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Concurrent separation logic has been responsible for major advances in the formal verification of fine-grained

concurrent algorithms and data structures such as locks, barriers, queues, and reference counters. The key

ingredient of the verification of a fine-grained program is an invariant, which relates the physical data

representation (on the heap) to a logical representation (in mathematics) and to the state of the threads (using a

form of ghost state). An invariant is typically represented as a disjunction of logical states, but this disjunctive

nature makes invariants a difficult target for automated verification. Current approaches roughly suffer from

two problems. They use backtracking to introduce disjunctions in an uninformed manner, which can lead to

unprovable goals if an appropriate case analysis has not been made before choosing the disjunct. Moreover,

they eliminate disjunctions too eagerly, which can cause poor efficiency.

While disjunctions are no problem for automated provers based on classical (i.e., non-separating) logic,

the challenges with disjunctions are prominent in the study of proof automation for intuitionistic logic. We

take inspiration from that area—specifically, based on ideas from connection calculus, we design a simple

multi-succedent calculus for separation logic with disjunctions featuring a novel concept of a connection. While

our calculus is not complete, it has the advantage that it can be extended with features of the start-of-the-art

concurrent separation logic Iris (such as modalities, higher-order quantification, ghost state, and invariants),

and can be implemented effectively in the Coq proof assistant with little need for backtracking. We evaluate

the practicality on 24 challenging benchmarks, 14 of which we can verify fully automatically.
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1 INTRODUCTION

Separation logic [O’Hearn et al. 2001; Reynolds 2002] and its successor concurrent separation
logic [Brookes 2007; O’Hearn 2007] have shown to be invaluable to modularly verify increasingly
complicated programs that involve pointers and shared-memory concurrency. Already from the
early days of separation logic, researchers have investigated how separation logic could be used
for automated verification. The seminal work by Berdine et al. [2005, 2006] on symbolic execution
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in separation logic has been instrumental in the development of (mostly)-automated tools for
proving functional correctness [Jacobs et al. 2011; Müller et al. 2016; Oortwijn et al. 2020; Piskac
et al. 2014b], including foundational tools that are embedded and proved sound in general-purpose
proof assistants [Chlipala 2011; Mulder et al. 2022; Sammler et al. 2021].
A particular subfield concerns the automated verification of fine-grained concurrent programs

[Calcagno et al. 2007; Dinsdale-Young et al. 2017; Mulder et al. 2022; Windsor et al. 2017]. Such
programs use low-level atomic operations (such as compare-and-swap) instead of high-level con-
currency primitives (such as locks). The verification of these programs is particularly challenging
because one needs to define an invariant, which describes how ownership is shared and transferred
between threads, and prove this invariant holds after every step the program takes. The invariant
usually consists of a disjunction of the logical states the program (or data structure) can be in,
together with some form of ghost state (or a protocol) to relate each disjunct to the state of the
threads [Dinsdale-Young et al. 2010]. Depending on the shape of the invariant, state-of-the-art tools
can automatically verify the program. In the ideal case, logical states correspond one-to-one to the
physical states of the program (i.e., the data on the heap). For example, to verify a spin lock, the
invariant has two disjuncts that correspond to whether the lock (represented as a Boolean on the
heap) is in the locked or unlocked state.
The more challenging case arises if the logical states do not correspond exactly to the physical

states of the program. An example is an atomic reference counter (ARC), such as the one in Rust
Language [2021], that keeps track of the number of readers of a shared resource. In the verification
there are two logical states/disjuncts—either there exists a positive number of readers matching up
with the integer value of the ARC, or there are no readers left and the ARC has been deallocated.
In the last disjunct, there is no corresponding physical state (i.e., points-to assertion) since the ARC
has been deallocated. State-of-the-art automated tools need user guidance to verify some of ARC’s
methods w.r.t. this challenging invariant. In Starling [Windsor et al. 2017] one needs to add an
annotation for each program statement. In Caper [Dinsdale-Young et al. 2017] it is needed to insert
a no-op assert (cnt = 1 ? true : true) into the code of one method to force the automation
to perform a case split. In Diaframe [Mulder et al. 2022] one needs to fall back to an interactive
proof in this same method, to perform a case split similar to the one in Caper.

Dealing with disjunctions % ∨& in separation logic is challenging because the disjuncts % and &
can be arbitrary formulas of separation logic. That is, they can contain ∗ and ↦→: logical operators
that are not part of the native logic of automated provers based on classical logic (e.g., SMT).
Logics such as Iris go beyond that by allowing % and & to also contain higher-order quantification,
invariants and modalities.1 The aforementioned tools for automated verification in fine-grained
concurrent separation logic deal with disjunctions (i.e., the logical states of the invariant) roughly
as follows. Before each program instruction, they make a case distinction on the logical states
of the invariant. Some of these cases can discharged because they lead to a contradiction with
other (ghost) resources that are owned by the thread. After symbolic execution of the program
instruction, the invariant needs to be reestablished, which is done by backtracking on all logical
states of the invariant. That is, the automation picks one of the states of the invariant, then attempts
to finish the proof. If this fails, another state is tried until the proof succeeds. This approach works
surprisingly well for the ideal cases described above (e.g., the spin lock), but is insufficient for the
more challenging ones (e.g., the ARC). There are three problems:

1An additional challenge is that the standard way SMT-like solvers may approach disjunctions is by assuming the negation of

all cases, and showing a contradiction: to establish ⊢ % ∨& , they will try to prove ¬%,¬& ⊢ ⊥. This approach is incompatible

with intuitionistic/non-classical logics where the Law of Excluded Middle (LEM) does not hold. Cao et al. [2017] show that

LEM does not hold in advanced separation logics such as Iris.
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• Debugging/cooperation with interactive proofs. It is difficult to determine why a proof
by backtracking failed (bug in the specification, bug in the program, or the problem being
too difficult for the automation) without investigating all choices the backtracking algorithm
considered. Similarly, if a backtracking proof fails, there is no canonical sub-goal where the
user could continue with an interactive proof.

• Uninformed disjunction introduction.When proving Δ ⊢ % ∨& , it is often the case that
neither Δ ⊢ % nor Δ ⊢ & is true. Merely backtracking on the left/right introduction of % ∨&

will thus never find a proof. Instead, one needs to perform some case analysis first. For
example, in our ARC example, one needs to make a distinction on whether the reference
counter had value 1 to decide if % or & should be introduced.

• Overeager disjunction elimination. To verify more complicated programs one often uses
multiple invariants simultaneously. For example, to verify an MCS lock [Mellor-Crummey
and Scott 1991] or CLH lock [Magnusson et al. 1994], one typically uses a separate invariant
for each location/node. This may cause up to 4 such invariants to be in scope, and it would
be inefficient to consider all states/disjuncts (for each program instruction, there will be an
exponential number of cases). Caper uses backtracking to try to perform case analysis on the
least number of invariants, which works well for successful verification attempts, but leads
to very slow times for failing verification attempts [Wolf et al. 2021].

The last two problems are well-known in the context of proof search in intuitionistic logic. For
instance, to show % ∨& ⊢ & ∨ % , one first needs to eliminate the disjunction on the left, and only
afterwards, a disjunct on the right can be chosen. In this example, the disjunction on the left could
be eagerly eliminated by a proof search procedure, but in general, this is impossible because the
disjunction could be the conclusion of a hypothesis ∀®G . '1 → . . . → '= → % ∨& . After all, there
are infinitely many ways to instantiate ®G . Indeed, procedures for proof search in intuitionistic logic
available in proof assistants are either restricted to the propositional fragment (such as the tauto
tactic in Coq), perform blind quantifier instantiation (such as the firstorder tactic in Coq) or are
already incomplete for trivial goals (such as the eauto tactic in Coq). An efficient and complete
solver for first-order intuitionistic logic is the ileanCop automated theorem prover [Otten 2008],
which is based on connection calculi [Otten and Kreitz 1995; Waaler 2001; Wallen 1990]. Intuitively,
the idea behind these calculi is to establish a connection between parts of a hypothesis and the goal.
This connection makes sure that the correct disjunction (on the left) is eliminated, and the correct
disjunct (on the right) is introduced, thereby addressing the two problems we sketched.

The completeness of solvers based on connection calculus allows them to take an all-or-nothing
approach: either the proof is finished, the goal is declared unprovable, or proof search does not
terminate. Such an approach becomes untenable in more bespoke logics such as concurrent separa-
tion logic. However, useful proof automation for these logics does exist [Chlipala 2011; Mulder et al.
2022; Sammler et al. 2021], and usually relies on a tailor-made, backward-chaining (Prolog-style)
proof search strategy. Such strategies can be applied in a step-wise fashion, where each step replaces
an entailment by one or multiple simpler entailments. To do so, these strategies need a way to
detect what hypotheses are relevant to what (part of the) goal. This is what we are looking for: a
set of rules to determine appropriate disjunctions to eliminate and disjuncts to introduce.
To design such a set of rules, we take inspiration from connection calculus, which results in

a simple calculus with connections for separation logics. Our approach is not tied to a specific
model of separation logic (e.g., Iris), we support any bunched implications (BI) logic [O’Hearn and
Pym 1999; Pym 2002]. We implement and evaluate the practicality of our calculus in the Diaframe
automation tool [Mulder et al. 2022] for the Iris framework of higher-order concurrent separation
logic in Coq [Jung et al. 2016, 2018, 2015; Krebbers et al. 2018, 2017a,b]. Our simple calculus does not
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yield a complete proof search procedure, but our evaluation suggests that it significantly improves
on the state-of-the-art on automated verification of practical examples in fine-grained concurrent
separation logic—also for examples with coarse-grained concurrency. The key strength of our
calculus is that it can be extended with many features outside of first-order logic, such as Iris’s
modalities, higher-order quantification, ghost state mechanisms, and invariant assertions. For this
purpose, theoretical completeness is not essential and simplicity is preferable.

