact with the memory (pure

reductions, etc.). A selection of expression transitions is seen in Figure 4.4. First is

the step for application (just to show that standard reductions work as expected),

then the one for fork (the only rule where the sequence of forked threads is not

the empty sequence ε), and then transitions that interact with the memory (i.e.,
where m ̸= ϵ). Note how these transitions make it clear how the memory events

correspond to operations in the language, for instance, the expression refa v emits

an event for allocation of the form Ala(ℓ, v), reading a value with !a ℓ emits an event

for reading Ra(ℓ, v), and so on.

4.3.2 Memory LTS

We now wish to define an LTS for the memory. To this end, we need some semantic

objects, defined in Figure 4.3, which we now explain.

CHAPTER 4. SPIREA 85

In a strong sequentially consistent memory threads always read the last write

to a location, and hence the store (i.e., the memory) can be modeled simply as a

finite map from locations to values. In a weak persistent memory model, on the

other hand, threads and recovery code may read out-of-date values. Therefore, the

store is a finite map from locations to histories. Each history contains all writes to

a location as a finite map from timestamps (natural numbers) to messages. Every
message corresponds to a write to the location and contains the written value and

other data explained below. The timestamps correspond to the order of the writes.

Closely related to the definition of the store is the notion of a view: a finite map

from locations to timestamps. Views are used to represent subsets of messages in

the store. For a store σ, a view V intuitively represents all messages of the form

σ(ℓ)(t) for t ≤ V(ℓ). We sometimes talk of the messages “in” a view to mean this

set of messages. Views naturally form a semi-lattice where the least element ⊥ is

the empty partial function, where V1 ⊑ V2 ≜ ∀ℓ ∈ dom(V1).V1(ℓ) ≤ V2(ℓ), and
where the least upper bound is given by (V1 ⊔ V2)(ℓ) ≜ max(V1(ℓ),V2(ℓ)).

A memory configuration (MemConf) contains the entire state of the memory. It

is a pair of a store and a view: ⟨σ,P⟩. We refer to P as the persist view; it represents
the messages in σ that are certain to have been persisted.

A thread view is a triple of views: ⟨S,F ,B⟩. These views are a thread’s store
view, flush view, and buffer view. The store view S (flush view F , respectively) is
used to encode the weak memory order (persistent memory order). Messages in

S are those that the thread knows of and that future memory operations will be

ordered after. Messages in F are those that the thread knows have been flushed

and fenced, meaning that will persist before any future memory operations by the

thread. The buffer view B represents the messages that the thread has flushed.

A message is a tuple of the form: ⟨v,Sm,Fm,Pm⟩. As mentioned, a message

corresponds to a write and v is the value written. For an atomic write Sm and Fm is

the writing thread’s store view and flush view at the time of the write. An atomic

read will acquire these views when reading the message. The Pm view enforces

the persist order—a write can have persisted only if all messages in Pm have also

persisted. In the operational semantics, the persist view of a message is only used in

the reduction rule for a crash, corresponding to the fact that the persist order only

affects crashes. For a messagem, we writem.v,m.S , etc. for its components.

The LTS for the memory has the form ⟨σ,P⟩; ⟨S,F ,B⟩ m−→ ⟨σ′,P ′⟩; ⟨S ′,F ′,B′⟩.
As the outcome of a memory operation depends on the views of the thread making

the operation, the LTS is parameterized both by a memory configuration and by

a thread view: The transition rules appear in Figure 4.4; to keep the presentation

concise we make use of the notation

⌊V⌋at ≜ V
⌊V⌋na ≜ ⊥

V0(ℓ) =

{
V(ℓ) if ℓ ∈ dom(V)
0 otherwise

The ⌊V⌋a notation captures the effect of the access mode in several of the rules. For

instance, the only difference between a write (:=na) and a release-write (:=at) is in

CHAPTER 4. SPIREA 86

which views are stored in the written message. We use V0 simply to be able to write

V0(ℓ) even if ℓ is not certain to be in the domain of V .
We now comment on the transition rules. The rule for allocation (with label

Ala(ℓ, v)) extends the store with a fresh location that contains a history with a single

message at timestamp 0. In this rule and in the rule for writing the store view and

flush view of the message is ⊥ if the access mode is na. This is because non-atomic

operations are not for synchronization between threads and therefore no views

should be exchanged when performing them. In contrast, when the access mode is

at then the thread’s store view and flush view are included in the message. For a

read with access mode at, rule (with label Ra(ℓ, v)) then merges the store view from

the read message into the thread’s store view. This ensures that the acquire-read

actually acquires information from the thread whose write it is reading. The flush

view from the message is only added to the thread’s buffer view. The buffer view is

never transferred between threads, it is only used within a thread to keep account of

information that will be acquired at the next fence. Indeed, the buffer view is moved

into a thread’s flush view by the two fence rules (with labels F and FS).
Due to the conditionS0(ℓ) ≤ t in rule for reading, a readmay non-deterministically

read any message for ℓ with a timestamp greater than the thread’s timestamp in its

store view for ℓ.
Note that the rule for writing ensures that the thread’s flush viewF is transferred

irrespectively of access mode; this is to ensure that the persist order is recorded (it is

used when we account for crashes, in Section 4.3.4).

The rules for flushes and fences are rather straightforward. Flushing a location

moves the thread’s timestamp for the location in its store view into its buffer view.

The two rules for fences, move a thread’s buffer view into its flush view. The rule for

the synchronous fence additionally moves the buffer into the memory configuration’s

persist view as well.

4.3.3 Machine Reductions

We define a head reduction →h for a memory and a thread state (a pair of an

expression and a thread view) by combining the LTSs for the memory and for

expressions. It is given by the two rules seen in Figure 4.4. The first rule is for

expression steps that interact with the memory and the second for those that do not.

As is standard we use evaluation contexts K to lift the head reduction to a

per-thread reduction→t which again is lifted to a threadpool reduction→tp that

non-deterministically picks a thread from the threadpool to reduce. They are each

given by a single rule seen in Figure 4.4. Here K is an evaluation context; the

definition of evaluation contexts for λpmem is entirely standard, capturing a call-by-

value left-to-right evaluation order, and has thus been omitted.

CHAPTER 4. SPIREA 87

Expression LTS

(rec f(x) = e) v
ε−→ e[rec f(x) = e, v/f, x]; ε fork {e} ε−→ (); e

refa v
Ala(ℓ,v)−−−−−→ ℓ; ε !a ℓ

Ra(ℓ,v)−−−−→ v; ε ℓ :=a v
Wa(ℓ,v)−−−−−→ (); ε flush ℓ

FL(ℓ)−−−→ (); ε

fence F−→ (); ε fencesync
FS−→ (); ε CAS ℓ v1 v2

RMW(ℓ,v1,v2)−−−−−−−−→ True; ε

v1 ̸= vl

CAS ℓ v1 v2
RMWfail(ℓ,vl)−−−−−−−−→ False; ε

Memory Model LTS

ℓ ̸∈ dom(σ) h = {0 7→ ⟨v, ⌊S⌋a, ⌊F⌋a,F ⟩}

⟨σ, P ⟩; ⟨S, F ,B⟩ Ala(ℓ,v)−−−−−→ ⟨σ[ℓ 7→ h], P ⟩; ⟨S, F ,B⟩

t = S0(ℓ) B′ = B[ℓ 7→ t]

⟨σ, P ⟩; ⟨S, F ,B⟩ FL(ℓ)−−−→ ⟨σ, P ⟩; ⟨S,F ,B′⟩

S0(ℓ) ≤ t σ(ℓ)(t) = ⟨v,Sm, Fm, _⟩

⟨σ, P ⟩; ⟨S, F ,B⟩ Ra(ℓ,v)−−−−→ ⟨σ, P ⟩; ⟨S ⊔ ⌊Sm⌋a, F ,B ⊔ ⌊Fm⌋a ⟩

S0(ℓ) < t σ(ℓ) = h t ̸∈ dom(h) h′ = h[t 7→ ⟨v, ⌊S⌋a, ⌊F⌋a,F ⟩]

⟨σ, P ⟩; ⟨S, F ,B⟩ Wa(ℓ,v)−−−−−→ ⟨σ[ℓ 7→ h′], P ⟩; ⟨S[ℓ 7→ t], F ,B⟩

S0(ℓ) ≤ t t+ 1 ̸∈ dom(h) σ(ℓ) = h h(t) = ⟨vm,Sm, Fm, _⟩
S ′ = (S ⊔ Sm)[ℓ 7→ t+ 1] h′ = h[t+ 1 7→ ⟨v,S ′, F ⊔ Fm,F ⊔ Fm ⟩]

⟨σ, P ⟩; ⟨S, F ,B⟩ RMW(ℓ,v,v′)−−−−−−−−→ ⟨σ[ℓ 7→ h′], P ⟩; ⟨S ′, F ,B ⊔ Fm ⟩

S0(ℓ) ≤ t t+ 1 ̸∈ dom(h) σ(ℓ) = h h(t) = ⟨vm,Sm, Fm, _⟩

⟨σ, P ⟩; ⟨S, F ,B⟩ RMWfail(ℓ,v)−−−−−−−→ ⟨σ, P ⟩; ⟨S ⊔ Sm, F ,B ⊔ Fm ⟩

⟨σ, P ⟩; ⟨S, F ,B⟩ F−→ ⟨σ, P ⟩; ⟨S,F ⊔ B,B⟩

⟨σ, P ⟩; ⟨S, F ,B⟩ FS−→ ⟨σ;P ⊔ B⟩; ⟨S,F ⊔ B,B⟩

Head Reduction

M ; T m−→ M ′; T ′ e
m−→ e′; e1 . . . en

M ; ⟨e, T ⟩ →h M
′; ⟨e′, T ′⟩; ⟨e1, T ′⟩ . . . ⟨en, T ′⟩

e
ε−→ e′; e1 . . . en

M ; ⟨e, T ⟩ →h M ; ⟨e′, T ⟩; ⟨e1, T ⟩ . . . ⟨en, T ⟩

Thread-local and threadpool reduction

M ; ⟨e, T ⟩ →h M
′; ⟨e′, T ′⟩; t⃗

M ; ⟨K[e], T ⟩ →t M
′; ⟨K[e′], T ′⟩; t⃗

M ; t→t M
′; t′; t⃗

⟨M ; t⃗lt⃗tr⟩ →tp ⟨M ′; t⃗lt
′t⃗r t⃗⟩

Figure 4.4: Expression and Memory Model LTS transitions

CHAPTER 4. SPIREA 88

4.3.4 Accounting for Crashes

The state of the memory after a crash is determined by a crash view C. The crash view
represents all the messages that persisted before the crash. It has to be a consistent
cut in the sense that no message can have persisted without all of the messages in

its persist view also having persisted:

Definition 4.3.1. A view C is a consistent cut of a store σ, written consistent(σ, C),
iff for every C(ℓ) = t there exists a history h such that σ(ℓ) = h and t ∈ dom(h).
Furthermore, for all t′ ∈ dom(h) where t′ ≤ t there exists a message m such that
h(t′) = m andm.P ⊑ C.

With this in hand, we can define the crash step reduction

 −→. This reduction

goes from memory configurations to memory configurations and describes what

can happen to the memory at a crash. It is generated by a single rule:

M-crash

P ⊑ C consistent(σ, C)
dom(σ′) = dom(C) ∀ℓ ∈ dom(C). σ′(ℓ) = {0 7→ ⟨σ(ℓ)(C(ℓ)).v,⊥,⊥,⊥⟩}

⟨σ,P⟩ −→ ⟨σ′, viewToZero(C)⟩

The first two assumptions ensure that C is a consistent cut and that it includes all the
definitely persisted messages in P . The next line serves to constrict the new store σ′,
created by picking out a message for each recovered location. The new persist view

viewToZero(C) is the view such that viewToZero(C)(ℓ) = 0 for all ℓ ∈ dom(C) and
which is undefined for all ℓ ̸∈ dom(C). That is, the crash view but with 0 at every

entry.

Finally, we define a recoverable execution relation ⇒r, which expresses what

it means to execute a program together with a recovery program er that is run

after each crash. The relation has the form er; ρ⇒r ρ
′; s where er is the recovery

expression, ρ and ρ′ are machine configurations, and s ∈ {NotCrashed,Crashed} is
a crash-status indicating whether the execution has been crash free or has crashed

along the way.

rexec-normal

ρ→∗
tp ρ

′

er; ρ⇒r ρ
′;NoCrash

rexec-crashed

ρ→∗
tp ⟨M , t⃗⟩ M

 −→ M ′ er; ⟨M ′, [⟨er, ⟨⊥,⊥,⊥⟩⟩]⟩ ⇒r ρ
′; s

er; ρ⇒r ρ
′;Crashed

Note that in contrast to the other relations we have defined above this is a big step
relation. The first rule says that a machine can execute (without crashes) per the

threadpool reduction with the label NoCrash. The second rule says that a machine

may execute normally for some number of steps (the first assumption), then let the

CHAPTER 4. SPIREA 89

Htc-atomic

atomic(e) P −∗ Qc

{P} e {Q ∧Qc} ⊢ {P} e {Q}{Qc}

Htr-idempotence

{P} e {Q}{Qr} Qr −∗ ⟨PC⟩R {R} er {Qr}{Qr}
{P} e ⟲ er {Q}{Qr}

Figure 4.5: Key rules for quadruples in Perennial

memory take a crash step (the second assumption), and then keep executing with

the memory after the crash and a single thread executing the recovery expression.

Note that at a crash all the running threads t⃗ are discarded.

4.4 Background: Crash Reasoning Features In Perennial

Perennial extendsHoare logicwith a crash Hoare quadruple of the form {P} e {Q}{Qc} .
Here P and Q are standard pre- and postconditions. The fourth component Qc is a

crash condition that must hold during every step of execution of e. Since Qc holds

at every step, if a crash occurs at some point, then Qc will necessarily hold at that

point. Hence, the crash-condition is a property that recovery code can rely on after

a crash.

In addition to standard language independent structural rules (a frame rule, a

bind rule, etc.), the key rule for deriving a crash Hoare quadruple is Htc-atomic seen

in Figure 4.5. The rule states that to prove a crash Hoare quadruple for an atomic
expression e, it suffices to prove that the pre-condition implies Qc and an ordinary

Hoare triple for e with Qc added to the postcondition. Since e is atomic and can

take only a single step, it suffices to show the crash condition before and after this

single step. Note the use of the standard (non-separating) conjunction ∧. This makes

it possible to use all the resources one has at hand to show both Q and Qc. This

is a crucial aspect of crash conditions: they can be established without losing the

resources necessary to show them.
4
The use of ∧ is sound since, when the program

runs, it will either take a normal step of execution (in which case the proof of Q is

needed) or crash (in which case the proof ofQc is needed). Since both cannot happen

at the same time, it is not necessary to show the two conjuncts for disjoint resources.

The Htc-atomic rule is important since it, in combination with the structural rules,

allows us to show a crash Hoare quadruple by showing a normal Hoare triple at each

step. This explains why we show rules for normal Hoare triples later in Section 4.6.

To show crash-safety Perennial offers recovery Hoare quadruples of the form
{P} e ⟲ er {Q}{Qr} . The intuitive reading is: given that P holds initially, it is

4

This is in contrast to normal Iris invariants, where one has to sacrifice ownership of the resources

necessary to show the invariant.

CHAPTER 4. SPIREA 90

safe to execute e with the recovery program er . If e terminates in a value v without
crashing then Q(v) holds. If, on the other hand, one or more crashes occur during

execution (of e and er) and er terminates in a value v, then Qr(v) holds.
Per the idempotence rule Htr-idempotence one can show a recovery Hoare

quadruple for a program e and recovery program er by showing a crash Hoare

quadruple for e and one for er . In both cases the crash condition is Qr , such that er
can rely on this resource; not directly though, as the crash itself might change Qr ,

hence the inclusion of the post-crash modality. Since er itself maintains the crash

condition Qr , any number of crashes during er are still safe.
In summary, the proof burden for proving crash-safety is to pick a crash condition

and apply Htr-idempotence. Then one verifies two crash Hoare quadruples. The

verification of these is similar to using normal Hoare triples except that the crash

condition must be shown at every step.
5

4.5 BaseSpirea – The Low-Level Logic

In this section we present BaseSpirea, a program logic for λpmem. The logic is built

on top of Iris and Perennial by instantiating the Perennial program logic framework.

Before we proceed, we briefly explain the relationship between Iris and Perennial

and what such an instantiation entails.

4.5.1 Instantiating Perennial

Iris includes both a base logic and a program logic framework. The base logic

contains the fundamental features of Iris, such as the separation logic connectives

and ghost state, but not program verification capabilities. Perennial, in turn, builds a

program logic framework on top of the Iris base logic. Unlike the program logic in

Iris, Perennial’s is able to reason about crashes and to verify crash-safety, through a

combination of powerful features made for this purpose. Here “framework” describes

the fact that one can instantiate the program logic with any suitable programming

language. We instantiate the framework with λpmem, which, by no coincidence, is

one such suitable language. By doing this instantiation one gets the basic building

blocks of a program logic “for free”. These building blocks include the definition

of Hoare triples (and related notions explained in the next section) and language

independent structural rules for working with them. The instantiator (i.e., us) then
defines language specific assertions and proof rules that must be proven sound. This

is done in tandem with a so-called state interpretation that is picked as part of the

instantiation. The state interpretation’s purpose is to link the physical state (i.e., the
state in the operational semantics) with logical ghost state. At this level, our state

interpretation is fairly standard and we do not give the details here—the interested

reader can find them in our Coq mechanization. One noteworthy aspect of our state

interpretation is that it is parameterized over an “extra” resource. In BaseSpirea this

5

Showing the crash condition is usually trivial and can be automated with a Coq tactic.

CHAPTER 4. SPIREA 91

extra resource is simply true, but when building Spirea on top of BaseSpirea, we

use it to inject additional resources into the state interpretation.

We next describe the most important features of the Perennial program logic

that we inherit (Section 4.5.2); the language specific assertions BaseSpirea adds

(Section 4.5.3); some of the program rules that BaseSpirea includes (Section 4.5.4);

and finally we give the adequacy result of the logic (Section 4.5.5).

4.5.2 The Perennial Program Logic

In this section we explain the most important features from Perennial that are also

present in BaseSpirea. Note that in this subsection we use e to denote expressions

from the point of view of Perennial. When instantiated with λpmem, such an expres-

sion is in fact a thread state (defined in Section 4.3).

In addition to the well-known Hoare triple, Perennial includes a crash Hoare
triple6 of the form {P} e {Q}{Qc} . Here P and Q are standard pre- and postcondi-

tions and the fourth component Qc is a crash condition that must hold during every

step of execution of e. Since Qc holds at every step, if a crash occurs at some point,

then Qc will necessarily hold at that point. Hence, the crash-condition is a property

that recovery code can rely on after a crash.

In addition to standard language independent structural rules (a frame rule, a

bind rule, etc.), the key rule for deriving a crash Hoare triple is Htc-atomic seen in

Figure 4.7

The rule states that to prove a crash Hoare triple for an atomic expression e, it
suffices to prove that the pre-condition implies Qc and an ordinary Hoare triple for

e holds with Qc added to the postcondition. Since e is atomic and can take only a

single step, it suffices to show the crash condition before and after this single step.

Note the use of the standard (non-separating) conjunction ∧. This makes it possible

to use all the resources one has at hand to show both Q and Qc. This is a crucial

aspect of crash conditions: they can be established without losing the resources

necessary to show them.
7
The use of ∧ is sound since when the program runs it will

either take a normal step of execution (in which case the proof of Q is needed) or
crash (in which case the proof of Qc is needed). Since both cannot happen at the

same time, it is not necessary to show the two conjuncts for disjoint resources. The

Htc-atomic rule is important since it, in combination with the structural rules, allows

us to show a crash Hoare triple by showing a normal Hoare triple. This explains

why we show rules for normal Hoare triples later on in this section.

To reason about the combination of a program e and its associated recovery pro-

gram er , Perennial offers a recovery Hoare triple8 of the form {P} e ⟲ er {Q}{Qr} .
The intuitive reading is: given that P holds initially, it is safe to execute e with the

6

Really, it is a quadruple, but we stick with the Hoare triple terminology

7

This is in contrast to normal Iris invariants, where one has to sacrifice ownership of the resources

necessary to show the invariant.

8

Again, we stick with the Hoare triple terminology, even if more than three components are

involved.

CHAPTER 4. SPIREA 92

Assertion Description

ℓ ↪→h h Location ℓ points to the history h.

valid(S) View S is valid.

persisted(P) View P has been persisted.

crashedAt(C) View C was recovered at the last crash.

⟨PC⟩P Proposition P holds after a crash.

Figure 4.6: Overview over assertions in BaseSpirea

recovery program er . If e terminates in a value v without crashing then Q(v) holds.
If, on the other hand, one or more crashes occur during execution (of e and er) then,
if er terminates in a value v, then Qr(v) holds. Beware that the Qr plays a different

role from the Qc used in a crash Hoare triple.

A post-crash modality ⟨PC⟩ internalizes in the logic how resources are affected

by a crash. The assertion ⟨PC⟩P means that P holds after a crash and a rule of the

form P ⊢ ⟨PC⟩Q means that if one has P then one has Q after a crash.

Since the post-crash modality depends intrinsically on the semantics of the

specific programming language one reasons about, we do not get the post-crash

modality by instantiating Perennial; we have to define it ourselves. The idea of a post-
crash modality, however, is from Perennial. That being said, ours is more complicated

than earlier ones used with Perennial due to the more intricate semantics for crashes

in λpmem (for more details, see the discussion of related work in Section 4.9).

Per the idempotence rule Htr-idempotence one can show a recovery Hoare triple

for a program e and recovery program er by showing a crash Hoare triple for e
and one for er. In both cases the crash condition is Qr, such that er can rely on

this resource; not directly though, as the crash itself might change Qr, hence the

inclusion of the post-crash modality. Since er itself maintains the crash condition

Qr , any number of crashes during er are still safe.
The Perennial program logic contains other features. For instance, crash borrows

that make it possible to transfer and split crash conditions between threads. But

what we have explained thus far suffices for this paper, so we proceed to explain the

assertions specific to BaseSpirea.

4.5.3 Assertions in BaseSpirea

Figure 4.6 provides an overview over the assertions in BaseSpirea.

Since the store in our operational semantics contains not just single values, but

entire histories, the points-to predicate in BaseSpirea ℓ ↪→h h naturally associates a

location with a history h. Except for this, it is similar to the normal separation logic

points-to predicate.

The assertion valid(S) states that a view S is valid. This means that if S(ℓ) = t
then the history for ℓ in the physical store actually contains a message with at least

CHAPTER 4. SPIREA 93

Htc-atomic

atomic(e) P −∗ Qc

{P} e {Q ∧Qc} ⊢ {P} e {Q}{Qc}

Htr-idempotence

{P} e {Q}{Qr} Qr −∗ ⟨PC⟩R {R} er {Qr}{Qr}
{P} e ⟲ er {Q}{Qr} .

crashed-at-agree

crashedAt(C) ∗ crashedAt(C′) ⊢ C = C′
persisted-sep

persistedP1 ∗ persistedP2 ⊣⊢ persisted(P1 ⊔ P2)

Pc-persisted

persisted(P) ⊢ ⟨PC⟩ persisted(viewToZero(P)) ∗ ∃C ⊒ P. crashedAt(C)

Pc-points-to

ℓ ↪→h h ⊢ ⟨PC⟩ ∃C. crashedAt(C) ∗

(
ℓ ̸∈ dom(C) ∨

(
∃t,m.

h(t) = m ∗ C(ℓ) = t ∗m.P ⊑ C ∗
ℓ ↪→h {0 7→ ⟨m.v,⊥,⊥,⊥⟩}

))
Figure 4.7: Selected rules for assertions in BaseSpirea

the timestamp t. Knowing this is necessary to conclude, for instance, that performing

a read with the store view S is safe.

The assertion persisted(P)means that the view P is included in the persist view

in the physical state. It does not entail any ownership (in the separation logic sense)

of the physical persist view. Since it only expresses a lower bound and since the

physical persist view only grows during normal execution it is persistent.
9

The assertion crashedAt(C) means that at the last crash the consistent cut that

the machine crashed at was C. The assertion crashedAt(C) is persistent and has

agreement (crashed-at-agree).

We now need to describe how the assertions interact with the post-crashmodality.

There are no rules for valid or crashedAt. These resources do not imply any non-

trivial resources after a crash, i.e., the assertions valid(S) and crashedAt(C) are lost
under the post-crash modality.

For persisted(P) we have the rule Pc-persisted. It says that given persisted(P),
then after a crash persisted holds for the same view but with zero at every entry.

Furthermore, there exists some view C such that C ⊒ P and crashedAt(C) holds.
This rule is sound because persisted(P) is a lower bound on the persist view in

the physical state and a crash view has to include the persist view (recall the rule

M-crash in the operational semantics).

The rule Pc-points-to for the points-to predicate is a bit more involved. After a

crash, we again have crashedAt(C) for some C and two distinct cases: the location

was either lost or recovered at the crash. In the first case, the location must not be

present in the crash view, ℓ ̸∈ dom(C), and we have, of course, lost the points-to

predicate. In the latter case, C(ℓ) = t for some t, the message h(t) was recovered,
and we now have a points-to predicate for the recovered message. Furthermore,

the view P in the message must be included in C. This internalizes the fact that C
9

Not to be confused with persistent memory, in Iris a persistent proposition is one that does not

entail exclusive ownership but only represents duplicable knowledge. �P means that P always holds

and a proposition P is persistent if P ⊢ �P .

CHAPTER 4. SPIREA 94

Ht-alloc

{valid(S)} refa v; ⟨S,F ,B⟩ {ℓ; ⟨S ′,F ′,B′⟩. ℓ ↪→h {0 7→ ⟨v, ⌊S⌋a, ⌊F⌋a,F⟩} ∗ S = S ′ ∗ F = F ′ ∗ B = B′}

Ht-read{
valid(S) ∗
ℓ ↪→h h

}
!a ℓ; ⟨S,F ,B⟩

{
v; ⟨S ′,F ′,B′⟩.∃t.S0(ℓ) ≤ t ∗ h(t) = ⟨vm,Sm,Pm, _⟩ ∗ v = vm ∗
S ′ = S ⊔ ⌊Sm⌋a ∗ F ′ = F ∗ B = B′ ⊔ ⌊Pm⌋a ∗ valid(S ′) ∗ ℓ ↪→h h

}

Ht-store{
valid(S) ∗
ℓ ↪→h h

}
ℓ :=a v; ⟨S,F ,B⟩

{
w; ⟨S ′,F ′,B′⟩.∃t.S0(ℓ) < t ∗ t ̸∈ dom(h) ∗ w = () ∗ S ′ = S[ℓ 7→ t] ∗
F ′ = F ∗ B′ = B ∗ valid(S ′) ∗ ℓ ↪→h h[t 7→ ⟨v, ⌊S ′⌋a, ⌊F⌋a,F⟩]

}

Ht-flush

{ℓ ↪→h h} flush ℓ; ⟨S,F ,B⟩ {w; ⟨S ′,F ′,B′⟩.S ′ = S ∗ F ′ = F ∗ B′ = B[ℓ 7→ S0(t)] ∗ ℓ ↪→h h}

Ht-fence

{true} fence; ⟨S,F ,B⟩ {w; ⟨S ′,F ′,B′⟩.S ′ = S ∗ F ′ = F ⊔ B ∗ B′ = B}

Ht-fence-sync

{true} fencesync; ⟨S,F ,B⟩ {w; ⟨S ′,F ′,B′⟩.S ′ = S ∗ F ′ = F ⊔ B ∗ B′ = B ∗ persisted(B)}

Figure 4.8: Selected rules for Hoare triples in BaseSpirea

must be a consistent cut and hence respect P in the message. This is what makes it

possible to do the kind of “backwards reasoning” for recovery code that we discussed

earlier.

Let us see how the post-crash rules for persisted(P) and ℓ ↪→h h work together

if we have both before a crash. Since crashedAt has agreement (crashed-at-agree)

the two crash views gained by Pc-persisted and Pc-points-to must be equal. Hence,

if one knows that ℓ ∈ dom(P) then one can rule out the first case in the disjunction

in Pc-points-to and obtain a points-to predicate after the crash.

4.5.4 BaseSpirea Program Logic

BaseSpirea includes proof rules for all programming language constructs of λpmem.

The rules for the memory-related operations are shown in Figure 4.8; we only include

these rules as the proof rules for the remaining part of λpmem are as in standard Iris,

see, e.g.,[Jun+18a] (but, we hasten to point out, we have also proven those standard

rules sound!).

The memory-related rules very closely reflect the underlying operational seman-

tics and thus we do not explain them in great detail, but only make a few general

observations. Since the state of a thread in our operational semantics is described not

only by an expression but also by a thread view, the “program” in our Hoare-triple

is a thread state and not just an expression. All the rules that involve reading and

writing to a location include valid(S) in their precondition and valid(S ′) in their

postcondition. The knowledge of validity is necessary to conclude that reads do not

get stuck, as mentioned above.

CHAPTER 4. SPIREA 95

The rules for flushing and fences are very simple. The rule Ht-flush requires

a points-to predicate only to ensure that the flushed location actually exists in the

store. The only difference between Ht-fence and Ht-fence-sync is that the later

includes persisted(B) in the postcondition. The rule for a synchronous fence is the

only way to get the persisted(P) assertion.

4.5.5 Soundness

The soundness theorem for BaseSpirea states that a recovery Hoare triple for a

program proven inside the logic implies a safety result about the program with

respect to the operational semantics—independently of the logic. Since this result

is the same in the soundness theorem for both BaseSpirea and Spirea we define it

separately, such that we can reuse it in both theorems.

Definition 4.5.1. For expressions e and er , memory configuration M , and meta-level
predicates on values Φ and Φr , we say that safe(e, er,M ,Φ,Φr) holds if, for any
recoverable execution

er; ⟨M , [⟨e, ⟨⊥,⊥,⊥⟩⟩]⟩ ⇒r ⟨M , t⃗⟩; s

it is the case that: (1) For every thread ⟨e, T ⟩ ∈ t⃗, if e is not a value then the thread is not
stuck. (2) For ⟨e′, T ⟩ = (⃗t)1, if e′ is a value v (i.e., the initial expression e terminated)
then Φ(v) holds if s = NotCrashed and Φr(v) holds if s = Crashed.

With this safety definition we state the soundness theorem.

Theorem 4.5.2 (soundness). Let e, er , ⟨σ,P⟩, Φ, and Φr be as in Definition 4.5.1. If
the following recovery Hoare triple is provable in BaseSpirea{

valid(P) ∗∗ℓ∈dom(σ) ℓ ↪→h σ(ℓ)
}
⟨e,P⟩ ⟲ ⟨er,⊥,⊥,⊥⟩ {Φ}{Φr}

then safe(e, er, ⟨σ,P⟩,Φ,Φr) holds.

Note that the theorem applies to a store and persist view that is not necessarily

empty to begin with. Importantly, this makes it possible to apply it to programs that

assume already existing and persisted locations.

4.6 Spirea

Spirea is a CSL based on the Iris separation logic framework. As such it contains all

the standard connectives from Iris-based separation logics such as the separating

conjunction, ghost state, higher-order quantifiers, etc. For reasoning about programs

it offers Hoare triples, recovery Hoare quadruples, and crash Hoare quadruples. The

latter two support the same rules as they do in Perennial. In this section we explain

the novel aspects of Spirea. Throughout the section we cover the verification of

the two examples from Figure 4.2a and Figure 4.2c; proof outlines are shown in

Figure 4.13 and Figure 4.14. Figure 4.9 provide an overview of the assertions that are

introduced over the course of this section.

CHAPTER 4. SPIREA 96

Assertion Description

⟨obj⟩P P holds independently of any views.

⟨NF⟩P P holds without making any assertions on what is flushed and what is in the buffer.

⟨NB⟩P P holds without making any assertions on the buffer.

ℓ π The location ℓ is associated with the invariant π.

ℓ ↪→na σ⃗ The states σ⃗ have been written to ℓ in the given order and only the states in σ⃗ are

possible after a crash.

ℓ ↪→at σ⃗ The states σ⃗ have been written to ℓ in the given order.

ℓ ≿p σ ℓ is know to be persisted in σ by the current thread.

ℓ ≿f σ ℓ is known to be flushed in σ by the current thread.

ℓ ≿s σ ℓ is know to be stored in σ by the current thread.

⟨ifRec⟩ℓ P The proposition P holds if ℓ was persisted before the last crash.

⟨PC⟩P P holds after a crash.

⟨PCF⟩P P holds after a crash if the writes flushed by the current thread reaches persistent

memory before the crash.

crashedIn(ℓ, σ) At the last crash the location was recovered in the state σ before the crash.

