
Saarland University
Faculty of Mathematics and Computer Science

Master’s Thesis

Logical Foundations
Of Language Interoperability

Between OCaml And C

Author
Johannes Hostert

Advisor
Simon Spies

Supervisor
Prof. Dr. Derek Dreyer

Reviewers
Prof. Dr. Derek Dreyer
Dr. Armaël Guéneau

Submitted: 31th July 2023

iii

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet
habe.
Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.
Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 31th July, 2023

v

Abstract

Programming Language Theory aims to formally understand different programming
languages by exploring the programs that can be written in them, and analyzing
which theorems about them can be proven. In the subfield of Foundational Program
Verification, we often do so by building fully formally verified program logics, which
aim to formalize and refine the intuitive reasoning programmers use when writing
code. This has in recent years been successfully applied to many different languages,
leading to a wide variety of program logics for a diverse set of programming lan-
guages. These program logics, however, are usually mutually incompatible and
limited to programs written entirely in the one language under consideration. This
is not sufficient for many real-world programs since these are often build by mixing
different programming languages.
In this work, we describe a formal semantics and a program logic for programs
written as a combination of OCaml and C, focusing on the interaction between these
languages. This allows us to formally explain the existing Foreign Function Interface
which is used by programmers when bridging between OCaml and C. The resulting
theory is language-local: It allows one to verify large parts of a multi-language
program using existing single-language formalisms, as if the program just was a
single-language one.
This work is largely based on our recent paper [13], co-authored by the author of
this thesis. In this thesis, we give a detailed account of the paper. Additionally, we
examine of some alternative design choices for the View Reconciliation rules. These
rules describes how different languages can interoperate on shared mutable state,
even when this data is represented differently in these two languages. We further
extend the program logic with more powerful reasoning rules, to allow verifying
additional programs.
All of our work is mechanized in the Coq proof assistant, using the Iris framework.

vii

Erklärung für Fachfremde

Diese Arbeit ist im Bereich Programmiersprachentheorie angesiedelt. In der Pro-
grammiersprachentheorie versuchen wir, verschiedene Programmiersprachen for-
mal zu analysieren. Formal bedeutet dabei, dass wir erforschen, welche logisch-
mathematischen Aussagen über einzelne Programme, oder die Menge aller Pro-
gramme, getroffen werden können. Dies erlaubt uns dann, zu beweisen, ob ein
Programm auch tatsächlich das Richtige tut, oder ob sich Programmierfehler einge-
schlichen haben.
In den letzten Jahren gab es viele wissenschaftlichen Arbeiten, die verschiedene Pro-
grammiersprachen auf diese Weise analysiert haben. Allerdings folgen viele dieser
Papiere einem ähnlichen Ansatz, welcher voraussetzt, dass das gesamte Programm
nur in einer Programmiersprache geschrieben ist. In der Praxis schreibt man aber
Programme, in dem man mehrere verschiedene Programmiersprachen kombiniert.
Jede Programmiersprache hat ihre eigenen Stärken und Schwächen, sodass manche
Sprachen für gewisse Probleme besser geeignet sind als andere. Damit kann für jedes
Problem die für dieses am besten geeignete Sprache verwendet werden. Allerdings
entsteht dadurch auch ein Mehr an Komplexität, denn diese Programmiersprachen
sind oft recht unterschiedlich. Wenn man diese Sprachen zusammenarbeiten lassen
will, muss man beispielsweise Daten zwischen den Formaten der Sprachen hin- und
herkonvertieren, was fehleranfällig sein kann.
Wir sehen also zwei Probleme: Bisherige formale Ansätze zur Programmverifikation
sind oft nicht auf Programme anwendbar, die in verschiedenen Sprachen geschrieben
sind. Dazu kommt, dass durch die Interaktion selbstweitere Fehlerquellen entstehen.
Wir präsentieren eine sogenannte Programmlogik für die zwei Programmiersprachen
OCaml und C, sowie für die Interaktion zwischen diesen beiden Sprachen. Wir
präsentieren einen Ansatz, die oben genannten Probleme zu lösen. Wir bauen also
ein formales Modell, und beweisen damit Aussagen über Programme in diesen
beiden Sprachen. Unser Ansatz ist zwar spezifisch für diese beiden Sprachen, wir
hoffen aber, dass er, wenn auch nur in Teilen, auch auf andere Sprachkombinationen
angewendet werden kann.

ix

Acknowledgements

To start, thanks to Derek: For offering the semantics course, where I in particular
learned Iris, for letting me do research in his group, for grading this thesis, for
asking the right high-level questions when we were getting lost in technical details,
for exquisite cocktails, and for recommending great baking recipes.
Thanks to Armaël for letting me participate in what was originally your research
project, for grading this thesis, and for showing me around Paris.
I thank both of you in advance for working through this thesis, which has unfortu-
nately grown larger than I expected it to.
Thanks to Simon for supervising this thesis, for the countless invaluable advice on
the minutiae of academic collaboration, on slide design, on writing, and on doing
research in general. Thanks for laughing at my puns, no matter how bad; and for
mixing cocktails almost as exquisite as Derek’s.
Thanks to the above, and to Lars and Michael for the great collaboration on our
paper. In particular, thanks to Michael for helping out on a short notice when things
seemed dire.
A huge thanks goes to Benjamin, Florian, Haoyi, Janine, Niklas, and Nils for proof-
reading my thesis. Further, I thank my friends for helping me distract myself from
working too much in the last few months, in particular the aforementioned proof-
readers, as well as Ina, Leon, Lisa, Luise, Lukas, Niklas, and Yasmine. I hope that I
did not distract you too much in return.
Finally, thanks to my parents: for their support, and for reminding me that I also
should explain my research to those without a formal education in Computer Sci-
ence.

Contents xi

Contents

Preface v
Abstract . v
Erklärung für Fachfremde . vii
Acknowledgements . ix

Contents xi

1 Introduction 1
1.1 Outline and Key Ideas . 1
1.2 Authorship Disclaimer . 2

2 Background 3
2.1 Notes on Used Notation . 3
2.2 Classical Hoare Logic . 4
2.3 Separation Logic . 9
2.4 Program Logics in Iris . 13

2.4.1 Transfinite Iris . 17
2.5 What Is A Multi-Language Program? 18

3 Explaining the OCaml-C Foreign Function Interface 21
3.1 Basics . 22
3.2 Structured Values . 25

3.2.1 Working with Blocks . 27
3.3 Roots and Garbage Collection . 28
3.4 Advanced Topics . 31

3.4.1 Callbacks . 31
3.4.2 Custom Blocks . 32

3.5 Features Not Considered . 34
3.6 Anticipating the Formal Model . 37

4 Modelling Single Languages 39
4.1 Programs and Functions . 39

xii Contents

4.1.1 More on Protocols . 44
4.1.2 Intra-Language Linking . 44

4.2 λC . 46
4.3 λML . 50
4.4 Examining the Differences . 54
4.5 A Logical Relation for λML . 55

5 The Combined Operational Semantics 59
5.1 Modules and Angelic Non-determinism 59

5.1.1 Executions and Safety . 63
5.1.2 Lifting Languages to Modules 64
5.1.3 Linking and Private State . 64

5.2 Wrapping OCaml to the C ABI . 65
5.3 Defining Primitives . 79

5.3.1 Callbacks . 79
5.3.2 Allocating Primitives . 80
5.3.3 Simple Primitives . 82

6 The Combined Program Logic 87
6.1 Weakest Preconditions for Linkable Modules 87

6.1.1 Program Logic and Adequacy 87
6.1.2 Weakest Preconditions and Linking 90

6.2 Verifying Glue Code By Example . 91
6.2.1 A First Example . 92
6.2.2 Working With References . 104
6.2.3 Callbacks . 108
6.2.4 Foreign Blocks and Semantic Types 109
6.2.5 Combining Verified Programs 111

6.3 Formal Implementation . 114
6.3.1 Boundary and Initialization . 122

6.4 Fractional Trading . 124
6.4.1 A Pathological OCaml Program 125
6.4.2 A Law About Discardable Fractions 127

7 View Reconciliation: Different Approaches 129
7.1 A Restrictive Theory . 129
7.2 Canonical Representatives . 131

7.2.1 Ghost Maps with Remainders 132
7.2.2 Achieving Canonical Representatives 132
7.2.3 Finding Canonical Representatives 133

7.3 Further Improvements to the Ghost Theory 134

Contents xiii

8 Conclusion 135
8.1 Related and Prior Work . 136
8.2 Future Work . 138
8.3 Coq Development . 138

A Linking 139

Bibliography 145

Chapter 1

Introduction

1.1 Outline and Key Ideas
This thesis introduces Melocoton [13], a program logic for verifying programs writ-
ten in a combination of OCaml and C. It starts (in Chapter 2) with a by introducing
some relevant background, notably Iris [18]. We also assume that the reader has
basic knowledge of C and of functional languages like OCaml.
Verifying programs written as a combination OCaml and C is hard because these
languages have little in common: They have different values, different memory
models, different linkage models, different approaches at unsafety, etc.. In real
programs, these differences are bridged using the OCaml-C Foreign Function Interface
(FFI). This FFI introduces FFI primitives, which allow writing glue code, which can
then bridge the differences between these languages. This is presented in Chapter 3.
We then start developing a formal model of this FFI. To start, Chapter 4 defines (as of
yet incompatible) operational semantics and program logics for simplified versions
of the single languages C and OCaml. Since we consider simplified versions of C
and OCaml, we call these λC and λML.
A guiding principle in this work is language locality. A key aspect of this is that
verification should be carried out in the single language program logics as much as
possible. One key aspect of this are reasoning rules for external calls, which allow
abstracting over the other language, already introduced in Section 4.1. Further, the
resulting operational semantics and program logics should embed and extend those
of the individual languages, so that single-language correctness results carry over.
Chapter 5 describes the operational semantics of the wrapper, which is the formal
analogue of the OCaml runtime and makes λML compatible with the λC ABI. It also
gives an operational semantics to the FFI primitives. Chapter 6 then builds a program
logic on top of the wrapper’s operational semantics. This program logic embeds the
program logics of λC and λML. It then allows reasoning across language barriers, and

2 Introduction

verifying glue code using FFI primitives.
In the program logic, the key idea are view reconciliation rules, which allow trans-
ferring ownership between the different languages. To go beyond the paper, this
thesis aims to improve these laws. First, we allow fractional view reconciliation,
described in Section 6.4, which already requires a large refactor of the program logic
implementation, described in Section 6.3. We then investigate different approaches
for implementing these view reconciliation laws, discussed in Chapter 7. Finally,
Chapter 8 recaps the relevant background literature, and examines possible future
work.
1.2 Authorship Disclaimer
This thesis is in large parts based on the paper “Melocoton: A Program Logic for
Verified Interoperability Between OCaml and C” [13], published at OOPSLA 2023.
The paper was written by Armaël Guéneau, Johannes Hostert, Simon Spies, Michael
Sammler, Lars Birkedal, and Derek Dreyer. As mentioned in the paper, the first
three authors (which include the author of this thesis) should jointly be considered
first authors.
All three authors jointly developed the central definitions in the paper, so that almost
no part can be attributed to just one author. Armaël led the project, implemented
the operational semantics of Chapter 5, the linker of Appendix A, and introduced
many central ideas. Johannes developed the single languages of Chapter 4 including
weakest preconditions with external calls Section 4.1, single-language linking of
Section 4.1.2, implemented large parts of the program logic (including adequacy and
the entire wrapper program logic) of Chapter 6, and verified many of the examples,
often in collaboration with and under the supervision of Simon.
Chapters 4 to 6 are based on the mentioned paper, with little novel contributions
going beyond what was introduced in the paper (but new and extended explana-
tions). While the paper contains a section similar to Chapter 3, which explains the
Foreign Function Interface intuitively, this thesis uses some different examples. We
also discuss how our program logic is used to verify these examples in Section 6.2.
Chapter 7, as well as Section 6.4 are completely new and not part of the paper..
Additionally, the construction of the program logic presented in Section 6.3 differs
from the construction presented in the original paper; this is due to a refactoring
done in preparation for Chapter 7.

Chapter 2

Background

This chapter describes our notations and recaps the relevant background on program
logics, separation logic, and Iris. These primers are not intended to teach step-
indexed separation logics to people without prior knowledge of it. Instead, they
merely outline all the foundations needed to fully understand all technical parts
of the thesis. For a slower, didactically more worthwhile introduction to these,
see [3, 10, 47].

Readers closely familiar with these concepts, in particular with Iris, can skip Sec-
tions 2.2 to 2.4, jumping to Section 2.5, which describes how a program can be
multi-language.
2.1 Notes on Used Notation
Since we work in a type-theoretic setting, we use some notation borrowed from
type theory which might be unfamiliar to a reader used to more classical, set-
theoretic mathematics. In particular, we use Prop to denote the type of mathematical
propositions (e.g., ∃x. x = 5). In contrast, iProp is the type of separation logic/Iris
propositions. While we often define propositions cascadingly, we use them as if
they were cartesian. In other words, we can define P : N→ N→ Prop, but will still
write P(3, 4) instead of (P 3) 4. We also use x : T to denote that x is an object of type
T (e.g., 3 : N), and use T : Type to denote that T itself is a type. The set-membership
symbol ∈ is reserved for actual sets, which usually are finite (e.g., the domain of a
finite map). Somewhat confusingly, the reverse set-membership symbol T ∋ x is to
be understood as x : T , not x ∈ T . It is only used in definitions, most prominently
in inductive definitions (e.g., N ∋ n ::= 0 | Sn). Plain (as opposed to (co)inductive)
definitions are denoted using ≜.

We use e[v/x] to denote that all free occurrences of x in e are replaced by v. A parallel
substitution is denoted using e[v1/x1, . . . , vn/xn].

Options over a type T : Type are indicated by option T ::= Some(t : T) | None. We

4 Background

sometimes omit Some, treating it as an implicit coercion. Lists t⃗ : T⃗ over T are
indicated using the vector arrow. Their length is denoted by |⃗t| and ti : T denotes
the ith element, where the first element naturally has index 0. We often implicitly
generalize relations to lists by lifting pointwisely: For example, if x R y is a relation,
then x⃗ R y⃗means that x⃗ and y⃗ have the same length, and that ∀i. xi R yi. Finite maps
with keysK : Type and values V : Type are denoted by σ : K

fin
⇀ V . Looking up a value

is denoted as σ[k], which might return None to indicate that the value is absent. Such
maps can be updated/extended using the notation σ[k := v]. Singletons can also be
denoted as {k := v}. The disjoint union σ1 ∪̇ σ2 is the union of σ1 and σ2, but is only
defined when both maps/sets are disjoint, i.e., σ1 ∩ σ2 = ∅. To be more compact, we
also write σ1 ##σ2 to express that σ1 and σ2 are disjoint. Similar to howwe implicitly
generalized relations to lists, we also sometimes do so for maps. Specifically, if x R y

is a relation X → Y → Prop, then σ1 R σ2 (where σ1 : K
fin
⇀ X, σ2 : K

fin
⇀ Y, K : Type)

denotes that dom σ1 = dom σ2 and that ∀kxy. σ1[k] = x→ σ2[k] = y→ x R y.
2.2 Classical Hoare Logic
In 1969, Tony Hoare [14] introduced a logic–later named Hoare logic–for “proofs of
the properties of a program.” This logic could be used to prove functional correctness
of programs in a simple, imperative language. His logic introduced the Hoare triple,
consisting of a precondition P, a program s, and a postcondition Q, denoted as
follows:

{P} s {Q}

This is a formal statement describing that the program s, when executed on a state
initially satisfying P, terminates only in states satisfying Q. Sometimes, Hoare logic
is changed to also entail program termination. In this thesis, we do not require this:
For a diverging program, every postcondition is valid, since it never terminates, and
thus never reaches a state that could violate that postcondition.
In 1975, Edsger W. Dijkstra [8] developed the weakest precondition calculus as a
different approach for proving formal properties about programs. The weakest
precondition calculus is used to compute the weakest precondition wp s {Q} of a
program s for a postcondition Q. This weakest precondition is then implied by all
other preconditions, which connects this calculus back to Hoare triples:

{P} s {Q} ⇐⇒ P → wp s {Q}

Further, the weakest precondition is an example of a predicate transformer. In general,
predicate transformers transform predicates on one kind of object to predicates on
another kind of objects. Here, they transform the postcondition, i.e., a predicate on
values, to a predicate on expressions encompassing those expressions that evaluate
to values satisfying the original predicate. We call logics like Hoare Logic program

2.2. Classical Hoare Logic 5

logics, since they are designed to reason about program executions. They include
several rules/axioms that allow them to verify programs compositionally, while being
designed to mirror the naive reasoning programmers often employ when reasoning
about their programs intuitively.
The languages used by Dijkstra and Hoare to introduce their logics distinguish
between statements and expressions: Statements are evaluated only for their side-
effects, while expressions denote unique values (here: integers), but never cause
side-effects. Their programs manipulated a set of global program variables, with
each storing an integer. In Hoare logic, and in weakest precondition reasoning,
these program variables are commonly identified with logical variables, i.e., the
postcondition x = y denotes that the program variables x and y are defined and have
the same value. This causes a variety of issues (e.g., it is cumbersome to express a
specification like “x remains unchanged throughout the program”). More modern
programming languages introduce expressions which have side-effects and can
direct control flow. Thus, in this thesis, we will consider “expression languages,”
where there are no statements, just expressions. To get started, we consider a very
simple expression-based language. For now, it does not have state, since we only
add state in the next section.

Expr ∋ e ::= x : Var | z : Z | e1 + e2 | e1 − e2 | e1 = e2 | . . .

| let x = e1 in e2

Ctx ∋ K ::= • | K+ e1 | z1 + K

| let x = K in e2 | . . .

Operational Semantics Unlike Dijkstra and Hoare in the works above,1 we start
by defining a structural operational small-step semantics. We take this semantics as
the “ground truth” definition of how our language computes. This allows us to later
show that our program logic is indeed adequate, that is, that theorems proven in it
reflect the actual computation behavior of the program, as defined by the operational
semantics. Formally, such a semantics is a relation −→simple: Expr→ Expr→ Prop.
We read e1 −→simple e2 as “e1 steps to e2.” The semantics is then typically defined as
an inductive relation, like in Figure 2.1. This figure shows two rules, for two primitive
language constructs, namely SAdd for + and SLetIn for let-in. Additionally, there
is the rule Ctx, which allows reduction in sub-expressions.
Our operational semantics distinguish regular steps (−→simple) and head steps
(−→hsimple): Head steps require the expression under reduction to not be nested
below some operators. Regular steps are then defined by allowing head steps under

1Both were well aware of operational semantics, and that one should prove that all semantics are
in correspondence.

6 Background

SAdd

z1 + z2 −→hsimple z1 + z2

SLetIn

let x = z in e −→hsimple e[z/x]

Ctx
e1 −→hsimple e2

K[e1] −→simple K[e2]

Figure 2.1: Operational Semantics for a simple language.

an arbitrary evaluation context K, using the rule Ctx. Such contexts are best under-
stood as expressions with a hole. The operation K[e] substitutes the expression e into
the context K, replacing the hole • with e. Contexts define which subexpressions
is reduced first, and in what order. Above, we defined contexts such that the left
operand of an addition is evaluated first, by requiring that the right operand is only
evaluated when the left operand has fully reduced to a value (here: an integer).
Further, the let-in construct only allows reducing the let part, which must be
substituted using SLetIn before the other subexpression can be evaluated. The ex-
pression that is evaluated next (to which a head reduction step applies) is called the
head redex. Since addition (and all other binary operators omitted here) reduces the
left side first, we call such languages left-to-right. In future, we omit the machinery
for lifting head steps to regular steps, by simply indicating which expressions are
evaluated first, by e.g., specifying left-to-right evaluation order.

There are several terms in our language which do not reduce, i.e., which block
reduction when being head redex. An example is the expression x which denotes
a variable: When it is head (redex) position, then the original program was mal-
formed since it contained a free variable. We say that such a program is stuck.
Another expression that does not reduce further is the integer constant expression
z. However, this expression (and only this expression) is not considered stuck.
Instead, we consider a program that has reduced to an integer to have terminated
successfully. Later, we generalize integers to the larger class of values. These are the
“objects” our program language works with, by e.g., storing them in variables. We
consider a program to have terminated when it has reduced to a value, which is
then the result/return value. These expressions that are either not stuck, or indicate
termination (are values), are called safe. A stuck program is said to have undefined
behavior, following the way undefined behavior is commonly understood in C. A
program with undefined behavior is considered erroneous, but this error is silent:
The compiler / execution environment is allowed to behave arbitrarily. This is in
contrast to “safe” failure (like raising an exception), which is usually part of the

2.2. Classical Hoare Logic 7

definition of the operational semantics. This motivates the following definition of
safe expressions, which do not cause undefined behavior:

safe : Expr→ (Z→ Prop)→ Prop

safe(e,Q) ≜

{
Q(z) e = z

∃e ′, e −→simple e ′ otherwise

Our definition of safe is further refined by a postcondition Q, which can be used to
exclude undesired termination values. If we take Q(z) ≜ ⊤, then we recapture the
intuition from above that safe expressions are all those that are either an integer, or
that step to another expression.
Program Logic We can now define a program logic for this language. We do so
by (axiomatically) defining the weakest precondition. Since we switched from a
statement-based language to an expression language, our weakest precondition
changes: Instead of taking a postcondition Q defined on the state, we take a post-
condition Q : Z → Prop, which describes a condition on the value an expression
evaluates to. Further, a Hoare triple now still takes a regular precondition (of type
Prop), but uses the same postconditions as the weakest precondition. Thus, Hoare
triples can be defined using the weakest precondition:

{P} s {Q} ⇐⇒ P → wp s {Q}

Further, a Hoare triple like {z > 0} z + z {λr. r = z} is to be read as ∀z. z > 0 →
wp z+ z {λr. r = z}. In other words, we implicitly ∀-quantify over all free variables in
it. Finally, we often write postconditions occurring in a weakest precondition (or
a Hoare triple) as wp e {r.Q(r)} instead of wp e {λr.Q(r)}. We do not give a formal
definition of the weakest precondition, delaying this to Section 2.4 and instead leave
this axiomatic for now. The axioms used to define the weakest precondition can be
found in Figure 2.2. The first rule (WP-Value) describes the base case of the weakest
precondition: A program that has already evaluated to a value. This value must
then satisfy the postcondition Q. The next two rules describe how addition and
let-in reduce, assuming they are the head redex. These are actually just special
cases of the more general rule WP-Step for arbitrary steps, as long as these steps are
unique. The bind rule (WP-Bind) is used to reason about expressions occurring at
the head redex position in another term: It describes that we can first reason about
the inner expression, and then continue reasoning about the results of it, placed in
the context of the inner expression. The last rule (WP-Weak) allows weakening the
postcondition. This presentation of the weakest precondition, with emphasis on the
bind rule, closely follows Timany et al. [3].
Note that although we call wp e {Q} the weakest precondition, we do not show that
the axioms given in Figure 2.2 are complete, and fully expect them not to (especially

8 Background

WP-Value
Q(z)

wp z {Q}

WP-Add
wp z1 + z2 {Q}

wp z1 + z2 {Q}

WP-LetIn
wp e[z/x] {Q}

wp let x = z in e {Q}

WP-Bind
wp e {λz.wp K[z] {Q}}

wp K[e] {Q}

WP-Weak
wp e {Q} ∀z.Q(z)→ R(z)

wp e {R}

WP-Step
wp e2 {Q} e1 −→simple e2

wp e1 {Q}

Figure 2.2: Weakest Precondition axioms for a simple language.

|{e ′ | e −→ e ′}| Intended meaning
0 Undefined behavior / being stuck
1 One unique successor value2

⩾ 1 Demonic choice out of all possible e ′

Table 2.1: Demonic choice and undefined behavior for normal languages.

in the following sections). In fact, our weakest precondition is better understood as
one rather weak precondition, which is in practice weak enough to establish most
program specifications one hopes to prove. While our weakest precondition is not
complete, it is sound: If we prove wp e {Q}, then our program will only reduce to
values satisfyingQ, or it will diverge by reducing forever. In particular, our program
never encounters undefined behavior. Formally, this can be argued by proving that
all finite prefixes of execution traces are safe:

wp e {Q} =⇒ ∀e ′. e −→∗
simple e ′ → safe(e ′, Q)

This uses the reflexive-transitive closure −→∗
simple of −→simple, which expresses that

we take a number n ⩾ 0 of reduction steps. After taking these steps, our partially
reduced program must be safe, i.e., must have completely reduced to a value, or
must be able to take another step (which is then again to a safe value).
Demonic Non-Determinism In our simple language, the relation−→simple is (par-
tially) functional: Every expression reduces to at most one successor expression.
Later on, we introduce languages where one program state can have several suc-
cessor states. These will then indicate a demonic choice: In order to be correct, the
program needs to handle all possible successor states. In terms of weakest precondi-
tions, this means that if we want to show that wp e {Q}, we need to prove wp e ′ {Q} for
all e ′ such that e −→ e ′. The simple step ruleWP-Step, which only considers a single

2Note that this is a special case of a demonic choice–if there is only one value to choose, the demon
has no real choice.

2.3. Separation Logic 9

step, is then no longer applicable. Table 2.1 summarizes the intended meaning of
having none, a unique, or several successors under an arbitrary step relation −→.
2.3 Separation Logic
Separation Logic [38] was introduced to address several weaknesses with the exist-
ing (Hoare-style) logics for languages with mutable state. Our simple language of
Section 2.2 had no state. In contrast, the languages originally considered by Hoare
and Dijkstra had a simple state consisting of the program variables modified by
these programs. Unfortunately, the program logics originally presented by them
are not well-suited for reasoning about programs using shared mutable state, in
particular not when one whishes to do so modularly. Consider, for example, the
following two programs which access global variables x, y, and t. The function foo
is better understood as a template, i.e., the variables x and y are passed by reference.

foo(){
t = 1; r = 2;
swap(t, r);

}

swap(x, y){
t = x; x = y; x = t;

}

While the classical Hoare triple {x = 1∧ y = 2} swap(x, y) {x = 2∧ y = 1} is provable,
executing foo() does not result in a state where r = 1. This is because swap internally
re-uses the variable t, conflicting with foo, which already uses it. Notably, the fact
that swap uses t does not show up in the specification of swap. One approach of
solving this is by explicitly stating which variables are modified by which program.
When we then use an already-verified subroutine, we need to check the variables
modified by it against the variables our program itself is using. This leads to a tedious
amount of book-keeping. Instead, we use separation logic, which makes this tracking
implicit. If we designed a separation logic-based program logic for a language like
the one above, we would not be able to establish the shown specification for swap.
Instead, the specification would need to explicitly mention t. We do not further
discuss how a separation logic-based program logic for the above language would
look like, instead focusing on developing one for the simple language from the last
section. First, we will add mutable state to that language:

Val ∋ v ::= z : Z | ℓ : Loc

Expr ∋ e ::= x : Var | v

| alloc() |!e | e1 := e2 | · · ·

Σ ≜Loc
fin
⇀ Val

We added three new expressions, for freshly allocating, loading from, and storing
to a memory cell. Additionally, we have introduced the syntactic category of values,

10 Background

SAlloc
ℓ /∈ dom σ

(alloc(), σ) −→hsimple (ℓ, σ[ℓ := 0])

SLoad
σ[ℓ] = v

(!ℓ, σ) −→hsimple (v, σ)

SStore
ℓ ∈ dom σ

(ℓ := v, σ) −→hsimple (0, σ[ℓ := v])

CtxState
(σ1, e1) −→hsimple (e2, σ2)

(σ1, K[e1]) −→simple (K[e2], σ2)

Figure 2.3: Operational Semantics for a simple language with state.

which can now be either integers or location values. A location value ℓ is also
encoded as an integer, but is in a distinct category, since it can not be used for
arithmetics (while plain integers are not to be used for loading from a memory
cell).3 The operational semantics now operate on pairs Expr× Σ of the current state
and the current expression to be executed. We also call these configurations. Most
rules in the operational semantics leave the state unchanged. The others are shown
in Figure 2.3. The rule SAlloc describes allocation. It is non-deterministic, and
evaluates to a new location (which is initialized to 0). SLoad describes loads, and
SStore describes stores. The latter evaluates to 0, and we usually ignore the value,
since it is only executed for its side-effects. The CtxState rule replaces the Ctx rule,
to inherit the state change from the head redex to the total reduction step. Finally,
we change our notion of safety to configurations:

Definition 2.1 (Safety for a stateful language)

safe : Σ→ Expr→ (Val→ Prop)→ Prop

safe(σ, e,Q) ≜

{
Q(v) e = v

∃e ′ σ ′. (e, σ) −→simple (e ′, σ ′) otherwise

Plain Separation Logic The key idea of separation logic is that it is a logic for
resources. Whereas plain mathematical logic deals with mathematical facts, which
remain true once established, separation logic deals with resources, which can be
created, updated, and destroyed. What these resources crucially lack is the ability
to be duplicated: In general, resources can not be duplicated arbitrarily, but can only
be created, changed, or destroyed under very specific circumstances. In our case,
these resources will express ownership of parts of the heap. A formula of separation
logic, denoted using P : iProp, expresses that some property is true on some part

3This distinction is erased by compilation to assembly, but it makes reasoning much nicer, so we
keep it in the source semantics.

2.3. Separation Logic 11

of the heap. Additionally, the formula will carry ownership of this part of the heap.
Other formulas that are true separately are not able to describe facts about this part
of the heap.
The formal semantics of separation logic are defined against a particular heap.
Formally, we say that a formula P : iProp of separation logic is satisfied by a heap
fragment σ, denoted σ |= P.

σ |= Ppure⇔ Ppure Ppure : Prop
σ |= P ∗Q⇔ ∃σ1σ2. σ1 ∪̇ σ2 = σ∧ σ1 |= P ∧ σ2 |= Q

σ |= P −−∗ Q⇔ ∀σa. σa |= P ∧ σa ## σ =⇒ (σa ∪ σ) |= Q

σ |= ℓ 7→ v⇔ {ℓ := v} ⊆ σ

σ |= P ∧Q⇔ σ |= P ∧ σ |= Q

σ |= P ∨Q⇔ σ |= P ∨ σ |= Q

...

Besides inheriting the existing logical connectives, and a trivial embedding of regular
propositions Prop, separation logic introduces several new ones. The first one is the
separating conjunction ∗, which denotes that P and Q hold on disjoint parts of the
heap (remember that ∪̇ is a disjoint union). The next one, the magic wand −−∗, is the
right-adjoint of ∗–in other words, we have P −−∗ Q −−∗ R⇔ P ∗Q −−∗ R. Finally, we have
the points-to connective ℓ 7→ v, which describes that v is stored at location ℓ, and
that ℓ is part of the heap that the formula expresses ownership of. To understand
the difference between regular and separating conjunction, consider the formula
ℓ1 7→ 1∧ ℓ2 7→ 1. This formula expresses that both ℓ1 and ℓ2 are active locations in
the heap, both storing 1. However, these locations might alias, i.e. ℓ1 = ℓ2 might be
true. In contrast, the separating conjunction ℓ1 7→ 1 ∗ ℓ2 7→ 1 allows us to derive that
ℓ1 ̸= ℓ2, since the heap must be decomposable in disjoint parts, each validating one
of the points-tos. Note that we use ⊢ P as syntactic sugar for ∀σ, σ |= P. While |= P

might be more appropriate, we do so to follow Iris’ syntax.
A Program Logic Using Separation Logic We now show how separation logic is
used for building program logics. For this, we define WP not as a regular propo-
sition, but as a formula of separation logic. Similarly, the rules of Figure 2.4 are to
be understood as separation logic rules (using magic wands and combining the
preconditions using separating conjunctions), which is indicated by using a magic
wand −−∗ as the separating line. Note that this figure also generalizes the postcon-
dition to act on values v : Val, not just integers. Figure 2.4 shows the new rules we
gain from using separation logic. Additionally, all rules of Figure 2.2, except for
WP-Weak, continue to apply (when reinterpreted as separation logic rules using
magic wands). The rule WP-Alloc is used to verify an allocation. It allows us

12 Background

WP-Alloc
ℓ 7→ 0 −−∗ wp ℓ {Q}

wp alloc() {Q}
∗

WP-Load
ℓ 7→ v ℓ 7→ v −−∗ wp v {Q}

wp !ℓ {Q}
∗

WP-Store
ℓ 7→ v ℓ 7→ v ′ −−∗ wp 0 {Q}

wp ℓ := v ′ {Q}
∗

WP-Wand
wp e {Q} ∀z.Q(z) −−∗ R(z)

wp e {R}
∗

Figure 2.4: Weakest Precondition axioms for a simple language with state.

to continue verifying with the remaining program, while additionally assuming
ownership of a new, separate piece of the heap containing our allocated cell. This in
particular uses the fact that allocation is defined (operationally) to always return
a previously unused, fresh location. Further, the ruleWP-Store is used to verify a
store. To apply it, one needs to isolate the part of the heap on which ℓ 7→ v holds,
where ℓ is the location to be modified. Thus, all other parts of the heap, and all
other statements expressing facts about them remain unchanged, since they are
now separate from the piece of the heap undergoing modification. The rule states
that we need to “give up” this piece of heap, by handing it to the rule. After this,
we no longer assert anything about this piece of heap. The rule then gives ℓ 7→ v ′

back to us, which now reflects the changes made by the store. The ruleWP-Load
can be understood similarly, except that it does not change the points-to. Finally, we
have the ruleWP-Wand, which replacesWP-Weak. This rule allows us to weaken
postconditions, as before. However, it can also be used to prove the frame rule:

P ∗ wp e {v.Q(v)} −−∗ wp e {v. P ∗Q(v)}

This rule formalizes the previous intuition that resources not used when proving a
weakest precondition are not affected by program execution–they still hold once the
program has finished.
Adequacy Our adequacy statement for this new program logic now also needs
to refer to the heap. We need a proof that the weakest precondition is satisfied on
some initial heap σ, and can then derive that the postcondition will be satisfied by
the heap σ ′ present at termination.
Theorem 2.2 (Adequacy of the program logic using separation logic)

σ |= wp e {Q} =⇒ ∀e ′σ ′. (e ′σ) −→∗
simple (e ′, σ ′)→ safe(σ ′, e ′, λv. σ ′ |= Q(v))

The proof requires the definition of the weakest precondition, which we do not
discuss here. Since safe is monotone in Q, this core adequacy theorem can be used

2.4. Program Logics in Iris 13

let l = alloc() in

let = l := 42 in

let r = !l in

r

{⊤}
let l = alloc() in

{l = ℓ ∗ ℓ 7→ 0} l = ℓ

let = l := 42 in

{l = ℓ ∗ ℓ 7→ 42}

let r = !l in

{r = 42 ∗ ℓ 7→ 42} r = 42

r

{r. r = 42 ∗ ℓ 7→ 42}

Figure 2.5: A simple program (left) with a corresponding Hoare outline (right).

to derive a more useful one, where the postcondition of safe is merely implied by
σ ′ |= Q(v).
Hoare Outlines Correctness proofs in separation logic can be rendered using
Hoare outlines. A Hoare outline shows the resources collected at each step of
the program. As an example, we will verify that the program on the left side of
Figure 2.5, starting in the empty heap, terminates only with 42. In a Hoare outline
(shown on the right in Figure 2.5), we re-use Hoare triple notation {P} s {Q} to keep
track of the resources as they are modified by the program. Each line in {brackets}
denotes the resources, the others denote expressions in our program. While the
active resources are repeated each time (to indicate that they are still available and
not changed), pure facts (like r = 42) are not, since they will remain true forever.
To indicate that something is pure, we sometimes write it on the right, next to the
outline. This is supposed to indicate that this fact remains true as we go further
down in the program.

After convincing us that the original Hoare triple holds after constructing this Hoare
outline, and using that |= ⊤, we can use the adequacy theorem to infer that our
original program continuously reduces to new expressions, and only terminates
with a value v in a state σ ′ |= v = 42 ∗ ℓ 7→ 42, i.e., with the value 42.
2.4 Program Logics in Iris
Separation logic has been very successful, with many generalizations to it developed
in the years after Reynolds’ original paper [38]. We do not aim to recount the
complete history here (see O’Hearn’s summary [32] for a comprehensive review),
but instead focus on Iris [19, 22, 18], a step-indexed separation logic featuring higher-
order, custom ghost state, that also is fully formalized in Coq. The remainder of this

14 Background

thesis uses Iris as the separation logic. Iris also includes support for concurrency,
which is not needed in this thesis.

In the separation logic introduced previously, the only true separation logic primitive
was the points-to. Iris instead allows one to define one’s own separation logic
primitives, by defining an algebraic structure called OFE (an ordered family of
equivalences, see in particular [18]). Instead of defining the model against heaps,
the model is then defined against an OFE. Since these resources usually do not
directly describe the actual program state, they are called ghost state. Finite maps
and points-tos are then just one particular example of ghost state, which are later
linked to the actual heap of the operational semantics. An element a of an OFE
can be turned into a separation logic proposition a

γ expressing that a is owned.
Since one often works with several OFEs, a ghost name γ is used to denote which
particular instance is meant.

