
151

Iris-Wasm: Robust and Modular Verification of

WebAssembly Programs

XIAOJIA RAO∗, Imperial College London, UK

AÏNA LINN GEORGES∗, Aarhus University, Denmark

MAXIME LEGOUPIL†, Aarhus University, Denmark

CONRAD WATT, University of Cambridge, UK

JEAN PICHON-PHARABOD, Aarhus University, Denmark

PHILIPPA GARDNER‡, Imperial College London, UK

LARS BIRKEDAL‡, Aarhus University, Denmark

WebAssembly makes it possible to run C/C++ applications on the web with near-native performance. A
WebAssembly program is expressed as a collection of higher-order ML-like modules, which are composed
together through a system of explicit imports and exports using a host language, enabling a form of higher-
order modular programming. We present Iris-Wasm, a mechanized higher-order separation logic building
on a specification of Wasm 1.0 mechanized in Coq and the Iris framework. Using Iris-Wasm, we are able to
specify and verify individual modules separately, and then compose them modularly in a simple host language
featuring the core operations of the WebAssembly JavaScript Interface. Building on Iris-Wasm, we develop a
logical relation that enforces robust safety: unknown, adversarial code can only affect other modules through
the functions that they explicitly export. Together, the program logic and the logical relation allow us to
formally verify functional correctness of WebAssembly programs, even when they invoke and are invoked by
unknown code, thereby demonstrating that WebAssembly enforces strong isolation between modules.

CCS Concepts: • Theory of computation → Programming logic; Logic and verification; Separation
logic; Higher order logic; Formalisms.

Additional Key Words and Phrases: WebAssembly, separation logic, higher-order logic, formal verification

ACM Reference Format:

Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-Pharabod, Philippa Gardner,
and Lars Birkedal. 2023. Iris-Wasm: Robust and Modular Verification of WebAssembly Programs. Proc. ACM
Program. Lang. 7, PLDI, Article 151 (June 2023), 25 pages. https://doi.org/10.1145/3591265

1 INTRODUCTION

WebAssembly (Wasm) is a new bytecode language, supported by all major Web browsers and
designed primarily to be an efficient compilation target for low-level languages such as C/C++

∗Shared first author.
†This work was carried out while the author was affiliated with École Normale Supérieure, France.
‡Shared senior author.

Authors’ addresses: Xiaojia Rao, Imperial College London, UK, xiaojia.rao19@imperial.ac.uk; Aïna Linn Georges, Aarhus
University, Denmark, ageorges@cs.au.dk; Maxime Legoupil, Aarhus University, Denmark, maxime@cs.au.dk; Conrad
Watt, University of Cambridge, UK, conrad.watt@cl.cam.ac.uk; Jean Pichon-Pharabod, Aarhus University, Denmark,
jean.pichon@cs.au.dk; Philippa Gardner, Imperial College London, UK, p.gardner@imperial.ac.uk; Lars Birkedal, Aarhus
University, Denmark, birkedal@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART151
https://doi.org/10.1145/3591265

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0008-4391-1214
HTTPS://ORCID.ORG/0000-0002-5951-4642
HTTPS://ORCID.ORG/0009-0005-4093-2755
HTTPS://ORCID.ORG/0000-0002-0596-877X
HTTPS://ORCID.ORG/0000-0002-4442-6543
HTTPS://ORCID.ORG/0000-0002-4187-0585
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://doi.org/10.1145/3591265
https://orcid.org/0009-0008-4391-1214
https://orcid.org/0000-0002-5951-4642
https://orcid.org/0009-0005-4093-2755
https://orcid.org/0000-0002-0596-877X
https://orcid.org/0000-0002-0596-877X
https://orcid.org/0000-0002-4442-6543
https://orcid.org/0000-0002-4187-0585
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.1145/3591265

151:2 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

and Rust. It is officially specified using a formal operational semantics in the W3C Wasm 1.0
standard [Rossberg 2019]. The formal nature of the official Wasm standard and the existence of a
well-exercized language mechanization give us a standout opportunity to define a higher-order
program logic that covers the full definition of an industrial programming language. We introduce
Iris-Wasm, a mechanized higher-order separation logic forWasm 1.0 which builds on theWasmCert-
Coq mechanized specification of the Wasm 1.0 language standard [Watt et al. 2021] and the Iris
framework [Jung et al. 2018b, 2015]. In Iris-Wasm, we present an interactive formal verification
framework that exactly reflects the Wasm semantics. The result is a semantic and compositional
characterization of all Wasm definitions, which can be used to prove separation logic assertions
about real Wasm programs, and which lays the foundation for rigorous investigations of the Wasm
ecosystem.
A Wasm program is expressed as a collection of higher-order ML-like modules, which are com-

posed together through a system of explicit imports and exports. This process of composing Wasm
modules into a full program is not performed withinWasm itself. Instead, Wasm is embedded within
a host language, which provides several important capabilities not available to core Wasm code,
including a complex, inherently higher-order, instantiation operation in which the declared state of
a WebAssembly module is allocated, the module’s requested imports are satisfied, and the module’s
declared exports are registered for use in satisfying further imports requested during subsequent
instantiations. The Wasm standard defines instantiation in a host-agnostic way, to be then satisfied
by the specific host-language instantiation. For example, a typical Wasm program on the web will
involve individual Wasm modules which are instantiated and composed together by a top-level
JavaScript host script using the functions of the WebAssembly JavaScript Interface [Ehrenberg
2019].

Iris-Wasm is a higher-order mechanized program logic for the W3CWasm 1.0 industrial standard
using the Iris framework, inspired by a previous Isabelle-mechanized first-order program logic for
the language draft [Watt et al. 2019]. Our implementation of the Wasm run-time semantics, with
its difficult constructs such as complex control-flow commands, is given directly in Iris, instead of
being translated into an existing intermediate Iris language. This choice requires considerable Iris
engineering, but provides more trust in our mechanization, as it is line-by-line close to the Wasm
semantics, and should lead to the mechanization being comparatively straightforward to extend as
the standard expands. We make a minor reformulation of the host function semantics (see §2.2.3),
so that our core Wasm semantics and program logic are properly separate from the host.
We provide a host-agnostic axiomatic characterization of Wasm module instantiation by estab-

lishing a lemma which lifts the complex W3C Wasm 1.0 instantiation predicate to our Iris-Wasm
logic, describing the state before and after instantiation using our logical assertions. We illustrate
this instantiation lemma on a simple host language designed to capture the core functionality of
the WebAssembly JavaScript Interface [Ehrenberg 2019], and corresponding host program logic,
where the soundness of our host instantiation proof rule is established using our instantiation
lemma. The Iris-Wasm program logic thus gives a semantic characterization of the host-agnostic
instantiation operation.
By capturing the semantics of the full Wasm 1.0 industrial standard directly, Iris-Wasm lays

the groundwork for a wide range of future analyses. Iris-Wasm can be used to validate proposed
extensions to Wasm such as MSWasm, a memory safe extension of Wasm [Michael et al. 2023]. It
can be used to rigorously investigate compilers that either target Wasm or compile Wasm down to
some low-level assembly language. Jacobs et al. [2022] demonstrate that Iris can be a useful tool to
prove results such as full abstraction. Iris-Wasm sets the groundwork for similar results for realistic
compilers involving Wasm.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:3

We demonstrate our compositional higher-order reasoning about Wasm modules in our host
language by developing a series of examples. Our main running example is a higher-order stack
example comprising a stack module and a client module. The stack module defines and exports stack
functions, including a higher-order map function for the stack. The client module imports and uses
some of them, including map, in its main function. Using our Wasm program logic and a program
logic for the simple host we introduce, we provide specifications for both modules: the stack
module’s specification contains specifications for all the stack functions, and the client module’s
specification depends on the stack module’s specification. Finally, we verify a host program which
instantiates the two modules in sequence, by modularly combining the proofs for the two module
specifications. In addition, we demonstrate how to reason about reentrancy between the host and
Wasm, by having the client module invoke a host function to modify the function table to provide
a different input function for subsequent applications of map. The higher-order reasoning of the
Iris framework provides an ideal environment to reason about Wasm modules. Nevertheless, it’s a
substantial task to apply Iris to a true industrial standard. Our implementation precisely follows
the design decisions of the W3C Wasm 1.0 standard, and by using a rich logic such as Iris, we have
laid the foundations for deep semantic investigations of WebAssembly and its future iterations.
In a case study, we investigate the intuitive coarse-grained encapsulation property of Wasm

modules, stated in the standard: ‘code from a module can arbitrarily affect its own state, but can
only access the state of another module through the module’s exports’. Several systems rely on
this important property of Wasm to provide a form of sandboxing: for example, Fastly’s ‘Com-
pute@Edge’ [Hickey 2020] platform and the RLBox tool [Narayan et al. 2020]. Both depend on the
encapsulation property of a module, regardless of behaviour of other modules, which are validated
but not necessarily trusted. Reasoning about such modules necessarily involves the interaction
between the known, verified code of one module against unknown, untrusted, and unverified code
from other modules, something that cannot be done with a program logic. Building on top of
Iris-Wasm, we define a relational interpretation of WebAssembly types through a unary logical
relation, which is then used to verify specific robust safety properties of a known module, that
hold even when composed with unknown modules. We demonstrate this by proving robust safety
properties of our stack module composed with arbitrary clients. Our relational interpretation is
entirely host agnostic, and can modularly be applied to any host language.
In summary, our contributions are:

(1) Iris-Wasm, a Coq-mechanized higher-order program logic for the Wasm run-time semantics.
(2) A host-agnostic module instantiation lemma, and a program logic for a simple example host

language with the specific host instantiation rule proved using our general instantiation lemma.
(3) A semantic interpretation of the Wasm type system, defined via a logical relations interpretation

using our Wasm program logic.
(4) Illustrative examples and case studies that demonstrate the expressiveness of Iris-Wasm; we

show that an implementation of a higher-order stack module satisfies a very modular abstract
specification; we verify a reentrant module that uses host language features to modify function
tables dynamically; and we use Iris-Wasm to define and prove the properties of our logical
relation, which we use to verify robust safety of higher-order examples.

All results, including soundness of the program logic and logical relations, are formalized in Coq.
We hope this will prove useful to other researchers for further investigating the Wasm ecosystem.

Higher-order programming in WebAssembly and reentrancy. Consider the WebAssembly snippet
in Figure 1, which contains a module that works as a library implementing a stack of i32s (on the
left), and a module that works as a client of that library (on the right). The library module, which
the host language calls "stack" here, uses a memory (with initial size 0; some other function is

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:4 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

stack_module ≜
(module ; ; "stack"

(type $t1 (func (param i32) (result i32)))

(table (export "tab1") 3 funcref)
(memory 0)

(func (export "map")
(param $i i32) (param $stk i32)

...

loop

...

local.get $i
call_indirect $t1
...

end ...)

client_module ≜
(module ; ; "client"

(import "stack" "tab1" (table 3 funcref))

(import "stack" "map"
(func $map (param i32 i32)))

(elem (i32.const 0) $f0 $f1 $f2)
(func $f0 (param $n i32) (result i32)

...)