⟨PF⟩P P holds after the next asynchronous fence.

⟨PFS⟩P P holds after the next synchronous fence.

Figure 4.9: Overview over assertions in Spirea

mod-sep

⟨M⟩P ∗ ⟨M⟩Q ⊢ ⟨M⟩(P ∗Q)

mod-mono

P ⊢ Q
⟨M⟩P ⊢ ⟨M⟩Q

mod-intro

P ⊢ ⟨M⟩P

mod-idemp

⟨M⟩ ⟨M⟩P ⊣⊢ ⟨M⟩P
mod-elim

⟨M⟩P ⊢ P

Figure 4.10: General rules for modalities

Knowledge vs. resources In Iris a persistent proposition is one that does not

entail ownership but only represents duplicable knowledge. �P means that P
always holds, and a proposition P is persistent if P ⊢ �P . To avoid confusion with

the different notions of "persistent" we use the word "knowledge" to mean persistent

propositions. For example, n = 37 is knowledge and ℓ ↪→ 37 is not.

Conventions for modalities As we will see, Spirea contains a healthy number of

modalities. In order to avoid having to introduce a plethora of symbols, we denote

CHAPTER 4. SPIREA 97

lb-knowledge

l ∈ {p, f, s}
ℓ ≿l σ ⊢ � ℓ ≿l σ

lb-persistent-flush-store

ℓ ≿p σ ⊢ ℓ ≿f σ ⊢ ℓ ≿s σ

obj-noflush-nobuffer

⟨obj⟩P ⊢ ⟨NF⟩P ⊢ ⟨NB⟩P
mapsto-store-lb

ℓ ↪→a σ⃗σ ⊢ ℓ ≿s σ

mapsto-lb-pers

σ2 ̸⊑ σ1 ℓ ≿p σ2 ℓ ↪→na σ1σ⃗

ℓ ↪→na σ⃗

mapsto-na-store-lb

ℓ ≿s σ1 ℓ ↪→na σ⃗σ2

σ1 ⊑ σ2

post-fence-no-flush

⟨PF⟩ ⟨NF⟩P ⊢ P
pfs-pf

⟨PF⟩P ⊢ ⟨PFS⟩P
rec-in-if-rec

crashedIn(ℓ, σ) ∗ ⟨ifRec⟩ℓ P ⊢ P

Rules for the post-crash modality

PC-na-mapsto

ℓ ↪→na σ1σ2 · · ·σn ⊢ ⟨PC⟩ ⟨ifRec⟩ℓ ∃i ≤ n. ℓ ↪→na ψ(σ1)ψ(σ2) · · ·ψ(σi) ∗ crashedIn(ℓ, σi)

PC-at-mapsto

ℓ ↪→at σ ⊢ ⟨PC⟩ ⟨ifRec⟩ℓ ∃σr. ℓ ↪→at ψ(σr) ∗ crashedIn(ℓ, σr)

PC-invariant

ℓ π ⊢ ⟨PC⟩ ⟨ifRec⟩ℓ ℓ π
PC-PCF

⟨PC⟩P ⊢ ⟨PCF⟩P

PC-persist-lb

ℓ ≿p σ ⊢ ⟨PC⟩ ℓ ≿p ψ(σ) ∗ ∃σr ⊒ σ. crashedIn(ℓ, σr)

PCF-flush-lb

ℓ ≿f σ ⊢ ⟨PCF⟩ ℓ ≿p ψ(σ) ∗ ∃σr ⊒ σ. crashedIn(ℓ, σr)

rec-in-agree

crashedIn(ℓ, σ) ∗ crashedIn(ℓ, σ′) ⊢ σ = σ′

Figure 4.11: Selected rules for assertions and modalities in the logic

modalities (except already well-known ones) as ⟨M ⟩ where M is a mnemonic for

the modality. All of our modalities satisfy basic structural rules such as mod-sep

and mod-mono seen in Figure 4.10. Additionally, some modalities are monadic (they

satisfy mod-intro, etc.) or comonadic (they satisfy mod-elim, etc.).

Crash-Aware Invariants As mentioned, one of the key innovations in Spirea is

crash-aware invariants (or just invariants for short when it is clear from the context

that we are not talking about Iris invariants). We start things off with the definition.

The definition uses concepts in Spirea that we have yet to see, but these can be

CHAPTER 4. SPIREA 98

Ht-flush

{ℓ ≿s σ} flush ℓ
{
⟨PF⟩(ℓ ≿f σ) ∗ ⟨PFS⟩(ℓ ≿p σ)

} Ht-fence-sync

{⟨PFS⟩P} fencesync {P}

Ht-fence

{⟨PF⟩P} fence {P}
Ht-na-alloc

{ϕ(σ, v)} refna v
{
ℓ. ℓ π ∗ ℓ ↪→na σ

}
Ht-at-alloc

{ϕ(σ, v)} refat v
{
ℓ. ℓ π ∗ ℓ ↪→at σ

}
Ht-na-read{
ℓ π ∗ ℓ ↪→na σ⃗σ ∗

(⟨obj⟩ ∀v. ϕ(σ, v) −∗ Q(v) ∗ ϕ(σ, v))

}
!na ℓ {w. ℓ ↪→na σ⃗σ ∗Q(w)}

Ht-na-write{
ℓ π ∗ ℓ ↪→na σ⃗σ ∗ ϕ(σt, vt) ∗ σ ⊑ σt

}
ℓ :=na vt {ℓ ↪→na σ⃗σσt}

Ht-at-read{
ℓ π ∗ ℓ ↪→at σ ∗

⟨obj⟩ ∀σr ⊒ σ, vr. ϕ(σr, vr) −∗ Q(σr, vr) ∗ ϕ(σr, vr)

}
!at ℓ

{v.∃σr ⊒ σ. ℓ ↪→at σr ∗ ⟨PF⟩Q(σr, v)}

Ht-at-write{
ℓ π ∗ ℓ ↪→at σ ∗ ϕ(σt, vt) ∗ σ ⊑ σt ∗

∀σc ⊒ σ, v, vc. ϕ(σ, v) −∗ ϕ(σt, vt) −∗ ϕ(σc, vc) −∗ σc ⊑ σt ⊑ σc

}
ℓ :=at vt

{ℓ ↪→at σt}

Figure 4.12: Selected program rules for memory operations

CHAPTER 4. SPIREA 99

{
x πx ∗ y πy,mp ∗
x ↪→na [⊥] ∗ y ↪→at ⊥ ∗ tok1

}
{
x ↪→na [⊥] ∗
y ↪→at ⊥

}
x :=na 37;

{x ↪→na [⊥,⊤]}
y :=at 1

{y ↪→at ⊤}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

{y ↪→at ⊥ ∗ tok1}
if !at y = 1

then{
y ↪→at ⊤ ∗
x ↪→na [⊥,⊤]

}
assert !na x = 37

{true}
{true}

Figure 4.13: Proof outline for the message passing example.

x πx ∗ y πy,ff ∗
x ↪→na [⊥] ∗ y ↪→na [⊥]
y ≿p σy ∗ y ↪→na [σy]

x :=na 37;

{x ↪→na [⊥,⊤] ∗ x ≿s ⊤}
flush x;
{⟨PF⟩x ≿f ⊤}
fence;
{x ≿f ⊤ ∗ y ↪→ [⊥]}
y :=na 1

{y ↪→na [⊥,⊤]}

⟲

∃σx, σy.
x πx ∗ y πy,ff ∗
x ≿p σx ∗ x ↪→na [σx] ∗
y ≿p σy ∗ y ↪→na [σy]

if !at y = 1

then
{σy = ⊤ ∗ x ≿f ⊤}
{x ↪→na [⊤]}
assert !na x = 37

{True}

Figure 4.14: Proof outline for the asynchronous fence example

CHAPTER 4. SPIREA 100

ignored for now. We will refer back to, and provide explanations of, the definition

throughout the section.

Definition 4.6.1. A crash-aware invariant π consists of: a set of states Σ, a preorder
⊑ on Σ, a write assertion ϕ : Σ×Val→ dProp (dProp is the type of propositions in
Spirea), and a state-change function ψ : Σ→ Σ that is monotone w.r.t. ⊑. The data
must satisfy the following two conditions:

(1) ∀σ ∈ Σ, v ∈Val. ϕ(σ, v) ⊢ ⟨NB⟩ϕ(σ, v)

(2) ∀σ ∈ Σ, v ∈Val. ϕ(σ, v) ⊢ ⟨PCF⟩ϕ(ψ(σ), v).

For an invariant π we refer to its components, say ϕ, with π.ϕ, but more often

we just write ϕ when it is clear from context which invariant the component is from.

In the logic every location ℓ is associated with a specific invariant π throughout

its lifetime. This invariant is chosen dynamically when the location is allocated by

using the rules Ht-na-alloc and Ht-at-alloc that appear in Figure 4.12. In these rules

the invariant assertion ℓ π appears in the postcondition. It denotes the knowledge

that ℓ is associated with π. On the first line of the proof outlines (Figure 4.13 and

Figure 4.14) we see invariant assertions for both x and y. For such preexisting

locations invariants can be picked at the beginning of the proof (we will see the

details in Section 4.7.2). The invariant assertions hold throughout the proofs, but to

avoid clutter in the outlines we do not repeat unchanged resources.

Invariant States Consider a thread reading y in parallel with the sending thread

in Figure 4.13. Such a thread can observe the initial value of 0, the final value of
1, and once it sees the latter it never sees the former again. We can represent the

situation with a state transition system (STS): y can be in one of the two states⊥ and

⊤ (corresponding to 0 and 1 respectively) and it can transition from ⊥ to ⊤—we say
that ⊤ is a greater state and write ⊥ ⊑ ⊤. A key insight going back to GPS is that

the above can be put to good use in a logic by letting each location be governed by an

STS as part of its invariant. This is the purpose of Σ and ⊑ in Definition 4.6.1, they

represent an STS that the location must evolve through. In the examples, we use the

described STS with two states for x and y as both locations are written exactly once.

When writing to a location a state σ ∈ Σ must be picked such that the states grow
monotonically with each write. For a single location the memory model ensures all

threads observe writes to it in the same order, and the invariant rules ensure that

this order corresponds to an increasing order of states. Furthermore, while the weak

memory order and the persist order do not agree in general they do coincide for a

single location. We hence observe that we can soundly adopt the use of STSs for

persistent memory such that they represent both the weak memory order (as in GPS)

as well as the persist order.

Write Assertions A release-write can transfer resources from one thread to

another, as in Figure 4.13 where the write to y carries with it the right to access

CHAPTER 4. SPIREA 101

x. The write assertion in invariants describe such resources. A write assertion,

ϕ : Σ×Val→ dProp, is parameterized over the invariant’s states and values. The

idea is that for every write to the location governed by the invariant, say with value

v and state σ, the assertion ϕ(σ, v) holds.
As a simple example, in both Figure 4.13 and Figure 4.14 we pick the following

write assertion for x:

ϕx(σ, v) ≜ (σ = ⊥ ∗ v = 0) ∨ (σ = ⊤ ∗ v = 37). (4.1)

The write assertion gives meaning to the states by establishing a correspondence

between them and specific values. Having the state determine the value in this way

is a common pattern. Since x is not used for resource transfer this suffices for its

write assertion. When we verify the message passing example below we see an

example where resource transfer is needed.

Points-To Predicates Points-to predicates in Spirea have the form ℓ ↪→a σ⃗. Here
σ⃗ is a sequence of states that has been written to ℓ.10 When a is na (respectively at)
we say that the points-to predicate is non-atomic (atomic) and the location can then

only be accessed using the na (at) access mode. On the first line in Figure 4.13 we

use a non-atomic points-to predicate for x and an atomic one for y.
The non-atomic points-to predicate entails exclusive ownership over ℓ and

supports fractional permissions, denoted ℓ ↪→q
na σ⃗ for a fraction q ∈ (0; 1]. (As

usual, we often omit the fraction q if it is 1.) Hence, in Figure 4.13 we need to

transfer ownership over the points-to predicate for x from the left thread to the right

thread. The sequence σ⃗ contains (at least) all writes that can ever be read again, both

before and after a crash. It may be surprising that we use a sequence of states for

non-atomics as prior logics for weak memory have been able to establish “normal”

points-to predicates for non-atomics that associate a location with a single value,

thereby completely hiding the weak semantics. However, this is not possible in the

persistent setting, where the asynchronicity of writes and the fact that crashes are

ever-present (in contrast to data-races that can be avoided) means that at least some

old states must be remembered. For instance, in Figure 4.14, at the end of executing

the right thread we have the resource x ↪→na [⊥,⊤]. This preserves the precise
information that after a crash x can have the value 0 or 37.

The atomic points-to predicate does not entail ownership and is knowledge.

Hence, several threads can access atomic locations in parallel. This is needed for y
in Figure 4.13 where both threads own y ↪→at ⊥ initially. Since several threads can

write to an atomic location without any synchronization the sequence of states σ⃗ is

only partial. Other threads may have performed writes that the current thread is

not aware of and that are thus not in σ⃗. Hence, for the atomic points-to predicate

states can freely be dropped and, in practice, it often suffices to remember only the

10

By convention, we name sequences with arrows σ⃗ and use juxtaposition for concatenation. For

instance, σ⃗σ is a sequence starting with σ⃗ and ending with σ. For a concrete sequence we sometimes

use list notation, as in [σ1, σ2, σ3].

CHAPTER 4. SPIREA 102

latest write. Therefore, and as the rules that take advantage of the entire sequence of

states in the atomic case are fairly involved, in the remainder of the paper we only

use the atomic points-to predicate with a single state and present specialized proof

rules for this simpler case.

Message Passing Example The message passing example contains reads and

writes of all kinds. This makes it a great example to explain the read and write rules

in Spirea and to see how invariants facilitate resource transfer between threads. We

start with the write assertion for y:

ϕy,mp(⊥, v) ≜ v = 0 ∗ tok0
ϕy,mp(⊤, v) ≜ v = 1 ∗ (x ↪→na [⊥,⊤] ∨ tok1)

The equalities on v should be clear. The two tokens, tok0 and tok1, are exclusive:
Only one of each exist and hence tokn ∗ tokn is a contradiction (i.e., it implies false).

This is a standard construction using Iris ghost state. The purpose of these tokens

and the disjunction is best explained in the proof.

Notice how we split the initial resources from the first to the second line in

Figure 4.13. The left thread gets the non-atomic points-to predicate for x and the

right thread gets the token tok1. The rest is knowledge, so both threads get a copy.

We now cover the two writes and the two reads.

Non-atomic write (x :=na 37). The rule Ht-na-write states that to write v to a

non-atomic location one must pick a target state σt. We choose ⊤. The precondition
requires an invariant assertion, a points-to predicate, that the write assertion holds,

and that the new state preserves the order of the states. All of these are trivial: we

have an invariant assertion, a points-to predicate ending in the state ⊥, ϕx(⊤, 37)
is immediate from the definition in Equation (4.1), and ⊥ ⊑ ⊤ per definition. In

the postcondition we receive an updated points-to predicate with the newly written

state appended at the end. Non-atomic writes are usually this trivial, as precise

information about them is known.

Atomic write (y :=at 1). The first line of the precondition of Ht-at-write is

similar to what we just saw for non-atomics. We pick the state ⊤ for the write and

show the write assertion by choosing the left side of the disjunction and using our

points-predicate for x. That is, we transfer ownership over x into the invariant. The

conjunct on the second line of the precondition of Ht-at-write serves to maintain

the monotone order of writes. Since atomic locations can be shared, we need to

account for potential racy writes to the location. The universally quantified σc
represents such a write and the obligation is to show that it and the written state

σt can transition between each other, σc ⊑ σt and σt ⊑ σc. This ensures that they
are equivalent w.r.t. the preorder and that the order of the states is preserved no

matter which of the two racy writes end up first in the memory order. To show

this obligation the writer can assume the assertion of both the original state σ, the
concurrent state σc, and the written state σt. If we look at the whole program we are

verifying it is clear that there are no concurrent writes to y. But, as we are verifying

CHAPTER 4. SPIREA 103

the left thread modularly in isolation, we must be able to draw this conclusion based

solely on the invariant. To this end, we assume some concurrent write σc and must

show σc ⊑ ⊤ ⊑ σc. If σc = ⊤ the conclusion is trivial. If the σc = ⊥ the conclusion

is impossible. Fortunately, in this case we have the invariant for ⊥ twice, hence
we have the token tok0 twice, which is a contradiction. Intuitively, the token tok0

represents the right to write ⊥ to x, and since only one token exists, this state can

only ever be written once.

Atomic read (!at y). Now in the right thread we, apply Ht-at-read. At the present

time we can ignore the ⟨obj⟩ and ⟨PF⟩ in the rule. We have the invariant and the

points-to predicate required in the precondition. The last conjunct lets us open the

invariant, access its content, and potentially transfer resources in and out of the

invariant. The resource Q represents the resources that we want to transfer out of
the invariant. We use

Q(⊥, v) ≜ v = 0 Q(⊤, v) ≜ v = 1 ∗ x ↪→na [⊥,⊤].

Hence, if we read 1 we transfer the points-to predicate for x out. We need to show

the wand in Ht-at-read. For some read state σr and value vr the reader receives the
invariant ϕ(σr, vr) (the antecedent of the wand). We now have access to the content

of the invariant, but, since the invariant also appears in the consequent the access

is temporary—we say that we have to close the invariant. If σr = ⊥ then Q(⊥, vr)
is plain knowledge and showing it and the invariant is trivial. If σr = ⊤ then we

use x ↪→na [⊥,⊤] to show Q(⊤, vr). However, now we can not use this points-to

predicate to close the invariant. Fortunately, the invariant contains a disjunction

and we can show the right disjunct using the tok1 that the right thread owns. That

is, we transfer tok1 in to the invariant in order to transfer x ↪→na [⊥,⊤] out of
the invariant. This sort of reasoning is well-known to readers familiar with Iris

invariants, but it is in fact significantly stronger than the read rule in GPS and iGPS.

In these logics, a read can only transfer knowledge out of the invariant—transferring
ownership over resources is not possible! Returning to the proof, having shown the

preconditions for the read, we now get Q in the postcondition. The case where we

read 0 is trivial, so we consider the case where we read 1 and enter the branch. In

this case we have the points-to predicate for x after the read, as shown in the proof

outline. All that remains is to show that the read of x yields 37.
Non-atomic read (!na x). We applyHt-na-readwhich is much like the read rule for

atomics, which we just went through. The notable difference is that for a non-atomic

is it certain that the last state in the points-to predicate (σ in the rule) is read. Hence,

the rule does not quantify over some read state. When applying the rule we pick

Q(v) ≜ v = 37, which is easy to show when opening the invariant, and which gives

us what we need.

RMWOperations We have now seen the rules for reading and writing. Spirea

also contains rules for the RMW operations CAS and FAA. We do not include these

rules for space reasons and since they are rather complex. Since RMW operations

CHAPTER 4. SPIREA 104

are simultaneously both a read and a write, our rules for these essentially combine

the read and the write rule. The rules require that the write assertion is shown for

the read value (like Ht-at-read) and the written value (like Ht-at-write). This is

in contrast to other CSLs for weak memory, where the equivalent notion to our

write assertion would not have to be shown for the read value. This makes resource

transfer through RMW operations more restricted, but ensures that invariants are

sound. In Section 4.8.3 we show how to combine Spirea with BaseSpirea for examples

where the CAS rule is not strong enough, in Section 4.8.4 we see an example where

the CAS rule is sufficient, and we discuss the limitation further in Section 4.9.

Flushes and Fences To verify programs using flushes and fences we need asser-

tions that capture the knowledge gained by these operations. Consider the pre-crash

code in Figure 4.14. Just after writing to x the thread merely knows that the write

with state ⊤ exists (which implies that a successive read reads this or a more recent

state). Knowledge of this form is captured by the store lower bound assertion ℓ ≿s σ.
The program then flushes x and carries out an asynchronous fence. After this the

thread knows that the write will persist before any succeeding writes. This form of

knowledge is represented by the flush lower bound ℓ ≿f σ. Suppose the program had

instead carried out a synchronous fence. The thread would then know that the write

had been saved to persistent memory. The persist lower bound ℓ ≿p σ represents

this knowledge.

These assertions are lower bounds, in the sense that ℓ ≿l σ implies knowledge

of a write in at least state σ but not that this is necessarily the most recent state.

This, together with the fact that states grow monotonically, makes the assertions

knowledge (lb-knowledge). The three lower bound relations are ordered as shown

in lb-persistent-flush-store since a state is written before it is flushed, and since a

synchronous fence is strictly stronger than an asynchronous fence.

Following the above, the effect of flushing a location ℓ and a fence is then that the

most recent write σ known to the flushing thread advances from ℓ ≿s σ to ℓ ≿f σ
(in the case of an asynchronous fence) or to ℓ ≿p ℓ (in the case of a synchronous).

The rules for flush and fence should achieve this while taking the following three

things into account: (1) flush and fence are two separate operations and the fence

may not necessarily immediately follow the flush. (2) A fence can apply to arbitrarily

many preceding flushes. (3) A fence is not only used in combination with a flush. As

in Figure 4.2b it is also used in combination with an acquire-read to acquire persist

information from the release-write. We want our program rules to support all these

usage patterns. To this end Spirea includes two fence modalities: ⟨PF⟩ and ⟨PFS⟩.
The assertions ⟨PF⟩P and ⟨PFS⟩P mean that P holds after the next asynchronous

fence and synchronous fence, respectively.

In Figure 4.14 we apply Ht-flush at the flush operation. The precondition takes

a store lower bound that we can extract from x ↪→na [⊥,⊤] using mapsto-store-lb.

The postcondition contains both a flush lower bound under ⟨PF⟩ and a persist lower
bound under ⟨PFS⟩ such that the flush can later be matched with both types of

CHAPTER 4. SPIREA 105

fences. In our case we only need the flush lower bound. At fence we use Ht-fence.

This rule (and Ht-fence-sync) exactly matches the intuition of the fence modalities.

If P holds under a fence modality, then executing a fence eliminates the modality.

In our case this means that we have the flush lower bound after the fence. Note, that

since the fence modalities are modalities and have a separation rule (as mod-sep) the

result from several flushes can be combined and extracted with a single fence. In the

rule Ht-at-read the extracted resource Q is under a fence modality which enforces

that a fence be used when necessary. As such, using modalities for fences neatly

achieves the requirements stated above.

To conclude the proof of the pre-crash program in Figure 4.14 we define the

write assertion for y

ϕy,ff(σ, v) ≜ (σ = ⊥ ∗ v = 0) ∨ (σ = ⊤ ∗ v = 1 ∗ x ≿f ⊤). (4.2)

The assertion contains a flush lower bound for x when y has the state ⊤. To prove

this at the write to y we use the flush lower bound gained from the flush and the

fence. In the next section we see how this is used to verify the recovery code.

Non-Deterministic Post-Crash Modality To verify the entire flush and fence

example, including the recovery code, we apply Htr-idempotence where we must

pick a crash conditionQc. TheR in the rule is the precondition for the recovery code

in Figure 4.14. As a crash condition we pick ⟨PC⟩R. Using the post-crash modality

directly in the crash condition like this is common in Spirea as it turns out to be the

most convenient approach in practice. Proving the wand for R in Htr-idempotence

becomes trivial, and the proof effort is concentrated on showing the crash condition

at every step. In order to do this, we need to understand how our post-crash modality

works. The rules for it appear in the lower half of Figure 4.11.

Consider how an invariant ℓ π should change at a crash. As we have mentioned,

our invariants are crash-aware, and we want them to survive crashes. At the same

time our programming language supports allocation, and since allocations might not

persist before a crash, locations can be entirely lost at crashes. If a location is not lost

after a crash, we say that it was recovered after the crash, and only in this case would

it make sense still to have an invariant assertion for it. Such a situation is common,

and we capture it by an if-recovered modality: the assertion ⟨ifRec⟩ℓ P mean that if

the location ℓwas recovered at the last crash, then P (which would typically mention

ℓ) holds. The rule PC-invariant is now clear: it preserves invariants for locations as

long as they are recovered.

The if-recovered modality captures some of the non-determinism at a crash.

Additional non-determinism is present in the rule PC-na-mapsto for non-atomic

points-to predicates. Here the non-determinism is represented by the existential

quantifier. The rule states that, for some i, only the first i states of the points-to
predicate exist after the crash (ignore the ψ in the rule for now, it is explained later

in the section). For state σi, the rule contains the assertion crashedIn(ℓ, σi). The
meaning of this assertion is that σi is the most recent recovered state for ℓ, which is

CHAPTER 4. SPIREA 106

exactly how it is used in the rule. Only one such state exists so two such assertion

must agree on the state rec-in-agree. The crashedIn(ℓ, σi) assertion also implies

that ℓ was in fact recovered and it can thus be used to eliminate the if-recovered

modality as seen in rec-in-if-rec.

The only way to know with certainty that a location will be recovered is through

a persistent lower bound ℓ ≿p σ. Per PC-persist-lb a persistent lower bound is

preserved across a crash (again, ignore ψ) and the most recent recovered state σr has
to be at least σ. In contrast, a store lower bound clearly offers no knowledge after a

crash as it only deals with the weak memory order. But what about a flush lower

bound? A flush lower bound (and the flush and fence it represents) provides no

knowledge of the state of the persistent memory, and as such it too has no meaningful

interaction with the post-crash modality. Its effect is more subtle and only restricts

the order of persists, as in the flush and fence example where the write to x persists

before the write to y. To tease out this effect in the logic we introduce a post-crash-
flush modality: ⟨PCF⟩P means that P holds after a crash if we are in the fortunate

scenario where everything flushed and fenced actually reached persistent memory

before the crash. In this case, a flush lower bound is just as good as a persist lower

bound, and PCF-flush-lb results in the same resources under the post-crash-flush

modality as we saw in PC-persist-lb. The post-crash-flush modality is weaker than

the post-crash modality (PC-PCF) so the rules for the post-crash modality also applies

to it.

The single place where we use the post-crash-flush modality is in the second

condition for write assertions in the definition of invariants (Definition 4.6.1). This

condition is necessary to make it possible to transfer invariants across a crash, i.e., it
is used to prove soundness of PC-invariant. During this proof the write assertion

ϕ must be established for the recovered state σ. Since σ was recovered, it must

have persisted before the crash, and thus anything flushed and fenced prior to σ
(that ϕ might know about) is also guaranteed to have persisted. As such, using the

post-crash-flush modality in the condition is sufficiently strong, and allows us to

use PCF-flush-lb to show that ϕ holds for the recovered state. We note that, in

our example, it is easy to show (using PCF-flush-lb) that the second condition in

Definition 4.6.1 does indeed hold for ϕy,ff .
By using the rules for the post-crash modality it is now quite trivial to show the

crash condition at every program point in the pre-crash code. And with the resources

after the crash established, proving the recovery code is also straightforward. If

reading 1 from y the recovery code learns that σy = ⊤ and acquires the resource

x ≿f ⊤ from the invariant. The flush lower bound can be weakened to x ≿s ⊤ per

lb-persistent-flush-store, and combined with x ↪→na [σx] the rule mapsto-na-store-
lb implies that ⊤ ⊑ σx, which in turn means that σx = ⊤. With that established

reading x is sure to result in 37 just as what we saw in the message passing example.

Subjectivity We now take a step back and consider an issue that we have so far

swept under the rug. Propositions in Spirea can be subjective. That is, describe facts

CHAPTER 4. SPIREA 107

that are true from one thread’s perspective, but that are not necessarily true from the

point of view of other threads. For instance, after the left thread in Figure 4.14 has

flushed x it knows ⟨PF⟩x ≿f ⊤. But, as a flush by one thread provides no orderings

across threads, it would be unsound to transfer this resource to another thread. We

thus need to make certain restrictions on resource transfer. We accomplish this with

three comonadic modalities. The no-buffer modality, ⟨NB⟩P , means that P does not

contain any of the post-fence modalities.
11

The first condition in Definition 4.6.1

uses this modality to ensures that the described unsound transfer is not possible.

Write assertions that invole ⟨PF⟩ or ⟨PFS⟩ do not pass this requirement. The no-
flush modality, ⟨NF⟩P , adds the requirement that P does not contain knowledge

of flushes ℓ ≿f σ. Assertions of the form ⟨NF⟩P are of interest as they can safely

be extracted from the post-fence modality per post-fence-no-flush. This is what

allowed us to ignore the ⟨PF⟩ modality when we applied Ht-at-read in Figure 4.13

as the Q we picked did not use flush lower bounds. Finally, the objectively modality,
⟨obj⟩P , means that P holds at all points of view of the memory and thus that it is

always sound to transfer P between threads. Examples are ℓ ≿p σ and ℓ π . One

use of this modality is in Ht-at-read where it ensures that the reading thread can

not transfer subjective resources to other reading threads.

State-Change Function The final component of invariants that we still have not

seen is state-change functions. To understand the need for these, consider how we

would verify the optimized message passing example in Figure 4.2d. Similar to the

verification in Figure 4.14, the write to z need to carry with it the knowledge x ≿f ⊤.
In order for the left thread to have this knowledge it must acquire x ≿s ⊤ when

reading y. As such, the write assertion for y must have the form ϕy(⊤, v) ≜ v =
1 ∗ x ≿s ⊤. However, as there are no fences between the writes to x and y, if the
recovery code were to read y it would be unsound for it to gain the knowledge x ≿s ⊤.
In other words, the write to y serves to transfer a resource to concurrently running

threads that should not be available to recovery code. To capture this, a monotone

state-change function ψ can change the state of a write after a crash. The idea is that

if a write corresponds to the state σ before a crash, it then corresponds to ψ(σ) after
the crash. This is evident by looking at the crash related rules in Figure 4.11 where

states under the post-crash modality always have ψ applied to them. In examples

where the above issue does not arise, the state-change function can simply be the

identity function, and then the ψs can be ignored as we have done so far.

In order to verify the optimized message passing example we can extend the set

of states for y with an additional state σpc that is below the two other states. The

state-change function transitions every write into this state at a crash: ψ(σ) ≜ σpc .
The write assertion for this state is simply ϕy(σpc , v) ≜ v = 0∨ v = 1. This ensures
that if the recovery code were to read y it would gain no information whatsoever

while still allowing for the desired resource transfer to work.

11

The name refers to the fact that flushes use a buffer in the operational semantics.

CHAPTER 4. SPIREA 108

Summary We have now completed our tour of Spirea. We hope it has become clear

that it supports thread-local modular reasoning by extending ideas from separation

logic, in particular ownership and resource transfer, with a range of modalities,

which allow us to capture the subtle conditions under which resource transfer is

sound.

4.7 Soundness

In this section we present an overview over the operational semantics of λpmem, state

the soundness theorem of Spirea, and give an overview of the model, including some

of the details. Readers who are more interested in seeing Spirea applied to examples

can proceed to our case studies in Section 4.8.

4.7.1 Operational Semantics

For readers that skipped Section 4.3 we mention a few details of the operational

semantics that are necessary to understand in order to explain the soundness theorem.

The semantics of λpmem is a small-step interleaving operational semantics. Like prior

such semantics for weak memory, it is based on views. For instance, Bila et al. created
a view-based operational semantics for the x86 and ARM persistency models [Bil+22].

The small-step semantics is lifted to a big-step recoverable execution relation of the
form er; ρ⇒r ρ

′; s. Here, er is the recovery expression to execute after a crash, ρ and
ρ′ are machine configurations, and s ∈ {NotCrashed,Crashed} is a crash-status. A
machine configuration contains the state of entire machine, in particular the memory

and all threads. The meaning of the relation is then: a machine in state ρ can execute

to state ρ′ with zero or more crashes along the way where er is executed after every

crash. The crash-status indicates whether the execution has been crash free or not.

If s = NotCrashed the execution was crash free and otherwise if s = Crashed then

one or more crashed occurred. As we see below the soundness theorem is stated in

terms of the recoverable execution relation.

4.7.2 Soundness

The soundness theorem uses the same safety definition, Definition 4.5.1, that we

used for BaseSpirea.

Theorem 4.7.1 (soundness). Given expressions e and er , meta-level predicates on
values Φ and Φr , a finite set of location L, and for each ℓ ∈ L: an access mode aℓ, an
invariant πℓ, a state σℓ ∈ πℓ.ϕ (i.e., an element of the state of the invariant πℓ). Let R
be the resource ∗

ℓ∈dom(h)

ℓ πℓ ∗ ℓ ≿p σℓ ∗ ℓ ↪→aℓ
σℓ.

CHAPTER 4. SPIREA 109

If R −∗ ∗ℓ∈dom(h) πℓ.ϕ(σℓ, vℓ) and the recovery Hoare triple {R} e ⟲ er {Φ}{Φr}
are provable in Spirea then safe(e, er, ⟨h,P⟩,Φ,Φr) holds where h(ℓ) = ⟨vℓ,⊥,⊥,⊥⟩
and where P(ℓ) = 0 for all ℓ ∈ L.