Additionally, Iris is step-indexed: The model is defined not just against such OFEs,
but also against a step-index. This step-index can be used to define several inter-
esting separation logic predicates that would not be admissible otherwise (due to
essentially unguarded recursion), by defining them by recursion on the step-index
(see [47] for examples). Notably, the weakest precondition itself can be defined in
Iris, by decreasing the step-index by one for each reduction step, thereby linking the
step-index to program steps. For readers not familiar with step-indexing, this can
be ignored, since most of our program logic does not use step-indexing. To reason
about these features, Iris includes a number of modalities: The later modality ▷P ex-
presses that P is valid at the next lower step-index. Since properties are downwardly
closed, this modality is easy to prove, but typically hard to eliminate. The persistance
modality �P turns P into a persistent resource. A persistent resource (of which �P

is just one example) can be freely duplicated. Since it is freely duplicable, �P is
harder to prove: One can only use other persistent resources in the proof. Intuitively,
a persistent resource is a fixed, unchanging property about some part of the heap,
and so it can be “remembered” even when only reasoning about other parts of the
heap.

To reason about custom resources, Iris includes the ownership primitive a
γ, ex-

pressing that a, a member of an OFE, is currently owned, i.e., valid for the current
resources. To allow having several different kinds of resources, and several instances
of the same resource, a ghost name γ denotes which instance of which OFE we are
referring to. Finally, the update modality ˙|⇛P expresses that P is true, after updating
some of the ghost state. It is often used together with the wand, so that there is the
syntactic sugar ≡−∗≜−−∗ ˙|⇛.
Some Useful Ghost State As mentioned, Iris uses the generic ghost state mecha-
nism to define the ghost theory of heaps and points-tos. A points-to ℓ 7→γ v (now

2.4. Program Logics in Iris 15

including a ghost name γ) works like before. To ground this points-to, Iris includes
an authoritative counterpart •σ γ, which denotes the full heap. When taken together,
they can be updated, to e.g., implement a store rule:

•σ γ ∗ ℓ 7→γ v ≡−∗ •σ[ℓ := v ′]
γ ∗ ℓ 7→γ v ′

These are just a particular example of the general authoritative ghost state construc-
tion, which allows having an authoritative part •a, and several fragments ◦f, with
an arbitrary relation a R f that must hold between the authoritative part and the
fragment. Above, points-tos are just syntactic sugar for a particular fragment. Iris
further generalizes the points-to to be fractional. A fractional points-to ℓ 7→q vwhere
0 < q ⩽ 1 is said to be fully owned when q = 1, in which case it behaves like the
regular points-to (and we may omit the fraction). Points-tos can be combined and
split, so that their fractionalities combine. A partially owned points-to (with q < 1)
can not be used for modifications, since it is not exclusive and so other fractional
points-tos for the same location might be used elsewhere. There also is the persis-
tent points-to ℓ 7→□ v, which is persistent. This also ensures that the points-to is
never mutated again. In Iris, fractional and persistent points-tos are unified using
discardable fractions Q� ∋ d ::= (q : Q) | □.

Another useful construction are ghost variables. Using them, a ghost name γ can be
assigned to a value x : X (for any type X), denoted as γ 7→ x. What makes them great
is that they can split fractionally, so that there can exists two parts γ 7→½ x ∗ γ 7→½ y,
which must then be in agreement: It must hold that x = y. Similar to points-tos,
the ghost variable can only be changed when it is fully owned. Yet another useful
feature of Iris is that of invariants. An invariant P

E is a “persistent box” around a
proposition P. We say that the ownership is stored in the invariant. This ownership
can only temporarily be taken out of the invariant. To track which invariants are
currently open, and to force these invariants to close again, a mask E is used. For
technical reasons, we do not get ownership of P, but only of ▷P. Thus, we often put
timeless propositions into invariants, which are propositions that do not depend
on the step-index, allowing us to remove this later sometimes. In regular Iris, this
mask is tracked in the weakest precondition, 4 and ensures that we do not open
invariants twice. Regular Iris also forces these invariants to only be opened around
atomic propositions, like compare-and-swap. Thereby, these invariants can safely be
shared between threads, since no thread can violate the invariant while another one
is accessing it. In this thesis, we do not use the concurrency support of Iris. Thus,
we use non-atomic invariants, which can remain open longer. To express that they
should be closed again, there is the separation logic token [NaInv : E], which tracks

4It is actually tracked bymask-changing updates, which theweakest precondition uses prominently.

16 Background

the open invariants. To force invariants to close again, one includes the obligation
[NaInv : ⊤], which asserts that all invariants are closed.
Defining The Weakest Precondition Iris’ logic is powerful enough to define the
weakest precondition wp e {Q} within the logic itself.

Definition 2.3 (Weakest Precondition in Iris)

reducible(e, σ) ≜ ∃e ′ σ ′. (e, σ)→ (e ′, σ ′)

SI(σ) ≜ •σ γ

wp e {Q} ≜

˙|⇛Q(v) e = v

∀σ.SI(σ) ≡−∗
reducible(e, σ)

∗ ∀e ′, σ ′. (e, σ) −→simple (e ′, σ ′) −−∗
˙|⇛▷ ˙|⇛SI(σ ′) ∗ wp e ′ {Q}

otw.

Note that the actual definitions uses fancy updates / view shifts. Since we do not need them
in our development, we elide them.

This definition is quite hard to parse, especially when one is not used to Iris (see
[18] for a full explanation). The basic idea is that it is defined using the operational
semantics, by encoding the definition of safety. To prove wp e {Q}, if e is a value, is
very simple: Just prove Q(v), potentially changing the ghost state. The other case is
more complicated. It first requires the notion of a state interpretation SI : Σ→ iProp,
which defines how the physical state is related to the ghost state. In our case, it
carries an authoritative part of the heap+points-to ghost theory, of which the points-
tos are the fragment parts. Then, the wp e {Q} in the interesting case allows us to
assume the state interpretation for our current state. We then need to prove two
things. The first property is that we are not stuck, i.e., that there is a successor
we can reduce to. Then, we handle demonic non-determinism, by assuming an
arbitrary successor (σ ′, e ′) of our current configuration (σ, e). Then, we must prove
that later (i.e., we are allowed to decrease the step-index), we can update our state
interpretation to σ ′ and also need to prove wp e ′ {Q}.
This definition is well-formed by recursion on the step-index, which decreases each
step. The base case at the step-index 0, which is always eventually reached by
diverging programs, is just that the program is reducible, which justifies that the
weakest precondition of diverging programs is always ⊤, too. Using this definition,
one can derive the rules shown in Figures 2.2 and 2.4. To get a useful result, we
again need an adequacy theorem, which now looks as follows:

2.4. Program Logics in Iris 17

Theorem 2.4 (Adequacy of Iris) Let σ be a state such that ⊢ SI(σ), and Q ′ : Σ →
Expr → Prop such that ∀σ ′e ′. SI(σ ′) ∗ safe(σ ′, e ′, Q) ≡−∗ Q ′(σ ′, e ′). Then the following
holds:

⊢ wp e {Q} =⇒ ∀e ′ σ ′. (e, σ) −→∗
simple (e ′, σ ′) =⇒ Q ′(σ ′, e ′)

Iris includes all of this development for a generic language, as long as the language
fits into the general recipe. Such a language is defined by:

• A type of values, Val
• A type of expressions, Expr
• An injection Val→ Expr, along with a partial inverse
• A type of state, Σ
• A head step relation→: Expr× Σ→h Expr× Σ→ Prop

• A type of evaluation contexts Ctx
• Composition and instantiation operations for contexts.
• A state interpretation SI : Σ→ iProp

Additionally, this structure must satisfy some laws, like that composition and in-
stantiation behave well, that values do not step, or that head redexes are unique or
contain only values.
2.4.1 Transfinite Iris
For reasons explained in Section 5.1, we have to use Transfinite Iris [45]. Transfinite
Iris is a version of Iris where the step index is not just an integer, but instead an
ordinal number. The main motivation for Transfinite Iris is the so-called existential
property. This property allows extracting the witness of an existential quantifier
proven in Iris’ separation logic. Concretely, if we have ⊢ ∃x.Φ(x), we want to move
this existential quantifier to the meta-logic, that is, conclude ∃x. ⊢ Φ(x). In ordinary
Iris, this is not possible, since the witness within separation logic can be chosen
depending on the step-index. Formally, we would have to turn a ∀∃ into an ∃∀. In
Transfinite Iris, this is possible by choosing a large enough ordinal as the step-index,
and using the Axiom of Choice to choose a witness valid at every step-index at once.
Unfortunately, using a transfinite step-index breaks some of the rules known from
regular Iris. Those two rules, shown below, allow commuting the ▷ modality and
the existential quantifier / the separating conjunction:

LaterExists
X inhabited

▷(∃x : X.Φ(x)) ⊢ ∃x : X. ▷Φ(x)

LaterSep

▷(P ∗Q) ⊢ (▷P) ∗ (▷Q)

18 Background

Thus, all proofs in this thesis have to be carried out without using these rules.
In particular, avoiding LaterSepmakes some definitions a bit more awkward, for
example in Section 4.5.
2.5 What Is A Multi-Language Program?
In many programming languages, a program is defined as a composition of several
functions. Each such function is invoked with a collection of arguments, and re-
turns a result at the end. When invoked, the function performs some computation,
potentially invoking other functions (including itself, recursively). Additionally, the
functions can have side effects, modifying some state.
Many programming languages are constructed around this model. In C, programs
are composed of several translation units, which themselves consist of functions
(and global variables, which we do not consider). To create a program out of these
translation units, all the functions defined in them are combined into one large
program. This step is called linking. In this thesis, we call this specific kind of linking
the C linkage model. In this work, we take a more abstract view of a linkage model.
For us, the C linkage model describes that functions are called by their name, are
passed arguments which are “C values,” and again return a C value. Additionally,
we understand the linkage model to include the state the programs operate on, that
is, a C heap. When two languages can be linked using the same linkage model, we
say they are ABI-compatible.5

In other languages, themeans for structuring and linking programs are a bit different.
For example, large OCaml programs are typically subdivided into modules, which
couple functions and type definitions to provide additional abstraction barriers.
During OCaml linking, these modules are all bundled together with a top-level
expression, that is then executed and starts using the functions defined in modules.
Another very simple linkage model is presented by the languages described in
Section 2.4: The “one big expression” model. Instead of functions, there there are
first-class closures, and these can be composed using let-in expressions. This model
is simple but powerful, since linked programs can directly be verified using the
WP-Bind rule. Instead of functions Unfortunately, it breaks down when multiple
languages are involved, or when there are no first-class closures. Nonetheless, this
linkage model is what we use for our formal version of OCaml, since this is close
enough to the OCaml module system [39].
For historical reasons, the C linkagemodel has evolved to become the default linkage
model in many computing systems. This is because often, the best way of commu-
nicating with the operating system is using the C standard library, which (being

5ABI: Application Binary Interface. This actually means that both language produce compatible
assembly code. Since linkers operate at assembly level, this is what makes language compatible for
linking.

2.5. What Is A Multi-Language Program? 19

written in C) uses the C linkage model. Thus, almost all programming languages
include a way to interact with other code using the C linkage model. This specific
feature of a programming language is usually called the Foreign Function Interface,
which (again due to historical reasons) usually specifies how interoperability with
C can be achieved.
From a certain point of view, a multi-language program (particularly with the C
linkagemodel) is a bit like a single-language program. It consists of a list of functions,
which all take parameters, return results, and call each other. All functions are
compatible, since they use the same linkage model. However, the functions can be
implemented in different languages. When linking two languages with compatible
value models (e.g., C and C++6), this is straightforward, since C++ can directly
work with and produce C values. When combining a language like OCaml with C,
this is much more complicated, since languages like OCaml usually have no support
for C values, or C state. THis makes using the Foreign Function Interface between
OCaml and C is a lot more complicated: It now involves writing glue code, which
has to bridge between those two languages. The next chapter discusses this Foreign
Function Interface, explaining when glue code is necessary and how it is written.

6C++ has classes, but we can roughly work with them in C by treating them like structs.

Chapter 3

Explaining theOCaml-C Foreign Function Interface

In this chapter, we gradually introduce the Foreign Function Interface used to bridge
C and OCaml. The Foreign Function Interface requires the user to write glue code in
C, which bridges between OCaml and C values. To do so, the FFI provides a set of
FFI primitives, which must be properly composed to convert between values.
This section is based on the OCaml Manual [1, Chapter 22], which explains the FFI.
In some cases, it explains code that would be considered wrong according to the
rules explained in the manual. Nonetheless, the explained patterns are sometimes
used in productiveOCaml libraries, and rely on before-nowundocumented compiler
and runtime invariants.
This chapter introduces the FFI as it is used in reality. In Chapter 4, we introduce
formal models of our single languages, and in Chapters 5 and 6, we do so for the
FFI itself.
We introduce three kinds of colors, to improve readability. A pinkish red is used
to highlight programs, values, and concepts related to C. Blue is similarly used for
OCaml. Purple is used for concepts and functions that are part of the OCaml-C
Foreign Function Interface. These colors are used throughout this thesis.
Most of this chapter introduces the FFI. Readers familiar with the FFI can skip
directly to Section 3.5, which describes which features of the FFI we do (not) model.
Why Is The FFI Necessary?
Before we discuss the FFI, we explain why this is even necessary for OCaml. The
reason the FFI is needed is that OCaml and C very different languages. In particular,
these languages disagree on the type of values, and on the kind of state. OCaml
works with OCaml values, which can be structured, and even include first-class clo-
sures. In C, all there is are pointers and integers, and even there, the division is blurry.
Further, the OCaml heap stores array of OCaml values, and is garbage-collected.
The C memory is flat, and requires manual memory management. Therefore, even

22 Explaining the OCaml-C Foreign Function Interface

seemingly related types like int ref or int* have very little in common. Although
both point to integers, these are not compatible since they are part of different lan-
guages. Even further, the pointers are pointers of completely different heaps, which
(in this work) the other language can not access without using the FFI. Looking
at more complicated types like (int * (int -> bool)) option, it becomes more
obvious that these values can not “simply” be used from C.
The job of the FFI is now to ensure that C can work with such values at all, even if it
is “complicated.” It defines how external calls from OCaml to C work, how OCaml
values end up looking in C, and how C can manipulate these values, or create new
ones. It does so by providing methods and macros, that need to be used in C to
extract useful C values from OCaml values. The C code that does so, using these
FFI primitives, is called glue code. The FFI is designed such that in OCaml, calling a
C function is relatively straightforward, by forcing all the glue code to be written
in C. This design decision is partially explained by the fact that it aims to make
C functions accessible from OCaml. This works because C has a straightforward
linkage model, where functions can simply be called by their name, since a program
is just a list of (named) functions. Since OCaml itself does not really follow this
linkage model, but is more based around closures and modules, C can not simply
invoke a named OCaml function (since such a thing does not really exist.)1 Instead,
the FFI provides mechanisms to invoke OCaml closures, to allow control flow to
pass back and forth between those two languages. This mechanism is looked at in
Section 3.4.
3.1 Basics
To begin, consider the following OCaml program:

let plus1 n = n + 1 ;;
print_int (plus1 4)

This program defines a function plus1 : int -> int, which adds 1 to a number.
It then applies this function to 4, which thus evaluates to 5, which is then printed.
As our first multi-language program, we want to write this plus1 function in C. To
do so, we split our program into two parts, one in OCaml, and one in C. The code is
shown in Figure 3.1
We note that this program can actually be compiled and executed, by saving these
files in a folder plus1, as is also shown in Figure 3.1. When we read it, we see the
OCaml program use some special syntax for declaring a function external:

external <name> : <type> = "<C name>"

1Actually, the OCaml FFI provides a mechanism for “naming” certain OCaml functions, but it is
rather obscure.

3.1. Basics 23

plus1/main.ml:
external plus1 : int -> int

= "caml_plus1" ;;
print_int (plus1 4)

plus1/main.c:
#include <caml/mlvalues.h>
value caml_plus1(value v) {

int n = Int_val(v);
return Val_int(n+1);

}

$ ocamlopt -o plus1/bin plus1/main.ml plus1/main.c
$./plus1/bin

5

Figure 3.1: Writing, compiling, and executing a program written in both OCaml
and C.

Using this syntax, we tell the OCaml compiler that plus1 will be implemented in C,
and that calls to it should be replaced by calls to the C function caml_plus1. The
name we choose for the C function is arbitrary, but a common pattern is to use the
OCaml name, prefixed by caml_. Oncewe have done so, using the function inOCaml
works as if it was declared normally. Thus, in OCaml, calling an external function is
very easy. All the difficulty of dealing with values in different representation must
be handled on the C side. Again, this is a design choice particular to the OCaml-C
FFI. In other language combinations, the glue code could be distributed differently.

In C, we have the function caml_plus1, which is called by OCaml. This function
already looks rather weird. First, it takes an argument of type value, and has to
again return such a value. The type value is the type used to represent OCaml
values in C. In C, we are working in the low-level representation of OCaml values,
as they are actually implemented in the OCaml runtime. While in OCaml, this
low-level implementation is abstracted away by the OCaml runtime, so that OCaml
programs seem to manipulate the familiar, high-level values. Understanding how
to translate between those two representations becomes easier when we introduce
a third layer: the block-level representation. Logically, this layer sits between the
OCaml and the C level. While it, like the OCaml level, does not actually exist
in hardware, it is already a lot closer to the physical representation of an OCaml
value. The main goal of the block level is to separate the encoding of high-level
OCaml values into an integer-pointer value system, which is rather canonical, from
certain low-level encoding tricks done by the runtime to increase efficiency. At
the block level, values are very simple: they are either an integer, or a pointer to
a block managed by the runtime. It turns out that encoding an OCaml integer
as a block-level integer is also straightforward: Integers remain integers. Other
OCaml values have more interesting encodings, which we discuss in Section 3.2.

24 Explaining the OCaml-C Foreign Function Interface

The block-level-to-C encoding is more involved. To ensure an efficient and nice
runtime implementation, this encoding ensures that each runtime value can be
encoded into one C machine word, usually considered to have 32 bits. To do so,
the last bit is used to discriminate block addresses from integers. Since blocks are
allocated with an alignment of at least 2, their addresses are always even. Thus,
such a value is considered a pointer iff the least significant bit is not set. Integers
must now be encoded into a 32-bit word, where the lowest bit is already set. Thus,
the integer is encoded into the remaining 31 bits, by shifting it 1 bit to the right. This
also explains why in OCaml, integers overflow below 230−1, not below 231−1. In C,
the type value is used to denote a value encoded using this bit pattern. Additionally,
the invariant of such a value is that all values encoding a pointer must encode
a pointer pointing to special memory, managed by the runtime (more on this in
Sections 3.2 and 3.3).
This encoding also explains our first two FFI primitives, Int_val and Val_int.
Int_val converts a value encoding an integer n to the actual C integer n. Val_int
performs the inverse direction.2 In the OCaml runtime, these are actually macros,
with the following implementation:

typedef long intnat;
typedef unsigned long uintnat;
#define Val_long(x) ((intnat) (((uintnat)(x) << 1)) + 1)
#define Long_val(x) ((x) >> 1)
#define Val_int(x) Val_long(x)
#define Int_val(x) ((int) Long_val(x))

Also, integers are actually longs, which the OCaml runtime expects to be 64-bit on
64-bit systems, and 32-bit on 32-bit systems. Since we ignore overflow, we do not
make this distinction. We can even go further: we consider the specific encoding
used to discriminate block-level integers from block pointers an implementation
detail. While we model that this distinction exists, we do not verify programs that
manipulate values directly using this low-level representation. Instead, we pretend
that instead of transparent macros, these are simply functions that the runtime
provides to C, but whose implementation is opaque.3

We thus start taking a step back, and instead of describing how these macros/func-
tions are implemented, we limit ourselves to describing how they are intended
to be used–that is, we only give specifications. The specification of Int_val and
Val_int are simple to state: They convert between encoded block-level integers, and
C integers. For this, we also consider them to have undefined behavior if no integer

2The names can be rather confusing. The way to read them is that Int_val means “make int from
value”, i.e., the target comes first.

3The actual runtime provides macros here for performance reasons: Macros do not inhibit compiler
optimizations.

3.2. Structured Values 25

is actually encoded. If we were to properly model integer overflow, then re-encoding
an integer that is too large would also be considered undefined behavior.
With all of this out of the way, we can now actually understand what the example
program from above does: It extracts the integer encoded in the argument value v,
using the Int_val FFI primitive. Then, it adds 1, and re-encodes this integer into
a value using Val_int. This is then returned. Therefore, it correctly implements a
function that jus adds 1 to integers.
3.2 Structured Values
Next, we look at how the other values of OCaml are encoded, and at how the runtime
blocks (pointed at by block pointers) look like. First, we handle the simple cases.
An OCaml boolean is encoded as a block-level integer. There, true is 1, and false is
0. If any other value is used where the runtime expects a boolean, we consider this
undefined behavior. The case of units is even simpler: Units () are simply encoded
as 0.
Actual OCaml has inductive types, and the rules outlined above are just special cases
of the rules for inductive types. In such definition, like foo here, we differentiate
two kinds of constructors.

type foo = Foo1 | Foo2 | Foo3 of int | Foo4 of int * int

Those constructors like Foo1 and Foo2 are constant, since they have no arguments.
Intuitively, they define a constant. The other constructors, Foo3 and Foo4, are non-
constant, since they take further values. The rule for converting constant constructors
to their block-level representation is that they are numbered in their order of decla-
ration, starting at 0, where this numbering skips non-constant constructors. Then,
each constant constructor is represented by its assigned number. Thus Foo1 would
be represented by 0, while Foo2 is represented as 1. Since booleans and units are
defined as shown below, the above rules for them are just a special case of the general
rule.

type bool = true | false
type unit = ()

To handle non-constant constructors, we use blocks. A block is a region of memory
in the OCaml runtime (block-level) heap, which is managed by the OCaml runtime.
Each block has a header, and a body. The header of a block stores the length of a block,
as well as its tag. The header is a single machine word, of which 8 bits are used
to store the tag. Thus, the tag is between 0 and 255, both inclusive. Most of the
remaining bits store the length of the block, so that on a 32-bit system a block is
limited to 222 − 1 = 4194303 machine words (since the length stores the number
of machine words), not including the header. Two further bits are used internally

26 Explaining the OCaml-C Foreign Function Interface

by the garbage collector, they do not concern us. The body of such a block is then
an array of block-level values, of the given length. To see how it is used, we best
consider some examples. The simplest is that of a binary pair, e.g., (3,4): This is
encoded as a block of tag 0, storing [3, 4]. When passed to C, such a pair is thus
present as a pointer to such a block, which is allocated in the block-level heap. In
general, the contents of an arbitrary-sized pair are encoded as blocks of tag 0, of
the appropriate length. Units, which can be understood as nullary pairs, are the
exception to this rule. To handle the general case of an inductive type, the tag is
used. We again consider our foo type, reproduced here for posterity:

type foo = Foo1 | Foo2 | Foo3 of int | Foo4 of int * int

To encode the non-constant constructors, we again give each a unique index, starting
at 0, similar to how we indexed the constant constructors. Again, the other kind of
constructor is not counted. Then, the constructor Foo3, with index 0, is encoded
as a block of tag 0. This block has size 1, and stores the one integer that is the
argument of this constructor. The constructor Foo4, with index 1, is encoded as
a block with tag 1. It now has length 2, storing both its arguments in two fields.
For constructors with larger arity (number of arguments), a larger block is used.
The attentive reader might wonder what happens when we have more than 256
constructors. The answer is that this is a compile error. In fact, the actual limit
of non-constant constructors is a bit lower, and depends on the specific OCaml
version.4 This is because OCaml reserves some tags for special kinds of blocks, some
of which we describe in Sections 3.4 and 3.5.
As a refresher, binary sums, which use the following definition, are thus encoded
as blocks of length 1, with the tag being either 0 or 1. This also shows that poly-
morphism is erased at runtime, since each OCaml value is encoded as exactly one
word, so it does not matter which type it hard. Thus, OCaml types need not be
monomorphized.

type (’a, ’b) sum = inl of ’a | inr of ’b

Not described so far are references, or more general, arrays (with references just
being arrays of size 1). The block-level representation of an OCaml reference ℓ,
pointing to an array of size n, is simply a block, tag 0, of size n, that stores the
representation of each member of the array. There is a key difference between the
block backing an array, and that backing e.g., a pair: The former is mutable, while
the latter is immutable. The OCaml compiler can make optimizations based on the
assumption that immutable blocks, that is, blocks backing pairs, sums, and inductive
types in general, never change. For arrays, this requirement does not exist (since
arrays are supposed to change their contents). Whether or not a block is mutable

4In OCaml 5.0.0, at most 244 non-constant constructors are allowed.

3.2. Structured Values 27

header field 0 field 1 field 2
size: 3 • • •
tag: 0

µ

header field 0
size: 1 1
tag: 1

µ

header field 0 field 1
size: 2 1 0
tag: 0

µ

header field 0
size: 1 42
tag: 0

b

Figure 3.2: The block-level representation of (ref 42, (true, ()), inr 1).

is not part of the physical machine state, it is purely ghost state. Yet, we consider
modification of any block not explicitly mutable to be undefined behavior. We also
note that the OCaml runtime does not keep track of whether a block is (im)mutable.
This distinction is only present in the OCaml compiler, which compiles high-level
OCaml code to a lower-level version that is then executed by the runtime. When
doing so, it can perform type-based optimizations like removing redundant loads
from blocks that are immutable.
As an example summarizing all of this, consider Figure 3.2. There, we display
the block-level heap representing of (ref 42, (true, ()), inr 1). Additionally,
immutable blocks are marked as locked using µ, while the block belonging to the
reference is mutable, shown usingb.
3.2.1 Working with Blocks
We now discuss the FFI primitives used to manipulate blocks. The first is Is_block,
which looks at the least significant bit of a value to check whether it is a block or an
integer. Further, we have Wosize_val and Tag_val, which allow reading the size
and the tag of a block. Since these are implemented as macros, Tag_val is actually
an lvalue, so that the tag can be assigned to. We do not support such assignments,
since changing the tag after a block is created is (to the best of our knowledge)
undefined behavior. Finally, we have Field and Write_field, which are used to
access and change the fields of blocks.
As an example, consider the following C function:
1 value caml_plus1_ref(value v) {
2 assert(Is_block(v));
3 assert(Wosize_val(v) == 1);
4 assert(Tag_val(v) == 0);
5 int n = Int_val(Field(v, 0));
6 n++;

28 Explaining the OCaml-C Foreign Function Interface

7 Store_field(v, 0, Val_int(n));
8 return Val_int(0);
9 }

In OCaml, this function could be used like so:
10 external plus1_ref : ref int -> unit = "caml_plus1_ref" ;;
11 let l = ref 41 in
12 plus1_ref l ;
13 print_int(!l)

This OCaml client creates a new reference (a one-element array) storing 41, passes
this reference to caml_plus1_ref, and prints the contents of the reference afterwards.
When executing this program, once we reach caml_plus1_ref, the argument v will
be a value pointing to a block representing this reference. Thus, all initial asserts
will pass, since a reference is indeed encoded as a block of tag 0 and length 1. Then,
the content of the reference is read, by reading the content of first field (field 0) of
the block, and then extracting the encoded integer. This works since the reference
does indeed store an integer (namely 41). After this integer is incremented, it is
re-encoded into a value and stored back into the reference. This in particular works
since references are mutable, allowing us to modify its content. Finally, we return
Val_int(0), which encodes the unit value. In OCaml, functions return unit instead
of void when they are invoked only for their side effects, and we must also do so
here. Therefore, the overall program, when executed, prints 42.
3.3 Roots and Garbage Collection
With the primitives introduced so far, we can inspect many of the values the FFI
hands to us. Additionally, we can also modify them, provided they are not im-
mutable. What we lack so far is a mechanism for creating new values, particularly
for allocating new blocks. It turns out that this is not as straightforward as one
would hope, due to the garbage collector. The actual method for allocation a block,
value caml_alloc(mlsize_t, tag_t), is not hard to use. It takes the size of the
new block (as returned by Wosize_val), as well as the initial tag. It then returns
the new block, with all values default-initialized to zero. To highlight where this
goes wrong, we show a wrong example. In this example, we try to define a function
caml_swap_pair that, given a pair (a,b) returns a new pair (b,a). Since pairs a
immutable, a new block must be allocated. The OCaml client is straightforward:
1 external swap_pair : ’a * ’b -> ’b * ’a = "caml_swap_pair" ;;
2 let (b,a) = swap_pair (4,2) in
3 assert(b == 2);
4 assert(a == 4)

3.3. Roots and Garbage Collection 29

It swaps the pair (4,2) and asserts that the new pair has the proper content. A
naive attempt at implementing caml_swap_pair then looks as follows:
5 value caml_swap_pair(value v) {
6 value res = caml_alloc(2, 0);
7 value fst = Field(v, 0);
8 value snd = Field(v, 1);
9 Store_field(res, 0, snd);
10 Store_field(res, 1, fst);
11 return res;
12 }

Sadly, this code is incorrect. The reason is that caml_alloc might do a garbage
collection (GC) run. OCaml has a garbage collector, which is used by caml_alloc
to reclaim space if no space for the allocation can otherwise be found. When the
garbage collector runs, it can deallocate blocks that it deems unreachable. Blocks
become unreachable once the OCaml program no longer needs them. Additionally,
the GC can “compact” the heap by rearranging it. To do so, it can decide to move
a block around. It will then take care to update all references to this block stored
in other parts of the runtime heap and used elsewhere in the OCaml program.
Unfortunately, the garbage collector does not know what our C function is doing
with the values passed to it. Thus, it might notice that the input pair is no longer
used by OCaml (only by our C function), and thus deallocates it. Even worse, it
might just move the block to another place in memory, without notifying us of this.
Thus, in line 7 or 8, the C function might read from deallocated memory, or from a
part of the runtime heap that now stores something that is no longer the input v. In
the previous examples, this was not an issue, since all FFI primitives outlined until
then never cause a GC run. What can, however, also cause a GC run is returning to
OCaml itself. Thus, storing a value in a global variable can also be a bug, since that
value might be moved by the GC while OCaml code is running.5.
The solution offered by the FFI is that of rooting. We can register (the address of) a
value as a root, which blocks the runtime from considering the referenced block
(as well as all blocks transitively reachable from it) unreachable, and thus prevents
it from being deallocated. Additionally, if the runtime decides to move the block
referenced by this value, it will update the value to the new location (hence roots are
registered by-reference). Registering a root storing a block-level (encoded) integer
is allowed, and simply skipped by the garbage collector. Once we are no longer
interested in a rooted value, we need to unregister it. Not doing so would constitute
a memory leak, since the GC is prevented from deallocating blocks that are no
longer needed. Even worse, if we free a value that was rooted (or let it go out
of scope), without properly unregistering it first, this is a soundness issue: At the

5It is only a bug if the value is accessed when OCaml code runs in-between

30 Explaining the OCaml-C Foreign Function Interface

next GC run, the GC will look at (or even modify) all roots, and if the root is now
in deallocated memory, this causes a use-after-free bug. Thus all roots must be
properly unregistered before the backing storage is deallocated. If this does not
happen, we say that a dangling root is produced.
To actually register roots, the FFI offers two approaches. Global roots can be reg-
istered using caml_register_global_root(value*), and are again unregistered
using caml_unregister_global_root(value*). These functions are intended for
global variables, or for memory allocated on the C heap. The other approach is for
local variables. There, one uses the macro CAMLlocal1 to declare a local variable of
type value, which is registered as a root and initialized to Val_int(0). If one needs
to register multiple roots, one can use the macro multiple times, or register up to
five roots at once by using e.g., CAMLlocal5. Using these macros is tricky, since they
can not be used on their own. Instead, they rely on two other macros to properly
set up the hidden machinery for tracking roots, and to unregister them when the
function returns. The first macro is CAMLparam1, which is used to register param-
eters as roots. Like with CAMLlocal, there also is a variant for up to 5 parameters.
Unlike CAMLlocal, this macro must only be used once, and it must be used before
CAMLlocal is used, since this macro also sets up the machinery for CAMLlocal. If
the function has more than five parameters, the remaining ones can be registered
using CAMLxparam1, which only registers parameters as roots. When there are no
arguments, but local roots are still needed, the macro CAMLparam0 must be used to
initialize the local root machinery. The point of all this machinery is to ensure that
all local roots are unregistered when the function returns. This works by replacing
the usual return keyword with the macro CAMLreturn, or with CAMLreturn0 in case
of a void method. This macro then unregisters all roots before returning. In order
for this machinery to work properly, one must ensure that local roots do not go out
of scope until the function returns using CAMLreturn. Otherwise, this can lead to
the earlier-explained use-after-free bug.
We can now fix our example. In fact, there are multiple ways. We here present two:
5 value caml_swap_pair(value v) {
6 CAMLparam1(v);
7
8 value res = caml_alloc(2, 0);
9 value fst = Field(v, 0);
10 value snd = Field(v, 1);
11 Store_field(res, 0, snd);
12 Store_field(res, 1, fst);
13 CAMLreturn(res);
14 }

5 value caml_swap_pair(value v) {
6 CAMLparam1(v);
7 CAMLlocal3(res, fst, snd);
8 res = caml_alloc(2, 0);
9 fst = Field(v, 0);
10 snd = Field(v, 1);
11 Store_field(res, 0, snd);
12 Store_field(res, 1, fst);
13 CAMLreturn(res);
14 }

Both versions are almost the same, the only difference being that the right one addi-

3.4. Advanced Topics 31

tionally registers res, fst, and snd as roots. This is the recommended approach [1]:
Ensure all values are rooted all the time. While this approach is correct, it is not the
most efficient. Instead, we can use the knowledge that the GC only runs in line 8.6
Thus, we do not need to root values that do not need to “survive” the GC event in
line 8. It turns out that res, fst, and snd are only initialized after the GC runs. In
particular, the value res, returned by caml_alloc, is valid even if caml_alloc per-
forms a GC run, since it is allocated after this run.7 Thus the left version is also valid,
and perhaps a bit more efficient. To see that it is valid, however, requires careful
tracking of when GC runs can occur, and which variables are accessed across these
runs. Finally, we remark that we could also have used caml_register_global_root
to root our local variables, as long as we unregister themwith the matching function
before returning. This is considered unorthodox, and likely inefficient, since global
roots are expected to stay roots “longer.”
3.4 Advanced Topics
The FFI primitives presented until now allow us to create, inspect and modify all
basic OCaml values, in particular all those that can be defined (co)inductively or as
records. These are not the only values OCaml offers. Notably, it also has closures,
which we look at in this chapter. Further, it also offers a way of embedding C data
into an OCaml value using custom blocks. In this chapter, we explain both these
mechanisms.
3.4.1 Callbacks
OCaml is a functional language, which includes (recursive) closures. TheOCaml FFI
includes support for invoking OCaml closures from C. In a somewhat disappointing
move, it does not allow creating an OCaml closure from C. To invoke a closure,
the FFI primitive caml_callback(value, value) is used. The first argument of
this is the closure, the second is its argument. It returns the result of applying the
closure to a value. Since in OCaml, functions are cascading by default, this suffices
to apply a closure to several arguments, by just calling the function several times.
The block-level representation of a closure is a special kind of block, with tag 247 (all
tags greater than 243 are considered “special”). This block stores two values: The
second is an integer encoding some metadata, while the first points to an opaque
blob storing the code, as well as the captured arguments. The FFI does not provide
methods for deeply inspecting such a closure, only for invoking it. It also does not
provide methods for constructing new closures, that can only happen in OCaml
proper. The OCaml FFI does not speak of closures, but of callbacks, since invoking
a closure means that we call back to OCaml code. Since this OCaml code can do
arbitrary things, it can also cause a GC run. To ensure safety, values that need to

6This work does not consider Multicore OCaml. But even then, the FFI and the GC are cleverly
designed so that this is still true [43], by making certain accesses atomic.

7Otherwise, it would be impossible to properly use caml_alloc.

32 Explaining the OCaml-C Foreign Function Interface

survive this call must be properly rooted. Additionally, the code in such a closure
can again call an external function, implemented in C, which can again call a closure,
and so on. In fact, all of this can happen recursively.
3.4.2 Custom Blocks
The final feature we include in this thesis are custom blocks. A custom block is a
block that can be used as an OCaml value, while storing C data. This can be used
to create new types. For example, we can create a buffer library, where the buffers
store C bytes and are allocated in C. To safely pass such a pointer to OCaml, the
pointer is stored in an OCaml custom block. This also ensures that OCaml code does
not inspect this pointer, since it can only be accessed using the FFI. To create such a
custom block, OCaml provides the primitive caml_alloc_custom, which takes four
parameters. The second parameter is the size of this custom block. If we only want
to store a pointer, it would be sizeof(void*). The first parameter is (a pointer to
a) struct custom_operations. This struct can be used to override the standard
operations OCaml provides on all values, which are:

• A finalization method invoked just before the GC frees this custom block.
• A comparator, used by <, <=, =, ...

• A hashing operator, used by the Hashtbl module.
• Serialization and deserialization operators.
• Additionally, a custom name for the kind of custom data is needed.