(func (export "main")
(param $stk i32) (result i32)

i32.const 0

local.get $stk
call $map
... ; ;Rest of the code))

Fig. 1. A module implementing a stack library, and a client module. Module boundaries enforce isolation.
This example uses the Wasm text format; below, we work directly with the AST.

in charge of allocating space for the stack) to implement a stack. The "stack" module exports a
"map" function that maps a function over a stack. However, because WebAssembly is a first-order
language, "map" does not take the function to map as an argument. Instead, "map" takes as
argument an index, $i, into a table of 3 functions, "tab1", that this module creates and exports, and
calls the function at that index in the table using call_indirect. The client module imports the same
shared table of functions, and uses the elem directive to populate it (from offset 0) with functions
it defines: $f0, $f1, and $f2. It also imports the "map" function from the "stack" module as $map,
and its "main" function then calls the $map function with function index 0 as argument, which
makes it map $f0 on the stack.
In §2 we describe our program logic and we show in §2.2 how it can be used to give a modular

specification of the stack module, and, in particular, in §2.3, the "map" function. A proof of the
specification of the instantiation of the stack module is given at the end of §3. We emphasize that
our logic supports verification of the client module relative to an abstract logical specification of
the stack module; in other words, the encapsulation of the internal representation of the stack
module is reflected in its specification.
We now consider a simple extension of this example to demonstrate the need for reasoning

about reentrancy between WebAssembly and the host. To this end, we will let the "main" func-
tion, after the call to $map, dynamically modify the contents of the table to now contain a new
function $f3 at index 0. Dynamic modification of the table cannot be performed in WebAssembly
1.0, as WebAssembly only has the elem directive available to statically provide an initial value
for the elements of the table. WebAssembly code can, however, call functions defined by the
host, and those may modify the state of the WebAssembly program. Thus we add an import
(import "host" "mut" (func $mut (param i32 i32))) to the preamble of the client
module and then complete the code of the "main" function with 6 more instructions:
i32.const 0; i32.const $f3; call $mut; i32.const 0; local.get $stk; call $map. The first three of these
call the host function $mut that we assume will modify the function table at address 0, replacing
the previous value ($f0) by $f3. The last three instructions are a call to $map identical to the one
at the beginning of the body of "main" function (see Figure 1), but this time, when mapping the
0th function from the table onto the stack, it maps function $f3 instead of $f0 like it did during the
first call to $map. Thus calling "main" on a value that represents stack [G0, . . . , G=] will modify the
stack so that the argument value now represents [53 (50 (G0)), . . . , 53 (50 (G=))].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:5

(value type) C ::= i32 | i64 | f32 | f64

(value) v ::= C .const 2

(function type) ft ::= ts → ts

(immediate) 8,min,max ::= nat

(instructions) 4 ::= v | C .add | other stackops | local.{get/set} 8 | global.{get/set} 8 | C .load flags |

C .store flags | memory.size | memory.grow | blo� ft es | loop ft es | if � es es |

br 8 | br_if 8 | br_table is | call 8 | call_indirect 8 | return

(functions) func ::= func i ts es

(memories) mem ::= mem min max

(elem segments) elem ::= elem i es off is

(tables) tab ::= tab min max

(globals) glob ::= glob mutable t e init
(data segments) data ::= data i es off bytes

(import descriptions) importdesc ::= funci 8 | tabi min max | memi min max | globi mutable? C
(imports) import ::= import string string importdesc

(export descriptions) exportdesc ::= funce 8 | tabe 8 | meme 8 | globe i

(exports) export ::= export string exportdesc

(start) start ::= Some 8 | None

(function instances) finst ::= {(inst; ts) ; es }NativeCl
tf

| {hidx }HostCl
tf

(table instances) tinst ::= {elem : is, max : max? }

(memory instance) minst ::= {data : bytes, max : max? }

(global instance) ginst ::= {mut : mutable?, value : v }

(store) (::= {funcs : finsts, globs : ginsts, mems : minsts, tabs : tinsts }
(frame) � ::= {locs : vs, inst : inst }

(module instance) 8=BC ::= {types : �s, funcs : is, globs : is, mems : is, tabs : is }

(modules) m ::=

{
types : �s, funcs : funcs, globs : globs, mems : mems, tabs : tabs,
data : datas, elem : elems, imports : imports, exports : exports, start : start

}

Fig. 2. WebAssembly 1.0 Abstract Syntax

This example illustrates how programs may take advantage of the stronger expressive power
of the host. In §2.2, we show how we deal with calls to host functions in Iris-Wasm, and in §3,
we introduce a simple host language and a program logic for it and show how it can be used in
combination with our WebAssembly program logic to reason about complex interaction between
WebAssembly code and the host language code that embeds it, including this example.

2 MODULAR REASONING FOR WEBASSEMBLY MODULES

In this section, we introduce Iris-Wasm. We present our proof rules for WebAssembly language
features, and outline how they are used to prove a specification for the stack module from the
Introduction. For reasons of space, we only discuss selected proof rules; we stress that we have
proved program logic rules for all of WebAssembly and used them to give full formal proofs of
examples, including the stack module; see the accompanying Coq formalization for details. Then,
in §3, we present the operational semantics and proof rules for our host language, and show how
they are used to verify the interaction of a client module with the stack module; we focus on
instantiation and reentrancy. Finally, in §4 we discuss how our program logic is defined within the
Iris program logic framework, we overview some of the generic features and proof rules we inherit
from Iris, and we state the soundness and adequacy of Iris-Wasm.

2.1 Proof Rules for Basic WebAssembly Stack Operations

WebAssembly is a stack language with structured control. Its dynamics is specified by a small-step
operational semantics on configuration tuples of the form (S; F ; es), where es is a hybrid stack of
values and instructions,1 S is the global store, and F is the current function frame. The store (

1The standard uses ‘∗’ to stand for ‘a list of’, but we prefer using B as a suffix to avoid confusion with the symbol for
separating conjuction, so ‘es’ is a list of ‘e’s, ‘vs’ is a list of ‘v’s, etc.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:6 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

contains information about the global variables, the tables, the memories and the functions declared
in all modules instantiated thus far, and the frame � contains the values of all local variables, as
well as an instance that handles indirection, as will be explained progressively below. We recall the
abstract syntax in Figure 2.

Reductions are structural: for any program fragment2 es that reduces to es′, the same reduction can
occur under a context; for example, for any list vs of constants and es2 of expressions, vs++ es++ es2
reduces to vs ++ es′ ++ es2. We give the general meaning of contexts in §2.2.
The overall structure of the operational semantics is as expected for a stack language; for

example, the stack [C .const c1; C .const c2; C .binop binop] reduces to [C .const c], where c is the result
of applying binop to c1 and c2. Let us introduce the corresponding proof rule in our program logic.

Weakest preconditions. Our proof rules are phrased using Iris’ weakest precondition. Intuitively,
wp es {F,Φ(F)} states that the program fragment es computes safely, and, if it terminates with
resultF , predicate Φ holds ofF (we discuss the formal meta-theory in §4). This construct is close
to Hoare triples, as we have the following equality in Iris3:

{% } es {F,Φ(F)} = □(% −−∗ wp es {F,Φ(F)})

Logical values. Because we reason about fragments of WebAssembly programs, execution does
not always terminate with a stack of WebAssembly values, but more generally with a logical value:

LogVal ∋ w ::= immV vs | trapV | brV i vhi | retV lhk | call_hostV tf hidx vs llh

which is one of the following:

• immV vs, the ‘normal’ result: a stack of WebAssembly values;
• a trap trapV, which represents that the program has encountered an error in its execution;
• a break (or branching) value brV, a return value retV, or a host call value call_hostV, which
correspond to program fragments that are stuck as such, but can get unstuck when placed in an
appropriate context; we explain their meaning, and the meaning of their arguments, in §2.2.

Accordingly, in our proof rules, the postcondition Φ takes a logical valueF as an argument.

Proof rule. We prove the following Iris-Wasm proof rule for binary operators:

wp_binop

Jt .binopK(21, 22) = c ∗ ⊲Φ(immV [C .const c]) ∗
Fr

↩−−−→ �

wp [C .const 21; C .const 22; C .binop binop]
{
w,Φ(w) ∗ Fr

↩−−−→ �
}

which states that, with two constants C .const 21 and C .const 22 on the value stack, and any function
frame � , if an arbitrary predicate Φ holds later of the result c of the binop of type C on 21 and 22,
then this program fragment executes safely, and if it terminates (which it does in this case), Φ holds
of the execution result w, because it will be the value stack immV [C .const c]. The frame resource is
a special resource which needs to be included in every proof rule where we ‘take a reduction step’.

We merely require that Φ holds after one step of execution, as expressed by the later ⊲ modality
of Iris [Jung et al. 2018b]. One may choose to ignore this, but it is necessary in the presence of Iris’
higher-order features, to avoid cyclicity.

2For simplicity, in this paper, we conflate what WebAssembly calls ‘basic instructions’ and ‘administrative instructions’; see
beginning of §2.2.
3The persistent modality □ indicates that the Hoare triple is a proposition that can be duplicated as many times as needed.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:7

2.2 Control and Function Calls

Control and function calls in WebAssembly are intricate, but still feature locality, as expected;
for example, blocks can be reasoned about in isolation, and function scope is still respected. We
present an approach that allows us to reason about code fragments without needing knowledge of
their environment; it improves over the approach taken in the earlier Wasm program logic [Watt
et al. 2019] which does not scale to higher-order programs. In this section, we show how our rules
capture this locality to make reasoning tractable.

2.2.1 Administrative Instructions. To define reduction of blocks and functions calls, WebAssembly
adds an extra layer on top of the surface language, to represent intermediate states by administrative

instructions, which are defined by the following grammar:

AI ::= basic 4 | trap | invoke 8 | label8 {es} es end | local8 {� } es end | call_host tf hidx vs

• A basic instruction is a plain WebAssembly expression, as described in Figure 2. When clear
from the context, we conflate basic 4 and 4 , for example in weakest preconditions.

• A trap represents a program that has encountered an error in its dynamic execution.
• An invoke represents an intermediate step when reducing a call or call_indirect .
• A label represents a block or a loop that is being executed.
• A local represents a function call that is being executed.
• A call_host represents a program that performs a call to a function defined the host language.