We base our calculus on a focused version of intuitionistic multi-succedent calculus by Dragalin
[1988]. Focusing [Andreoli 1992; Liang and Miller 2009; Simmons 2014] addresses the issue of rule
non-permutability by dividing the proof search into two alternating phases: the inversion phase
in which invertible rules are eagerly applied, and the focusing phase which groups sequences of
non-invertible rules. This approach limits backtracking to the choice of a connection in the focusing
phase, thereby significantly reducing the search space, and in turn increasing the efficiency and
predictability of the proof automation. The multi-succedent aspect of our calculus allows it to delay
choosing which disjunct to introduce.

A key feature of concurrent separation logics such as Iris is their support for ghost state, which
is used to relate the logical state of the invariant to the state of the individual threads. Crucially,
after each program instruction, the ghost state needs to be updated to match up with the effect of
the instruction. There are often multiple ways in which the ghost state can be updated. This is a
disjunctive pattern that influences the connections we should consider. Since Iris provides various
forms of ghost theories, we do not want to hard-wire their rules into our calculus. We thus make
our calculus parametric in ground connections to describe “domain-specific” rules for the atoms.
This mechanism is suitable to, but not limited to, describe the rules of Iris’s ghost theories.

Outline and contributions. Our contributions are as follows:

• We present our approach on a minimal calculus for regular (non-separating) propositional
logic (§3). This calculus is based on a focused version of intuitionistic multi-succedent calculus
by Dragalin [1988], incorporating ideas from focusing and connection calculi.

• We extend our approach to propositional separation logic (§4). To deal with the substructural
aspects of separation logic, we combine our calculus with the goal-directed approach to
handle separating conjunctions from RefinedC [Sammler et al. 2021].

• We extend our approach to the higher-order concurrent separation logic Iris by integrating it
into the Diaframe proof automation tool (§5). To make our calculus parametric in domain-
specific theories (such as those for ghost state), we combine our notion of ground connections
with Diaframe’s notion of bi-abduction hints.

• We implement our approach in the proof assistant Coq [Mulder et al. 2023] (§6). The im-
plementation contains machine-checked soundness proofs of both the minimal version for
propositional logic and the full-blown version. The full-blown version provides various tactics
that can execute the procedure automatically.

• We evaluate our implementation on 24 examples (§7). We can verify 14/24 examples fully
automatically, and reduce the overall proof burden by 33% compared to the original Diaframe.
We also compare to the SMT-based verification tool Caper [Dinsdale-Young et al. 2017], which
supports 15/24 examples, and can do 13/24 examples fully automatically.

We start by describing the problem in the context of two versions of the aforementioned ARC
example (§2), and conclude with a description of related work (§8).

2 MOTIVATING EXAMPLES

We show challenging uses of disjunctions that occur when verifying an Atomic Reference Counter
(ARC) inspired by Rust Language [2021]. ARCs are employed to safely give multiple threads read
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Context (P : Qp → iProp) {HP : Fractional P}.1

Definition mk arc : val :=2

_: <>, ref #1.3

Definition clone : val :=4

_: "a", FAA "a" #1;; #().5

Definition drop : val :=6

_: "a",7

let: "old val" := FAA "a" #(-1) in8

("old val" = #1).9

Definition arc inv (W : gname) (l : loc) : iProp :=10

∃ (n : nat), l ↦→ #n ∗ ((⌜n = 0⌝ ∗ no tokens P W)11

∨ (⌜0 < n⌝ ∗ token counter P W (Pos.of nat n))).12

Definition is arc (W : gname) (v : val) : iProp :=13

∃ (l : loc), ⌜v = #l⌝ ∗ inv N (arc inv W l).14

Program Instance mk arc spec :15

SPEC {{ P 1 }}16

mk arc #()17

{{ (v : val) (W : gname), RET v; is arc W v ∗ token P W }}.18

Program Instance clone arc spec (W : gname) (v : val) :19

SPEC {{ token P W ∗ is arc W v }}20

clone v21

{{ RET #(); token P W ∗ token P W }}.22

Program Instance drop arc spec (W : gname) (v : val) :23

SPEC {{ token P W ∗ is arc W v }}24

drop v25

{{ (b : bool), RET #b; (⌜b = true⌝ ∗ P 1) ∨ ⌜b = false⌝ }}.26

Fig. 1. Automatic verification of an ARC without deallocation

access to a resource, and to recover write access when all threads are done. The ARC we consider
accomplishes this by keeping a thread-safe tally of the number of active readers. ARCs usually
come with at least three methods: mk arc creates a new ARC for (initially) a single reader, clone
registers an additional reader thereby ‘duplicating’ read access, while drop deregisters a reader. The
drop method also returns whether the number of active readers is now zero, and gives back write
access if that is the case. Precisely this case distinction is problematic for automatic verification.

We verify two ARCs: a version that leaves deallocation to a garbage collector (§2.1), and a more
challenging version that performs an explicit deallocation on the last drop (§2.2). In prior work
[Dinsdale-Young et al. 2017; Mulder et al. 2022], verification of the drop method requires user
guidance, but our approach can verify it fully automatically. For both versions of ARC, we show
the precise subgoal in the drop verification at which prior work used to get stuck.

2.1 ARC Without Deallocation

An implementation of an ARC in Iris’s default programming language HeapLang [Jung et al. 2016]
is given in lines 2–9 of Fig. 1. We represent an ARC using a location that counts the number of
active readers. To create a new ARC, we return a new location that points to 1, indicating there is a
single reader. To clone the ARC, we use fetch-and-add (FAA) to atomically increment the reference
count by 1. Dually, to drop an ARC, we use FAA to atomically decrement the reference count by 1.
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The FAA method will return the old value of the location. We are the last reader precisely when
the old value was 1, hence drop returns the result of this comparison. Note that dropping the last
reader does not deallocate the location: we rely on garbage collection to do so.
The specification of this ARC is given in lines 15–26 of Fig. 1. Each method is specified using

a Hoare-style triple SPEC {!} 4 {®~, RET E ; * }. Such a triple indicates that if one owns resources
satisfying !, evaluating 4 is safe, and if 4 terminates, there exist instances of the logical variables ®~
so that the return value is precisely E , and one owns resources satisfying * . (Both E and * may
mention ®~.) The specifications in Fig. 1 mention resources is arc W E , representing the knowledge
that value E is an ARC with ghost name W , and resources token % W , representing read access to
shareable assertion % , governed by an ARC with name W . The ghost name W is used to tie the
token % W to a specific ARC. The definition of is arc will be discussed shortly.
The entire specification of this ARC is parameterized by the shareable assertion % , as can be

seen in line 1. Shareable assertions are represented as fractional permissions [Boyland 2003]. In
Iris these are well-behaved predicates % : Q? → iProp. Here iProp is the type of Iris assertions, and
Q? ≜ {@ ∈ Q | @ > 0}. We call % well-behaved (Fractional in Coq) if % @1 ∗ % @2 ⊣⊢ % (@1 + @2) for
all @1 and @2. The resource % 1 denotes write access, while % @ with 0 < @ < 1 denotes read access.
Read access % @ can be obtained from token % W resources (see token-access in Fig. 2).

Let us now explain the specifications. The specification for mk arc requires one to give up write
access % 1, after which the function returns a ghost nameW and value E for which we learn is arcW E ,
and additionally obtain a read access token % W . Tokens can be duplicated with clone: it requires
one token % W , but returns two. Finally, tokens can be destroyed with drop, which returns a Boolean.
Only if this Boolean is true (in case we are the last reader) do we recover write access % 1.

Both clone and drop can be called concurrently on a given ARC, meaning that multiple threads
can mutate the location storing the reference count. In separation logic, themaps-to resource ℓ ↦→ E

represents the right to mutate a location ℓ . This is an exclusive resource: only one thread can hold
it. However, in the case of ARC, we want to share this resource between multiple threads. To do so,

we employ Iris’s invariants mechanism. Iris’s invariant assertion ! represents the knowledge that

resources satisfying ! hold invariantly. Invariant assertions are duplicable (i.e., ! ⊣⊢ ! ∗ ! ), so
unlike maps-to resources, they can be shared between threads. The sharing via an invariant comes

at a cost—resources ! inside an invariant ! can be accessed only during atomic operations, such
as a load or an FAA instruction. After the operation finishes, we must show that the invariant still
holds. This is shown by Iris’s invariant accessing rule (simplified for presentation purposes):2

{! ∗ '} 4 {! ∗&} atomic 4
{

! ∗ '
}

4 {&}

Lines 10–14 contains the invariant we use to verify our ARC. We define a value E to be is arc if
it is a location ℓ , whose value is governed by an invariant (inv N in Coq). The resource arc inv

inside the invariant states that location ℓ points to a natural number =, i.e., ℓ ↦→ =. Additionally,
depending on whether = = 0, the invariant contains the resource no tokens % W or counter % W =.
(The notation ⌜q⌝ denotes the embedding of Coq proposition q in Iris’s separation logic.)