The last two parameters, called used and max are used to fine-tune the garbage
collector. When we allocate several custom blocks, which manage resources not
tracked by the garbage collector, we might want that our finalization methods are
called often enough so that these resources are released in a timely fashion. To
achieve this, we can tell the garbage collector how much off-heap resources we are
managing (the used argument), and what the limit is (the max argument). When
the sum of used exceeds the max, the garbage collector will do a full run and finalize
all now-unused custom blocks. When we do not care about this, we can set used to
0 and max to 1. Similarly, if we do not care about overriding any of the standard
operations, OCaml provides default implementations (which do nothing or raise
exceptions, as appropriate).
As an extended example, we want to implement a library that provides access to a
very simple kind of buffer, where each buffer stores one C integer. Such a library
would use the following OCaml signature:
1 type buffer
2 external buf_init : int -> buffer = "caml_buf_init"
3 external buf_read : buffer -> int = "caml_buf_read"

3.4. Advanced Topics 33

4 external buf_write : buffer -> int -> unit = "caml_buf_write"

The C implementation of the methods looks like this:
5 void caml_buf_finalize(value buf) {
6 free(*((int**)(Data_custom_val(buf))));
7 }
8 static struct custom_operations buf_ops = {
9 "melocoton.example.buf",
10 caml_buf_finalize,
11 custom_compare_default, //default values, which raise exceptions
12 custom_hash_default,
13 custom_serialize_default,
14 custom_deserialize_default,
15 custom_compare_ext_default,
16 custom_fixed_length_default
17 };
18 value caml_buf_init(value i) {
19 value buf = caml_alloc_custom(&custom_ops, sizeof(int*), 0, 1);
20 int* cbuf = malloc(sizeof(int));
21 *cbuf = Int_val(i);
22 *((int**)(Data_custom_val(buf))) = cbuf;
23 return buf;
24 }
25 value caml_buf_read(value buf) {
26 return Val_int(**((int**)(Data_custom_val(buf))));
27 }
28 value caml_buf_write(value buf, value nv) {
29 **((int**)(Data_custom_val(buf))) = Int_val(nv);
30 return Val_int(0); // unit
31 }

This example shows how the data in the custom block is accessed: using the
macro/FFI primitive Data_custom_val. This macro returns a pointer to the first
user-controlled byte in such a custom block. Since this pointer has type void*, we
must cast it to an int**, as the custom block stores an int*. Further, this example
uses a custom finalizer to free the used buffer when it is no longer used.
Finally, the OCaml signature warrants a closer look. This signature declares, but
does not define, the type buffer. This type is thus an existential type, and the OCaml
type system enforces that only these three functions implemented in C can operate
on these values. The actual values of this type are custom blocks, which (even
without the type system) can not be inspected in OCaml, but only using the FFI.
In fact, any attempt at defining buffer in OCaml would already be incorrect, since
OCaml can not even express that a type should be inhabited by custom blocks. In
summary, these custom blocks are completely opaque to OCaml.

34 Explaining the OCaml-C Foreign Function Interface

3.5 Features Not Considered
The features explained so far are the features we model in this thesis. Besides these,
the OCaml FFI has many other features which we do not consider.
Exceptions
OCaml has support for exceptions, which can be raised and caught again. The
runtime supports raising exceptions using caml_raise, and provides an exception-
aware callback function caml_callback_exn, whichmight return a special exception
object. Internally, the runtime implements exceptions using setjmp and longjmp.
Performing a longjmp to the exception handler causes C to pop several stack frames.
To prevent local roots from causing use-after-frees, this also unregisters all local
roots up to but excluding the method catching the exception. Interestingly, the
runtime can almost be used to add exception support to C. Thus, modelling it breaks
the assumption that all function calls are well-bracketed. Since we reckon that this
would make the formal model significantly more complicated, we do not handle it.
As an aside, when a function like caml_callback_exn returns an exception, this is
encoded by setting the least significant bit to 0 (like for regular pointers), but by
also setting the second-least significant bit to 1. Since blocks have an alignment of at
least 4, such blocks do not otherwise occur. This exception value is however unsafe:
When stored in a root during garbage collection, it causes a soundness issue. Thus,
programmers working with rooted exception must quickly test for (and then unset)
this bit, before the garbage collector can run.
Multicore OCaml
OCaml 5 added proper support for threading to OCaml, including a concurrent
memory model. This memory model is also interesting from a theory perspective,
since it “binds data races in space and time” [9]. A concurrent separation logic
for Multicore OCaml has also been build [27]. This memory model may impose
additional complexity to the glue code, since C code is subject to a weaker memory
model, and thus might need to use the proper atomic stores and loads to ensure that
functions behave consistent with the OCaml memory model. We do not consider
multi-threading, and thus ignore all this.
More Special Kinds of Values
We can look at the list of all special tags to see somemoremissed features. This thesis,
based on OCaml 58, has 12 special tags, namely 244 to 255 (both inclusive). Tags
244, 245, 246, and 250 are used for lazy OCaml values, which represent thunked
computations. FFI support for them is almost non-existent. Tag 247 is for closures,
which we have discussed. We also discussed custom values, using tag 255. Tag
248 is for objects. The O in OCaml stands for objective, since OCaml has support

8ignoring OCaml’s multi-core features

3.5. Features Not Considered 35

for object-oriented development. The FFI has support for this, which in particular
allows calling instance methods. Tag 249 is an internal tag. Tag 251 is used for
abstract datatypes. In general, tags ⩾ 251 store data that is not inspected by the
garbage collector. Tag 252 is used to store byte buffers, as well as strings. At runtime,
both look the same, but string buffers are sometimes considered immutable.9 There
is enough FFI support for productively working with OCaml strings or byte buffers.
But the FFI is not really needed, since this data can just be accessed using normal C
functions for accessing data, like memcpy. Tag 253 is used to store doubles, which
are encoded as a block just storing that single double. If instead an array of doubles
is needed, they are stored using tag 254. All other tags are used to encode the
non-constant constructor arguments.

In this work, we ignore all of them except for callbacks and custom blocks. We also
do not have user-defined inductive types, thus the only tags that actually appear
are 0, 1, 247, and 255.
Uninitialized Data

The function caml_alloc default-initializes its memory with Int_val(0), which
is useful since this in particular makes this block safe to inspect by the garbage
collector. However, this default-initialization can be redundant if all the zeros are
overwritten later. Thus, there is caml_alloc_shr and caml_alloc_small, which
can be used to allocate an uninitialized block (depending on the size). This block,
must then be completely initialized before the next GC run happens. To initialize a
block, caml_initialize can be used, which is more efficient since it requires that
no old value is being overwritten. Blocks allocated with caml_alloc_small are
allocated in the so-called young generation. The OCaml GC reserves a special area
for newly allocated blocks, which it scans more often. This is because it is assumed
that most fresh blocks quickly become unreachable again. If blocks remain reachable
long enough, they are graduated into the old generation, where they are checked
less often. Blocks allocated with caml_alloc_shr are directly allocated in the old
generation. Additionally, a slight optimization is possible for blocks that are not
part of the young generation. When a field in block b2 is initialized with a block b1,
and b1 is not a young block (e.g., because b1 was allocated with caml_alloc_shr),
then initializing that field in b2 can be done by a direct C assignment, instead of
by using caml_initialize. Similarly, a direct assignment can be used if a field is
initialized with an integer.

In our formal model, we do not consider any of this. There, the only method for
allocation will be caml_alloc.

9It turned out that making them always immutable broke existing OCaml libraries, so this is now a
compiler flag.

36 Explaining the OCaml-C Foreign Function Interface

Simplifications
In the next chapters, we develop a formal model of the OCaml FFI. To do so, we
further simplify some of the features.
Some simplifications are already introduced by the formal model of OCaml itself,
presented in Section 4.3. Since we do not model all inductive types, but only binary
products and co-products (sums), we do not need the machinery for general induc-
tive types. Further, we do not consider records, in particular not mutable records.
Mutable records are interesting because the mutability is annotated per-field, so
that some fields of a record can be mutable, but others are immutable. In our formal
model, mutability will be tracked per-block. If needed, a mutable record can be
modelled as a heterogeneous array (which would however be ill-typed).
We also radically simplify custom blocks. Instead of allowing arbitrarily large C
blobs, we limit them to one machine word. This machine word is also no longer
modified using plain C reads and assignments; instead two separate FFI primitives
(for reading and writing) must be used. We do not consider this a real restriction:
If one previously had to store a lot of data in a custom block, this data could instead
be stored on the C heap, and only a pointer to this data is stored in the custom
block. This even has the added benefit that the data does not need to be moved
by the garbage collector when it decides to compact the heap. We also remove the
mechanism for fine-tuning the garbage collector, which is useless once we remove
finalizers since they do not affect observable behavior. To simplify even more, we
remove the means of overriding the standard operations for them. Thus, comparing
themwill always trigger undefined behavior. (Our formal version of OCaml already
removes all the other features for which behavior can be defined using this struct,
like (de)serialization.)
This also removes finalizers. Finalizers are often considered an anti-pattern, since
they can be fragile: A object undergoing finalization is still alive, but no longer
reachable. Finalizers are often prohibited from making the object reachable again,
since this would result in references to an object that is already deallocated. Further,
finalizers are hard to model in a program logic. They can be considered a kind of
non-linear control flow, which we wanted to avoid in this thesis and the underlying
paper [13]. Even further, properly reasoning about them in Separation Logic is an
unsolved research problem.
Finally, since we removed exceptions, we can simplify the roots machinery. We
remove all the macros related to CAMLlocal, and instead consider only the func-
tions for global roots, i.e., caml_register_global_root. This means that our pro-
gram logic does not handle the rather complicated interaction between CAMLparam,
CAMLlocal, and CAMLreturn. We do not consider this a strict weakness: Instead,
these macros can now be build as actual C macros, which internally construct

3.6. Anticipating the Formal Model 37

a linked list of root pointers, which are then registered using the primitive that
models caml_register_global_root. The other main advantage of these macros–
performance–is also irrelevant for formal verification. So, our formal model of
rooting just provides two primitives, one for registering, and one for unregistering
a root. These are orthogonal to other runtime features, and one should be able
to construct versions of CAMLlocal or CAMLreturn on top of these primitives. We
also hope that these are general enough to not just handle the rooting mechanisms
currently implemented by the FFI, but also allow specifying new proposed rooting
mechanisms like Boxroot [29].
3.6 Anticipating the Formal Model
We now have a rough idea how the FFI works. In particular, we have that external
calls from OCaml to C are easy to use in OCaml, where we can just call a C function
by its name. In C, implementing these functions is harder, since one to write some
glue code using FFI primitives before actual computation with the passed values
can happen.
We saw that both languages need a kind of external call: In OCaml, these calls go to
C, and in C, these calls are used to invoke FFI primitives. In C, these kinds of calls are
needed in general to invoke other C functions. We thus extend our general concept
of languages with external calls, and formalize the notions of linkage models and
ABI-compatibility. These external call specification are a key ingredient for language
locality, since they allow abstracting over the other side’s implementation, and allow
reasoning about external calls as if they were implemented in the same language.
In Chapter 5, we then actually link these two languages, by constructing a formal
model of the runtime build atop a linker (which is described in Appendix A).
This formal model “wraps” an OCaml external call to C, so that it becomes ABI-
compatible with C. It also implements all the FFI primitives.

Chapter 4

Modelling Single Languages

In this chapter, we describe the operational semantics and the program logics of our
two individual languages. Before doing so, we must first define what a language
with external calls is, and also adapt the Iris framework around such languages.

We then develop simplified formal models of C and OCaml. The literature already
offers accurate formal models of C [23, 4, 40] and OCaml [27]. Unfortunately, these
accurate formal models often involve some amount of additional book-keeping,
since they have to account for the idiosyncrasies of OCaml and C. Additionally, they
include features not used by the Foreign Function Interface we are considering. We
thus take liberty to simplify and streamline our formal models of C and OCaml,
while taking care to not affect those features actually used by the Foreign Function
Interface.

The formal model of C is called λC, described in Section 4.2, while that of OCaml is
called λML, and is described in Section 4.3, along with a logical relation in Section 4.5.
Section 4.4 examines the differences between both languages.

We use the color scheme already introduced in the last chapter to separate C code
from OCaml code. Values, expressions, and assertions about C and λC are typeset in
a pinkish red. Values, expressions, and assertions about OCaml and λML are typeset
in blue.
4.1 Programs and Functions
To formally account for programs using a linkage model based on explicitly named
functions, like the C linkage model, we adjust our definition of a language, and
redevelop Iris’ theory for our changed definition. We thus introduce programs and
function calls into our languages. A function call call fn e⃗ is a special expression
(similar to how values also are special expressions), consisting of the function name
fn : string, as well as a list of arguments. The order these arguments are evaluated
in depends on the evaluation order, but they must be fully evaluated before the

40 Modelling Single Languages

function call is executed, so that only values are passed. To execute a function call,
the called function must exist in the current program. Such a program is a named
set of functions p : Prog. Formally, this “named set” is just a map from identifiers to
function definitions. The type of function definitions, Func, depends on the language.

Prog ∋ p ≜ string fin
⇀ Func

Every language must define how a function, applied to a list of arguments, is evalu-
ated. Formally, this is specified by a function applyFunc : Func→ V⃗al→ optionExpr.
The result is optional, since function application can fail (for example, if the number
of supplied and expected arguments does not match). Additionally, calls to func-
tions defined within the current program are now required to step, assuming that
function application is successful:

SFunCall
p[fn] = F applyFunc(F, v⃗) = e

(call fn v⃗, σ) −→p
h (e, σ)

As seen there, the (head) step relation gains an additional parameter, the current
program p. This is unused in all rules except the one for (internal) calls.
Note that we do not need to explicitly track a call stack. The reason is that our lan-
guages do not include an explicit return statement. Instead, the head redex (which
already is within a context) is replaced by the result of the function application. In
a way, the call stack is implicitly implemented by the existing context mechanism.
This is not surprising, given that all our languages are expression-based.
We divide function calls into two kinds: internal and external. A function call to a
function named fn is internal if fn ∈ dom p. Otherwise, it is external. We require that
external functions do not step, i.e., they have undefined behavior. This is because
from the point of view of the program, this is like calling a function that does not
exist. It is only later, during linking, that these methods are added and that these
external calls start having proper behavior.
ProgramLogic Next, we develop a usefulweakest precondition for such a language
with function calls. To reason about internal calls, we can simply add the current
program as a parameter to our weakest precondition. We thus change our weakest
precondition to the following:

wp e@ p,Ψ {Q}

Formally, we have wp : Expr → Prog → Proto → (Val → iProp) → iProp, where the
role of Φ : Proto is explained shortly. The rule we want for internal calls,WP-Call-
Internal, is then shown in Figure 4.1. It straightforwardly reflects the operational

4.1. Programs and Functions 41

WP-Call-Internal
p[fn] = F GenericApplyFunc F v⃗ = e wp e@ p,Ψ {Q}

wp call fn v⃗@ p,Ψ {Q}
∗

WP-Call-External
fn /∈ dom p Ψ fn v⃗ Q

wp call fn v⃗@ p,Ψ {Q}
∗

Figure 4.1: Program logic rules for internal and external calls.

semantics of function calls. The other parameter is needed for external calls. We
mentioned earlier that the default linkage model for our languages is that several
collections of functions can be combined into one, to create a complete program.
While we could limit ourselves to verifying programs where all calls are internal,
this would not be modular. Further, it would make it impossible to reason about
foreign calls, which are calls made to functions implemented in another language.
To reason about such calls, we introduced the additional parameter Ψ : Proto to our
weakest precondition. These protocols are defined as follows:

Proto ≜ string→ V⃗al→ (Val→ iProp)→ iProp

Protocols give specifications to external calls, by encoding the condition that needs
to be proven in order to show that a call is correct. Protocols are not a new idea:
they have already been used to formally reason about e.g., effect handlers [7], where
they define the semantics of effects, and can be seen as an alternative formulation
of open simulations [15]. Similar to there, our protocols are predicate transformers
(on separation logic predicates), that describe the semantics of an external call by
expressing which predicates can be established on their return value. For example,
the specification that a function "foo", applied to the one argument n, returns n+ 1,
is be expressed as follows:

Ψ fn v⃗ Q ≜ ∃n. fn = "foo" ∗ v⃗ = [n] ∗Q (n+ 1)

This is because for all n, Ψ "foo" [n] (λv. v = n+ 1) is true.
The weakest precondition, which previously was a predicate transformer from
predicates on values to predicates on expressions, is now also a transformer from
predicates on external functions calls to predicates on expressions. In fact, it will
turn out that the two predicate transforms, the weakest precondition itself and the
external call specifications, are mutually intertwined by program linking. When
stumbling upon an external call while verifying a program, theweakest precondition

42 Modelling Single Languages

simply looks up the specification of that external call in Ψ, and then continues once
the call returns. This explains the rule WP-Call-External. To avoid unsoundness,
this rule is applicable only to external calls. Thus, the verification certificate for a
program using external calls still has “holes,” since the specification of an external
call is just assumed. Justifying the reasoning rules of Figure 4.1 requires changing
the definition of the weakest precondition.

Definition 4.1 (Weakest Precondition with External Calls)

reducible(p, e, σ) ≜ ∃e ′ σ ′. (e, σ) −→p (e ′, σ ′)

wp e@ p,Ψ {Q} ≜ ∀σ.SI(σ) ≡−∗

SI(σ) ∗Q(v) e = v

fn /∈ dom p ∗
˙|⇛∃Q ′. SI(σ) ∗ Ψ fn v⃗ Q ′ ∗
▷∀v ′. Q ′ v ′ −−∗

wp K[v ′]@ p,Ψ {Q}

e = K[call fn v⃗]

reducible(p, e, σ) ∗
∀e ′ σ ′. (e, σ) −→p (e ′, σ ′) −−∗

˙|⇛▷ ˙|⇛SI(σ ′) ∗ wp e ′ @ p,Ψ {Q}

otw.

We add a new case to the weakest precondition, which looks up the specification of
external calls if the current head redex is an external call. Afterwards, we continue
with wp K[v ′]@ p,Ψ {Q}. Since we give up SI(σ) “before” the call, the call has access to
the state interpretation, and can thusmodify the state. The reasonwe introduceQ ′ is
very technical: It makes proving WP-Wand slightly easier, since Ψ is not required to
be monotone in its predicate argument. Similarly, the reason that the call is allowed
to occur in any context, is to still validate theWP-Bind rule.
It turns out that protocols Proto form a lattice, by pointwisely inheriting the lattice
structure of Prop. The protocol ⊥ ≜ λ fn v⃗Q.⊥ denotes that no external calls are
valid, whereas ⊤ is the protocol where every external call is possible, but diverges
(sinceQ can be false). The join (lowest upper bound) Ψ1⊔Ψ2 ≜ λ fn v⃗Q.Ψ1 fn v⃗Q∨

Ψ2 fn v⃗Q is interesting, especially when the names of the functions described by Ψ1

and Ψ2 are disjoint. The combined specification then describes a program providing
both calls. This way, our protocols can express the behavior of entire sets of functions,
instead of just one. It also includes total order Ψ1 ⊑ Ψ2 ≜ ∀fnv⃗Q.Ψ1 fn v⃗ Q −−∗
Ψ2 fn v⃗ Q, which expresses that Ψ1 is stronger than Ψ2.
Somewhat unintuitively, the a specification Ψ1 is stronger (in the intuitive sense)
than Ψ2 when Ψ2 ⊑ Ψ1. Intuitively, a specification is stronger if it has weaker precon-
dition (allows to be called with more values), and stronger postconditions (gives

4.1. Programs and Functions 43

a finer description of the result values). Now, for a concrete call, Ψ fn v⃗ Q are the
preconditions of that call, while the postconditions are encoded in a contravariant
way by usually including something like ∀v.RealPostCond(v)→ Q(v) as a precondi-
tion. When thus considering that a stronger specification Ψ1 should have weaker
preconditions than Ψ2, writing it as Ψ2 ⊑ Ψ1 makes sense, since that means that the
preconditions of Ψ2 are stronger than that of Ψ1. Since postconditions are usually
encoded in a contravariant way, this notation can also be used when a stronger
postcondition is needed.
Adequacy Finally, we need to prove adequacy for our new weakest precondition.
As mentioned earlier, a proof of a weakest precondition for a program with external
calls still has holes, thus it is not a suitable precondition for adequacy. Instead, we
can only prove adequacy for programs without external calls. This is indicated by
setting the protocol to ⊥, i.e., the empty protocol, where no calls are available. After
generalizing our notion of safety to programs in the obvious way, we can prove
adequacy.

Theorem 4.2 (Adequacy of Weakest Precondition with External Calls) Let p be
a program, σ be a state such that ⊢ SI(σ), and Q ′ : Σ → Expr → Prop such that
∀e ′ σ ′. SI(σ ′) ∗ safe(p, σ ′, e ′, Q) ≡−∗ Q ′(σ ′, e ′). Then the following holds:

⊢ wp e@ p,⊥ {Q} =⇒ ∀e ′ σ ′. (e, σ) −→p∗ (e ′, σ ′) =⇒ Q ′(σ ′, e ′)

Proof Like the regular Iris proof. When encountering the new case in wp, we have
a proof of Ψ fn v⃗ Q ∗−∗ ⊥, as Ψ = ⊥, which is a contradiction. □

Note that in Coq, we do not give a direct proof of the above lemma. Instead, this
theorem will follow from the adequacy of the weakest precondition for modules,
Theorem 6.1. We nonetheless show the theorem to highlight that external calls are
assumptions, and that adequacy only applies when a program does not make any
external calls.
Language-Locality We note that this mechanism for abstractly specifying external
calls is one of the key ideas of this work. Using these protocols, we can abstract
away the implementation of a function. Thus, the implementation language of
that function becomes irrelevant. All that is needed is that the target function is
ABI-compatible, i.e., that it has a compatible linkage model. This allows us to reason
about external functions as if they were implemented in the same language we are
currently working in. This is one ingredient of working language-locally: As long
as some piece of code is written only in one language, we can reason about it as
if the other language did not exist. Only when making external calls do we need
to consider the other language, and even then, we can choose to ignore it if the
other language can be given a proper specification that explains it behavior using

44 Modelling Single Languages

only concepts known from the local language. The fact that we can reason as if the
other language did not exist is further justified by proving various compositionality
lemmas, that allow us to lift correctness proofs. If one part of a multi-language
system has been verified in a single language, we later want to lift this to the multi-
language setting without causing many further proof obligations.
4.1.1 More on Protocols
To increase readability, we define Hoare Triple-like notation for protocols:

∀x⃗. ⟨P⟩ fn v⃗ ⟨v. ∃y⃗. Q⟩ ≜ λfn ′v⃗ ′Q ′. fn ′ = fn ∗ ∃x⃗. v⃗ ′ = v⃗ ∗ P ∗ (∀v, y⃗. Q −−∗ Q ′ v)

This then allows us to rewrite the "foo" specification from above like so:

∀n. ⟨⊤⟩ "foo" [n] ⟨v. v = n+ 1⟩

Note that such a triple denotes an assumption, not a verified function.
Further, we can define a kind of weakest precondition on entire programs, which
are again a protocol. This “weakest precondition protocol” progwp p Ψ : Proto is the
protocol induced by p, with external calls themselves defined by Ψ. In other words,
it is the protocol that describes what happens when the programs in p are actually
executed. Its formal definition is as follows:

progwp(p,Ψ) fn v⃗ Q ≜ fn ∈ dom p ∗ wp call fn v⃗@ p,Ψ {Q}

To simplify reasoning, we introduce specification judgments Ψ1 ⊢ p : Ψ2. This
describes that the functions in program p satisfy specification Ψ2, provided that
the external calls in p are interpreted using Ψ1. Formally, this is just notation for
Ψ2 ⊑ progwp(p,Ψ1). We can also give a consequence rule for these judgments, which
allows strengthening the assumed specification, andweakening the specification that
p must satisfy. Remember that, unlike with regular condition, a stronger protocol is
entailed by a weaker protocol.

Theorem 4.3 (Consequence Rule For Specification Judgmenets)

JudgmentWeaken
Ψass ⊑ Ψass ′ Ψass ⊢ p : Ψspec Ψspec ′ ⊑ Ψspec

Ψass ′ ⊢ p : Ψspec ′

Proof By definition, using WP-Wand. □

4.1.2 Intra-Language Linking
This extendedweakest precondition, with a protocol for external calls, wasmotivated
by external function calls to functions implemented in a different language. While

4.1. Programs and Functions 45

even(m) ≜

if m = 0 then true else odd(n− 1)

Ψeven ≜

∀n. ⟨n > 0⟩ "even" [n]

⟨b. b = true ⇐⇒ n mod 2 ≡ 0⟩

odd(m) ≜

if m = 0 then false else even(n− 1)

Ψodd ≜

∀n. ⟨n > 0⟩ "odd" [n]

⟨b. b = true ⇐⇒ n mod 2 ≡ 1⟩

Figure 4.2: Two mutually recursive functions with their specifications.

we have not outlined how linking works in this case, we can already verify a linking
operator when all functions have the same language. Semantically, if we have two
disjoint programs p1 and p2, we can easily combine them into a larger program
p1∪p2. It turns out that in the program logic, we can similarly compose specification
judgments. Assume thatΨ2 ⊢ p1 : Ψ1 andΨ1 ⊢ p2 : Ψ2. In other words, the functions
in p1 satisfy the specifications in Ψ1, assuming that external calls in p1 behave as
described by Ψ2, and vice-versa. We can then prove that ⊥ ⊢ p1 ∪ p2 : Ψ1 ⊔ Ψ2, i.e.,
that the combined program satisfies both specifications, and does no longer have any
external calls. For example, imagine two functions which mutually recursively call
each other, like in Figure 4.2. There, we can establish that Ψodd ⊢ peven : Ψeven and
Ψeven ⊢ podd : Ψodd, expressing that each function is correct under the assumption
that the other function also is. Using the above result, this can then be turned into a
closed program satisfying both specifications. Note that the use of mutual recursion
does not pose an issue, thanks to step-indexing.
The full theorem is more general, since it allows the resulting combined program to
still make external calls to the functions in Ψaxiom:
Theorem 4.4 (Intra-language linking) Let Ψ1, Ψ2, Ψaxiom : Proto and p1, p2 : Prog

with p1 ## p2. Further, Ψaxiom must be ⊥ for all s ∈ dom p1 ∪ dom p2. Then, assuming
(Ψ2 ⊔ Ψaxiom) ⊢ p1 : Ψ1 and (Ψ1 ⊔ Ψaxiom) ⊢ p2 : Ψ2, we have Ψaxiom ⊢ p1 ∪ p2 : Ψ1 ⊔ Ψ2.

This theorem can also be expressed as an inference rule:

WP-Link-Intra
p1 ## p2 Ψaxiom ## (dom p1 ∪ dom p2)

(Ψ2 ⊔ Ψaxiom) ⊢ p1 : Ψ1 (Ψ1 ⊔ Ψaxiom) ⊢ p2 : Ψ2

Ψaxiom ⊢ p1 ∪ p2 : Ψ1 ⊔ Ψ2

Proof by Löb induction/wp simulation. To prove the weakest precondition of a
function F ∈ p1 ∪ p2, we use the result for p1 (or symmetrically p2). We follow the
proof that the body of F executes correctly in p1, which is trivial except when it does
an call, where there are three cases:

46 Modelling Single Languages

Val ∋w ::= (n : Z) | (a : Addr) | NUL | fn

⊖ ::=− | ! | ∼ | p2i | i2p
⊗ ::=+ | − | × | ÷ | % | & | | | ˆ |≪ |≫ | < | ⩽ | =

Expr ∋ c ::=w | x | ⊖ c | c⊗c | malloc(c) | free(c, c) | ∗c | ∗c ← c

| let x = c in c | if c then c else c | while(c) c | call cF c⃗
Cell ∋ cl ::= ⋆ | † |w

ΣC ∋ σC ≜Addr
fin
⇀ Cell

Func ∋ F ::=Fun(⃗x, c)

Figure 4.3: The formal syntax of λC.

• The call is internal into p1. Since p1 ⊆ p1 ∪ p2, the called function is also
present in the larger program. Correctness thus is achieved using the inductive
hypothesis.

• The call is external, justified using Ψ2. Then it is to a function in p2, which
is also present in the larger program. The correctness result follows from
(Ψ1 ⊔ Ψaxiom) ⊢ p2 : Ψ2, using WP-Bind and the inductive hypothesis for both.

• The call is external, justified using Ψaxiom. Since we still have Ψaxiom as the
external call protocol, we are done. □

The previously explained lemma is achieved by setting Ψaxiom. ≜ ⊥. By Ψaxiom ##
(dom p1 ∪ dom p2), we denote that Ψaxiom does not assert any behavior about calls
defined in p1 or p2. This theorem is already a kind of lifting lemma that enables
language-local reasoning. Although it does not yet involve different languages, it
already demonstrates how we want to later lift verification of individual parts of a
(multi-language) program to the correctness of the whole program. When linking
a multi-language program, we want essentially the same theorem as Theorem 4.4,
but for different languages. Indeed, Theorem 6.4, proven in Section 6.1.2, provides
precisely this.
4.2 λC

We can nowdefine our formal version of C, as an instance of a languagewith external
calls as defined in the previous section. The formal syntax of λC can be found in
Figure 4.3, while the operational semantics can be found in Figure 4.4. The language,
including function calls, is evaluated left-to-right.
Our language features four kinds of values: Integers, locations, the null pointer

4.2. λC 47

SCLet

(let x =w in c, σC) −→C (c[w/x], σC)

SCUnOp
⊖w =wr

(⊖w,σC) −→C (wr, σC)

SCBinOp
w ⊗w ′ =wr

(w ⊗w ′, σC) −→C (wr, σC)

SCIfTrue
w is truthy

(if w then c1 else c2, σC) −→C (c1, σC)

SCIfFalse
w is not truthy

(if w then c1 else c2, σC) −→C (c2, σC)

SCWhile

(while(c1) c2, σC) −→C (if c1 then c2;while(c1) c2 else 0, σC)

SCFunCall
p[fn] = fn(⃗x) := c |w⃗| = |⃗x| = n

(call fnw⃗, σC) −→C (c[w1/x1, . . . ,wn/xn], σC)

SCStore
σC[a] ̸= None, †

(∗a←w,σC) −→C (0, σC[a :=w])

SCMalloc
n > 0 ∀0 < i < n. a+ i /∈ dom σC

(malloc(n), σC) −→C (a, σC[a+ 0 := ⋆, . . . , a+ n− 1 := ⋆])

SCLoad
σC[a] =w

(∗a, σC) −→C (w,σC)

SCFree
∀0 ⩽ i < n. σC[a+ i] ̸= None, †

(free(a, n), σC) −→C (a, σC[a+ 0 := †, . . . , a+ n− 1 := †])

Figure 4.4: The head reduction rules of the operational semantics −→C of λC.

48 Modelling Single Languages

constant NUL, and function pointers (which simply are strings, denoting the name
of a function). Unlike in actual C, arithmetic operations do not overflow. We
implement most of C’s arithmetic and logical operators, which have undefined
behavior when not used properly (e.g., when multiplying pointers). Notably, our
pointers allow address arithmetics, specifically both pointer-offset and pointer-
difference.1 Like in C, there are no first-class booleans, instead, 0 and null pointers
are considered false, all other values are considered true (we say they are truthy), and
comparison operators appropriately evaluate to 0 or 1. Additionally, our language
is now expression-based, eliding statements. The if-statement is now subsumed
by the ?: ternary expression, which we rename into if for easier reading. Blocks
and local variables are implemented using let-in, where possible. Sequencing is
also implemented using let-in, but we may use the syntactic sugar c1; c2. Loop
expressions evaluate to 0, since they are only evaluated for their side effects.
While C has a memory model based on bytes, where a word is stored by decompos-
ing it into several bytes, the memory model of λC is word-based, with each address
storing a value (an integer or a location). Additionally, each cell can be in one of
two special states: It can be uninitialized, indicated by ⋆. Memory cells are allocated
uninitialized, and must first be initialized by writing to them. Further, deallocated
memory cells are set to †, which makes all access to the memory cells undefined be-
havior. The cell is not removed from the heap to ensure that no two freshly allocated
locations ever compare equal.2 The expression free(c1, c2) takes two arguments. The
first is the pointer to the first location to be freed, and the second is the number
of locations do be deallocated. This allows us to not track the size of allocations
(unlike malloc in regular C), and instead shift this burden to the programmer. To
simplify things, if this number is ⩽ 0, nothing happens.
λC does not handle structs or unions. Instead, there is only pointer addition, so
structs must be implemented by allocating a large chunk of memory and accessing
it using offsets. Handling local struct variables is more difficult. In general, properly
translating a C program with local variables to λC can be more difficult than one
initially suspects. While variables that are assigned once are easy to handle, variables
that have their address taken, or that are modified repeatedly in a loop, are more
difficult to handle. Our solution here is to heapify those variables, after running an
SSA-style transformation to find the variables that actually need this. Concretely,
we translate a variable declaration to a heap allocation, and insert a call to free() at
the point the variable would go out of scope. Accessing and modifying the variable
is then implemented using loads and stores, while taking its address becomes easy.
This might seem unorthodox, but it actually is a faithful implementation of the rules

1We also ignore provenance.
2Additionally, the default ghost state for heaps in Iris does not actually support deallocation. We

thus use this trick, which is also used by Iris’ demonstration toy language (HeapLang).

4.2. λC 49

CWP-Malloc
n > 0 ∗0⩽i<na+ i 7→C −−∗ wp a@ p,Ψ {Q}

wp malloc(n)@ p,Ψ {Q}
∗

CWP-Free∗0⩽i<na+ i 7→C ∗0⩽i<na+ i 7→C † −−∗ wp a@ p,Ψ {Q}

wp free(a, n)@ p,Ψ {Q}
∗

CWP-Load
a 7→C

d w a 7→C
d w −−∗ wpw@ p,Ψ {Q}

wp ∗a@ p,Ψ {Q}
∗

CWP-Store
a 7→C a 7→C w −−∗ wp 0@ p,Ψ {Q}

wp ∗a←w@ p,Ψ {Q}
∗

CWP-Call
p[fn] = fn(⃗x) := c |w⃗| = |⃗x| = n wp c[w1/x1, . . . ,wn/xn]@ p,Ψ {Q}

wp call fnw⃗@ p,Ψ {Q}
∗

Figure 4.5: Program Logic Rules for C.

outlined in the C standard for automatic storage duration [17, 6.2.4p6].
Finally, C programs include function calls, which we already explained in Section 4.1.
We use the existing machinery described there, which constructs programs p : Prog

as lists of functions. This program is then also a parameter of the step relation.
The rule SCFunCall already includes the definition of applyFunc, unfolded, so that
this rule is compatible with the abstract version SFunCall. The actual definition of
applyFunc is as follows:

applyFunc(Fun(⃗x, c), w⃗) ≜

{
c[w1/x1, . . . ,wn/xn] |⃗x| = |w⃗|

None otw.

The program logic is quite similar to the one presented in Section 2.4, but uses the
weakest precondition with (external) functions calls discussed in Section 4.1. We
have the C points-to a 7→C w, which also has the variant 7→C (which includes
uninitialized data) and 7→C† (indicating that the heap cell was deallocated). Further,
it is fractional, so that a 7→d

C w denotes that we only have a fraction of it. If d = □,
then it is persistent and immutable. Our program logic, shown in Figure 4.5, now
is a rather straightforward combination of the concepts presented in the previous
few sections. The rules for accessing memory are straightforward generalizations
of the ones shown in Figure 2.4. The CWP-Call rule is also just a restatement of
the generalWP-Call-Internal we saw in Figure 4.1. Similarly, the ruleWP-Call-

50 Modelling Single Languages

Val ∋ V ::= (n : Z) | (ℓ : Loc) | true | false | ⟨⟩ | ⟨V,V⟩ | inl V | inr V | rec f x. e | ι

⊖ ::=− | !
⊗ ::=+ | − | × | ÷ | % | & | | | ˆ |≪ |≫ | < | ⩽ | =

Expr ∋ e ::=V | x | rec f x. e | e e | ⊖ e | e ⊗ e | if e then e else e

| ⟨e,e⟩ | fst e | snd e | inl e | inr e | case e of inl⇒ e | inr⇒ e

| alloc e of e | e.(e) | e.(e)← e | length e | call fn e⃗

Block ∋ bl ::= V⃗ | E

ΣML ∋ σML ≜Loc
fin
⇀ Block

Func ≜⊥

Figure 4.6: The formal syntax of λML.

External presented there is also applicable to this program logic, but we do not
restate it, since it looks exactly the same.
4.3 λML

We now define λML, which also is a language with external calls as presented in
Section 4.1. The formal syntax of λML can be found in Figure 4.6, while the operational
semantics can be found in Figure 4.7.3 The language, including function applications,
is evaluated right-to-left. The list of operators is similar to that of C. There also is
no integer overflow. Logical operators are overloaded to also operate on booleans.
Unlike in C, there is no address arithmetic.
It is immediately obvious that λML has much more structured values than C. In-
deed, it has first-class booleans, pairs, and tagged unions. Further, it is higher-order,
featuring first-class recursive closures. It also has foreign values, which are used
to implement foreign blocks when interoperating with C. These values can only
be used opaquely in λML, i.e., they can be be passed as the arguments of functions,
but they can not be inspected. Looking at the expressions, we can see that there
are some expressions that look like values, namely ⟨ · , · ⟩, inl , inr and rec f x. e.
The difference between the expression and value variant is that the expressions
allow reduction of sub-expressions, so that inl (1 + 2) evaluates to the value inl 3.
Another difference is quite subtle: The expressions allow their sub-expressions to
be substituted. Values, on the other hand, are always opaque for substitution. This
is particularly relevant for closures: While the closure is still an expression, values
can be substituted into it. Once the closure itself is evaluated, it reduces to the value
version of itself, which can no longer capture anything (and should not have any

3In fig. 4.7, write σ instead of σML to save space.