We discuss the last four kinds of administrative instructions below, as we describe control flow and
function calls in WebAssembly.

2.2.2 Blocks, Labels, and Breaks. WebAssembly is somewhat unusual as an assembly-like language
in that it features only structured control, including labeled breaks. We show how we use the
higher-order nature of Iris to ease reasoning about the control structure of WebAssembly.
WebAssembly has (aside from function calls) two core constructs for control flow: blo�, and

loop (and the conditional if , which reduces immediately to a blo�). These take as arguments a
function type, and a list of expressions constituting the body of the blo� or loop. This body will
reduce until either it becomes a list of constants and the blo� or loop is exited, or a br instruction
is its first non-constant instruction. In a blo�, the body is then exited, and execution continues
with whatever follows the block; and in a loop, the full original body of the loop is repeated from
the beginning. The function type ts1 → ts2 describes the |ts1 | values4 needed to enter the blo� or
loop, and the |ts2 | values that need to be on the stack if a br is encountered.
Because of the similarity between these two constructs, the WebAssembly semantics has them

both reduce to a label administrative instruction. label={escont} esbody end is a label with body
esbody that will execute continuation expression escont if it encounters a br instruction preceeded by
= values. We come back later to the exact semantics of br. When preceeded with |ts1 | values vs of
the right type, blo� (ts1 → ts2) es reduces to label |ts2 |{[]} vs ++ es end and loop (ts1 → ts2) es

reduces to label |ts1 |{[loop (ts1 → ts2) es]} vs ++ es end.
Once the blo� or loop instruction has been reduced to a label, reduction steps can be taken in the

body of the label. As this may happen under many nested labels, WebAssembly defines evaluation
contexts lh: , which describe stack environments consisting of : nested labels surrounding a hole
[_] where the next step of execution takes place:

lh0 ::= vs ++ [_] ++ es lh:+1 ::= vs ++ label={escont} lhk end ++ es

4In WebAssembly 1.0, ts1 is always empty.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:8 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

Note how only (constant) values vs can be on the left of the hole and label instructions: this enforces
that we can only ‘zoom in’ on the next expression to reduce.
As expected, steps can be taken under an evaluation context: if es reduces to es′, then lh: [es]

reduces to lh: [es′]. Taking : = 0 yields the expected sequencing rule mentioned at the start of §2.1.
Correspondingly, we prove the following Iris-Wasm rule, which reduces reasoning about a

program fragment that can be decomposed as lh8 [es] to reasoning about lh8 [vs], that is, the result
vs of evaluating the expression to a list of constants, placed in the evaluation context.5

wp_ctx_bind

wp 4B
{
F,wp lh8 [F]

{
F ′,Φ(F ′)

}}

wp lh8 [4B]
{
F ′,Φ(F ′)

}

This rule leverages the fact that in Iris, weakest preconditions are propositions themselves, and can
therefore be nested. Notice how we have implicitly castF , a logical value, into an expression when
plugging it into lh8 . This is done in the intuitive way: immV vs is cast into vs, trapV is cast into the
single administrative instruction [trap], etc.

While control flow inWebAssembly is structured, the presence of labelled breaks makes it slightly
involved. A break targets a particular level of the evaluation context, and skips the rest. As a result,
the default evaluation context rules provided by Iris are inadequate, and we have to build our own
reasoning principles for contexts.
The br 8 instruction targets the 8th label from the context. Crucially, breaking relies on the

instruction br 8 being in an evaluation context lh: with 8 = : : the break index indicates what
context depth is targeted. If 8 > : , the expression lh: [br 8] is stuck and can only reduce if placed in a
deeper context. Correspondingly, we introduce a new type of logical values: brV 8 vh8 , representing
the program fragment vh8 [br 8]. The breaking context vh8 is similar to an evaluation context lh8 ,
except that the meaning of the subscript 8 is that the context has depth at most 8 , instead of exactly
8 . If 8 < : , a br 8 nested in context lh: will only break out of the 8 first labels, and the result will be
in the form lh:−8 [vs ++ es]. The break value brV allows to bind into any number of labels without
needing to worry about getting stuck at a br 8 statement: when encountering such a statement, we
simply bind back 8 + 1 times to get a wp in a form where our rule for br can be applied.

2.2.3 Functions. There are two ways to call a function in WebAssembly: statically with call, or by
dynamically fetching a function from a table, with call_indirect. We focus on the simpler direct
call here, and explain call_indirect in §2.3.

The instruction call = calls the =th function declared in the current module. Indexing starts at 0
with the imported functions, followed by the functions defined in the module itself. The store (
keeps a list of the function closures (which we describe below) of all the instantiated modules. This
means the =th function in the current module will not always be the =th function in the store: the
instance in the function frame � is in charge of remembering that indirection. The instance also
contains this indirection information for global variables, memories, and tables.

A call 8 retrieves the address addri of the relevant closure in the store from the frame’s instance,
and reduces to invoke addri. We prove the corresponding Iris-Wasm rule:

wp_call

(� .inst.funcs[8] = addri) ∗ Fr
↩−−−→ � ∗ ⊲

(
Fr

↩−−−→ � −−∗ wp [invoke addri] {F,Φ(F)}
)

wp [call 8] {F,Φ(F)}

5The version we show here is meant for evaluation contexts with at least one label constructor; in our Coq formalization,
we prove more intricate variations of this rule, to be applied for sequencing, with for instance lh8 [es] replaced with
lh8 [es1 ++ es2].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:9

. . . cl . . .functions

0 1 i

.tables

n

. . . a . . .
i

.memories

n

. . . b . . .
i

. . . g . . .globals

i

i . . .finsts

n . . .tinsts

n . . .minsts

i . . .ginsts

frame F ::= {inst, locs}

i wf↦−−−→cl

n wt↦−−−→8 a

n wm↦−−−−→8 b

i wg↦−−−−→g

Fr
↩−−−→ F

Module Instance WebAssembly Store Iris Resources

Fig. 3. Points-to predicates for the store and the frame

which requires ownership of the frame, not only because we are taking a reduction step, but also
to know where to look up index addri.
The function closures cl (also called function instances finst in Figure 2) stored in the store (

are of two kinds: native and host. Let us focus first on native closures, and come back to host
closures at the end of this section. The closure {(inst; ts); es}NativeClts1→ts2

describes a native function
that was defined in a WebAssembly module with instance inst (this is the environment for the
closure), which expects arguments of type ts1, defines additional local variables of type ts for the
computation of its body, yields results of type ts2 , and has body es. When reducing invoke, we look
up the closure in the store, and check that the stack contains the appropriate number of values to
be passed as parameters to the function. If the closure is native, invoke is replaced with the body of
the function. In order to properly encapsulate the function call, WebAssembly places the function
body inside a local administrative instruction, and inside a blo�, as captured by the following
Iris-Wasm proof rule (we say more about local and the meaning of � ′ further down):

wp_invoke_native

|vs | = |ts1 | ∗ cl = {(inst; ts); es}NativeCl
(ts1→ts2)

∗ � ′ = {locs := vs ++ zeros(CB); inst := inst} ∗

i wf↦−−−→ cl ∗ Fr
↩−−−→ � ∗ ⊲

[
(i wf↦−−−→ cl ∗ Fr

↩−−−→ �) −−∗

wp
[
local |ts2 |{�

′} (blo� ([] → ts2) es) end
]
{F,Φ(F)}

]

wp (vs ++ invoke i) {F,Φ(F)}

Unlike for the function frame � , we do not assert ownership of the whole store (. Instead, we
rely on points-to predicates to assert ownership of specific components: for instance, the predicate
8 wf↦−−−→ cl asserts ownership of (.funcs[8] in the store.

In general, we define points-to predicates for each component of the Wasm store. Fig. 3 illustrates
all the points-to predicates used in this paper, and how they relate to the physical Wasm store.
Functions and globals are referred to directly via their indices, while function tables and linear
memories can be viewed as two dimensional structures, where an index is used to refer to a
particular table or memory, and another index is used to refer to a particular cell within that table
or memory. For example, = wm↦−−−−→8 1 asserts that the 8 th byte of memory = is 1. The WebAssembly
frame F tracks the scope of the currently executing function, namely its enclosing instance and
local variables. The enclosing instance collects indices of all the entities of the Wasm store that the
module may access, and is crucial for enforcing the encapsulation properties of Wasm modules.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:10 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

Encapsulation. Let us return to why the function body is placed inside a local and inside a blo�.
The first of these is to provide proper encapsulation, as reduction of an expression nested in a local
takes place with respect to the nested frame of the local: when reducing [local={�1} es end], one
reduces es with respect to frame �1 rather than the current function frame � .

For our native invocation, the frame used will be � ′. Note that the inst field of � ′ is the instance
that was declared in the closure (to enforce static scoping), and that the local variables in � ′ are the
function parameters from the stack, followed by a list of zeros corresponding to the types of local
variables required by the function. We prove the corresponding proof rule for local:

wp_local_bind

Fr
↩−−−→ � ∗

(
Fr

↩−−−→ �1 −−∗ wp es
{
F, ∃� ′1,

Fr
↩−−−→ � ′1 ∗

(
Fr

↩−−−→ � −−∗ wp [local={�
′
1} w end]

{
F ′,Φ(F ′)

})})

wp [local={�1} es end]
{
F ′,Φ(F ′)

}

which is reminiscent of wp_ctx_bind; the only reason this rule looks like more of a mouthful, is that
the frame changes. As discussed above, this frame change is necessary for proper encapsulation.

Finally, the reason WebAssembly puts the function body in a blo� is to allow the function body
to contain a br (with the right index) to exit the function-body’s execution. Alternatively, a return
instruction will work like a br, but target the closest local instruction. The return instruction also
has an associated logical value retV lh: , representing the expression lh: [return].

Example. Consider the increment functionwith body esincr = [i32.local.get 0; i32.const 1; i32.add]

of type [i32] → [i32]. We show that calling it on input 3 returns 4.
Define es as [i32.const 3; call $incr], and let � .inst.funcs[$incr] = 8 . We prove that

8 wf↦−−−→ {(inst; []); esincr }
NativeCl
[i32]→[i32]

−−∗
Fr

↩−−−→ � −−∗ wp es {F,F = immV [i32.const 4]}

Here, the first precondition asserts that we know that function number 8 in the store is the increment
function (we denote by inst the instance of the module where the increment function was defined),
and the second precondition is ownership of the frame � .