The no tokens % W , counter % W =, and token % W resources, are instances of ghost state—non-
physical resources that can express protocols. Besides their use for ARC, these resources are also
used to verify other data structures (e.g., readers-writer locks). These resources should be seen as
atoms of the logic, and are interpreted using an appropriate ghost theory in Iris. What is important

2Invariant !
N
carry a namespace N. The namespace is used to ensure that invariants cannot be accessed twice, which

would be unsound. Since Iris’s invariants are impredicative [Svendsen and Birkedal 2014], one only obtains the resources !

under a later modality, i.e., ⊲!. These technicalities require additional bookkeeping but are orthogonal to disjunctions.
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token-allocate

% 1 ⊢ |⇛∃W . counter % W 1 ∗ token % W

token-deallocate

counter % W 1 ∗ token % W ⊢ |⇛ (no tokens % W ∗ % 1)

token-mutate-incr

counter % W ? ⊢ |⇛ (counter % W (? + 1) ∗ token % W)
token-interact

no tokens % W ∗ token % W ⊢ ⊥

token-access

token % W ⊢ ∃@. % @ ∗ (% @ −∗ token % W)

token-mutate-decr

? > 1

counter % W ? ∗ token % W ⊢ |⇛counter % W (? − 1)

Fig. 2. The rules for the ‘token’ ghost theory.

is that they satisfy the rules in Fig. 2. Intuitively, the counter % W = resource states that there
are exactly = > 0 copies of token % W , while no tokens % W states that no token % W resources
exist. Most of these rules mention Iris’s update modality |⇛. This modality can be eliminated at
every program step, and can be ignored for our purposes. During the verification of mk arc, the
token-allocate rule is used to allocate a fresh W for which the counter % W 1 resource is put in the
invariant, and the token % W resource is returned. The verification of clone uses token-interact
to establish that the = = 0 disjunct of the invariant is contradictory. After incrementing the stored
value to = + 1, token-mutate-incr is used to create an additional token % W . The verification of
mk arc and clone poses no problems for state-of-the-art tools like Caper [Dinsdale-Young et al.
2017] and Diaframe [Mulder et al. 2022]. The problem lies with drop, where both tools require
guidance from the user. With our approach, drop can now be verified completely automatically.

Informed disjunction introduction in the verification of drop. Let us consider what hap-
pens during the verification of drop. When we execute the FAA instruction, we access our invariant
to obtain some = with ℓ ↦→ =. Similar to the proof of clone, the rule token-interact states that
the = = 0 disjunct in our invariant is contradictory, so we only need to consider the second clause,
i.e., that 0 < = and additionally we have counter % W =. After symbolic execution of FAA, we have
ℓ ↦→ (= − 1) and need to reestablish the invariant. It is easy to reestablish the first separating
conjunct of the invariant: we just need to relinquish the ℓ ↦→ (= − 1) resource. Reestablishing the
second part of the invariant requires us to prove the following separation logic entailment:

problem-gc-arc-drop

⌜= > 0⌝, counter % W =, token % W ⊢ |⇛

( (

⌜= − 1 = 0⌝ ∗ no tokens % W
)

∨
(

⌜0 < = − 1⌝ ∗ counter % W (= − 1)
)

)

∗ '

The disjunction originates from the invariant definition on line 11–12 in Fig. 1. The ∗' represents
the verification of the remaining body of drop:3 resources not required for restoring the invariant
may be needed in this remaining verification. Indeed, to verify the remaining body we need % 1

whenever drop returns true, and we can only obtain % 1 with token-deallocate.
Proving the disjunction in problem-gc-arc-drop is challenging—with the current proof context,

neither disjunct is provable. Both Caper and Diaframe try to backtrack on the choice of disjunct,
but backtracking is hopeless—a correct proof needs to perform a case analysis on whether = = 1. In
other words, it should consider whether we are the last reader, or there are more readers left. If
= = 1, the first disjunct is provable, while if = ≠ 1, the second disjunct is provable. Our approach
automatically detects the need for this case split by the presence of a ground connection from
Diaframe’s dummy hypothesis Y1 ≜ ⊤ to the pure guard ⌜= − 1 = 0⌝ (§5.3).

3To be more precise, we have ' ≜ wp (#= = #1) {E. ∃(1 : B) . ⌜E = #1⌝ ∗ ( (⌜1 = true⌝ ∗ % 1) ∨ ⌜1 = false⌝) }.
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Definition drop free : val :=1

_: "a",2

let: "old val" := FAA "a" #(-1) in3

if: "old val" = #1 then4

Free "a";; #true5

else6

#false.7

Definition arc inv free (W : gname) (l : loc) : iProp :=8

no tokens P W ∨ (∃ p : positive, l ↦→ #(Zpos p) ∗ token counter P W p).9

Definition is arc free (W : gname) (v : val) : iProp :=10

∃ (l : loc), ⌜v = #l⌝ ∗ inv N (arc inv free W l).11

Program Instance drop arc free spec (W : gname) (v : val) :12

SPEC {{ token P W ∗ is arc free W v }}13

drop v14

{{ (b : bool), RET #b; (⌜b = true⌝ ∗ P 1) ∨ ⌜b = false⌝ }}.15

Fig. 3. Automatic verification of an ARC with explicit deallocation.

2.2 ARC with Explicit Deallocation

The problematic disjunction in the previous subsection had a specific shape: (⌜q⌝ ∗ !1) ∨ !2, i.e.,
the left disjunct is guarded by a pure condition. One could imagine an ad-hoc approach that only
handles disjunctions guarded by pure conditions, but other proofs involve disjunctions where the
required case analysis is not this apparent from the syntax. We demonstrate this with a version of
the ARC where the location is deallocated when the last reader is dropped.

The changes in the implementation and verification of the modified ARC can be found in Fig. 3.
The mk arc and clone methods have the same implementation and specification, and are thus
omitted. The difference lies in the implementation of drop, which deallocates the location if called
with the last reader. In the logic, symbolic execution of Free will consume the maps-to resource
ℓ ↦→ =, after which this resource can no longer appear in the invariant. Accordingly, the invariant
arc inv free in line 8 now features a top-level disjunction. This disjunction states that either we
know that no tokens remain, or some tokens remain and location ℓ keeps a record of how many.

Accessing invariants with disjunctions. The changed invariant puts us in a bit of a pickle:
to symbolically execute the FAA in clone and drop free, we require an ℓ ↦→ = resource. In the
verification in §2.1 we are sure to get ℓ ↦→ = when opening the invariant, but this is no longer a
given in the current version. In the proof of clone and drop free, we need the token-interact
rule (which states that token % W and no tokens % W are contradictory) to even establish ℓ ↦→ =.
Two different approaches to deal with disjunction elimination have been considered in prior

work. Caper [Dinsdale-Young et al. 2017] handles them by trying to open any invariant (called
a region in Caper) in the proof context, finding contradictions if possible, and hoping to get the
relevant resource out of some of those invariants. This approach is sufficient to access the invariant
in this example, but it is very inefficient on goals with multiple invariants. Diaframe [Mulder et al.
2022] only accesses an invariant when it is sure the invariant is relevant for the goal—that is, the
invariant can be used to discharge the left-most separating conjunct. To symbolically execute
the FAA, it detects that it needs to establish a maps-to resource ℓ ↦→ = for some =. It thus looks
for invariants containing a maps-to resource for ℓ . Unfortunately, the maps-to resource appears
beneath a disjunction in our invariant, so Diaframe just gives up. To complete the proof, Diaframe
requires the user to guide the proof search. Our new approach is capable of looking beneath
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disjunctions to determine whether an invariant is relevant or not. It will establish a connection
between arc inv free and the goal ℓ ↦→ =, allowing it to automatically determine which invariant
to access. After finding the connection, the proof of clone proceeds largely the same as in §2.1.

Reestablishing invariants with non-guarded disjunctions. The verification of drop poses
another challenge. To reestablish the invariant after symbolic execution of the FAA instruction, we
need to prove the following entailment (where ? is a positive natural number):

problem-free-arc-drop

counter % W ?, token % W, ℓ ↦→ (? − 1) ⊢ |⇛

(
no tokens % W

∨ (∃? ′. ℓ ↦→ ? ′ ∗ counter % W ? ′)

)

∗ '

The disjunction behind the turnstile comes directly from the definition of the invariant arc inv free

on line 8–9 in Fig. 3. The situation is the same as in §2.1: neither side of the disjunction is provable, so
directly backtracking on the choice of disjunct is hopeless. The ∗' again represents the verification
of the remaining body of drop free, so it is crucial to know now which resources are necessary for
restoring the invariant: they might be needed to prove '. The resources for the invariant and for
the remaining verification are more entwined than before. If ? = 1, we need both ℓ ↦→ (? − 1) and
% 1 to finish the verification, since the Free ℓ operation will consume the maps-to resource.

We need to perform a case analysis between ? = 1 and ? ≠ 1 to continue, but this is not apparent
from the goal. Our approach can figure out this case distinction automatically, since an appropriate
ground connection is found from the counter % W ? to the no tokens % W resources (§5.3). This
connection instructs the proof search that if we may want to prove no tokens % W , and we have
counter % W ? , it should perform a case analysis on ? = 1 and ? ≠ 1 to proceed. This ground
connection allows us to verify this ARC automatically, but it is more generic than that. It is also
used in verifications of readers-writer locks, which also use ‘token’ ghost theory.

3 PROPOSITIONAL LOGIC

Wepresent the basic idea behind our approach for informed disjunction introduction and elimination.
The basic idea can be seen as relying on a significant simplification of the notion of connection
from connection calculi [Otten and Kreitz 1995; Waaler 2001; Wallen 1990]. These calculi are
complete for their specific logics, but not easy to extend to other formalisms, particularly separation
logic [Galmiche and Méry 2002]. We thus do not attempt to formulate a complete calculus, but
instead present a method that can be extended to separation logic (§4) and ultimately Iris (§5). A
comparison between our simplified version and complete connection calculi can be found in §8.