4.3. λML 51

SMBeta

((rec f x. e) V, σ) −→ML (e[rec f x. e/f, V/x], σ)

SMClosure

(rec f x. e, σ) −→ML (rec f x. e, σ)

SMInl

(inl V, σ) −→ML (inl V, σ)

SMInr

(inr V, σ) −→ML (inr V, σ)

SMLCaseL

(case inl V of inl⇒ Vl | inr⇒ Vr, σ) −→ML (Vl V, σ)

SMLCaseR

(case inr V of inl⇒ Vl | inr⇒ Vr, σ) −→ML (Vr V, σ)

SMPair

(⟨V,V ′⟩, σ) −→ML (⟨V,V ′⟩, σ)

SMFst

(fst ⟨V,V ′⟩, σ) −→ML (V, σ)

SMSnd

(snd ⟨V,V ′⟩, σ) −→ML (V ′, σ)

SMIfTrue

(if true then e1 else e2, σ) −→ML (e1, σ)

SMIfFalse

(if false then e1 else e2, σ) −→ML (e2, σ)

SMUnOp
⊖V = V ′

(⊖V, σ) −→ML (V ′, σ)

SMBinOp
V ⊗ V ′ = Vr

(V ⊗ V ′, σ) −→ML (Vr, σ)

SMLength
σ[ℓ] = V⃗

(length ℓ, σ) −→ML (|V⃗ |, σ)

SMLoad
σ[ℓ] = Some V⃗ Vn = V ′

(ℓ.(n), σ) −→ML (V ′, σ)

SMLoadOOB
σ[ℓ] = Some V⃗ n < 0∨ n ⩾ |V⃗ |

(ℓ.(n), σ) −→ML (ℓ.(n), σ)

SMStore
σ[ℓ] = Some V⃗

(ℓ.(n)← V ′, σ) −→ML (⟨⟩, σ[ℓ := V⃗[n := V ′]])

SMStoreOOB
σ[ℓ] = Some V⃗ n < 0∨ n ⩾ |V⃗ |

(ℓ.(n)← V ′, σ) −→ML (ℓ.(n)← V ′, σ)

SMAlloc
ℓ /∈ dom σ

(allocn of V, σ) −→ML (ℓ, σ[ℓ := [V, . . . , V]︸ ︷︷ ︸
n entries

])

SMAllocOOB
n < 0

(allocn of V, σ, σ) −→ML (allocn of V, σ, σ)

Figure 4.7: The head reduction rules of the operational semantics −→ML of λML.

52 Modelling Single Languages

free variables). This implements how closures capture their environment. This
also explains the reduction rules SMInl, SMInr, SMPair, and SMClosure, which
perform the expression-to-value conversion step. Except for in these rules, all other
ambiguous uses of expressions/values in the reduction rules should be read as val-
ues. Our language does not feature loops, since it already has recursive higher-order
functions. The case construct also requires some explanation: Its two match arms
must be of function type, and the case selects the appropriate one, applying to it
the value stored in the disjoint union. We nonetheless often use the syntactic sugar
case e of inl x⇒ e | inr x⇒ e, implemented using closures. Further syntactic sugar
are first-order closures λx. e let-in expressions let e = x in e, and sequencing e;e′, all
implemented using closures. We can also add an assert expression, by using an if
that either does nothing if the condition is true, or otherwise step to an expression
with undefined behavior, like ⟨⟩+ 1.
The memory model of λML is block-based. Each location stores a block, which has
a fixed length, and which then stores several values. The memory can store all
structured values. We say that the memory stores arrays, and call one-element
arrays references. Read and write accesses require a location ℓ and an offset n. If the
offset is not inbounds, the memory access silently diverges4 (see the SMLoadOOB
and SMStoreOOB rules). Allocation similarly diverges if the size of the new block
is not positive (see SMAllocOOB). Otherwise, it allocates a new reference, where
all fields are initialized using the second argument V of allocn of V . We consider the
language to be garbage-collected, hence there is operation for freeing blocks. So far,
the garbage collector is merely conceptual (i.e., the operational semantics implement
a no-op garbage collector). Instead of a block, the memory might also store E at
a location. This value is never produced by the semantics, its only use is to later
enable interoperability with C.
Finally, our syntax also includes a construct for function calls call fn e⃗. Since we are
a language with external calls, the framework also provides us with machinery for
internal calls and programs as lists of functions. We do not use that machinery, by
setting Func ≜ ⊥, which expresses that λML functions do not exist, because the linking
Thus, the only valid λML program is the empty program ∅. Therefore, all function
calls are external calls. The machinery for programs and internal calls is not used,
since this implies a linkage model that is not actually used by OCaml. Instead, the
linkage model based on “one big expression” is more appropriate, since λML already
includes first-class recursive closures, which can all be combined using a large let-in.
Note thatwhile actual OCaml has external call declarations, which declare anOCaml
function that is implemented as an external call, λML has external call expressions.
We do not model the declarations, but instead inline them at the call site, by using an

4Throwing an error would be more appropriate. However, we do not support exceptions.

4.3. λML 53

external call expression. Further, while the external call declaration includes types,
the external call expressions do not. In general, the operational model of OCaml
does not feature a type system. In Section 4.5, we define a type system and a logical
relation. This type system includes the ability to give types to external calls, in a
way resembling the external call declaration.
Notable OCaml features not modeled are exceptions and (co)inductive datatypes.
While the later type system supports recursive types, it does not support defining
custom inductive types with custom constructors. The only constructors available
are pairs and tagged unions. While this does not limit the expressivity of the
language (as these can encode all inductive datatypes), this matters for the Foreign
Function Interface, since inductive datatypes get special treatment. Similarly, the
Foreign Function Interface supports raising and catching exceptions. By eliding
them, we restrict ourself to not considering exceptions in our formal model.
We already discussed how this affects our model of the FFI in Section 3.5.
We again summarize the three features included for interoperability. The first are
external function calls, which simply cause undefined behavior in isolated λML. Later,
these can be used to call λC functions. Further, we have foreign values ι , using a
foreign ID ι. These are later be used to embed λC data. Finally, there is the special
memory cell E, which is included for technical reasons only.5 In Chapter 7, we
discuss different approaches where no such special heap cell is needed.
The reason we need special syntax in λML to express external function calls is obvious:
actual OCaml also has special syntax for external calls.
The motivation for foreign values is less obvious. They are necessary since we must
define all available values when formalizing OCaml. In actual OCaml, one can
simply declare a new type, by writing type buffer and not giving a definition. This
type is then existential, and the inhabitants can be defined as an implementation
invariant (by using a semantic type). In actual OCaml, one can use the fact that
OCaml borrows its at-runtime6 notion of values from the OCaml runtime,7 so that
one can use as value everything the runtime supports. Because we wish to include
support for custom blocks in our formal runtime model, foreign values provide an
“escape hatch” that allows us to have a value simply be the location of a block, while
being opaque to OCaml.
In λC, which does not feature a runtime, and which already has a rather pedestrian
system of values, new “kinds of values” are usually represented as pointers, which
are not even required to point to a location on the λC heap. Since in λC, pointers

5One could call it a dirty hack.
6Runtime values are the values that exist while the program runs.
7The runtime is the system that executes OCaml bytecode

54 Modelling Single Languages

are already unsafe, such an encoding is not an issue. The foreign values ι can be
understood as adding an unsafe kind of pointer to λML, since regular locations ℓ are
unsuitable, as they are always expected to point to an actual heap element.
We also build a program logic for λML. The points-to for λML, ℓ 7→ML V⃗ , is defined
with a location ℓ on the left, and a list of values V⃗ on the right. Such a points-to
conveys ownership of an entire block. Unlike in Cosmo [27], this ownership can
not natively be divided into ownership over individual entries in this block.8 It is,
however, fractional insofar as that we can have half ownership of the entire block.
The fractional variant is denoted as ℓ 7→d

ML V⃗ . Again, if d = □, then it is persistent
and immutable.
Like for λC, the weakest precondition for λML is the one with support for external calls.
But unlike before, the only λML program is the empty program, thus one parameter
is fixed to ∅.
4.4 Examining the Differences
When looked at from afar, the two languages we just presented can look quite alike.
They are both expression-based, have load, store, and allocation instructions, and
almost all unary and binary operators are available in both languages. But we
already explained in Chapter 3 that these languages are very different. In fact, the
entire chapter described the OCaml-C FFI, which is needed to bridge the differences.
So, what are these differences?
There are also some differences we consider trivial: One such fact is that λC is
evaluated left-to-right, while λML is evaluated the other way around. This is because
the language does not fundamentally change when this is flipped. In particular,
such properties do not affect linking. Instead, we only care about the differences
that make these languages ABI-incompatible.
This brings us to the first difference: The memory model of λC is addressed using
addresses Addr, while in λML, these are locations Loc. This is not just a difference
in name, since λC locations support address arithmetic, which is undefined for λML

locations.
Besides, the type of heap cells is different for both–the second difference. Each λC

heap cell stores a λC value, but can also be uninitialized or deallocated. In λML, there
are no deallocated or uninitialized heap locations. Additionally, each heap cell stores
a list of λML values,9 instead of just a single value. In other words, it is an array.
Thirdly, the memory of λML is garbage-collected. While the Garbage Collector is
implicitly defined such that it never deallocates a value that could still be used in

8Iris should be strong enough to define such ghost state on an ad-hoc basis, if needed.
9It can also store E, but we do not consider this a proper part of λML

4.5. A Logical Relation for λML 55

λML, there is no such guarantee for potential λC code interacting with it.
Fourthly, the values of both languages are completely different. In λC, the value
model is flat, featuring only integers and pointers/addresses. In λML, there also are
integers and locations, but also more structured values, i.e., pairs and sums.
Finally, the function call mechanism for λC and λML are completely different. In λC,
there is a fixed list of functions, that can be called using their name. In λML, functions
are implemented as closures, which are a particular kind of value. Functions are
not called via their name, instead a closure can be applied to an argument. For this,
the closure must be explicitly passed to the function that wants to use it.
This also affects the model of linking in both programs. In λC, two programs are
linked by merging their set of functions, as described by Theorem 4.4. In λML, linking
is not as well-defined, since the entire program is just one big expression. There,
different parts of the program are linked by just combining them into the one big
expression, e.g., using a large let-in.
4.5 A Logical Relation for λML

To show that λML is a type-safe language, we build a logical relation for λML. This
logical relation is almost entirely standard, and in large parts based on the one
presented in a paper by Timany et al. [47].
Wemake three orthogonal changes to the logical relation presented in there. First, we
change the invariants to non-atomic invariants, since we do not consider concurrent
programs. Second, we need to do some slight refactoring to work around the rules
no longer available with Transfinite Iris (see Section 2.4.1). Finally, we include typing
rules for external calls, which is inspired by the typing annotations of external calls
used in regular OCaml.
To save space, we only describe our changes to the logical relation presented by
Timany et al. [47]. We recommend the reader compare our definitions to their
original definitions, presumably by opening their work side-by-side. First, we
assume that we are, for the remainder of this chapter, given a specification of external
calls Ψ, which parametrizes this entire development.
The changes required for non-atomic invariants are minimal: We change all invariants
to be non-atomic, and further change the expression relation as follows:

JτKe
δ = λe. [NaInv : ⊤] −−∗ wp e @∅, Ψ {V. [NaInv : ⊤] ∗ JτKδ V}

This means that for semantic types defined using invariants, these invariants can be
opened for longer if the typing rule covers an expression that takes several steps
to execute. In particular, if the expression is an external call, the invariant could be
open for that entire external call.

56 Modelling Single Languages

Before we get to the interesting change, external calls, we note that we needed to
change the semantic type of locations, to work around Transfinite Iris. Specifically,
instead of the single invariant presented by Timany et al. [47, Fig. 5, p20], we have
the following semantic type:

Jarray τKδ ≜ λV. ∃γ ℓ. (V = ℓ)∗

∃V⃗. γ 7→½ V⃗ ∗∗Vi∈V⃗JτKδVi

Ntyping.ℓ

∗

∃V⃗. γ 7→½ V⃗ ∗ ℓ 7→ML V⃗
Ntimeless.ℓ

Notably, we split the invariants in two, one storing the points-to, the other storing the
proof that the value is well-typed. Both are connected using a ghost variable, so that
if both are open, we know the stored values agree. The reason we do so is to ensure
that the contents of the latter are timeless, which allows us to crucially eliminate
a later ▷. Before, this split was not necessary since one could use the LaterSep
and LaterExists rules to push the later inwards, until it was in front of a timeless
proposition. By using Transfinite Iris, such transformations become impossible.
Another difference there is that we now have arrays, instead of just single references.
Thus, the semantic type contains a big separated conjunction, ensuring that all
members of the array are well-typed. Since we modified the semantics to not have
undefined behavior on out-of-bound accesses (see rules SMAllocOOB, SMLoad-
OOB, and SMStoreOOB), we are able to verify all well-typedmemory accesses, even
though the typing rules (not shown here) allow any integer (including negative
ones) to appear as the size/offset.
We now turn to the part actually relevant for this thesis, the typing rules for external
functions.

First, we introduce program contexts P ≜ string fin
⇀ ProgType, where ProgType is the

(Coq) type of all external program types. These types, similar to plain function types,
describe the number and types of the function arguments, as well as their return
type. They differ from plain function types since external calls are not cascading,
but instead pass several arguments at once. Their formal definition is as follows:

ProgType ∋ TP ::= FunType(⃗τ, τ)

Next, we modify the typing judgment. Timany et al. [47, Fig. 2, p8] had typing
judgments of shape ∆, Γ ⊢ e : τ, where τ : Type is a type, and ∆ and Γ are the contexts
tracking free type variables and assigning types to regular variables, respectively. In
Coq, the context ∆ is implicit, since types are mechanized using de Bruijn indices [6],
in particular using AutoSubst [42].

4.5. A Logical Relation for λML 57

The typing judgement then gains such a program context as an additional param-
eter, becoming P,∆, Γ ⊢ e : τ. The program context is uniform, that is, no typing
judgement modifies it before typing a subexpression. The only non-trivial use is in
the rule for typing an external call call fn e⃗:

T-ExtCall
P[fn] = FunType(⃗τa, τr) |⃗τa| = |⃗e| ∀i. P, ∆, Γ ⊢ ei : τa,i

P,∆, Γ ⊢ call fn e⃗ : τr

Informally, this rule requires that a type of that function is present, that the number
of arguments matches, that all arguments are correctly typed, and that the return
type is as specified.
The key insight now is that interpreting this function type environment semantically
induces a protocol. Given a function type environment P, we define the protocol ΨP

as follows:

ΨP fn V⃗ Q ≜ ∃τ⃗a τr. P[fn] = FunType(⃗τa, τr) ∗ |V⃗ | = |⃗τa| ∗
[NaInv : ⊤] ∗

(
∀V ′. JτrKδV ′ ∗ [NaInv : ⊤] −−∗ Q(V ′)

)
∗

∗
Vi∈V⃗

Jτa,iKδVi

This protocol simply states that the arguments have the correct number, that each
argument has the correct type, and that the returned value also inhabits the return
type. Additionally, it also embeds the token for non-atomic invariants, which allows
an external call to open invariants for the duration of the entire call.
The definition of being semantically well-typed is now changed as follows:

P,∆, Γ |= e : τ ≜ δ V⃗. dom ∆ ⊆ dom δ −−∗ JΓKc
δ −−∗ ΨP ⊑ Ψ −−∗ JτKc

δ(e[V⃗/x⃗])

The only change is that we additionally include that ΨP is included in the specifica-
tion Ψ. Intuitively, this means that the external calls described in P are valid external
calls according to Ψ. In particular, Ψ entails that for each type FunType(⃗τa, τr) as-
cribed to an external call using P, when invoked with arguments having the proper
types τ⃗a, it returns a value inhabiting the proper return type τr.
With these changes, we again validate the fundamental theorem for this logical relation:
Theorem 4.5 (Fundamental Theorem for λML)

P,∆, Γ ⊢ e : τ

P,∆, Γ |= e : τ

Proof By induction on the typing judgment, as outlined by Timany et al. [47]. The
case of T-ExtCall is handled using ΨP andWP-Call-External. □

58 Modelling Single Languages

With this fundamental theorem, we know that well-typed programs do not go
wrong. Further, we know that well-typed programs do only make “well-typed
external calls,” i.e., that all they only call external functions using a type. We use
this later to argue that functions defined in C are safe to call from OCaml.
Note that the entire development of program typing and induced protocols is not
strictly necessary. We could (and in fact later sometimes do this) simply not have
any typing rules for external calls, and instead only show that external calls are
semantically well-typed. We still include the program typing context, since it gives
a formal foundation for the typing annotations found in actual OCaml.

Chapter 5

The Combined Operational Semantics

In this chapter, we develop operational semantics to model the OCaml FFI described
in Chapter 3. To do so, we develop modules, which generalize the languages of Sec-
tion 4.1. A key difference between modules and languages is that modules support
for angelic non-determinism. Unfortunately, introducing angelic non-determinism
makes head redexes harder to characterize formally. Additionally, some of the con-
structions outlined in this chapter become harder to state when they have to properly
define head-redexes. We side-step issues related to this by simply removing the
concept of head redexes. This simplification is possible since properly accounting for
angelic non-determinism allows us to no longer care about whether an expression
is (head)-reducible. We first (in Section 5.1) discuss what a module is, and how
modules allow angelic non-determinism. Then, Section 5.2 defines the wrapper,
which takes an OCaml program, and makes it ABI-compatible with C. This wrapper
is thus our formal model of the runtime. This also wrapper is also a module, which
wraps the λML semantics to something that is ABI-compatible with λC.
Note that we take this formal model as a ground truth. In particular, we do not
attempt to verify that some actual implementation of an OCaml runtime is correct.
Instead, this work can be understood as searching for a definition what it even
means to be a correct runtime.
5.1 Modules and Angelic Non-determinism
In Section 5.2, will define a formal model of the OCaml-FFI mechanism, including
the translation between block-level and high-level values. For reasons we explain
there, we need angelic non-determinism.
What Is Angelic Non-Determinism?
We have previously seen demonic non-determinism, which informally describes a
situation where the program behavior is not precisely constrained. Instead, we (as
the programmer) only know that one of several options will happen, but we do not
know which. Thus, we must write our program so that we can handle all possible

60 The Combined Operational Semantics

StepAngelic
m ∈ X

n −↠angelic X

StepDemonic
∀m.m ∈ X

n −↠demonic X

0

...
{2}

{1}

{0}

2

1

0

0 N

2

1

0

...

Figure 5.1: Two example relations, demonstrating multi-relation semantics, along
with their branching trees.

cases, and to argue correctness, we must argue it for each possible choice. Angelic
non-determinism is considerably more obscure. In an angelically non-deterministic
choice, there also are several options, but the program gets to choose the value it
likes most. To argue correctness, it in particular suffices to only argue correctness
for one of the possible choices. Since angelic non-determinism is more obscure, it
can be hard to find examples of it. Readers with familiarity in foundational systems
programming might be aware of pointer provenance, which is sometimes modeled
using angelic non-determinism: In some languages, pointers keep track of their
origin, called provenance, and can only be used to access memory locations related
to that origin. When one now introduces integer-pointer casts, one needs to specify
which provenance is associated to the result of such a cast. This provenance is
then sometimes specified to be chosen angelically. For us, angelic non-determinism
becomes necessary in Section 5.2. To support this, we need to adapt some of the
machinery we created in Section 4.1, like the definition of a weakest precondition.
We first discuss this machinery, and then construct the wrapper on top of it.
Angelic Non-Determinism, Formally

To formally model non-determinism, we introduce a new kind of language, that we
call a module. Like a language, a module has a notion of values, of expressions, of
states, and also has a step relation. The notion of external calls and programs as sets
of functions applies similarly. What changes with modules is that they used multi-
relation-based semantics [24], also taking inspiration from DimSum [41]. Whereas
previously, the step relation related two configurations c1, c2 : Cfg by expressing that
c1 can step to c2. There, we understood the case of multiple successors to denote a
demonic choice over all available successors. To add angelic choices, we change the
step relation, so that it is a relation on Cfg× (Cfg→ Prop). Intuitively, we step to a

5.1. Modules and Angelic Non-determinism 61

set of multiple possible successors. Note that our relation is still not required to be
functional, which means that we can step to multiple sets, each again containing
multiple successors. This gives a two-layered choice for choosing the successor:
First, the set X : Cfg → Prop is chosen, then an element of this set is chosen. We
use the double-headed arrow −↠ for this kind of semantics. For us, we introduce
the convention that the choice of which set to step to is angelic, while the element
of the set is selected demonically. This is opposite to the convention introduced
in DimSum [41]. We consider this directions is more natural, since it requires
establishing the “preconditions” of a step before assuming its “postcondition.” To
exemplify this, in Figure 5.1, we give two example semantics, where Cfg are just
integers. The first, defined by StepAngelic, chooses the next successor angelically
(where the choice is over all natural numbers N). The second, StepDemonic, chooses
the successor demonically. Both relations look very similar, the only difference is
that one features an additional universal quantifier in the premise. This quantifier,
however, is important. It ensures that for StepDemonic, the only suitable candidate
for X is the full set. Since the choice of X is angelic, this angelic choice is forced:
the full set must be chosen in order to step. For StepAngelic, any inhabited X is a
suitable choice. If we, as the person allowed to execute angelic choices (the angel),
want to ensure that we end up in precisely the state we intend to end up in, we must
choose a singleton set containing only the intended state. This forces the hand of
whoever executes demonic choices (the demon), since they must choose the value
presented by the angel, i.e., the choice is again forced.
The diagrams below show the choices available for finding a successor state of 0
(the starting state does not matter, since the step behavior is the same for all n).
Starting at the left, they first show the possible angelic choices, and then for each
angelic choice, the possible demonic choices. On the right, we see the just-described
behavior. The angelic choice is trivial: the angel is forced to choose N. The demon
can then produce a step to every number (in N). On the left, we see many angelic
choices. In fact, the diagram is not complete, since we can step to any set (except for
the empty set). Thus, if the angel was feeling lucky, they could also pick a larger set,
and leave some actual choices to the demon. Since the goal of the angel is to ensure
the program is correct, the angel will want to limit the demon’s choice as much as
possible. Thus, we simplify our definitions, by introducing the convention that the
angel always chooses the smallest possible set. Formally, this means that we require
that our semantics is up-closed in the second argument. Mathematically, if c −↠ X1,
and X2 ⊇ X1, then also c −↠ X2 must hold. The step relations shown in Figure 5.1
are up-closed.
Parsing Multi-Relation Semantics

Figure 5.2 shows another example semantics, this time using both angelic and
demonic non-determinism within a single rule. This relation defines steps where,

62 The Combined Operational Semantics

Step-Both
even(ka) (∀kd.prime(kd)→ (n+ ka + kd) ∈ X)

n −↠ X

Figure 5.2: Another example relation, exhibiting both angelic and demonic non-
determinism.

starting at a number n, first an even number must be chosen angelically. Afterwards,
a prime is chosen demonically. Both of these choices are added to the original
number to arrive at the next state. In general, we usually define such a semantics
using inference rules. If we have several inference rules, then these inference rules
define several angelic choices (although usually there is only one inference rule per
origin state). Similarly, every free variable (like ka) in this inference rule is also
instantiated by an angelic choice. The conditions on top of the inference rule (in
the above example, evenka) must be proven by the angel. In other words, these
further constrain the angelic choice. The demonic choice is then controlled by the
last precondition of the inference rule, which usually has the form (∀y . . . z. P →
Q→ · · · → f(x, . . .) ∈ X). The universally quantified variables, like kd in the example
above, are then understood as defining the demonic choices. The conditions that
follow (like prime(kd)) further constrain this demonic choice, i.e., the demon must
prove that these hold true. Afterwards, we can actually see the proper successor
state, which is n+ ka + kd in the previous example.

To generalize this, observe that multi-relation semantics are yet another variation of
predicate transformers. In fact, in our angelic-demonic variation, where the choice
of x ∈ X is demonic, their polarity is similar to that of protocols from Section 4.1. The
facts needed to establish a step define the preconditions, and the facts describing
which values must be contained in Q are the postcondition.
Undefined and No Behavior

We should look at what happens when no X can be stepped to, or when we can
step to the empty set ∅. Before, we equated not being able to step with undefined
behavior. It turns out that this still holds, but only because wemade it so that multiple
successor sets constitute an angelic choice. Remember that we, the programmer,
need to justify angelic choices by showing that we can find a suitable set X. When
we are stuck, this is like proving an existential quantifier over the empty set, which
is false. Thus, the program is incorrect, i.e., it exhibits undefined behavior (UB). A
more interesting case happens if we can prove a step to the empty set ∅. Then, the
demon would next be forced to choose a value, and we as the programmer (the
angel) would be required to write the program such that it can handle all values the

5.1. Modules and Angelic Non-determinism 63

TraceEnd
c ∈ X

c −↠trace X

TraceStep
c −↠ Y ∀y ∈ Y. y −↠trace X

c −↠trace X

Figure 5.3: The co-inductive trace relation −↠trace of −↠.

demon can choose. When the set of possible demonic choices is empty, the demon
will not be able to choose a value. Thus, the program does not need to handle any
possible next step, it is automatically correct. We call this no behavior (ND). Again, a
program having no behavior is weird, since in practice, computers do not magically
disappear into the empty set. Instead, a more intuitive understanding of no behavior
is that the program stops, since at this point, the program has executed successfully
and nothing further needs to be proven to establish this. Thus, it is natural for values
to have no behavior. For all other expressions, no behavior is likely indicative of a
modeling mistake, since this implies that our model is not actually realizable on an
actual machine. To prevent this, we add an additional property to our definition
of modules: except for value, no expression may exhibit no behavior. This forces
us to formally prove the absence of no behavior whenever we define a new module.
Formally, we require that ∀cX. c −↠ X =⇒ ∃x.x ∈ X.

Note that in non-total weakest preconditions, having no behavior is equivalent to
divergence, since both allow establishing correctness for any postcondition.
5.1.1 Executions and Safety

Previously, we stated safety as being able to step, i.e., as not having undefined
behavior. This notion is easy to generalize: a configuration c is safe iff there is a
X such that c −↠ X. Since we have proven the absence of ND, this set will not
be empty, and thus a new actual successor state must exist. Then, our adequacy
theorem stated that for any possible execution, it arrives only at safe values. We now
need to generalize the concept of an execution. While this is possible, we can do
better. Instead of defining adequacy by arguing that every execution arrives at a safe
state, we can define the adequacy theorem to instead construct a co-inductive trace.
Intuitively, such a trace encodes the strategy of the angel. It also is a multi-relation,
but the set X is understood a bit differently: It is the “happy set,” describing all the
configurations we want to end up in. Later, this will just be all states that satisfy
the postcondition. By working with traces, we can sidestep the discussion of safe
states (i.e., states that have reached the postcondition, or that are reducible). Being
co-inductive, such a trace is best understood as a generator, that can continue to
produce steps, until a configuration reaching the postcondition is reached. By the
magic of co-induction, it can also produce an infinite series of steps, should the

64 The Combined Operational Semantics

program diverge. When interacting with such a trace, one takes the role of the
demon. As such, one must provide the generator with the next demonic choice, for
it to produce a next step and resolve angelic choices. The definition of co-inductive
traces can be found in Figure 5.3. Remember that it is co-inductive, so that execution
trees can be infinite. Again, until terminating in a state satisfying X (TraceEnd),
a trace yields an instance Y that c steps to, that is, it resolves the angelic choice. It
then expects the other party to resolve the demonic choice by supplying it a y ∈ Y,
so that the same process can begin anew.
5.1.2 Lifting Languages to Modules
Wenowdescribe howwe can lift our existing languages to amodule. This module ↑λ
lifting a language λ exhibits undefined behavior precisely when the existing language
exhibits undefined behavior. Similarly, it reflects the demonic non-determinism of the
language being lifted. Since languages never have no behavior, this module also does
not have no behavior. Similarly, there are no non-trivial angelic choices. The new
step relation −↠lift is completely defined by the following inference rule:

Lift
¬IsVal e⇒ reducible(p, e, σ) ∀e ′ σ ′. (e, σ) −→p (e ′, σ ′)⇒ X(e ′, σ ′)

(e, σ) −↠lift X

Note that −→p is the old reduction relation.
This definition achieves two things: First, it ensures that being stuck, according to
the old operational semantics, is undefined behavior. If a step is possible, then all
possible steps are interpreted angelically. As a special case, values are encoded to
have no behavior, since they represent program termination. Apart from the new
relation, the values, expressions, states, and contexts are not affected by the lifting.
The expressions of the module are precisely the expressions of the lifted language,
etc.. To conclude this definition, we need to prove that it is indeed a valid module,
which entails showing that it never exhibits no behavior.

Theorem 5.1 (Absence Of No Behavior For Lifting) Let e : eλ not be a value and
σ : σ be given. If (e, σ) −↠lift X, then X is nonempty.

Proof If (e, σ) −↠lift X, then by Lift, we have ¬IsVal e⇒ reducible(p, e, σ). Since e is
not a value, we get reducible(p, e, σ) ≜ ∃e ′ σ ′. (e, σ) −→p

λ (e ′, σ ′). Thus (e ′, σ ′) ∈ X, as
(e, σ) −→p

λ (e ′, σ ′). □

5.1.3 Linking and Private State
We define a linking operator for modules in Appendix A. To make linking between
different languages meaningful, we refine our notion of ABI-compatibility. Previ-
ously, ABI-compatibility required that both languages have the same notion of state.

5.2. Wrapping OCaml to the C ABI 65

We now weaken this by requiring that they only have the same public state. We also
introduce private state, which is internal to a module, and not shared with other
modules when linking. The overall state of a module is the combination of both.
When making an external call to another module, that overall state is split into its
private and public parts, with the public part being handed over to the other module,
so that it can operate on it. When returning from this call, the private state (which
remained unchanged) is joined back with the public state, which was potentially
changed by the external call. The relation Split : Σ→ Σpub → Σpriv → iProp governs
how the state can be split and merged. The linking operator requires that the state
can be split and merged when at a boundary, where boundaries are tracked in ghost
state, using the atBoundary token.

For the language lifting operator ↑λ, there is no private state (i.e., it is unit), so all
state is shared with the other side for linking. In particular, linking with λC means
getting access to the λC heap σC.
5.2 Wrapping OCaml to the C ABI
We can now finally define the formal model of the OCaml runtime. The OCaml
runtime is a module, which works similar to the “lifting module” of Section 5.1.2.
It does not only turn λML into a module, but also makes it compatible with the C
linkage model. Specifically, when execution an λML expression e, it wraps external
calls made by that expression, so that they are compatible with the C linkage model.
To do so, it has private state, which stores e.g., the block-level heap and the garbage
collection state. The linker takes care of actually transferring control to another
module (usually ↑λC), while keeping the private state of this module unchanged.
Since this wraps the contained λML expression into something compatible with the
C linkage module, we also call it the wrapping module. The wrapping module also
provides support for primitives, which are implemented as functions of the wrapper.
Since λML does not have the concept of a program (i.e., the only valid λML program
is ∅), there are no λML functions that λC can call. Instead, λC uses external calls to
invoke FFI primitives. These primitives are implemented in this wrapper, and thus
have access to the private state of the wrapper. Formally, their implementation is
by adding rules for them to the operational semantics of the wrapper. Almost all
primitives are further discussed in Section 5.3, except for one, main. This primitive
can be used initially to start execution of the “main expression” emain. It is the
equivalent of the main function, and the whole wrapper is parameterized by this
special expression. It can also be thought of as amodel of the caml_startup function.

We formally denote the wrapping module as [emain]FFI. The whole system is then
[emain]FFI ⊕ ↑λC, that is, it links λC with the runtime [emain]FFI. Execution is defined
to start with the main primitive, which starts executing emain. This expression then
reduces, and occasionally switches between OCaml and C using external calls, and

66 The Combined Operational Semantics

Val ∋ v ::= (n : Z) | (γ : Loc)

Mutability ∋ m ::=Mut | Imm
Tag ∋ t ::= 0 | 1

Block ∋ blk ::=B(m,t,⃗v) | C(rec f x. e) | F(Somew | None)

BlockStore ∋ ζ ≜Loc
fin
⇀ Block

tagNumber :Block→ Z
mutability :Block→Mutability

TagNumberDefault
tagNumber(B(t,m,⃗v)) = t

MutabilityDefault
mutability(B(t,m,⃗v)) = m

TagNumberCallback
tagNumber(C(rec f x. e)) = 247

MutabilityCallback
mutability(C(rec f x. e)) = Imm

TagNumberCustom
tagNumber(F()) = 255

MutabilityCustom
tagNumber(F()) = Mut

Figure 5.4: Formal model of the block-level heap.

the callback primitive. We now formalize the entirety of Chapter 3, starting with the
block-level heap. Next, we continue with the representation relation describing how
λML values are encoded. Afterwards, we discuss our model of the garbage collector.
Finally, we plug all of this together to give an operational semantics to state changes,
which we expand to construct the final operational semantics.
The Block-Level Heap
To begin developing a formal model of the OCaml runtime, we formalize the block-
level heap, starting with block-level values. All these definitions can be found in
Figure 5.4. The basic notion is that of a block-level valueVal, which is either an integer
or a pointer to another block-level value. The block-level heap then stores three
kinds of blocks: The first are normal blocks, which have a tag, a length (implicitly),
and a list of block-level values. Unlike before, we now make the mutability of a
block operational. There are two special kinds of blocks, modelling the two special
kinds of blocks described in Section 3.4: One models callbacks, by simply storing
an λML callback value, and the other models custom blocks, by simply embedding a
λC value (or None to indicate an uninitialized block). While regular blocks B carry
an explicit mutability and and explicit tag, these are implicit for the other kinds
of blocks. Closure blocks C always have tag 247, and are never mutable. Custom
blocks F are always mutable, and always have tag 255. The function tagNumber can
be used to get the numeric tag of a block. For this, we identify the tags t : Tagwith

5.2. Wrapping OCaml to the C ABI 67

the numbers 0, 1 : Z. Similarly, the functionmutability defines the implicit mutability
of blocks.
Linking OCaml Values to Block-Level Values

Next, we formally capture the connection between high-level λML and block-level
values. To do so, we define an inductive relation IsVal between both. Additionally,
the relation is parameterized by ζ, since the representation of some high-level values
is defined as pointer pointing to a specific block. The definition is in Figure 5.5.
While this is straightforward for numbers, units, booleans, pairs, and sums, the case
of OCaml locations ℓ is more interesting. For these, wemust find a specific block that
encodes the contents of the location. Additionally, we do not just want any block,
but we want that block to be permanently linked to that location, so that, even in
future, only this block and no other block represents this location. To ensure this, we
introduce a new map χ : LocMap, which describes additional “ghost” information
for each block. Specifically, it describes a block as linked to ML location, or as being
private. We call this map the visibility map. It also includes a third possible mode,
which is used for custom blocks, linking them to foreign values. As shown by the
rule IsValForeign, foreign values ι are backed by a specific block. Usually, this
block is a custom block, but the definitions do not require it. This map χ must be
injective: No two block-level locations may be assigned to the same OCaml location.
Similarly, no two block-level locations may have the same foreign id. It is allowed
for two OCaml locations to be private.
We next define how to embed the entire OCaml heap into the block-level store. This
is achieved by partitioning the block-level store into two disjoint parts: ζ = ζrest ∪̇ζML.
One part, ζrest, has no particular constraints, except for being disjoint from the other
part. The other part, ζML, contains exactly the blocks that, according to χ, back a
heap element. Formally, we require that IsStoreBlocks(χ, ζML, σML). This also requires
χ to be large enough, so that it assigns a block-level location γ to each OCaml
location ℓ. Further, we require that IsStore(χ, ζ, σML) holds on the entire block-level
heap ζ (the union of both parts). Taken together, both predicates describe that the
block-level heap contains blocks matching the content of each OCaml reference (or
array), which also means that there are blocks for all high-level values encoded as
immutable blocks. Note that our definitions make no specific requirements about
the identity of immutable blocks. For example, if we have two OCaml references,
which both contain the same pair ⟨1,2⟩, these pairsmight be stored in different blocks.
A more clever implementation of the OCaml runtime, that uses hash-consing, could
store both of these in the same block (which is legal, since that block is immutable).
Our definitions allow both. Since we consider this an implementation detail of the
runtime, we do not specify this, so that our formal model remains correct even
when more optimizations are added to the OCaml runtime/compiler. The definition
IsSameDom also warrants a closer look: It defines the locations in σML that are part of

68 The Combined Operational Semantics

LocKind ∋ k ::=Pub ℓ | Priv | Fgn ι

LocMap ∋ χ ≜Loc
fin
⇀ LocKind injective in Pub, Fgn

IsValInt
IsVal(χ, ζ, n, n)

IsValTrue
IsVal(χ, ζ, true, 1)

IsValFalse
IsVal(χ, ζ, false, 0)

IsValUnit
IsVal(χ, ζ, ⟨⟩, 0)

IsValLoc
χ[γ] = Pub ℓ

IsVal(χ, ζ, γ, ℓ)

IsValForeign
χ[γ] = Fgn ι

IsVal(χ, ζ, γ, ι)

IsValClosure
ζ[γ] = C(rec f x. e)

IsVal(χ, ζ, γ, rec f x. e)

IsValPair
ζ[γ] = B(Imm,0,[v, v ′]) IsVal(χ, ζ, v, V) IsVal(χ, ζ, v ′, V ′)

IsVal(χ, ζ, γ, ⟨V,V ′⟩)

IsValInl
ζ[γ] = B(Imm,0,[v]) IsVal(χ, ζ, v, V)

IsVal(χ, ζ, γ, inl V)

IsValInr
ζ[γ] = B(Imm,1,[v]) IsVal(χ, ζ, v, V)

IsVal(χ, ζ, γ, inr V)

IsHeapBlock
IsVal(χ, ζ, v⃗, V⃗)

IsHeapBlock(χ, ζ,B(Mut,0,⃗v), V⃗)

IsPrivate(χ, ζ) ≜∀γ ∈ dom ζ. χ[γ] = Priv
IsPublic(χ, σML) ≜∀ℓ ∈ dom σML. ∃γ. χ[γ] = Pub ℓ

IsSameDom(χ, ζ, σML) ≜∀γ. γ ∈ dom ζ ⇐⇒ ∃ℓ V⃗. χ[γ] = Pub ℓ∧ σML[ℓ] = V⃗

IsStoreBlocks(χ, ζ, σML) ≜ IsPublic(χ, σML)∧ IsSameDom(χ, ζ, σML)

IsStore(χ, ζ, σML) ≜∀ℓ V⃗ γblk. σML[ℓ] = V⃗ → χ[γ] = Pub ℓ→ ζ[γ] = blk→

IsHeapBlock(χ, ζ,blk, V⃗)

Figure 5.5: Definitions linking λML and block-level concepts.