This theorem applies to a memory that is not necessarily empty to begin with.

When applying the soundness theorem one then gets to pick, for each location, its

access mode, invariant, initial state, etc. The resource R then contains the resources

for all locations. It must then be shown that the invariants hold for the initial states,

and to do this one can useR. This is such that the initial invariants can use resources

(persistent lower bounds, points-to predicates, etc.) for other locations.

4.7.3 Model

We give a brief overview of the model of Spirea and highlight some of the underlying

key ideas.

Overall Structure Spirea ismodeled atop a lower-level logic that we call BaseSpirea.

BaseSpirea is constructed as an instantiation of Perennial’s program logic framework

based on the Iris base logic. This framework gives BaseSpirea basic definitions of

the three Hoare triples/quadruples. Based on these we define various assertions to

represent the physical state, define a post-crash modality, and prove program rules.

However, these program proof rules directly expose the intricacies of the operational

semantics, such as views, timestamps, and histories, and thus, while perfectly capable

of verifying programs, BaseSpirea is quite tedious to use. We explain BaseSpirea in

more detail in Section 4.5. To provide the more abstract reasoning rules of Spirea, we

use BaseSpirea to model Spirea. It is at this level that we add crash-aware invariants,

the facilities for handling persistent memory instructions without explicit mention

of views, and a post-crash modality that works for the higher-level assertions.

Crash-Aware Invariants As mentioned in the introduction, a key challenge w.r.t.

the model of Spirea’s crash-aware invariants is that it is not clear how Iris invariants

can be reconciled with crashes. We therefore take a different approach to invariants

than other Iris-based logics for weak memory in that we do not model our crash-

aware invariants using Iris invariants. Instead our model includes the resources for

invariants inside the state interpretation. The state interpretation is a resource that is

threaded through Hoare triples/quadruples in the program logic. With this approach

the content of invariants is only available in the context of a Hoare triple/quadruple

(as opposed to Iris invariants that can be accessed independently of a program).

However, this is the case already in prior logics for weak memory, as accessing

invariants in a weak memory model needs physical synchronization. The benefit of

our approach is that when a crash occurs (more precisely, when proving soundness

of Htr-idempotence), the resources belonging to all invariants are found inside the

state interpretation, and can then be systematically updated to account for the crash.

CHAPTER 4. SPIREA 110

Post-CrashModality We explain our post-crash modality with a simplified sketch

of its model that highlights the key ideas.

J⟨PC⟩P K ≜ λT , γ⃗old . ∀γ⃗new . R(γ⃗old , γ⃗new) −∗ R(γ⃗old , γ⃗new)∗JP K(⟨⊥,⊥,⊥⟩, γ⃗new)

The semantic domain of propositions in Spirea is monotone predicates over thread

views and a record of ghost names (denoted γ⃗). This explains why the model of the

modality is a function taking two such arguments. Since resources are changed by a

crash, new ghost resources along with new ghost names are introduced after a crash.

The universal quantifier is over any such new record of new ghost names. However,

the new resources are, to some extent, related to the old resources. The relationship

is represented by the exchange resource R, which makes it possible to exchange old

resources (valid before the crash) into new resources (valid after the crash). This

works through rules of the form Pold ∗R(γ⃗old , γ⃗new) −∗ Pnew ∗R(γ⃗old , γ⃗new). Here
Pold could be a points-to predicate before the crash and Pnew would then be an

updated points-to predicate corresponding to the physical state after the crash. When

proving soundness of a rule such as PC-na-mapstowe then use the exchange resource

to acquire the updated points-to predicate. Note that as R appears in the conclusion,

it can perform these exchanges without being consumed itself. This is necessary to

prove rules such as mod-sep for the post-crash modality. The definition of R is rather

extensive as it must allow for resource exchanges for all the various resources used
in the model. Establishing R is done in the soundness proof of Htr-idempotence.

This rule is given an assumption involving a post-crash modality, and to extract the

resource under it, R must be procured.

4.8 Case Studies

In order to demonstrate the usefulness of our logic we have used it to verify several

case studies.

4.8.1 Durable Message Passing

We have seen how to verify the message passing example Figure 4.2a and the asyn-

chronous fence example in Figure 4.2c. We now show how to verify the durable

message passing example from Figure 4.2b. We include recovery code, the safety of

which depends on the property that the example satisfies. The recovery code is seen

in the proof outline in Figure 4.15.

For all locations we pick the set of abstract states {0, 1} and we choose the ψ in

the invariant to be the identify function. The invariants are:

ϕx(n, v) ≜ n = v

ϕy(n, v) ≜ (n = v = 0 ∗ tok) ∨ (n = v = 1 ∗ x ≿f 1)

ϕz(n, v) ≜ (n = v = 0) ∨ (n = v = 1 ∗ x ≿f 1)

CHAPTER 4. SPIREA 111

{
x ↪→na [0] ∗ y ↪→at 0 ∗ z ↪→na 0 ∗ x ≿p 0 ∗ z ≿p 0

}
{x ↪→na [0] ∗ y ↪→at 0}
x :=na 1;

{x ↪→na [0, 1]}
flush x;
{x ↪→na [0, 1] ∗ ⟨PF⟩x ≿f 1}
fence;
{x ↪→na [0, 1] ∗ x ≿f 1}
y :=at 1

{x ↪→na [0, 1] ∗ y ↪→at 1}

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

{y ↪→at 0 ∗ z ↪→na 0}
if !at y = 1

then
{z ↪→na 0 ∗ ⟨PF⟩x ≿f 1}
fence;
{z ↪→na 0 ∗ x ≿f 1}
z :=na 1

{True}
else
{True} () {True}

{x ↪→at n ∗ z ↪→na m}
if !na z = 1

then
{x ↪→at n ∗ z ↪→na 1 ∗ x ≿f 1}
{x ↪→at 1 ∗ z ↪→na 1}
assert !na x = 1

{True}
else
{True} () {True}

Figure 4.15: Proof outline for the durable message passing example. The code for

normal execution is at the top and the recovery code at the bottom.

Here “tok" is an exclusive token implemented using standard Iris ghost state. By

exclusive we mean that “tok ∗ tok” is a contradiction. We choose the following crash

condition:

⟨PC⟩ ∃n,m. x ≿p n ∗ x ↪→na n ∗ z ≿p m ∗ z ↪→na m

The crash condition does not mention y as the recovery code does not use y. The
crash condition is easy to show at every step. Since the example involves two threads

we need to mention that, using features derived from Perennial, it is possible to split

a crash condition between threads where each thread is responsible for maintaining

its part. This means that we can use standard concurrent-separation-logic-style

thread-local reasoning and prove each of the two threads separately.

CHAPTER 4. SPIREA 112

The key idea of the proof that we want to highlight is at the write y :=at 1 in the

left thread. Here we use Ht-at-write where σ is 0 and σt is 1. Showing the invariant
is trivial, the tricky part is the last conjunct in the precondition of Ht-at-write,

namely that the written state fits in the ordered history of states. To do this we

assume some σc that is either 0 or 1 (here we crucially use that the abstract state

contains only 0 and 1). The latter case is trivial, so suppose σc = 0. In the first case

we have the invariant for 0 twice. Since ϕ(0, v) contains an exclusive token this is a

contradiction. The use of the exclusive token for the state 0 in ϕy ensures that the
abstract history can only contain 0 once. Hence, when writing the state 1 we can
rule out the case where another thread writes 0 that ends up succeeding our write of

1 (which would violate the order of the abstract history). Notice how the argument

is modular, we do not assume any knowledge of any other threads, only that the

invariant is respected.

We remark that Bila et al. [Bil+22] verified a variant of the durable message

passing example where the flush and fence for x is moved from the left to the right

thread as in Figure 4.2d. We have verified this variant as well in Coq and in this

example theψ function in the invariant for y is not the identity function as previously
mentioned. Since the message is sent before anything is flushed the information in

the message is lost at a crash, and hence the state needs to change at a crash. For the

full details of this example see our Coq mechanization.

4.8.2 Read-Optimized Reference

To show how Spirea supports modular specifications, we give in Figure 4.16 a

specification of a library implementing what we call read-optimized references. This
module implements an interface that appears to clients as a single reference that

can be read and writen. The implementation however optimizes the performance

of reads. It does this by storing the content of the reference redundantly both in a

“volatile” location (one can imagine it being stored in faster volatile memory) and

in a persistent location (in the slightly slower persistent memory). When a client

writes to the read-optimized reference the value it is saved to both locations, but

when reading only the volatile reference is consulted for improved performance.

In the specification, an abstract (existentially quantified) predicate isRR(vr , v) is
used to abstract over (hide from clients) the concrete data representation used by the

library implementation; intuitively, it means that the value vr is a read optimized

value with value v. After a crash, the volatile location might be lost and hence the

reference needs to be recovered before it can be used after a crash. The abstract

predicate recRR(vr , v) intuitively means that vr needs recovery. Just like in the

verification of the flush and fence example we choose a crash condition that directly

contains the post-crash modality. This simplifies the specification, in particular,

in the crash condition for write. During the execution of write, after updating
the volatile location but before updating the persistent location, the read-optimized

reference is in an inconsistent state where it satisfies neither isRR for the old value

nor the new value. Instead of trying to express this intermediate state we give the

CHAPTER 4. SPIREA 113

init ≜ λv.

let per = refna v in
flush per; fencesync;
let vol = refna v in
(per, vol)

read ≜ λvr. !na(π2 vr)

write ≜ λvr, v.

(π1 vr) :=na v;

flush (π1 vr); fencesync;
(π2 vr) :=na v

recover ≜ λvr.

let per = π1 vr in
let vol = refna (!na per) in
(per, vol)

{true} init v {vr . isRR(vr , v)}{true}

{isRR(vr , v)} read vr {w. v = w ∗ isRR(vr , v)}{⟨PC⟩ recRR(vr , v)}

{isRR(vr , v)} write vr w {u. isRR(vr , w)}{⟨PC⟩ ∃u ∈ {v, w}. recRR(vr , u)}

{recRR(vr , v)} recover vr {vr ′. isRR(vr ′, v)}{⟨PC⟩ recRR(vr , v)}

isRR(vr , v) ⊢ ⟨PC⟩ recRR(vr , v)

Figure 4.16: Implementation and specification of the read-optimized reference

client what they actually need: the information that after a crash the read-optimized

reference is recoverable in either the old or the new state.

Our Coq mechanization contains the full proof of the specification.

4.8.3 Atomic Persists

Raad et al. [RLV20] used the POG logic to verify an example where one thread writes

to two locations, flushes and fences the writes, and transfers the information to a

second thread through a spin lock. They call this example the atomic persists example.

The program implemented in λpmem can be seen in the proof outline in Figure 4.17.

The two threads use a shared lock that they both attempt to acquire. When the left

thread acquires the lock it writes true to the locations x and y. It then flushes both

locations and carries out a fence before it releases the lock. When the right thread

acquires the lock it reads x and if it reads true it writes true to z.
Due to the limitations of the CAS rule in Spirea we can not verify the spin lock

in Spirea. Instead, we verify the spin lock in BaseSpirea but give it a specification

inside Spirea. We give the lock a crash-aware lock specification, similar to the one

found in Perennial [Cha22, Chapter 3]. With the lock verified in BaseSpirea we can

then verify the rest of the example purely in Spirea. This demonstrates both how to

use BaseSpirea in combination with Spirea and modularity. In the proof given by

Raad et al. [RLV20] the lock and the clients are verified together using one global

invariant that contains knowledge about the locations used both internally in the

lock and in the two clients. Hence, if the lock implementation is changed, the entire

proof is affected. In our proof the lock is given a modular specification and a change

in the lock implementation will only affect this proof and not the verification of the

clients.

CHAPTER 4. SPIREA 114

{
isLock(lk, Plk , Pc,lk) ∗ z ↪→na [False] ∗ z ≿p False

}
{True}
acquire lk{
x ≿p False ∗ x ≿f b ∗ x ↪→na σ⃗ ++ [b] ∗
y ≿p False ∗ y ≿f b ∗ y ↪→na σ⃗ ++ [b]

}
x :=na true;
{x ↪→na σ ++ [b, true]}
y :=na true;
{y ↪→na σ ++ [b, true]}
flush x;
{⟨PF⟩x ≿f true}
flush y;
{⟨PF⟩(x ≿f true ∗ y ≿f true)}
fence;
{x ≿f true ∗ y ≿f true}
release lk

{True}

∥∥

{z ↪→na [False]}
acquire lk{
x ≿p False ∗ x ≿f b ∗ x ↪→na σ⃗ ++ [b] ∗
y ≿p False ∗ y ≿f b ∗ y ↪→na σ⃗ ++ [b]

}
if !na x = true
then
{b = true}{
x ≿f true ∗ x ↪→na σ⃗ ++ [true] ∗
y ≿f true ∗ y ↪→na σ⃗ ++ [true]

}
z :=na 1

{True}
else ()

{True}
release lk

{True}

x ≿p bx ∗ x ↪→na σ⃗ ++ [bx]∗
y ≿p by ∗ y ↪→na σ⃗ ++ [by]

z ≿p bz ∗ z ↪→na σ⃗ ++ [bz]

if !na z = true
then
{x ≿f true ∗ y ≿f true}{
x ↪→na σ⃗ ++ [true]∗
y ↪→na σ⃗ ++ [true]

}
assert !na x = true
assert !na y = true
{True}

else
{True} () {True}

Figure 4.17: Proof outline for the atomic persists example. At the top is the pre-crash

code and below the recovery code

CHAPTER 4. SPIREA 115

We now explain the proof of the atomic persist example in more detail. The

proof also appears in our Coq mechanization. The property that we want to show is

that the write to z must be ordered after the two writes to x and y. In other words if

the right thread reads true from x it must also be the case that it would read true
from y if it where to do so. So, due to the use of the lock the two separate writes

performed by the left thread appear as one atomic write to the right thread, i.e., the
right thread either sees none of the writes or all of the writes.

For the locations x and y we use a simple invariant with an abstract state of

booleans {true, False} and ϕb(σ, b) ≜ σ = b as the invariant.
To verify the example we prove a crash-aware lock specification for a (volatile)

lock using BaseSpirea. The specification that we show for the lock is identical to

the crash-aware lock specification proposed by Chajed [Cha22, Chapter 3] (note

that while the specification is the same our proof is different as it has to account for

weak persistent memory whereas Perennial’s lock assumes sequentially consistent

memory). Since our specification is identical to their we do not repeat it here. The

key point that is relevant to our present goal is that the assertion for the lock has

the form isLock(v, P, Pc) and means that the lock protects both a resource P , as the

standard CSL lock specification, and a crash-resource Pc, which essentially is a crash

condition that the lock guarantees to preserve.

We want the lock to own the points-to predicates for x and y. Furthermore, the

resource should state that x and y have the same last state and that that state has

been flushed. Finally, they should be persisted in at least the initial state.

Plock ≜ ∃σ⃗, b. x ≿p False ∗ x ≿f b ∗ x ↪→na σ⃗ ++ [b]∗
y ≿p False ∗ y ≿f b ∗ y ↪→na σ⃗ ++ [b]

For the lock’s crash-resource we only need that the locations have been persisted in

some state and then the points-to predicates ending in that state.

Pc,lock ≜ ⟨PC⟩ ∃σ⃗x, σ⃗y, by, bx.
x ≿p bx ∗ x ↪→na σ⃗ ++ [bx]∗
y ≿p by ∗ y ↪→na σ⃗ ++ [by]

For the location z we use the abstract state of booleans and the invariant:

ϕz(False, v) ≜ v = False

ϕz(true, v) ≜ v = true ∗ x ≿f true ∗ y ≿f true

The key aspect here is that when z has the value true then the invariant contains

the fact that x and y has been flushed in the state true.
In addition to the crash resource for the lock we also need a crash condition that

ensures that z is available after a crash:

Pc ≜ ⟨PC⟩ ∃σ⃗, b. z ≿p b ∗ z ↪→na σ⃗ ++ [b]

CHAPTER 4. SPIREA 116

makeStack ≜ λ_.

let node = refna nil in
flush node;

fence;
refat node

sync ≜ λtoHead.

flush toHead;

fencesync;

nil ≜ inj1 ()

cons v toNext ≜ inj2 (v, toNext)

pop ≜ rec loop toHead =

let head = !at toHead in
fence;
match !na head with

inj1 _⇒ inj1 ()
inj2 pair⇒
let next = !na(π2 pair) in
if CAS toHead head next

then inj2 (π1 pair)
else loop toHead

push ≜ λtoHead, val.

let toNext = refna () in
let newNode =
refna (cons val toNext) in

flush newNode;

(rec loop () =

let head = !at toHead in
toNext :=na head;

flush toNext; fence;
if CAS toHead head newNode

then () else loop ()) ()

Figure 4.18: Implementation of the durable Treiber stack

The entire crash condition for the two threads is then: Pc,lock ∗ Pc. When the lock

is acquired threads are required to maintain Pc,lock and the Pc part we let the right

thread maintain.

With this setup in place the proof outline appears in Figure 4.17. Note that to

keep the outline simple we do not repeat resources that are unchanged in between

lines in the program.

4.8.4 Durable Data-Structures With Null-Recovery

Concurrent non-blocking data structures have the property that they can be made

durable and crash-safe by appropriately inserting flushes and fences [Fri+20; IMS16].

They furthermore enjoy null-recovery. As mentioned, this is the property that no

recovery code is needed after a crash to restore the consistency of the data structure.

CHAPTER 4. SPIREA 117

{true} makeStack () {ℓ. isStack(ℓ, ϕ)} {isStack(ℓ, ϕ) ∗ ϕ(w)} push ℓ w {true}

{isStack(ℓ, ϕ)} pop ℓ {v. v = inj1 () ∨ ∃x. v = inj2 x ∗ ϕ(x)}

{isStack(ℓ, ϕ)} sync ℓ {synced(ℓ)} isStack(ℓ, ϕ) −∗ ⟨PCF⟩ isStack(ℓ, ϕ)

isStack(ℓ, ϕ) ∗ synced(ℓ) −∗ ⟨PC⟩ isStack(ℓ, ϕ)

Figure 4.19: Specification of the durable Treiber stack

Data structures with this property are by construction always in a consistent state—

even after a crash. This makes them particularly well suited in a persistent setting

and easier to use as clients of such data structures do not need to carry out recovery

procedures (in contrast to, for instance, the read optimized reference). One would

therefore hope to be able to derive similarly easy to use CSL specifications for such

data structures. In this section we show how this is the possible in Spirea and

explain how to specify and verify safety (including thread-safety and crash-safety)

of non-blocking data structures with null-recovery. In our Coq mechanization we

have verified durable implementations of both the Treiber stack and the Michael-

Scott queue. These case studies show that our crash-aware invariants are sufficiently

expressive to capture representation predicates for durable concurrent data structures

and capable of handling null-recovery.

For space reasons we cover only the Treiber stack in this section. We focus on the

resulting specification and sketch the proof. The full verification of both examples

appears in our mechanization.

Implementation

The Treiber stack consists of a pointer to a linked list where, for thread-safety, the

pointer is updated withCAS. The implementation of the stack appears in Figure 4.18.

We use pointers to sums to represent nodes in the linked list: inj1 () represents a
nil-node and inj2 (v, ℓ) represents a cons-node with value v and with ℓ pointing to

the succeeding node. In order to make the stack crash-safe we have inserted flushes

and fences appropriately.

Our implementation is buffered durable linearizable, which means that it never

waits (with fencesync) for an operation to reach persistent memory, but only ensures

(with fence) that operations persist in the order in which they linearize. This

improves performance but means that at a crash some returned operations might

be lost. As is common for such data structures we include a sync operation that

explicitly makes sure that the stack is persisted by using fencesync.

CHAPTER 4. SPIREA 118

Specification

The specification (in Figure 4.19) enforces that a predicate ϕ :Val→ dProp holds

for each item in the stack. The specifications make use of an abstract (existentially

quantified) representation predicate isStack, which is persistent, in the Iris sense,

and hence duplicable, so that several threads can access the stack concurrently. Since

isStack is persistent it does not need to appear in crash-conditions and hence we can

use normal Hoare triples instead of crash Hoare triples. As such, the non-highlighted

part forms a completely typical per-item CSL specification for a concurrent stack.

This is exactly what we want, as it implies that a client can use the durable stack as

they would a normal stack. Note that our specification does not imply linearizability

or the LIFO property of the stack, but it does imply thread-safety and crash-safety.

The three highlighted rules are specific for persistent memory. The first of these

shows that by running sync ℓ one gets the resource synced(ℓ) which is evidence

that the stack has been persisted. The two last rules concern the interaction between

isStack and the post-crash modalities. The first rule states that if ℓ is a stack before

a crash then after a crash it is still a stack, but only under the ⟨PCF⟩ modality since

the stack is buffered. The second rule applies if the stack is certain to have been

persisted, as witnessed by synced; in this case the stack is preserved under the ⟨PC⟩
modality.

The last two rules capture not only crash-safety but also the null-recovery

property of the stack. They imply that with no recovery code needed, the isStack
representation predicate can be reclaimed after a crash, and thus that a client can

safely keep using the stack after a crash.

For the specification to be sound in our weak persistent memory setting, the

per-item predicate ϕ must satisfy that for all v ∈Val it is the case that (1) ϕ(v) ⊢
⟨NB⟩ϕ(v), (2)ϕ(v) ⊢ ⟨PCF⟩ϕ(v), and (3)ϕ(v) ⊢ �ϕ(v). The first two requirements

are necessary to make ϕ safe to transfer between threads and across crashes. The

third requirement expresses that ϕ must be persistent (in the Iris sense). This is

required for a subtle reason: Since the stack is buffered, operations might return

before they persist. Therefore, a value v can be popped from the stack (at which

point the client is given ϕ(v)), and then a crash can happen before the changes by

the pop persist. Then, after the crash, v is still present in the stack, and thus it can

be popped again (at which point the client is given ϕ(v) once more). In summary,

due to crashes, the same value can be popped several times and hence the resource

must be duplicable, i.e., persistent. This requirement holds, for instance, for simple

properties such as v being an even number and for assertions about atomic locations.

Had the implementation been non-buffered, i.e., implemented using the synchronous

fence, then this requirement could be removed.

Proof (sketch)

The proof proceeds by defining the predicates synced and isStack and then verifying

that the specifications hold. The definition of synced expresses that ℓ has been

CHAPTER 4. SPIREA 119

synced(ℓ) ≜ ℓ ≿p ⋆

isStack(ℓ, ϕ) ≜ ℓ πstack (ϕ) ∗ ℓ ↪→at ⋆

ϕstack (ϕ)(_, v) ≜ ∃ℓh, xs ∈ List(Val). v = ℓh ∗∗
x∈xs

ϕ(x) ∗ isNode(ℓ, xs)

isNode(ℓnode , []) ≜ ∃q. ℓnode inj1 () ∗ ℓnode ↪→
q
na ⋆ ∗ ℓnode ≿f ⋆

isNode(ℓnode , x :: xs) ≜ ∃ℓtoNext , ℓnext , q1, q2, σ⃗, i. ℓnode inj2 (x, ℓtoNext) ∗ ℓnode ↪→q1
na ⋆ ∗ ℓnode ≿f ⋆ ∗

ℓtoNext πtoNext ∗ ℓtoNext ↪→q2
na σ⃗(i, ℓnext) ∗ ℓtoNext ≿f (i, ℓnext) ∗ isNode(ℓnext , xs)

Figure 4.20: Invariants and definitions used in the proof of durable concurrent stack

persisted. For isStack we use three invariants. In all three the ψ function is the

identity function. Two of the invariants use the abstract state set 1 = {⋆}. Elements

of this abstract state carry no information, but lower bounds are still meaningful,

e.g.,ℓ ≿f ⋆ means that location ℓ has certainly been flushed.

For a node the pointer to the sum never changes. For these locations we use

the constant invariant. Given a value v the constant invariant πconst(v) has the
abstract state 1 and the invariant ϕconst(_, v

′) ≜ v = v′. We use the notation ℓ v

for ℓ πconst(v) .
The pointer from a cons-node to its successor potentially changes many times

in push if the CAS in push fails. For this location we use the invariant πtoNext . Its

abstract state is N×Val ordered by the natural numbers in the first component. The

invariant is ϕtoNext = λ(n, v), v′. v = v′.
For the stack itself (the pointer to the head of the linked list) we use the invariant

πstack (ϕ). Its abstract state is 1 and the invariant ϕstack (ϕ) appears in Figure 4.20.

It states that there exists a logic-level list xs , all of whose elements satisfy ϕ, and it

uses isNode to recursively express that the structure of the linked list corresponds

to xs .
With these definitions and invariants in place the proof that the code satisfies

the specification is fairly straightforward; see our Coq mechanization for the details.

We finally remark that a similar (non-persistent, non-weak memory) concurrent

stack can be verified in standard Iris [BB20]. The Iris proof uses an Iris invariant to

define the isStack representation predicate.

4.9 Related and Future Work

We now discuss aspects of related work that have not already been treated in the

paper.

Logics for Persistent Memory To our knowledge, there are only two prior pro-

gram logics for persistent memory, namely Persistent Owicky-Gries (POG) [RLV20]

CHAPTER 4. SPIREA 120

and Pierogi [Bil+22]. Both POG and Pierogi focus on the persistent memory model of

the x86 architecture [RLV20], which is stronger, both in terms of weak and persistent

memory, than our memory model, which does not include details specific for any

one architecture; instead it is a slight generalization of the persistent memory models

in x86 and ARM. The programming languages covered by POG and Pierogi are much

simpler than ours, λpmem; the languages in op. cit. support only a static number of

threads running sequential commands, and a static number of memory locations.

In contrast, λpmem includes more high-level features such as higher-order functions

and dynamic allocation of threads and locations.

Both POG and Pierogi are Owicki-Gries-style program logics. POG makes use

of rely-guarantee style reasoning to support composition of threads that do not

interfere, whereas Pierogi does not support thread-local reasoning. In contrast,

Spirea is a separation logic and hence it supports frame rules and thread-local

reasoning. Moreover, since Spirea is built on top of Iris, it includes advanced features

such as user-defineable ghost state and higher-order quantification, which are not

present in POG or Pierogi but which are important for modular specification and

verification of libraries, such as the stack case study we considered in Section 4.8.4.

From Perennial we gain the ability to reason about durable resources in a convenient

fashion using normal separation logic ownership.

In contrast to POG but similarly to Pierogi, our Spirea logic is mechanized in a

proof assistant. Pierogi has been mechanized in Isabelle/HOL and its authors report

that the Sledgehammer tool can be used to search automatically for program proof

rules to apply. In contrast, we make use of the Iris Proof Mode [KTB17c] to support

interactive development of program proofs in the Coq style, which works well for

our higher-order logic and larger examples.

Similarly to Pierogi, Spirea supports reasoning directly about optimized flushes

(write-backs) (flush) and the use of fences. In contrast, POG only supports reasoning

about a stronger operation that combines the write back and the fence. To handle

other programs they instead offer a translation that in some cases can translate

a program with the weaker, and more tricky to reason about, instructions into

equivalent programs. This translation only works for programs that use these

instructions in a certain pattern, and programs that do not adhere to this pattern can

not be reasoned about using their logic. Since we handle these operations directly

we can verify such programs.

Finally, POG and Pierogi have, to the best of our knowledge, only been applied

to reason about very small programs consisting of only a few lines, whereas we

have used Spirea to verify larger programs, in particular entire data structures.

Additionally we have shown how to give such data structures modular specifications

as extensions of traditional CSL specifications.

Separation Logic for Weak Memory GPS [TVD14] is a program logic for the

release-acquire and non-atomic fragment of the C11 weak memory model. The

logic introduced protocols to reason about atomic location, the inspiration for our

CHAPTER 4. SPIREA 121

crash-aware invariants. GPS does not use protocols for non-atomic locations, but

instead a standard points-to predicate. As mentioned, this approach is not sufficient

in a persistent setting. The CAS rule in GPS does not require that (what we call)

the invariant for the read value is preserved. When reading v1 and simultaneously

writing v2 with a CAS, the CAS rules in GPS allows one to use the invariant for v1 to
show the invariant for v2 and keep any additional resources without reestablishing
the invariant for v1. This is sound because the C11 semantics ensures that no CAS

operation will ever read v1 again. While this is also the case in our semantics, after

a crash, the write for v1 might have been persisted while the write for v2 has not
been persisted. Then another CAS operation might read v1 again. Hence, in the

presence of crashes the GPS CAS rule is unsound. Our rule for CAS requires that

the invariant still holds for the read value, ensuring that the invariant always holds

for all writes. This is sound even with crashes but is significantly more limiting than

the GPS CAS rule. Essentially, the GPS CAS rule is sound for transferring resources

between concurrently running CAS-operations, but not across crashes. Our CAS

rule is sound for transferring resources across crashes, but only in a limited way

between concurrent CAS’es. Creating a CSL rule that is simultaneously sound for

both is very challenging and something that we would like to explore in future work.

The CAS rule in BaseSpirea does not suffer from this limitation, and as demonstrated

in Section 4.8.3, it can be used together with Spirea for cases where a stronger CAS

rule would otherwise be needed.

The read rule for atomic locations in GPS does not make it possible to transfer

exclusive resources out of the invariant for the value read. Our read rule makes it

possible to extract exclusive resources as long as the invariant still holds (for instance

by transferring other resources into the invariant). We make use of this capability

to verify the message passing examples. In GPS an additional feature, escrows, is
needed to verify the message passing examples.

Our use of modalities to reason about fences is inspired by Fenced Separation

Logic (FSL), a program logic that supports reasoning about the release and acquire

memory fences in the C11 memory model [DV16]. FSL includes two fence modalities

to describe resources that have been prepared for release or acquire by a release or

acquire fence. The release and acquire fences in C11 serve a different purpose than

those in λpmem and the modalities in FLS are correspondingly different as well.

Recently, in the context of weak memory we have seen logics that support

specifications that go beyond safety. Compass [Dan+22] and Cosmos [MJ21b] are

both capable of showing stronger correctness results by using logically atomic triples
as specifications. In contrast, our specification for the durable stack only implies

safety. We think it would be interesting to investigate how ideas from these logics

apply in our setting and we believe that a stronger CAS rule (per the discussion

above) is necessary to achieve this.

Separation Logics for Durable Storage Crash Hoare Logic [Che+16] and the

more advanced Perennial [Cha22; Cha+19; Cha+21] are separation logics capable

CHAPTER 4. SPIREA 122

of verifying crash-safety. In contrast to our work, Crash Hoare Logic and prior

work using Perennial has only considered sequentially consistent memory and

synchronously persisting writes without any weak behavior. When writes persist

synchronously/atomically the content of durable storage is always in a single certain

state. Therefore, rules for the post-crash modality include no non-determinism and

are simpler “either/or” rules where some (volatile) resources are entirely lost at a

crash and other (non-volatile) resources are preserved unchanged after a crash. In our

setting, since the crash step is non-deterministic, the rules for the post-crash modality

are significantly more involved. Consider for instance a rule such as PC-na-mapsto

which illustrates that the post-crash modality both introduces non-determinism (the

quantified i), potentially takes resources away (represented both by ⟨ifRec⟩ and the

lost states), and potentially adds new resources (the crashedIn(ℓ, σi)).

Persistency Models While our focus in this paper is on the logic, we remark on

related work on persistencymodels. As mentioned, persistencymodels of the x86 and

ARM architecture have been formalized [KL21; Raa+20; RWV19]. In parallel with our

work, new variants of these that, like our semantics, are based on views have been

presented [Cho+21]. It would be interesting to formally verify a correspondence

between the explicit epoch persistency model and the x86 and ARM persistency

models. We believe that our operational semantics could be used for this purpose. It

would also be worthwhile to show an equivalence between our operational model

and a model in a declarative or axiomatic style.

Chapter 5

The Nextgen Modality: A

Modality for

Non-Frame-Preserving Updates

in Separation Logic

Abstract

Separation logic is about resources and the way in which resources can

soundly change and be updated is fundamental. The way in which resources

can change has typically been restricted to certain local or frame-preserving up-

dates. However, recently we have seen separation logics where the restriction

to frame-preserving updates seems to be a hindrance towards achieving the

ideal program reasoning rules. In this paper we propose a novel nextgenmodal-

ity that enables reasoning across generations where each generational change

can update resources in ways that are non-local and non-frame-preserving.

We implement the idea as an extension to the Iris base logic, which enriches

Iris with an entirely new capability: the ability to make non-frame-preserving

updates to ghost state. We show that two existing Iris modalities are special

cases of the nextgen modality and our “extension” can thus also be seen as a

generalization and simplification of the Iris base logic. To explore and demon-

strate the utility of the nextgen modality we use it to construct a separation

logic for a programming language with stack allocation and with a return

operation that clears entire stack frames. The nextgen modality is used to great

effect in the reasoning rule for return, where a modular and practical reasoning

rule is otherwise out of reach. This is the first separation logic for a high-level

programming language with stack allocation. We sketch ideas for future work

in other domains where we think the nextgen modality can be useful.