We start by phrasing the problems we have seen in §2 in the context of propositional intuitionistic
logic (§3.1). We illustrate our solution in this simple setting to give the reader an intuition, and to
highlight its essential proof-theoretic features, without getting distracted by specific features of
separation logic (e.g., substructural aspects) and Iris (e.g., invariants, ghost state, and modalities).
Our solution for this logic consists of a set of rules that enables goal-directed elimination and
introduction of disjunctions (§3.2). Finally, we work out a representative example (§3.3), and discuss
how our calculus can support domain-specific knowledge via ground connections (§3.4),

3.1 Challenges and Key Idea

Recall from §2 that disjunctions pose two challenges for automated proof search. First, when proving
Δ ⊢ % ∨& , neither Δ ⊢ % nor Δ ⊢ & might be true. In that case, uninformed disjunction introduction
by backtracking will never find a proof. Second, we consider disjunctions inside invariants, for
which it is often unclear if their elimination is helpful. In existing tools such disjunctions are either
eliminated overeagerly (in Caper [Dinsdale-Young et al. 2017]) or never (in Diaframe [Mulder
et al. 2022]). These challenges with disjunction introduction and elimination are not specific to
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concurrent separation logic. To see that, let us consider the following example (we let Δ ⊢p % denote
an entailment in intuitionistic propositional logic):

� → ((� ∧�) ∨ � ), � ⊢p � ∨ � .

A naive approach would be just to ‘try everything’, which at one point would eliminate the
implication and the disjunction underneath. As argued before, this naive approach is inefficient and
does not scale when considering quantifiers. Our approach instead notices that � occurs both in
the first hypothesis and in the first disjunct. Establishing a connection from the first hypothesis to
the first disjunct allows us to continue by proving two easier goals. Contrary to the naive approach,
we know upfront that eliminating the implication could help prove our goal, but we do not yet
know if we can prove the left-hand side of the implication.

3.2 Calculus

We now put the intuitive idea behind connections on a formal footing. We let �, �, and � range
over atoms, and let % and & range over formulas of intuitionistic propositional logic. We let the
contexts Δ and Γ be sets of formulas. We consider a formal system with two logical judgments:

• The entailment judgment Δ ⊢p Γ, which we interpret as
∧

Δ ⊢p
∨

Γ.
• The connection judgment %, [&] ⊢cp �, [Γ

′], which we interpret as % ∧& ⊢p � ∨
∨

Γ
′.

The idea of having a context Γ on the right is inspired by the multi-succedent calculus for intuition-
istic logic by Dragalin [1988]. While Dragalin only has the entailment judgment, we extend the
system with a connection judgment %, [&] ⊢cp �, [Γ

′]. This judgment establishes a connection from
formula % to atom �, with side-conditions & and remaining cases Γ′. The terms between brackets
can be seen as outputs: given a hypothesis % ∈ Δ and goal �, the rules of the judgment try to
establish a connection by determining appropriate & and Γ

′. Our rules ensure that the only way to
establish a connection from % to � is to find � occurring strictly positively in % , i.e., � occurs on
the right-hand side of any implication, but possibly under conjunctions and disjunctions.
The rules of our system can be found in Fig. 4. It is trivial to establish that these rules are

sound w.r.t. the semantic interpretation—they can simply be derived from the rules of intuitionistic
propositional logic (see §6 for more details how this is done in Coq). Inspired by focusing [Andreoli
1992; Liang and Miller 2009; Simmons 2014], the rules are divided into two groups: the inversion
phase, and the focusing phase. Eventually, we want to turn our rules into an algorithm. We intend
to apply inversion rules eagerly, without backtracking on the options. This limits the search space
and improves efficiency. One of the inversion rules will require a connection, and connections can
only be established with focusing rules. On these rules we do intend to backtrack. The premises of
focusing rules can only be established by other focusing rules.
Inversion phase. Rules R∧, R∨, R⊤ and L⊥ are all straightforward. The R→ rule chooses one

disjunct for implication introduction, after which the other disjuncts are no longer available. In a
classical logic, it would be valid to keep Γ around, but we consider an intuitionistic system. Eager
application of the above rules effectively digs up all atoms under conjunctions and disjunctions.
Once this is done, one uses the main workhorse F-a.

Suppose our goal is Δ ⊢p Γ with � ∈ Γ an atom. Rule F-a requires an hypothesis % ∈ Δ for which
a connection judgment %, [&] ⊢cp �, [Γ

′] can be established. Once such a connection is established,
it is sufficient to prove the side-condition &—we continue with goal Δ ⊢p &, Γ. Additionally, we
need to prove a new goal Δ,

∨

Γ
′ ⊢p Γ to cover the remaining cases. Here we define

∨

n ≜ ⊥ and
∨

(%1, . . . , %=) ≜ %1∨ . . .∨%= . To see why F-a is sound, note that proofs of Δ ⊢p &, Γ either establish
Δ ⊢p Γ or Δ ⊢p & . In the first case, we are done. In the latter case, our connection tells us that
Δ ⊢p �, Γ

′. Since for the remaining cases we have Δ,
∨

Γ
′ ⊢p Γ the rule is sound.
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R∧
Δ ⊢p %, Γ Δ ⊢p &, Γ

Δ ⊢p % ∧&, Γ

R∨
Δ ⊢p %,&, Γ

Δ ⊢p % ∨&, Γ

R⊤

Δ ⊢p ⊤, Γ

R→
Δ, & ⊢p %

Δ ⊢p & → %, Γ

L⊥

Δ,⊥ ⊢p Γ

F-a

% ∈ Δ � ∈ Γ %, [&] ⊢cp �, [Γ
′] Δ ⊢p &, Γ Δ,

∨

Γ
′ ⊢p Γ

Δ ⊢p Γ

Inversion phase

Focusing phase

L-a

�, [⊤] ⊢cp �, [n]

L∧
%8 , [&] ⊢

c
p �, [Γ

′]

(%1 ∧ %2), [&] ⊢
c
p �, [Γ

′]

L→
%, [&2] ⊢

c
p �, [Γ

′]

(&1 → %), [&2 ∧&1] ⊢
c
p �, [Γ

′]

L∨
%8 , [&] ⊢

c
p �, [Γ

′]

(%1 ∨ %2), [&] ⊢
c
p �, [%3−8 , Γ

′]

Fig. 4. Our calculus for propositional logic based on connections.

Focusing phase. The rules in this phase are responsible for finding a connection, i.e., decom-
posing the hypothesis % to a strictly positive occurrence of the atom �. The rules basically perform
structural recursion on the focused hypothesis % . Rule L-a states that � proves � with a trivial side-
condition and no remaining cases. Rule L→ establishes a connection for an implication & → % , by
adding side-condition& to an established connection from % to�. Rule L∨ establishes a connection
for a disjunction %1 ∨ %2, by adding the unused disjunct to the remaining cases. Finally, rule L∧
simply looks beneath conjunctions to establish a connection.
Sources of incompleteness. The rules in Fig. 4 are not sufficient for all goals in intuitionistic

logic. For example, goal � ∨ � ⊢p ⊤ → �,⊤ → � is not provable, nor is �,� → ⊥ ⊢p �. This
would require an appropriate way to ‘look under’ an implication with focusing rules. At the cost of
complicating the system, our method may be extended to approach completeness. The trade-off
between completeness and complexity may be chosen separately for each practical adaptation. For
our purposes, incompleteness for the above goals is acceptable. We are primarily looking for a way
to make progress on the kind of disjunctions that appear in invariants.

3.3 Example

Fig. 5 contains a possible derivation of � → ((� ∧�) ∨ � ), �, � → � ⊢p � ∨ � (this entailment is
closely related to the one in §3.1). For the first application of F-a, we find (and prove) a connection
from the implication to �, with side-condition �. This means we now have to show that side-
condition � holds, and this is done in (1). However, we also have to deal with the remaining case � .
As (2) shows, for � we will actually pick a different disjunct to prove, namely �.

This demonstration shows that our rules are capable of goal-directed disjunction introduction
and elimination. However, they do not yet constitute an algorithm. This has a couple of reasons:

• The disjuncts Γ are a set, so it is unclear what disjunct to use for F-a.
• The conjuncts Δ are a set, so it is unclear what conjunct to use for F-a, if multiple apply.
• It is unclear when to use R→, and using it might cause incompleteness.
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�, [⊤] ⊢cp �, [n]
L-a

� ∧�, [⊤] ⊢cp �, [n]
L∧

(� ∧�) ∨ �, [⊤] ⊢cp �, [� ]
L∨

� → ((� ∧�) ∨ � ), [⊤ ∧�] ⊢cp �, [� ]
L→

. . .
Δ ⊢p ⊤ ∧�, �, �

(1)
. . .

Δ, � ⊢p �, �
(2)

Δ ⊢p �, �
F-a

Δ ⊢p � ∨ �
R∨

(1)

Δ ⊢p ⊤, �, �
R⊤

�, [⊤] ⊢cp �, [n]
L-a

Δ ⊢p ⊤, �, �, �
R⊤

Δ,⊥ ⊢p �, �, �
L⊥

Δ ⊢p �, �, �
F-a

Δ ⊢p ⊤ ∧�, �, �
R∧

(2)

�, [⊤] ⊢cp �, [n]
L-a

� → �, [⊤ ∧ � ] ⊢cp �, [n]
L→

similar to (1)

Δ, � ⊢p ⊤ ∧ �, �, � Δ,⊥ ⊢p �, �
L⊥

Δ, � ⊢p �, �
F-a

Fig. 5. Example derivation in our propositional calculus (we let Δ ≜ � → ((� ∧�) ∨ � ), �, � → �).

• Rule F-a is applicable with the same atom � for two of its premises, which may cause loops.
Since intuitionistic propositional logic is not our target logic, we leave the system as is. In the next
section, we show how our approach scales to separation logic, and how we can turn the approach
into an algorithm in that setting.