5.2. Wrapping OCaml to the C ABI 69

ζML, namely all locations that store a proper array. Notably, this excludes locations
that store E, the one special value allowed for heap cells in λML. This dummy value is
used to mark the contents of these locations as unavailable for λML. Similarly, IsStore
imposes no requirement on these locations.

Garbage Collection

There are two key ingredients to our formal model of garbage collection. The first is
that in λML, as well as on the block-level heap, garbage collection is invisible. We think
this assumption is justified since the garbage collector works very hard to ensure that
it only deallocates unreachable blocks, and that when it moves a block, all references
to it are updated atomically. More informally, the block-level heap can be thought
of as logical memory, following Hur and Dreyer [16], where garbage collection is
invisible. In glue code, garbage collection becomes visible. The second key idea is
then that the glue code can only operate on the block-level heap over “arms-length”
operations, where the definition of arms-length incorporates the effects of the garbage
collector. This also means that we do not directly embed the block-level memory into
C, but instead give an axiomatic treatment of accesses to it using the FFI primitives.
In the actual FFI, there are uses where raw access to the runtime memory is needed,
which we discuss in Section 3.5. We now proceed to define an encoding of block-
level values to λC values, similarly to how IsVal encoded λML values into block-level
values. The relation ∼θC, defined in Figure 5.6 does precisely this: When v ∼θC w,
then v is encoded as the λC valuew. The index (rather superscript) parameter, the
address map θ, plays a role similar to LocMap played for IsVal: it describes which λC

addresses encode which block-level locations. Representing a block-level location is
then straightforward. Representing an integer could also be, but we additionally
introduce a function codeInt : Z→ Z, which describes how integers are encoded. The
whole development is then parametric over this function, which is only required
to be injective. This function captures the “lowest bit” encoding present in the
actual OCaml runtime, where block-level integers are distinguished from block-level
pointers by having their lowest bit set (and being shifted one bit to the left). We
mentioned already that the block-level memory is not actually serialized into the
C memory. Instead, the C locations associated with block-level locations by ∼ML θ

merely describe which arguments must be passed to formalization of macros like
Store_field to access the proper block. These addresses are better thought of as
abstract names, instead of concrete values. This also means that, if θ changes, the
blocks referred to by an address also change. Indeed, this is how we implement
garbage collection. The address map θ : AddrMap is better thought of as the current
state of the garbage collector. It assigns “real” locations to the “logical” block-level
heap, as discussed in by Hur and Dreyer [16]. The formal equivalent of the garbage
collector choosing tho deallocate a block is then that this block’s location is removed
from the address map θ. Such a block can then no longer be referenced from C,

70 The Combined Operational Semantics

AddrMap ∋ θ ≜Loc
fin
⇀ Addrwhich is injective

RootMap ∋ rm ≜Addr
fin
⇀ Val

rs ∋ RootSet ≜Pfin (Addr)

ReprInt
m = codeInt n

n ∼θC m

ReprLoc
θ[γ] = a

γ ∼θC a

ElemOfBlock
γ = v⃗i

γ ∈ B(t,m,⃗v)

ReprInj
v1 ∼θC w1 v2 ∼θC w2

v1 = v2 ⇐⇒ w1 =w2

GcClosed(ζ, θ) ≜∀γblkγ ′. γ ∈ dom θ→ ζ[γ]=blk→ γ ′ ∈ blk→ γ ′ ∈ dom θ

GcRooted(rm, θ) ≜∀aγ.rm[a] = γ→ γ ∈ dom θ

ReprRoots(rm, θ, σC) ≜ dom rm=dom σC ∧ ∀avw.rm[a]=v→ σC[a]=w→ v ∼θC w

WithRoots(θ,rm, σrest, σC) ≜∃σroot.ReprRoots(rm, θ, σroot)∧ σC = σrest ∪̇ σroot

GcStateSwitch
GcClosed(ζ, θ) GcRooted(rm, θ) WithRoots(θ,rm, σrest, σC) rs = dom rm

GcStateSwitch(ζ, θ, rm, σrest, rs, σC)

Figure 5.6: Definitions for garbage collection, and for roots.

which, from the C programmer’s perspective, is no different from it not existing
at all. Similarly, if the garbage collector decides to move a block, this is modelled
formally by changing the value that block’s location is mapped to by the address
map θ.

The predicate GcClosed describes one of the formal requirements we have for the
garbage collector, namely that it only deallocates unreachable blocks. The condition
is formulated inversely, namely that if the garbage collector still keeps a block blk

alive, all other blocks referenced by that block (written as γ ∈ blk, see ElemOfBlock)
must also still be alive. We say that this property describes that the address map is
closed under reachability. We saw earlier how we could root a value to ensure that
this value is kept alive by the garbage collector. We also simplified our rooting
mechanism so that all roots need to be explicitly (un)registered, using primitives
discussed in Section 5.3. Due to this simplification, we can simply capture roots
formally using a rm : RootMap, which stores the block-level representation of a root
(remember that a root must be a block-level value, at least during a GC run). Given
a C location a, that location is a root precisely when it is assigned a value by the
roots map: a ∈ dom rm. The condition GcRooted then describes the next formal
requirement of the GC: That all currently rooted values are considered reachable,
and therefore present in θ. These two conditions,GcRooted andGcClosed, are the only
two conditions we require the GC state to satisfy. This again leaves open how the GC

5.2. Wrapping OCaml to the C ABI 71

is actually implemented, so that code verified against our model is compatible with
a larger variety of potential GC implementations. An additional requirement about
the roots map is that it agrees with the content of the C memory at rooted locations.
To describe this, we split the C memory into two disjoint parts: σC = σCrest ∪̇ σCroot.
We then require that ReprRoots(rm, θ, σCroot), which is just the straightforward lifting
of ∼θC to maps. This is formalized by theWithRoots predicate, which describes how
to construct the full C state from the C state without roots, plus the roots stored in
block-level form. If the user were to store a C value in a root that does not encode a
block-level value, the propositionWithRoots becomes false. By later requiring that
this proposition needs to be proven by the angel, we can make it undefined behavior
for roots to store improper values. This UB only happens during garbage collection
runs. In-between those, roots are allowed to store anything. Next to the roots map,
we also introduce the roots set rs : RootSet, which is sometimes used when we only
describe which sets are roots, instead of the full root contents. When we need the
full contents, we require that rs = dom rm. Specifically, the we store the roots set
when the full λC heap σC is present. When the roots map is used, we only store
the non-rooted part of the λC heap σCrest. When given an address map θ, these two
kinds of representations are equivalent. However, the one with rm does not become
invalidated that happens when the garbage collector runs (and θ changes).
The relationGcStateSwitch, defined byGcStateSwitch, puts it all together. It requires
that θ is well-formed, and that two versions of the λC state–the one using the roots
map, and the one using just the roots set–agree.
The Wrapper State

We now have all the definitions in place to define the full wrapper state, shown in
Figure 5.7. The wrapper state has two sides: the C side, and the OCaml side. The
C side is the public state, since outgoing calls are made using the C linkage model.
The OCaml side is purely internal, and never exposed to the outside world. It is the
state that is actually present when λML code is executing. Whenever this code makes
an external call to C, the wrapper switches to the C side, which is also the side used
to define the FFI primitives. The difference between both sides is that the OCaml
side operates on a proper λML heap σML. In contrast, while working in C, we operate
on the block-level state, with the entire λML heap σML serialized into its block-level
representation. When switching sides, it is required that both sides represent the
same data. The visibility map χ is always present, and works the same on both sides.
The block-level heap ζ is also present on both sides, but it has a slightly different
meaning on both: When we are on the OCaml side, it includes the full λML heap. On
the OCaml side, it does not: To not duplicate information, we remove all block-level
blocks that are also part of the λML state σML from ζ, so that the information about
their content is only stored in one place. What the OCaml side also lacks is the
address map θ. Since the garbage collector is only observable using the OCaml

72 The Combined Operational Semantics

CSideState ∋ ρC ≜LocMap×BlockStore×AddrMap×RootSet

MLSideState ∋ ρML ≜LocMap×BlockStore×RootMap× ΣC
Σ ∋ ρ ::=CState(ρC, σC) | MLState(ρML, σML)

Σpub ≜ΣC
Σpriv ≜CSideState

SWrapperSplit
Split(CState(ρC, σC), σC, ρC)

FreezeRefl
blk freezeblk

FreezeMut
B(Mut,t,⃗v) freeze B(Imm,t,⃗v)

ExposeRefl
k expose k

ExposePublic
Priv expose Pub ℓ

MlToCDemonic
χ ⊆ χ ′ IsStoreBlocks(χ ′, σML, ζML)

IsPrivate(χ ′, ζnewimm) ζ ′ = ζ ∪̇ ζML ∪̇ ζnewimm IsStore(χ ′, ζ ′, σML)
IsVal(χ ′, ζ ′, v⃗, V⃗) GcStateSwitch(ζ ′, θ, rm, σC, rs, σ ′

C) v⃗ ∼θC w⃗

(V⃗, (χ, ζ, rm, σC), σML) ↬̂M2C (w⃗, (χ ′, ζ ′, θ, rs), σ ′
C)

MlToC
dom ζ ⊆ dom χ

∀γℓ. χ[γ] = Pub ℓ→ ℓ ∈ dom ζ→ σML[ℓ] = E dom σC ## dom rm

∀w⃗ ρC σ ′
C. (V⃗, (χ, ζ, rm, σ ′

C), σML) ↬ (w⃗, ρC, σ ′
C)→ X(w⃗, ρC, σC)

(V⃗, (χ, ζ, rm, σC), σML)↬M2C X

CToMlAngelic
χ expose χ ′

ζ freeze ζ ′ ∪̇ ζML IsStoreBlocks(χ ′, σML, ζML) IsStore(χ ′, ζ ′ ∪̇ ζML, σML)
IsVal(χ ′, ζ ′ ∪̇ ζML, v⃗, V⃗) dom rm = rs WithRoots(θ,rm, σC, σ ′

C) v⃗ ∼θC w⃗

(w⃗, (χ, ζ, θ, rs), σ) ↬̂C2M (V⃗, (χ ′, ζ ′, rm, σ ′
C), σML)

Figure 5.7: Definition of the wrapper state, and of the rules for switching.

5.2. Wrapping OCaml to the C ABI 73

FFI, the address map is not needed when OCaml code is running. Thus, it is only
materialized when switching to the C side. This map is materialized anew each time
such a switch happens, which formalizes that the garbage collector can run every
time OCaml runs. The final difference is in the handling of roots. While on the C
side, we only store a roots set rs, since the contents of each roots is fully defined by
what is stored in the λC heap σC. While on the OCaml side, the roots are stored as
block-level values. But to again not store the same information in different places,
the locations storing roots are deleted from σC. The relation between all those states
is formally defined by the operations for switching from the OCaml side to the C
side, and vice-versa. A graphical representation of the interaction of all these maps
during such a switch can be found in Figure 5.8, see below for an explanation.
Switching to C

The rule MlToC defines how the OCaml state is switched to C, which in particular
involves deserializing the OCaml heap to a block-level heap, as well as demonically
choosing a GC state θ. Since this step involves mostly demonic choices, the rule
MlToCDemonic defined what demonic choices are possible. First, the visibility
map χ is extended, to allow for new allocations that happened while λML code was
running. Next, two new fragments of the block-level store are demonically chosen,
namely ζML and ζnewimm. The former contains a block for each λML array, and the latter
contains some private blocks, which accounts for new allocations that happened in
OCaml code. These two parts are then combined with the old fragment block-level
store to form the new store, whichmust in particular be a faithful representation of σ,
as defined by IsStore. Next, a new addressmap θ is demonically chosen. This address
map must be subject to the usual constraints of being closed under reachability, and
containing at least all roots, as defined byGcStateSwitch. Finally, the new C state σ ′

C
is created by adding the C representation of all roots. The rule does not just convert
the state, but also takes additional OCaml values V⃗ and converts these to their new
C level representatives w⃗. The choices of ζ ′ and θ are further constrained such that
w⃗ faithfully represents the old values. This mechanism is used for the arguments
(and return values) of function calls.
The full rule for lowering the state,MlToC, is mainly defined by reference toMl-
ToCDemonic. Additionally, there are three side conditions, which are there to ensure
that there is no no behavior, which is necessary to prove Theorem 5.2. All three of
them are invariants, that continue to hold while an λML expression is executing.
Our program logic later validates that these actually are invariants, so that it can
prove that there is no undefined behavior. Attentive readers can already observe
that dom ζ ⊆ dom χ remains invariant even when we switch the state to the C side.
It continues to hold, by e.g., requiring IsPrivate(χ ′, ζnewimm) in MlToCDemonic. In
fact, this is an invariant of the entire semantics, continuing to hold while C code is
executing and interacting with the runtime via primitives. One side condition is a

74 The Combined Operational Semantics

σML

ℓ1 7→ [1, true]

ℓ2 7→ [⟨42, inr ι ⟩]

ζ

γ1 7→ B(Mut,0,[1, 1])

γ2 7→ B(Mut,0,[γ3])

γ3 7→ B(Imm,0,[42, γ4])

γ4 7→ B(Imm,1,[γ5])

γ5 7→ F(a42)

χ

γ1 7→ Pub ℓ1

γ2 7→ Pub ℓ3

γ3 7→ Priv

γ4 7→ Priv

γ5 7→ Fgn ι

σC

a1 ̸7→

a2 ̸7→

a3 ̸7→

a4 ̸7→

a5 ̸7→

θ

γ1 ̸7→

γ2 7→ a5

γ3 7→ a2

γ4 7→ a3

γ5 7→ a4

σC

a42 7→ a3

rm

a42 7→ γ2

rs

a42 ∈ rs

Figure 5.8: An example visualizing the interaction of the various maps.

bit more interesting: It expresses that the block-level heap ζ and the λML state σML do
not store conflicting data for any block. In fact, if the block-level heap stores data at a
location, then the OCaml heap cell for this locationmust be E, which explicitly marks
the data for this cell as being stored at the block-level, and as being inaccessible to
OCaml.
In Figure 5.8, we give an example of such an operation. We start with the σML shown
on the very left, where there are two arrays. Additionally, one of the locations is
rooted. For the sake of explanation, let us also assume that these two locations
were just created by λML code. First, the visibility map χ is demonically extended
to give block-level locations for our λML arrays stored at ℓ1 and ℓ2. Additionally, the
new private blocks at γ3 and γ4 are created. We presume the custom block at γ5

already exists, since custom blocks can only created using the FFI. Following the
parlance ofMlToCDemonic, we have that dom ζ = {γ5} (i.e., the old block-level store
already contained γ5), dom ζML = {γ1, γ2}, and dom ζnewimm = {γ3, γ4}. These can
all be combined to form the new store. Additionally, it is easy to check that this is a
faithful representation. Next, a new garbage collection state is chosen demonically.
Here, we display a situation where the block at γ1 is no longer reachable. The
block at γ2, however, is reachable, since there is a root storing this value. Thus,
this block and all blocks reachable from it have entries in the address map θ. This
map completely changes every time the garbage collector runs. In χ, on the other
hand, mappings remain stable throughout the execution. Further, to emphasize the
point that we do not serialize the block-level heap ζ into the λC heap σC, we chose

5.2. Wrapping OCaml to the C ABI 75

a heap σC where these addresses are not allocated. In the semantics, the choice of
the address map θ is actually completely independent of which addresses are, and
are not, allocated in the C heap λC. Finally, we have the root at a42, which stores γ2.
When switching to C, this gets lowered into the C representation a3 of the root’s
value γ2, since γ2 ∼θC a3. All that is retained is the roots set rs, to keep track of the
fact that a42 was registered as a root. As a high-level intuition, the arrows indicate
which block locations are identified using χ and θ.
Switching to OCaml

The rule for moving back to the OCaml side is CToMlAngelic. It is slightly shorter,
since it does not require choosing a new GC state. It is still interesting, since it
chooses the new λML heap angelically. Angelic choice is necessary here to properly
conjure up a λML heap σML given just the data available while on the C side. To see the
difficulty yourself, consider Figure 5.8, but imagine that the λML heap σML was not
given, instead that you need to create on so that the picture still matches. Already for
ℓ1, this leads to issues: It is not clear whether a block-level 1 should become an λML 1,
or the value true. In fact, both would be equally valid choices. In most cases, the
wanted value is the one that was stored there previously, but this is not always the
case (e.g., when using Obj.magic, this is explicitly not wanted). In either way, since
the old version of the λML heap σML is not present at this point, this can not be used
to restrict the choice in the operational semantics. Even if we changed the semantics
accordingly, it would not helpwith choosing a λML representative for freshly allocated
locations. The correct approach, it turns out, is leaving this choice to the programmer
when arguing correctness. This is precisely angelic non-determinism. This is also not
a new observation: Already in 1989, Back [2] observed that dual non-determinism
is needed for operationalizing such representation switches. Once the new λML heap
σML has been chosen, all blocks associated with it are deleted from ζ. What remains
in ζ ′ are all immutable blocks, all custom blocks, and the blocks for λML locations
that have been marked E in the new λML heap σML.
Apart from angelically choosing the new heap, the rule allows making two further
choices, indicated by the relations freeze and expose . The first relation, freeze , allows
freezing a block. Specifically, it allows the programmer to turn a mutable block into
an immutable one. We lift this relation to entire maps, so that ζ freeze ζ ′ ∪̇ ζML means
that the domain of ζ and ζ ′ ∪̇ ζML remain the same, only some previously mutable
blocks are now immutable. This pattern of allowing the programmer to freeze
blocks is necessary to properly support initializing blocks. When a new block is
allocated using caml_alloc, it is mutable. It must be mutable, so that useful data
can be stored in it. But if this block has been allocated to encode e.g., a pair, it must
eventually become immutable, since pairs are represented by immutable blocks.
This is what block freezing accomplishes: When switching back to the OCaml side,
some blocks can be frozen so that they may encode the block-level representation

76 The Combined Operational Semantics

of pairs and sums. The other relation, expose , allows exposing new blocks. This is
again needed to properly initialize some blocks. When a new block is created, it
is not only mutable, but also marked as Priv in χ. This means that this block can
not be used encode an λML array/reference, since the blocks backing such arrays are
identified by an entry Pub ℓ in θ. Thus, expose similarly allows making some private
blocks public. Note that the target side of expose must still be injective, so that the
chosen locations must be fresh.

The final requirement is that the roots, which are currently just represented by the
roots set rs and the λC heap σC, store proper block-level values. This is enforced by
requiring that a roots map rm exists, which agrees with the roots encoded in σC.
Formally, this is achieved by requiring thatWithRoots(θ,rm, σC, σ ′

C). The resulting
new λC heap σ ′

C is a remnant state, from which all locations storing roots have been
removed. This roots map must contain precisely all rooted locations, as required
by dom rm = rs. Just like ↬̂M2C, the relation ↬̂C2M also allows converting a list of
λC values w⃗ to λML values, along with the general state switching. The conversion
follows the pattern described above: The λML values V⃗ are chosen angelically, subject
to IsVal. The block-level values v⃗ that are the other argument of IsVal are uniquely
determined by v⃗ ∼θC w⃗.
The Full Semantics

We are now able to write down the full operational semantics of the wrapper. The
relevant definitions are in Figure 5.9. The wrapper is a module [emain]FFI, which is
parameterized by an OCaml expression emain. It also defines a program [emain]FFI,
which implements all the FFI primitives (which we discuss in Section 5.3). The
wrapper combines some of the techniques already described in Section 5.1.2 and
Appendix A. Specifically, it also embeds the λML semantics, lifting them to be multi-
language-based. Additionally, it ensures that the state can switch between theOCaml
and C side around external calls. The rule SWrapStep describes the normal case,
where the wrapper is on the OCaml side and executing the OCaml code. When this
code makes an external call, the wrapper intercepts it (rule SWrapHookCall), saves
the context, switches the state to the C side, and steps to Call. This Call expression
is recognized by the linker. Thus, once the wrapper arrives there, the linker takes
over, switches execution to another module, and eventually substitutes back a result.
Once this result has arrived, the rule SWrapRetToML translates the λC value to
an λML value, switches the state back to the OCaml side, and substitutes this λML

value into the saved context. When the λML expression finishes, it is again serialized
into a λC expression by SWrapValToC, which is used when a callback (or the main
expression) returns.

Finally, we also have a rule for our first primitive, mainemain . Note that it is not
this primitive that is parameterized by emain–the whole development is generic

5.2. Wrapping OCaml to the C ABI 77

SExpr ∋ E ::=w | ⌈e⌉ | Call fn w⃗ | RunPrim prm w⃗

Ctx ∋ K ::= • | K · KML

Expr ∋ e ≜SExpr×Ctx

Prim ∋ prm ::=mainemain | Val_int | · · ·
Func ≜Prim

applyFunc(prm,w⃗) ≜ (RunPrim prm w⃗, •)

SWrapStep
¬IsVal e reducible(∅, e, σML)

∀e′ σ ′. (e, σ) −→ML (e′, σ ′)⇒ X((⌈e′⌉, K),MLState(ρML, σ ′))

((⌈e⌉, K),MLState(ρML, σML)) −↠W X

SWrapHookCall
fn /∈ dom p (V⃗, ρML, σML)↬M2C Yρ

∀w⃗ ρC σC. Yρ(w⃗, ρC, σC)⇒ X((Call fn w⃗, K · KML),CState(ρC, σC))
((⌈KML[call fn V⃗]⌉, K),MLState(ρML, σML)) −↠W X

SWrapValToC
([V], ρML, σML)↬M2C Yρ ∀wρC σC. Yρ([w], ρC, σC)⇒ X((w,K),CState(ρC, σC))

((⌈V⌉, K),MLState(ρML, σML)) −↠W X

SWrapRetToML
([w], ρC, σ) ↬̂C2M ([V], ρML, σML) X((⌈KML[V]⌉, K),MLState(ρML, σML))

((w,K · KML),CState(ρC, σC)) −↠W X

SWrapToPrimitive
p[fn] = prm X((RunPrim prm w⃗, K),CState(ρC, σC))

((Call fn w⃗, K),CState(ρC, σC)) −↠W X

SWrapPrimMain
X((⌈emain⌉, •),MLState((χ ≜ ∅, ζ ≜ ∅, rm ≜ ∅, σC),∅))

((RunPrim mainemain [], •),CState((χ ≜ ∅, ζ ≜ ∅, θ ≜ ∅, rs ≜ ∅), σC)) −↠W X

SWrapTerminate

((w, •),CState(ρC, σC)) −↠W X

Figure 5.9: Operational Semantics of the Wrapper.

78 The Combined Operational Semantics

over this expression. This primitive expects that it is called “initially,” so that
the wrapper state is still empty. It then starts the execution of the emain, as de-
fined by SWrapPrimMain. We already mentioned that the FFI primitives are im-
plemented as functions defined by the wrapper. Thus, the wrapper also has a
“program” p, which stores all the primitives by their name. Specifically, we have
p = [emain]FFI = {"main" := mainemain , "Int_val" := Int_val, . . .}. Technically, this
program is a parameter of the step relation −↠W, but we omitted it here for pre-
sentation purposes. The rule SWrapToPrimitive dispatches incoming calls to the
right primitive, by stepping to the special RunPrim state. With the rules defined
in Figure 5.9, we have a working wrapper, which can translate an λML heap to a
block-level heap that is in theory accessible from λC. What is missing for making it
actually accessible from λC are the primitives we outlined in Chapter 3, which are
implemented functions provided by the wrapper. These are defined in Section 5.3.
Before we can continue by defining primitives, we need to prove that our wrapper
never exhibits no behavior.
Theorem 5.2 (Absence Of No Behavior For The Wrapper) Let (E, K) : Expr not be
a value and ρ : Σ. If ((E, K), ρ) −↠W X, then X is nonempty.

Proof By inversion on the step:
• The case of SWrapStep is similar to Theorem 5.1.
• The cases of SWrapHookCall and SWrapValToC follow from the fact that

↬M2C never exhibits no behavior.
• The cases of SWrapRetToML, SWrapToPrimitive, and SWrapPrimMain are

trivial.
We now are left with proving that ↬M2C never exhibits no behavior, which means
showing that the relation defined by ↬̂M2C in MlToCDemonic is inhabited, where
we get to assume the facts fromMlToC. This is true, but the proof is involved. We
outline the necessary steps here:

1. We prove that each λML value can be serialized to a block-level value, by poten-
tially extending the visibility map χ to χ ′ and by allocating new immutable
blocks into ζnewimm. In particular, ensure by construction that ζnewimm ## χ.

2. Similarly, the argument vector V is serialized to block-level values v⃗.
3. We use this serialize the entire λML heap to a block-level heap ζML.
4. To construct the address map θ, we first construct its domain, for which we

simply add all γ from dom ζ ′, from all blocks in ζ ′, all roots in rm, and v⃗. This
implements the simplest form of garbage collection: no-op garbage collection,
where nothing is ever freed.

5.3. Defining Primitives 79

5. We then actually “inflate” the address map θ, by choosing a fresh C address a
for each block-level location γ in its previously constructed domain.

6. We construct w⃗ using the just-constructed address map θ (which must contain
all locations in v⃗).

7. We similarly re-add the C encodings of all roots from rm to σC, yielding σ ′
C.

8. The roots set is constructed like so: rs = dom rm.
9. When constructed as such, showing χ ′, ζ ′, θ, v⃗, σ ′

C and w⃗ validate all the
required properties is almost always straightforward / by construction. How-
ever:

• To prove ζ ## ζnewimm, we use that all new blocks are not in χ, and that
dom ζ ⊆ dom χ. We could do without this requirement, but our opera-
tional semantics guarantee this is true anyway.

• To prove ζ ## ζML, we need that ∀γℓ. χ[γ] = Pub ℓ→ ℓ ∈ dom ζ→ σML[ℓ]=E.
• Finally, dom σC ## dom rm is needed to show σrest ## σroot when proving

WithRoots (see Figure 5.6). □

5.3 Defining Primitives
Defining the wrapper primitives is relatively straightforward. We distinguish three
kinds of primitives, listed in no particular order. The first are the simple primitives.
What makes them simple is that they never cause garbage collection, and also do
not have any non-determinism (except for plain undefined behavior). Most primitives
are in this category.
Unfortunately, the word primitive is now overloaded, since it is ambiguous whether
a primitive is part of our formal model, or the primitive as it exists in the real world.
We thus introduce the following terms: The formal primitive describes the primitive
as we model it in our formal model. The role model primitive describes how the
primitive works in the actual OCaml FFI, not in our formal model of it.
The next category are the allocating primitives. These primitives allocate new blocks,
which means that they can cause a garbage collector run. The third kind of primitive
are the switching primitives. These are the primitives that switch from executing C,
to executing OCaml. We already know one such primitive: main. This class only
contains one further primitive, which is callback.
5.3.1 Callbacks
We start with callback, since the other primitives share some common infrastruc-
ture. callback is the formal version of the role model caml_callback. To facilitate

80 The Combined Operational Semantics

SWrapPrimCallback
([wf,wa], ρC, σ) ↬̂C2M ([rec f x. e, Va], ρML, σML)
X((⌈(rec f x. e)Va⌉, K),MLState(ρML, σML))

((RunPrim callback [wf,wa], K),CState(ρC, σC)) −↠W X

SWrapPrimOther
(prm,w⃗, ρC, σC) −↠prm Y ∀w ′ ρ ′

C σ ′
C. Y(w

′, ρ ′
C, σ

′
C)⇒ X((w ′, K),CState(ρC ′ , σ ′

C))

((RunPrim prm w⃗, K),CState(ρC, σC)) −↠W X

Figure 5.10: Extensions to the Operation Semantics −↠W required to handle primi-
tives.

callbacks, we add the step described by SWrapPrimCallback in Figure 5.10. This
primitive switches the state to the OCaml side, so that afterwards, λML code can
execute. During this switch, the first argument of the primitive,wf, is expected to
encode a closure. The new λML expression that afterwards starts executing is then
exactly this closure, applied to the value Va encoded bywa. This expression then
simply reduces inside the wrapper, and eventually returns using SWrapValToC.
Of course, this expression can itself make external calls. Since we already defined
the linker such that calls can repeatedly go back-and-forth, this causes no issues.
Defining callbacks is surprisingly simple, given that introducing them makes the
formal setup much more complicated, as otherwise calls from C to the wrapper
would not cause mutual recursion (main is defined such that it can only be invoked
once). In fact, this simplicity is only superficial. To make this definition this short,
we had to introduce modules with their finely-tuned notions of contexts that do not
define head redexes, and a linker that can recursively link code. Further, simply
re-using the relation ↬̂C2M does not make this definition simpler. We can already
foreshadow the other primitives do not take much more effort to define. We have
now reached the points where all ingredients necessary to define them are there,
and just need to be put together properly.
5.3.2 Allocating Primitives

There are two allocating primitives: alloc and alloc_custom. Unsurprisingly, the
definition for both are very similar, with the distinction that alloc_custom allocates a
custom block, while alloc only allocates a regular block. To define these primitives,
we do not simply extend the −↠W relation like we did for callback. Instead, we
extend the relation −↠prm, as introduced by SWrapPrimOther. The relation −↠prm

allows us to define primitives more concisely. For one, we do not have to state that
the step applies to the expression (RunPrim prm w⃗, K), but can only focus on the
relevant part, namely prm and w⃗. We also expect all primitives defined using this

5.3. Defining Primitives 81

AllocCore
γ /∈ dom χ γ ∼θ

′

C a

GcStateSwitch(ζ, θ ′, rm, σrest, rs, σ
′
C) ρC = (χ[γ := k], ζ[γ := blk], θ ′, rs)

AllocCore(χ, ζ, rm, σrest, a, ρC, σ ′
C, k,blk)

SWrapPrimAlloc
nt = t nsize ⩾ 0

GcStateSwitch(ζ, θ, rm, σrest, rs, σC)

∀θ ′σ ′
Ca.AllocCore(χ, ζ, rm, σrest, a, ρC, σ ′

C,Priv,B(t,Mut,
nsize many
[0, . . . , 0]︸ ︷︷ ︸))⇒ Y(a, ρC, σ ′

C)

(alloc, [nsize, nt], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimAllocCustom
GcStateSwitch(ζ, θ, rm, σrest, rs, σC)

∀θ ′ σ ′
C a ι.AllocCore(χ, ζ, rm, σrest, a, ρC, σ ′

C,Fgn ι,F(None))⇒ Y(a, ρC, σ ′
C)

(alloc_custom, [], (χ, ζ, θ, rs), σC) −↠prm Y

Figure 5.11: Operational Semantics of allocating primitives.

method to evaluate to a λC valuewwithin one step. This assumption does not hold for
callback and main, which is why they are defined separately. It does hold for all other
primitives. There are two allocating primitives: alloc and alloc_custom. The primitive
alloc is our formal variant of caml_alloc, which is used to allocate a new standard
block. The primitive alloc_custom is the formal variant of caml_alloc_custom, and
allocates custom blocks. The definitions of alloc and alloc_custom are found in
Figure 5.11. Since both may cause the garbage collector to run, they first extract the
block-level representation of the roots stored in σC to a roots map rm. Then, several
demonic choices happen, which are described byAllocCore, using rule AllocCore.
First, a new block-level location γ is demonically chosen, which must not yet exist
in χ. Since our semantics guarantee that dom ζ ⊆ dom χ, this location is also fresh
in ζ. Then, a new garbage collector state θ ′ is also chosen demonically. This must
satisfy the usual conditionGcStateSwitch, which also restores the just-extracted roots
back into the new C state σ ′

C. Additionally, it is also ensured that γ is live in θ ′.
Specifically, it must be accessible using a. Then, both χ and ζ are extended, but
the specific values differ between these two. We note that since visibility maps
χ : LocMap are by definition injective, the new visibility map χ ′ must also be injective.
For alloc, described in SWrapPrimAlloc, the new block has size nsize, and the tag
described by nt, which must actually encode a tag. We then get a new block, which
is initially marked as private in χ, and that has tag nt, size nsize, and stores only
block-level zeros. Further, this block is mutable. This formally captures all aspects

82 The Combined Operational Semantics

of the role model caml_alloc we discussed previously.
For alloc_custom, described in SWrapPrimAllocCustom, the new block is marked as
belonging to the foreign value identifier ι. Due to the implicit injectivity requirements
in visibility maps, this foreign value identifier is fresh. The custom block itself is
F(None), which denotes that it is uninitialized. Before that block can be read, it must
be initialized. We mentioned in Section 3.5 that our formal custom blocks, when
compared to their role model, are much more simple. They are so simple, in fact,
that allocating a custom block does not need any arguments.
In case it was not already clear from SWrapPrimOther, we explain how rules defined
using −↠prm are to be read: The left side of that step relation is a pair containing the
name of the primitive (here alloc), its arguments (here the two-element list [nsize, nt]),
and the current state. The current state is just ρC and σC, but since all primitives
access parts of the state, ρC is usually decomposed into its constituent parts. Then,
using the familiar way we define demonic choices, we describe the possible target
configurations. These are the states that satisfy Y. This target configuration consists
of the return value (w ′ for alloc), and the new state (which, for alloc, is actually
defined by AllocCore).
Like before, one thing is missing before we can conclude our discussion of these
primitives: We need to prove the absence of no behavior. Proving this re-uses some of
the machinery from Theorem 5.2, in particular the construction of a new GC state θ ′.
Since both runtime locations γ and foreign value identifiers ι are countably infinite,
it is obvious that there always are ones that are fresh. We already mentioned that
simple primitives always determine a unique value. This also means that proving
the absence of no behavior is trivial for them. We therefore omit proving it, leaving
this to the reader.
5.3.3 Simple Primitives

The rules for the remaining primitives are to be found in Figure 5.12.
Converting Integers

Arguably, the simplest primitives are Val_int and Int_val, which are (unsurprisingly)
the formal version of their role models Val_int and Int_val. Their formal seman-
tics is described by SWrapPrimValInt and SWrapPrimIntVal. Val_int converts an
integer n into a C valuew that encodes the integer n, as defined by n ∼θC w. Int_val is
the inverse operations. The formal model of Is_block, isblock, is not much harder.
This returns 1 when its argument is a λML value that represents a block (SWrap-
PrimIsBlockTrue), and 0 when it represents an integer (SWrapPrimIsBlockFalse).
Unlike the rolemodel Is_block, the formal primitive can only be used on values that
actually store a block. If they are used on a λC value that used to represent a block,
but no longer does, it has undefined behavior. In contrast, the role model Is_block

5.3. Defining Primitives 83

SWrapPrimValInt
n ∼θC w Y(w, (χ, ζ, θ, rs), σC)

(Val_int, [n], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimIntVal
n ∼θC w Y(n, (χ, ζ, θ, rs), σC)

(Int_val, [w], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimIsBlockTrue
γ ∼θC w Y(1, (χ, ζ, θ, rs), σC)

(isblock, [w], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimIsBlockFalse
n ∼θC w Y(0, (χ, ζ, θ, rs), σC)

(isblock, [w], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimTag
γ ∼θC w ζ[γ] = blk tagNumber(blk) = n Y(n, (χ, ζ, θ, rs), σC)

(read_tag, [w], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimLength
γ ∼θC w ζ[γ] = B(t,m,⃗v) Y(|⃗v|, (χ, ζ, θ, rs), σC)

(length, [w], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimField
γ ∼θC w ζ[γ] = B(t,m,⃗v) 0 ⩽ n < |⃗v| vn ∼θC w ′ Y(w ′, (χ, ζ, θ, rs), σC)

(Field, [w,n], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimStoreField
γ ∼θC w v ∼θC w ′

ζ[γ] = B(t,Mut,⃗v) 0 ⩽ n < |⃗v| Y(0, (χ, ζ[γ := B(t,Mut,⃗v[i := v])], θ, rs), σC)

(Store_field, [w,n,w ′], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimReadCustom
γ ∼θC w ζ[γ] = F(w ′) Y(w ′, (χ, ζ, θ, rs), σC)

(read_custom, [w], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimWriteCustom
γ ∼θC w ζ[γ] = F() Y(0, (χ, ζ[γ := F(w ′)], θ, rs), σC)

(write_custom, [w,w ′], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimRegisterRoot
a /∈ rs Y(0, (χ, ζ, θ, rs∪ {a}), σC)

(registerroot, [a], (χ, ζ, θ, rs), σC) −↠prm Y

SWrapPrimUnregisterRoot
a /∈ rs Y(0, (χ, ζ, θ, rs∪ {a}), σC)

(unregisterroot, [a], (χ, ζ, θ, rs), σC) −↠prm Y

Figure 5.12: Operational Semantics of simple primitives.