123

CHAPTER 5. NEXTGEN 124

5.1 Introduction

Separation logic is a logic for reasoning about ownership over resources. A crucial

aspect of separation logic is the ability to perform what we call updates to resources

that are frame-preserving. As a quintessential example of a frame-preserving update,

consider the separation logic proof rule for assignment to a reference:

{ℓ ↪→ v} ℓ← w {ℓ ↪→ w}.

Here, the difference between the points-to assertion in the pre- and postcondition

means that the heap resource is updated. The update is sound because the points-to

assertion implies exclusive ownership over the location ℓ. This ensures that changing
this part of the heap resource is guaranteed to not interfere with any other assertions.

Any other assertion, or frame P , that might exist and that is valid in combination

with ℓ ↪→ v (meaning that P ∗ ℓ ↪→ v is not false) is also valid in combination with

ℓ ↪→ w. This “locality” of the update is required in order for the assignment rule to

combine soundly with the frame rule for Hoare triples. If we combine the two rules

we get

{ℓ ↪→ v} ℓ← w {ℓ ↪→ w}
{ℓ ↪→ v ∗ P} ℓ← w {ℓ ↪→ w ∗ P}

which is only sound due to the property just described.

In the separation logic Iris [Jun+18a; Jun+15b], which we use as our vehicle

in this paper, updates to resources that satisfy this property of being sound in

combination with the frame rule are called frame-preserving updates. Such updates

are local in the sense that the changes they allow one to perform are closely related

to the resources and knowledge one owns locally. This makes them well-suited for

reasoning about programming language features that make similarly local changes to

the physical state. For instance, writing to a reference, as above, which effects a small

and precisely delineated fragment of the physical state. Iris limits resource updates

to those that are frame-preserving in this way. But updates that preserve the frame

in this manner are not a natural fit for program execution steps that are less localized

and that make sweeping changes to larger parts of the physical state. Examples of

such non-local execution steps that can not easily be expressed as frame-preserving

updates include:

Crashes in a setting with durable storage If one wishes to verify crash-safety

in a setting with durable storage, how the state of a machine changes at a

crash can be represented as a crash-step in the operational semantics. At such

a step many locations might be lost. For instance, all locations residing in

volatile memory are lost. This makes the crash step non-local. Recently, we

have seen several separation logics for reasoning about crashes and durable

storage [Cha+17; Cha+19; Cha+21; VB23a]. They have all had to work around

the absence of non-frame-preserving updates.

CHAPTER 5. NEXTGEN 125

Garbage collection step In a language with garbage collection, for which the

operational semantics explicitly models the action of the garbage collector,

a step corresponding to garbage collection would reclaim a potentially large

number of locations in memory. If one wishes to reason about the garbage

collection step, without having gathered all the resources for all the locations

that the garbage collector might need to collect, then the update to the logical

resources is not frame-preserving. Indeed, in recent work on separation logics

in the presence of garbage collection, this has been worked around by having

the logics maintain a global account of all the resources that could be reclaimed

by the garbage collector, for instance in the form of an explicit correspondence

between physical addresses and logical addresses [Gué+23; MP22; MCP23]

Returning from a function in language with stack allocation In a language

with a stack and values allocated on the stack, returning from a function

invalidates the locations in the entire stack frame corresponding to the func-

tion call. This example is explained in greater detail later, as we use it as a

case-study in this paper.

One can also imagine cases where the desire to make non-frame-preserving updates

arises without stemming from the operational semantics:

Temporary read-only permissions One might wish to, at the level of the logic,

make a location read-only temporarily in order to obtain a freely shareable

read-only points-to predicate. At some determined point these read-only

points-to predicates should disappear and the original read-write points-to

predicate should be reoptained. A separation logic with this capability was

constructed in [CP17]. Their separation logic was not based on Iris, and the

changes to resources that they use are not frame-preserving. The read-only

points-to predicate is, naturally, incompatible with the read-write points-to

predicate, and since the read-only points-to predicate is freely shareable it

might always be contained in some frame, and hence an update that restores

the read-write points-to predicate is not frame-preserving. This means that it

is not clear how to support Charguéraud and Pottier’s reasoning in Iris.

Time based resource revocation In distributed systems a notion of time is often
used to control revocation of resources. For instance, acquiring a distributed

lock might only grant the lock under a certain timeout expressed in terms of

wall-clock time. Once this duration of time has passed, the right to use the lock

is revoked and the lock should re-obtain the right to release to another peer.

However, the lock cannot simply update its internal resources to obtain this

right as that would not preserve the frame of the peer whose time expired. The

recent Iris based separation logic Grove [Sha+23] allows for reasoning about

time in a distributed setting using novel time-bounded invariants. Perhaps a
mechanism that allows non-frame-preserving updates, justified by changes in

time, can also be applied to tackle some of the problems in this space.

CHAPTER 5. NEXTGEN 126

We hasten to emphasize that for the above examples it is of course not the case that

creating a logic for a particular language or verifying programs with a particular char-

acteristic is impossible without the ability to make non-frame-preserving updates.

By using sophisticated resources, advanced invariants, or straight-up workarounds,

it is often possible to do without the ability to make non-frame-preserving updates.

Rather, it is the case that certain specific desirable program rules and verification ap-

proaches are not possible since they can not be encoded as frame-preserving updates.

One good example of this is the previously mentioned work by Charguéraud and

Pottier on temporary read-only permissions. It is not that their approach makes it

possible to verify entirely new classes of programs as temporary read-only points-to

predicates can also be achieved with the bookkeeping overhead of fractional permis-

sions. Rather, the benefit of their approach is that it is simple and elegant, and to

achieve the particular rules in their program logic, non-frame-preserving updates

are necessary.

In this paper we present a novel modality that facilitates making changes to

resources in ways that are not frame-preserving. The modality is called the nextgen

modality, since it supports reasoning about what happens “in the next generation,”

after a non-frame-preserving update. The modality makes it possible to change

resources as described by any (well-behaved) transformation function chosen by

the user of the logic. We develop the modality as an extension to Iris. Usually, new

features for Iris are developed within the logic. But since Iris, at the fundamental

level of its base logic provides no means for expressing the kind of non-local updates

that we are interested in, we have to extend the base logic itself. We remark that the

Iris base logic has been relatively stable since 2017 [Kre+17b; Tim+18] (except for

experiments with transfinite versions of Iris [Spi+21]) and find it noteworthy that

this is one of the instances where the base logic needs changing.

Of course, we can not in a single paper develop entire program logics for all the

motivating examples above. Instead, we choose to focus on one of them, namely, as

mentioned, a program logic for a language with stack-allocated values. This case

study demonstrates both how to use our nextgen modality and is a contribution in

its own right. In the program logic, we use the nextgen modality to account for the

way in which returns invalidate the call-stack frame. The result is the first separation

logic that supports reasoning about a high-level language with stack allocation

and where, in the operational semantics, returning from a function invalidates the

call-stack frame of the returning function.

Our focus on one case-study naturally means that we do cannot conclude with

certainty whether the nextgen modality, in some form, can or cannot be of benefit in

all the examples mentioned above. But we are quite certain that at least some other

examples than the stack allocation example can benefit from the nextgen modality;

see the discussion in the future work section.

In short, the contributions of the paper are as follows:

• We extend the Iris base logic with a new modality, the nextgen modality.

This modality makes it possible to make non-frame-preserving changes to

CHAPTER 5. NEXTGEN 127

ghost-op

a
γ ∗ b γ ⊣⊢ a · b γ

ghost-valid

a
γ ⊢ V(a)

ghost-persistently

a
γ ⊢ � |a| γ

ghost-update

a⇝ b

a
γ ⊢ ˙|⇛ |b| γ

own-op

Own (a) ∗Own (b) ⊣⊢ Own (a · b)
own-valid

Own (a) ⊢ V(a)

own-persistently

Own (a) ⊢ �Own (|a|)

Figure 5.1: A few of the Iris rules related to ghost state.

resources in Iris which was previously not possible. We have extended the Iris

implementation in Coq to include the new modality and also adapted the Iris

Proof Mode [KTB17c] to include support for the nextgen modality.

• We develop a program logic for a language StackLang. In this language

the physical state contains a call-stack and values can be allocated on the

stack. Returning from a function clears the call-stack from the returning

function from the physical state. By using the nextgen modality in the proof

rule for returns we arrive at a proof rule that is simple and easy to use. We

have formalized the new program logic and examples using it in Coq in our

extended version of the Iris implementation.

The rest of the paper proceeds as follows. In Section 5.2 we give the necessary Iris

background to explain our contributions, and we describe the most closely related

work. Section 5.3 introduces the basic nextgen modality, its rules in the logic, and

its model. Section 5.4 describes the operational semantics of StackLang and the

program logic we construct for it. In Section 5.5 we compare against related work

not covered earlier in the paper and discuss future work.

The Coq development accompanying this chapter is available online on GitHub:

https://github.com/logsem/iris-nextgen.

5.2 Background and Related Work

We first cover a bit of Iris background and the most closely related work. The

background material includes some aspects of Iris that are perhaps not part of the

typical Iris user’s repertoire of Iris features, but that, nevertheless, are important

in order to explain our contributions and situate them in comparison to the related

work.

https://github.com/logsem/iris-nextgen

CHAPTER 5. NEXTGEN 128

5.2.1 Iris Background

A central feature in Iris is its support for user-defined ghost state. Users of the logic

can define and choose their own resource algebras (RAs) to capture the behavior of

their desired ghost state. With much flexibility one can mix and match RAs and

use many of them in the logic. For any RA A and element a ∈ A, the proposition
a

γ
asserts ownership over a at some ghost location distinguished by a ghost name

γ ∈ GName. We do not recall the full definition of what an RA is, but it includes an

associative and commutative monoidal operation, which gives meaning to separating

conjunction and ownership, cf. the ghost-op bi-entailment in Figure 5.1. As not

all combinations are meaningful, a validity predicate V : A → Prop identifies

the valid elements. The logic maintains the property that only valid elements can

be owned, cf. ghost-valid. A partial function called the core | − | extracts from
elements their duplicable part. That is, for every a ∈ A, its core |a| is the duplicable
part of a, meaning in particular that |a| = |a| · |a|. The persistently modality �
removes all non-duplicable resources by applying the core operation to all resources,

cf. ghost-persistently. Elements of an RA are ordered w.r.t. an extension order :
a ≼ b ≜ ∃c. a · c = b. A resource a can be updated to another resource b via a

frame-preserving update denoted a⇝ b and defined as:

a⇝ b ≜ ∀c.V(a · c)⇒ V(b · c)

This definition matches the intuition we gave in the introduction: a resource can

be updated as long as it remains valid in combination with any frame with which

it was also valid before. Frame-preserving updates are internalized into the logic

through the update modality
˙|⇛ and the rule ghost-update.

Both the ability to use several RAs and the ghost ownership assertion a
γ
are

not present in the Iris base logic, but is provided by constructions that are defined
within the base logic. Instead, the Iris base logic is parameterized over just a single

“global” RAM and thus, a user of the base logic can in fact pick only a single RA to

instantiate the logic with. In the base logic, the assertion Own (a), where a ∈ M ,

denotes ownership over elements of the single resource RAM .

We now recall the constructions that make it possible to use several RAs and

named ghost ownership assertions on top of the base logic. First, one chooses a

sequence of all the RAs that are to be used in the logic: M1, . . . ,Mn, where n is

the number of RAs. Then, the single global resource algebraM is chosen to be a

“resource algebra of resource algebras” in the following way:

M ≜
∏
i∈I

GName
fin−⇀Mi (5.1)

This construction has two levels. The first level is a product indexed by the number

of RAs I = {1, . . . , n}. This is such that multiple different RAs can be used. The

next level is a finite map over ghost names. This is such that multiple independent

instances of the same RA can be used. The setM is itself an RA whose operation

CHAPTER 5. NEXTGEN 129

simply combines the two layers point-wise. The familiar ghost ownership proposition

is now defined in terms of the basic ownership Own assertion:

a :Mi
γ
≜ Own (λj. if i = j then {γ 7→ a} else ∅)

We emphasize that the full path to a ghost location consists of both an index i ∈ I
and a ghost name γ. The notation for ownership at ghost locations, however, usually

leaves out the i as it can be inferred from the type of the element at the location.

For modularity, proofs carried out in Iris do not specify exactly what the sequence

of available RAs should be. Instead, they require thatM has the form above, and that

indices exist in the sequence of RAs that contain the RAs necessary for the given

proof. For instance, if a proof requires an RA A then the proof will simply assume

that there exists an i ∈ I such thatMi = A. A proof with such a requirement can

modularly be combined with other proofs making similar constraints. Only to obtain

a closed “final” proof does one need to fully determineM , and at this point one can

do so while ensuring that it contains all the RAs required by sub-proofs.

A program logic constructed inside of Iris usually relies on certain global ghost
names for ghost locations that contain ghost state used by the program logic itself.

We use γ⃗ to refer to such a collection of global ghost names. For instance, an Iris

based program logic for a programming language with a heap keeps ghost state

for the heap at a global ghost name. In other words, there would be a ghost name

inside γ⃗ specifically for the heap ghost state which we could write as γ⃗.heap. Since
points-to assertions are modeled using this ghost state they make use of the global

ghost name. Global ghost names are usually left implicit both on paper and in Coq,

but we could write a points-to assertion like this

ℓ ↪→γ⃗.heap v

to make explicit the ghost name it makes use of. That is, points-to assertions are

in fact parameterized over the global ghost name that they use. Similarly, as the

concrete values of the global ghost names do not matter, proofs and the program

logic itself are parameterized over the collection of the global ghost names. When

proofs are carried out in Coq the global ghost names are assumed as an implicit

context parameter. On paper one should imagine that there is an implicit “∀γ⃗.” in
the beginning of proofs, making the names γ⃗ always “in scope”.

5.2.2 Perennial’s Post-Crash Modality

The work most closely related to ours is the post-crash modality by Tej Chajed and

Joseph Tassarotti [CTc22].
1
They developed the modality specifically for reasoning

about crashes in the Perennial program logic [Cha22; Cha+21], but the idea behind

1

While crucial to the workings of Perennial, the post-crash modality is unfortunately not described

in any of the published papers about Perennial. We therefore directly cite the Coq mechanization of

Perennial where the modality appears.

CHAPTER 5. NEXTGEN 130

their modality can also be applied more generally to reason about the kind of non-

local resource changes we have described. We continue to use the name post-crash

modality, but emphasize that the modality is not only applicable to reasoning about

crashes.

Perennial is a program logic for proving crash-safety in a setting with volatile

memory and a durable disk. The post-crash modality, ⟨PC⟩, is used to express the

way in which resources change due to a system crash. As an example, the modality

discards resources that correspond to the parts of the physical state that resides in

volatile memory and preserves resources that correspond to the parts of the physical

state that reside on the durable disk. As mentioned in the Introduction, the change to

the physical state that occurs at a crash can not be expressed as a frame-preserving

update to the ghost state for the physical state.

The key idea of the post-crash modality is to forgo updating the existing ghost

state and instead allocate new ghost locations. That is, instead of updating a resource

a
γ
to b

γ
, which would require there to be a frame-preserving update a⇝ b, a new

ghost ownership assertion b
γ′
, for a new ghost name γ′, is allocated instead. The

resources at the new ghost locations need not be frame-preserving updates of the

earlier existing resources. Thus this approach side-steps the issue of not being able

to make non-frame-preserving changes to ghost state. Since the new ghost locations

have no inherent relation to the old ghost locations, some relationship between the

two must be explicitly established, and it is required that one immediately stops

using the old ghost name γ and switches to the new ghost name γ′. At a crash, new
ghost assertions are allocated for the ghost state used internally in the program logic.

Since allocating new ghost assertions results in new ghost names, this has the effect

that the global ghost names that the proof is parameterized over are now obsolete

as they refer to ghost locations prior to the crash. The post-crash modality then

mediates between ghost state for the old global ghost names and ghost state for the

new global ghost names.

In order to do this, the modality does not take an assertion of type iProp as

argument, but instead has the type

⟨PC⟩ : (GlobalGnames→ iProp)→ iProp,

where GlobalGnames is a record of all the ghost names used by the program logic

in question (originally, Perennial). The modality is then defined by:

J⟨PC⟩P K ≜ ∀σ, σ′, γ⃗′. R(σ, σ′, γ⃗′) −∗ P (γ⃗′) ∗R(σ, σ′, γ⃗′).

The R above is part of the definition of the post-crash modality. It relates the global

ghost names and physical state before the crash σ with the physical state after the

crash σ′ and the new global ghost names γ⃗′.
When used, the post-crash modality is usually given an argument of the form

λγ⃗′. Q where Q has to use the ghost names in γ⃗′ for its global ghost names and not
use the old global ghost names γ⃗. Following this, rules for the post-crash modality

CHAPTER 5. NEXTGEN 131

are of the form P ⊢ ⟨PC⟩(λγ⃗′. Q). When proving such rules one ends up with goals

of the form

P ∗R(σ, σ′, γ⃗′) −∗ Q(γ⃗′) ∗R(σ, σ′, γ⃗′).
For instance, to prove the rule

ℓ ↪→γ⃗.heap v −∗ ⟨PC⟩(λγ⃗′. ℓ ↪→γ⃗′.heap v)

for points-to assertions, one would have to prove

ℓ ↪→γ⃗.heap v ∗R(σ, σ′, γ⃗′) −∗ ℓ ↪→γ⃗′.heap v ∗R(σ, σ′, γ⃗′).

The crux of the proof is to turn the “old” points-to assertion into the “new” points-to

assertion. Making this possible is the purpose of theR resource. It serves as a catalyst

to make this transition possible, without being consumed itself. In our particular

example with points-to assertions, R could be defined as

R ≜ ℓ ↪→γ⃗.heap v ∨ ℓ ↪→γ⃗′.heap v.

More generally, R is defined such that all the relevant resources can be “exchanged”

from old to new in this manner.

We now describe some of the limitations and problematic aspects of the above

approach. Later on, we will show how our new nextgen modality addresses these

shortcomings.

Poor interaction with the � modality. The following rule is not possible to

prove for the post-crash modality

� ⟨PC⟩P ⊢ ⟨PC⟩�P.

Unfolding the model of the post-crash modality we see that this amounts to proving

�(∀σ, σ′, γ⃗′. R(σ, σ′, γ⃗′) −∗ P (γ⃗′) ∗R(σ, σ′, γ⃗′)) ⊢
∀σ, σ′, γ⃗′. R(σ, σ′, γ⃗′) −∗ �P (γ⃗′) ∗R(σ, σ′, γ⃗′)

We need to be able to show that P holds persistently, but we only know that a wand

implying P holds persistently. Since we do not have R persistently, when we apply

the wand to R we do not get P persistently. Thus, the lemma can not be proven.

The persistently modality plays a crucial role in Iris and the Iris proof-mode

(IPM) for Coq [KTB17c]. The IPM keeps a so-called persistent context which consists

of propositions that hold under the � modality. When introducing the post-crash

modality (using the iModIntro tactic) the IPM requires the rule

P ⊢ ⟨PC⟩Q
�P ⊢ ⟨PC⟩�Q

in order to be able to transform the persistent context. However, for reasons similar

to the above, we can not prove this rule. This makes the post-crash modality more

challenging and cumbersome to use in practice in Coq.

CHAPTER 5. NEXTGEN 132

Invariants and the post-crash modality A key feature in Iris is invariants. An
invariant is denoted I

ι
and means that the assertion I is an invariant that a program

maintains at every step of execution (the ι is not important for our purposes). It is

not clear how invariants that contain ghost state, that uses global ghost names which

are changed by the post-crash modality, can work with the post-crash modality as

the invariant assertion is constant. At the very least, such invariants would have to

be parameterized by the global collection of ghost names in order for the post-crash

modality to be able to update them, and, as such, details of the post-crash modality

would leak into invariants. In Section 5.4.3 we give an example of using our nextgen

modality together with invariants, where the rules only have natural and necessary

changes compared to normal Iris invariants.

No interaction with custom ghost state. As we have seen, the R resource in

the model of the post-crash modality facilitates an exchange between old resources

and new resources. This means that knowledge of certain global ghost names and

resources are baked-in or hard-coded into the definition of the post-crash modality.

The implication of this is that the reach of the modality can not extend to user-

defined ghost state. Specifically, for an RA A and a ghost location γ, unknown to

the definition of ⟨PC⟩, no rule of the form

a
γ ⊢ ⟨PC⟩ b γ

where a ̸= b, can exist. In other words, the only such rule is the one where a = b,
meaning that the ⟨PC⟩ modality can have no interaction with user-defined ghost

state. This means that it is not possible to use the postcrash modality to give logically

atomic specifications for user-defined durable concurrent data structures under a

weak consistency models (such as the one in [VB23a]) whose specification relies on

user-defined ghost state.

Not principled. While the post-crash modality cleverly works around the limita-

tions in Iris for updating ghost state, we find that the mechanism it uses is not as

principled as one could want. As we have shown, the workings of the post-crash

modality rely on changing otherwise globally fixed ghost names. This can be confus-

ing, both on paper and in Coq. For instance, it means that two points-to assertions

that are notationally the same, can in fact be different as they “invisibly” use two

different ghost names. The post-crash modality does not remove or otherwise inval-

idate old resources; it is up to the user of the modality to carefully apply lemmas

that translate old resources, while also making sure that no old resources are still

used. In Coq the modality relies on creating multiple instances of a type class that

contains the global ghost names. Having multiple instances of a type class is not

an idiomatic use of type classes — and while it does work in practice, we have not

found any Coq documentation about which instance of a type class Coq uses when

multiple are in scope. The modality therefore relies on undocumented behavior of

the implementation of Coq.

CHAPTER 5. NEXTGEN 133

5.3 The Basic Nextgen Modality

In this section we introduce the basic nextgen modality. Here the word “basic” means

that the modality is a low-level addition to the Iris base logic. It is a minimal extension

to Iris that enables one to express non-frame-preserving updates. The basic nextgen

modality then facilitates the definition of higher-level nextgen modalities for specific

purposes. This approach follows the Iris tradition of keeping the base logic minimal

and simple, while defining more complex notions inside the logic. Technically, the
nextgen modality can be seen as a family of modalities in that it is parameterized

by a so-called generational transformation (defined below), and we show that the

nextgen modality encompasses two existing Iris modalities, namely the persistently

and the plain modalities.

The basic nextgen modality is written ↬̇t P where P : iProp is an assertion and

t :M →M is a function on the global RA. The dot above the symbol indicates that

this is the basic nextgen modality. We call the function t a generational transformation
or sometimes just a transformation. The assertion ↬̇t P should be read “given a

generational transformation described by t then P holds in the next generation”.

In order for the modality to be sensible, the generational transformation needs to

satisfy a few basic properties. Whenever we write ↬̇t
, we assume that t ranges over

functions with these properties. The requirements for t are given in the following

definition.

Definition 5.3.1 (Generational transformation). Given a resource algebra A, a gener-
ational transformation is a function t : A→ A that satisfies the following conditions.

1. It is monotone with respect to the inclusion order of the resource algebra.

∀x, y. x ≼ y ⇒ t(x) ≼ t(y)

2. It preserves validity of elements.

∀x.V(x)⇒ V(t(x))

3. It is non-expansive with respect to the ordered family of equivalences (OFE) for
A.

∀n, x, y. x n
= y ⇒ f(x)

n
= f(y)

The first two conditions should seem reasonable. The first condition is necessary

as the model of Iris uses monotone predicates over RAs and as we see in Section 5.3.4

this condition ensures that the meaning of ↬̇t P is monotone in the model. The

second condition is necessary as Iris maintains the property that the owned resources

are always valid, hence the generational transformation needs to maintain this

validity. The third condition pertains to an aspect of RAs that we have not described,

namely that they contain an OFE or a “step indexed equality” [Jun+18a]. We include

the condition here for completeness and for readers who are familiar with OFEs.

CHAPTER 5. NEXTGEN 134

bng-own

Own (a) ⊢ ↬̇tOwn (t(a))

bng-mono

P ⊢ Q
↬̇t P ⊢ ↬̇tQ

bng-conj

↬̇t P ∧ ↬̇tQ ⊣⊢ ↬̇t(P ∧Q)

bng-disj

↬̇t P ∨ ↬̇tQ ⊣⊢ ↬̇t(P ∨Q)
bng-later

▷ ↬̇t P ⊣⊢ ↬̇t ▷P
bng-exists

↬̇t ∃x. P ⊣⊢ ∃x. ↬̇t P

bng-forall

↬̇t ∀x. P ⊣⊢ ∀x. ↬̇t P

bng-sep

∀x, y. t(x · y) = t(x) · t(y)
↬̇t P ∗ ↬̇tQ ⊢ ↬̇t(P ∗Q)

bng-pers

∀x. t(|x|) = |t(x)|
� ↬̇t P ⊣⊢ ↬̇t �P

bng-trans

↬̇t1 ↬̇t2 P ⊣⊢ ↬̇t2◦t1 P

bng-idemp

∀x. t(t(x)) = t(x)

↬̇t ↬̇t P ⊢ ↬̇t P
bng-plainly

↬̇t■P ⊣⊢ ■P

Figure 5.2: Rules for the basic nextgen modality.

5.3.1 Rules

Figure 5.2 shows a selection of rules for the basic nextgen modality. The first rule,

bng-own is the nextgen modality’s raison d’être. It states that the transformation

t is applied to owned ghost state. As we are at the level of the base logic this rule

concerns the Own assertion and not ghost locations.

The following rules in the figure state that the nextgen modality is monotone

(bng-mono), commutes with conjunction (bng-conj), disjunction (bng-disj), the later

modality (bng-later), exist (bng-exists), and forall (bng-forall). Together these

rules ensures that the basic nextgen modality is well-behaved and convenient to

work with. However, not all rules of this form that we would want hold without

making further requirements on the transformation. If we look at the next rule

bng-sep, we see that it states an additional demand on t. In Definition 5.3.1 we

defined the essential properties that a transformation must possess, but in practice,

transformations usually satisfy more properties than those, and in those cases more

rules are sound. In the case of bng-sep the requirement is that the transformation

commutes with the monoid operation of the RA. If this is the case, then two assertions

under a nextgen modality can be combined under one nextgen modality. Here it is

fairly clear how the requirement on t relates to the rule. The same is the case for the

two rules bng-pers and bng-idemp. If the transformation commutes with the core

of the RA (when it is defined) then the modality commutes with the persistently

modality. And, if the transformation is idempotent then so is the modality (bng-trans

holds for all transformations though). In all of these cases, the rule for the nextgen

modality quite directly reflects the property of the transformation.

Remark It may be a bit surprising that bng-sep only holds in one direction. We

emphasize that the direction that does hold is the important direction. For instance,

CHAPTER 5. NEXTGEN 135

this direction is used by the Iris proof mode when introducing the modality. To give

some intuition as for why the direction

↬̇t(P ∗Q) ⊢ ↬̇t P ∗ ↬̇tQ

is not sound, the left-hand side means that there is some resource a such that t(a)
satisfiesP ∗Q. To show the right-hand side we would need to split t(a) into resources
b and c such that t(a) = b · c, b satisfies ↬̇t P , and c satisfies ↬̇tQ. However, the
disjunction on the left-hand side only implies that t(a) can be split into two resource

satisfying P and Q. We get stuck on the fact that t(a) = b · c does not imply that

there exists b′ and c′ such that a = b′ · c′, t(b′) = b, and t(c′) = c. In more plain

words: being able to split resources in the next generation does not necessarily

mean that there was is way to split resources in the current generation. The rule

above does hold if this property is required of the transformation. But, in practice

transformations do not satisfy it and we have had no need for it.

Since the nextgen modality modifies resources, it has no effect on propositions

that do not rely on resources. In Iris, such propositions are described with the plainly
modality ■P , which means that P holds without using any resources. The rule

bng-plainly states that the nextgen modality has no effect in the presence of the

plainly modality. If we rephrase this lemma a bit we get what we call the soundness

rule for the nextgen modality:

bng-sound

⊢ ↬̇t P plain(P)

⊢ P

This states that if an assertion P is plain (meaning that P ⊢ ■P) and can be derived

under the nextgen modality, then the basic nextgen modality can be eliminated. A

consequence of this rule is that results shown under the nextgen modality also has

meaning outside of the nextgen modality, which is crucial when one wishes to prove

an overall soundness or adequacy result for a program logic that makes use of the

basic nextgen modality.

Just as important as the rules that do hold, is the one that does not. The following

frame rule is not sound
Q ∗ ↬̇t P ⊬ ↬̇t(Q ∗ P).

IfQ holds in the current generation and P holds in the next generation then it is not

necessarily sensible to move Q unchanged into the next generation. The equivalent

rule for the update modality holds and is crucial for that modality’s purpose. For

the nextgen modality the opposite is the case: invalidating the frame rule is clearly

necessary to arrive at a modality that can express non-frame-preserving changes

to ghost state. Another rule that, quite naturally, is not sound is commutativity

between the basic nextgen modality and the update modality:

↬̇t ˙|⇛P ̸⊣⊢ ˙|⇛↬̇t P.

As we see in Section 5.4.3 this has an impact on the way adequacy is proven for

program logics that use the nextgen modality.

CHAPTER 5. NEXTGEN 136

5.3.2 Comparison to the Post-Crash Modality

In a nutshell, the difference between the post-crash modality and the nextgen modal-

ity is that where the post-crash modality works around the limitation that Iris does

not allow for non-frame-preserving updates, the nextgen modality addresses the

problem head-on by lifting the limitation through an extension of the Iris base logic.

In doing this the nextgen modality addresses the limitations we identified for the

post-crash modality. In particular, since the nextgen modality modifies existing

resources, it does not rely on changing ghost names and hence it does not incur the

problems associated with that. We are able to prove all the expected rules, including

bng-pers that does not hold for the post-crash modality.

5.3.3 Special Cases of the Basic Nextgen Modality

We now show that the persistently and the plainly modalities are special cases of

the basic nextgen modality and thus, in a sense, our “extension” of the Iris base logic

is perhaps better referred to as a “generalization and simplification” of the Iris base

logic.

Example 5.3.2. The basic nextgen modality can be used to define a modality equivalent
to the persistently modality in Iris. This is achieved by taking the transformation to be
the persistent core of the global RA.

↬̇|−| P ⊣⊢ �P (5.2)

In generational terms, this corresponds to a generation that only keeps duplicable
resources.

Example 5.3.3. The basic nextgen modality can be used to define a modality equivalent
to the plainly modality, by taking the transformation to be the constant function that
returns the unit element of the global RA.

↬̇λa.ε P ⊣⊢ ■P (5.3)

In generational terms, this corresponds to a generation that throws away all resources.

The equivalences (5.2) and (5.3) are both easy to prove using the semantics of

the basic nextgen modality, which we present in the following section.

5.3.4 Model

We now explain the semantics of the basic nextgen modality in the model of Iris.

To simplify the presentation and to focus on the interesting parts, we pretend

that the semantic domain of Iris propositions is simply monotone predicates over

resources:

JiPropK ≜M mon−−→ Prop.

CHAPTER 5. NEXTGEN 137

The gap between this simplified definition and the full model of Iris is largely

orthogonal to the semantics of the nextgen modality. We ignore the recursive

domain equation arising from higher-order ghost state and step indices for the later

modality. The benefit is that this simplifies the presentation and makes it easier to

understand for readers who are not familiar with the particularities of the model of

Iris, but who might be familiar with the more widely used predicates-over-resources

model of separation logic. Our mechanization of the nextgen modality in Coq, of

course, uses the “full” model of Iris, and we refer readers interested in all the details

to the accompanying Coq formalization.

The model of the nextgen modality is exactly what one would expect from its

behavior in the logic:

J↬̇t P K ≜ λx. JP K(t(x))

In order for this definition to be well-defined it must be monotone.

Lemma 5.3.4. If x ≼ y then JP K(t(x)) implies JP K(t(y)).

Proof. Since JP K is monotone it suffices to show that t(x) ≼ t(y). This follows from
condition 1 of Definition 5.3.1.

With this model all the rules that we have seen are sound.

5.3.5 Generational Resource Algebras

When using the nextgen modality with particular resources, one usually picks

the type of resources and the transformations for it in unison. We use the term

generational RA to mean a RA together with transformation function over it or

a set of such functions. For many of the existing RAs in Iris there are obvious

transformation functions that one could use with them. As an example, for the

well known authoritative RA Auth(A) and a transformation t : A→ A, there is a
transformation tA that applies t to both the authoritative element and fragments

such that

tA(•a) ≜ •(tA(a)) tA(◦b) ≜ ◦(tA(b)).