We introduce the two preconditions by moving them to a proof environment Γ. For the first step
of derivation, we apply the wp_call rule6. To fulfill the premises of the wp_call rule, the resource
Fr

↩−−→ � from Γ is consumed, and it remains to prove
⊲(

Fr
↩−−−→ � −−∗ wp [i32.const 3; invoke 8] {F,F = immV [i32.const 4]})

Now we introduce the ⊲, move the frame resource back to our proof environment Γ, and are left
with a new weakest precondition to prove. This first proof step corresponds to the bottom-most
rule of the following simplified proof-tree:

Γ ⊢ immV [i32.const 4] = immV [i32.const 4]
wp_local_value

Γ ⊢ wp [local1{�
′
1} [i32.const 4] end] {F,F = immV [i32.const 4]}

wp_label_value
Γ
′ ⊢ wp [label1{[]} [i32.const 4] end] {F,Φ(F)}

wp_binop

Γ
′ ⊢ wp [i32.const 3; i32.const 1; i32.add]

{
F,wp [label1{[]} w end] {F ′,Φ(F ′)}

}

wp_ctx_bind
Γ
′ ⊢ wp [label1{[]} [i32.const 3; i32.const 1; i32.add] end] {F

′,Φ(F ′)}
wp_local_get

Γ
′ ⊢ wp [local.get 0]

{
F,wp [label1{[]} w ++ [i32.const 1; i32.add] end] {F ′,Φ(F ′)}

}

wp_ctx_bind
Γ
′ ⊢ wp [label1{[]} esincr end] {F,Φ(F)}

wp_block
Γ
′ ⊢ wp [blo�([] → [i32])es8=2A] {F,Φ(F)}

wp_local_bind
Γ ⊢ wp [local1{�

′} blo�([] → [i32])esincr end] {F,F = immV [i32.const 4]}
wp_invoke_native

Γ ⊢ wp [i32.const 3; invoke 8] {F,F = immV [i32.const 4]}
wp_call

Γ ⊢ wp es {F,F = immV [i32.const 4]}

As illustrated, we proceed by applying rule wp_invoke_native, leaving us with a new
weakest precondition to prove with the same environment Γ. In the figure, � ′ is defined as

6Some structural rules, which we have omitted here, allow it to be applied despite the constant preceding the call instruction.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:11

{locs := [i32.const 3]; inst := inst}, which is the frame where the call to the increment function
needs to be executed in. Next we apply the rule wp_local_bind to bind the contents of the local. We
give up the Fr

↩−−→ � resource to fulfill one premise. In its last premise, the new frame resource Fr
↩−−→ � ′

is introduced back to the context, and will be the frame we use to reason within the call to the
increment function. We denote by Γ

′ this new proof environment where we own frame � ′ instead

of � , and let Φ(F) = ∃� ′1,
Fr

↩−−−→ � ′1 ∗
(

Fr
↩−−−→ � −−∗ wp [local1{�

′
1} w end] {F ′,F ′

= immV [i32.const 4]}
)
,

which corresponds to the postcondition in the premise of the rule wp_local_bind.
The next few steps are mechanical, and we omit the details of some rules for brevity. We apply

wp_block followed by wp_ctx_bind to focus on the first instruction of esincr , local.get. We resolve
it by applying rule wp_local_get, which inspects the locs field of the frame, and leaves us to prove
the post-condition for 3. We apply wp_ctx_bind again to bind the binary operation i32.add, resolve
it by applying wp_binop7, and then wp_label_value to exit the label. It now remains to show
Φ(immV [i32.const 4]), which expands to

∃� ′1,
Fr

↩−−−→ � ′1 ∗
(

Fr
↩−−−→ � −−∗ wp [local1{�

′
1} [i32.const 4] end] {F,F = immV [i32.const 4]}

)

We satisfy the existential with � ′, give up the resource Fr
↩−−→ � ′ from the context Γ′ to satisfy the first

part of the separating conjunction, and obtain Fr
↩−−→ � back, making our proof environment Γ again.

We exit the local instruction (which is the function call context) by applying wp_local_value, and
are left with our original postcondition to prove, which is now trivial when substituted with the
value we obtained inside local. This completes the detailed proof.

Example. Coming back to the stack module from §1, we now outline what specifications for
functions look like and, how they can be used by client modules. Take any function 5 . We write its
specification in the general form:

□∃cl %,∀8 vs xs, Ψ(%, vs, xs) −−∗ (8 wf↦−−−→ cl) −−∗ wp vs ++ [invoke 8] {F,Φ(%,F, xs)}

with Φ and Ψ some predicates specific to the function 5 . The persistence modality □ simply
indicates this specification can be duplicated as many times as needed;8 we omit this modality
in every specification that follows, for simplicity. Note the existential quantifiers. The first one,
cl, abstracts over the actual closure of function 5 ; because it is hidden behind an existential, it
is hidden from clients. The second one, % , allows the specification to reference some abstract
representation predicate. In the case of the functions from the "stack" module, we will have an
existentially quantified predicate isSta�, which hides the data representation from clients. We put
all specifications under one large existential ∃clpush clpop clmap . . . isSta�, so that all specifications
can share the predicate isSta�.
The specification is thus a weakest precondition9 on an invoke, with some precondition Ψ on

the arguments vs given and some postcondition Φ. Both Ψ and Φ can mention the existentially
quantified predicate % , as well as some universally quantified variables xs. The invocation address 8
is linked to the function 5 by the condition 8 wf↦−−−→ cl, that asserts that the function body is stored at
address 8 . Let us give the concrete Φ and Ψ used for function "push":

∃clpush clpop clmap . . . isSta�,
(
∀8 v G B, isSta�(v, B) −−∗ (8 wf↦−−−→ clpush) −−∗

wp [i32.const G ; v; invoke 8] {F,F = immV [] ∗ isSta�(v, G :: B)}
)
∗ . . . (other specs)

7Formally, to use the rule as it was presented earlier, one must first frame in the resource Fr
↩−−→ � ′ in order to have the

postcondition be of the right form. This means that, just like for every rule we have applied so far, even though we give up

ownership of Fr
↩−−→ � ′ to fulfill one premise, we still get to use it to prove the other premise.

8As a counterpart, proving this specification cannot rely on usage of any non-duplicable resource.
9In practice, we use the host weakest precondition wphost − {−} that we introduce in §3, as to allow functions to interact
with the host via host calls. For functions that do not interact with the host, this makes no difference.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:12 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

To present the corresponding Φ and Ψ predicates for the "map" function, we need first to introduce
some aspects about higher-order code in WebAssembly, which we do in §2.3.

Given a specification written in this form, and given the resource 8 wf↦−−−→ clmap,10 a client can verify
its code in the presence of a call to the imported map function: when arriving at the instruction
call $map, wp_call reduces call to invoke, and now the specification shown above can be applied.

Host functions. WebAssembly is meant to be defined independently of the host language in which
it is embedded. However, the way the WebAssembly standard is phrased assumes that it is given
some operational semantics of the host language as input, and embeds it in the operational semantics
of WebAssembly. This phrasing suffices for defining the semantics of WebAssembly alone, which is
what the WebAssembly standard does. However, when providing the first formal integration of
WebAssembly with a separately-defined host language, we identified that this phrasing is limiting,
because it prevents formally giving the semantics of the combined host and embedded language as
the integration of two concrete, separately defined language.

To account for this, we modify the presentation of the WebAssembly semantics (this is our only
point of departure from the Coq formalization of Watt et al. [2021]) so that the invoke of a host
function reduces to a new call_host administrative instruction:

invoke_host(
(.funcs[8] = {hidx}HostClts1→ts2

)
∗ (|CB1 | = |EB |)

((; � ; vs ++ [invoke 8]) ↩→ ((; � ; [call_host (ts1 → ts2) hidx vs])

The closure {hidx}HostClts1→ts2
represents a host function imported from the host language that expects

arguments of type ts1 and yields results of type ts2 . The argument hidx is an identifier that the
host will use to determine what the desired function is. The call_host instruction remembers the
function type tf , the ‘host identifier’ hidx that allows the host language to identify which function
is being called, and the function arguments vs. A call_host is stuck, and can only be unstuck by
the host language, which typically replaces it by the return value of the call, possibly changing the
frame or the store in doing so. We say more about the host interaction in §3.
We prove the following Iris-Wasm proof rule:

wp_invoke_host

|vs | = |ts1 | ∗ cl = {hidx}HostCl
(ts1→ts2)

∗ i wf↦−−−→ cl ∗ Fr
↩−−−→ � ∗ ⊲

[
(i wf↦−−−→ cl ∗ Fr

↩−−−→ �) −−∗

wp (call_host (ts1 → ts2) hidx vs) {F,Φ(F)}

]

wp (vs ++ [invoke i]) {F,Φ(F)}

We introduce the call_hostV tf hidx vs llh logical value, representing the stuck value
llh[call_host tf hidx vs]. This allows for seamless binding rules when we introduce the host
language’s logical rules in §3. Since a call_host instruction is also stuck if it is under a local or un-
der a label, we remember the context llh around the call_host as the fourth argument of call_hostV.
This context llh is a generalized version of lh: , that has a hole in nested locals and labels. In the
rule above, wp (call_host (ts1 → ts2) hidx vs) {Φ} is thus a weakest precondition on a value, and
it thus suffices to show that Φ(call_hostV (ts1 → ts2) hidx vs [_]).
For example, when specifying the "main" function of the extended client module from §1, one

intermediate goal, when verifying the part of the code corresponding to the call to the host function
$mut, would have the form wp vs ++ call $mut {Φ}, where vs represents the constant arguments
we have pushed onto the stack prior to making the call. To prove this, one can simply apply
rule wp_call to reduce call to invoke, and then rule wp_invoke_host to reduce the invoke to a
call_hostV value. The computation is now reduced to a logical value, thus we now must prove that

10The name of the index 8 and ownership of this resource are provided by instantiation when the client does the import.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:13

the postcondition Φ holds of the host call value. We cannot carry on to the rest of the code of the
reentrant example if we stick at the WebAssembly level; this is in line with the nature of this call: it
is a host call and needs interaction with the host to be unstuck. We will see in §3 how to reason
about interaction with the host to prove the full specification of the reentrant example.

2.3 Higher-Order Code with Indirect Calls

As explained in §1, one can use call_indirect to implement higher-order functions with the help of
the host language. The instruction call_indirect 8 , where 8 is an index into the types field of the
module instance in the function frame, takes one argument : from the stack, and uses it as an
index to look up the function to call in the table. The table itself is located in the store. Like for
function invocation, the instance in the frame � finds the store-index ta of the correct table (i.e. the
one at the head of the tables field). Now the :th element 0 of the table indexed ta can be looked
up, and used as the index in the function closures component of the store, to find the closure cl to
execute. As a side condition, the type of the closure must match the one declared by index 8 (that
call_indirect takes as an immediate). Finally, [call_indirect 8] reduces to [invoke a], setting cl to
be invoked in the next reduction step.
We prove the following program logic rule:

wp_call_indirect_success
Fr

↩−−−→ � ∗ (� .inst.tabs[0] = ta) ∗ (ta wt↦−−−→: a) ∗ (a wf↦−−−→ cl) ∗ (� .inst.types[8] = typeof cl) ∗

⊲

(
(ta wt↦−−−→: a) −−∗ (ta wf↦−−−→ cl) −−∗ (

Fr
↩−−−→ �) −−∗ wp [invoke a] {F,Φ(F)}

)

wp [i32.const : ; call_indirect 8] {F,Φ(F)}

Here, we use the points-to predicate for elements of the table: only ownership of the relevant :th
element of the table is required. Notice how the rule passes the ownership of all three points-to
predicates (frame ownership, table element ownership and function closure ownership) to the
continuing weakest precondition.