84 The Combined Operational Semantics

still returns 1 for arguments that did not survive the last garbage collection, since it
only looks at the least significant bit, which is unaffected by what the pointer points
to.
Tags and Length

The primitive read_tag is used to read the tag of a block. Its role model, the macro
Tag_val, uses pointer arithmetic to access the tag of a block, and is thus also an
lvalue, so that it can be used to change the tag of a block. Since we do not support
changing the tag, our formal version read_tag simply returns the tag. To do so,
as shown in SWrapPrimTag, the function tagNumber is used, which is defined in
Figure 5.4. The actual numeric values returned by the formal primitive are the same
ones that the role model primitive returns.

The primitive length, defined in SWrapPrimLength is the formal version of the
role model primitive Wosize_val. For a regular block, this primitive returns the
number of fields stored by this block. The formal primitive can not be used to get the
size of a custom block, or of a callback block. The role model primitive does work
on such blocks. For custom blocks, which in actual OCaml can have an arbitrary
length, it returns this length (in multiples of sizeof(value)). For callbacks, it
returns 2, since callbacks are encoded as a block of size 2. We choose not to model
this behavior, especially since the size of a custom block would always be 1 in our
model. Modelling this would not be hard: One would just need to define a function
blockLength : Block→ Z, similar to tagNumber.
Roots

While our state is on the C side, it only contains a roots set rs, that contains each C
address a that is registered as a root. These locations are only required to actually
store a λC value encoding a block-level value when a garbage collector run hap-
pens, i.e., when the state is switched, or an allocation primitive is invoked. We have
previously described that we simplified the formal model down to two primitives:
registerroot, which roughly is a formal model of the role model of the primitive
caml_register_global_root, and unregisterroot, which similarly models the role
model for caml_unregister_global_root. The rule for registerroot is found in
SWrapPrimRegisterRoot, the for unregisterroot is in SWrapPrimUnregisterRoot.
Since primitives operate on the C side, they only interact with the roots set. Reg-
istering a root then means that the root is added to the set, and unregistering a
root means that the root is removed from the set. Additionally, the rules make it
undefined behavior to register a root that is already registered, or to unregister a root
that is not actually a root. Again, this seems pretty simple, but only because the
machinery that actually ensures roots remain consistent is already baked into the
operational semantics, in particular the definitions aroundWithRoots from figure
Figure 5.6.

5.3. Defining Primitives 85

Accessing and Modifying Regular Blocks

The primitive Field is the formal model of the role model primitive Field. In actual
OCaml, Field is a macro that computes the proper offset for a value encoding
a pointer. Thus, Field is an lvalue, which means that it can be stored to. Such
stores are usually unsafe (see the discussion on uninitialized data in Section 3.5),
and our formal model does not allow such direct stores. Instead Field is just a
normal function that returns the requested value. To actually safely write to a block,
the role model primitive Store_field exists. This is a macro that wraps a call to
caml_modify, which is not a macro, but rather a real function implemented in the
OCaml runtime. Our formal primitive Store_field models the behavior of the role
model macro Store_field. The formal macros Field, defined by SWrapPrimField,
and Store_field, defined by SWrapPrimStoreField, both take similar arguments.
The first argument is a λC value w, which must encode a block-level location γ.
This location denotes the block blk = ζ[γ] these primitives operate on. It must be
a regular block, storing the block-level values v⃗. For Store_field, it must also be
mutable. The second argument n is an index, describing which field of the block is
to be read/modified. This index must be in bounds, formally required by asserting
0 ⩽ n < |⃗v|

The Field formal primitive then simply returns the nth field vn, in encoded form.
Note that the encodingw ′ is chosen angelically, but this is not an issue: This choice
is unique, as θ is injective.

The Store_field formal primitive takes a third argument, the λC valuew ′, which must
also encode a block-level value v ′. It then modifies the block by storing v ′ at index i.
Strictly speaking, it modifies ζ, by storing the modified block at its location γ. Since
this primitive is only executed for its side effects, it returns 0.
Accessing and Modifying Custom Blocks

The formal primitives for operating on custom blocks are interesting, since they
lack proper role models. In actual OCaml, the macro Data_custom_val computes a
pointer to the user-usable area of a custom block (which in actual OCaml can be
larger than one machine word). Accessing and modifying this data can then be
done by operating on this pointer using normal C loads and stores. Since our formal
model draws a hard barrier between the λC heap σC and the runtime memory ρC, we
can not replicate this behavior. Instead, we have two formal primitives, read_custom
and write_custom, that read and write the contents of a custom block. The first
argument of both primitives is a λC valuew describing the block-level location γ at
which the desired custom block is stored.

For read_custom, this is the only argument. The custom block F(w ′) must store λC

valuew ′, so it must in particular not be uninitialized. This valuew ′ is then returned.

86 The Combined Operational Semantics

For write_custom, we do not care what is stored in the foreign block. In particular,
F() is to be read so that it also allows storing to an uninitialized block. We then
update the value in that block to w ′, which was passed as the second argument.
More formally, we update ζ to store this updated block at its location γ.
Conclusion
We have now discussion the definition of all primitives, which completes our discus-
sion of the operational semantics. We again note that the definition of the primitives
only seems simple. These primitives are tightly coupled to the overall notion of the
wrapper state. The list of primitives is also complete, in a sense, in that it covers all
the features available in our definition of the wrapper. While some primitives still
could be defined, like one to set the tag, we do not define these since these are not
realistic. For this concrete example, we mentioned earlier that changing the tag is
considered undefined behavior, at least by us.

Chapter 6

The Combined Program Logic

In this chapter, we build a separation logic to reason about programs written in
OCaml and C, that is adequate for the operational semantics defined in Chapter 5.
Before we can start, we must find a weakest precondition for modules with dual
non-determinism. This is accomplished in Section 6.1. The adequacy theorem is
interesting, since it features co-inductive traces and Transfinite Iris [45]. We then, in
Section 6.1.2 briefly discuss how linking programs works at the program logic level.
In Section 6.2, we gently introduce the program logic, by reasoning through some
examples already explained in Chapter 3. We then discuss the formal construction
in Section 6.3.
This concludes our discussion of the original paper. Section 6.4 then introduces the
first material going beyond the paper–it generalized the View Reconciliation laws
to work with fractional points-tos.
6.1 Weakest Preconditions for Linkable Modules
6.1.1 Program Logic and Adequacy
We begin by (again) changing our weakest precondition, so that it supports angelic
and demonic non-determinism. We start by expressing the property we want to
have, namely adequacy using the co-inductive traces of Section 5.1.
Theorem 6.1 (Adequacy for Modules) Let p be a program, σ be a state such that ⊢
SI(σ), and Q ′ : Σ → Val → Prop such that ∀v σ ′. SI(σ ′) ∗ Q(v) ≡−∗ Q ′(σ ′, v). Then the
following holds:

⊢ wp e@ p,⊥ {Q} =⇒ (e, σ) −↠trace {(v, σ ′) | Q ′(σ ′, v)}

Intuitively, this proof allows us to turn the proof of a weakest precondition into
a process1 that describes how the angelic choices are resolved. When combined

1Co-inductive predicates can be intuitively visualized as a generating process.

88 The Combined Program Logic

with a demon resolving the demonic choices, this process can be used to construct
executions, and all the executions the demon can construct will only terminate in
states satisfying the postcondition (or step forever). Our goal is now to construct a
weakest precondition with that property. Without further ado, here it is:

Definition 6.2 (Weakest Precondition for Modules)

wp e@ p,Ψ {Q} ≜ ∀σ.SI(σ) ≡−∗

SI(σ) ∗Q(v) e = v

fn /∈ dom p ∗
SI(σ) ∗atBoundary∗
˙|⇛∃Q ′. Ψ fn v⃗ Q ′ ∗
▷∀v ′. Q ′ v ′ −−∗

atBoundary −−∗
wp K[v ′]@ p,Ψ {Q}

e = K[call fn v⃗]

∃X. (e, σ) −↠ X∗
∀e ′ σ ′. (e ′, σ ′) ∈ X −−∗

˙|⇛▷ ˙|⇛SI(σ ′) ∗ wp e ′ @ p,Ψ {Q}

otw.

Comparing this definition to the one for regular languages (Definition 4.1), we
see that the first case is the same. The second case for external calls has changed
by introducing the atBoundary token. This token is a separation logic assertion,
defined by each language, that describes whether the program is in a state where
it is able to execute external calls. We further describe it in Section 6.1.2. The
third and final case sees the most interesting changes. We now have the quantifier
alternation required for encoding angelic and demonic choices. When proving a
weakest precondition (verifying a program), we (the prover) must first provide
an X such that (e, σ) −↠ X. In other words, we need to resolve the angelic choice.
Once chosen, we must then handle all configurations (e ′, σ ′) ∈ X, since the demon
could force us to continue with either of them. Thus, we must prove the weakest
precondition for all (e ′, σ ′) ∈ X. Also note that we no longer need to prove that
our state is reducible. The reason for this is subtle, and related to a weirdness in the
standard interpretation of regular operational semantics: In regular semantics, if
the step relation had multiple possible targets, we interpreted this as a demonic
choice. The case of this choice being empty, however, was not a demonic choice over
the empty set (i.e., no behavior), but instead undefined behavior. This requires one
to, in addition of handling every successor state, prove that such a successor state
exists. With multi-relation-based semantics, this becomes much cleaner: Undefined
behavior is an angelic choice over the empty set. Since the weakest precondition
already forces us to resolve the angelic choice by choosing a suitable value, this

6.1. Weakest Preconditions for Linkable Modules 89

implicitly enforces that the set of possible angelic choices is not empty, and thus that
there is no UB. What the weakest precondition does not prevent is no behavior. In
fact, if a configuration were to exhibit no behavior, its weakest precondition would
just be true, since this amounts to proving a universal quantifier over an empty set.
Luckily, we forbid our modules from having no behavior, so we do not need to worry
about it further.
We next look at the proof of Theorem 6.1. This is where transfinite Iris is used,
since we need to extract the existential quantifier ∃X. (e, σ) −↠ X from a proof of the
weakest precondition. It is only thanks to transfinite Iris that we can prove a trace-
based adequacy theorem. The one from before, based on (prefixes of) executions,
was necessary because the proof required carefully inspecting the length of the
execution, to choose an initial step-index that is large enough to cover the entire
execution. This was necessary since without the existential property, the only way
for extracting an existential proven within the logic was to specify the step-index a
priori. In Transfinite Iris, the axiom of choice to instead is used (implicitly in the
proof of the existential property) to find a witness that is valid for all step-indexes,
allowing us to co-inductively extract an potentially infinite trace (by leveraging an
transfinite step-index that is of greater infinity).
Weakest Precondition Lifting As final evidence that our new weakest precon-
dition is properly defined, we can observe that it is equivalent to the old weakest
precondition when instantiated with the lifting module ↑λ:
Theorem 6.3 (Agreement of Weakest Preconditions and Lifting) Let λ be a lan-
guage, with e : Exprλ, p : Progλ Ψ : Protoλ and Q : Valλ → iProp. Then the weakest
preconditions on λ and ↑λ agree.

wpλ e@ p,Ψ {Q}︸ ︷︷ ︸
wp for a language

∗−∗ wp↑λ e@ p,Ψ {Q}︸ ︷︷ ︸
wp for a module

We can also use this to actually prove the adequacy theorem of Theorem 4.2.
Proof (of Theorem 4.2)
Given ⊢ wpλ e@ p,⊥ {Q} as well e ′, σ ′ such that (e, σ) −→p∗ (e ′, σ ′), we must show
Q ′(σ ′, e ′). We have ⊢ wp↑λ e @ p,⊥ {Q} by Theorem 6.3. Using Theorem 6.1, we
get a co-inductive trace that only terminates in values satisfying Q ′. We proceed
by induction on the execution (e, σ) −→p∗ (e ′, σ ′), and feed each step into the
co-inductive trace, until either reaches a value, in which case we are done. If the
inductive trace−→p∗ terminates first, without reaching a value, than the co-inductive
trace guarantees that we are still safe. □

This lemma is again one of the lemmas that enable language-locality. By being able
to lift verification carried out using the regular weakest preconditions to the one

90 The Combined Program Logic

using modules, we allow these results to be used by the linking operator, defined in
the next subsection.
6.1.2 Weakest Preconditions and Linking
In Section 4.1, we defined intra-language lifting and proved the following theorem
(Theorem 4.4) for it:

WP-Link-Intra
(Ψ2 ⊔ Ψaxiom) ⊢ p1 : Ψ1 (Ψ1 ⊔ Ψaxiom) ⊢ p2 : Ψ2 p1 ## p2

Ψaxiom ⊢ p1 ∪ p2 : Ψ1 ⊔ Ψ2

The theorem for correctness of the linking operator, which we only define in Ap-
pendix A, looks very similar:

Theorem 6.4 (Correctness of The Linking Operator) Let λ1, λ2 be linkable modules
agreeing on the linkage model. Then their programs can then be linked into programs of
λ1 ⊕ λ2:

WP-Link-Modules
p1 ## p2 Ψaxiom ## (dom p1 ∪ dom p2)

(Ψ2 ⊔ Ψaxiom) ⊢λ1
p1 : Ψ1 (Ψ1 ⊔ Ψaxiom) ⊢λ2

p2 : Ψ2

Ψaxiom ⊢λ1⊕λ2
p1 ∪ p2 : Ψ1 ⊔ Ψ2

The theorem refers to linkable modules. A module is linkable when its public, pri-
vate, and overall state can be split and merged at the places the linking operator
requires it to, as discussed in Section 5.1.3 As shown in Figure A.2, a merge happens
whenever the state switches from Boundary to StateL or StateR (compare SLinkHan-
dleCallL, SLinkReturnL). The state is split when changing in the opposite direction,
as described by SLinkToExtCallL and SLinkToValL. Remember that the linking
operator required its modules to have these three kinds of state. In order to verify
the linking operator, we also need three kinds of state interpretations. We have
the three state interpretations for the three kinds of state. Additionally, we have
the boundary token atBoundary, which we already included in Definition 6.2, the
definition of the weakest precondition for modules. To be linkable, these state inter-
pretations have to satisfy the three laws SIJoin, SISplit, and SIAtBoundary, shown
in Figure 6.1. The first two describe that the state interpretations behave according
to Split, the pure relation describing when public and private states can be split and
joined. Specifically, they specify that the requirements on top imply (via the magic
wand) the conclusion, but after performing an update, following the syntactic sugar
≡−∗ . Specifically, SIJoin requires that joining is always possible. Splitting is more
complicated, with SISplit merely requiring that if Split tells us that a split it possible,
this is also possible in the program logic. We only know that a split is possible
when we are at the boundary, as described by atBoundary. The weakest precondition

6.2. Verifying Glue Code By Example 91

SI :Σ→ iProp
SIpub :Σpub → iProp
SIpriv :Σpriv → iProp

atBoundary : iProp

SIJoin
SIpriv(σpriv) SIpub(σpub)

∃σ.Split(σ, σpub, σpriv) ∗ SI(σ)
−∗

SISplit
SI(σ) Split(σ, σpub, σpriv)

SIpriv(σ) ∗ SIpub(σ)
−∗

SIAtBoundary
atBoundary SI(σ)

∃σpub σpriv. Split(σ, σpub, σpriv)
∗

Figure 6.1: Program Logic definitions for linking.

on modules requires that this token is available around external calls, but makes
no requirements otherwise. We see later that this is used by the wrapper module,
which is at a boundary only when its state is on the C side. For the lifting module
↑λ, this boundary token is always true. The linking module itself is at a boundary
when it is the Boundary state, and both its contained languages are at the boundary.
(This is only relevant when linking more than two modules.)

The proof of Theorem 6.4 is now essentially the same as that of Theorem 4.4. The
proof is more complicated since there is more stuff: The boundary tokensatBoundary
of both languages need to be pushed around, and the sequence of administrative
states outlined in Figure A.2 must be followed. But at the core, the proof still follows
the execution of one side, until that side makes an external call, which is then
resolved properly. With this, we have all machinery in place to actually construct a
program logic for the wrapper.
6.2 Verifying Glue Code By Example
We have now, after nearly 91 pages, finally arrived at the section where we truly
discuss the logical foundations of language interoperability between OCaml and C.
Before, this has sometimes also been referred to as a program logic for the wrapper.
It turns out that, when using our logic to verify a multi-language program, almost
no time is spend working “within” the wrapper. Instead, one has to verify glue
code, which is written in regular C, with a large amount of FFI primitives sprinkled
in. These FFI primitives are implemented as external calls from C to the wrapper,
where they are implemented by operating on the private wrapper state. Our goal is

92 The Combined Program Logic

to verify glue code, and we thus have to reason about the FFI primitives as external
calls. To do so, we define a protocol ΨFFI, that gives the program logic rules for all
the FFI primitives. More specifically, we define the reasoning rules for each of the
primitives (except for main, which is special), and then combine them into a large
protocol: ΨFFI ≜ ΨInt_val ⊔ ΨVal_int ⊔ · · ·. We nowfirst discuss how these specifications
look like, what constructs there are in our program logic, and which laws we expect
them to satisfy. The actual implementation of this program logic is only discussed
in Section 6.3.
6.2.1 A First Example
Let’s start by discussing the plus1 program we saw in Chapter 3, reproduced here
in formal syntax.

eplus1 ≜

let n = call caml_plus1 [41] in
assert(n = 42)

caml_plus1(v) ≜
let n = Int_val(v) in
let m = n+ 1 in
Val_int(m)

We use the syntactic sugar Val_int(n) for call Val_int [n], so that the formal syntax
looks more similar to actual C. The function already uses three external calls, one in
λML, and two in λC. As a first step towards verifying the programs, we have to give
specifications to the external calls. The external call to caml_plus1 is easy to specify,
it has the following protocol:

Ψplus1ML ≜ ∀n. ⟨⊤⟩ caml_plus1 [n] ⟨m.m = n+ 1⟩

With this specification for external calls, we are able to prove that theOCaml program
executes successfully and in particular that the assert is satisfied. Of course, this
verification still has a hole: We need to prove that the C implementation satisfies
the OCaml specification Ψplus1 given above. But what does it even mean for our C
code to satisfy such a specification? The answer is that our C code has to satisfy a
translated specification, where we are given C values representing block-level values
that themselves represent the original OCaml values, in a way that roughly matches
the operational semantics rules outlined by MlToC. We come back to formally
pinning down the precise specification we want caml_plus1 to satisfy later. Let
us for now ignore the ML-to-block-level encoding and assume that we are only
given a valuew that encodes a block-level integer n. In the last chapter, specifically
Figure 5.6, we already defined n ∼θC w, which formerly expresses thatw encodes n.
Before we can discuss potential specifications for caml_plus1, we need to specify
the behavior of the primitives used in it. We start with Int_val. Its specification is

6.2. Verifying Glue Code By Example 93

ΨInt_val ≜ ∀wn, θ. ⟨n ∼θC w ∗ GC(θ)⟩ Int_val [w] ⟨m.m = n ∗ GC(θ)⟩
ΨVal_int ≜ ∀n, θ. ⟨GC(θ)⟩ Int_val [n] ⟨w. n ∼θC w ∗ GC(θ)⟩
Ψisblock ≜ ∀wvθ. ⟨v ∼θC w ∗ GC(θ)⟩ Int_val [w] ⟨m. IsBlock(v) =m ∗ GC(θ)⟩

Ψregisterroot ≜ ∀awvθ. ⟨a 7→C w ∗ v ∼θC w ∗ GC(θ)⟩ registerroot [a]
⟨0. a 7→root v ∗ GC(θ)⟩

Ψunregisterroot ≜ ∀a v θ. ⟨a 7→root v ∗ GC(θ)⟩ unregisterroot [a]
⟨0. ∃w. a 7→C w ∗ v ∼θC w ∗ GC(θ)⟩

IsBlockLoc
IsBlock(γ) = 1

IsBlockInt
IsBlock(n) = 0

CWP-Load-Root
a 7→d

root v GC(θ) ∀w.a 7→d
root v −−∗ v ∼θC w −−∗ GC(θ) −−∗ wpw@ p,Ψ {Q}

wp ∗a@ p,Ψ {Q}
∗

CWP-Store-Root
a 7→root v ∼θC w GC(θ) a 7→root v −−∗ GC(θ) −−∗ wp 0@ p,Ψ {Q}

wp ∗a←w@ p,Ψ {Q}
∗

Figure 6.2: Specifications for primitives not operating on blocks.

stated as a C specification, and any proof about the correctness of caml_plus1 needs
to use it.

ΨInt_val ≜ ∀wn. ⟨n ∼θC w⟩ Int_val [w] ⟨m.m = n⟩

This specification is “almost” correct. Only one detail is missing: What is θ? Re-
member that this is supposed to indicate the current state of the garbage collector.
When it changes, the garbage collector has run, and all values pointing to blocks
become unusable, if we did not root them. But how do we know what the current
state of the garbage collector is? The answer is that we introduce a new separation
logic token for it–the GC token GC(θ). This token, when present, tells us that θ is
the current state of the garbage collector. As we see later, this token can also be
understood as denoting the permission to access the runtime memory in general.
But for now, we can simply include it in our specification of Int_val to ensure that
θ is indeed the correct version. The specification is very similar to the one given
to Val_int, which can both be found in Figure 6.2. Unlike v ∼θC w, which is a pure
proposition and therefore persistent, the GC token GC(θ) is not persistent. In fact,
it is exclusive. Thus, the specification of Val_int must give it back at the end. With

94 The Combined Program Logic

this, we can prove following C specification for caml_plus1:

∀wn, θ. ⟨n ∼θC w ∗ GC(θ)⟩ caml_plus1 [w] ⟨w ′. (n+ 1) ∼θC w ′ ∗ GC(θ)⟩

Unfortunately, this is not yet sufficient to establish that the λC implementation of
caml_plus1 matches the λML specification. It only contains part of the translation.
Currently, we simply assume that the block-level value we start with is a block-level
integer, but we only know that our function is called with a λML integer. What we
implicitly assumed is that OCaml integers are represented as block-level integers.
Of course, we know this is true, but we want to establish this formally. To do so, we
need a new relation V ∼ML v describing that v is the block-level representative of the
λML value V . Before, we could simply re-use v ∼θC w from Figure 5.6 to define a similar
encoding relation between block-level and λC values. We could also now reuse IsVal
from Figure 5.5 to trackwhen a block-level value v represents a λML value V . However,
this would us require to also always have available the total visibility map χ, and
the total block-level heap ζ. But this is counter to the very foundation of Separation
Logic, which was introduced to allow us to locally reason about the content of heaps,
without having (or even being able) to care about what is stored in the areas we do
not modify. Note that this kind of local reasoning is not possible for the garbage
collector state θ. This map changes when the garbage collector runs, and if that
happens, it changes completely, not just locally. Thus, it does not make sense to own
only a fragment of this heap. Instead, the GC token GC(θ) expresses full ownership
of the entire address map θ, which is needed every time the garbage collector is run.
For the visibilitymap χ and the block-level heap ζ, it is indeed the case that these only
change locally (ignoring, for now, the fact that half the block-level heap ζ is removed
when the state switches sides). Thus, we can develop a more standard Separation
Logic theory for these, where ownership is indeed split into per-location tokens.
The Separation Logic theory for these uses the resources shown in Figure 6.3. We
leave the definition of some resources open until Section 6.3. For these, we only give
an intuitive meaning describing which permission they are supposed to describe.
The others, which are better understood as syntactic sugar, are defined using these
axiomatic resources. While the figure already shows many resources, we introduce
all of them gradually. We first focus on the OCaml-to-block-level representation
relation V ∼ML v. Intuitively, this is a separation logic counterpart of IsVal(χ, ζ, V, v),
and thus denotes that the block-level value v represents the λML value V . As such, it
closely mirrors the definition of IsVal from Figure 5.5. It is, however, a separation
logic relation. It is not indexed by χ and ζ, but instead uses separation logic to reason
about their content locally. Its definition is not opaque since it defines how, precisely,
λML values are encoded. Knowing this is obviously necessary to formally validate
glue code, and can not be substituted by some axioms. Since V ∼ML v is only defined
using persistent propositions, it is itself persistent. As the block-level-to-C relation

6.2. Verifying Glue Code By Example 95

GC(θ) ≜ general runtime access; current GC state is θ; exclusive
v ∼θC w ≜w encodes v at GC state θ, defined in Figure 5.6; pure

V ∼ML v ≜ v represents V , defined below; persistent
isLoc(ℓ, γ) ≜ γ represents location ℓ, i.e., χ[γ] = Pub ℓ; persistent

isForeign(ι, γ) ≜ γ represents foreign identifier ι, i.e., χ[γ] = Fgn ι; persistent
isPrivd(γ) ≜ γ is private, i.e., χ[γ] = Priv; fractional with d : Q�

γ 7→d
FFI blk ≜ γ points to block blk, i.e., ζ[γ] = blk; fractional with d : Q�

γ 7→clos rec f x. e ≜ γ 7→□
FFI C(rec f x. e)

γ 7→d
cstm w ≜ γ 7→d

FFI F(w) ∗ ∃ι. isForeign(ι, γ)
γ 7→d

blk[t|mut] v⃗ ≜ ∃ℓ. γ 7→d
FFI B(Mut,t,⃗v) ∗ isLoc(ℓ, γ)

γ 7→blk[t|imm] v⃗ ≜ γ 7→□
FFI B(Imm,t,⃗v)

γ 7→d
blk[t|fresh] v⃗ ≜ γ 7→d

FFI B(Mut,t,⃗v) ∗ isPriv1(γ)
a 7→d

root v ≜ a is a root storing v; fractional with d : Q�

atInit ≜ permission to invoke main; exclusive

SimInt
n ∼ML n

SimTrue
true ∼ML 1

SimFalse
false ∼ML 0

SimUnit
⟨⟩ ∼ML 0

SimLoc
isLoc(ℓ, γ)
γ ∼ML ℓ

∗

SimForeign
isForeign(ι, γ)

γ ∼ML ι
∗

SimClosure
γ 7→clos rec f x. e
γ ∼ML rec f x. e

∗

SimPair
γ 7→blk[0|imm] [v, v

′] v ∼ML V v ′ ∼ML V ′

γ ∼ML ⟨V,V ′⟩
∗

SimInl
γ 7→blk[0|imm] [v] v ∼ML V

γ ∼ML inl V
∗

SimInr
γ 7→blk[1|imm] [v] v ∼ML V

γ ∼ML inr V
∗

Figure 6.3: The Separation Logic theory for reasoning about glue code.

96 The Combined Program Logic

is also persistent (it is in fact pure), this means that glue code can freely copy λC

values that represent λML values, without running into ownership issues.
We now come back to our example function, caml_plus1. It is now possible for us
to prove a specification for it that is sufficient to allow us to claim that it can be
safely linked with λML. Since actually combining everything into a state where we
can prove adequacy is a bit involved, we leave this open until Section 6.2.5. Using
SimInt and the specifications for Val_int and Int_val introduced above, we can verify
the following specification for caml_plus1:

Ψplus1C ≜ ∀nvwθ. ⟨n ∼ML v ∗ v ∼θC w ∗ GC(θ)⟩ caml_plus1 [w]

⟨w ′. ∃mv ′.m = n+ 1 ∗m ∼ML v ′ ∗ v ′ ∼θC w ′ ∗ GC(θ)⟩

Compare this to the specification we assumed in λML:
Ψplus1ML ≜ ∀n. ⟨⊤⟩ caml_plus1 [n] ⟨m.m = n+ 1⟩

Wehave now reached the point wherewe can conclude that the λC specificationΨplus1
is indeed a faithful translation of the λML specification Ψplus1. In fact, the specification
above is already too strong: It also establishes that the garbage collector never
runs. In general, it is sufficient to just establish ∃θ ′.GC(θ ′), which denotes that the
garbage collector may run, changing θ. For verifying the remaining examples, we
just assert that for correctness, it suffices to prove the λC functions correct according
to a specification that is similar to the λML specification in the way shown above. For
reference, the correctness proof of both programs, in the form of a Hoare outline,
can be found in Figure 6.4. To make these outlines more compact, we follow the Iris
Proof Mode [21] in distinguishing between spatial and persistent resources. We
treat persistent resources as if they were pure, since both of these remain during the
entire execution of the program. Specifically, instead of repeating these persistent
resources each time, we “remember” them by writing them to the right of a spacial
context. We only write them down once, understanding that such propositions are
persistent, and then reference them later without being required to add them to
our “spacial context” again. Non-persistent resources remain unchanged, we repeat
these every time to indicate that they are still there.
Working With Blocks
The program we just verified is unfortunately not very exciting. It only manipulates
a few numbers, and does not use most of the features provided by our wrapper.
We now discuss more examples, in order to introduce the program logic rules
for the remaining primitives. To do so, we verify that the following C program,
caml_swap_pair, swaps the two components of a pair. Formally, wewant it to satisfy
the following specification:

Ψswap_pairML ≜ ∀V1 V2. ⟨⊤⟩ caml_swap_pair [⟨V1,V2⟩] ⟨V ′. V ′ = ⟨V2,V1⟩⟩

6.2. Verifying Glue Code By Example 97

{n ∼ML v ∗ GC(θ)} v ∼θC v
{v = n ∗ GC(θ)} n ∼θC v

let n = Int_val(v) in
{GC(θ)} n = n

let m = n+ 1 in
{GC(θ)} m = n+ 1

Val_int(m)

{w ′. (n+ 1) ∼θ
′

C w ′ ∗ GC(θ)}
{w ′. (n+ 1) ∼θ

′

C w ′ ∗ (n+ 1) ∼ML (n+ 1) ∗ GC(θ)}
{w ′. ∃v ′ v ′ ∼θ ′

C w ′ ∗ (n+ 1) ∼ML v ′ ∗ GC(θ)}

{⊤}
let n = call caml_plus1 [41] in

{n = 41+ 1}

{n = 42}

assert(n = 42)

{ .⊤}

Figure 6.4: Hoare outlines for caml_plus1, and for its λML client.

98 The Combined Program Logic

Ψswap_pairC ≜ ∀V1 V2 vwθ. ⟨⟨V1,V2⟩ ∼ML v ∗ v ∼θC w ∗ GC(θ)⟩ caml_swap_pair [w]

⟨w ′. ∃v ′ θ ′. ⟨V2,V1⟩ ∼ML v ′ ∗ v ′ ∼θ ′

C w ′ ∗ GC(θ ′)⟩

caml_swap_pair(v) ≜
let r = malloc(1) in
∗r← v;
registerroot(r);
let np = alloc(2, 0) in
let v = ∗r in
let cl = Field(v, 0) in
let cr = Field(v, 1) in
Store_field(np, 1, cl);
Store_field(np, 0, cr);
unregisterroot(r);
free(r, 1);
np

Figure 6.5: Specification for, and implementation of caml_swap_pair.

As defined there, swapping a pair means creating a new pair that has both com-
ponents swapped. Also note that this function takes one argument, which is a
pair, and not of two arguments. A simple λML implementation of this function is
rec x. ⟨snd x,fst x⟩. This λML implementation already shows us the different tasks we
need to accomplish in our λC program: reading the components of a pair, creating a
newpair, and ensuring the new one stores the right components. Additionally, the λC

program needs to live in harmony with the garbage collector, which is automatic in
λML. The λC implementation of this function closely follows the swap_pair program
seen in Section 3.3. It is shown in Figure 6.5, along with the desired specification. A
full Hoare outline of the correctness proof is shown in Figure 6.6.

To verify this program, we start by noticing that we receive a block-level value v

that represents a λML pair: ⟨V1,V2⟩ ∼ML v. Due to SimPair, we know that v = γ,
that γ 7→blk[0|imm] [v1, v2], and that v1 and v2 represent V1 and V2. What is new
here is the block-level points-to γ 7→blk[0|imm] [v1, v2]. This block-level points-to is
not unlike the points-tos we have seen so far, except that it describes the contents
of the block-level heap ζ. This specific points-to is just a specific version of the
general block-level points-to γ 7→d

FFI blk, which simply takes a block as argument.

6.2. Verifying Glue Code By Example 99

{⟨V1,V2⟩ ∼ML vpair ∗ GC(θ)} vpair ∼
θ
C v

{vpair = γpair ∗ γpair 7→blk[0|imm] [v1, v2]∗ γpair 7→blk[0|imm] [v1, v2]

V1 ∼ML v1 ∗ V2 ∼ML v2 ∗ GC(θ)} V1 ∼ML v1 ∗ V2 ∼ML v2

{GC(θ)} γpair ∼
θ
C v

let r = malloc(1) in
{GC(θ) ∗ r 7→C ⋆}

∗r← v;
{GC(θ) ∗ r 7→C v}

registerroot(r);
{GC(θ) ∗ r 7→root γpair}

let np = alloc(2, 0) in
{GC(θ ′) ∗ r 7→root γpair ∗ γnp 7→blk[0|fresh] [0, 0]} γnp ∼θ

′

C np
let v = ∗r in

{GC(θ ′) ∗ r 7→root γpair ∗ γnp 7→blk[0|fresh] [0, 0]} γpair ∼
θ ′

C v
let cl = Field(v, 0) in

{GC(θ ′) ∗ r 7→root γpair ∗ γnp 7→blk[0|fresh] [0, 0]} v1 ∼θ
′

C cl
let cr = Field(v, 1) in

{GC(θ ′) ∗ r 7→root γpair ∗ γnp 7→blk[0|fresh] [0, 0]} v2 ∼θ
′

C cr
Store_field(np, 1, cl);

{GC(θ ′) ∗ r 7→root γpair ∗ γnp 7→blk[0|fresh] [0, v2]}

Store_field(np, 0, cr);
{GC(θ ′) ∗ r 7→root γpair ∗ γnp 7→blk[0|fresh] [v1, v2]}

unregisterroot(r);
{GC(θ ′) ∗ r 7→C w ∗ γnp 7→blk[0|fresh] [v1, v2]} vpair ∼

θ ′

C w

free(r, 1);
{GC(θ ′) ∗ γnp 7→blk[0|fresh] [v1, v2]}

{GC(θ ′) ∗ γnp 7→blk[0|imm] [v1, v2] ∗ V1 ∼ML v1 ∗ V2 ∼ML v2}

{GC(θ ′) ∗ ⟨V2,V1⟩ ∼ML γnp}

np
{np. ∃vnp θ ′.GC(θ ′) ∗ ⟨V2,V1⟩ ∼ML γnp ∗ γnp ∼θ

′

C np}

Figure 6.6: Hoare outline for caml_swap_pair.

100 The Combined Program Logic

Ψread_tag ≜ ∀wγθblkd. ⟨γ ∼θC w ∗ GC(θ) ∗ γ 7→d
FFI blk⟩ read_tag [w]

⟨n. tagNumber(blk) = n ∗ GC(θ) ∗ γ 7→d
FFI blk⟩

Ψlength ≜ ∀wγθ tm v⃗ d. ⟨γ ∼θC w ∗ GC(θ) ∗ γ 7→d
FFI B(m,t,⃗v)⟩ length [w]

⟨n. |⃗v| = n ∗ GC(θ) ∗ γ 7→d
FFI B(m,t,⃗v)⟩

ΨField ≜ ∀wγθ tm v⃗ dn.

⟨γ ∼θC w ∗ GC(θ) ∗ γ 7→d
FFI B(m,t,⃗v) ∗ 0 ⩽ n < |⃗v|⟩

Field [w,n]

⟨w ′. vn ∼θC w ′ ∗ GC(θ) ∗ γ 7→d
FFI B(m,t,⃗v)⟩

ΨStore_field ≜ ∀wγθ t v⃗ nw ′ v ′.

⟨γ ∼θC w ∗ GC(θ) ∗ γ 7→FFI B(Mut,t,⃗v) ∗ 0 ⩽ n < |⃗v| ∗ v ′ ∼θC w ′⟩
Store_field [w,n,w ′]

⟨0. GC(θ) ∗ γ 7→FFI B(Mut,t,⃗v[n := v ′])⟩

Ψalloc ≜ ∀nt nsz t.