3.4 Ground Connections

The system in this section deals with uninterpreted atoms. When we use it for program verification,
the atoms will represent domain-specific propositions about data types (natural numbers, maps,
lists, sets) and Iris’s ghost state. Some atoms will be distinct, but related in some way. Consider the
entailment 0 ≤ =, = ≤ 1 ⊢p (0 < =∧= ≤ 1)∨= = 0. Without domain-specific information, the system
will never be able to show its validity. Ground connections provide a way to incorporate domain-
specific relations between atoms in the system. In this case, we could provide a ground connection
from 0 ≤ = to 0 < = by proving the connection judgment 0 ≤ =, [⊤] ⊢cp 0 < =, [= = 0]. By adding
this rule as an axiom in the focusing phase, we have extended our system with domain-specific
knowledge. We will revisit our idea of ground connections for ghost resources in §5.3.

4 SEPARATION LOGIC

We now develop our connection-based approach for propositional (i.e., without quantifiers) sepa-
ration logic. We first provide background on separation logic and outline the challenges with its
substructural nature (§4.1). We then propose an extension of our calculus for separation logic (§4.2).
This calculus can be turned into an algorithm, which we explain and apply on an example (§4.3).

4.1 Background and Challenges

We do not base our approach on a specific model of separation logic (e.g., Iris), but make it parametric
over models of Bunched Implication (BI) logic [O’Hearn and Pym 1999; Pym 2002]. That is, our
approach is parametric over a structure with the usual logical connectives, along with the separating
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conjunction (∗), andmagic wand (−∗). The separating conjunction (∗) is assumed to be associative and
commutative, have a neutral element (⊤∗% ⊣⊢ % ),4 and be the adjoint of the magic wand (% ⊢ & −∗ '
iff % ∗ & ⊢ '). In program verification frameworks such as Iris, the separating connectives are
used instead of the regular ones (∧ and →) in most proofs. We thus omit regular implication from
the fragment of separation logic we consider. To represent intermediate goals, we allow regular
conjunction on the right-hand side of the turnstile, but do not support it in hypotheses. Similar
to §3, we consider multi-succedent entailments. These are now of the form Δ ⊢s Γ, and should be
interpreted as∗Δ ⊢s

∨

Γ. Unlike §3, we consider Δ and Γ to be a list of formulas instead of a set.
This will help us turning our rules into an algorithm (§4.3).

Introduction of separating conjunction. The main additional challenge of separation logic
is its substructural nature—resources may only be used once, and we will need to accommodate
for this in our calculus. The most striking consequence of substructurality is that we do not have
% ⊢s % ∗ % in general. The introduction rule for separating conjunction (∗) thus differs in that of
regular conjunction (∧) by having to subdivide resources over the conjuncts:

Δ1 ⊢s ! Δ2 ⊢s �

Δ1,Δ2 ⊢s ! ∗�

(Remember that the resources in Δ are conjuncted with ∗, not ∧.) Choosing how to subdivide the
resources with this rule is challenging. We are aware of two approaches to deal with this problem,
both of which rely on restricting the grammar of the logic. The classical restriction is to the (linear)
hereditary Harrop fragment [Miller et al. 1991], where the final conclusion of a magic wand must
always be a single atom. In this system, the proper distribution to Δ1 and Δ2 can be determined by
annotating the entailment with an input and output environment [Cervesato et al. 2000; Hodas and
Miller 1991], or by annotating every hypotheses in Δ with a Boolean constraint [Harland and Pym
1997]. However, this fragment does not contain goals like �,� −∗ (� ∗�) ⊢s � ∗� , which we do
wish to consider. We thus follow a recent approach that instead restricts the grammar of the left
conjunct !. This allows the separating conjunction to be proven ‘in place’, i.e., without explicitly
splitting the context. This approach first appeared in RefinedC [Sammler et al. 2021], and was later
adapted by Diaframe [Mulder et al. 2022]. Essentially, the following two rules are applied eagerly
to push an atom � to become the left-most conjunct (i.e., Δ ⊢s � ∗�):

Δ ⊢s !1 ∗ (!2 ∗�), Γ

Δ ⊢s (!1 ∗ !2) ∗�, Γ

Δ ⊢s �, Γ

Δ ⊢s ⊤ ∗�, Γ

Here, we let ! ::= ⊤ |� | ! ∗!. Limiting the grammar of the left conjunct enables a deterministic rule
for introducing the separating conjunction, and—as RefinedC andDiaframe have demonstrated—this
limitation is acceptable: interesting verification goals remain expressible.

4.2 Calculus

To adapt the proof rules from §3 to separation logic, we adopt the approach mentioned in the
previous subsection, limiting the grammar of the left conjunct ! and adding rules to push atoms to
be the left-most conjunct. Only for goals of shape Δ ⊢s � ∗�, Γ will we look for a connection from
some � ∈ Δ to �. The connection judgment �, [!] ⊢cs � ∗ [* ] , [Λ] also changes: it now contains a
parameter * , which we dub the residue, that describes the resources from � that are not used to
establish �. We interpret �, [!] ⊢cs � ∗ [* ] , [Λ] as � ∗ ! ⊢s (� ∗* ) ∨

∨

Λ. Carrying around the
residue* is not just for convenience or efficiency: unlike for propositional logic, goals can become

4To ease presentation, we consider affine BIs, where ∧ and ∗ have the same neutral element ⊤ = True = Emp. Such BIs

satisfy % ∗& ⊢ % . Our full version in Coq supports general BIs where ∧ and ∗ have different neutral elements.
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R⊤

Δ ⊢s ⊤, Γ

R�
Δ ⊢s � ∗ ⊤, Γ

Δ ⊢s �, Γ

R∧
Δ ⊢s �1, Γ Δ ⊢s �2, Γ

Δ ⊢s �1 ∧�2, Γ

R∨
Δ ⊢s �1,�2, Γ

Δ ⊢s �1 ∨�2, Γ

R−∗⊥

Δ ⊢s ⊥ −∗ �, Γ

R−∗⊤
Δ ⊢s �, Γ

Δ ⊢s ⊤ −∗ �, Γ

R−∗∗
Δ ⊢s *1 −∗ *2 −∗ �, Γ

Δ ⊢s (*1 ∗*2) −∗ �, Γ

R−∗∨
Δ ⊢s (*1 −∗ �) ∧ (*2 −∗ �), Γ

Δ ⊢s (*1 ∨*2) −∗ �, Γ

R−∗�
Δ, � ⊢s �

Δ ⊢s � −∗ �, Γ

R∗⊤
Δ ⊢s �, Γ

Δ ⊢s ⊤ ∗�, Γ

R∗∗
Δ ⊢s !1 ∗ (!2 ∗�), Γ

Δ ⊢s (!1 ∗ !2) ∗�, Γ

R∗∨
Δ ⊢s !1 ∗�, !2 ∗�, Γ

Δ ⊢s (!1 ∨ !2) ∗�, Γ

R∗�
� ∈ Δ �, [!] ⊢cs � ∗ [* ] , [Λ]

Δ \ � ⊢s ! ∗ ((* −∗ �) ∧ (
∨

Λ −∗ (� ∗� ∨
∨

Γ))) , � −∗
∨

Γ

Δ ⊢s � ∗�, Γ

unfocus

Δ ⊢s Γ

Δ ⊢s � ∗�, Γ

Inversion phase

Focusing phase

L-a

�, [⊤] ⊢cs � ∗ [⊤] , [n]

L∗
*8 , [!] ⊢

c
s � ∗ [* ′] , [�1, . . . , �=]

(*1 ∗*2), [!] ⊢
c
s � ∗ [* ′ ∗*3−8 ] , [�1 ∗*3−8 , . . . , �= ∗*3−8 ]

L−∗
*1, [!2] ⊢

c
s � ∗ [*2] , [Λ]

(!1 −∗ *1), [!2 ∗ !1] ⊢
c
s � ∗ [*2] , [Λ]

L∨
*8 , [!] ⊢

c
s � ∗ [* ′] , [Λ]

(*1 ∨*2), [!] ⊢
c
s � ∗ [* ′] , [*3−8 ∗ !,Λ]

Grammar and definitions

� ::= atoms Δ ⊢s Γ ≜ ∗Δ ⊢s
∨

Γ

! ::= ⊤ | � | ! ∗ ! | ! ∨ ! �, [!] ⊢cs � ∗ [* ] , [Λ] ≜ � ∗ ! ⊢s (� ∗* ) ∨
∨

Λ

� ::= � | ! −∗ * Δ ::= n | �,Δ

* , � ::= ⊥ | ⊤ | � | * ∗* | * ∨* Λ ::= n | * ,Λ

� ::= ⊤ | � | � ∧� | � ∨� | * −∗ � | ! ∗� Γ ::= n | �, Γ

Fig. 6. Our calculus for separation logic based on connections.

unprovable if the resources* are dropped, since they may be needed to prove � . The rules of the
system, along with the grammar, can be found in Fig. 6.
Inversion phase. Let us first consider the rules in the inversion phase. The rules for introducing

⊤, ∧ and ∨ are the same as in the system for propositional logic. Rule R� puts a lone atom into a
separating conjunction, whose introduction rules we will discuss shortly. The wand introduction
rule R−∗� is the same as that of →, but there are additional wand introduction rules for each entry
in the grammar of* . These rules enforce that hypotheses are simplified upon adding them to Δ. We
have an introduction rule for ∗ for every entry in the grammar of !, which (using associativity of ∗
and distributivity of ∗ over ∨) pushes a lone atom � to be the left conjunct. This is all to prepare for
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the R∗� rule, which requires a connection to make progress. The rule R∗� for finding a connection
is quite a mouthful, so we will go over it in more detail. It plays the same role as F-a in §3, yet it
looks quite different. To see their relation, we restate F-a, along with an alternative:

F-a

� ∈ Δ � ∈ Γ �, [!] ⊢cp �, [Λ]

Δ ⊢p !, Γ Δ,
∨

Λ ⊢p Γ

Δ ⊢p Γ

F-alt

� ∈ Δ � ∈ Γ �, [!] ⊢cp �, [Λ]

Δ ⊢p ! ∧ (
∨

Λ →
∨

Γ) , Γ

Δ ⊢p Γ

One can check that F-alt implies F-a, by using R∧, R→ and R∨. The rule R∗� is the separation
logic cousin of F-alt, but it has to deal with the remaining goal ∗ � . Assuming � ∈ Δ, it states:

remaining cases
residue

side-conditions

�, [!] ⊢cs � ∗ [* ] , [Λ] Δ \ � ⊢s ! ∗
(

(1)
︷    ︸︸    ︷

(* −∗ �) ∧

(2)
︷                        ︸︸                        ︷

(
∨

Λ −∗ (� ∗� ∨
∨

Γ))
)

,

(3)
︷    ︸︸    ︷

� −∗
∨

Γ

Δ ⊢s � ∗�, Γ
(R∗�)

Similar to F-alt, we first establish a connection judgment �, [!] ⊢cs � ∗ [* ] , [Λ]. The entailment
we need to prove has the side-condition ! as the left conjunct—but the right conjunct of R∗� is
more complicated than in F-alt. It consists of a regular conjunction of (1) with (2). To see why,
note that from the connection we learn (� ∗* ) ∨

∨

Λ, while we need to prove (� ∗�) ∨
∨

Γ. In
the � ∗* case, we commit to proving � ∗� , since we have already learned �. What remains is (1):
try to prove goal� with our additional resources* , i.e.,* −∗ � . In the

∨

Λ case, the goal remains
unchanged: this is precisely obligation (2), which we also encounter in F-alt.

It could also be that we cannot establish !. Unlike for propositional logic, that would be a problem:
we did consume � and remove it from our context Δ, but we may need it to prove Γ. To cover this
case, we have component (3) of shape � −∗

∨

Γ. Essentially, we keep a fall-back disjunct around:
should we fail to prove the first disjunct, we can still try (3), with which we will recover hypothesis
� . This additionally removes � ∗� from the goal: we failed to prove it earlier, interpret this as ‘the
left-most disjunct is unprovable’, and remove it from the goal accordingly.

The final ingredient of the inversion phase is unfocus, which should be used only when R∗� is
not applicable—that is, if we cannot find a connection from any � ∈ Δ to �. If that is the case, we
give up trying to prove this disjunct and continue with the left-most disjunct of Γ. If unfocus is
needed directly after an application of R∗�, we will recover the used hypothesis.
Focusing phase. The rules of this phase are used to establish a connection in R∗�. Contrary to

their counterparts in §3, they need to ensure resources are not dropped, as that may make our goal
unprovable. Rule L−∗ is nearly identical, but rule L∨ includes the side-condition ! in the remaining
cases. In L∗, we obtain the unused conjunct*3−8 in both the residue, and in every disjunct in Λ.

4.3 Algorithmic Version

Unlike the system in §3, the system in Fig. 6 can be turned into an algorithm. Substructurality
helps here: since hypotheses must be removed after usage, we will never have trivial loops. On
goal Δ ⊢s Γ, the algorithm tries the following repeatedly, in order:

(1) Eagerly apply R∧, R∨, R⊤, R∗⊤, R∗∗, R∗∨, R−∗⊥, R−∗⊤, R−∗∗, R−∗∨; otherwise:
(2) If the left-most disjunct is a wand, apply R−∗� ; otherwise:
(3) If the left-most disjunct is a lone atom, apply R�; otherwise:
(4) Our goal has shape Δ ⊢s � ∗ �, Γ with � an atom. Apply R∗� to find a connection from

� ∈ Δ to �. Connections are established by backtracking on rules in the focusing phase. If
no connection for any � ∈ Δ can be found, then:
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�, [�] ⊢cs � ∗ [�] , [� ]

�, [⊤] ⊢cs � ∗ [⊤] , [n]

...
� ⊢s �

follows easily

� ⊢s � ∗ ⊤, �
unfocus

� ⊢s (� ∗ ⊤) ∨ �
R∨

⊢s � −∗ ((� ∗ ⊤) ∨ � ), � −∗ � −∗ �
R−∗�

...

� ⊢s � ∗
(

(� −∗ ⊤) ∧
(

� −∗ ((� ∗ ⊤) ∨ � )
) )

, � −∗ �
R∗�

�,�, ⊢s � ∗ ⊤, �
R∗�

�,�, ⊢s �, �
R�

�,�, ⊢s � ∨ �
R∨

Fig. 7. Example derivation in our calculus for separation logic (we let � ≜ � −∗ ((� ∗�) ∨ � )).

(5) Drop the left-most disjunct, by applying unfocus.

Fig. 7 shows our algorithm in action on a slight modification of the example from §3.3. We define
� ≜ � −∗ ((� ∗�) ∨ � ), and prove �,�, ⊢s � ∨ � . We omit derivations of connections, and show the
important steps. The connection �, [�] ⊢cs � ∗ [�] , [� ] forces the elimination of the disjunction in
� before choosing a disjunct, and at the same time makes an informed choice of disjunct: � can
sometimes produce �, and precisely in this case we choose the � disjunct in the goal.
The role of backtracking. The only source of backtracking in the algorithm is Item 4, which

applies R∗�. To apply this rule, we backtrack over the hypothesis� ∈ Δ to find a connection to goal
�. Determining whether a specific � ∈ Δ has a connection to � also involves some backtracking,
since we need to choose one of the conjuncts or disjuncts in L∗ and L∨, respectively. Once we find
a connection from some � ∈ Δ to �, we do not backtrack to find different connections. This is
almost never a problem because of the substructural nature of separation logic: a given atomic goal
� usually only occurs once in the hypotheses.

Sources of incompleteness. The algorithm is not complete, even with the limited grammar of
!. A key source of incompleteness is Item 2, which applies rule R−∗� when the left-most disjunct
is a wand, thereby removing the option to consider another disjunct. On goal � −∗ � ∨ �,� ⊢s
� −∗ �, � −∗ � , the system has no choice but to commit to the first disjunct, since we do not have a
focusing rule to look beneath wands. Another problematic goal is � −∗ (� ∗�), �, � ⊢s (� ∨ � ) ∗�,
for which the system will (wrongfully) commit to prove �, whereas � should be proven. Despite
this, the system can fully automatically solve practical examples, such as the ones from §2. Our
implementation also provides tools to deal with problematic goals, which we will discuss in §6.

5 IRIS

Although Iris satisfies the rules in §4, it comes with additional connectives and rules that complicate
the situation, e.g., modalities, higher-order quantification, invariants, and ghost state. To handle
disjunctions as well as these additional features, we marry our connection-based calculus with the
existing proof search strategy for Iris provided by Diaframe [Mulder et al. 2022].
The key ingredient of Diaframe’s strategy is its notion of bi-abduction hints, which makes

Diaframe parametric in domain-specific knowledge about ghost state. We provide background
about bi-abduction hints, and explain why they do not address the problems with disjunctions (§5.1).
We then generalize the connection judgment to include bi-abduction hints (§5.2). We finally show
some instances of the bi-abduction version of ground connections (introduced for propositional
logic in §3.4), and how they are used in the automated verification of ARC (§5.3).
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5.1 Background on Diaframe

Diaframe accounts for Iris’s higher-order quantification and modalities with bi-abduction hints,
which are defined as follows (eliding Iris’s masks on update modalities):

� ∗ [®~;!] � [|⇛] ®G ;� ∗ [* ] ≜ ∀®~.
(

� ∗ ! ⊢s |⇛ (∃®G . � ∗* )
)

.

Such hints are used to update hypotheses� to prove goal�, where� and� are some resources. For
example, the token-mutate-incr rule used for the verification of ARC is provided as the following
hint by Diaframe’s ‘token’ ghost theory library:

counter % W ? ∗ [ ;⊤] � [|⇛] ; counter % W (? + 1) ∗ [token % W]

During program verification, this hint can be used to update a hypothesis counter % W ? to atomic
goal counter % W (? + 1), after which we receive a token % W to help prove the remaining goal.
Additionally, Diaframe has a procedure to construct hints recursively. This is used to determine
whether opening an invariant is relevant, with a procedure similar to the focusing rules of our
calculus (these recursive hints go below quantifiers, hence the binders ®G and ®~ in hints).
Bi-abduction hints have two weaknesses. Firstly, they cannot express disjunctive reasoning

patterns of ghost state. The following two hints are available for counter % W ? , but they do not
specify what to do for general ? , nor can they:

token-deallocate-biabd

? = 1

counter % W ? ∗ [ ; token % W] � [|⇛] ; no tokens % W ∗ [% 1]

token-mutate-decr-biabd

? > 1

counter % W ? ∗ [ ; token % W] � [|⇛] ; counter % W (? − 1) ∗ [⊤]

The second weakness is that bi-abduction hints cannot look beneath disjunctions. If an invariant
features a top-level disjunction, no bi-abduction hints can be found without user guidance. We
show how connections generalize bi-abduction hints and address both weaknesses.

5.2 Connections in Iris

To retain Diaframe’s support for ghost resources, while extending it with our connection-based
approach for disjunctions, we describe a generalization of bi-abduction hints and connection
judgments. The new connection judgment has the modalities and quantifiers from bi-abduction,
and the remaining cases from the propositional connection judgment. The challenge is getting the
scoping right, i.e., determining under which quantification and modality to put the remaining cases.