Example. The higher-order "map" function of our stack module in §1 calls its argument function
on each element in the stack by using call_indirect. We have now introduced enough logical
machinery to present our modular specification of "map":

∃clmap isSta�,∀Φ Ψ 0 v B � 9 : 8, (1)

□(∀D.Φ D −−∗ . . . −−∗ wp (i32.const D; invoke 0) {E,Ψ D E ∗ . . .}) −−∗ (2)

isSta� v B −−∗ stack_all B Φ −−∗ (3)

(
Fr

↩−−−→ �) −−∗ (� .inst.tabs[0] = 9) −−∗ (9 wt↦−−−→: 0) −−∗ . . . −−∗ (8 wf↦−−−→ clmap) −−∗ (4)

wp [i32.const : ; v; invoke 8] {F, ∃B ′. isSta� v B ′ ∗ stack_all2 B B ′ Ψ ∗ . . .} (5)

Let us describe the specification line by line: (1) As explained in §2.2, we existentially quantify over
a closure clmap and a predicate isSta�, to hide our implementation of the stack and the body of the
"map" function. We then universally quantify over many variables, including notably Φ and Ψ used
in the specification of the mapped function, stressing this specification can be as general as needed.
(2) The first precondition is a specification for the mapped function; it uses two predicates Φ and
Ψ to express that for any i32 input D that satisfies Φ, the mapped function returns an i32 result E
such that Ψ relates D with E . We have used ‘. . . ’ to elide some predicates, which are simply a copy
of some of the resources from line 4, so as to allow usage of those resources (like frame ownership)
in the proof of the specification of the mapped function. (3) Next, we describe the argument value
v: it must represent a mathematical stack B , all elements of which satisfy Φ. This is captured by
the isSta� v B predicate. (4) A points-to predicate for table 9 links the argument value : to the
function index 0 (from the invoke in line 2). For brevity, we elide other side-conditions pertaining
to typechecking the mapped function. At the end of the line, we have the function closure points-to

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:14 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

(import variable) vi ::= nat (module variable) vm ::= nat (host action id) hidx ::= nat

(declaration) X ::= inst_decl vis vm vis | get_global i
(host action) 0 ::= nop | print | instantiate X | call_wasm | table.set

(import variable store) � ::= vi ↩→ export

(host state) � ::= {store : (, frame : �, imports : � , modules : ms, actions : as}
(host expression) he ::= (es;XB) (host value) hw ::= (vs; []) | (trap; [])

Fig. 4. Host Syntax (definitions reference the grammar in Fig. 2)

predicate that links the index 8 of the invocation on line 5 to the "map" function closure. (5) After
running "map", we have a stack with logical state B ′ at location v, whose elements are related
one-to-one to that of the previous logical state B by Ψ. For readability, we omit the second part of
the postcondition, which simply gives back all of the resources from line 4.
To prove the above specification, the $stack module, who has access to the actual code of the

"map" function, simply fills in the existential quantifiers with the actual closure of "map" and
the definition of isSta� reflecting the actual implementation. Then all that remains is a weakest
precondition to prove, which is done by applying the rules in §2.2: wp_invoke_native using
hypothesis 8 wf↦−−−→ clmap, then wp_local_bind, to enter the local etc.
Note that we rely on the fact that our ambient logic, Iris, is a higher-order separation logic, in

which weakest preconditions are just usual propositions. We stress again that the user of "map"
does not need to know how isSta� is defined (and in fact, we hide it with an existential quantifier
surrounding the specification of the stack module, again exploiting the higher-order logic of Iris)
or the physical state of the stack representation in memory: they only need to reason about the
mathematical state, B; for example, stack_all only refers to B .

This example demonstrates that Iris-Wasm can be used to prove specifications for modules that
cleanly hide the heavy indirection and low-level details of WebAssembly.11 The use of call_indirect
for higher-order programming, to call an arbitrary client function, goes beyond the ‘encapsulated’
fragment of WebAssembly of Watt et al. [2019], and yet is captured modularly in the first line
of our specification. Our accompanying Coq formalization contains a formal proof that a simple
implementation of the stack module meets the specification. We can then apply the specification to
different clients. In this paper, we focus on the reentrant client introduced in §1, see §3, and a client
that applies "map" to an unknown and potentially malicious imported function (see §5). The code
for these examples, and a few more, can be found in our Coq development.

3 HOST LANGUAGE AND PROOF RULES

In this section, we define a minimal host language featuring the core operations of theWebAssembly
JavaScript Interface. The host fulfils two important roles; first, it embeds WebAssembly and defines
the interoperability between WebAssembly and the host; and, second, it implements module instan-

tiation, in which the host language handles the allocation of WebAssembly states. Our minimal
host language also has the ability to mutate WebAssembly function tables.

We begin by introducing the syntax of the host language and selected proof rules, with a focus
on the interoperability with WebAssembly. We then detail the rules for module instantiation.

The syntax of the host language is shown in Fig. 4. Host expressions are pairs of WebAssembly
expressions and host-specific declarations; host values are pairs of WebAssembly values, and an
empty list of declarations. Finally, the host state is a record of the WebAssembly store and frame,

11Indeed, the specification shown here is akin to the specification for a stackmodule implemented in anML-like programming
language in standard Iris [Birkedal and Bizjak 2017].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:15

as well as host-specific state. Host specific state has three components. First, it includes a store of
export objects, to store the exports of an instantiated module, and to feed the imports of future
instantiations. Note that while we call them import variables, they are used both for imports and
exports. Subsequently, an export object refers to any object passed from one module to another,
either as import or export. Second, it keeps track of a list of WebAssembly modules. Finally, to
maintain the generality of host calls, host actions are indirectly referenced by indices into a list of
available host actions.
To illustrate the expressive power of a host, our minimal host language includes five different

host actions. nop, print and instantiate X are pure operations that do not depend on host or
WebAssembly store. More noteworthy are the call_wasm and table.set operations: call_wasm

reduces to aWebAssembly call instruction, which opens up the possibility of reentrancy between the
host and WebAssembly; table.set displays the expressive power of the host over the WebAssembly
store, by mutating a given function table with a function from the WebAssembly store.
Declarations are either (1) instantiations inst_decl vis vm vis, which consist of a list of import/

export variables to feed into the imports of a module (referenced indirectly by its index into the
module store), whose exports are stored in the subsequent list of import/export variables, or (2) load
declarations for WebAssembly globals, to load the final output of a Wasm module’s main function.
The host operational semantics prioritises the reduction of WebAssembly expressions over that
of instantiation declarations. We refer to the Coq formalization for a full account of the host
operational semantics.

In the remainder of this section, we will discuss the proof rules of our new program logic for the
host. We define our host logic using a weakest precondition predicate wp

host
(es;XB) {hw,Φ(hw)},

which intuitively means that the host expression (es;XB) does not get stuck and, if it terminates
with the host value hw, then the predicate Φ holds for hw.

While the host weakest precondition is not to be confused with the Wasm weakest precondition,
it shares some similarities in its memory model. The memory model of the host program logic
extends the memory model of the Wasm program logic, as it includes the Wasm store. We reason

about the host-specific part of the host state using three new predicates: (1) vi vis↦−−−→ export: a

points-to predicate for the export object store; (2) vm mod
↩−−−−→<: a points-to predicate for the module

store; (3) hidx ha
↩−−→ 0: a points-to predicate for the host action store. We present the host program

logic in two parts: first we discuss the rules that implement interoperability between WebAssembly
and the host, and second we discuss module instantiation.

Interoperability. The first key to WebAssembly and host interoperability is the WebAssembly
lifting step. Any reduction in the WebAssembly part of a host expression corresponds to a step in
the host expression, as captured by the following bind rule:

wp_lift_wasm

wp es
{
F,wphost (F ;XB) {hw,Φ(hw)}

}

wphost (es;XB) {hw,Φ(hw)}

Note thatF may be a logical value, in particular a suspended host call fromWasm to the host, which
can now be resolved via the host proof rules for call_host. Recall the definition of a stuck host call:
the call_host tf hidx vs administrative instruction is considered stuck in any nested WebAssembly
context llh, and is interpreted as the logical value call_hostV tf hidx vs llh, in which hidx refers to
the host action identifier which is storing the executing host action, tf refers to its type, and vs

refers to the parameters of the invocation. Each host action is resolved via a different proof rule.
In particular, one such host action is a call in the other direction, from the host to Wasm. In that

case, the inner call_wasm action, performed by the host function hidx, reduces to theWebAssembly

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:16 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

instruction call as follows.
wp_host_action_call_wasm

hidx ha
↩−−−→ call_wasm ∗ ⊲ (hidx ha

↩−−−→ call_wasm −−∗ wphost (llh[call 8];XB) {hw,Φ(hw)})

wphost (llh[call_host tf hidx [i32.const 8]];XB) {hw,Φ(hw)}

Reentrant example. We now have all we need to prove a specification for the extended (reentrant)
client introduced in §1. This specification will be parametrized with specifications for all the
functions from the stack module (and thus with all the existentials of those specifications, most
importantly the isSta� predicate), and can be modularly combined with a specification for the
stack module.
Our specification could look like this:

∃clmain,∀v x1 . . . xn i hidx, isSta� v [x1, . . . , xn] −−∗ 8
wf↦−−−→ clmain −−∗

OwnClosures([$f0; $f3; $map]) −−∗ $mut wf↦−−−→ {hidx}HostCl
[i32;i32]→[]

−−∗ hidx ha
↩−−−→ table.set −−∗

wphost ([i32.const v; invoke 8], []) {ℎF, isSta� hw [53 (50 (x1)), . . . , 53 (50 (xn))] ∗ . . .}

The elided postconditions give back all the preconditions; OwnClosures(fs) asserts ownership, for
all functions 5 ∈ fs, of a closure cl 5 . For the function $map imported from the stack module, the
closure is the one referenced in the specification of the stack module. In order to carry out our
proof, we assume we are given specifications for functions $f0 and $f3 that reference cl 50 and cl 53 .