⟨GC(θ) ∗ nt = t ∗ t ∈ {0, 1} ∗ nsz ⩾ 0⟩
alloc [nsz, nt]

⟨w. ∃γθ ′. γ ∼θ
′

C w ∗ GC(θ ′) ∗ γ 7→blk[t|fresh] [0, . . . , 0]︸ ︷︷ ︸
nsz many

⟩

Figure 6.7: Specifications for primitives operating on regular blocks.

In particular, the specific points-to is already specialized to be persistent. This is
because pairs are represented by immutable blocks, and we know these will never
change. Additionally, blocks from the block-level heap ζ are never deleted,2 so they
can remain forever. The garbage collector does not modify the block-level heap ζ

directly, it only makes certain blocks inaccessible from C.

These block-level points-tos are then used to give specifications to the primitives
operating on blocks, which can be found in Figure 6.7. The specification of alloc is
the most interesting of these. What makes it more interesting is that alloc causes a
garbage collector run. Thus, afterwards, the GC state θ has changed into θ ′, which
reflects in the changed GC token GC(θ ′). Also, we get a new block-level location γ.
Both it and θ ′ are chosen demonically, which just means that our program has to be
correct for all suitable choices. Finally, this primitive is specified using the fresh block-
level points-to. We see why this is called “fresh” shortly. It additionally includes the
token isPriv(γ). This token denotes that in the current visibility map χ, the location

2Again, ignoring that half that heap is deleted when switching the state to the OCaml side.

6.2. Verifying Glue Code By Example 101

γ is still private. Similarly, there are isLoc(ℓ, γ), for when γ represents the location γ,
and isForeign(ι, γ) for foreign blocks. In fact, these are best understood as visibility
map points-tos, since they describe the data currently stored in the visibility map
at these addresses. We also come back to these two other visibility map points-to
variants shortly.
Roots

Instead, notice that, since alloc causes a new allocation, we had to root the input
value r representing the input pair, so that we can still use it once we have allocated
the new block. First, we think about what would have happened had we not rooted
this value. Then, when trying to use it as the argument of Field, we would need to
pass in a λC valuew such thatw ∼θ

′

C γr, where γr be the block-level location initially
encoded by r. In particular, the encoding relation ∼θ

′

C is parameterized by θ ′ (notice
the prime!), since after allocation, we now have GC(θ ′). However, all we know about
γr is thatw ∼θC γr in the old GC state, since we got this initially, as part of the fact
that our input value represents an λML pair. This is now useless, since the current GC
state is θ ′ ̸= θ. So, if we had not used roots, we would be stuck here. Fortunately, we
were wise enough to register our input value as a root. Note that to do so, we must
allocate a λC memory cell, since roots are registered by-reference, and local variables
are not part of the formal memory. To now actually reason about roots, we introduce
the root points-to. The root points-to a 7→root v indicates that the location at a is a root,
and that this root stores the block-level value v. The specification for registerroot and
unregisterroot, already introduced in Figure 6.2, now amount to swapping between
C and root points-tos. Intuitively, we give up the ownership over a memory location
when registering a root, so that the location is now owned by the runtime. Indeed,
every time the garbage collector runs, the roots are modified by the runtime, which
requires this (full) ownership. The root points-to can then be thought of as “quasi-
ownership,” which tells us that we can get the ownership back when we unregister a
root. But notice how caml_swap_pair actually modifies the content of roots: It uses
ordinary λC loads and stores! The fact that regular C memory accesses still work at
rooted locations is formalized by CWP-Load-Root and CWP-Store-Root. We note
that these are rules of the λC program logic, that are applicable when just reasoning
about λC. This is possible because, as we see in Section 6.3, the GC token GC(θ)
stores the C points-to that is consumed by registerroot, so that it can temporarily be
used to justify memory accesses, like those indicated by these rules.
We also note that the rules for registerroot are stricter than what would be possible
with our operational semantics. Specifically, the operational semantics require that
the roots encode block-level values only when a GC run happens. Our program
logic, instead, requires that they store such values all the time, in particular already
when the root is registered using registerroot. By outright banning such a temporary
breakage of encoding invariants, we make the program logic easier. Now, it becomes

102 The Combined Program Logic

unnecessary to track which roots are currently not storing valid encodings of block-
level values.
Freezing Block-Level Points-Tos
Armed with our understanding of block-level points-tos, we can reason through the
uses of Field and Store_field. (We encourage the reader to follow along through the
Hoare outline in Figure 6.6.) These are very similar to standard load and store rules.
The only difference between these and other classical memory rules (e.g., CWP-
Store) are that here, both the block-level location, and the block-level values that are
read/written, are passed as λC values encoding these block-level values. We are also
able to reason through how the root is registered, used, and later deallocated. Once
we are done with this, our program has terminated. There, we have the following
separation logic resources at hand (including some persistent resources):

GC(θ ′) ∗ γnp 7→blk[0|fresh] [v2, v1] ∗ V1 ∼ML v1 ∗ V2 ∼ML v2

To establish that we indeed return a pair, we need a value v such that ⟨V2,V1⟩ ∼ML v.
By SimPair, this value needs to point to a block, tag 0, with the components of the
pair. Our newly allocation location γnp indeed does so. However, one thing is wrong:
The mutability. Pairs are backed by immutable points-tos, while our points-to is still
mutable and fully owned. It had to be mutable, so that we could initialize it. But
now that we are done with the initialization, we want to mark it as immutable. For
this, we can use the law UpdateFreeze, shown in Figure 6.8. This law is a so-called
update law: It allows us to perform a ghost update, by which we can turn our fresh
points-to into an immutable one. Additionally, the GC token must be present during
the update, since it gates the access to runtimememory in general. In the operational
semantics, this freezing step is justified by FreezeMut. But there, this freezing step
can only be performed when the state actually switches back to OCaml. In the
program logic, we are able to do these freezing operations in advance–but this makes
the implementation (discussed in Section 6.3) more complicated.
This freezing operation is whywe have a special fresh block-level points-to. A regular
block usually has one of two roles: It either backs some immutable data, like a pair,
or it backs a location, which requires it to be mutable (as we see shortly). When
a block is associated with a location in the visibility map χ, it remains so forever.
This means that it can not be made immutable again, since this would violated
IsStoreBlocks. A fresh block-level points-to denotes that this points is not (yet)
associated with a location. It can thus be made mutable without breaking any
invariants of the wrapper. We say that such a points-to has not yet been shared
with OCaml, since it was not yet made accessible from λML code. Formally, this
is guaranteed by including isPriv(γ) in the definition of a fresh points-to, which
excludes the reference from being associated with a location. Further note that the
update laws shown in Figure 6.8 are usable when just reasoning in the λC program

6.2. Verifying Glue Code By Example 103

UpdateFreeze
GC(θ) γ 7→blk[t|fresh] v⃗

GC(θ) ∗ γ 7→blk[t|imm] v⃗
−∗

UpdateExpose
GC(θ) γ 7→blk[t|fresh] v⃗

GC(θ) ∗ γ 7→blk[t|mut] v⃗
−∗

UpdateMlToBlock
GC(θ) ℓ 7→ML V⃗

∃γ v⃗.GC(θ) ∗ γ 7→blk[0|mut] v⃗ ∗ isLoc(ℓ, γ) ∗ V⃗ ∼ML v⃗
−∗

UpdateBlockToMl
GC(θ) γ 7→blk[0|mut] v⃗ V⃗ ∼ML v⃗

∃ℓ.GC(θ) ∗ ℓ 7→ML V⃗ ∗ isLoc(ℓ, γ)
−∗

ConfrontMlBlock
GC(θ) isLoc(ℓ, γ) γ 7→blk[0|mut] v⃗ ℓ 7→ML V⃗

⊥
∗

IsLocInjective
isLoc(ℓ1, γ1) isLoc(ℓ2, γ2) GC(θ)

ℓ1 = ℓ2 ⇐⇒ γ1 = γ2

∗

IsFgnInjective
isForeign(ι1, γ1) isForeign(ι2, γ2) GC(θ)

ι1 = ι2 ⇐⇒ γ1 = γ2

∗

Figure 6.8: Update laws for manipulating block-level points-tos.

104 The Combined Program Logic

Ψplus1_refC ≜ ∀n ℓ vwθ. ⟨ℓ 7→ML [n] ∗ ℓ ∼ML v ∗ v ∼θC w ∗ GC(θ)⟩ caml_plus1_ref [w]

⟨w ′. ∃θ ′. ℓ 7→ML [n+ 1] ∗ ⟨⟩ ∼ML v ′ ∗ v ′ ∼θ ′

C w ′ ∗ GC(θ ′)⟩

Ψplus1_refML ≜ ∀n ℓ. ⟨ℓ 7→ML [n]⟩ caml_plus1_ref [ℓ]
⟨⟨⟩. ℓ 7→ML [n+ 1]⟩

caml_plus1_ref(v) ≜
let nc = Field(v, 0) in
let n = Int_val(nc) in
let m = n+ 1 in
let mc = Val_int(m) in
Store_field(v, 0,mc);
Val_int(0)

Figure 6.9: Specification for, and implementation of caml_plus1_ref.

logic. They do not need access to the wrapper state interpretation. Instead, the GC
token GC(θ) actually contains the invariants and separation logic resources required
to allow this update. This fact is again part of what we understand by language-local
reasoning: λC code, even if it uses FFI primitives, should remain verifiable within
the existing λC program logic. By performing this update, we can then establish that
γnp 7→blk[0|imm] [v2, v1], which allows us to conclude that ⟨V2,V1⟩ ∼ML γnp. Once this
is done, the remaining obligations are almost trivial.
6.2.2 Working With References

Wenext look at a program that workswith a λML reference. Specifically, we generalize
our caml_plus1 program to take a reference to an integer, and to then increment
this reference. Again, this is just a formalization of a role model program we saw in
Section 3.1. The function caml_plus1_ref, along with its desired λML and derived λC

specification, are shown in Figure 6.9.

The middle part of this program just manipulates some block-level points-tos using
the primitives we already discussed. But before we can start so, we notice a problem.
From the precondition, we get that the λML points-to ℓ 7→ML [n], which tells us that ℓ
points to a one-entry array (a reference). But to use Field and Store_field, we need a
block-level points-to. Howdowe get such a points-to? Intuitively, we know that an λML

array is represented as a block. We just need to formalize this. We do so by adding
more update laws, namely the lawsUpdateMlToBlock andUpdateBlockToMl from
Figure 6.8. The first law, UpdateMlToBlock, allows us to turn an λML points-to into

6.2. Verifying Glue Code By Example 105

{ℓ 7→ML [n] ∗ ℓ ∼ML vloc ∗ GC(θ)} vloc ∼θC v
{ℓ 7→ML [n] ∗ vloc = γloc ∗ GC(θ)} vloc ∼θC v ∗ ℓ ∼ML γloc

{γloc 7→blk[0|mut] [V] ∗ GC(θ)} V ∼ML n

{γloc 7→blk[0|mut] [n] ∗ GC(θ)}
let nc = Field(v, 0) in

{γloc 7→blk[0|mut] [n] ∗ GC(θ)} n ∼θC nc
let n = Int_val(nc) in

{γloc 7→blk[0|mut] [n] ∗ GC(θ)} n = n

let m = n+ 1 in
{γloc 7→blk[0|mut] [n] ∗ GC(θ)} m = n+ 1

let mc = Val_int(m) in
{γloc 7→blk[0|mut] [n] ∗ GC(θ)} (n+ 1) ∼θC nc

Store_field(v, 0,mc);
{γloc 7→blk[0|mut] [n+ 1] ∗ GC(θ)} (n+ 1) ∼θC nc
{ℓ ′ 7→ML [n+ 1] ∗ GC(θ)} ℓ ′ ∼ML γloc

{ℓ 7→ML [n+ 1] ∗ GC(θ)}
Val_int(0)

{w. ℓ 7→ML [n+ 1] ∗ ⟨⟩ ∼ML 0 ∗ 0 ∼θC w ∗ GC(θ)}
{w. ∃v. θ ′. ℓ 7→ML [n+ 1] ∗ ⟨⟩ ∼ML v ∗ v ∼θ

′

C w ∗ GC(θ ′)}

Figure 6.10: Hoare outline for caml_plus1_ref.

106 The Combined Program Logic

a block-level points-to. The contents of the new block-level points-to must represent
the contents of the original block. We also get the fact that the new block-level
location γ represents the original λML location ℓ (compare with SimLoc). Later in the
proof, we need to convert back. For this, we use the rule UpdateBlockToMl. This
rule is a bit more powerful than we need it here: It allows any mutable block-level
points-to to be turned into a λML, even if this block was originally allocated in glue
code. We discuss this further down. In our proof in Figure 6.10, we just use this law
to update the block-level points-to back to an λML one. If we inspect the rule carefully,
we see that we get an λML points-to for an existentially quantified location ℓ ′, which
may or may not be the original location ℓ. To prove that it is the original location,
we use the fact that no two λML locations are represented by the same block-level
location. Specifically, we use IsLocInjective on ℓ ∼ML γloc and ℓ ′ ∼ML γloc, which
unfold (using SimLoc) to isLoc. This allows us to conclude that ℓ = ℓ ′. Apart from
this, the correctness proof of caml_plus1_ref is standard. We again encourage the
reader to read through the Hoare outline of Figure 6.10.
View Reconciliation The two rules, UpdateMlToBlock and its inverse Update-
BlockToMl, might seem obvious. They do however represent a not entirely obvious
solution to a potentially serious problem. To understand this problem, remember
that when switching to the C side, the entire λML heap σML is serialized into the
block-level heap ζ. While on the C side, there is no physical λML state. It is only
restored when the state switches back to the OCaml side. One potential solution
would be to just convert all λML points-tos to block-level points-tos when switching
the state to C, and to convert them all back when switching back. This solution has
but one problem: It breaks the frame rule. To see why, consider how this would work
as a user of this logic. To prove that an external call is correct, the user would not
only need to fulfill the specification of this call, but also give up all λML points-tos.
This includes points-tos that are currently framed out, which means that framing
points-tos around external calls would need to be forbidden.

Instead, our solution works without breaking any laws of separation logic: We
allow these points-tos to be converted gradually and locally. Locally means that
each points-to can be converted on its own, independent of the other points-tos.
Gradually means that this conversion can happen at any time (while in glue code),
instead of all-at-once. In fact, gradual conversions entails that a λML points-to just
remains an λML points-to throughout the glue code. This is the case for most λML

points-tos, in particular for all those that are currently framed out. Currently, the
rules are such that we can only ever convert fully owned points-tos. This ensures
that both points-tos are exclusive with each other, i.e., we can never have both around
at the same time. This is formalized by the rule ConfrontMlBlock. In Section 6.4,
we strengthen our theory to allow having fractional points-tos of both around, as
long as the combined sum of these fractions across both kinds is ⩽ 1.

6.2. Verifying Glue Code By Example 107

As a final point, the rule UpdateBlockToMl even allows setting the new λML values
in the array. This means that going from λML to λC and back can change a points-to
from one storing booleans (represented by 0 or 1) to one storing integers (still
represented by 0 or 1), even if not accessed by the C code. In OCaml, there even is
a function Obj.magic : ’a -> ’b, which unsafely transmutes any value into any
value, that is just implemented3 as the identity function. This function is an example
of unsafe transmutes (allowing one to write code violating type safety), and our
logic is able reason about such unsafe transmutes, so that we can show that some of
these are correct under the right conditions. But note that our model of the OCaml
runtime is not perfect, and there might be compiler invariants about such unsafe
transmutes that we are not aware of.
Before we continue, we want to look at how these rules can inform our intuitive
mental model of reasoning about glue code. In Ocaml-C glue code, we have to
think about OCaml values in both their high-level, OCaml representation, and their
block-level representation. In fact, we often have to switch between both of them.
Since the underlying state does not change, this change is just a change of view.
Intuitively, we mentally “flip a switch,” to now think about a particular block as
storing block-level instead of λML values. These update rules tell us what conditions
we need to check when switching back and forth. We therefore call these rules
view reconciliation rules, since they allow us to reconcile the OCaml view with the
block-level view. We also speak of exchanging, or of trading in points-tos.
Creating New References We mentioned earlier that we can create a new λML

reference in glue code, by simply allocating a block using alloc. This block is fresh,
and in order to back a reference, it needs to be turned into a mutable block-level
points-to γ 7→blk[0|mut] v⃗. This is possible using yet another update law, namely
UpdateExpose. Like all other update laws, this law is also a fact that already holds in
the λC program logic, since the GC token GC(θ) is able to implement this switching.
Note that a mutable points-to already is associated with a location ℓ, by definition.
Thus, UpdateExpose already exposes this location to λML, by converting from isPriv(γ)
to isLoc(ℓ, γ). In the operational semantics, this update step (compare ExposePublic)
only happens during state switches, but we again strengthen the program logic
by allowing these switches to happen in advance. This is similar to how we were
able to make a block immutable in advance with the rule UpdateFreeze. We also
would like to remark that when turning a block-level points-to into an λML points-to
using UpdateBlockToMl, the choice of the λML values v⃗ that end up stored in that
block is made by the user (who verifies the program). In particular, if we have
γ 7→blk[0|imm] [0], this could be turned into a λML points-to that stores [0], or one that

3Actually, the OCaml compiler sometimes performs optimizations with the knowledge that this
implemented by the identify function. Instead, consider this paragraph to instead apply to this
function wrapped inside the opaque identity: fun x => Sys.opaque_identity(Obj.magic x)

108 The Combined Program Logic

ΨΨ
callback ≜ ∀f x e γV v θQ.

⟨γ ∼θC w ∗ γ 7→clos rec f x. e ∗ v ∼θC w ′ ∗ V ∼ML v ∗ GC(θ)∗
▷wp (rec f x. e)V @∅, Ψ {Q}⟩

callback [w,w ′]

⟨wr. ∃Vr vr θ
′. GC(θ ′) ∗ Vr ∼ML vr ∗ vr ∼

θ ′

C wr ∗Q(Vr)⟩

Figure 6.11: The specification for callback.

stores [true], or one that stores [⟨⟩]. This crucially relies on the fact that state switching
is angelic, so that during the correctness proof, we can choose which value should
be used here.

The Other Primitives We have not yet discussed the specifications for read_tag,
length, and isblock. The one for isblock uses IsBlock, defined in Figure 6.2, to determine
whether 0 or 1 should be returned. The other two, which return the tag number
of the length of a block, are very simple. We remark that length only works on
regular blocks, whereas read_tag supports all kinds of blocks, so that it can be used
to discriminate between different kinds of blocks, e.g., between callbacks and foreign
blocks.

6.2.3 Callbacks

For an interesting but simple example using callbacks, we can consider a λC function
that, when passed a closure, just invokes this closure with argument ⟨⟩. We then
prove that this can be used to build a diverging program. But in order to diverge, this
program will repeatedly switch between OCaml and C. This also then demonstrates
that such recursive method calls can be nested arbitrarily deep in our model. The
specification for callback is shown in Figure 6.11. Besides the usual encoding of
arguments as λC values, this specification tells us that invoking a closure simply
executes the λML code that is usually executed when invoking a closure. This is
accomplished by including the normal λML weakest precondition in the specification.
The program that uses callbacks to diverge consists of two parts: A λML part, and a
λC part. These are as follows, with the λML part on the left:

ediverge ≜

let F = (recF x. call caml_diverge F) in
F(⟨⟩)

caml_diverge(F) ≜
let u = Val_int(0) in
callback(F,u)

Themain challengewhen verifying this program is verifying that the closure defined
inside ediverge, when applied to ⟨⟩, does indeed diverge. To prove this, we use the

6.2. Verifying Glue Code By Example 109

following specification for the external call to caml_diverge:
ΨΨ

diverge ≜ ∀f x e Q. ⟨▷wp (rec f x. e)(⟨⟩)@∅, Ψ {Q}⟩ caml_diverge [rec f x. e] ⟨V ′. Q(V ′)⟩

This specification just expresses that caml_diverge emulates the behavior of its input
argument applied to ⟨⟩.
Both ΨΨ

diverge and ΨΨ
callback are parameterized by another λML protocol Ψ, which de-

scribes the external calls available to callbacks made from C. The reason this is
necessary is intricate: Basically, we have two layers of external calls. On the first
layer, we have the external calls made by λML, that follow the specification ΨΨ

diverge.
Since these external calls use callbacks, execution switches back to the OCaml side
at the next higher level. Here, the external calls that are specified to be available are
Ψ. In other words, each time we add a new frame to the cross-language call stack
(without returning in-between) by invoking a callback, we unwrap this specification
once. This is insufficient to prove correctness of our diverging program that switches
back-and-forth between λML and λC. In order to verify it, we want to have the same
specification on all layers. Formally, we want our “infinitely unfolding” specification
Ψdiv_fix to be a fixed point of the above specification:

Ψdiv_fix = Ψ
Ψdiv_fix
diverge

Luckily, we can accomplish this. To do so, we use themagic of step-indexing. For this,
it is crucial that the specificationΨdiverge guards theweakest precondition part behind
a later. This ensures that Ψ 7→ ΨΨ

diverge is contractive. We can thus tie a fixed point
specification that satisfies the above law. In order to show that caml_diverge, written
in λC, actually implements this specification, it is necessary that the specification of
callbacks also guards its use of the weakest precondition behind a later. Once we
have shown that the λC function satisfies the overall specification, verifying that the
closure diverges becomes a case study in Löb induction. By Löb induction, we can
assume that we have already proven that our closure diverges at the next step-index.
Since the usage of this closure (inside the weakest precondition) is guarded by a
later, everything works out.
6.2.4 Foreign Blocks and Semantic Types
The rules for primitives manipulating custom blocks are shown in Figure 6.12. By
now, the rules should not be surprising. They involve custom block points-tos,
which are also yet another specification of the block-level points-tos we have seen.
Specifically, they carry with them the fact that the custom block backs a certain for-
eign value identifier, indicated by isForeign(ι, γ). This proposition is persistent, and
similar to isLoc(ℓ, γ), it also has an injectivity property, as defined by IsFgnInjective.
In Section 3.4, we created a simple buffer library, that uses custom blocks to imple-
ment a very basic form of buffers. These buffers were so simple, that all they stored

110 The Combined Program Logic

Ψread_custom ≜ ∀wγθw ′ d. ⟨γ ∼θC w ∗ GC(θ) ∗ γ 7→d
cstm w ′⟩ read_custom [w]

⟨w ′. γ ∼θC w ∗ GC(θ) ∗ γ 7→d
cstm w ′⟩

Ψwrite_custom ≜ ∀wγθw ′. ⟨γ ∼θC w ∗ GC(θ) ∗ γ 7→cstm ⟩write_custom [w,w ′]

⟨0. GC(θ) ∗ γ 7→cstm w ′⟩

Ψalloc_custom ≜ ⟨GC(θ)⟩ alloc_custom []

⟨w. ∃γθ ′. γ ∼θ
′

C w ∗ GC(θ ′) ∗ γ 7→cstm None⟩

Figure 6.12: Specifications for primitives operating on custom blocks.

was one λC integer. To reason about these buffers in λML, we would create a predicate
IsBuffer(V,n), which describes that V is a buffer value, which stores the integer n.
Then, a specification of a method that modifies the buffer might be given as follows:

∀V n. ⟨IsBuffer(V,)⟩ caml_buf_store [V,n] ⟨0. IsBuffer⟩(V,n)

If our implementation were to follow the example of Section 3.4, the definition of
IsBufferwould have to be as follows:

IsBuffer(V,n) ≜ ∃ι γ. V = ι ∗ isForeign(ι, γ) ∗ γ 7→cstm n

What is more interesting is that this can also be used with the logical relation of
Section 4.5. As an example, we can encapsulate a closure that calls caml_buf_store
behind an existential type, so that the following λML expression can be shown se-
mantically well-typed at type ∃τ. τ→ int→ unit:

pack λb n. call caml_buf_store [b,n]

To do so, we need to pick a suitable type, withwhichwe can instantiate the existential
quantifier. This type is the following type, which is a persistent predicate on values:

BufTypeInterp(V) ≜ ∃ι. V = ι ∗ ∃n.IsBuffer(V,n) Nbuf.ι

By using the logical relation, we can not only prove that a certain function computes
the proper values, but also that it can be safely encapsulated in λML by giving it a
λML type, which might be existential. In real-world OCaml, which lacks first-order
existential types, this would usually be accomplished by using a module. Such a
module can simply be defined like this:

6.2. Verifying Glue Code By Example 111

struct
type buf
external buf_store : buf -> int -> unit = "caml_buf_store"
...

end

Our formal model of OCaml is closer to SystemF, it in particular lacks OCaml’s
module system. While encoding OCaml’s modules in SystemF is possible [39], we
do not do so, since it is unrelated to the OCaml FFI.
6.2.5 Combining Verified Programs
For all the examples shown so far, we just stopped after proving that our λC programs
satisfy specifications similar enough ot those assumed for the λML program. Now,
we discuss what is needed to close the gap towards a final adequacy theorem. For
this, we go back to the initial example, caml_plus1. We proved the following C
specification:

Ψplus1 ≜ ∀n, v,w θ. ⟨n ∼ML v ∗ v ∼θC w ∗ GC(θ)⟩ caml_plus1 [w]

⟨w ′. ∃mv ′.m = n+ 1 ∗m ∼ML v ′ ∗ v ′ ∼θC w ′ ∗ GC(θ)⟩

Compare this to the specification we assumed in λML:

Ψplus1 ≜ ∀n. ⟨⊤⟩ caml_plus1 [n] ⟨m.m = n+ 1⟩

We argued that these specifications are similar enough. In fact, we even argued
that the original specification is stronger than required, since it also encodes that
the garbage collector never runs. We now formally define the translation that tells
us what specification, exactly, our λC program must occupy for us to use it from
λML. Formally, this translation is defined as a translation of protocols. Given an λML

protocol Ψ about functions with λML values as arguments (and as return values),
it creates a λC protocol [Ψ]FFI that defines the specification a λC program needs to
have in order for us to claim that it implements that λML specification. The formal
definition of the translation [Ψ]FFI is shown in Figure 6.13. Intuitively, this protocol
says that we get λC values that encode (via ∼ML and ∼θC) the original λML values,
and that similarly the λC return value must encode a λML that satisfies the original
postcondition. Further, we get to initially assume the GC token GC(θ), which we
have to return in the end. But we do not have to returnGC(θ) specifically–the address
map may change, so that ∃θ ′.GC(θ ′) is sufficient. As mentioned, our specification
Ψplus1 is thus even stronger than required. Formally, we have that Ψplus1 is entailed
by the translated specification: [Ψplus1]FFI ⊑ Ψplus1 (remember that the notion of

112 The Combined Program Logic

[Ψ]FFI(fn, w⃗,QC) ≜∃V⃗ v⃗ θQML. V⃗ ∼ML v⃗ ∗ v⃗ ∼θC w⃗ ∗ GC(θ)∗
Ψ(fn, V⃗,QML) ∗

∀V ′ v ′ θ ′w ′. V ′ ∼ML v ′ ∗ v ′ ∼θ ′

C w ′ ∗ GC(θ ′) −−∗
QML(V ′) −−∗ QC(w)

Ψ
P,Q
maine

(fn, w⃗,QC) ≜ ⟨P ∗atInit⟩ "main" []

⟨w ′. ∃V⃗ v⃗ θ.w ′. V ′ ∼ML v ′ ∗ v ′ ∼θ ′

C w ′ ∗ GC(θ ′) ∗Q(V ′)⟩

ΨΨ
FFI ≜ΨInt_val ⊔ ΨVal_int ⊔ · · · ⊔ ΨΨ

callback all except main
[e]FFI ≜ {"main" := maine , "Int_val" := Int_val, . . .}

CombinedCorrect
{P} e @∅, Ψ {V.Q(V)}ML Ψ

Ψcb
FFI ⊢ p : [Ψ]FFI dom p ## dom [e]FFI

⊥ ⊢ [e]FFI ⊕ p : ΨP,Q
maine

Figure 6.13: Reasoning rules for combining OCaml and C.

strength is “flipped” for protocols, see Section 4.1). Note that if we define a program
pplus1 = {"caml_plus1" := caml_plus1}, we can even establish a program triple:

ΨΨ
FFI ⊢ pplus1 : Ψplus1

The λML interface Ψ is the interface specifying the behavior of closures. Since our
example never invokes closures, the interface we put there does not matter. To avoid
cluttering the following presentation, we omit it there. As a reminder, we have also
shown that our λML expression always executes without failure:

{⊤} eplus1 @∅, Ψplus1 {V.⊤}ML

If we now embed eplus1 in our wrapper, and link this with the lifted C program,
we gain a multi-language program. We can then use the rule CombinedCorrect to
establish that this combined program is correct:

{⊤} eplus1 @∅, Ψplus1 {V.⊤}ML

ΨFFI ⊢ pplus1 : Ψplus1 [Ψplus1]FFI ⊑ Ψplus1

ΨFFI ⊢ pplus1 : [Ψplus1]FFI
JudgmentWeaken

⊥ ⊢ [eplus1]FFI ⊕ pplus1 : Ψ⊤,⊤
maineplus1

CombinedCorrect

The result of this rule, ⊥ ⊢ [eplus1]FFI ⊕ pplus1 : Ψ⊤,⊤
maineplus1

, tells us that the overall
program is correct. The program it applies to, [eplus1]FFI ⊕ pplus1, is the result of
linking. Specifically, we linked our C program pplus1, which also is a program of
↑λC, with the wrapper program [eplus1]FFI, which contains all the primitives, and
specifically contains the main primitive set up such that it starts executing eplus1.

6.2. Verifying Glue Code By Example 113

The rule then tells us two things. First, this resulting linked program does not
make any external calls. Second, this program satisfies the specification Ψ⊤,⊤

maineplus1
.

This specification, defined in Figure 6.13, tells us that the main function can safely
execute. It is parameterized by a precondition P, and a postcondition Q, the latter
describing the returned λML values. In our case, P ≜ ⊤, since our program has no
preconditions. We also setQ(V) ≜ ⊤, since we do not care about the result value, all
we are interested is proving our program is safe. This specification then tells us that
invoking the function "main" without arguments is almost safe, since in particular
P = ⊤. It also tells us that the return value in λC must encode an λML value in the
usual sense, but we ignore this for now. Only one precondition remains, namely
atInit. This separation logic token ensures that main can only be invoked once, and
that the state is still empty, as required by SWrapPrimMain. As it turns out, we get
this token initially when starting in the empty state. Assuming that we have this
atInit token initially, we can now prove that the weakest precondition of invoking
"main" in this linked program:

wp ((BeforeCall "main" []), •)@∅, [eplus1]FFI ⊕ pplus1 { .⊤}

This is a weakest precondition not assuming any external calls, thus we can apply
adequacy, in the form of Theorem 6.1. When doing so, we need to pick the initial
state to be the empty state,4 so that atInit is actually true. Thus, our entire linked
program is safe to execute when starting in the default, initially-empty, state. In
other words, we have achieved the central aim of this thesis.
Wait, What?! As it turns out, we have not yet done so. What is missing is proving
that the program logic we outlined here, in particular rule CombinedCorrect, is
sound. But besides this proof, which we give in Section 6.3, we are truly done. To
do so, we followed the following recipe:

1. Develop the individual languages, with external calls. (Chapter 4)
2. Develop a linker that can link ABI-compatible languages, allowing external

calls in one language to resolve into the other. (Appendix A)
3. Develop a wrapper, that allows executing λML code, but wraps its external calls

to be ABI-compatible with λC. (Section 5.2)
4. Extend the wrapper with primitives, so that λC can interact with its internal

state. (Section 5.3)
5. Verify the λML program, by assuming a specification for external calls.
6. Verify the λC program, by assuming a specification for FFI primitives.
4Technically, we strengthen our adequacy theorem a bit, so that we can initially assume P if P ∗SI(σ)

is satisfied by the initial state.

114 The Combined Program Logic

7. Show that the wrapper implements the assumed FFI primitive specification.
(Section 6.3)

8. Show that the wrapper executes λML faithfully, including a proper translation
of external call specifications. Section 6.3

9. Show that the linker links this together into a useful result. (Section 6.1.2).
The last three steps are currently combined in the rule CombinedCorrect, which is
heavily specialized to the result we wanted to prove here.
6.3 Formal Implementation
Wenowneed to prove that the program logicwe used in the previous section actually
exists. To do so, we need to come up with a state interpretation of the wrapper state.
Additionally, we need definitions of the GC token, and of all the other ghost state we
used. These all need to match, they need to validate all the update rules, they need
to prove the specifications we assumed about the primitives, and they must validate
the CombinedCorrect rule. We saw hinted at the fact the GC token GC(θ) is much
more complicated than it seems. It does not only establish that θ is the current state
of the garbage collector, but also

• stores the λC points-tos passed in when registering a root.
• allows trading λML and block-level points-tos, as described by UpdateMlTo-

Block and UpdateBlockToMl.
• allows making mutable blocks immutable (UpdateFreeze).
• allows making private locations public (UpdateExpose).