This transformation is part of the generational RA that we use in Section 5.4.

Just like Iris contains a library of RAs constructions that one can combine for

concrete proofs, one can imagine a similar library of constructions for generational

RAs. Our Coq mechanization contains a few such building blocks.

5.3.6 A Transformation for Ghost Locations

So far, we have seen the basic nextgen modality that applies a transformation to

owned elements of the global RA. As described in Section 5.2.1, Iris is usually

instantiated with a global RA of a particular shape. To arrive at higher-level nextgen

CHAPTER 5. NEXTGEN 138

modalities, the first step is to use transformation functions that preserve this shape.

To this end we will specify point-wise what should happen to each ghost location

and thus we will use a map of transformations:

TM ≜
∏
i∈I

GName
fin−⇀ (Mi →Mi)

This definition is equal to the global RA in Equation (5.1) except that the type of the

“leafs” is changed fromMi toMi →Mi. From a map of transformations tm ∈ TM,

we can construct a transformation on the global RA in the natural way:

T tm :M →M

T tm(m) = λi, γ.

tm(i, γ)(m(i, γ)) if γ ∈ dom(tm(i)) and γ ∈ dom(m(i))

m(i, γ) if γ ∈ dom(m(i))

undefined otherwise

Spelled out, an element m of the global RAM is transformed such that each leaf

m(i, γ), where i ∈ I and γ ∈ GName, is transformed by the function tm(i, γ) if
this exists in the transformations map. Otherwise, the element at the leaf is left

unchanged.

For any tm ∈ TM, we then obtain the following rules for the basic nextgen

modality and ownership of an a :Mi at a ghost location γ.

γ ∈ tm(i)

a
γ ⊢ ↬̇ttm tm(i, γ)(a)

γ

γ ̸∈ tm(i)

a
γ ⊢ ↬̇ttm a

γ

This construction provides the foundation for building higher-level nextgen modali-

ties.

A simpler variant of this construction is one where the map has the form∏
i∈I(Mi → Mi). That is, where the transformation is given only per type of

RA and not per type of RA and ghost name. Which variant to use depends on the

circumstances, in the next section we see an example of using the simpler one.

5.3.7 Mechanization in Coq

As mentioned earlier we have mechanized the nextgen modality in Coq. The devel-

opment contains the definition of the basic nextgen modality and its rules. Through

type class instances the nextgen modality is integrated into the Iris Proof Mode such

that it works as seamlessly as existing modalities.

Despite the nextgen modality being an extension to the base logic, we do not

need to fork or modify the existing Iris Coq development. Due to the way Iris is

mechanized one can define new constructs in terms of the model as long as the

semantic domain is unchanged.

The mechanization also contains a number of generational transformations for

common RAs and the transformation for ghost locations from the previous section.

CHAPTER 5. NEXTGEN 139

5.4 Case Study of the Nextgen Modality

The basic nextgen modality lays the foundation for expressing non-frame-preserving

updates. However, thus far, we’ve left out exactly how a concrete instance of a

nextgen modality is defined. In this section, we present a case study of the nextgen

modality.

To present a compelling case study, we need a language that exhibits some kind

of non-local changes to its physical state. We thus begin this section by presenting a

language with such behaviors, for which it would be difficult to define a modular

and practical program logic without non-frame-preserving updates.

Next, we will give a concrete definition of a nextgen modality, by defining the

right generational transform function t. Finally, we use the nextgen modality to

define an elegant program logic for the language in question.

5.4.1 Presenting StackLang

We now present a language with non-local updates to its physical state, called

StackLang. At its core, StackLang is a language with a high-level representation

of a call-stack, where stack frames (henceforth referd to as stack regions) are pushed

and popped in a well-bracketed way, and where stack allocated data must follow the

derived lifetime behavior of its region. Upon return of a function call, stack regions

are popped, and all the associated stack locations get deallocated. As such, function

returns trigger a non-local change to the physical state that is hard to capture as a

frame-preserving update.

A sound program logic for StackLang must therefore somehow deal with the

deallocation of stack regions. A naïve approach may simply require the program

logic rule for function returns to depend on the relevant ghost state in the precondi-

tion. Such a rule would define a precondition containing all ghost state fragments

that would get deallocated by the return expression. Unfortunately, this approach

counteracts the benefits of local reasoning typically granted by separation logic.

Instead, our goal will be to construct a program logic with a rule for function returns

that does not directly depend on fragments from the stack region.

The end goal of this section is to create a modular and practical program logic for

StackLang. While other approaches exist, we want a program logic that does not

require a lot of bookkeeping, or any instrumentation of the language itself. In other

words, we want to define a program logic that does not require sophisticated ghost

state leaking into the program rules, or any fundamental changes to the operational

semantics of the language. But first, let’s begin with a presentation of the syntax

and semantics of the language.

5.4.2 Syntax and Semantics of StackLang

Figure 5.3 defines the syntax of StackLang values, expressions, and evaluation

contexts. The definition and behavior of continuations follows Timany and Birkedal

CHAPTER 5. NEXTGEN 140

Index i ≜ N

LocalityTag µ ::= global | local(i)

Value v ::= true | false | n | 1 | λµ k, x.e | ℓµ | conti(K) | (v, v)
Expression e ::= x | true | false | n | 1 | λµ k, x.e | ℓµ | conti(K) |

e⊕ e | (e, e) | π{1,2}e | e(e) | Return(e)(e) | let x := e in e |
if e then e else e | salloc(e) | halloc(e) | !e | e← e

Evaluation K ::= · | K ⊕ e | v ⊕K | (K, e) | (v,K) | π{1,2}K |
Context K(e) | v(K) | Return(K)(e) | Return(v)(K) | let x := K in e |

let x := v inK | if K then e else e | salloc(K) | halloc(K) |
!K | K ← e | v ← K

Figure 5.3: StackLang syntax

[TB19]’s work on mechanized verification of programs with continuations, who

define continuations conti(K) as suspended evaluation contexts. A key difference,

is that continuations in StackLang are labelled with an index i, specifying which
stack region the continuation belongs to.

Similarly, we label function closures λµ k, x.e and locations ℓµ with a locality

tag µ, which specifies their lifetime. A global tag means the function or location

has a permanent lifetime (i.e., the heap), while a local(i) tag means the function

or location has the same lifetime as stack region i. The index i in locality local(i)
is relative to the top of the stack. For instance, ℓlocal(0) refers to a stack allocated

location in the topmost stack region. Likewise, a continuation with index i refers
to the ith stack region from the top, and invoking it will thus deallocate the i most

recent regions.

The locality tags form an order based on their lifetime. We write µ1 ⊑ µ2
whenever µ1 has a shorter lifetime than µ2, defined as follows:

µ ⊑ global
i1 ≤ i2

local(i1) ⊑ local(i2)

By default, any value without a locality tag (such as integers and booleans) implicitly

have a permanent lifetime, and can thus be interpreted as having a global tag. This
lets us lift the ⊑ relation to values. We write v1 ⊑ v2 to state that the lifetime of v1
is smaller than the lifetime of v2, and we write µ ⊑ v to state that the lifetime of v is
at least µ.

New locations are allocated using halloc(e), which allocates locations with a

global tag, and salloc(e), which allocates locations with a local(0) tag. The remaining

values and expressions are defined as in a typical lambda calculus with references,

where x is a variable, n stands for any natural number, and ⊕ is shorthand for

binary operators. Finally, evaluation contexts define a left-to-right and call-by-value

evaluation strategy.

CHAPTER 5. NEXTGEN 141

(h, s, let x := v in e)→K (h, s, e[v/x]) (h, s, π1(e1, e2))→K (h, s, e1)

(h, s, π2(e1, e2))→K (h, s, e2)
v1 ⊕ v2 = v

(h, s, v1 ⊕ v2)→K (h, s, v)

(h, s, if true then e1 else e2)→K (h, s, e1)

(h, s, if false then e1 else e2)→K (h, s, e2)

global ⊑ v ℓ ̸∈ dom(h)

(h, s, halloc(v))→K (h ⊎ {ℓ 7→ v}, s, ℓglobal)

s[0] = f ℓ ̸∈ dom(f) s′ = s[0 := f ⊎ {ℓ 7→ v}]
(h, s, salloc(v))→K (h, s′, ℓlocal(0))

s[i](ℓ) = v shift(v, i) = v′

(h, s, !ℓlocal(i))→K (h, s, v′)

h(ℓ) = v

(h, s, !ℓglobal)→K (h, s, v)

global ⊑ v ℓ ∈ dom(h)

(h, s, ℓglobal ← v)→K (h ⊎ ℓ 7→ v, s, 1)

local(i) ⊑ v
s[i] = f ℓ ∈ dom(f) shift(v,−i) = v′ s′ = s[i := f ⊎ {ℓ 7→ v′}]

(h, s, ℓlocal(i) ← v)→K (h, s′, 1)

shift(v, 1) = v′

(h, s, (λglobal k, x.e)(v))→K (h, ∅++ s,Return(cont1(K))(e[cont1(K)/k][v′/x]))

shift(v, 1) = v′ shift(e, i+ 1) = e′

(h, s, (λlocal(i) k, x.e)(v))→K (h, ∅++ s,Return(cont1(K))(e′[cont1(K)/k][v′/x]))

Figure 5.4: StackLang inner step relation

CHAPTER 5. NEXTGEN 142

The small-step operational semantics of StackLang is defined, as in [TB19],

over two step relations. Each relation is defined over configurations (h, s, e), where
h is the heap, e is the expression, and s is an ordered list of stack regions. The head of

the stack describes the state of the topmost stack region, and function calls appends

a new empty region to the head of the list, while function returns remove a specified

number of regions from the list. We will refer to the heap and stack pair (h, s) as
the store.

The first step relation→K defines steps taken under some evaluation contextK
(Figure 5.4). Note that since the locality of locations, closures and continuations are

potentially relative, parameters and return values are shifted to accurately reflect

their new relative position. Likewise, a local function may enclose local values,

which also needs to be shifted (we will get back to the reduction step of function calls

below, after explaining function returns). Shifting values and expressions is handled

by shift(e, i), a partial function that shifts any stack location or continuation by the

integer i. If the shift would put an index below zero, it fails, i.e., it is undefined.
Loading from a location uses the lifetime tag to access the appropriate heap or

region location. Likewise, storing to a location uses the lifetime tag to modify the

appropriate heap or region location. Moreover, the locality of the store is guaranteed

to be monotone with respect to ⊑, meaning that a location with locality µ can only

store values v such that µ ⊑ v. This guarantee is enforced in the step relation by

side-conditions over values that are added to the store via allocation or storing. In

order to maintain relative positioning, values are shifted when stored to and loaded

from the stack.

As highlighted above, we have designed StackLang such that it enforces the

monotonicity of lifetimes of the store with dynamic requirements over the stored

value. This is not essential, but means that StackLang can be interpreted as a kind of

capability language with locality. It is noteworthy to point out that other capability

languages, such as the CHERI capability machine ISA, also uses a locality bit to

distinguish between the heap and the stack, with similar dynamic checks depending

on the permission of the destination capability [Woo+14]. A notable difference

however, is that closures are not by construction monotone. As such, there may be

StackLang programs that execute and break monotonicity. However, in this work,

our goal is not to define a capability safe language. Rather, what’s important is that

only well-behaved programs will provably satisfy a specification in the program

logic we present below.

The second step relation→ is built on top of→K , and defines the operational

semantics of StackLang:

ctx-bind

(h, s, e)→K (h′, s′, e′)

(h, s,K[e])→ (h′, s′,K[e′])

ctx-ret

i ≤ length(s) shift(v,−i) = v′

(h, s,Return(conti(K))(v))→ (h, popi(s),K[v′])

CHAPTER 5. NEXTGEN 143

The step for Return(conti(K))(v) shifts v by −i, pops the top i regions from s, and
is considered stuck whenever the continuation points to a stack region that does not

exist. It is important that all function returns pop the appropriate number of stack

regions. This includes function that return “normally”, meaning the body simply

reduces to a value. However, given the ctx-bind rule, that might mean the topmost

region is not popped as expected. To resolve this issue, function calls reduce to a

return expression, surrounding the body of the function. Thus, if the body reduces

to value, a proper return is still triggered.

The following program displays various features of StackLang.

(∅, [∅], (λglobal k, x.!x+!(salloc(41)))(halloc(1))) (5.4)

→({ℓ1 7→ 1}, [∅], (λglobal k, x.!x+!(salloc(41)))(ℓglobal1)) (5.5)

→({ℓ1 7→ 1}, [∅; ∅],Return(cont1(·))(!ℓglobal1 +!salloc(41))) (5.6)

→({ℓ1 7→ 1}, [∅; ∅],Return(cont1(·))(1+!salloc(41))) (5.7)

→({ℓ1 7→ 1}, [{ℓ2 7→ 41}; ∅],Return(cont1(·))(1+!ℓ
local(0)
2)) (5.8)

→({ℓ1 7→ 1}, [{ℓ2 7→ 41}; ∅],Return(cont1(·))(1 + 41)) (5.9)

→({ℓ1 7→ 1}, [{ℓ2 7→ 41}; ∅],Return(cont1(·))(42)) (5.10)

→({ℓ1 7→ 1}, [∅], 42) (5.11)

Note how the function call appends an empty region to the head of the stack (line

5.6), which gets subsequently popped when the function returns (line 5.10). We will

use this example in Section 5.4.3 when introducing the program logic for StackLang.

5.4.3 A Program Logic for StackLang

Semantic interpretation of the store

The first step towards building a program logic for StackLang is to define a semantic

interpretation of its store, as separation logic predicates. The StackLang store has

two components: the heap h (a map from locations to values) and the stack s (an
ordered list of maps from locations to values). To enable local reasoning about

individual locations, we interpret both the heap and the stack such that we get

separation logic points-to predicates.

In Iris, points-to predicates are typically defined using a special authoritative

resource algebra for maps called a gmapView(K,V), whereK is the domain, and

V is the co-domain of the map. Since the stack is a list of maps, we first transform it

into a map from index and location pairs to values, where the index represents the

location’s position in the stack list. Unlike the relative stack region index of values,

this index represents its real and global stack region index. For example, consider

the following stack: [f0; f1; {ℓ 7→ v}]. In this stack, the location ℓ is two regions

down from f0. The currently executing program (i.e. the owner of f0) can thus

reference the location via the value ℓlocal(2). However, globally, it belongs to the 0th

stack region, and is thus indexed by (0, ℓ).

CHAPTER 5. NEXTGEN 144

Thus far, we have two distinct resource algebras:

gmapView Location Value resource algebra for the heap

gmapView (N× Location) Value resource algebra for the stack

Points-to predicates for heap and stack locations are then derived from their

respective resource algebra. Going back to the above example, the state of ℓ is
described by a points-to predicate mapping (0, ℓ) to v, denoted by 0 ℓ 7→ v. In
order to connect the relative value in ℓlocal(2) to the absolute value in the points-

to predicate, it is necessary to keep track of the current size of the stack. We thus

introduce a third resource algebra to track the size of the stack, by using the exclusive

authoritative resource algebra construction of Iris, defined over natural numbers.

ExclAuthN resource algebra for the stack size

In summary, we define three resource algebras, used to define the following

three separation logic predicates:

ℓ 7→ v states that the heap location ℓ points to value v
k ℓ 7→ v states that the stack location ℓ of region index k points to value v
m states that the stack is currently made up ofm regions

Picking a transformation function

Next, we want to define a nextgen modality that describes what happens at function

returns. More precisely, we want to define a modality that deallocates the relevant

stack points-to predicates, while leaving unrelated predicates intact. To that end, we

use the construction outlined in Section 5.3.6 to build a map of transformations, that

together form a transformation on the global resource algebra used to interpret the

StackLang store.

Since it is only the deallocation of stack locations that is non-frame-preserving,

we are only interested in defining a transformation function defined over the resource

algebra for the stack. We apply the identity transformation for all other resource

algebras, including the ones outlined above, and any subsequently defined custom

resource algebras.

Meanwhile, the transformation of the stack resource needs to exhibit very spe-

cific behavior. Specifically, the desired transformation of the stack resource alge-

bra for a return that tagerts region n, denoted SCutn (of type gmapView (N ×
Location) Value → gmapView (N × Location) Value) needs to filter out all the

elements with an index of at least n.
Note that SCutn is parameterized by a natural number n, and thus we define not

just one, but a family of transformations. Indeed, in order to distinguish between

returns that target different stack regions, we will need a family of nextgenmodalities.

We realize this construction bymaintaining a transformationmap tm whichmaps the

heap and stack size resource algebras to the identity transformation, while leaving

the transformation for the stack resource algebra undefined. We then insert the

CHAPTER 5. NEXTGEN 145

relevant SCutn transformation into ttm , to define the appropriate nextgen modality.

Below we formally define SCutn, and the derived definition for ICutn, which inserts

SCutn into the globally defined tm and uses the construction from Section 5.3.6 to

create the transformation function.

SCutn(m) = m′ where dom(m′) ⊆ dom(m) and
∀(k, ℓ) ∈ dom(m), (k < n ∧m′(k, ℓ) = m(k, ℓ))
∨(k ≥ n ∧ (k, ℓ) ̸∈ dom(m′))

ICutn = T tm{i:=SCutn} where i ∈ I is the globally scoped id of the stack resource algebra

By picking ICutn as the generational transformation function, we can then finally

formally define a nextgen modality for stack region deallocation.

↬̇n ≜ ↬̇ICutn

By the definition of ICutn, we then prove the following introduction rules:

cut-heap-intro

ℓ 7→ v ↬̇n ℓ 7→ v

cut-stack-intro

k < n

k ℓ 7→ v ⊢ ↬̇n
k ℓ 7→ v

cut-stack-intro-emp

k ≥ n
k ℓ 7→ v ⊢ ↬̇n⊤

cut-size-intro

m ⊢ ↬̇n m

The introduction rule for stack points-to predicate requires that the stack location of

a region k is lower than the deallocation at n. If k is at or above n, the fragment is

deallocated, as expressed by the trivial rule cut-stack-intro-emp.

Weakest precondition

We define a program logic for StackLang by using a variant of Iris weakest precondi-

tions, denoted wp e {Φ}. In broad strokes, wp e {Φ} expresses that the expression e
does not get stuck, and if it terminates at some value v, then the predicatesΦ(v) holds.
Below we first recall a simplified version of the existing definition of Iris weakest

preconditions for a single-threaded language and then we present our new variant

incorporating the nextgen modality, similarly simplified (for the full definition, see

the accompanying Coq formalization). The simplified Iris weakest precondition

predicate is the unique predicate satisfying the following equation:

wp e {Φ} ≜

|⇛⊤Φ(e) if e is a value

∀σ, stateInterp(σ) −∗ |⇛⊤ ∅ e is reducible
∧ ▷∀e2, σ2, (σ, e)→ (σ2, e2) −∗ |⇛∅ ⊤

stateInterp(σ2) ∗ wp e2 {Φ}

otherwise

CHAPTER 5. NEXTGEN 146

Stk-Load

▷(n ℓ 7→ v ∗ m −∗ wpK[shift(v, i)] {Φ})
n ℓ 7→ v m n = m− i− 1

wpK[!ℓlocal(i)] {Φ}

Heap-load

▷(ℓ 7→ v −∗ wpK[v] {Φ}) ℓ 7→ v

wpK[!ℓglobal] {Φ}

Salloc

▷(m ∗ m − 1 ℓ 7→ v −∗ wpK[ℓlocal(0)] {Φ}) m 0 < m

wpK[salloc(v)] {Φ}

Halloc

▷(ℓ 7→ v −∗ wpK[ℓglobal] {Φ})
wpK[halloc(v)] {Φ}

Call-Global

▷(m+ 1 −∗ wpK[Return(cont1(K))(e[cont1(K)/k][shift(v, 1)/x])] {Φ})
m

wpK[λglobal k, x.e(v)] {Φ}

Return

▷(m− i −∗ ↬̇(m−i)wpK ′[shift(v,−i)] {Φ}) m i ≤ m
wpK[Return(conti(K ′))(v)] {Φ}

Figure 5.5: Excerpt of the Program Logic Rules for StackLang

If e is a value, then the postcondition Φ holds for that value. In the above definition,

the postcondition is declared to hold under a fancy update modality. If e is not a
value, it must be able to take a step. More concretely, given any state σ, assuming

the ownership of the semantic interpretation of σ (in the case of StackLang, this

semantic interpretation is defined as authoritative views of the three previously

defined resource algebras), the expression e is reducible, and for any configuration

it steps to, we have the semantic interpretation of the new state, and a weakest

precondition of the new expression.

We define a variant of the above definition, which applies the nextgen modality

at the appropriate expression, namely function returns. Henceforth, this is the

definition we will be referring to.

CHAPTER 5. NEXTGEN 147

wp e {Φ} ≜

|⇛⊤Φ(e) if e is a value

∀σ, stateInterp(σ) −∗ |⇛⊤ ∅ e is reducible
∧ ▷ ∀e2, σ2, (σ, e)→ (σ2, e2) −∗ |⇛∅ ⊤

(↬̇length(σ.2)−i stateInterp(σ2))

∗ (↬̇length(σ.2)−i wp e2 {Φ})

if e = K[Return(conti(K ′))(v)]

∀σ, stateInterp(σ) −∗ |⇛⊤ ∅ e is reducible
∧ ▷ ∀e2, σ2, (σ, e)→ (σ2, e2) −∗ |⇛∅ ⊤

stateInterp(σ2) ∗ wp e2 {Φ}

otherwise

In this definition, the state interpretation and weakest precondition of the reduced

expression is guarded by a nextgen modality, reflecting that a stack deallocation has

occured.
2
The presence of this modality is crucial for proving the program logic rule

for return expressions.

Since we are using a new definition of Iris weakest preconditions, it is important

to prove that it is sound. To this end, we prove the following adequacy theorem.
3

Theorem 5.4.1 (Adequacy of the nextgen weakest precondition). Let Φ be a first-
order pure predicate. Assume ⊢ wp e {Φ}, and (σ, e)→ (σ2, e2), then the following
two facts hold:

1. either (σ2, e2) is reducible, or e2 is a value

2. if e2 is a value, then Φ(e2) holds

Proof. The proof largely resembles the adequacy proof of Iris weakest preconditions,

with the added burden of dealing with interweaved instances of the nextgen modality.

The key difficulty lies in applying the various soundness rules for all the relevant Iris

modalities, including the new soundness rule for the nextgen modality (bng-sound);

since the nextgen modality does not commute with the fancy update modality, the

final result is an interweaved sequence of modalities that do not collapse into a finite

number of modalities. As such, the proof must eliminate each modality one at a time

in a proof by induction.

Program logic rules

We now introduce the program logic for StackLang. Figure 5.5 presents a selection

of program logic rules, namely for load, allocation, call and return. Since invoking

a continuation discards the current surrounding evaluation context, the typical

2

Here we present a version of the definision that is tailored specifically to StackLang. In the Coq

mechanization, we define a version that parametrizes over an arbitrary programming language.

3

Here again tailored to StackLang, but proved for a general single-threaded language in the Coq

mechanization, without support for later credits.

CHAPTER 5. NEXTGEN 148

bind-rule for Iris weakest preconditions does not work for StackLang expressions.

Therefore each program logic rule is defined around a filled evaluation contextK ,

and is presented in a continuation style.

The rules for stack and heap loads require a points-to predicate to the location

in question. In the case of stack load, since the stack location reference is relative,

it is additionally required to know the current size of the stack via the stack size

resource. In each case, the continuing weakest precondition fillsK with the loaded

value, which is shifted in case of a stack load.

The rule for stack and heap allocations gives the continuation a new points-to

predicate for the allocated location. In case of a stack allocation, the size of the stack

determines the index of the stack points-to predicate.

Finally, the stack size resource itself is updated in the rules for calls and returns.

The rule for a call simply increases the size of the stack by one. Note that the new

region starts out as empty, and thus no resources are allocated. On the flipside, the

rule for a return must not only decrease the stack size resource, it must somehow

handle the deallocation of a number of stack regions, which may now be non-empty.

In other words, the rule for return is only sound if it handles the deallocation of

all stack points-to predicates associated to popped regions. Luckily, this is exactly

expressed by the nextgen modality for stack region deallocation. As a result, it

suffices to guard the continuing weakest precondition with ↬̇(m−i)
, which states

that the next weakest precondition cannot depend on any points-to predicates for

stack locations abovem− i.
Having seen the return rule, we can now explain why this rule could not be real-

ized with a frame-preserving update. As mentioned, we use the RA gmapView(N×
Location,Value) to model points-to predicates. When using this RA the weakest pre-

condition contains an authoritative element for the stack denoted gmapViewAuth(flat(s))
where s is the physical stack from the operational semantics and flat converts the
list of stores into the map overN× Location that we use for points-to predicates.

When proving soundness of the rule for Return this authoritative ghost state must

change from gmapViewAuth(flat(s)) into gmapViewAuth(flat(popi(s))) to match

the change in the operational semantics. For this to be a frame-preserving update

one would need the resources for all the fragments for the affected locations. Hence,

to prove a rule for Return using frame-preserving updates, the rule would require

the user of the logic to supply all points-to predicates for all stack locations af-

fected by the Return. This would be completely infeasible and non-modular as these

points-to predicates could be shared in invariants, handed out to sub-parts of the

proof, etc. With the nextgen modality we can instead change the resource in a

non-frame-preserving way, and obtain the much simpler rule.

Example

Let’s use these rules to prove a specification of the previously presented example

program. The program starts executing in a configuration with a stack of size 1. Our

CHAPTER 5. NEXTGEN 149

goal is to show the following specification:

1 ⊢ wp (λglobal k, x.!x+!(salloc(41)))(halloc(1)) {λv, v = 42}

we prove the specification by applying the program logic rules given in Fig. 5.5. The

first expression to execute is halloc(1). We thus begin by applying the rule for heap

allocation Halloc, and the new goal becomes:

1 ⊢ ▷(ℓ1 7→ 1 −∗ wp (λglobal k, x.!x+!(salloc(41)))(ℓglobal) {λv, v = 42})

We introduce the new points-to predicate into the context. Next, we apply the rules

for call, stack allocation, load and binary operations to reach the following context

and goal:

2 ∗ ℓ1 7→ 1 ∗ 1 ℓ2 7→ 41 ⊢ wp Return(cont1(·))(42) {λv, v = 42}

At this point, we must apply the rule for return. Since the continuation has offset 1,

this will decrease the stack by 1. After applying the rule for return, we are left with

the following goal:

1 ∗ ℓ1 7→ 1 ∗ 1 ℓ2 7→ 41 ⊢ ↬̇1wp 42 {λv, v = 42}

Crucially, the new goal is guarded by the ↬̇1
modality. The only way to introduce

it is by applying monotonicity of the nextgen modality (bng-mono). Therefore, the

next step is to introduce ↬̇1
in front of all the relevant predicates in the context, and

discard those which don’t have such an introduction rule. We can apply cut-heap-

intro and cut-size-intro and introduce the modality in front of the heap points-to

predicate and the stack size resource. However, we can’t apply the introduction

rule for the stack points-to predicate (cut-stack-intro), since the region index of

1 ℓ2 7→ 41 is not stricly smaller than 1. In fact, the whole purpose of ↬̇1
is exactly

to deallocate such points-to predicates. As such, we discard it, and apply bng-sep to

get the following goal:

↬̇1(1 ∗ ℓ1 7→ 1) ⊢ ↬̇1wp 42 {λv, v = 42}

We can then finally conclude by applying monotonicity, and prove the post-condition.

While the above proof sketch manually applies the introduction rule for the

nextgen modality, the rule for commuting over separation conjuction, and mono-

tonicity; each of these steps are automated when using our mechanization in Coq.

Due to the integration of the nextgen modality with the Iris Proof Mode, described in

Section 5.3.7, introducing the nextgen modality is handled by a single tactic, leading

to a seamless experience when using the program logic for StackLang in Coq.

Custom ghost state and invariants

In the above example, the specification and proof serves to illustrate the use of the

nextgen modality. However, given the simplicity of the program, it does not take

CHAPTER 5. NEXTGEN 150

advantage of the full expressive power of the Iris logic. Notably, it does not depend

on any custom ghost state or invariants, and does not display how they may interact

with the new nextgen modality.

Since we have defined the ↬̇n
modality to apply the identity transformation on

any non-stack resource, any custom ghost state can easily introduce the modality. In

constrast, more interesting questions arise when we consider the interaction between

Iris invariants and the nextgen modality. Since an Iris invariant is guaranteed to hold

at every step of a program’s execution, how can it enclose stack allocated resources

that might disappear at function returns? Clearly, it would not be sound for such

invariants to outlive the stack values they correspond to. One possible sound solution

would be to only allow invariants that do not enclose any stack points-to predicates.

However, such a limitation would disallow interesting use-cases of Iris invariants,

such as defining a temporary invariant that holds until a region has ended.

The ideal solution to the above would be invariants that can contain stack points-

to predicates and that live for exactly as long as those stack locations. This is

precisely what we achieve by creating a variant of Iris invariants that interacts with

the nextgen modality.

Our variant of Iris invariants is parameterized either by natural number n, or by

a special value∞, denoted P
N ,n

and P
N ,∞

respectively. One can think of this

as the lifetime of the invariant. Invariants are allocated with the following allocation

rules:

inv-alloc

■∀m.n < m⇒ P ⊢ ↬̇m P ▷P

|⇛E P
N ,n

inv-alloc-any

■∀m.P ⊢ ↬̇m P ▷P

|⇛E P
N ,∞

In the first rule, for allocating a promise for n, one must prove that the body of the

invariant is unaffected by a nextgen modality that discards stack regions above n. In

the second rules, for allocating an invariant with infinite lifetime, one most show

that the body of the invariant is unaffected by any nextgen modality. This effectively

ensures that the invariant can not contain stack points-to predicates.

The interaction between invariants and the nextgen modality depends on the

parameter on the invariant:

cut-inv-intro

k < n

P
N ,k ⊢ ↬̇n P

N ,k
cut-inv-any-intro

P
N ,∞ ⊢ ↬̇n P

N ,∞

With this new invariant construction, it is possible to allocate invariants that enclose

stack points-to predicates, and prove specifications of programs that may depend

on them. As such, not only can we define invariants that are not impacted by ↬̇n
,

we can also define invariants that may themselves be deallocated by a particular

instance of ↬̇n
. The invariants exist for as long as it would be sound for them to do

so, and are removed by the nextgen modality accordingly. This new definition of

invariants displays the flexibility of the nextgen modality, which allows us to define

CHAPTER 5. NEXTGEN 151

arbitrary transformations over ghost state, including the ghost state of invariants

themselves.

We leave out the technical details of the definition of the new invariants, and refer

to the Coq mechanization for those.
4
The key idea is to apply a transformation to

invariants, which mimics the transformation function for stack points-to predicates,

by indexing invariants by stack regions. The requirements on P when allocating

invariants is carried over to the definition of the so-called world satisfaction relation,

which is the internal Iris definition which tracks and stores all invariants, and then

used to prove the soundness of the nextgen introduction rules for invariants.

5.5 Related and Future Work

As mentioned, the post-crash modality from Perennial is the work most closely

related to the nextgen modality. We have already compared the two earlier in

Section 5.3. To the best of our knowledge there is no other work that gives a general

mechanism for performing non-frame-preserving updates in separation logic.

We think that there is much exciting future work to be done, and hope that we

have just scratched the surface of the usefulness of the nextgen modality. Exploring

the motivating examples that we sketched in the introduction is one possible avenue

for future work. We are currently exploring the application of the nextgen modality

to a concurrent setting with crashes and durable storage, and our current results

seem very promising. One interesting challenge in this setting is that under a

weak persistency model, crashes are non-deterministic and there is thus not a fixed

transformation that can be applied to ghost state at a crash.

We think our nextgen modality can be used as a foundation to implement tem-

porary read-only points-to predicates in Iris in the style of [CP17]. Our initial

investigation into this seems to indicate that defining the resources for this and

the nextgen modality itself is quite straightforward. However, defining a weakest

precondition that validates the expected proof rules seems quite tricky. In partic-

ular, the “framed sequencing rule” of op. cit. is non-trivial to prove for a weakest

precondition that contains a nextgen modality. We think solving this hurdle is very

exciting future work, as read-only point-to predicates bring many benefits that Iris

users are currently missing.

Turning to work related to our program logic for StackLang, we first remark

that the program logic rules for StackLang make explicit use of evaluation contexts

because returns may discard the current evaluation context. This style of proof rules

is inspired by Timany and Birkedal’s work on a program logic for programs with

continuations [TB19].

4

The technical details behind the definition of nextgen invariants are slightly more involved and

include additional ghost state to remember the upper bound n, and a transformation over this ghost

state that alters it in lockstep with SCutn. We have also generalized it to work with any arbitrary

indexing type and order.