To prove this specification, we fill in the existential quantifier for clmain with the actual code of
the "main" function. Now we apply wp_lift_wasm to bring ourselves to proving a WebAssembly
weakest preconditon: the postcondition now becomes F,wp

host
F {ℎF,Φ(ℎF)} where Φ is the

postcondition in the weakest precondition shown above. We can now begin the proof just like we
proved all the specifications for the functions in the stack module: we apply wp_invoke_native,
then wp_local_bind, etc.
As showcased in §2.2, the WebAssembly weakest precondition gets stuck on a value when it

arrives at the host call: we now need to show that the postcondition holds of the call_hostV value,
i.e. that wphost llh[call_host tf hidx vs] {ℎF,Φ(ℎF)}

where llh is the context in which the host call was, containing for instance all the code that
follows the host call. To prove this, we have a rule wp_host_action_table_set similar to rule
wp_host_action_call_wasm shown above, that, given our knowledge of = wt↦−−−→0 $f0, gives back
= wt↦−−−→0 $f3, and brings us to prove a (host) weakest precondition statement on the code that follows
the host call, with this new function at the 0th place in the table. We can prove this by lifting to
WebAssembly and carrying out the proof in the WebAssembly program logic until the end.

Module instantiation. While WebAssembly 1.0 does not depend on any particular host language,
it does define a specification for module instantiation. Any host language is tasked with implement-
ing instantiation according to that specification. We thus conceptually distinguish between the
parts of module instantiation pertaining to the official WebAssembly specification, and the parts
that deal with the host language. Instantiate((,<, exportdescs, (((′, inst, exports), start)) defines the
specification for module instantiation. The full definition is quite elaborate; we refer to the Coq
mechanization for all details, and provide an intuitive overview here. In essence, it states that inst is
the result of instantiating module m while importing exportdescs, exports are the resulting exports,
and S′ is the resulting WebAssembly store, in which all the relevant state has been allocated.

The specification enforces various side conditions. First, the module must be well typed according
to a list of relevant import and export types. Next, it asserts the necessary operational conditions
on the allocated state and created instance; that all the fields of the instance are properly initialized
(e.g. any function table is initialized with the proper elements as defined by the module), that all the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:17

initialized values are within the bounds of the initialized object, and finally that the start function
is either empty, or refers to a function of the module of type [] → [].

The instantiation specification specifies the outcome of module instantiation on theWebAssembly
store. Note that the specification is host language agnostic. The semantic outcome of instantiation
on theWebAssembly store ought likewise to be independent of the host language that implements it.
The following lemma captures the effects of instantiation on the interpretation of the WebAssembly
store as Iris resources, according to the host agnostic instantiation specification. The lemma is thus
independent of any host language definition.

Lemma 3.1 (Module Instantiation Resource Allocation).

If ⊢ m : timps → texps ∧ constInits(<)

and Instantiate((,<, imports, (((′, inst, exports), start))

then resourcesImports(<, imports, timps,wfs,wts,wms,wgs) ∗ stateInterp(()
|⇛resources(<, imports, timps,wfs,wts,wms,wgs, start, inst) ∗ stateInterp((′)

For readability, we omit the technical details behind some of the above predicates. It suf-
fices to know the following: constInits limits the global initializers and offsets to be constants,
resourcesImports defines the points-to predicate associated with each import in imports, and
resources defines all the points-to predicates associated to the created instance inst, including those
that were previously imported. The variables wfs, wts, wms and wgs are maps that summarise the
values of functions, tables, memories and globals of the created instance. (The |⇛modality is used
in Iris to update ghost resources [Jung et al. 2018b].) Using Lemma 3.1, we can then prove a host
weakest precondition rule for host instantiation, that we will refer to as wp_host_instantiate.

Example. The complete stack module is an instantiation declaration, which exports closures
for push, pop, new_stack, is_empty, is_full, stack_length and map, as well as the function table
invoked by map. We recall that exports are passed via indices into the import variable store.

vm ≜ {0 ↦→ stack_module} host_program ≜ ([], [inst_decl [] 0 [0, 1, 2, 3, 4, 5, 6, 7])

The Iris-Wasm specification of the complete stack module from §1 is as follows (we elide the
exporting of the table, for simplicity):

∃stack_module,∀8 js, (8 mod
↩−−−−→ stack_module) −−∗ ∗

9 ∈js
9 vis↦−−−→ − −−∗

wphost ([]; [inst_decl [] i js])

∃clpush clpop . . . clmap, isSta�, spec_push ∗ spec_pop

∗ . . . ∗ spec_map ∗ ∗
9 ∈js

9 vis↦−−−→ function_export cl 9

spec_push is the specification of the "push" method shown earlier. Likewise for the other specifi-
cations mentioned in the postcondition. Both the contents of the $stack module and the implemen-
tations of the stack operations are hidden from clients because of the existential quantifiers.
This stack module specification is proven by applying rule wp_host_instantiate, which pop-

ulates the value import stores and gives ownership of all the resources necessary for the stack
module operations, and then we apply the specifications for the stack operations shown in §2.3.

With this specification for the stack module and a similar one for the client module (parametrized
by the specification of the stack), we verify the complete stack program (a sequence of instantiations)
in our Coq formalization.

4 MECHANIZATION IN THE IRIS FRAMEWORK

We implement and prove the Iris-Wasm proof rules in this paper in the Iris framework in the Coq
proof assistant. Iris was originally developed to reason about programs with complex concurrency;
however, the same mechanisms have proven useful to reason about complex sequential programs

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:18 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

Fig. 5. Lines of code of the Iris development, as given by cloc

helpers language rules instantiation host examples logrel stack total

11836 3685 7123 6828 2339 2754 8145 8787 51497

such as the awkward example, as demonstrated for example by Georges et al. [2021a]. In this paper,
we focus our presentation on the novel, language-specific proof rules we introduce and prove, but
our program logic also inherits many other logical constructs and proof rules from Iris which we
make use of in our development. We have already mentioned the ‘later’ modality, ⊲, which avoids
circularities in the presence of the higher-order features of Iris, and which can be used to define
guarded recursive predicates in Iris, as well as the ‘persistence’ □ and ‘update’ |⇛modalities. Other
features we use include the frame rule, non-atomic invariants, ghost state, and other proof rules
like Löb induction; for a thorough introduction to those, see Jung et al. [2018b].

We prove all our proof rules in Iris, with respect to the default definition of the weakest precondi-
tion predicate (with an extra requirement that the frame resource holds for every step of reduction)
instantiated to refer to the Coq formalization of the official WebAssembly 1.0 operational semantics
by Watt et al. [2021].
The adequacy theorem of Iris [Jung et al. 2018b, §6.4] then yields the final desired soundness

theorem, which intuitively says that if a weakest precondition for a WebAssembly or host program
has been proved in Iris-Wasm, then it does indeed mean that the program runs safely, according
to the official WebAssembly 1.0 operational semantics, or the host language that embeds it. An
example of the latter can be found in the Coq mechanization.
The size of the full Iris development is summarized in Fig. 5. The logrel folder contains a case

study presented in the next section, and stack contains the full stack module and associated clients.
The stack module, with a binary size of 637 bytes, is defined in around 200 lines code in Coq,

with the module type checking done in 300 lines of code using the type checker from Watt et al.
[2021]. The module specification is fully verified using the Iris-Wasm logic in around 3800 lines of
code in Coq, where 2100 lines are used to verify each of the module function specifications, and
the remaining code is used to prove the top-level instantiation specification and auxiliary lemmas.
Such a ratio between program and proof size may hint at a substantial verification effort. However,
it’s important to note that it reflects a version of Iris-Wasm without a bespoke proof mode; an
interesting line of future work is to extend Iris-Wasm with various automation techniques, such
as the proof search strategy of Mulder et al. [2022], and use it to prove specifications of large
real-world programs.

5 CASE STUDY

We showcase the utility of our program logic through a case study12. The goal is to leverage the
coarse-grained encapsulation guarantees of WebAssembly modules to prove robust safety of two
scenarios involving some interaction between a known module and an unknown, potentially mali-
cious, module. While the coarse-grained encapsulation properties granted by modules are relatively
shallow (one module cannot interact with the internals of another), the reasoning principles are not:
not only are we reasoning about unknown code, the desired robust safety property can be subtle,
and highly specific to the particular implementation of a robustly safe module. We emphasize that
we do not seek to either define or prove encapsulation as a meta-property, rather, we define and
apply a methodology to prove robust safety of specific modules.

12Our Coq mechanization also includes another case study of a program that uses recursion through the store, by applying
a host call to mutate the function table, known as Landin’s Knot.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:19

WebAssembly’s modules are designed to allow trusted code to encapsulate its local state (e.g.
variables and memory), by limiting what is shared with untrusted modules via imports and exports.
This encapsulation is meant to hold no matter what other modules do, either by accident or by
malice, and thus does not rely on compliance. Modules can take advantage of this encapsulation to
guarantee various safety properties. To prove those properties formally, we may need to reason
about the interaction between known, trusted code and unknown, untrusted code. We have thus
far presented a program logic to reason about known code only. In this case study, we use the
program logic to build a method to reason about the instantiation of unknown code, and use it to
prove the robust safety of known code, that is, safety even when composed with adversarial code.

<client ≜ (module ;; Another Stack Client

(import "adv" "f" (func $f (param i32) (result i32)))

(import "stack" "map" (func $map (param i32 i32)))

... ;; import global g and the remaining stack module

(elem (i32.const 0) $f) ;; populate table with imported

function

(func $main (local $i i32)

call $new_stack; ... ; const 4; call $push;

local.get $i; const 2; call $push;

local.get $i; const 0; call $map;

local.get $i; call $stack_length; global.set $g))

stack_client ≜
inst_decl [] "stack" ["tab"; ...; "pop"]
inst_decl [] "adv" ["f"]
inst_decl ["f"; "g"; "tab"; ...; "pop"] "client" []

Fig. 6. Robust safety example:
applying map on an imported function

The methodology is based on a relational inter-
pretation of WebAssembly types, built on top of
our Iris-Wasm program logic, by defining logical
relations for each WebAssembly type. The key idea
is to interpret the types of primitives, functions,
etc., all the way to module types, as propositions
in Iris-Wasm. The methodology of defining logical
relations in Iris is well known [Georges et al. 2021a;
Jung et al. 2018a; Krebbers et al. 2017; Swasey et al.
2017], but here it is for the first time applied to the
type system of a full industrial standard, namely
the WebAssembly type system. We define semantic
interpretations for all WebAssembly types. That
includes all the internals of a module, and in par-
ticular it includes the types of exports and imports.
We say that an import object is safe to share, or
valid, if it is in the appropriate relation. All the re-
sults in this section have been formally proved in

Coq. We give an overview here, and refer the reader to the accompanying Coq code for the full
definition of the relational interpretation of WebAssembly types.
The interpretation of module types via the instance relation, denoted IJ�K, is the keystone to

derive specifications for unknown functions. The following key theorem states that the result of
instantiating a well-typed module ⊢ m : timps → texps produces a valid instance, given that all
imports are valid according to timps.