Diaframe translates verification goals (such as Hoare triples) into an entailment format of shape
Δ ⊢s |⇛∃®G . ! ∗ � , and uses bi-abduction hints to make progress on these entailments. A key
component of this approach is the ‘lazy’ introduction of existentials and modalities. We extend this
format to Δ ⊢s |⇛ ((∃®G . ! ∗�1) ∨�2). The additional disjunct�2 makes the format multi-succedent,
causing disjunctions to be introduced ‘lazily’ too.

The definition of the connection judgment connection-def, and its application rule R∃∗� can
be found in Fig. 8, along with Diaframe’s original definition of bi-abduction hints biabd-def and
the corresponding application rule biabd-apply. Arrows signify the scope of variables ®G and ®~. The
definitions connection-def and biabd-def mainly differ in the Λ parameter, hence:

� ∗ [®~;!] � [|⇛] ®G ;� ∗ [* ] if and only if �, [®~;!] ⊢cs ®G ;� ∗ [* ] , [n]

By above equivalence, existing bi-abduction hints become instances of the connection judgment,
allowing us to reuse all of Diaframe’s ghost libraries. Note that when applying R∃∗� with �2 = ⊥
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� ∗ [®~;!] � [|⇛] ®G ;� ∗ [* ] ≜ ∀®~.
(

� ∗ ! ⊢s |⇛ (∃®G . � ∗* )
)

(biabd-def)

biabd-apply

� ∈ Δ � ∗ [®~;!] � [|⇛] ®G ;� ∗ [* ] Δ \ � ⊢s |⇛∃®~. ! ∗ (∀®G . * −∗ �)

Δ ⊢s |⇛∃®G . � ∗�

�, [®~;!] ⊢cs ®G ;� ∗ [* ] , [Λ] ≜ ∀®~.
(

� ∗ ! ⊢s |⇛ ((∃®G . � ∗* ) ∨
∨

Λ)
)

(connection-def)

R∃∗�
� ∈ Δ �, [®~;!] ⊢cs ®G ;� ∗ [* ] , [Λ]

Δ \ � ⊢s |⇛

(

(∃®~. ! ∗ ((∀®G . * −∗ |⇛�1) ∧ (
∨

Λ −∗ |⇛ ((∃®G . � ∗�1) ∨�2))))

∨ (� −∗ |⇛�2)

)

Δ ⊢s |⇛ ((∃®G . � ∗�1) ∨�2)

Fig. 8. Bi-abduction hints and connection judgments for Iris’s separation logic

and Λ = n , the resulting goal is quite similar to that of biabd-apply. When establishing these
generalized connections, a focusing rule similar to L∨ allows us to look beneath disjunctions in
hypotheses. Disjunctive ghost-state reasoning patterns can be expressed by adding domain-specific
ground connections, which we now discuss.

5.3 Ground Connections in Iris

To apply our system to the verification of actual programs, it should be instructed about the domain-
specific knowledge on the relation between ghost resources (which are considered atoms in the
formal system). We do so by adding ground connections, i.e., by adding ‘axioms’ to the focusing
judgment. A ground connection from �1 to �2 is an axiom �1, [®G ;!] ⊢

c
s ®~;�2 ∗ [* ] , [Λ], usually

provided (and proved sound) by a ghost resource library. This states that�1 can possibly be updated
to �2, with side-condition !, residue* , and remaining cases Λ. We discuss some examples.

Pure ground connection. In the verification of drop in ARC without deallocation (§2.1), the
original Diaframe gets stuck at the problematic entailment problem-gc-arc-drop, namely:

⌜= > 0⌝, counter % W =, token % W ⊢ |⇛

( (

⌜= − 1 = 0⌝ ∗ no tokens % W
)

∨
(

⌜0 < = − 1⌝ ∗ counter % W (= − 1)
)

)

∗ '

In our new system, the proof strategy looks for a connection to ⌜= − 1 = 0⌝, and finds the following
ground connection:

q is decidable ¬q is not provable

Y1, [ ;⊤] ⊢cs ; ⌜q⌝ ∗ [⌜q⌝] , [⌜¬q⌝]

The Y1 hypothesis is a technical trick from Mulder et al. [2022]. It is a syntactic marker with Y1 ≜ ⊤,
and always said to be the last hypothesis in the context (sound since Δ ⊢ ⊤). The connection states
that for decidable q , there is a connection from Y1 to ⌜q⌝, i.e., that Y1 can sometimes be updated to
⌜q⌝. Whenever it can, we learn ⌜q⌝ additionally. Whenever it cannot, we learn ⌜¬q⌝. The proof
automation will thus perform case analysis on pure goals q whenever a disjunct is guarded by q .
The ‘¬q is not provable’ condition is met whenever the pure automation cannot establish ¬q . This
is necessary to prevent loops: in the remaining case we learn ¬q , but are still faced with a disjunct
containing q . Since we can now establish ¬q , this ground connection will not be found.
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Token ground connection. In the verification of drop in ARC with explicit deallocation (§2.2),
the problematic entailment is problem-free-arc-drop, namely:

counter % W ?, token % W, ℓ ↦→ (? − 1) ⊢ |⇛ (no tokens % W ∨ (∃? ′. ℓ ↦→ ? ′ ∗ counter % W ? ′)) ∗ '

Note that token-deallocate-biabd is not applicable, since we only know ? > 0. The proof search
strategy will find the following ground connection from counter % W ? to no tokens % W .

maybe-token-dealloc

? ≠ 1 is not provable

counter % W ?, [ ; token % W] ⊢cs ;

no tokens % W ∗ [⌜? = 1⌝ ∗ % 1] , [counter % W ? ∗ token % W ∗ ⌜? ≠ 1⌝]

This states that if it is possible that ? = 1, then counter % W ? can sometimes be updated to prove
no tokens % W , if we additionally provide a token % W . Since it does not require ? = 1, it is stronger
than token-deallocate-biabd. If the update is succesful, we learn ? = 1 and % 1. Otherwise, we
recover both counter % W ? and token % W , and additionally learn ? ≠ 1. This ground connection
performs the desired case distinction in the verification of ARC, but is also used in the verification
of readers-writer locks. The ‘? ≠ 1 is not provable’ condition is again necessary to prevent loops.

6 SOUNDNESS PROOF AND IMPLEMENTATION IN COQ

Soundness. In our artifact [Mulder et al. 2023] we prove soundness of our calculi. We do so
by giving a semantic interpretation of the propositions and judgments, and prove the derivation
rules as lemmas about the semantic interpretation. For the calculus for propositional logic (§3),
propositions are interepreted as Coq’s propositions Prop. For the separation-logic versions (§ 4
and 5), we interpret propositions within an arbitrary BI logic [O’Hearn and Pym 1999; Pym 2002]
(we use the type classes from the MoSeL framework [Krebbers et al. 2018] for BIs in Coq). Since Iris
is an instance of a BI, and Iris is sound [Jung et al. 2018, Thm. 7], this means our proof automation
constructs closed Coq proofs w.r.t. the operational semantics of the programming language.
Algorithm. The algorithm from §4.3, extended with the support for higher-order quantification

and modalities described in §5, has been implemented as a fork of the Diaframe library. It consists
of ca. 22.000 lines of Coq code, about 7.000 more than the original library. The algorithm works
by applying the proof rules from our calculus, and is thus trivially sound. We rely on type classes
[Sozeau and Oury 2008], for instance, to register ground connections. The proof search strategy is
available as a tactic iSteps, implemented with Ltac [Delahaye 2000].
Debugging and cooperation with interactive proofs. Since our calculi and algorithms are

incomplete, they will fail to prove some goals that might nevertheless be provable. In such cases,
we aim to provide better information and cooperation with interactive proofs than traditional
backtracking proof search. We discuss some common patterns where the proof search gets stuck,
and discuss the additional tactics we provide to investigate or complete such proofs.

• Unprovable part of goal is not inside a disjunction: �8 ⊢s (�1 ∨�2) ∗ �. For this example, the
iSteps tactic will make partial progress: it proves the appropriate side of the disjunction, then
stops at the remaining goal ⊢s �. This is precisely the problematic part of the original goal.

• The algorithm commits to a wrong disjunct with R−∗� : � −∗ (� ∗�), �, � ⊢s (� ∨ � ) ∗ �. The
iSteps tactic makes a bad choice here: after finding a connection from � −∗ (� ∗�) to � and
some further steps, the goal becomes � ⊢s � −∗ �,� −∗ (� −∗ (� ∗�)) −∗ (� ∗ �). Rule R−∗�
then commits to the wrong disjunct: we get stuck at �,� ⊢s �. We encountered a situation
like this during the verification of Peterson [1981]’s algorithm. Our implementation provides
two options to proceed. First, there is the iStepsSafe tactic, which stops the algorithm just
before dropping disjuncts with R−∗� . The user can then manually pick the correct side of
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name impl total time proof
old

proof

old

time

caper

total

caper

proof

arc [Rust Language 2021] 18 53 0:13 0 7 0:10 70 1
bag stack [Treiber 1986] 29 119 0:25 38 36 0:17 70 0
barrier 58 183 16:30 7 38 13:22 102 0
barrier client 58 150 1:10 21 44 0:50 189 0
bounded counter 20 72 0:17 6 7 0:11 50 2
cas counter 14 56 0:11 0 0 0:08 40 0
cas counter client 16 36 0:07 0 0 0:06 94 0
clh lock [Magnusson et al. 1994] 30 86 0:34 0 3 0:22
fork join 14 57 0:09 0 0 0:08 38 0
fork join client 13 30 0:04 0 0 0:04 70 0
inc dec 23 78 0:44 0 0 0:31 54 0
lclist [Calcagno et al. 2007; Vafeiadis 2008] 28 83 0:42 15 18 0:27
lclist extra 119 187 2:29 7 2 1:31
mcs lock [Mellor-Crummey and Scott 1991] 54 131 1:38 0 11 1:11
msc queue [Michael and Scott 1996] 36 156 2:54 43 46 1:42
peterson [Peterson 1981] 46 164 14:19 25 28 7:51
queue 42 163 1:42 46 46 1:17 99 0
rwlock duolock [Courtois et al. 1971] 45 101 0:23 0 10 0:21
rwlock lockless faa 27 74 0:34 0 1 0:20 68 1
rwlock ticket bounded 40 117 1:15 5 12 0:54
rwlock ticket unbounded 38 111 0:25 0 5 0:21
spin lock 13 59 0:08 0 0 0:06 39 0
ticket lock 23 84 0:32 0 6 0:23 59 0
ticket lock client 18 39 0:07 0 0 0:06 79 0

total 822 2389 47:24 213 320 32:30 1121 4

Fig. 9. Data on verified examples. Rows correspond to files in the supplementary material. Columns show
number of lines of implementation of the program, lines in total, and lines of proof burden. The time column
displays the average verification time in minutes:seconds. Proof burden for the old proof burden of Diaframe
is also shown, as well as the proof burden of Caper. Bolded examples have reduced proof burden.