CHAPTER 5. NEXTGEN 152

We are not aware of previous separation logics that explicitly account for deallo-

cation of stack frames. The most closely related work is the work of Timany et al.

[Tim+18] for reasoning about encapsulation of local state in a sequential program-

ming language with a state monad and a Haskell-style polymorphically-typed runST
construct. Timany et al. define a logical relation of the type system with runST in

Iris and use it to show that runST encapsulates computations with local state and

that such computations use regions allocated in a stack-like manner. A key point of

op. cit. is that the operational semantics of the language is a standard operational

semantics with a global heap, capturing how the language would be implemented in

reality, whereas the logical relation allows one to reason as if regions were stack-

allocated physically. This is achieved by a clever use of ghost state, which tracks

the virtual stack of regions and connects it to the physical memory. To account for

virtual deallocation of regions (popping the virtual stack of regions), Timany et al.

essentially mark regions as dead in the ghost state and a key step in their proof of

soundness of the logical relations model of the type system is then to show that the

type system guarantees that one does not try to access a region that is dead. Thus

Timany et al. manage to account for virtual deallocation using only frame-preserving

updates, but it comes at the expense of having a global ghost resource that is threaded

around in the reasoning, rather than having more modular local points-to predicates,

and it is not clear how this approach would scale to a concurrent language, since it

does not seem possible to share the global ghost resource among several threads. In

contrast, the nextgen modality allows for more modular local reasoning and scales

to concurrent languages (cf. our current explorations of the nextgen modality to a

concurrent setting with crashes and durable storage mentioned above).

Chapter 6

A Nextgen Modality For Crashes

In Spirea

6.1 Introduction

In this chapter we introduce a nextgen modality for crashes made to accommodate

for the needs of Spirea. The modality is denoted

⟨NG⟩P.

That is, unlike previous nextgen modalities (such as the basic nextgen modality

and the nextgen modality we saw for StackLang in the last chapter) it is not

parameterized by anything. Instead, the transformation function that gets applied is

hidden within the model of the modality and is “linked” or “connected” to separation

logic resources. It is these resources that determine the transformation. As we will

see, this novel idea is crucial to being able to handle the non-deterministic crashes

in λpmem and it fundamentally increases the power and flexibility of the nextgen

modality. The modality has three key features:

1. Picks, a form a dynamic choice about what transformations get applied to

ghost locations.

2. Promises, a dynamic way of restricting the possible future transformations

that can be picked for a ghost location.

3. Dependent promises, that makes it possible for the promise for one ghost

location to depend on transformations for other ghost locations.

We note that the nextgen modality here also supports the same fundamental rules

as the ones for the basic nextgen modality in Figure 5.2. In this exposition we focus

on the novel aspects of the modality.

At present, the above features probably sound rather abstract to the reader and

the full modality with all its features is rather intricate. Hence, in an attempt to ease

153

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 154

the reader into the modality the chapter proceeds as follows. We begin in Section 6.2

by explaining the key reason why Spirea needs a better modality for crashes. In

Section 6.3 we sketch at a high-level the requirements that the modality needs to

satisfy in order to be able to replace the post-crash modality. Motivated by non-

deterministic crashes we introduce, in Section 6.4, a simplified version of the modality

that features picks but not promises. The modality is then extended, in Section 6.5,

with promises. This is a considerable additional complication necessitated by the

fact that sometimes certain facts are known about what cannot happen at a crash. In

Section 6.6 we demonstrate how the modality and its features are useful for Spirea,

by defining a new state interpretation for BaseSpirea with generational ghost state

designed for the modality. We show how this state interpretation in combination

with the modality can accommodate for the crash step in λpmem and be used to model

the assertions in BaseSpirea. This serves both as a case study on how to use picks

and promises and as a new model for BaseSpirea that incorporates the benefits that

the nextgen modality brings. In Section 6.8 we discuss future the work that is still

missing.

6.2 Why Spirea Needs the Nextgen Modality

In this section we explain the key motivation for changing Spirea to use a nextgen-

based modality for crashes instead of the post-crash modality. We have already

described the general advantages of the nextgen modality compared to the post-

crash modality. The advantage that is absolutely critical for Spirea is the nextgen

modality’s support for interacting with user-defined ghost state.

To see why this is useful, suppose we were to verify a durable concurrent

data-structure in Spirea with respect to a specification with a strength comparable

to a HOCAP-style or logically atomic triple specification. That is, a specification

decidedly stronger than those we gave in Chapter 4 to the stack and the queue.

To carry out a proof of such a specification one needs to keep precise track of the

abstract state of the data-structure. We have seen this both in the verification of the

MS queue the MPMC queue. To do this, the proof will almost always make use of

ghost state. For instance, in the verification of the MPMC queue we used a ghost list
that was closely related to the abstract and the physical state of the queue. Ghost

state that corresponds to the physical state must be updated when the physical state

is changed. Furthermore, for a durable concurrent data-structure the abstract state of
the data-structure changes at its linearization point. Hence, ghost state that is related

to the abstract state must be updated at the linearization point. But, both the abstract

and the physical state of a data-structure can change at a crash, and therefore it is

clear that the ghost state much change as well at a crash in accordance to this. For

instance, imagine that a concurrent operation is carried out on a data-structure and

a crash happens between the operation’s linearization point and its persist point
1

1

Recall that a persist point is the program point after which the operation is certain to have been

persisted.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 155

Since the crash is after the linearization point any ghost state that corresponds to

the physical state has already been updated, but if the change to the abstract state

is lost at the crash, then the ghost state needs to be “rolled back” at the crash. This

“rollback” is most likely not going to be a frame-preserving update and it concerns

user-defined ghost state.

In summary, if wewish to verify durable concurrent data-structuresw.r.t. stronger

specifications that go beyond those that we have seen thus far, then we need user-

defined ghost state that can change at a crash. For some user-defined RA A the user

must also be able to describe inside the logic how elements of this resource might

change at a crash. In other words, they need to be able to prove rules of the form

a
γ ⊢ ⟨NG⟩ a′ γ

where the relationship between a and a′ can be restricted or specified somehow.

This capability is crucial to achieve stronger specifications of the sort described but

is not possible with the post-crash modality. Hence, we need to use the nextgen

modality.

6.3 Requirements

With the above in mind, one could state our present goal as: Define a nextgen modal-

ity that can be substituted for the post-crash modality everywhere in BaseSpirea

and Spirea while making it possible for user-defined ghost state to interact with the

nextgen modality. The former means that the new modality should subsume the

post-crash modality in the sense that, after the substitution, all the existing rules are

still sound. Of these rules, the most interesting ones those that involve the post-crash

modality directly. Rules of this form usually describe how assertions in the logic

change at a crash. Two such examples are Pc-persisted and Pc-points-to in Figure 4.7

on page 93. In addition to the rules of that form, is the Htr-idempotence rule. This

rule also contains the post-crash modality, and it is the rule that links the modality

to the crash execution step. In order for this rule to be sound, the state interpretation

stateInterp used in the program logic and the nextgen modality must satisfy the

following rule:

state-interp-nextgen

⟨σ,P⟩ −→ ⟨σ′, C′⟩
stateInterp(⟨σ,P⟩) ⊢ ˙|⇛⟨NG⟩ ˙|⇛stateInterp(⟨σ′, C′⟩).

This rule says that if a machine configuration can take a crash step into a new ma-

chine configuration, then the state interpretation for the old machine configuration

implies the state interpretation for the new machine configuration under the nextgen

modality.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 156

6.4 A Nextgen Modality With Picks

6.4.1 Why We Need Picks

As the reader is well-aware by now, the crash step in λpmem is non-deterministic.

Recall that crash step is encoded by the relation

 −→ which is generated by the single

rule M-crash. We repeat the rule here for ease of reference:

P ⊑ C consistent(σ, C)
dom(σ′) = dom(C) ∀ℓ ∈ dom(C). σ′(ℓ) = {0 7→ ⟨σ(ℓ)(C(ℓ)).v,⊥,⊥,⊥⟩}

⟨σ,P⟩ −→ ⟨σ′, viewToZero(C)⟩

For resources in the logic, the non-determinism means that if a resource has a

relationship to the physical state, then this resource might need to change in one

of many ways at crash. How the resource needs to change is determined by the

particular instance of the crash step rule M-crash chosen during the execution. In

this rule, the source of the non-determinism is the crash view C.
The above is evident in, for instance the points-to assertion in BaseSpirea. How

this resource changes at a crash is captured by the rule Pc-points-to where the

existentially quantified crash view C encodes the non-determinism. As a simpler

example, recall the crashedAt(C) assertion that represents the crash view at the last

crash. In BaseSpirea this assertion is modeled using a simple RA of agreement on

views: Ag(View). The crashedAt assertion and the state interpretation contains

the ownership:

ag(C) γcv

At a crash this resource must by change, by the nextgen modality, into whatever

the new crash view is. That is, for any crash view C′, that satisfies the consistency
constraints in M-crash, we must be able to show:

ag(C) γcv ⊢ ˙|⇛⟨NG⟩ ˙|⇛ ag(C′) γcv

Note that this is just the requirement state-interp-nextgen from the previous section

singled down to this one component of the state interpretation.

The purpose of picks is to support the non-determinism in λpmem. It does this by

making it possible to pick, the transformation function that gets applied to ghost

state such that it corresponds to the change at the crash step. This pick, or decision,

is made before the nextgen modality is eliminated, but after having observed the

crash step taken during the execution. Note that this matches the stated goal above:

When proving state-interp-nextgen the crash step has already informed us about

what happened at the crash, and now we just need to ensure that our ghost state

changes accordingly.

6.4.2 Rules for Picks

Having motivated the purpose of picks, we now cover the assertions and rules that

this feature consists of.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 157

The exclusive right to pick which transition gets applied to the ghost state at a

ghost location γ at the change of generation is represented by the resource token(γ).
This resource is created alongside a piece of ghost state at allocation time as seen

in the rule for allocation gen-alloc. The rule allocates the element a a new ghost

location (this part is identical to the normal allocation rule in Iris) and provides

the allocator with the assertion token(γ). We note that the dashed box notation is

not identical to the usual dashed box notation, instead, it represents “generational

ownership”. This ownership behaves similarly to and satisfies the same rules as

normal ownership in Iris, but the underlying model is different as it also needs to

account for the additional bookkeeping needed for picks (such as the token resource).

The right afforded by ownership over a token is expressed in the rule token-pick.

The rule states that, given ownership over token(γ) one can pick any transformation

t and, after an update, acquire two resources. The first resource, usedToken(γ), is
similar to token(γ) except that the right to decide a transition function has now

been expended. The second resource, pickedOut(γ, t), denotes the knowledge that
the function t has been picked as the one that will be applied to the ghost location

at γ going out of the current generation.
The usedToken(γ) resource can not be used for anything in the current genera-

tion. However, at the shift into the next generation a used token is turned back into

an unused token as per used-token-nextgen. This means that at every generation a

used token is “reset” such that the rule token-pick can be applied anew to pick the

function for the next generation.

As stated in the rule picked-out-nextgen, if one has the knowledge pickedOut(γ, t)
then in the next generation that becomes the knowledge pickedIn(γ, t). In other

words, the picked transformation that points out of one generation points in to the

next generation. Both pickedIn and pickedOut are persistent assertions, and they

provide agreement in the sense expressed by picked-in-agree and picked-out-agree.

As such, these resources serve to share the knowledge about transition functions

and conclude agreement as only one such function can exist.

The rule own-nextgen shows how ownership is affected by generations. If

one owns a for a ghost name γ then in the next generation there exists some

transformation t and one now owns t(a). The transformation t must necessarily

have been the one picked for γ, and hence the rule also provides pickedIn(γ, t).
Of course, without any further knowledge, nothing can be known about t as any
function could have been picked with token-pick. In the case where one knows

exactly which function was picked before the next generation, the following rule

can be shown:

a
γ ∗ pickedOut(γ, t) ⊢ ⟨NG⟩pickedIn(γ, t) ∗ t(a) γ

This rule can easily be derived by combining own-nextgen, picked-out-nextgen, and

picked-in-agree; and demonstrates how these rule work in tandem. In this rule the

existential in own-nextgen has been eliminated as one has full information from the

pickedOut assertion. As such, the existential in own-nextgen does, in a sense, not

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 158

represent non-determinism. Instead, it comes from a lack of information: If one does

not know which function was picked, then one only know that some (existentially

quantified) function must have been used. This lack of non-determinism in the

setup might seem a bit odd given the motivation we began with. The idea is not to

have non-determinism about the picks, instead the idea is that the non-deterministic

crash step determines what transformation function we pick. In this way the non-

determinism in the crash step propagates into the picked functions, and ends up

reflecting it. This should become more clear in Section 6.6 where we show exactly

how this is done.

6.4.3 Using Picks For The Crash View Resource

We can now prove the rule for the crash view resource mentioned earlier.

We first extend the state interpretation such that it contains the token token(γc)
for the crash view resource. This means that the state interpretation owns the right

to decide how the crashed at resource should change at a crash.

The goal is then to show:

ag(C) γc ∗ token(γc) ⊢ ˙|⇛⟨NG⟩ ˙|⇛ ag(C′) γc ∗ token(γc)

We do this, quite simply, by using token-pick to choose the constant transformation

λ_. C′. This is the only idea in the proof (and it is barely an idea), the rest follows

trivially from the rules. Despite the triviality, this still show the general idea of

how picks solves the problem stemming from the non-determinism: The crash step

chooses some arbitrary consistent C′ and our resources needs to change accordingly.

To do this we take the specific C′ into account and use it to pick a transformation

based on it. This is only possible because the nextgen modality does not apply a

fixed transformation to ghost locations, but instead lets that be a dynamic decisions

driven by resources.

6.4.4 To Pick Or Not To Pick

Before we proceed to extend the above with promises we remark that one is never

forced to pick a transformation function for every ghost name. An unused token

is simply unchanged at a crash (see token-nextgen). Requiring one to picks a

transformation function for all ghost names would not be easy, among other things,

because Iris is an affine separation logic and one could simply throw away the token
resource. It also would not really be beneficial, as this extra obligation would only be

a nuisance. It does however raise the question of what happens to a ghost location if

no transformation is picked? From a user of the logic’s point of view, the answer is

that they will not be able to tell (as they will have no way to gain any information

about the transformation). From the point of view of the model, the answer is that

the identity function is used in the absence of any user-chosen transformation.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 159

gen-alloc

a ∈ V
⊢ ˙|⇛∃γ. a γ ∗ token(γ)

token-pick

token(γ) ⊢ ˙|⇛usedToken(γ) ∗ pickedOut(γ, t)

picked-in-agree

pickedIn(γ, t1) ∗ pickedIn(γ, t2) ⊢ t1 = t2

picked-out-agree

pickedOut(γ, t1) ∗ pickedOut(γ, t2) ⊢ t1 = t2

token-nextgen

token(γ) ⊢ ⟨NG⟩token(γ)

used-token-nextgen

usedToken(γ) ⊢ ⟨NG⟩token(γ)
picked-out-nextgen

pickedOut(γ, t) ⊢ ⟨NG⟩pickedIn(γ, t)

own-nextgen

a
γ ⊢ ⟨NG⟩∃t. pickedIn(γ, t) ∗ t(a) γ

Figure 6.1: Rules for the nextgen modality with picks

6.5 Extending the Modality With Promises

We now extend the modality and the rules from the previous section with a feature

we call promises.

Conventions and notation In the following we use the term predicate to mean

a unary function of the type A → Prop for some A. We use the term relation to

mean any n-ary function, where n > 1, of the type A1 → · · · → An → Prop for

some A1, . . . , An. For any n-ary predicate or relation R1 and R2 we write R1 ⊆ R2

to mean that for all a1 ∈ A1, . . . , an ∈ An it is the case that R1(a1, . . . , an) ⇒
R2(a1, . . . an).

6.5.1 Why We Need Promises

To a first approximation a promise is a predicate over transformation functions

P : (A→ A)→ Prop for a resource algebra A. For a ghost location γ, a promise P
represents the guarantee that only transformations t that satisfy P (t) will be picked
for γ. This makes it possible to restrict what transformations can be applied to a

ghost state, such that others can rely on the picked transformation satisfying the

promise. Assuming that a promise P has been made for a ghost location γ, below is

a preliminary sketch of what this would look like in terms of the rules:

token-pick-sketch

P (t) ∗ token(γ) ⊢ ˙|⇛usedToken(γ) ∗ pickedOut(γ, t)

own-nextgen-sketch

a
γ ⊢ ⟨NG⟩∃t. P (t) ∗ pickedIn(γ, t) ∗ t(a) γ

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 160

In the first rule, when a transformation is picked, one needs to satisfy the promise

that P holds for the picked transformation. In the second rule, one can now rely

on the promise being upheld and gain the knowledge that whatever transformation

was picked satisfies P (t).
We need promises in Spirea, as writes that have been flushed and synchronously

fenced are guaranteed to have persisted. This means that certain things can be

ensured to not happen at a crash. The simplest example of this is the rule Pc-persisted

from BaseSpirea:

persisted(P) ⊢ ⟨PC⟩persisted(viewToZero(P)) ∗ ∃C ⊒ P. crashedAt(C)

In this rule the assertion persisted(P) imposes a restriction on what C can be in

the next generation. As we saw in the last section, the assertion crashedAt(C) in
the next generation depends on what transformation is picked for its underlying

resource. With the rules in the last section, any transformation can always be picked,

and this makes it impossible to prove the above rule. There is no way to define the

model of persisted such that it places any restrictions on the possible crash views in

the next generation. Making this possible is the first problem that promises solve.

Using promises, we can imagine that the assertion persisted(P) contains knowledge
about a promise for the crashed view resource given as the predicate

λt. ∃C. (t = λ_. C) ∧ P ⊑ C.

This promise states that the transformation picked for the crash view resource is

a constant function of the form we described in the last section, as well as the

requirement that the constant function returns a view that is greater than P . With

this knowledge we could hope to be able to be able to prove the above rule.

A second observation is that sometimes the changes that occur to one resource

at a crash depends on what happens to some other resource. One example of this is

the rule Pc-points-to, reproduced here:

ℓ ↪→h h ⊢ ⟨PC⟩ ∃C. crashedAt(C)∗

(
ℓ ̸∈ dom(C) ∨

(
∃t,m.

h(t) = m ∗ C(ℓ) = t ∗m.P ⊑ C ∗
ℓ ↪→h {0 7→ ⟨m.v,⊥,⊥,⊥⟩}

))
Here we can see that the state of a points-to predicate after a crash depends on the

state of the crash view after the crash. Phrased in terms of picks, the transformation

that gets picked for the ghost heap (the resource underlying points-to predicates)

must take into account the transformation that is picked for the crashed view re-

source. Allowing for dependencies of this sort is the second problem that promises

address. To do this, promise are not simply predicates. They can, more generally,

be relations between the transformation that is picked for a ghost location and the

transformations that is picked for other ghost locations that it depend upon. This

makes it possible to establish dependencies between different ghost locations. In

Section 6.6 we show how dependencies can be used to validate the above rule. Here

the promise for the ghost heap will be a relation between the transformations over

the crashed view resource and the ghost heap.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 161

6.5.2 What Is a Promise?

With the above motivation in mind, we now give the full definition of a promise.

Due to the dependencies between ghost locations that promises enable, whenever

we want to use a RA A in the logic, we also need to specify the RAs that it depends

upon as sequence of RAs D1, . . . , Dn. These “dependency RAs” are used in the

definition of a promise below.

Definition 6.5.1 (Promise). For a RAA and a sequence of RAsD1, . . . , Dn a promise

consists of

• an (n+ 1)-ary relation

R : (D1 → D1)→ · · · → (Dn → Dn)→ (A→ A)→ Prop,

• a predicate
P : (A→ A)→ Prop,

• and a sequence of predicates

P1 ∈ (D1 → D1)→ Prop, . . . , Pn ∈ (Dn → Dn)→ Prop.

The data must satisfy the following conditions:

• Whenever the relation holds for a sequence of transformations, it implies the
predicate for the last transformation in the sequence.

∀t1 ∈ (D1 → D1), . . . , tn ∈ (Dn → Dn), t ∈ (A→ A).

R(t1, . . . , tn, t)⇒ P (t)

• Given a sequence of n transformations, that each satisfies the respective predicate
in the list of predicates. There exists a transformation that, together with the
given sequence, satisfies the relation.

∀t1 ∈ D1 → D1, . . . , tn ∈ Dn → Dn.

P1(t1) ∧ · · · ∧ Pn(tn)⇒ ∃t. R(t1, . . . , tn, t)

The “meat” of a promise is the relation R. The predicate P is a practical con-

venience and not essential. However, it is often useful to know what one can rely

on regarding the possible transformation for a given ghost location irrespective of

how the transformation relates to the transformations for its dependencies. The

predicate serves to make this more convenient. One could always pick P to be

λt.∃t1, . . . , tn. R(t1, . . . , tn, t), but for concrete promises P can often be chosen

to be a simpler predicate that still captures the necessary information. The first

condition in the definition states that P (t) is always implied byR wheneverR holds

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 162

for t and some transformations for the dependencies. This ensures that P satisfies

the intended purpose described.

The utility of keeping P is evident already in the definition of a promise itself.

The sequence of predicates P1, . . . , Pn is exactly such promised predicates for each

of the dependencies. Had we used relations for each of the dependency RAs the type

of each relation Ri would have depended on the dependency’s dependency RAs.

This would have made the definition much more complicated. The use of predicates

makes it possible to talk about what has been promised about dependencies while

avoiding talking about the dependencies of the dependencies.

The sequence of predicates is used in the second condition. This condition

ensures that a promise is not impossible to fulfill. If, for instance, it was possible to

make a promise where R(t1, . . . , tn, t)⇒ False then the rules as a whole would be

unsound. We thus demand that one can only make promises where one can offer

evidence t that satisfies the promise. When giving this evidence one can assume

transformations for each of the dependencies that satisfy the predicates that have

been assumed for each of the dependencies.

If R1 and P1 is the relation and predicate for one promise and R2 and P2 is the

relation and predicate for some other promise, we say that the former promise is

stronger if R1 ⊆ R2 and P1 ⊆ P2.

6.5.3 Rules

As before the assertion token denotes the right to pick a transformation for a ghost

location. It now additionally denotes ownership over the promise for the ghost

location and the right to strengthen the promise. To accommodate for these additional

purposes the assertion is extended to:

token(γ , γ⃗, R, P)

Here R and P is a relation and a predicate corresponding to a promise as described

in the definition of a promise. The parameter γ⃗ is a sequence γ1, . . . , γn of ghost

names for each dependency of the ghost location. The number of dependencies

and their type of RAs is static information that is determined when instantiating

Iris. However, the actual ghost locations that a ghost location depends on (i.e., the
ghost names) is decided when the ghost location is allocated. Allocation is done with

the rule gen-alloc where one must, as usual, pick a valid element a and one then

gets ownership over a for a fresh ghost name γ. The ghost locations that the newly
allocated ghost location should depend on is determined by instantiating the rule

with the desired list of ghost names γ⃗. After allocation one gets a token of the form

token(γ, γ⃗, Truen+1, True). We use the notation Truei to denote an i-ary predicate

that is always true:

True1 ≜ λ_. True Truei ≜ λ_. Truei−1

In this case the relation has arity n + 1 corresponding to the transformations for

the n dependencies and the one for the ghost location itself. The promise starts

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 163

out being trivially satisfied and can later be strengthened after allocation. For each

dependency i ∈ 1, . . . , n one must provide the resource relyself(γ⃗i, P⃗i). We explain

the relyself assertion below. In this rule its presence merely serves as a “sanity check”

on the list of ghost names to ensure that they actually correspond to allocated ghost

names. Had some requirement of this sort not been in place, one could have applied

the rule with arbitrary nonsensical ghost names. As such the content of relyself does
not matter, any assertion for the dependency ghost names proving that they exist

could have been used.

Observe, that since a ghost location can only depend on other ghost locations

that where allocated prior to its allocation, there can be no cycles in the graph of

dependencies. This is crucial in order for the rules to be sound.

As mentioned, token(γ, γ⃗, R, P) denotes ownership over a promise and the right

to strengthen it. Since promises can only be replaced with a stronger promise, the

current promise can never be invalidated. We can therefore use the rule token-

to-rely to extract a persistent assertion rely(γ, γ⃗, R, P) from the token. The rely
assertion only denotes that a promise withR andP has beenmade, but not that this is

the most recent and strongest promise that has been made. Since the token assertion

always contains the most recent promise, any relation in relymust be implied by the

relation in token as per token-rely-combine. Furthermore, since promises can only

increase in strength, if one has two rely assertions then the relation in one of them

must be stronger than the other as per rely-rely-combine. If one cares only about the

predicate promised for a ghost location γ, and not about the relation, one can use the

rule rely-to-rely-self which results in the resource relyself(γ, P). This resource is
similar to rely expect it discards any information pertaining the dependencies for γ.

A central rule is promise-strengthen. This rule strengthens a promise of R1 and

P1 into a new promise of R2 and P2. The rule is quite a mouthful, so we cover each

hypothesis in turn:

1. R2 ⊆ R1. First of all, the new relation must be stronger than the previous

relation. This, after all, is why the rule is a strengthening rule.

2. P2 ⊆ P1. Similarly, the new predicate must be stronger than the previous

predicate.

3. ∀t1, . . . , tn, t.R2(t1, . . . , tn, t) ⇒ P2(t). For a promise, the relation must

always imply the predicate. This is the first requirement in the definition of a

promise. Hence, this must be shown.

4. ∀i.relyself(γ⃗i, Pi). The rule is parameterized over the predicates P1, . . . , Pn

assumed to have been promised for each of the dependencies. Hence, for every

i ∈ 1, . . . , n one must show that the predicate Pi has in fact been promised.

5. ∀t1, . . . , tn.P1(t1) ∧ · · · ∧ Pn(tn) ⇒ ∃t.R2(t1, . . . , tn, t). Finally, one must

show that the promised relation can in fact be satisfied by some list of trans-

formation. This is the second requirement from the definition of a promise.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 164

Once all the above hypotheses have been shown one can strengthen a promise.

The rule for picking a transformation, token-pick, is quite similar to before.

But it is now parameterized by a sequence of transformations for the dependen-

cies t1, . . . , tn and has two additional hypotheses. The first hypothesis requires a

pickedOut resource for the transformation for every dependency. This effectively

ensures that one can only pick a transformation for a ghost location once transfor-

mations have already been picked for all of its dependencies. The second hypothesis

demands that the chosen transformation along with the dependency transformations

satisfy the promised relation. This is the place in the rules where the guarantee

offered by the promise is to be respected.

The rule own-nextgen is exactly as before. This is because normal ownership

contains no information about promises, and hence the rule does not make use of

them. The rule rely-nextgen for rely is where the promise provides useful guarantees.

The rule states that in a next generation there will exist transformations for all

dependencies as well as a transformation for the resource itself. For each of these

transformations a pickedIn assertion is obtained and all the transformations together

satisfy the promised relation.

Promises themselves are unchanged at a crash. The rules token-nextgen and

used-token-nextgen show how the promised relation and predicate are carried un-

changed into the next generation. This means that promises are “cross-generational”

and can only ever increase in strength.

Note that usedToken can not be used to strengthen a promise. That is, after a

transformation has been picked one can not strengthen the promise further until

the next generation where the used token is reverted back into an unused token.

6.6 A Generation-Aware State Interpretation for

BaseSpirea

We now show how the nextgen modality with promises can be used to model the

state interpretation and the assertions in BaseSpirea. This is a significant step toward

the goal of a variant of BaseSpirea that does not use the post-crash modality, but

instead uses the nextgen modality with promises. To do this we must come up with

generational ghost state that can support the assertions in BaseSpirea and define

a state interpretation that makes use of this ghost state. Our generational ghost

state should be able to account for the way in which the physical state can change

non-deterministically at a crash. Our goal is to come up with generational resources

that allow us to prove all the same rules for BaseSpirea that we saw in Section 4.5.

To do this we have to use both the ability to pick transformation functions and the

possibility of making promises.

The model of BaseSpirea uses the following four different resources:

1. A resource for the crash view: Ag(View). That is, simple agreement on the last

crash view. This resource is used in the model of the assertion crashedAt(C)

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 165

gen-alloc

a ∈ V
(∀i. relyself(γ⃗i, Pi)) ⊢ ˙|⇛∃γ. a γ ∗ token(γ, γ⃗, Truen+1, True1)

token-pick

∀i. pickedOut(γ⃗i, ti) R(t1, . . . , ti, t)

token(γ, γ⃗, R, P) ⊢ ˙|⇛usedToken(γ, γ⃗, R, P) ∗ pickedOut(γ, t)

promise-strengthen

R2 ⊆ R1 P2 ⊆ P1 ∀t1, . . . , tn, t.R2(t1, . . . , tn, t)⇒ P2(t)
∀i.relyself(γ⃗i, Pi) ∀t1, . . . , tn.P1(t1) ∧ · · · ∧ Pn(tn)⇒ ∃t.R2(t1, . . . , tn, t)

token(γ, γ⃗, R1, P1) ⊢ ˙|⇛token(γ, γ⃗, R2, P2).

token-nextgen

token(γ, γ⃗, R, P) ⊢ ⟨NG⟩token(γ, γ⃗, R, P)

used-token-nextgen

usedToken(γ, γ⃗, R, P) ⊢ ⟨NG⟩token(γ, γ⃗, R, P)

picked-out-nextgen

pickedOut(γ, t) ⊢ ⟨NG⟩pickedIn(γ, t)
own-nextgen

a
γ ⊢ ⟨NG⟩∃t. pickedIn(γ, t) ∗ t(a) γ

rely-nextgen

rely(γ, γ⃗, R, P) ⊢
⟨NG⟩rely(γ, γ⃗, R, P) ∗ ∃t1, . . . , tn, t. R(t1, . . . , tn, t) ∗ pickedIn(γ, t) ∗ (∀i. pickedIn(γ⃗i, ti))

rely-self-nextgen

relyself(γ, P) ⊢ ⟨NG⟩relyself(γ, P) ∗ ∃t. P (t) ∗ pickedIn(γ, t)

token-rely-combine

token(γ, γ⃗1, R1, P1) ∗ rely(γ, γ⃗2, R2, P2) ⊢ γ⃗1 = γ⃗2 ∗R1 ⊆ R2

rely-rely-combine

rely(γ, γ⃗1, R1, P1) ∗ rely(γ, γ⃗2, R2, P2) ⊢ γ⃗1 = γ⃗2 ∗ (R1 ⊆ R2 ∨R2 ⊆ R1)

token-to-rely

token(γ, γ⃗, R, P) ⊢ rely(γ, γ⃗, R, P)
rely-to-rely-self

rely(γ, γ⃗, R, P) ⊢ relyself(γ, P)

Figure 6.2: Rules for the nextgen modality with picks and promises

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 166

that makes it possible to know the value of the crash view at the last crash.

2. A resource for the persist view: Auth(View). This resource is used in the

model of the assertion persisted(P) that asserts a lower-bound on the persist

view by using a fragment. The authoritative part of the RA is in the state

interpretation.

3. A resource for the heap using a standard Iris RA construction for heaps:

gmapView(Loc,History). This resource is used in the model of points-to

predicates.

4. A resource for the maximum possible store view: Auth(View). This resource
is used in the model of valid(S).

6.6.1 Challenges

To begin with, we consider the first two of these, that is the resources needed to

represent the crash view and the persist view. It turns out, that once we are able
to handle these two resources, the remaining follow along similar lines. Hence,

focusing on these simplifies the presentation while preserving the key insights. After

we have covered these two resources we sketch how to represent the heap. Since

the resource for the maximum store view has a trivial interaction with crashes we

do not cover it.

Recall that the behavior at a crash is encoded by the relation

 −→which is generated

by the single crash step defined by the rule M-crash. We repeat the rule here for

ease of reference:

P ⊑ C consistent(σ, C)
dom(σ′) = dom(C) ∀ℓ ∈ dom(C). σ′(ℓ) = {0 7→ ⟨σ(ℓ)(C(ℓ)).v,⊥,⊥,⊥⟩}

⟨σ,P⟩ −→ ⟨σ′, viewToZero(C)⟩

Recall that the view viewToZero(C) is the view with the same domain as C but with
every value being zero. Recall also that the crash view is the view C in the rule and

the persist view is the second component P in the machine configuration (i.e., the
physical state). Looking at M-crash we can identify two key challenges that we face

when representing these views and the crash step with generational ghost state:

1. The first challenge is that C and P are interdependent. The condition P ⊑ C
makes the crash view dependent on the persist view. And as the persist view

after the crash changes into viewToZero(C) the persist view also depends on

the crash view.