Theorem 5.1 (Valid Instance Allocation). If ⊢ m : timps → texps, and inst is the result of

instantiating module< with imports imps, then

resources(<, imps, timps, · · · , inst) −−∗ validJtimpsK(imps) −−∗ IJ�K(inst)

where � is the module type, determined syntactically, resources(· · · , inst) corresponds to the ghost
resources allocated by module instantiation as depicted by Lemma 3.1, and validJtimpsK(imps) unfolds

the list of imports, and applies the relevant relation on each import object.

Proof. By unfolding the definition of module typing, inferring properties about the result of
instantiating<, and component-wise proving the instance relation. Validity of imported types
is established by the validJtimpsK(imps) assumption, while the rest are established using the
fundamental theorem of logical relations (FTLR). The FTLR, which roughly states that all well-
typed programs are semantically well-typed, is a key non-trivial language property, and is proved
by induction over the full type system. □

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:20 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

Applications of the Logical Relation. Next we describe two scenarios, each involving our stack
module interacting with some unknown function. In each case, the two modules interact via
imported closures. We will therefore employ the closure relation Clos as the principal logical
relation in our reasoning.

The two applications highlight a conceptual distinction between two kinds of scenarios in which
known code interacts with unknown code. In the first example, known code imports functions
from an unknown module, and has a certain amount of control over how these are applied. The
second example exports known code to an unknown module, and in that case, exported closures
must carefully guard against misuse.
Fig. 6 depicts a client of the stack module, which imports a closure "f" of type [i32] → [i32]

from an unknown module. The client creates a new stack, pushes two values, then applies map
using the imported unknown function, and finally computes the length of the stack by calling
a function from the stack module. The stack module hides its internal representation from the
context. Likewise, the host makes sure to hide the stack module operations from the unknown
module. WebAssembly’s coarse grained encapsulation thus guarantees that the integrity of the
allocated stack is maintained, no matter what the unknown imported function does: as long as it
does not trap, the final length operation succeeds and returns the original size of the stack, namely
2. We refer to imports and modules via names rather than indices, for the sake of readability. The
following theorem expresses robust safety formally:

Theorem 5.2 (Top-level Host Specification). If ⊢<adv : [] [funce ([i32] → [i32])] and the
syntactic restrictions on<adv hold, then

{
"stack" mod

↩−−−−→<stack ∗ "adv"
mod

↩−−−−→<adv ∗

"client" mod
↩−−−−→<client ∗ "g" vis↦−−−→ $g ∗ $g wg↦−−−→ −∗

[NaInv : ⊤] ∗ "f", "tab1", "map", ..., "pop" vis↦−−−→ −
} stack_client {ℎF,

(ℎF = ([]; []) ∧ $g wg↦−−−→ 2)∨

ℎF = (trap; []) }
Proof. Once the host has allocated the unknown module, we apply Theorem 5.1 to conclude

that its instance is valid, which guarantees that each of its components, including the exported
closure of type [i32] → [i32], is valid. As a result, we know that the unknown import of our
client is in the closure relation Clos, which by definition of the relational interpretation includes a
specification for the unknown function. Crucially, this specification does not depend on the stack
internals, and thus we are able to prove that the stack size is maintained. □

Next we consider a scenario in which an unknown module imports operations from the stack
module, namely new_stack, push and pop. The encapsulation of the stack module’s internal state,
alongside careful checks at the boundaries of each operation, which we will elaborate on below,
should guarantee that the stack module memory indeed stores and maintains stacks, as defined
by the isStack predicate, irrespectively of what the unknown module does. Henceforth we will
refer to this as the representation invariant, denoted by stackInvariant(<), where< is the index of
the encapsulated memory. Roughly, the representation invariant is an Iris (non-atomic) invariant
containing a big separation of isStack predicates, one for each allocated stack.
The basic type system of WebAssembly guarantees that the adversary code does not get stuck.

However, our goal is to reason about integrity of the data representation enforced by the module
system. While the type system defines the typing of an individual module, it does not consider
interweaving of module instantiations, since instantiation is handled by a host, typically written in
untyped JavaScript. Therefore, the type system is too weak to capture the data abstraction enforced
by the module system, which we are relying on here. As such, our interpretation of the type system
does not capture the refined interpretation (with the representation invariant) of the stack module.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:21

We use the standard type interpretation of the adversary module to reason about its execution.
However, we want this interpretation to depend on the refined representation invariant of the stack
module internals, rather than the default interpretation granted by the logical relation. Since each
import must be valid when applying Theorem 5.1, wemanually prove that, given the representation
invariant, each exported function (new_stack, push, and pop) is in the closure relation.
As a result, we must now consider the case where a stack operation is applied on an arbitrary

input value. Consider, for instance, push – it takes two arguments, one of which is a stack value,
which is interpreted as a memory address. A malicious adversary could apply push to a masked
stack value (a bogus memory address), thus breaking the expected internal behavior of the stack
module. push must thus guard against such a situation by dynamically checking the validity of all
safety-critical parameters. These dynamic checks ensure that no stack gets corrupted. Relying on
those dynamic checks, we can then prove specifications that maintain the representation invariant:

Theorem 5.3 (Validity of Select Stack Module Operations). If inst .mems = [<] then,

stackInvariant(<) → ClosJ[i32; i32] → []K({(inst, [i32]); push}NativeCl)
∗ ClosJ[i32] → [i32]K({(inst, [i32]); pop}NativeCl)
∗ ClosJ[] → [i32]K({(inst, [i32]); new_stack}NativeCl)

The representation invariant is allocated upon instantiation of the stack module, at which point
there are no allocated stacks. Theorem 5.3 is then applied on each of the relevant stack module
exports, such that we can apply Theorem 5.1, and conclude with the standard type interpretation
of the adversary module, while maintaining the now allocated representation invariant.

6 RELATED WORK

Watt et al. [2019] develop a mechanized first-order separation logic for what they call “encapsulated”
WebAssembly, that is, code limited to a single module, with no exports or imports, and no uses of
the call_indirect instruction or the host, and they do not handle instantiation. For their subset
of the language, our proof rules are similar up to presentational details, except for the handling
of breaks, where, as mentioned in §2.2, we use a novel approach with a bind rule which scales to
higher-order programs, unlike the approach taken by Watt et al. [2019].

WebAssembly provides coarse-grained memory safety, at the boundary of memory objects, and
coarse-grained isolation, at the boundary of modules. Lehmann et al. [2020] show that many of the
classical attacks against memory unsafe languages, targeting a finer granularity, also work against
Wasm programs that not specifically written to take advantage of module isolation. We show in
our examples that, when Wasm programs are written with module isolation in mind, the language
specification does indeed enforce expected isolation guarantees.
MSWasm [Disselkoen et al. 2019; Michael et al. 2023] (Memory-Safe Wasm) is a proposed

extension of WebAssembly that adds first-class support for CHERI-like [Watson et al. 2015] fine-
grained runtime-checked memory capabilities. The logical relation of Cerise [Georges et al. 2021a,
2022a, 2021b, 2022b], mechanized in Iris, captures encapsulation for hardware capabilities in an
idealized assembly model and may be used as a starting point to formalize the guarantees of
MSWasm on top of Iris-Wasm.
CapableWasm [Fitzgibbons 2022] is a (work-in-progress) extension of the type system of

WebAssembly to support compositional compilation from different languages. They rely on their
type system to enforce finer-grained encapsulation than at the module boundary.
Kolosick et al. [2022] use a logical relation to show that WebAssembly programs naturally

compile to unsafe platform assembly in such a way that the compiled code obeys a safe calling
convention and certain isolation properties with respect to the rest of the system. Narayan et al.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

151:22 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

[2020] rely on this result to implement a sandboxing technique whereby C code is first compiled
to WebAssembly which is then ultimately compiled to native assembly for linking. They use this
technique to sandbox a number of Firefox libraries.
Many related works deal with the mechanized formalization of low-level languages. Rock-

Salt [Morrisett et al. 2012] is a verified checker that validates code binaries against a sandbox
policy, similar to that of Google’s Native Client (NaCl). RockSalt is mechanically verified using a
formalization of a subset of x86 in Coq. Kennedy et al. [2013] use Coq to build a macro assembler
for x86, while relating machine code to separation logic formulas suitable for program verification.

The Certified Assembly Programming (CAP) family of frameworks [Feng and Shao 2005; Ni and
Shao 2006; Yu et al. 2003; Yu and Shao 2004] support the definition of second-order Hoare logics
for verifying modular specifications of low-level assembly programs, using expressive features
such as embedded code pointers, concurrency, and dynamic thread creation. As such, CAP focuses
on features that are abstracted away by Wasm. Gu et al. [2016] presents CertiKOS, an extensible
architecture for certifying concurrent OS kernels. Using CertiKOS, Gu et al. [2016, 2018] develop and
verify a concurrent OS kernel consisting of both C and x86 assembly code. By leveraging CompCertX
[Gu et al. 2015], CertiKOS is able to reason about interactions between C and x86 assembly. As
is the case with Iris-Wasm, the setup assumes that the two languages share the same memory
model. The recent DimSum [Sammler et al. 2023] framework supports reasoning about multilingual
programs between languages with different memory models. However, while Iris-Wasm focuses on
mechanizing the full language of a real industrial standard, the DimSum approach has only been
applied to a simple high-level imperative language and an idealized assembly language so far.
The W3C have announced a Public Working Draft for WebAssembly 2.0. It includes several

features orthogonal to our focus on security, such as extra numeric operations. The two relevant
features are: the lifting of the artificial restriction to one table per module (we have done this too),
which corresponds to a simple update to the relation on instances; and the addition of opaque
reference types to objects of the host language, which adds newWebAssembly values, but no actual
complexity because of their opacity (this is trivial to do).

7 CONCLUSION

We have presented Iris-Wasm, a practical higher-order, mechanized program logic for the W3C
WebAssembly 1.0 official language standard [Rossberg 2019], building on themechanizedWasmCert-
Coq specification [Watt et al. 2021]. We show how the reasoning of Iris-Wasm can handle the
intricacies of WebAssembly, including interaction with its host language and the higher-order pro-
grams and reentrancy that it enables, going far beyond the ‘encapsulated’ fragment ofWebAssembly
in previous work [Watt et al. 2019]. We then leverage our program logic to build a logical relation
which enforces robust safety, demonstrating that we can prove properties of encapsulation at
module boundaries. This example illustrates the potential of what can be done with formal methods.
We hope other researchers will use our formalization to further investigate the WebAssembly
ecosystem, and that industrial language communities will thereby be further enticed to embrace
the formalization of language specifications.