the disjunct using the standard Iris Proof Mode tactics. Second is the iSmash tactic, which
will backtrack to try unfocus if R−∗� failed to produce a proof. This is sufficient for Peterson
[1981]’s algorithm and the simple example, but will still fail on � −∗ � ∨�,� ⊢s � −∗ �, � −∗ � .

• The algorithm wrongfully drops a disjunct with unfocus: � ∧ �,� ⊢s (� ∨ � ) ∗� . Our calculus
has no support for regular conjunction in hypotheses, which means that no connection to �
can be established. After unfocus, we thus get stuck at the unprovable goal � ∧ �,� ⊢s � ∗� .
We provide the iStepsSafest tactic for such cases: it behaves like iStepsSafe, but also stops
the algorithm just before unfocus would drop the left-most disjunct.

7 EVALUATION

We evaluate our approach by verifying the examples in Diaframe’s original benchmark. Fig. 9
contains a comparison between our connection-based approach, the original Diaframe, and Caper.
Comparison with Diaframe 1.0. Our connection-based handling of disjunctions increases the

number of examples that can be verified fully automatically from 7/24 to 14/24. Larger examples
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tend to have a larger reduction of proof burden: for example, the proof burden of ARC (18 lines
of implementation) is reduced by 7 lines, while that of the barrier (58 lines of implementation)
is reduced by 31 lines. The remaining proof burden is due to existing orthogonal problems with
Diaframe’s automation (its poor support for recursive representation predicates, and its limited
solver for pure goals). The verification time over all examples did go up by around 50%, from
32 to 47 minutes. We believe the increased verification time is acceptable, as for 22/24 examples
the verification time remains below 3 minutes. Exceptions are the barrier and Peterson [1981]’s
algorithm. Both of these examples feature invariants with =-ary disjunctions, where = ≥ 10. We
believe the slowdown is a side-effect of our proper support for disjunctions. In the original Diaframe,
disjunctions in invariants were ‘opaque’, whereas all the atoms inside a disjunction are now checked
for ground connections to a goal. The verification of Peterson’s algorithm suffers an additional
slowdown due to the use of backtracking, which we will discuss shortly.
Comparison with Caper. For most examples, Caper [Dinsdale-Young et al. 2017] still has

the lowest proof burden. This is due to aforementioned orthogonal problems with Diaframe
(recursive representation predicates and pure goals). Since Caper has superior support for recursive
representation predicates, it can verify the queue and the Treiber [1986] stack without user guidance.
Caper also employs SMT solvers as trusted oracles, making it better at solving pure sideconditions.
However, as noted by Windsor et al. [2017], Caper likely cannot handle examples such as the CLH
lock [Magnusson et al. 1994] and the MCS lock [Mellor-Crummey and Scott 1991], making our
work the first that fully automatically verifies these examples. Additionally, for both the verification
of the ARC from §2.2 and an FAA-based readers-writer lock, we outperform Caper. Precisely these
verifications feature the problematic disjunction pattern that motivated this work.

Backtracking. Caper, the original Diaframe, and our fork of Diaframe, use some form of back-
tracking. We distinguish between local backtracking (i.e., determining an appropriate rule to apply)
and global backtracking (i.e., going back to try a different rule, if verification fails). Caper uses global
backtracking for all its examples. As noted by Wolf et al. [2021], this causes unstable verification
times for failing verification attempts. The original Diaframe uses local backtracking for all its
examples, and global backtracking in 12/24 examples. Mulder et al. [2022] report stable verification
times on their benchmark of failing examples in the original Diaframe, but global backtracking still
makes it harder to debug failing verification attempts. In our fork of Diaframe, the verification times
of these failing examples are still stable, yet global backtracking is only required for 1/24 examples:
Peterson’s algorithm. The verification of this example also suffers from the biggest slowdown. It
is worth noting that the proofs of the MCS lock [Mellor-Crummey and Scott 1991] and the CLH
lock [Magnusson et al. 1994] involve goals with 4 invariants in the proof context, but due to our
connection-based approach, no global backtracking is needed to determine which invariant to
access. The verification times for these examples are well below 2 minutes.
Ground connections. The verifications use Diaframe’s 5 existing hint libraries for ghost re-

sources, to which we added a modest amount of 3 ground connections (i.e., disjunctive patterns in
ghost-state reasoning that were not expressible in the original Diaframe). Namely, the rules for the
pure and token ground connections from §5.3, and an additional ground connection for the ticket
ghost theory that is used in the verification of the ticket lock and barrier.
Coarse-grained concurrency. Although we target verification of programs with fine-grained

concurrency, our techniques are also applicable for coarse-grained concurrency. In general, the
coarse-grained concurrent setting is easier: invariants in fine-grained concurrency need to be
established after every program step, while (lock) invariants in coarse-grained concurrency only
need to be established when the lock is released. Our benchmark includes three examples with
coarse-grained concurrency: lclist, lclist extra and rwlock duolock. These verifications have been
carried out in a modular fashion, on top of independently verified lock specifications.
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8 RELATED WORK

Focusing and connection calculi. Focusing [Andreoli 1992; Liang and Miller 2009; Simmons
2014] reduces the search space of proofs by limiting backtracking to the choice of focus. Focusing
by itself does not directly address the issue of the irrelevance of rule applications, in particular of
unnecessary disjunction elimination. Ordinarily, focusing stops at a disjunction and switches to
the inversion phase in which the disjunction is eagerly split. There is no explicit mechanism to
limit the choice of focus to formulas whose decomposition contributes to the final derivation.
Connection calculi [Otten and Kreitz 1995; Waaler 2001; Wallen 1990] address both the issues

of non-permutability and irrelevance with connection-guided proof search. They identify a con-
nection first, then in essence directly reduce the sequent to obtain the initial sequent [Wallen
1990, §3]. Somewhat similarly, our approach relies on identifying a connection between a positive
atom occurrence on the right and a (unifiable) atom occurring in the target of a hypothesis. Our
connection-based method is a simplified version of the original concept, retaining only a general
analogy. Connection calculi develop this basic idea much further and achieve completeness for
specific logics, such as intuitionistic propositional or first-order logic. The cost is substantial compli-
cation of the systems and difficulty in transporting the idea to other frameworks. The calculus from
§3 could be made complete by labeling the formulas with intuitionistic prefixes like in the free vari-
able calculi [Waaler 2001, §4] related to connection calculi. The prefixes would describe where each
formula occurrence “originates from”, so the implication-introduction rule does not need to “forget”
the other disjuncts: the prefixes enforce that hypotheses can be used only for “their” disjuncts.
Sequent calculi for BI. Separation logic may be seen as a particular theory in (a variant of)

the logic of Bunched Implications (BI), which was introduced in proof-theoretic sequent-calculus
formulation by O’Hearn and Pym [1999]; Pym [2002]. A focused sequent calculus for BI was devised
and shown complete by Gheorghiu and Marin [2021]. They handle disjunction on the left using
an unfocused left-elimination rule, which is not connection-driven nor goal-directed in the sense
of connection calculi. There exist complete connection calculi for propositional BI [Galmiche and
Méry 2002] and multiplicative intuitionistic linear logic [Galmiche and Méry 2018], but it is unclear
if they can be extended to more complex logics such as concurrent separation logic, nor if they can
be implemented efficiently in a general-purpose proof assistant such as Coq.
First-order/symbolic heap separation logic solvers. The literature provides various com-

plete solvers for fragments of separation logic [Lee and Park 2014; Piskac et al. 2014b; Reynolds
et al. 2016], also with inductive representation predicates [Le et al. 2018; Piskac et al. 2014a]. Proper
support for inductive representation predicates is lacking in our work. The mentioned solvers
enjoy excellent proof automation on their fragments, but none of their fragments cover all the
connectives we consider—namely, the combination of magic wand, disjunction and quantifiers.
Fine-grained concurrency. Voila [Wolf et al. 2021] and Starling [Windsor et al. 2017] are other

tools for semi-automated verification of fine-grained concurrent programs. Both are proof outline
checkers and require annotations before and after each program instruction—these annotations
ensure the required case distinctions are made. Such annotations are not required in our work. Voila
can, however, prove the stronger notion of logical atomicity, which was added to Diaframe [Mulder
and Krebbers 2023] recently. A notable exception to the lower proof burden is in the verification of
Peterson’s algorithm, where Starling’s constraint-based approach seems a better fit.
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