2. The second challenge stems from the fact that the crash view and the persist

view do not grow monotonically. Promises, on the other hand, can only

increase in strength and they persist across generations. As such, if we establish

a promise that states a lower bound on C in the next generation (corresponding

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 167

to P ⊑ C) then this promise will still exist in the next generation but it will

no longer be meaningful.

A key rule relating the two assertions is Pc-persisted:

persisted(P) ⊢ ⟨PC⟩persisted(viewToZero(P)) ∗ ∃C ⊒ P. crashedAt(C)

This rule internalizes the role of P in the crash step M-crash and shows how the

crash view depends on the persist view.

6.6.2 Resource For The Crash View

Since we want to make promises about the crash view, and since promises can only

grow in strength, we design the resource for the crash view such that it only grows

monotonically. This is unlike the operational semantics, where the crash view from

one crash to the next have no relation. We do this by storing a view SC that we call
the summed crash view. This view is the sum of all crash views, i.e., before any crash

it is ⊥ and after n crashes with the crash views C1, . . . , Cn it is C1 + . . . ,+Cn.2 This
clearly ensures that the SC is monotinically increasing. In addition to the SC we
introduce another view O called the offset view. This view is the sum of all crash

views except for the last crash view. The key utility of this view is that if the last

crash view is C then SC − O = C. In other words, from SC and O we can recover

the crash view.

To store these two views we use the following RA for the crash view:

CrashedAt ≜ Ag(View)× Ag(View)

The first component in the pair is the offset view and the second is the summed

crash view.

The crash view resource has no dependencies, but we will want to make promises

about the crash view resource that state a lower bound on what it will grow to in

the next generation. The transition functions we use have the following form:

tC(SC′) ≜ λ⟨_,SC⟩. ⟨SC, ag(SC′)⟩

Here SC′ is the new summed crash view, and the transition function moves the

previous summed crash view into the offset view. To give a lower bound L on what

the next summed crash view should be, the following predicate is used:

PC(L)(t) ≜ ∃SC.L ⊑ SC ∧ t = tC(SC)

That is, a promise with the predicate PC(L) guarantees that the transition with be

of the form tC(SC) for an SC that is greater than L.
Using this resource we can give a model for the crashedAt assertion:

2

Addition and subtraction on views is given as point-wise addition or subtraction of the timestamps

in the views.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 168

crashedAt(C) ≜ ∃O,SC,L.SC − O = C ∗
(ag(O), ag(SC)) γC ∗
relyself(γC , PC(L))

The first line ensures that the crash view corresponds to SC and O as it should. The

next line asserts ownership over the two views where the agreement ensures that the

existentially quantified views are the right ones. The last line states that a promise

has been made for the crashed at resource with a lower bound of L. As the view L
is existentially quantified no guarantees are actually given, but keeping the resource

is convenient. Note, that as the crash view resource have no dependencies rely and

relyself are almost identical in meaning.

6.6.3 Resource For The Persist View

For the persist view we use the following resource:

Persisted ≜ Auth(View)

As is common, the state interpretation contains the authoritative part of the RA and

the persisted assertion contains fragments. Following the same rationale as for the

crash view resource, we store a summed persist view SP in the ghost state. The

non-summed persist view P can be recovered per the equality P = SP − SC.
The persist view resource depends on the crash view resource. Specifically, the

persist view resource has 1 dependency which is a RA of the type CrashedAt. The

following relation will be promised for the resource:

RP (tC , tP) ≜ ∃SC. tC = tC(SC) ∧
tP = fmap_auth(λ_.SC).

The relation states that there exists some summed crash view and that the trans-

formation for the dependency (i.e., for the crashed at resource) has a form that can

be described based on this view. The transformation for the crashed at resource

then applies a constant function to the authoritative RA. The function fmap_auth is

defined such that

fmap_auth(t)(•a) ≜ •t(a) fmap_auth(t)(◦a) ≜ ◦t(a)
This promise is never strengthened and is fixed for the lifetime of the persist view

resource. However, due to the dependency on the crash view resource, any promise

about the crash view resource transitively affects the persisted resource.

We can now give a model for the persisted assertion.

persisted(P) ≜ ∃SC,SP,O.
SP − SC = P ∗
(ag(O), ag(SC)) γC ∗ relyself(γC , PC(SP)) ∗
◦SP γP ∗ rely(γP , [γC], RP , True1)

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 169

The definition states the existence of a summed crash view, a summed persist view,

and an offset view. The persist view is equal to subtracting the summed crash

view from the persist view. We own agreements for the crash view resource and

a fragment of the summed persist view. On the last line we have a promise about

the crash view resource. This promise ensures that that summed crash view in the

next generation will be at last SP . Next to this is the promise for the persist view

resource.

Having defined the model of crashedAt and persisted we can now prove sound-

ness of the rule Pc-persisted but with the post-crashmodality replaced by the nextgen

modality:

Lemma 6.6.1. The rule

persisted(P) ⊢ ⟨NG⟩persisted(viewToZero(P)) ∗ ∃C ⊒ P. crashedAt(C)

is sound.

Proof. We have the resources in the definition of persisted for some SC,SP , andO.
For both of the ghost overship assertions we have a corresponding rely assertion.

The goal contains a nextgen modality and to introduce this modality
3
we must

observe how our resources changes by the nextgen modality. This is described by

the rules own-nextgen, rely-nextgen, and rely-self-nextgen. After using these rules

to introduce the nextgen modality and after using picked-in-agree to identify the

transformations for the same ghost location we have:

(ag(SC), ag(SC′)) γC ∗ relyself(γC , PC(SP)) ∗

◦SC′ γP ∗ rely(γP , [γC], RP , True1)

Here SC′ is the new summed crash view which satisfies SP ⊑ SC′. This crash
view is acquired from the promise for the crashed at resource. The rely resources
themselves are unchanged.

To prove the goal we provide persisted(viewToZero(P)) and∃C ⊒ P. crashedAt(C).
To prove persisted(viewToZero(P)) we provide the following for the three

views for the existential quantifiers in persisted: SC′,SP,SC. With this choice

of views most of the goal can simply be frame away. What is left is to prove

SP−SC′ = viewToZero(P) and ◦SC′ γP
. The former holds due to how subtraction

is defined. The view SC′ is greater than SP and since we use subtraction on natural

numbers where n−m = 0 if n ≤ m and a subtraction for views that preserves the

domain of the first argument, the result is that the equality holds.

To prove ∃C ⊒ P. crashedAt(C)We provide SC′ − SC for the existential. We

must show that P ⊑ SC′−SC. Per the equality in persistedwe have P = SP−SC
and the above inclusion then holds because SP ⊑ SC′. Proving the crashedAt
assertion itself is trivial.

3

By “introduce the modality” we mean putting the resources in our context under the nextgen

modality using rules for this, combining the resources in under a single nextgen, and then applying

monotonicity to arrive at a goal without a nextgen modality. All of this is what the iModIntro tactic

in IPM carries out.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 170

6.6.4 The State Interpretation

We can now define a state interpretation that covers the persist view and the crash

view.

S(⟨σ,P⟩) ≜ ∃O,SC.
(ag(O), ag(SC)) γC ∗ token(γC , [], PC(SC + P), PC(SC + P)) ∗
•SC + P γP ∗ rely(γP , [γC], RP , True1)

We keep the token for the crash view resource such that we can choose a transfor-

mation that matches the new crash view after a crash. Since the transformation for

the persist view resource is fully determined by the crash view we do not need to

store a token for that resource (in fact the token can be discarded once the promise

for it has been established).

We can now prove the key result for the state interpretation and the nextgen

modality.

Theorem 6.6.2. If a machine configuration can take a crash step into a new machine
configuration

⟨σ,P⟩ −→ ⟨σ′, C′⟩.

Then the state interpretation for the old machine configuration implies the state inter-
pretation for the new machine configuration under update modalities and a nextgen
modality

S(⟨σ,P⟩) ⊢ ˙|⇛⟨NG⟩ ˙|⇛S(⟨σ′, C′⟩).

Proof. From the definition of the crash stepwe know that the stepmust be an instance

of the single rule for the crash step. This means that there exists a crash view C as in
M-crash. We use the token for γC to pick the transformation function tC(SC + C)
using the rule token-pick. The remainder of the proof is fairly straightforward using

the rules that we have seen.

6.6.5 Resource For The Heap

We now briefly sketch how to model the heap using generational ghost state. As

mentioned, the heap uses the standard RA construction in Iris for modelling heaps:

Heap ≜ gmapView(Loc,History)

We do not need to change the RA used for the heap, but, similarly to what we did

for the crash view and the persist view, the way we use the RA is slightly different.

Where the physical history for each location only stores the message that was

recovered at the last crash and any messages written since the crash, in the ghost

state we will store histories that contain all messages written across crashes that

where not lost at a crash.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 171

To make the above a bit more clear, consider an example where the history

for a location ℓ is {0 7→ v1, 4 7→ v2, 6 7→ v3} during an execution prior to any

crashes. If, at a crash, the second value is recovered and the last value is lost, then

the crash view C for ℓ satisfies C(ℓ) = 4 and the history after the crash step is

{0 7→ v2}. In the ghost state however, we only drop the suffix corresponding to the

lost writes, and we keep the timestamps as it. Thus, in the ghost state we have the

history {0 7→ v1, t 7→ v2}. The effect is then that the ghost state for the history only

grows monotonically and that it maintains a correspondence to the summed crash

view and the summed persist view. Among other things, the real physical history

can be recovered from this logical one by dropping a prefix from every history

corresponding to the summed crash view.

For the heap ghost state we make a promise that is based upon the exact same

ideas as the one we used for the persist view.

RH ≜ ∃tC , tH ,∃SC.
tC = tC(SC) ∧
tH = λh.mapEntryLiftGmapView(dropAboveHist(SC, h)).

On the second line we establish a correspondence with the transformation for the

crashed at view which ensures that SC is the correct view On the third line we use

SC to construct the transformation for the function. We do not show the definitions

of the two functions used here, but the result corresponds exactly to the explanation

above: all writes in the history that are not included in SC are dropped from the

history.

With these ideas in place extended the state integration for the heap is not too

difficult, and the full details can be found in Coq.

6.7 Model

We now give an overview over the model of the nextgen modality with promises

and picks. The full model and soundness proof of its rules is very intricate, so here

we only, in broad strokes, highlight some of the most interesting key ideas. The

presentation here should also serve as a useful primer for readers who want to study

the full Coq implementation of the modality.

6.7.1 Meta Ghost State

With the nextgen modality in this chapter, every ghost location now contains

promises and picks in addition to the actual ghost state it stores. To handle this data,

every ghost location meant for the nextgen modality stores meta resources. More

concretely, if a user of the logic wishes to use a RA A that depends on D1, . . . , Dn

the actual RA that is used under the hood is GenerationalRA(A, [D1, . . . , Dn]). This
construction is of the form

GenerationalRA(A, [D1, . . . , Dn]) ≜ A
? ×Meta(A, [D1, . . . , Dn])

?.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 172

Hence, an element of this RA can contain an element of the RA A and/or element of

the metadata. The constructionMeta(A, [D1, . . . , Dn]) contains all the resources
needed to represent picks and promises. Some of RAs used are fairly typical, for

instance, picks use the agreement RA and the promises use a prefix list RA to store

the increasing promises. However, it also uses an interesting generational RA that

we think have wider applications in the context of nextgen modalities, and hence

we describe this construction in detail.

The construction GenNC is parameterized over any camera A and is defined as:

GenNC(A) ≜ A? ×A?

As such, the elements of the RA contains, potentially, two elements of the underlying

RA. The first element in the pair is known as the element for the next generation and

the second element is for the current generation. We use the following definitions

to denote ownership over an a ∈ A in the next and current generation, the next

generation only, and the current generation only.

gNC(a) ≜ (a, a) gN(a) ≜ (a,⊥) gC(a) ≜ (⊥, a)

Note that this satisfies

gNC(a) = gN(a) · gC(a).

We now get to the thing that makes this construction a generational RA—the
intended transformation.

t((ag, ac)) ≜ (ag, ag)

The transformation simply preserves the next generation element and copies it into

the current generation element. This has the consequence that, at a new generational,

the current element disappears and the next generation element becomes the new

current element. Notice that as the next generational element is unchanged it

becomes a sort of “cross-generational” or “permanent” element. For instance, if the

underlying RA is an exclusive token

token = ex(()) ∈ Ex(1)

then one can split the element gNC(token) into gN(token) and gC(token). One can
then “give up” the token for the current generation, gC(token), and then get it back

in the next generation by keeping gN(token).
While simple this construction is very useful. We now show how it can be used

to create a generational variant of the well known one-shot resource algebra. Recall

that the one-shot resource algebra is defined as

OneShot(V) ≜ Ex() + Ag(V)

where the exclusive left injection denotes the right tomake the decision (or shoot) and

the duplicable right injection denotes the knowledge that a decision has been made.

We can now simply combine GenNC with OneShot as GenNC(OneShot(V)) and

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 173

arrive a generational variant. With this combination the element gN(inl(1)) repre-
sents the right to shoot across generations and gC(inl(1)) the right to shoot in the

current generation. By never firing the former element, a single decision (or shot)

can be carried out every generation. Sticking to the gun metaphor, we might say that

the gun is reloaded at every generation, and we have a “one-shot-per-generation”

RA. This is exactly what we use in the RA for picks where a pick can be made exactly

once per generation.

6.7.2 The Model of ⟨NG⟩

One of the key ideas of the nextgen modality is to tie the transformation function to

resources. Since the transformation function applies point-wise to individual ghost

names, it is constructed from a transmap, a map of transformations as defined back

in Section 5.3.6:

TM ≜
∏
i∈I

GName
fin−⇀ (Mi →Mi)

The first step in the model of the nextgen modality is to universally quantify over a

transmap and construct the transformation function from this

⟨NG⟩P ≜ ∀tm ∈ TM. ↬̇buildTrans(tm) P.

Here buildTrans turns the transmap into a transformation function. The reader can

think of it as simply building a transformation that applies the transformations in the

map point-wise as in Section 5.3.6, but for technical reasons the actual construction

is slightly more complicated.

With the transmap universally quantified nothing can be known about the

transformation function except the fact that it maintains the structure of the global

RA. Consider the pickedOut(γ, t) assertion that contains partial information about

the global transformation function. It essentially restricts its behavior when applied

to an element of the global RA that contains an entry at i and γ (where i ∈ I the
index of the RA in the list of globally available RAs). To support this we extend the

definition with an existentially quantified transmap:

⟨NG⟩P ≜ ∃ picks ∈ TM.

ownPicks(picks)∗
∀tm ∈ TM. picks ⊆ tm −∗ ↬̇buildTrans(tm) P.

The existential makes it possible to choose a smaller transmap picks that the “full”
transmap tm should be an extension of. This is expressed by the condition picks ⊆ tm
which means that every entry defined in picks is defined in tm with the same value.

Now P only needs to be proven for such a transformation function that picks gives
certain knowledge about. The price to pay for choosing a picks is that the resource
ownPicks(picks) is demanded by the definition. This resource essentially amounts

to having pickedOut for every entry in picks.

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 174

With the above addition we have the machinery for supporting the assertions

for picks, but we still need to extend the model further for promises. We do this with

a second existentially quantified variable for the promises:

⟨NG⟩P ≜ ∃picks ∈ TM, promises ∈ List(PromiseAt) .

ownPicks(picks) ∗ ownPromises(promises) ∗
∀tm ∈ TM.

picks ⊆ tm ∗ respectsPromises(tm, promises) −∗ ↬̇buildTrans(tm) P.

Now a list of promises can also be chosen. The name PromiseAt denotes a type

that contains both a promise (as defined in Definition 6.5.1) and a path for the

ghost location that the promise is for (an index i ∈ I and a ghost name γ ∈
GName). Similarly to for picks, one must provide a resource for the chosen promises

ownPromises(promises) which roughly amounts to having relyself for every promise

in the list. Now the final tm is guaranteed to respect the promises (respectsPromises(tm, promises)),
which means that tm satisfies every promised relation and predicate in promises.
The promises are stored in a list because promises can depend on each other. The list

of promises needs to be well-formed. This means, among other things, that promises

in the list are ordered such that every promise is before any promises it depends

upon. Furthermore, a specific ghost location can only have one promise for it in the

list and a promise can only be in the list if all promises it depends upon appear later

in the list.

The two assertions ownPicks and ownPromises are the assertions that tie the
chosen picks and promises to separation logic resources. And since the picks and

promises end up as restrictions on the transmap used to construct the transformation,

it is also tied to resources.

The full definition of the model of the nextgen modality is slightly more compli-

cated, but the above illustrate the key components.

6.7.3 Soundness of the Rules

Having defined the model for the nextgen modality, the next step is to prove sound-

ness of its rules. Here we note a few things about a few of the rules where the

soundness proof is particularly challenging or otherwise interesting.

The Rule for Separating Conjunction

One such rule is the rule for the nextgen modality and separating conjunction:

⟨NG⟩P ∗ ⟨NG⟩Q ⊢ ⟨NG⟩(P ∗Q)

This rules looks a lot like the bng-sep for the basic nextgen modality. But, a signifi-

cant difference is that the nextgen modality has to parameters that determine the

transformation function. For the basic nextgen modality the rule holds for two basic

nextgen modalities where the exact same transformation function is used. This is

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 175

quite natural, but it does limit modularity in the sense that two different assertions

proven in the next generation can only be combined if it has been coordinated that

they apply the exact same transformation. For the nextgen modality here such

coordination is not needed as the modality has no parameters at all. Proving the

separation rule in this setting is significantly more interesting as the soundness of

the rules ultimately depends on the construction being sufficiently modular in how

the resources that determine the transformation is used.

When proving the rule with respect to the model, the two nextgen modalities on

the left-hand side results in two pairs of picks and promises, picks1 and promises1
for the first nextgen and picks2 and promises2 for the second nextgen. The proof of

P holds for a transformation function that satisfies the first picks and promises and

the proof of Q requires the second pair. Hence, to get both P and Q we must build a

combined map of picks and a combined map of promises that satisfies both. Here it

is crucial that the model does not make exact requirements on what the transmap

should be, but only “lower bounds” of requirements.

Building a combined transmap of picks is not too difficult. We have the two

assertions ownPicks(picks1) and ownPicks(picks2), and since these contain an agree-

ment resource (like pickedOut) the two transmaps are guaranteed to be equal in

their overlap. Hence a “union” of the two can easily be constructed.

Building a combined list of promises, on the other hand, is very involved. As

mentioned the lists need to be well-formed and to ensure this the two lists of promises

needs to be merged with this property in mind. A given ghost location at i and γ
might have a promise for it in both lists and in this case the strongest of the two

promises must be chosen. To know that one promise is necessarily stronger than the

other the resources ownPromises(promises1) and ownPromises(promises2) must be

used. Intuitively, the promises in the lists and the dependencies between them can

be though of as a tree-like graph, and merging the two lists amounts to merging the

graphs while keeping the strongest promise when their is an overlap. Proving this

formally is quite challenging, among other things, because setting up the induction

is not straightforward.

The Rule for the Plainly Modality

Another interesting rule is the one for the plainly modality:

⟨NG⟩■P ⊣⊢ ■P

Since this rule eliminates the nextgen modality, in the soundness proof one must

provide a transmap for the universally quantified tm. This map must respect some

map of picks and some list of promises. The challenging thing is to build a transamp

that satisfies all the promises since they have dependencies between each other.

To find transformations for ghost locations where nothing has been picked, but

something has been promised we use the second condition from the definition of a

promise Definition 6.5.1. This condition gives us a way to get a suitable transforma-

tion provided that we already have suitable transformations for all the dependencies

CHAPTER 6. A NEXTGEN MODALITY FOR CRASHES IN SPIREA 176

of the promise. Hence, to use the condition we must traverse the promises “from

the bottom up” if one considers the dependencies as a tree. Fortunately the list of

promises is stored exactly in an order that corresponds to such a bottom up traversal.

With this order already in place the hardest part of the work has already been done

and building a full map that satisfies all the promises is fairly straightforward.

6.7.4 Coq Mechanization

The nextgen modality is fully mechanized in Coq. One noteworthy aspect of the

mechanization is that it makes heavy used of dependent types. There are various

reasons why we need dependent types. For instance, the arity of the relation in a

promise depends on the number n ∈ N of dependencies it has. AS another example,

the transformations that satisfy a promise all have different types, and hence to

store them we use a heterogeneous list. Additionally, all the structures related to

the global RA, such as transmaps TM and resources for these such as ownPicks, also
uses dependent types. Working with dependent types in Coq can be very difficult,

and therefore the mechanization is overall quite advanced.

6.8 Conclusion and Future Work

In this chapter we have introduced a nextgen modality with promises and picks. We

claim that this modality can replace the post-crash modality in both BaseSpirea and

Spirea, to address the limitations around user-defined ghost state and crashes that

we identified. We have shown how the resources used in BaseSpirea can be adapted

to use the features of the nextgen modality such that they support the required rules

in combination with the nextgen modality. Additionally, we have shown how the

state interpretation and the model of the assertions in BaseSpirea can be defined

with these adapted resource.

While the nextgen modality with promises and picks along with the resources for

BaseSpirea are important steps towards an improved version of Spirea that address

the issues we identified in the beginning of the chapter, more work is still needed to

arrive at a complete program logic.

To do this a variant of Perennial’s recovery weakest precondition that uses the

nextgen modality from this chapter would have to be defined. The most challenging

piece to such an endeavor is to prove an adequacy statement for this recovery weakest

precondition. With this in place one would have an improved variant of BaseSpirea

that uses the nextgen modality. This would address the issues for BaseSpirea. The

higher-level Spirea uses additional resources used to model the features it contains.

It extends the state interpretation from the base logic with ghost state for these

additional resources. In order to adapt the Spirea to use the nextgen modality one

would have to adapt these resources, similarly to what we have done in this section

for BaseSpirea.

Bibliography

[BBT07] Bodil Biering, Lars Birkedal, and Noah Torp-Smith. “BI-hyperdoctrines,

higher-order separation logic, and abstraction.” In: ACM Trans. Program.
Lang. Syst. 29.5 (2007), p. 24. doi: 10.1145/1275497.1275499 (cit. on

p. 58).

[Bil+22] Eleni Vafeiadi Bila, Brijesh Dongol, Ori Lahav, Azalea Raad, and John

Wickerson. “View-Based Owicki-Gries Reasoning for Persistent x86-

TSO.” In: Programming Languages and Systems - 31st European Sympo-
sium on Programming, ESOP 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings. Ed. by Ilya Sergey. Vol. 13240.

Lecture Notes in Computer Science. Springer, 2022, pp. 234–261. doi:

10.1007/978-3-030-99336-8_9 (cit. on pp. 13, 76, 108, 112, 120).

[BB20] Lars Birkedal and Aleš Bizjak. Lecture Notes on Iris: Higher-Order Con-
current Separation Logic. 2020. url: https://iris-project.org/
tutorial-material.html (cit. on p. 120).

[BB21] Lars Birkedal and Aleš Bizjak. Lecture Notes on Iris: Higher-Order Con-
current Separation Logic. 2021. url: https://iris-project.org/
tutorial-material.html (cit. on p. 57).

[Bir+21] Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem

Jaber, Kasper Svendsen, and Nikos Tzevelekos. “Theorems for free from

separation logic specifications.” In: Proc. ACM Program. Lang. 5.ICFP
(2021), pp. 1–29. doi: 10.1145/3473586 (cit. on pp. 12, 74).

[BB18] Ales Bizjak and Lars Birkedal. “On Models of Higher-Order Separation

Logic.” In: Proceedings of the Thirty-Fourth Conference on the Mathe-
matical Foundations of Programming Semantics, MFPS 2018, Dalhousie
University, Halifax, Canada, June 6-9, 2018. Ed. by Sam Staton. Vol. 341.

Electronic Notes in Theoretical Computer Science. Elsevier, 2018, pp. 57–

78. doi: 10.1016/j.entcs.2018.03.016 (cit. on p. 21).

[Bor+05] Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J.

Parkinson. “Permission accounting in separation logic.” In: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2005, Long Beach, California, USA, January 12-14,

177

https://doi.org/10.1145/1275497.1275499
https://doi.org/10.1007/978-3-030-99336-8_9
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://doi.org/10.1145/3473586
https://doi.org/10.1016/j.entcs.2018.03.016

BIBLIOGRAPHY 178

2005. Ed. by Jens Palsberg and Martín Abadi. ACM, 2005, pp. 259–270.

isbn: 1-58113-830-X. doi: 10.1145/1040305.1040327 (cit. on p. 21).

[Boy03] John Boyland. “Checking Interference with Fractional Permissions.” In:

Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA,
USA, June 11-13, 2003, Proceedings. 2003, pp. 55–72. doi: 10.1007/3-
540-44898-5_4 (cit. on p. 21).

[Bro20] Nathan Bronson. On the origins of the MPMC Queue. Personal Commu-

nication. Nov. 2020 (cit. on p. 49).

[Bro+13] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter

Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,

Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,

and Venkat Venkataramani. “TAO: Facebook’s Distributed Data Store

for the Social Graph.” In: 2013 USENIX Annual Technical Conference
(USENIX ATC 13). San Jose, CA: USENIX Association, June 2013, pp. 49–

60. isbn: 978-1-931971-01-0 (cit. on p. 49).

[Cai+20] Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad

Hedayati, and Michael L. Scott. “Understanding and optimizing persis-

tent memory allocation.” In: ISMM ’20: 2020 ACM SIGPLAN International
Symposium on Memory Management, ISMM 2020, virtual [London, UK],
June 16, 2020. Ed. by Chen Ding and Martin Maas. ACM, 2020, pp. 60–73.

isbn: 978-1-4503-7566-5. doi: 10.1145/3381898.3397212 (cit. on

p. 76).

[Cai+21] Wentao Cai, HaosenWen, Vladimir Maksimovski, Mingzhe Du, Rafaello

Sanna, Shreif Abdallah, and Michael L. Scott. “Fast Nonblocking Persis-

tence for Concurrent Data Structures.” In: 35th International Symposium
on Distributed Computing, DISC 2021, October 4-8, 2021, Freiburg, Ger-
many (Virtual Conference). Ed. by Seth Gilbert. Vol. 209. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 14:1–14:20. isbn: 978-

3-95977-210-5. doi: 10.4230/LIPIcs.DISC.2021.14 (cit. on p. 76).

[Cha22] Tej Chajed. “Verifying a concurrent, crash-safe file system with sequen-

tial reasoning.” PhD thesis. Machetutes Institute of Technology, May

2022 (cit. on pp. 77, 114, 122, 129).

[Cha+17] Tej Chajed, Haogang Chen, Adam Chlipala, M. Frans Kaashoek, Nickolai

Zeldovich, and Daniel Ziegler. “Certifying a file system using crash

hoare logic: correctness in the presence of crashes.” In: Commun. ACM
60.4 (2017), pp. 75–84. doi: 10.1145/3051092 (cit. on p. 124).

[CTc22] Tej Chajed, Joseph Tassarotti, and contributors. Post-crash modality in
Perennial’s Coq Mechanization. Permanent link for the version available

at the time of writing: https://github.com/mit-pdos/perennial/
blob/ec3f44007d88b6ba28d1392807b444751588ed39/src/goose_
lang / crash _ modality . v. 2022. url: https : / / github . com /

https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/3381898.3397212
https://doi.org/10.4230/LIPIcs.DISC.2021.14
https://doi.org/10.1145/3051092
https://github.com/mit-pdos/perennial/blob/ec3f44007d88b6ba28d1392807b444751588ed39/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/ec3f44007d88b6ba28d1392807b444751588ed39/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/ec3f44007d88b6ba28d1392807b444751588ed39/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v

BIBLIOGRAPHY 179

mit-pdos/perennial/blob/master/src/goose_lang/crash_
modality.v (cit. on p. 129).

[Cha+19] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zel-

dovich. “Verifying concurrent, crash-safe systems with Perennial.” In:

Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019. Ed. by
Tim Brecht and Carey Williamson. ACM, 2019, pp. 243–258. isbn: 978-

1-4503-6873-5. doi: 10.1145/3341301.3359632 (cit. on pp. 77, 122,

124).

[Cha+21] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung,M. Frans Kaashoek,

and Nickolai Zeldovich. “GoJournal: a verified, concurrent, crash-safe

journaling system.” In: 15th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2021, July 14-16, 2021. Ed. by Angela

Demke Brown and Jay R. Lorch. USENIX Association, 2021, pp. 423–439

(cit. on pp. 77, 122, 124, 129).

[Cha+15] Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor

Vafeiadis. “Aspect-oriented linearizability proofs.” In: Log. Methods Com-
put. Sci. 11.1 (2015). doi: 10.2168/LMCS-11(1:20)2015 (cit. on p. 74).

[CP17] Arthur Charguéraud and François Pottier. “Temporary Read-Only Per-

missions for Separation Logic.” In: Programming Languages and Systems
- 26th European Symposium on Programming, ESOP 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by Hongseok

Yang. Vol. 10201. Lecture Notes in Computer Science. Springer, 2017,

pp. 260–286. isbn: 978-3-662-54433-4. doi: 10.1007/978- 3- 662-
54434-1_10 (cit. on pp. 46, 125, 126, 151).

[Che+16] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans

Kaashoek, and Nickolai Zeldovich. “Using Crash Hoare Logic for Certify-

ing the FSCQ File System.” In: 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016. Ed. by Ajay Gulati

and Hakim Weatherspoon. USENIX Association, 2016 (cit. on pp. 77,

122).

[Che+20] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and

Jiwu Shu. “FlatStore: An Efficient Log-Structured Key-Value Storage

Engine for Persistent Memory.” In: ASPLOS ’20: Architectural Support for
Programming Languages and Operating Systems, Lausanne, Switzerland,
March 16-20, 2020. Ed. by James R. Larus, Luis Ceze, and Karin Strauss.

ASPLOS 2020 was canceled because of COVID-19. ACM, 2020, pp. 1077–

1091. isbn: 978-1-4503-7102-5. doi: 10.1145/3373376.3378515 (cit.

on p. 76).

https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.1007/978-3-662-54434-1_10
https://doi.org/10.1007/978-3-662-54434-1_10
https://doi.org/10.1145/3373376.3378515

BIBLIOGRAPHY 180

[Cho+21] Kyeongmin Cho, Sung Hwan Lee, Azalea Raad, and Jeehoon Kang.

“Revamping hardware persistency models: view-based and axiomatic

persistency models for Intel-x86 and Armv8.” In: PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 20211. Ed. by
Stephen N. Freund and Eran Yahav. ACM, 2021, pp. 16–31. isbn: 978-1-

4503-8391-2. doi: 10.1145/3453483.3454027 (cit. on p. 122).

[Dan+20] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek

Dreyer. “RustBelt meets relaxed memory.” In: Proc. ACM Program. Lang.
4.POPL (2020), 34:1–34:29. doi: 10.1145/3371102 (cit. on pp. 12, 81).

[Dan+22] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen,

William Mansky, Jeehoon Kang, and Derek Dreyer. “Compass: strong

and compositional library specifications in relaxed memory separation

logic.” In: PLDI ’22: 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, San Diego, CA, USA,
June 13 - 17, 2022. Ed. by Ranjit Jhala and Isil Dillig. ACM, 2022, pp. 792–

808. isbn: 978-1-4503-9265-5. doi: 10.1145/3519939.3523451 (cit. on

pp. 12, 122).

[Din+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew

Parkinson, and Hongseok Yang. “Views: Compositional Reasoning for

Concurrent Programs.” In: POPL. 2013, pp. 287–300. doi: 10.1145/
2429069.2429104 (cit. on p. 58).

[Din+10] ThomasDinsdale-Young,MikeDodds, PhilippaGardner,MatthewParkin-

son, and Viktor Vafeiadis. “Concurrent Abstract Predicates.” In: ECOOP
2010 - Object-Oriented Programming, 24th European Conference, Maribor,
Slovenia, June 21-25, 2010. Proceedings. Ed. by Theo D’Hondt. Vol. 6183.

Lecture Notes in Computer Science. Springer, 2010, pp. 504–528. doi:

10.1007/978-3-642-14107-2_24 (cit. on p. 48).

[Doh+04] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir.

“Formal Verification of a Practical Lock-Free Queue Algorithm.” In:

Formal Techniques for Networked and Distributed Systems - FORTE 2004,
24th IFIP WG 6.1 International Conference, Madrid Spain, September 27-30,
2004, Proceedings. Ed. by David de Frutos-Escrig and Manuel Núñez.

Vol. 3235. Lecture Notes in Computer Science. Springer, 2004, pp. 97–114.

isbn: 3-540-23252-4. doi: 10.1007/978-3-540-30232-2_7 (cit. on

p. 46).