ACKNOWLEDGMENTS

This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic
Research in Program Verification (CPV), from the VILLUM Foundation. Conrad Watt is supported
by a Research Fellowship from Peterhouse, University of Cambridge. Rao is supported by a Doctoral
Scholarship Award from Department of Computing, Imperial College London. Gardner is supported
by the EPSRC fellowship VeTSpec: Verified Trustworthy Software Specification (EP/R034567/1).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:23

ARTIFACT AVAILABILITY

The artifact [Rao et al. 2023] containing the full Coq development is available on Zenodo.

REFERENCES

Lars Birkedal and Aleš Bizjak. 2017. Lecture Notes on Iris: Higher-Order Concurrent Separation Logic. Technical Report.
Aarhus University.

Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy, and Deian Stefan. 2019. Position Paper: Progressive
Memory Safety for WebAssembly. In Proceedings of the 8th International Workshop on Hardware and Architectural Support

for Security and Privacy (Phoenix, AZ, USA) (HASP ’19). Association for Computing Machinery, New York, NY, USA,
Article 4, 8 pages. https://doi.org/10.1145/3337167.3337171

Daniel Ehrenberg. 2019. WebAssembly JavaScript Interface W3C Recommendation. Technical Report. W3C. https://www.w3.
org/TR/wasm-js-api-1/

Xinyu Feng and Zhong Shao. 2005. Modular verification of concurrent assembly code with dynamic thread creation
and termination. In Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming, ICFP

2005, Tallinn, Estonia, September 26-28, 2005, Olivier Danvy and Benjamin C. Pierce (Eds.). ACM, 254–267. https:
//doi.org/10.1145/1086365.1086399

Michael Fitzgibbons. 2022. CapableWasm: Bringing Better Interop Down to WebAssembly. https://www.youtube.com/
watch?v=E44lTaa2qHk POPL’22 student research competition presentation.

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique
Devriese, and Lars Birkedal. 2021a. Efficient and provable local capability revocation using uninitialized capabilities.
Proc. ACM Program. Lang. 5, POPL (2021), 1–30. https://doi.org/10.1145/3434287

Aïna Linn Georges, Armaël Guéneau, Thomas van Strydonck, Amin Timany, Alix Trieu, Dominique Devriese, and Lars
Birkedal. 2022a. Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code. Technical Report.
Aarhus University. https://cs.au.dk/~birke/papers/cerise.pdf

Aïna Linn Georges, Armaël Guéneau, Thomas Van-Strydonck, Amin Timany, Dominique Trieu, Alix Devriese, and Lars
Birkedal. 2021b. Cap’ ou pas cap’ ?: Preuve de programmes pour une machine à capacités en présence de code inconnu.
In Journées Francophones des Langages Applicatifs 2021. https://cris.vub.be/ws/portalfiles/portal/55081793/paper.pdf

Aïna Linn Georges, Alix Trieu, and Lars Birkedal. 2022b. Le Temps des Cerises: Efficient Temporal Stack Safety on Capability

Machines using Directed Capabilities. Technical Report. Aarhus University. https://cs.au.dk/~ageorges/publications_
pdfs/monotone-technical.pdf

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
Sriram K. Rajamani and David Walker (Eds.). ACM, 595–608. https://doi.org/10.1145/2676726.2676975

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016.
CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In 12th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, Kimberly Keeton
and Timothy Roscoe (Eds.). USENIX Association, 653–669. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/gu

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm Sjöberg, Hao Chen, David
Costanzo, and Tahina Ramananandro. 2018. Certified concurrent abstraction layers. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,

2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 646–661. https://doi.org/10.1145/3192366.3192381
Pat Hickey. 2020. How Fastly and the developer community are investing in the WebAssembly ecosystem. https:

//www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
Koen Jacobs, Dominique Devriese, and Amin Timany. 2022. Purity of an ST monad: full abstraction by semantically typed

back-translation. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–27. https://doi.org/10.1145/3527326
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: securing the foundations of the

Rust programming language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1–66:34. https://doi.org/10.1145/3158154
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
637–650. https://doi.org/10.1145/2676726.2676980

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

https://doi.org/10.1145/3337167.3337171
https://www.w3.org/TR/wasm-js-api-1/
https://www.w3.org/TR/wasm-js-api-1/
https://doi.org/10.1145/1086365.1086399
https://doi.org/10.1145/1086365.1086399
https://www.youtube.com/watch?v=E44lTaa2qHk
https://www.youtube.com/watch?v=E44lTaa2qHk
https://doi.org/10.1145/3434287
https://cs.au.dk/~birke/papers/cerise.pdf
https://cris.vub.be/ws/portalfiles/portal/55081793/paper.pdf
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf
https://cs.au.dk/~ageorges/publications_pdfs/monotone-technical.pdf
https://doi.org/10.1145/2676726.2676975
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3192366.3192381
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://doi.org/10.1145/3527326
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980

151:24 X. Rao, A. L. Georges, M. Legoupil, C. Wa�, J. Pichon-Pharabod, P. Gardner, and L. Birkedal

Andrew Kennedy, Nick Benton, Jonas Braband Jensen, and Pierre-Évariste Dagand. 2013. Coq: the world’s best macro
assembler?. In 15th International Symposium on Principles and Practice of Declarative Programming, PPDP ’13, Madrid, Spain,

September 16-18, 2013, Ricardo Peña and Tom Schrijvers (Eds.). ACM, 13–24. https://doi.org/10.1145/2505879.2505897
Matthew Kolosick, Shravan Narayan, Evan Johnson, Conrad Watt, Michael Lemay, Deepak Garg, Ranjit Jhala, and Deian

Stefan. 2022. Isolation Without Taxation: Near-Zero-Cost Transitions for WebAssembly and SFI. In ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL). ACM. https://doi.org/10.1145/3498688
Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. https://doi.org/10.1145/3009837.
3009855

Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is New Again: Binary Security of WebAssembly.
In 29th USENIX Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Capkun and Franziska Roesner
(Eds.). USENIX Association, 217–234. https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann

Alexandra E. Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan Denlinger, Craig Disselkoen, Conrad Watt,
Bryan Parno, Marco Patrignani, Marco Vassena, and Deian Stefan. 2023. MSWasm: Soundly Enforcing Memory-Safe
Execution of Unsafe Code. Proc. ACM Program. Lang. 7, POPL (2023), 425–454. https://doi.org/10.1145/3571208

Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and Edward Gan. 2012. RockSalt: better, faster, stronger
SFI for the x86. InACM SIGPLANConference on Programming Language Design and Implementation, PLDI ’12, Beijing, China

- June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 395–404. https://doi.org/10.1145/2254064.2254111
Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: automated verification of fine-grained concurrent

programs in Iris. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and

Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 809–824. https:
//doi.org/10.1145/3519939.3523432

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav Shacham, and Deian
Stefan. 2020. Retrofitting Fine Grain Isolation in the Firefox Renderer. In Proceedings of the 29th USENIX Conference on

Security Symposium. USENIX Association, USA, Article 40, 18 pages.
Zhaozhong Ni and Zhong Shao. 2006. Certified Assembly Programming with Embedded Code Pointers. SIGPLAN Not. 41, 1

(Jan. 2006), 320–333. https://doi.org/10.1145/1111320.1111066
Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-Pharabod, Philippa Gardner, and Lars Birkedal.

2023. Iris-Wasm: Robust and Modular Verification of WebAssembly Programs (Artefact). https://doi.org/10.5281/zenodo.
7808708

Andreas Rossberg. 2019. WebAssembly Core Specification W3C Recommendation. Technical Report. W3C. https://www.w3.
org/TR/wasm-core-1/

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer.
2023. DimSum: A Decentralized Approach to Multi-language Semantics and Verification. Proc. ACM Program. Lang. 7,
POPL (2023), 775–805. https://doi.org/10.1145/3571220

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and compositional verification of object capability patterns.
Proc. ACM Program. Lang. 1, OOPSLA (2017), 89:1–89:26. https://doi.org/10.1145/3133913

R. N. M.Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J.
Murdoch, R. Norton, M. Roe, S. Son, and M. Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization. In IEEE Symposium on Security and Privacy. 20–37. https://doi.org/10.1109/SP.2015.9

ConradWatt, Petar Maksimovic, Neelakantan R. Krishnaswami, and Philippa Gardner. 2019. A Program Logic for First-Order
Encapsulated WebAssembly. In 33rd European Conference on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019,

London, United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
9:1–9:30. https://doi.org/10.4230/LIPIcs.ECOOP.2019.9

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. 2021. Two Mechanisations of
WebAssembly 1.0. In Formal Methods - 24th International Symposium, FM 2021, Virtual Event, November 20-26, 2021,

Proceedings (Lecture Notes in Computer Science, Vol. 13047), Marieke Huisman, Corina S. Pasareanu, and Naijun Zhan
(Eds.). Springer, 61–79. https://doi.org/10.1007/978-3-030-90870-6_4

Dachuan Yu, NadeemAbdul Hamid, and Zhong Shao. 2003. Building Certified Libraries for PCC: Dynamic Storage Allocation.
In Programming Languages and Systems, 12th European Symposium on Programming, ESOP 2003, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture

Notes in Computer Science, Vol. 2618), Pierpaolo Degano (Ed.). Springer, 363–379. https://doi.org/10.1007/3-540-36575-3_25
Dachuan Yu and Zhong Shao. 2004. Verification of safety properties for concurrent assembly code. In Proceedings of the

Ninth ACM SIGPLAN International Conference on Functional Programming, ICFP 2004, Snow Bird, UT, USA, September

19-21, 2004, Chris Okasaki and Kathleen Fisher (Eds.). ACM, 175–188. https://doi.org/10.1145/1016850.1016875

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/3498688
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://doi.org/10.1145/3571208
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/1111320.1111066
https://doi.org/10.5281/zenodo.7808708
https://doi.org/10.5281/zenodo.7808708
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3133913
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://doi.org/10.1007/978-3-030-90870-6_4
https://doi.org/10.1007/3-540-36575-3_25
https://doi.org/10.1145/1016850.1016875

Iris-Wasm: Robust and Modular Verification of WebAssembly Programs 151:25

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 151. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Modular reasoning for WebAssembly modules
	2.1 Proof Rules for Basic WebAssembly Stack Operations
	2.2 Control and Function Calls
	2.3 Higher-Order Code with Indirect Calls

	3 Host Language and Proof Rules
	4 Mechanization in the Iris Framework
	5 Case Study
	6 Related work
	7 Conclusion
	Acknowledgments
	References