[DV16] Marko Doko and Viktor Vafeiadis. “A Program Logic for C11 Memory

Fences.” In: Verification, Model Checking, and Abstract Interpretation
- 17th International Conference, VMCAI 2016, St. Petersburg, FL, USA,
January 17-19, 2016. Proceedings. Ed. by Barbara Jobstmann and K. Rus-

tan M. Leino. Vol. 9583. Lecture Notes in Computer Science. Springer,

https://doi.org/10.1145/3453483.3454027
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-540-30232-2_7

BIBLIOGRAPHY 181

2016, pp. 413–430. isbn: 978-3-662-49121-8. doi: 10.1007/978-3-662-
49122-5_20 (cit. on pp. 77, 121).

[DD13] Brijesh Dongol and John Derrick. “Simplifying proofs of linearisability

using layers of abstraction.” In: Electron. Commun. Eur. Assoc. Softw.
Sci. Technol. 66 (2013). doi: 10.14279/tuj.eceasst.66.889 (cit. on

p. 73).

[DD14] Brijesh Dongol and John Derrick. “Verifying linearizability: A compara-

tive survey.” In: CoRR abs/1410.6268 (2014). arXiv: 1410.6268 (cit. on

p. 46).

[DD15] Brijesh Dongol and John Derrick. “Verifying Linearisability: A Com-

parative Survey.” In: ACM Comput. Surv. 48.2 (2015), 19:1–19:43. doi:
10.1145/2796550 (cit. on pp. 10, 50, 74).

[DDH12] Brijesh Dongol, John Derrick, and Ian J. Hayes. “Fractional Permis-

sions and Non-Deterministic Evaluators in Interval Temporal Logic.”

In: Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 53 (2012). doi:

10.14279/tuj.eceasst.53.792 (cit. on p. 73).

[Fil+10a] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang.

“Abstraction for concurrent objects.” In: Theor. Comput. Sci. 411.51-52
(2010), pp. 4379–4398. doi: 10.1016/j.tcs.2010.09.021 (cit. on

p. 20).

[Fil+10b] Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang.

“Abstraction for concurrent objects.” In: Theoretical Computer Science
411.51-52 (2010), pp. 4379–4398. doi: 10.1016/j.tcs.2010.09.021
(cit. on p. 74).

[FRK02] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. “Fuss, Fu-

texes and Furwocks: Fast Userlevel Locking in Linux.” In: Proceedings of
Ottawa Linux Symposium. Vol. 85. 2002, pp. 479–495 (cit. on p. 54).

[Fri+20] Michal Friedman, Naama Ben-David, YuanhaoWei, Guy E. Blelloch, and

Erez Petrank. “NVTraverse: in NVRAM data structures, the destination

is more important than the journey.” In: Proceedings of the 41st ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, PLDI 2020, London, UK, June 15-20, 2020. Ed. by
Alastair F. Donaldson and Emina Torlak. ACM, 2020, pp. 377–392. isbn:

978-1-4503-7613-6. doi: 10.1145/3385412.3386031 (cit. on p. 116).

[Fri+18] Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Pe-

trank. “A persistent lock-free queue for non-volatile memory.” In: Pro-
ceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2018, Vienna, Austria, February 24-28,
2018. Ed. by Andreas Krall and Thomas R. Gross. ACM, 2018, pp. 28–40.

isbn: 978-1-4503-4982-6. doi: 10.1145/3178487.3178490 (cit. on

p. 76).

https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.14279/tuj.eceasst.66.889
https://arxiv.org/abs/1410.6268
https://doi.org/10.1145/2796550
https://doi.org/10.14279/tuj.eceasst.53.792
https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1016/j.tcs.2010.09.021
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3178487.3178490

BIBLIOGRAPHY 182

[FKB18] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC: A Mecha-

nised Relational Logic for Fine-Grained Concurrency.” In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich

Grädel. ACM, 2018, pp. 442–451. doi: 10.1145/3209108.3209174
(cit. on pp. 13, 48–50).

[FKB20a] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC Reloaded: A

Mechanized Relational Logic for Fine-Grained Concurrency and Logical

Atomicity.” In: CoRR abs/2006.13635 (2020). arXiv: 2006.13635 (cit. on

pp. 13, 49, 50, 72).

[FKB20b] Dan Frumin, Robbert Krebbers, and Lars Birkedal. “ReLoC Reloaded: A

Mechanized Relational Logic for Fine-Grained Concurrency and Logical

Atomicity.” In: CoRR abs/2006.13635 (2020). arXiv: 2006.13635 (cit. on

pp. 20, 23, 30, 33).

[Geo+20] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and

Pratap Subrahmanyam. “go-pmem: Native Support for Programming

Persistent Memory in Go.” In: 2020 USENIX Annual Technical Conference,
USENIX ATC 2020, July 15-17, 2020. Ed. by Ada Gavrilovska and Erez

Zadok. USENIX Association, 2020, pp. 859–872. isbn: 978-1-939133-14-4

(cit. on p. 76).

[Geo+23] Aına Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin

Timany, Alix Trieu, Dominique Devriese, and Lars Birkedal. “Cerise: Pro-

gram Verification on a Capability Machine in the Presence of Untrusted

Code.” In: J. ACM (Sept. 2023). issn: 0004-5411. doi: 10.1145/3623510
(cit. on p. 14).

[Got+07] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly

Sagiv. “Local Reasoning for Storable Locks and Threads.” In: Program-
ming Languages and Systems, 5th Asian Symposium, APLAS 2007, Singa-
pore, November 29-December 1, 2007, Proceedings. 2007, pp. 19–37. doi:
10.1007/978-3-540-76637-7_3 (cit. on p. 57).

[Gué+23] Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler,

Lars Birkedal, and Derek Dreyer. “Melocoton: A Program Logic for

Verified Interoperability Between OCaml and C.” In: Proc. ACM Program.
Lang. OOPSLA (2023) (cit. on p. 125).

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. “A Scalable Lock-Free

Stack Algorithm.” In: SPAA. 2004, pp. 206–215. doi: 10.1145/1007912.
1007944 (cit. on pp. 71, 73).

[HW90] Maurice Herlihy and Jeannette Wing. “Linearizability: A Correctness

Condition for Concurrent Objects.” In: TOPLAS 12.3 (1990), pp. 463–492.
doi: 10.1145/78969.78972 (cit. on pp. 10, 51, 74).

https://doi.org/10.1145/3209108.3209174
https://arxiv.org/abs/2006.13635
https://arxiv.org/abs/2006.13635
https://doi.org/10.1145/3623510
https://doi.org/10.1007/978-3-540-76637-7_3
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1145/78969.78972

BIBLIOGRAPHY 183

[HW87] Maurice Herlihy and Jeannette M. Wing. “Axioms for Concurrent Ob-

jects.” In: Conference Record of the Fourteenth Annual ACM Symposium
on Principles of Programming Languages, Munich, Germany, January
21-23, 1987. ACM Press, 1987, pp. 13–26. doi: 10.1145/41625.41627
(cit. on p. 10).

[Hug89] John Hughes. “Why Functional Programming Matters.” In: Comput. J.
32.2 (1989), pp. 98–107. doi: 10.1093/comjnl/32.2.98 (cit. on p. 50).

[IMS16] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. “Lin-

earizability of Persistent Memory Objects Under a Full-System-Crash

Failure Model.” In: Distributed Computing - 30th International Sympo-
sium, DISC 2016, Paris, France, September 27-29, 2016. Proceedings. Ed. by
Cyril Gavoille and David Ilcinkas. Vol. 9888. Lecture Notes in Com-

puter Science. Springer, 2016, pp. 313–327. doi: 10.1007/978-3-662-
53426-7_23 (cit. on pp. 11, 76, 78, 79, 82, 116).

[JP11] Bart Jacobs and Frank Piessens. “Expressive modular fine-grained con-

currency specification.” In: Proceedings of the 38th ACMSIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011. Ed. by Thomas Ball and Mooly Sagiv.

ACM, 2011, pp. 271–282. doi: 10.1145/1926385.1926417 (cit. on

pp. 48, 74).

[Jun+16] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. “Higher-

order ghost state.” In: Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan, Septem-
ber 18-22, 2016. Ed. by Jacques Garrigue, Gabriele Keller, and Eijiro

Sumii. ACM, 2016, pp. 256–269. doi: 10.1145/2951913.2951943 (cit.

on p. 49).

[Jun+18a] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. “Iris from the ground up: Amodular founda-

tion for higher-order concurrent separation logic.” In: J. Funct. Program.
28 (2018), e20. doi: 10.1017/S0956796818000151 (cit. on pp. 21, 43,

76, 94, 124, 133).

[Jun+18b] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. “Iris from the ground up: Amodular founda-

tion for higher-order concurrent separation logic.” In: J. Funct. Program.
28 (2018), e20. doi: 10.1017/S0956796818000151 (cit. on p. 49).

[Jun+20a] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport,

Amin Timany, Derek Dreyer, and Bart Jacobs. “The future is ours:

prophecy variables in separation logic.” In: Proc. ACM Program. Lang.
4.POPL (2020), 45:1–45:32. doi: 10.1145/3371113 (cit. on pp. 12, 50).

https://doi.org/10.1145/41625.41627
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113

BIBLIOGRAPHY 184

[Jun+20b] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport,

Amin Timany, Derek Dreyer, and Bart Jacobs. “The future is ours:

prophecy variables in separation logic.” In: Proc. ACM Program. Lang.
4.POPL (2020), 45:1–45:32. doi: 10.1145/3371113 (cit. on p. 30).

[Jun+15a] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants

as an Orthogonal Basis for Concurrent Reasoning.” In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
Ed. by Sriram K. Rajamani and David Walker. ACM, 2015, pp. 637–650.

doi: 10.1145/2676726.2676980 (cit. on pp. 48, 49, 58, 74).

[Jun+15b] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. “Iris: Monoids and Invariants

as an Orthogonal Basis for Concurrent Reasoning.” In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
Ed. by Sriram K. Rajamani and David Walker. ACM, 2015, pp. 637–650.

doi: 10.1145/2676726.2676980 (cit. on p. 124).

[Kai+17] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and

Viktor Vafeiadis. “Strong Logic for Weak Memory: Reasoning About

Release-Acquire Consistency in Iris.” In: 31st European Conference on
Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona,
Spain. Ed. by Peter Müller. Vol. 74. LIPIcs. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2017, 17:1–17:29. isbn: 978-3-95977-035-4. doi:

10.4230/LIPIcs.ECOOP.2017.17 (cit. on pp. 12, 62, 77, 81).

[Kai+19] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and

Young-ri Choi. “SLM-DB: Single-Level Key-Value Store with Persistent

Memory.” In: 17th USENIX Conference on File and Storage Technologies,
FAST 2019, Boston, MA, February 25-28, 2019. Ed. by Arif Merchant and

Hakim Weatherspoon. USENIX Association, 2019, pp. 191–205 (cit. on

p. 76).

[KL21] Artem Khyzha and Ori Lahav. “Taming x86-TSO persistency.” In: Proc.
ACM Program. Lang. 5.POPL (2021), pp. 1–29. doi: 10.1145/3434328
(cit. on p. 122).

[Kre+18] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti,

Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud, andDerekDreyer.

“MoSeL: a general, extensible modal framework for interactive proofs in

separation logic.” In: Proc. ACM Program. Lang. 2.ICFP (2018), 77:1–77:30.
doi: 10.1145/3236772 (cit. on pp. 21, 50).

https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3434328
https://doi.org/10.1145/3236772

BIBLIOGRAPHY 185

[Kre+17a] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek

Dreyer, and Lars Birkedal. “The Essence of Higher-Order Concurrent

Separation Logic.” In: Programming Languages and Systems - 26th Eu-
ropean Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by Hongseok

Yang. Vol. 10201. Lecture Notes in Computer Science. Springer, 2017,

pp. 696–723. doi: 10.1007/978-3-662-54434-1_26 (cit. on p. 49).

[Kre+17b] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek

Dreyer, and Lars Birkedal. “The Essence of Higher-Order Concurrent

Separation Logic.” In: Programming Languages and Systems - 26th Eu-
ropean Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by Hongseok

Yang. Vol. 10201. Lecture Notes in Computer Science. Springer, 2017,

pp. 696–723. doi: 10.1007/978-3-662-54434-1_26 (cit. on p. 126).

[KTB17a] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs

in higher-order concurrent separation logic.” In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. Ed. by Giuseppe Castagna

and Andrew D. Gordon. ACM, 2017, pp. 205–217. isbn: 978-1-4503-4660-

3. doi: 10.1145/3009837 (cit. on pp. 21, 32, 34).

[KTB17b] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs

in higher-order concurrent separation logic.” In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. Ed. by Giuseppe Castagna

and Andrew D. Gordon. ACM, 2017, pp. 205–217 (cit. on p. 50).

[KTB17c] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs

in higher-order concurrent separation logic.” In: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. Ed. by Giuseppe Castagna

and Andrew D. Gordon. ACM, 2017, pp. 205–217. doi: 10 . 1145 /
3009837.3009855 (cit. on pp. 120, 127, 131).

[LF13a] Hongjin Liang and Xinyu Feng. “Modular verification of linearizability

with non-fixed linearization points.” In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle,
WA, USA, June 16-19, 2013. Ed. by Hans-Juergen Boehm and Cormac

Flanagan. ACM, 2013, pp. 459–470. isbn: 978-1-4503-2014-6. doi: 10.
1145/2491956.2462189 (cit. on p. 46).

[LF13b] Hongjin Liang and Xinyu Feng. “Modular verification of linearizability

with non-fixed linearization points.” In: ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle,

https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2491956.2462189

BIBLIOGRAPHY 186

WA, USA, June 16-19, 2013. Ed. by Hans-Juergen Boehm and Cormac

Flanagan. ACM, 2013, pp. 459–470. doi: 10.1145/2491956.2462189
(cit. on pp. 48, 73).

[MP22] Jean-Marie Madiot and François Pottier. “A separation logic for heap

space under garbage collection.” In: Proc. ACM Program. Lang. 6.POPL
(2022), pp. 1–28. doi: 10.1145/3498672 (cit. on pp. 14, 125).

[MS91] John M. Mellor-Crummey and Michael L. Scott. “Algorithms for scal-

able synchronization on shared-memory multiprocessors.” In: TOCS 9.1

(1991), pp. 21–65. doi: 10.1145/103727.103729 (cit. on p. 57).

[Met21] Meta. Folly: Facebook Open-source Library. https://github.com/
facebook/folly, last accessed: 2021-02-25. 2021 (cit. on p. 49).

[MJ21a] Glen Mével and Jacques-Henri Jourdan. “Formal verification of a concur-

rent bounded queue in a weak memory model.” In: Proc. ACM Program.
Lang. 5.ICFP (2021), pp. 1–29. doi: 10.1145/3473571 (cit. on pp. 73,

74).

[MJ21b] Glen Mével and Jacques-Henri Jourdan. “Formal verification of a concur-

rent bounded queue in a weak memory model.” In: Proc. ACM Program.
Lang. 5.ICFP (2021), pp. 1–29. doi: 10.1145/3473571 (cit. on p. 122).

[MJP20] Glen Mével, Jacques-Henri Jourdan, and François Pottier. “Cosmo: a

concurrent separation logic for multicore OCaml.” In: Proc. ACM Pro-
gram. Lang. 4.ICFP (2020), 96:1–96:29. doi: 10.1145/3408978 (cit. on

pp. 12, 73).

[MS96a] Maged Michael and Michael Scott. “Simple, Fast, and Practical Non-

Blocking and Blocking Concurrent Queue Algorithms.” In: PODC. 1996,
pp. 267–275. doi: 10.1145/248052.248106 (cit. on pp. 49, 51).

[MS96b] MagedM. Michael andMichael L. Scott. “Simple, Fast, and Practical Non-

Blocking and Blocking Concurrent Queue Algorithms.” In: Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed
Computing, Philadelphia, Pennsylvania, USA, May 23-26, 1996. Ed. by
James E. Burns and Yoram Moses. ACM, 1996, pp. 267–275. doi: 10.
1145/248052.248106 (cit. on pp. 19, 24).

[MCP23] Alexandre Moine, Arthur Charguéraud, and François Pottier. “A High-

Level Separation Logic for Heap Space under Garbage Collection.” In:

Proc. ACM Program. Lang. 7.POPL (2023), pp. 718–747. doi: 10.1145/
3571218 (cit. on p. 125).

[MWB24] Alexandre Moine, Sam Westrick, and Stephanie Balzer. “DisLog: A

Separation Logic for Disentanglement.” In: Proceedings of the ACM on
Programming Languages 8.POPL (Jan. 2024). doi: 10.1145/3632853
(cit. on p. 14).

https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/3498672
https://doi.org/10.1145/103727.103729
https://github.com/facebook/folly
https://github.com/facebook/folly
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3408978
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/3571218
https://doi.org/10.1145/3571218
https://doi.org/10.1145/3632853

BIBLIOGRAPHY 187

[MT19] Andrzej S. Murawski and Nikos Tzevelekos. “Higher-order linearisabil-

ity.” In: J. Log. Algebraic Methods Program. 104 (2019), pp. 86–116. doi:
10.1016/j.jlamp.2019.01.002 (cit. on p. 20).

[Nan+14] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés

Delbianco. “Communicating State Transition Systems for Fine-Grained

Concurrent Resources.” In: Programming Languages and Systems - 23rd
European Symposium on Programming, ESOP 2014, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings. Ed. by Zhong Shao.

Vol. 8410. Lecture Notes in Computer Science. Springer, 2014, pp. 290–

310. doi: 10.1007/978-3-642-54833-8_16 (cit. on p. 58).

[PB05] Matthew Parkinson and Gavin Bierman. “Separation logic and abstrac-

tion.” In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005, Long Beach, California,
USA, January 12-14, 2005. Ed. by Jens Palsberg and Martín Abadi. ACM,

2005, pp. 247–258. doi: 10.1145/1040305.1040326 (cit. on p. 58).

[PCW14] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. “Memory per-

sistency.” In: ACM/IEEE 41st International Symposium on Computer Ar-
chitecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014. IEEE
Computer Society, 2014, pp. 265–276. isbn: 978-1-4799-4396-8. doi:

10.1109/ISCA.2014.6853222 (cit. on p. 81).

[RLV20] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. “Persistent Owicki-Gries

reasoning: a program logic for reasoning about persistent programs on

Intel-x86.” In: Proc. ACM Program. Lang. 4.OOPSLA (2020), 151:1–151:28.

doi: 10.1145/3428219 (cit. on pp. 13, 76, 78, 113, 114, 120).

[Raa+20] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. “Persis-

tency semantics of the Intel-x86 architecture.” In: Proc. ACM Program.
Lang. 4.POPL (2020), 11:1–11:31. doi: 10.1145/3371079 (cit. on p. 122).

[RWV19] Azalea Raad, John Wickerson, and Viktor Vafeiadis. “Weak persistency

semantics from the ground up: formalising the persistency semantics

of ARMv8 and transactional models.” In: Proc. ACM Program. Lang.
3.OOPSLA (2019), 135:1–135:27. doi: 10.1145/3360561 (cit. on p. 122).

[RCF21] Pedro Ramalhete, Andreia Correia, and Pascal Felber. “Efficient algo-

rithms for persistent transactional memory.” In: PPoPP ’21: 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Virtual Event, Republic of Korea, February 27- March 3, 2021. Ed. by Jaejin
Lee and Erez Petrank. ACM, 2021, pp. 1–15. isbn: 978-1-4503-8294-6.

doi: 10.1145/3437801.3441586 (cit. on p. 76).

https://doi.org/10.1016/j.jlamp.2019.01.002
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1145/3428219
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://doi.org/10.1145/3437801.3441586

BIBLIOGRAPHY 188

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable Data

Structures.” In: 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings. 2002, pp. 55–
74. doi: 10.1109/LICS.2002.1029817 (cit. on p. 21).

[RDG14] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

“TaDA: A logic for time and data abstraction.” In: ECOOP. Vol. 8586.
LNCS. 2014, pp. 207–231. doi: 10.1007/978-3-662-44202-9_9
(cit. on pp. 12, 74).

[SDW14] Gerhard Schellhorn, John Derrick, and Heike Wehrheim. “A Sound

and Complete Proof Technique for Linearizability of Concurrent Data

Structures.” In: ACM Trans. Comput. Log. 15.4 (2014), 31:1–31:37. doi:
10.1145/2629496 (cit. on p. 46).

[Sch+15] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and Hasso

Plattner. “nvm malloc: Memory Allocation for NVRAM.” In: Interna-
tionalWorkshop on Accelerating DataManagement Systems UsingModern
Processor and Storage Architectures - ADMS 2015, Kohala Coast, Hawaii,
USA, August 31, 2015. Ed. by Rajesh Bordawekar, Tirthankar Lahiri,

Bugra Gedik, and Christian A. Lang. 2015, pp. 61–72 (cit. on p. 76).

[SNB15] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. “Mechanized

verification of fine-grained concurrent programs.” In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015. Ed. by David Grove
and Steve Blackburn. ACM, 2015, pp. 77–87. doi: 10.1145/2737924.
2737964 (cit. on p. 48).

[Sha+23] Upamanyu Sharma, Ralf Jung, Joseph Tassarotti, M. Frans Kaashoek, and

Nickolai Zeldovich. “Grove: a Separation-Logic Library for Verifying

Distributed Systems (Extended Version).” In: CoRR abs/2309.03046 (2023).

doi: 10.48550/arXiv.2309.03046. arXiv: 2309.03046 (cit. on

p. 125).

[Spi+21] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert

Krebbers, Derek Dreyer, and Lars Birkedal. “Transfinite Iris: resolving

an existential dilemma of step-indexed separation logic.” In: PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021.
Ed. by Stephen N. Freund and Eran Yahav. ACM, 2021, pp. 80–95. doi:

10.1145/3453483.3454031 (cit. on p. 126).

[SB14] Kasper Svendsen and Lars Birkedal. “Impredicative Concurrent Abstract

Predicates.” In: Programming Languages and Systems - 23rd European
Symposium on Programming, ESOP 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014, Greno-
ble, France, April 5-13, 2014, Proceedings. Ed. by Zhong Shao. Vol. 8410.

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/2629496
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.48550/arXiv.2309.03046
https://arxiv.org/abs/2309.03046
https://doi.org/10.1145/3453483.3454031

BIBLIOGRAPHY 189

Lecture Notes in Computer Science. Springer, 2014, pp. 149–168. doi:

10.1007/978-3-642-54833-8_9 (cit. on p. 48).

[SBP13] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. “Modular

Reasoning about Separation of Concurrent Data Structures.” In: ESOP.
Vol. 7792. LNCS. 2013, pp. 169–188. isbn: 978-3-642-37036-6. doi: 10.
1007/978-3-642-37036-6_11 (cit. on pp. 12, 74).

[TB19] Amin Timany and Lars Birkedal. “Mechanized relational verification of

concurrent programs with continuations.” In: Proc. ACM Program. Lang.
3.ICFP (2019), 105:1–105:28. doi: 10.1145/3341709 (cit. on pp. 139,

142, 151).

[Tim+21] Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon

Gondelman, Abel Nieto, and Lars Birkedal. “Trillium: Unifying Re-

finement and Higher-Order Distributed Separation Logic.” In: CoRR
abs/2109.07863 (2021). arXiv: 2109.07863 (cit. on p. 14).

[Tim+18] Amin Timany, Léo Stefanesco,Morten Krogh-Jespersen, and Lars Birkedal.

“A logical relation for monadic encapsulation of state: proving contex-

tual equivalences in the presence of runST.” In: Proc. ACM Program. Lang.
2.POPL (2018), 64:1–64:28. doi: 10.1145/3158152 (cit. on pp. 126, 152).

[TDB13] Aaron Turon, Derek Dreyer, and Lars Birkedal. “Unifying refinement

and hoare-style reasoning in a logic for higher-order concurrency.”

In: ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013. Ed. by Greg Morrisett

and Tarmo Uustalu. ACM, 2013, pp. 377–390. doi: 10.1145/2500365.
2500600 (cit. on pp. 48, 50, 70, 73).

[Tur+13a] Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek

Dreyer. “Logical relations for fine-grained concurrency.” In: The 40th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. Ed. by Roberto

Giacobazzi and Radhia Cousot. ACM, 2013, pp. 343–356. doi: 10.1145/
2429069.2429111 (cit. on pp. 48, 71, 73).

[TVD14] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. “GPS: navigating

weak memory with ghosts, protocols, and separation.” In: Proceedings of
the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014,
Portland, OR, USA, October 20-24, 2014. 2014, pp. 691–707. doi: 10.1145/
2660193.2660243 (cit. on pp. 62, 77, 121).

[TW11] Aaron Turon and Mitchell Wand. “A separation logic for refining con-

current objects.” In: Proceedings of the 38th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26-28, 2011. Ed. by Thomas Ball and Mooly Sagiv. ACM,

2011, pp. 247–258. doi: 10.1145/1926385.1926415 (cit. on p. 48).

https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1145/3341709
https://arxiv.org/abs/2109.07863
https://doi.org/10.1145/3158152
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/1926385.1926415

BIBLIOGRAPHY 190

[Tur+13b] Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal,

and Derek Dreyer. “Logical relations for fine-grained concurrency.” In:

The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013.
Ed. by Roberto Giacobazzi and Radhia Cousot. ACM, 2013, pp. 343–356.

doi: 10.1145/2429069.2429111 (cit. on pp. 20, 21, 34, 42).

[Vaf08] Viktor Vafeiadis. “Modular fine-grained concurrency verification.” PhD

thesis. University of Cambridge, 2008 (cit. on p. 48).

[Vaf10] Viktor Vafeiadis. “Automatically Proving Linearizability.” In: Computer
Aided Verification, 22nd International Conference, CAV 2010, Edinburgh,
UK, July 15-19, 2010. Proceedings. Ed. by Tayssir Touili, Byron Cook, and

Paul B. Jackson. Vol. 6174. Lecture Notes in Computer Science. Springer,

2010, pp. 450–464. isbn: 978-3-642-14294-9. doi: 10.1007/978-3-642-
14295-6_40 (cit. on p. 46).

[VN13] Viktor Vafeiadis and Chinmay Narayan. “Relaxed separation logic: a

program logic for C11 concurrency.” In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013. Ed. by Antony L. Hosking,

Patrick Th. Eugster, and Cristina V. Lopes. ACM, 2013, pp. 867–884. isbn:

978-1-4503-2374-1. doi: 10.1145/2509136.2509532 (cit. on p. 77).

[VP07] Viktor Vafeiadis andMatthewParkinson. “AMarriage of Rely/Guarantee

and Separation Logic.” In: CONCUR 2007 - Concurrency Theory, 18th In-
ternational Conference, CONCUR 2007, Lisbon, Portugal, September 3-8,
2007, Proceedings. Ed. by Luís Caires and Vasco Thudichum Vasconcelos.

Vol. 4703. Lecture Notes in Computer Science. Springer, 2007, pp. 256–

271. doi: 10.1007/978-3-540-74407-8_18 (cit. on p. 48).

[VP23] Paulo Emílio de Vilhena and François Pottier. “A Type System for Effect

Handlers and Dynamic Labels.” In: Programming Languages and Systems
- 32nd European Symposium on Programming, ESOP 2023, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings. Ed. by Thomas

Wies. Vol. 13990. Lecture Notes in Computer Science. Springer, 2023,

pp. 225–252. doi: 10.1007/978-3-031-30044-8_9 (cit. on p. 14).

[VB23a] Simon Vindum and Lars Birkedal. “Spirea: A Mechanized Concurrent

Separation Logic for Weak Persistent Memory.” In: Proc. ACM Program.
Lang. OOPSLA (2023) (cit. on pp. 124, 132).

[VB20] Simon Friis Vindum and Lars Birkedal. Contextual Refinement of the
Michael-Scott Queue - Coq Artifact. Version 1.0.0. Dec. 2020. doi: 10.
5281/zenodo.4317021 (cit. on p. 22).

https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.5281/zenodo.4317021
https://doi.org/10.5281/zenodo.4317021

BIBLIOGRAPHY 191

[VB21] Simon Friis Vindum and Lars Birkedal. “Contextual refinement of the

Michael-Scott queue (proof pearl).” In: CPP ’21: 10th ACM SIGPLAN
International Conference on Certified Programs and Proofs, Virtual Event,
Denmark, January 17-19, 2021. ACM, 2021, pp. 76–90. doi: 10.1145/
3437992.3439930 (cit. on pp. 13, 16, 66).

[VB23b] Simon Friis Vindum and Lars Birkedal. Artifact for the paper "Spirea: A
Mechanized Concurrent Separation Logic for Weak Persistent Memory" in
OOPSLA23. Sept. 2023. doi: 10.5281/zenodo.8314888 (cit. on p. 80).

[VB23c] Simon Friis Vindum and Lars Birkedal. “Spirea: A Mechanized Con-

current Separation Logic for Weak Persistent Memory.” In: Proc. ACM
Program. Lang. 7.OOPSLA2 (Oct. 2023). doi: 10.1145/3622820 (cit. on

pp. 14, 17, 84).

[VFB21] Simon Friis Vindum, Dan Frumin, and Lars Birkedal.Coq development for
"Mechanized Verification of a Fine-Grained Concurrent Queue fromMeta’s
Folly Library". Version 1.0.0. Dec. 2021. doi: 10.5281/zenodo.5770802
(cit. on p. 51).

[VFB22] Simon Friis Vindum, Dan Frumin, and Lars Birkedal. “Mechanized veri-

fication of a fine-grained concurrent queue from meta’s folly library.”

In: CPP ’22: 11th ACM SIGPLAN International Conference on Certified
Programs and Proofs, Philadelphia, PA, USA, January 17 - 18, 2022. Ed. by
Andrei Popescu and Steve Zdancewic. ACM, 2022, pp. 100–115. doi:

10.1145/3497775.3503689 (cit. on pp. 13, 16).

[VTS11] Haris Volos, Andres Jaan Tack, and Michael M. Swift. “Mnemosyne:

lightweight persistent memory.” In: Proceedings of the 16th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2011, Newport Beach, CA, USA, March 5-11,
2011. Ed. by Rajiv Gupta and Todd C. Mowry. ACM, 2011, pp. 91–104.

isbn: 978-1-4503-0266-1. doi: 10.1145/1950365.1950379 (cit. on

p. 76).

[Woo+14] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W

Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter GNeumann,

Robert Norton, and Michael Roe. “The CHERI capability model: Revisit-

ing RISC in an age of risk.” In: ACM SIGARCH Computer Architecture
News 42.3 (2014), pp. 457–468 (cit. on p. 142).

[Zou+19] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo Chen.

“Using concurrent relational logic with helpers for verifying the AtomFS

file system.” In: Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30,
2019. Ed. by Tim Brecht and Carey Williamson. ACM, 2019, pp. 259–274.

doi: 10.1145/3341301.3359644 (cit. on p. 73).

https://doi.org/10.1145/3437992.3439930
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.5281/zenodo.8314888
https://doi.org/10.1145/3622820
https://doi.org/10.5281/zenodo.5770802
https://doi.org/10.1145/3497775.3503689
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/3341301.3359644

	Abstract
	Resumé
	Acknowledgments
	Contents
	Overview
	Introduction
	Challenges: Concurrency and Persistency
	Correctness Criteria for Concurrent and Durable Data-Structures
	Program Logics for Concurrency and Persistency
	Contributions and Structure

	Publications
	Contextual Refinement of the Michael-Scott Queue
	Introduction
	The MS-Queue
	Structure of a Refinement Proof
	Persistent Points-To Predicate
	Invariant for the Refinement Proof
	Refinement Proof of the MS-Queue
	Consistent Snapshots Can Be Omitted
	Lagging-Tail MS-Queue
	Defining the Persistent Points-To Predicate
	Related Work

	Mechanized Verification of a Fine-Grained Concurrent Queue from Meta's Folly Library
	Introduction
	The Folly MPMC queue
	Linearizability of the MPMC queue
	Specifications for the Turn Sequencer and the Single-Element Queue
	Proof of Contextual Refinement
	Invariant for Refinement Proof
	Extending ReLoC with Support for External Linearization Points
	Discussion: Conclusion, Related and Future Work

	Spirea: A Mechanized Concurrent Separation Logic for Weak Persistent Memory
	Introduction
	Persistent Memory Verification Challenges
	Operational Semantics
	Background: Crash Reasoning Features In Perennial
	BaseSpirea – The Low-Level Logic
	Spirea
	Soundness
	Case Studies
	Related and Future Work

	The Nextgen Modality: A Modality for Non-Frame-Preserving Updates in Separation Logic
	Introduction
	Background and Related Work
	The Basic Nextgen Modality
	Case Study of the Nextgen Modality
	Related and Future Work

	A Nextgen Modality For Crashes In Spirea
	Introduction
	Why Spirea Needs the Nextgen Modality
	Requirements
	A Nextgen Modality With Picks
	Extending the Modality With Promises
	A Generation-Aware State Interpretation for BaseSpirea
	Model
	Conclusion and Future Work

	Bibliography