But let us start simple. If all we want is to connect the address map θ in the GC
token GC(θ) to the actual address map present in the state of the wrapper, we could
define both the state interpretation and the GC token like this:

SIpriv(χ, ζ, θ, rs) ≜γθ 7→½ θ ∗ · · ·

GC(θ) ≜γθ 7→½ θ

This connects the GC token and the state interpretation using a ghost variable.
Unfortunately, we now run into a naming conflict: Ghost variables, which associate
a value with a ghost name, are denoted by γ. Block-level locations are also denoted
by γ, but are colored differently. Back to the token: It uses a specific ghost variable,
namely γθ, to connect both parts. Thus, when we know both are present (like while
verifying that a primitive has a specification), we can use the agreement properties
to find that both contain the same map. Also, we can combine both, so that the
ghost variable is fully owned (as 1 = ½+½). This allows us to change the address

6.3. Formal Implementation 115

map, if needed. What we have defined above is by no means the complete definition.
It is, however, already a small part of it.
Four Different State Interpretations
Before we continue defining the state interpretation, we should note what “the state
interpretation” even is. We constructed our wrapper with state that can have two
different sides: The OCaml side, for executing λML code, and the C side, for executing
λC code. TheC side state is further splittable into the public (linkage-model-defining)
and the private (internal) state. Since the wrapper is ABI-compatible with λC, the
public state was defined as λC state. The public state interpretation is similarly forced
to simply be the λC state interpretation. For the other components of the overall
wrapper state, we best reconsider Figure 5.7, reproduced here:

CSideState ∋ ρC ≜LocMap×BlockStore×AddrMap×RootSet

MLSideState ∋ ρML ≜LocMap×BlockStore×RootMap× ΣC
Σ ∋ ρ ::=CState(ρC, σC) | MLState(ρML, σML)

Σpub ≜ΣC
Σpriv ≜CSideState

We thus need a state interpretation for each side, i.e., for each variant of σ. To increase
modularity, we construct these from different parts, as follows:

SI(CState(ρC, σC)) ≜SIpriv(ρC) ∗ SIpub(σC)

SI(MLState(ρML, σML)) ≜SIMLState(ρML) ∗ SI(σML)

SIpub(σC) ≜SI(σC)

As we can see, the public state interpretation is simply that of λC. The private state
interpretation still needs to be defined. By defining the overall state interpretation
for the C side as their separated conjunction, we ensure that this state interpretation
can always be split into public and private parts, which is required by the linking
operator (compare SIJoin, SISplit, and SIAtBoundary). The state interpretation for
the OCaml side similarly uses the λML state interpretation SI for the λML heap σML.
The other part, SIMLState(ρML), also still needs to be defined. We now go on to define
the state interpretation for the C side, that is, SIpriv. This is the state interpretation
that must be connected to the GC token GC(θ). The other side of the state, which is
used to execute λML code, does not have a GC token.
The GC Token And The OCaml Side This point needs a bit more explanation.
The GC token is needed in λC to reason about glue code. With the OCaml-C FFI, all
the glue code is written in C. In OCaml, the fact that external calls are implemented
in another language is (almost) invisible. We therefore also do not need special

116 The Combined Program Logic

ghost state to reason about λML code in the wrapper, since it should behave like
regular OCaml code. Additionally, the garbage collector is invisible in λML, and does
not need to be reasoned about at all. Finally, a GC token is also not necessary for λML.
As part of overall correctness, we later need to prove that a λML expression within
the wrapper reduces just like it normally would. But to do so, we have access to the
full wrapper state interpretation (of the OCaml side), so no special token is needed.
Implementing Roots

We ignore the OCaml side of the state interpretation for now, instead focusing on
the C side, and its interaction with the GC token. Our first step is to add the needed
support for roots. Remember that while in the C side, the wrapper only stores
a roots set rs. In our program logic, we do however have a root points-to, which
suggests that there is a roots map rm around somewhere, backing that points-to.
This roots map exists in the GC token. Additionally, the GC token tracks that the
entire garbage collector state is correct, in that in particular all roots are reachable,
and the block-level heap is closed under reachability. To do so, the GC token also
needs to know the current block-level heap. This leads to the following definitions:

SIpriv(χ, ζ, θ, rs) ≜γθ 7→½ θ ∗ γζ 7→½ ζ ∗ γrs 7→½ rs ∗ · · ·

GC(θ) ≜∃ζrs. γθ 7→½ θ ∗ γζ 7→½ ζ ∗ γrs 7→½ rs ∗GCroots(θ, ζ, rs) ∗ · · ·

GCroots(θ, ζ, rs) ≜∃rm. •rm γrm∗
dom rm = rs ∗GcClosed(ζ, θ) ∗GcRooted(rm, θ)∗

∗
a7→v∈rm

∃w.a 7→C w ∗ v ∼θC w

a 7→d
root v ≜ ◦d{a := v}

γrm

The first thing we notice is that we gained a few more ghost names, so that the
GC token know the current block-level heap ζ and the current roots set rs. The
actual part related to roots is then handled in GCroots. In there, we first have the
authoritative part that back root points-tos. The other four conditions, together, can
be understood as a separation logic encoding ofGcStateSwitch (see GcStateSwitch).
Together, they encode the invariant that the heap is valid. This is used to e.g., prove
the specification of alloc, which requires that the current heap is correct as specified
byGcStateSwitch. Since the GC token stores all the λC points-tos of rooted locations,
the roots can be changed when a garbage collector run happens. More importantly,
this also ensures that we are able to switch back to λML. With these definitions, we
are able to show that we satisfy the specification of registerroot. Additionally, since
the GC token contains the C points-tos of rooted locations, we can still write to those

6.3. Formal Implementation 117

using normal C stores, as required by CWP-Store-Root and CWP-Load-Root. This
does not need the wrapper state interpretation SIpriv to be present.
More Points-Tos
In order to implement the ghost theory of block-level points-tos, we can simply
again use Iris’ standard ghost theory for these. However, we add a twist:

BlockLevelHeapAuth(ζ) ≜ •ζ γζ ∗ ∗
γ 7→blk∈ζ

mutability(blk) = Imm −−∗ γ 7→�
FFI blk

γ 7→d
FFI blk ≜ ◦d{γ := blk}

γζ

Besides the authoritative fragment, we also store a persistent points-to for each
immutable block. This allows us to prove the following law:

BlockLevelHeapAuth(ζ) −−∗ ζ[γ] = blk −−∗−−∗mutability(blk) = Imm −−∗ γ 7→�
FFI blk

Intuitively, this means that we can always conjure up a persistent points-to for
immutable blocks. This also means that no-one can ever have a fully owned points-
to for immutable blocks. In fact, such a points-to is never necessary. For example, a
closure points-to γ 7→clos rec f x. e, which describes an immutable block, is already
immutable by definition. We do a similar construction for the visibility map points-
tos:

VisibilityAuth(χ) ≜ •χ γχ ∗∗
γ 7→k

k ̸= Priv −−∗ ◦�{γ := k}
γχ

isPrivd(γ) ≜ ◦d{γ := Priv} γχ

isLoc(ℓ, γ) ≜ ◦�{γ := Pub ℓ}
γχ

isForeign(ι, γ) ≜ ◦�{γ := Fgn ι}
γχ

The reason that we cache the persistent points-tos already with the authoritative part
is that it allows us to prove the following laws about IsVal and ∼ML:
Theorem 6.5 (Correctness of ∼ML) V ∼ML v is the separation logic counterpart of
IsVal(χ, ζ, γ, V). Formally, we this means we have the following inferences:

IsValToSL
VisibilityAuth(χ) BlockLevelHeapAuth(ζ) IsVal(χ, ζ, v, V)

V ∼ML v
∗

IsValOfSL
VisibilityAuth(χ) BlockLevelHeapAuth(ζ) V ∼ML v

IsVal(χ, ζ, v, V)
∗

118 The Combined Program Logic

Proof By induction onV . For IsValToSL, we need the ability to conjure up persistent
points-tos, which is possible due to the above construction. □

We can now incorporate both of these into our GC token:

SIpriv(χ, ζ, θ, rs) ≜γθ 7→½ θ ∗ γχ 7→½ χ ∗ γζ 7→½ ζ ∗ γrs 7→½ rs ∗ · · ·

GC(θ) ≜∃χ ζrs. γθ 7→½ θ ∗ γχ 7→½ χ ∗ γζ 7→½ ζ ∗ γrs 7→½ rs∗
GCroots(θ, ζ, rs)∗
GCblocks(χ, ζ) ∗ · · ·

GCblocks(χ, ζ) ≜VisibilityAuth(χ) ∗BlockLevelHeapAuth(ζ) ∗ dom ζ ⊆ dom χ ∗ · · ·

Our state interpretation is now almost complete. As we can see, it only consists of
ghost variables. Instead, the actual “state interpretation,” the one that e.g., backs our
various points-tos, is our GC token. Since the GC token is always required when we
interact with the wrapper, moving out the state interpretation is not an issue. In fact,
it is a strength, since it enables language-local reasoning. We ensure the update laws
are usable when just working in the λC program logic by simply giving λC access
to the state interpretation. While reasoning in λC, we are then able to update some
of these resources, as long as that update is compatible with the actual value of
all the ghost variables. In our GC token, we also track that dom ζ ⊆ dom χ. This
is an invariant of our operational semantics, which is also required by some rules,
most notablyMlToC. We track this invariant in our GC token, instead of in the state
interpretation, since this allows using this fact when proving some of the update
laws.
Virtual λML Heaps
We now get to the most interesting part of the GC token. This is the implementation
of the view reconciliation laws, which allowed gradual and local converting of λML

points-tos to block-level ones. To implement this, we use a virtual λML heap. We
mentioned that when switching from the OCaml side to the C side, the λML heap is
completely serialized into the block-level heap. But if we want our λML points-tos
to live on, we need to back them with something. That something is the virtual λML

heap. When switching sides from OCaml to C, the physical λML heap that has just
disappeared lives on as the virtual heap. And when switching back, it is precisely
this virtual heap that becomes the new physical heap. This means that this virtual
heap satisfies all of the invariants required when switching sides, like that all its
contents are high-level representatives of what is stored in the block-level heap. But
since this heap is virtual, it can (within these constraints) be freely modified.
To now implement our update rules UpdateMlToBlock, we use the special λML heap
cell E: This value denotes that the heap cell is not available in λML, but only in the

6.3. Formal Implementation 119

block-level part. When using that rule to convert a λML points-to into a block-level
points-to, the virtual heap is updated to instead store E. The rule for switching back,
UpdateBlockToMl, forces the user verifying the code to pick a new λML array that
should be stored back into the virtual heap to replace E. This works precisely because
our semantics make this choice angelically non-deterministic. Since our operational
semantics already “support” the special value E, no further tracking is needed. It
is explicitly supported to first switch sides to C, then exchange a λML points-to to
a block-level one, and then switch sides back to OCaml without exchanging the
points-to back to an λML one. Of course, this means that this location is inaccessible
in λML, since block-level points-tos can not be used in λML.

To further implement this switching, we need a per-location invariant, which describes
the possible states each pair of connected locations isLoc(ℓ, γ) can be in:

PerLocInvariant(ζ, σML, γ, ℓ) ≜ ∃V⃗ v⃗. (ℓ 7→ML E ∗ ζ[γ] = B(Mut,0,⃗v))

∨
(
σML[ℓ] = V⃗ ∗ γ 7→blk[0|mut] v⃗ ∗ V⃗ ∼ML v⃗

)
∨ (σML[ℓ] = E ∗ γ /∈ ζ)

∨ (ℓ /∈ σML ∗ γ /∈ ζ)

The last two disjuncts are phony, and are only here due to imprecisions in our formal
model of λML.5 The first two disjuncts are actually interesting, since they describe
the two states that the view reconciliation laws switch between. In the first state,
the block-level points-to is handed out to the user, and we store the λML points-to,
storing E. In the second state, the λML points-to is handed out. When it is traded for
a block-level points-to, this block-level points-to must represent the contents of the
λML points-to. Hence, we require V⃗ ∼ML v⃗. This per-location invariant is now added
to the GC token, as part ofGCblocks:

GCblocks(χ, ζ) ≜ ∃σML.VisibilityAuth(χ) ∗BlockLevelHeapAuth(ζ) ∗ dom ζ ⊆ dom χ∗
SI(σML) ∗ (∀ℓ ∈ dom σML. ∃γ. χ[γ] = Pub ℓ) ∗

∗
γ 7→Pub ℓ∈χ

PerLocInvariant(ζ, σML, γ, ℓ)

While it does not look like it, this is a separation logic encoding of IsStoreBlocks and
IsStore, as indicated by the following theorem:

5The reason for them is that the visibility map χ is allowed to contain mappings for locations ℓ that
are not actually allocated. This is because in λML, one can store location literals on the heap that are not
the result of an allocation. This missing distinction between runtime and source values is also present
in many other languages modelled in Iris, and arises partially because we model untyped languages.

120 The Combined Program Logic

Theorem 6.6 LetGCblocks(χ, ζ) be given and let σML be the one existentially quantified
inGCblocks. The following pure fact then holds:

∃ζ ′ ζML. ζ = ζ ′ ∪̇ ζML ∧ IsStoreBlocks(χ, σML, ζML)∧ IsStore(χ, ζ, σML)

Proof By induction on χ, with the rest quantified. However, the induction is not
on every occurrence of χ. Additionally, a helper block-level heap ζplus is needed at
some points. The full details can be found in Coq. □

Future Worlds
Our GC token is now almost complete. The only thing missing is support for
freezing a block (UpdateFreeze), and for exposing a block (UpdateExpose). These
two relations correspond to the two relations freeze and expose of the operational
semantics (see Figure 5.5). In our program logic, we were able to already freeze or
expose blocks before switching the side back to OCaml. To implement this, we use
the same trick as before: virtual heaps. Specifically, we have the virtual block-level
heap ζfuture, and the virtual visibility map χfuture. We call these “future” by analogy
to Kripke/future world semantics. Indeed, the two relations freeze and expose can
be understood as defining future world relations. To now merge support for these
operations into our GC token, we change it like this:

GC(θ) ≜∃χ ζrs. γθ 7→½ θ ∗ γχ 7→½ χ ∗ γζ 7→½ ζ ∗ γrs 7→½ rs∗
ζ freeze ζ ′ ∗ χ expose χ ′

GCroots(θ, ζ ′, rs)∗
GCblocks(χ ′, ζ ′) ∗ · · ·

This means that all previously defined separation logic concepts, including the
points-tos, now operate on the future block-level heap and visibility map. This
makes the verification of our primitives a bit harder. For example, for alloc, we now
only know that the block in the future block-level heap is mutable. This is sufficient
to conclude that the block in the actual block-level heap is mutable, but only because
freeze is defined to only allow making mutable blocks immutable, not the other way
around.
The State Interpretation For The OCaml Side
We now have a state interpretation for the C side of the wrapper state. This must
now be augmented with a state interpretation for the OCaml side. This state obli-
gation must in particular allow one to switch sides, as described by MlToC and
CToMlAngelic. For this to work, the state interpretation for the OCaml side needs
to store the resources of both the GC token and the C side state interpretation. The

6.3. Formal Implementation 121

main difficulty in defining this interpretation is that while on the OCaml side, both
the block-level heap ζ and the λC heap σC are “missing something”. Specifically, the
roots are removed from σC and all blocks that describe λML locations are removed
from ζ. However, we don’t want to (or can not actually, for λC) remove these parts in
the ghost theory. Instead, we again use virtual heaps, so that these parts can remain.
The full definition is as follows:

SIMLState(χ, ζ, rm, σC) ≜γθ 7→∅ ∗ γχ 7→ χ ∗ γζ 7→ ζ ∗ γrm 7→ dom rs ∗
MLblocks(χ, ζ)∗

SI(σC ∪̇ ((λ . †) ⟨$⟩ rm)) ∗ •rm γrm ∗ ∗
a7→ ∈rm

∃w.a 7→C †

MLblocks(χ, ζ) ≜∃ζML.VisibilityAuth(χ) ∗BlockLevelHeapAuth(ζ ∪̇ ζML)∗
dom ζ ⊆ dom χ∗
(∀γ ∈ dom ζML. ∃ℓ. χ[γ] = Pub ℓ) ∗

∗
γ 7→Pub ℓ∈χ

PerLocInvML(ζ, ζML, γ, ℓ)

PerLocInvML(ζ, ζML, γ, ℓ) ≜∃v⃗. (ℓ 7→ML E ∗ ζ[γ] = B(Mut,0,⃗v))
∨ (γ /∈ ζ ∗ γ 7→FFI B(Mut,0,⃗v))
∨ (γ /∈ ζ ∗ γ /∈ ζML)

To define a virtual λC heap, we simply take the roots map (which contains all
addresses deleted from the original heap), and convert it into a λC heap where every
location is set to the special value † denoting deallocated locations. The specific
value does not matter, we could as well have picked 0. For the block-level heap,
we have ζML as the virtual heap. This must be public, disjoint from the actually
existing ζ, and satisfy a similar per-location invariant. This invariant has three cases.
The first describes the case that we did a view reconciliation update to switch a
λML location to its block-level representative, but did not switch back. The second
describes that we are a virtual location, in which case the value we are storing does
not matter. The third case is again phony. This state invariant for the OCaml side
satisfies all the properties we want it to satisfy. In particular, it allows us to switch
states as defined byMlToC or CToMlAngelic: Each state interpretation can show
that there is no undefined behavior, and that we can again re-establish the state
interpretation of the other side. For this theorem, the GC token is understood as
being part of the state interpretation (so that it is absorbed into the OCaml side state
interpretation, and comes back when switching to C).

122 The Combined Program Logic

Theorem 6.7 (State Switching Correctness)

SwitchCorrectMlToC
SI(MLState(ρML, σML)) (V⃗, ρML, σML) ↬̂M2C (w⃗, ρC, σ ′

C)

atBoundary ∗ SI(CState(ρC, σC)) ∗ ∃θ v⃗.GC(θ) ∗ V⃗ ∼ML v⃗ ∗ v⃗ ∼θC w⃗
−∗

SwitchCorrectCToMl
atBoundary SI(CState(ρC, σC)) GC(θ) V⃗ ∼ML v⃗ v⃗ ∼θC w⃗

∃ρC σML. SI(MLState(ρML, σML)) ∗ ˙|⇛(w⃗, ρC, σ ′
C) ↬̂C2M (V⃗, ρML, σML)

∗

The proof of this is not straightforward. It proceeds by induction on χ, but several
inductions are necessary, and in addition, induction is not on all occurrences of χ.
For more details, we refer to the Coq mechanization. The second rule is interesting,
since the update is delayed. This is because our weakest precondition only allows an
update after the demonic choices have been made, but this rule already determines
angelic choices.
6.3.1 Boundary and Initialization

Two things are still missing: The boundary token atBoundary, and the token atInit

describing that main is safe to call. We earlier described how the C side of the state is
our boundary state. Defining the boundary token is then easy: It is a ghost variable,
that is true whenever we are on the C side, and false otherwise:

atBoundary ≜γboundary 7→½ true

SIMLState(χ, ζ, rm, σC) ≜ · · · ∗ γboundary 7→½ false

SIpriv(χ, ζ, θ, rs) ≜ · · · ∗ γboundary 7→1 false

Finally, we had the token atInit describing that we could call main. This describes
that our wrapper state is currently completely empty. It is defined as follows:

atInit ≜ γinit 7→½ true

SIpriv(χ, ζ, θ, rs) ≜ · · · ∗ ∃i. γinit 7→½ i ∗
(i = true −−∗ GC(∅) ∗ χ = ∅ ∗ ζ = ∅ ∗ rs = ∅)

SIMLState(χ, ζ, rm, σC) ≜ · · · ∗ γinit 7→1 false

Thus, if we have the atInit token while in C (which is where we are when calling
main), we know the state is empty. Additionally, we do not need to pass a GC token,
since it is initially part of the state interpretation.

6.3. Formal Implementation 123

Establishing Correctness
To now prove that all of these constructions are correct for our operational semantics,
we need to prove two things. The first is showing that all primitives satisfy the
specifications we described in Section 6.2. The second is showing that our wrapper
faithfully executes λML code. Formally, we show this simulation theorem:

Theorem 6.8 (Wrapper Simulation Correctness)

WrapperSimulation
wp e @∅, Ψ {V.Q(V)}

wp (⌈e⌉, •)@ [emain]FFI, [Ψ]FFI
{
w. ∃V vθ.GC(θ) ∗ v ∼θC w ∗ V ∼ML v ∗Q(V)

}
Proof By simulation/Löb induction on the given weakest precondition. When
arriving at a value, the state needs to be switched to C. For external calls, the state
also needs to be switched, and switched back when returning. □

This is needed to prove the specification of callback andmain. All the other primitives
can even be proven correct without this. Once one has done so, one can prove that
the wrapper implements all the primitives:

Theorem 6.9 (Wrapper Primitive Correctness)

WrapperCorrect
P −−∗ wp emain @∅, Ψ {V.Q(V)} Ψ ## dom [emain]FFI

[Ψ]FFI ⊢ [emain]FFI : ΨΠ
FFI ⊔ Ψ

P,Q
mainemain

To achieve the combined correctness rule CombinedCorrect we saw earlier, we can
combine this with the linking operator correctnessWP-Link-Modules roughly as
follows, ignoring all side conditions:

P −−∗ wp emain @∅, Ψ {V.Q(V)}

[Ψ]FFI ⊢ [emain]FFI : ΨΠ
FFI ⊔ ΨP,Q

mainemain

WrapperCorrect
ΨΠ

FFI ⊢ p : [Ψ]FFI

ΨΠ
FFI ⊔ ΨP,Q

mainemain
⊢ p : [Ψ]FFI

JudgmentWeaken

⊥ ⊢ [emain]FFI ⊕ p : [Ψ]FFI ⊔ ΨΠ
FFI ⊔ ΨP,Q

mainemain

WP-Link-Modules

⊥ ⊢ [emain]FFI ⊕ p : ΨP,Q
mainemain

JudgmentWeaken

The interface Π is the interface available for callbacks. As we saw in Section 6.2,
this is usually equal to Ψ. The main difficulty in all these proofs is showing that
the we can switch the states from OCaml to C. In other words, once Theorem 6.7
has been shown, the remaining proofs are no longer difficult. Once these have been
completed, our program logic is fully formalized. We can be sure that programs
proven correct in it are indeed safe to execute using our formal semantics.

124 The Combined Program Logic

6.4 Fractional Trading
While our program logic, as presented, is pretty great, we can make it even greater.
For example, the program logic is currently not able to verify the following λC

program:

caml_first(v) ≜ Field(v, 0)

Of course, this statement is slightly inaccurate. There are many specifications we
can verify for this program. For example, we can verify that when passed a pair, it
returns the first component of that pair. Another specification we can verify is that
it returns the first element of an λML array:

∀ℓ V. ⟨ℓ 7→ML [V, . . .]⟩ caml_first [ℓ] ⟨V ′. V ′ = V ∗MLLoc 7→V,...
ML ⟩

But this specification has a fully owned points-to as a precondition. In λML, we do
not need a fully owned points-to to read from a location. Instead, only a fractionally-
owned points-to ℓ 7→d

ML [V, . . .] with d : Q� is sufficient. When we look at Field, we
can see that the specification already allows reading from a fractionally-owned
block-level points-to. This is necessary, since for immutable blocks, we typically do
not have the full points-to (compare the definition of γ 7→blk[t|imm] v⃗ from Figure 6.3).
The problem with verifying the above specification for a fractionally-owned points-
to is that we have no way of exchanging a fraction of a λML points-to for a fraction of
a block-level points-to. The rule UpdateMlToBlock requires full ownership, since it
internally modifies the virtual λML heap by setting the passed-in location to E. Our
goal now is to change this. Specifically, we want update laws that also allow trading
fractional points-tos. We describe our solution in three steps. First, we discuss the
rules we would like to have. To keep things simple, we ignore discardable fractions
for now, and focus only on regular positive fractions q : Q>0. We then show that
implementing these wish-to-have rules is impossible. Specifically, we find a program
which breaks a program logic with the above rules. This is in Section 6.4.1. To work
around this, we have need to tweak our program logic a bit, specifically by adding a
new parameter to the GC token. Finally, we strengthen this fixed program logic to
alsoworkwith discardable fractions. To do so, we prove a new law about discardable
fractions, that allows one to un-discard them. We showcase this in Section 6.4.2. But
first, let’s look at the update laws we would like to have, defined in Figure 6.14.
The first law is a direct generalization of UpdateMlToBlock. The second law, how-
ever, is not. The old law UpdateBlockToMl allowed the person verifying the pro-
gram to choose a new λML array V⃗ that was then stored in the virtual λML heap. When
we only trade fractional points-tos, changing what is stored in the virtual λML is
no longer possible. Thus, the resulting λML array that the λML points-to points to is

6.4. Fractional Trading 125

UpdateMlToBlockFractionalWrong
GC(θ) ℓ 7→q

ML V⃗

∃γ v⃗.GC(θ) ∗ γ 7→q
blk[0|mut] v⃗ ∗ isLoc(ℓ, γ) ∗ V⃗ ∼ML v⃗

−∗

UpdateBlockToMlFractionalWrong
GC(θ) γ 7→q

blk[0|mut] v⃗ ∃V⃗. V⃗ ∼ML v⃗

∃ℓ V⃗.GC(θ) ∗ ℓ 7→q
ML V⃗ ∗ isLoc(ℓ, γ) ∗ V⃗ ∼ML v⃗

−∗

Figure 6.14: The fractional view reconciliation laws we would like to prove.

existentially quantified. The reason we need to still ∃V⃗.V⃗ ∼ML v⃗ in order to apply the
rule is for a single corner case: The case where the GC token still has ownership over
the entire λML points-to, and the virtual λML heap is still storing the special value E. If
we want to hand out a useful λML points-to, it should not store E, and so we need to
give a default value that could be chosen here, should this corner case occur. Thus,
these laws are not a strict replacement for the old laws, but only augment them. In
particular, we still need the law UpdateBlockToMl.
6.4.1 A Pathological OCaml Program
Unfortunately, these rules can not be implemented. While they work just fine as
long as one stays in glue code, they lead to issues when fractional points-tos persist
across the language barrier, specifically the switch from OCaml back to C. To see
why, consider the following actual OCaml program:

let pathologic (l : (int * int) ref) =
let p = !l in l := (#1 p, #2 p)

This program takes a reference l pointing to a pair p, and stores a new pair into this
reference. But the new pair is extensionally equal to the old pair: Both components
are the same. Thus, in λML, we can verify that such a program is correct even when it
does not have full ownership of l. Formally, it satisfies the following specification:{

ℓ 7→q
ML [⟨V1,V2⟩]

} pathologic(ℓ) @∅,⊥
{
⟨⟩. ℓ 7→q

ML [⟨V1,V2⟩]
}
ML

The reason is that the state does not change, since the heap is updated idempotently:
σML[ℓ := V⃗] = σML if ℓ already stored V⃗ . Thus, the state interpretation does not
change, and no full points-to is necessary. The problem is that this new pair might
be extensionally equal, but it is not “the same pair.” This difference6 is observable in
λC. If we look at the block-level value corresponding to this pair, then it is changed

6Compiler optimizations might change this. We tested it, and were able to observe the difference.

126 The Combined Program Logic

by this assignment, since compiled OCaml code creates a new block to back this new
pair, even though the new pair is the same as the old one. Our operational semantics
capture this: When switching from the OCaml side to the C side, a new part of the
block-level heap ζimm that stores immutable points-tos (like the one backing this pair)
is chosen demonically. It is also demonically chosen whether such a pair is backed
by a new block in ζimm, or by re-using the old block that is part of the old block-level
heap. Now imagine that we have the half-owned λML points-to ℓ 7→½

ML [⟨1,2⟩], and
that the other half has been traded in (using UpdateMlToBlockFractionalWrong):
γ 7→½

blk[0|mut] [γpair], where γpair 7→blk[0|imm] [1, 2]. If we now switch to λML, and execute
the above pathological program, the reference now contains a new block-level
location, since the pair is now backed by another block. Instead of being γpair, it is
γnewpair. But the half-owned block-level points-to still references γpair, which is no
longer correct. But we also can not modify this points-to, since it might be framed
out. We therefore are stuck–our rules can not be implemented.
There are (at least) two ways of fixing this. The first is changing the definition
of the block-level points-to to be more fuzzy. One could tweak it so that a store
does not return precisely the value that is stored in there, but only returns a value
that is observationally equivalent (for some notion of observational equivalence).
This should then allow changing the physical state from γpair to γnewpair, without
invalidating the old points-to. While this is an interesting approach, we do not
implement it. Instead, we pursue a much simpler solution: We simply forbid
such partially traded points-tos from existing when switching between OCaml and
C. For this, we add a second parameter to our GC token GC(θ)ds: the dirty set
ds :DirtySet ≜ Pfin (Loc). This dirty set tracks all block-level locations for which there
are fractions of both block-level and λML points-tos around. When we use one of the
fractional trading laws, this set gets larger:

UpdateMlToBlockFractional
GC(θ,ds) ℓ 7→q

ML V⃗

∃γ v⃗.GC(θ)ds∪ {γ} ∗ γ 7→q
blk[0|mut] v⃗ ∗ isLoc(ℓ, γ) ∗ V⃗ ∼ML v⃗

−∗

UpdateBlockToMlFractional
GC(θ,ds) γ 7→q

blk[0|mut] v⃗ ∃V⃗. V⃗ ∼ML v⃗

∃ℓ V⃗.GC(θ,ds∪ {γ}) ∗ ℓ 7→q
ML V⃗ ∗ isLoc(ℓ, γ) ∗ V⃗ ∼ML v⃗

−∗

Almost all uses of the GC token are now changes to support an arbitrary large dirty
set. The only exceptions are in the specification of callback, and in the definition of
the protocol wrapping [Ψ]FFI, since these define what conditions must hold when
the state switches to λML. Here, the dirty set must be empty, so that executing a

6.4. Fractional Trading 127

pathological program like the one above does not cause issues. Finally, we need
some rules to again remove locations from the dirty set. For this, we have a few
confrontation laws:

ConfrontBlock
GC(θ,ds) ℓ 7→1

ML V⃗ isLoc(ℓ, γ)
GC(θ,ds \ {γ}) ∗ ℓ 7→1

ML V⃗
∗

ConfrontMl
GC(θ,ds) γ 7→1

blk[0|mut] v⃗

GC(θ,ds \ {γ}) ∗ γ 7→q
blk[0|mut] v⃗

∗

ConfrontMlBlockFractional
GC(θ,ds) γ 7→q1

blk[0|mut] v⃗ ℓ 7→q2
ML V⃗ isLoc(ℓ, γ)

q1 + q2 ⩽ 1 ∗ V⃗ ∼ML v⃗
∗

The last law does not actually remove anything from the dirty set, but it formalizes
the connection between these fractionally owned points-tos. As such, it is a general-
ization ofConfrontMlBlock. Finally, we need to implement this fractional points-to
trading. We do this by modifying the per-location invariant to the following:

PerLocInvariant(ds, ζ, σML, γ, ℓ) ≜ ∃V⃗ v⃗. (ℓ 7→ML E ∗ ζ[γ] = B(Mut,0,⃗v))
∨ (∃q1 q2. ℓ 7→q1

ML V⃗ ∗ γ 7→q2

blk[0|mut] v⃗∗

V⃗ ∼ML v⃗ ∗ q1 + q2 = 1 ∗ γ ∈ ds)

∨
(
σML[ℓ] = V⃗ ∗ γ 7→blk[0|mut] v⃗ ∗ V⃗ ∼ML v⃗

)
∨ (σML[ℓ] = E ∗ γ /∈ ζ)

∨ (ℓ /∈ σML ∗ γ /∈ ζ)

The second case is new: It describes that we have fractions of both points-tos, and
asserts that the amount we own is exactly 1, so that the sum of all points-tos not
saved in the GC token is also at most 1. It also asserts that the location γ is part of
the dirty set. The special λML heap cell E is only used when ownership is fully moved
from λML to the block level. As long as a fraction of λML points-to ownership remains
in the GC token, the λML heap stores a proper value. If we need to switch the state
from C to OCaml, we know that this case is empty. Thus, we have the same proof
obligations we had before we introduced this case, so that the overall program logic
can be proven correct.
6.4.2 A Law About Discardable Fractions
The new fractional update laws only allow trading points-tos that are fractionally
owned. They forbid trading points-tos that have been discarded. The reason for this
is that addition on these is less well-defined, so that handing out a points-to to keep
the sum q1 + q2 = 1 is not possible, unlike for regular fractions. Instead of trying to
generalize this equations to discardable fractions, we use the following law about
points-tos:

128 The Combined Program Logic

Theorem 6.10 (Un-Discarding of Points-Tos)

ℓ 7→� v ≡−∗ ∃q ′. ℓ 7→q ′
v

In fact, this holds for all ghost state that “updates like a discardable fraction.”

Proof The definition of the update modality allows us to inspect the frame, which
tells us which other fractionalities are around. Let q be the total sum of these
fractionalities, including that of the one we are tying to update. Since they are all
valid in combination, and include at least one persistent points-to, we have q < 1.
But notice that q < 1→ ∃q ′. q+ q ′ < 1 by simply choosing q ′ := 1−q

2 . □

To our knowledge, this law is novel. In particular, it was also not part of the pa-
per [13] on which large parts of this thesis are based. With this law, using the update
law on a discarded fraction is trivial: Simply un-discard it to a proper fraction, use
the update law with this proper fraction, and again discard the result.

Chapter 7

View Reconciliation: Different Approaches

In order to support our view reconciliation rules (Figure 6.8), we added the special
λML heap cell E. As a reminder, the view reconciliation laws allowed us to move the
ownership of a λML to the block level, so that it could be accessed using glue code.
Specifically, these rules allow the user to exchange (or trade) a λML points-to for a
block-level points-to, and vice-versa. When doing so, one points-to is with the user,
while the other points-to is stored internally within the program logic. The heap cell
Ewas used as a placeholder to store in the λML heap when the ownership was moved
to glue code, it marked that heap cell as inaccessible to λML. This formal model is
not realistic: In actual OCaml, heap cells do not become inaccessible. In this chapter,
we develop alternative approaches that do not require this special heap cell. We
then see what changes are needed to again verify all the programs we discussed in
Section 6.2, as well as those in our original paper [13].

As a first step, we remove the E heap cell from the λML language. In Section 7.1, we
describe the resulting program logic, where view reconciliation has been restricted
to cope with the absence of this token. In Section 7.2, we then try to recover the
original view reconciliation laws, by introducing canonical representatives. For this,
we have to develop a new ghost theory, which we can also use in other places to
further strengthen our program logic. These further improvements are outlined in
Section 7.3
7.1 A Restrictive Theory
The special heap cell E was originally introduced to answer the question of what
λML value is stored in a heap cell whose ownership remains at the block level. This
question is not easy to answer otherwise. When the ownership of a points-to is at
the block level, the user should be able to freely read and modify this block. It is the
obligation of the program logic to keep its internally tracked λML points-to consistent
with the changes made at the block level. If simply storing E is not an option, then
the program logic needs to actually find λML values for each new block-level value

130 View Reconciliation: Different Approaches

that the user stores in a block. This is not trivial: If the user stores 1 into a block,
this could be either a number, or the boolean true. Even worse, if one stores a block-
level location into this block, the λML value depends on the contents of the block
at this location, and recursively on the contents of blocks pointed at by locations
stored within this block, etc.. We do not want to implement a program logic where
changing one block can have a cascading effect that requires updating many λML

representatives. Even further, there are some block-level values that can not be
represented as a λML value at all (like a block with tag 1, length 2). So, if we remove
E, we end up with a theory where there might be locations for which no suitable λML

value exists. This is actually only an issue when returning to λML–before this, the λML

is virtual, and completely controlled by the program logic. We can therefore still
support trading points-tos, as long as all points-tos are traded back to their λML form
before switching state to the OCaml side. To implement this, we use the mechanism
already introduced in Section 6.4: The dirty set ds. Specifically, we change our view
reconciliation rules as follows:

UpdateMlToBlockDirty
GC(θ,DirtySet) ℓ 7→ML V⃗

∃γ v⃗.GC(θ,ds∪ {γ}) ∗ γ 7→blk[0|mut] v⃗ ∗ isLoc(ℓ, γ) ∗ V⃗ ∼ML v⃗
−∗

UpdateBlockToMlDirty
GC(θ,ds) γ 7→blk[0|mut] v⃗ V⃗ ∼ML v⃗

∃ℓ.GC(θ,ds \ {γ}) ∗ ℓ 7→ML V⃗ ∗ isLoc(ℓ, γ)
−∗

Since we enforced that the dirty set ds is empty before switching sides, this ef-
fectively requires that all λML points-tos that were exchanged for block-level ones
are exchanged back. Internally, this is implemented by changing the per-location
invariants (where crossed-out parts are considered removed):

PerLocInvariant(ds, ζ, σML, γ, ℓ) ≜ ∃V⃗ v⃗. (ℓ 7→ML E

|V⃗ | many︷ ︸︸ ︷
[0, . . . , 0] ∗ζ[γ] = B(Mut,0,⃗v) ∗ γ ∈ ds)

∨ (∃q1 q2. ℓ 7→q1
ML V⃗ ∗ γ 7→q2

blk[0|mut] v⃗∗

V⃗ ∼ML v⃗ ∗ q1 + q2 = 1 ∗ γ ∈ ds)

∨
(
σML[ℓ] = V⃗ ∗ γ 7→blk[0|mut] v⃗ ∗ V⃗ ∼ML v⃗

)
∨ (σML[ℓ] = E ∗ γ /∈ ζ)

∨ (ℓ /∈ σML ∗ γ /∈ ζ)

PerLocInvML(ζ, ζML, γ, ℓ) ≜ ∃v⃗. (ℓ 7→ML E ∗ ζ[γ] = B(Mut,0,⃗v))
∨ (γ /∈ ζ ∗ γ 7→FFI B(Mut,0,⃗v))
∨ (γ /∈ ζ ∗ γ /∈ ζML)

7.2. Canonical Representatives 131

For the OCaml side variant, we can simply remove the first case, since all original
λML points-tos must be traded back to that form before switching, and thus this case
is no longer needed. For C, we need to change the first case, which describes what
is stored in the virtual λML heap when the ownership is moved to the block level.
Previously, this was E, and nowwe need a new value, namely an array (of the proper
length) just storing zeros. Which concrete value we require does not matter, since
we also mark this case as being dirty, by requiring γ ∈ ds, so that one is forced to
switch their points-tos back. Additionally, we can remove one of the phony cases.

With this program logic, we can still verify all examples, both of Section 6.2 and of
the original paper [13]. This is because these examples never used the feature of
keeping ownership of λML locations at the block level. A reason for this is that this
was already not possible for semantically well-typed glue code: There, the semantic
type of λML locations is already such that it forces one to move the ownership back
to λML before continuing to execute well-typed code.

7.2 Canonical Representatives
We mentioned earlier that finding a λML value for each block-level value seemed im-
possible. In this chapter, we will try this approach anyway. To make selecting the λML

value that represents the low-level modification easier, we want there to be canonical
representatives. Specifically, wewant a λML value V to be the canonical representative
of a block-level value v, such that this relation is right-unique (functional): V should
not be the canonical representative of any other block-level value v ′. For integers, we
already have this: The canonical representative of a block-level integer can simply
be defined as the corresponding λML integer. The canonical representative of a block
is what previously caused difficulty. But observe that custom blocks already have
canonical representatives, namely foreign values ι. We now try to extend this to
all kinds of blocks, so that every location can be represented by a unique foreign
value ι. For this, we change the type of visibilities as follows:

LocKind ∋ k ::= Pub(ℓ, ι) | Priv ι | Fgn ι

We could even merge private and foreign visibilities. Now, each block-level location
is always assigned a foreign location, in addition to being potentially assigned a λML

location ℓ.

We now want to change isForeign(ι, γ) to describe that γ is assigned foreign location
ι, no matter which kind of visibility. Our current constructions require this to be
persistent. But we still want to have isPrivd(γ) to be fully ownable (with d = 1), so
that we can expose a location by updating it from Priv ι to isLoc(ℓ, ι), as long as the
foreign identifier ι stays the same. This requires a custom ghost theory.

132 View Reconciliation: Different Approaches

7.2.1 Ghost Maps with Remainders
We develop the theory of ghost maps with remainders. These do not only have
the regular points-tos 7→, but also the always-persistent “remainder points-to” rem7→ .
This ghost theory is parameterized by a function Frem, that tells us which part of of
the pointed-to value should be persistent and immutable. In the above example,
this function is the function fid : LocKind→ ForeignId, which tells us the foreign id
contained in a visibility annotation, while ignoring the kind (e.g., Pub vs Priv). The
semantics of the regular points-to 7→ are now that it tells us the full value, and it also
still allows mutating the value stored in the map (if fully owned). But this mutation
is limited: The value of Frem must not change. Formally, this is the following law:

GhostMapInsertRemainder
•σ γ

ℓ 7→ v Frem(v) = Frem(v ′)

•σ[ℓ := v]
γ ∗ ℓ 7→ v ′

−∗

We now use ghost maps with remainders to back our visibility map, so that each
block-level location has a unique foreign identifier, but still remains updatable from
a private block to a public block.
7.2.2 Achieving Canonical Representatives
Formally, we define canonical representatives as follows:

CanonInt

n ∼canon n
∗

CanonLoc
isForeign(ι, γ)
ι ∼canon γ

∗

We can now add this to our per-location invariants. The first case of the C side
location invariant is now no longer dirty, since it instead enforces that the λML points-
to stores the canonical representative of the block-level values stored in the block-
level heap:

PerLocInvariant(ds, ζ, σML, γ, ℓ) ≜∃V⃗ v⃗. (ℓ 7→ML V⃗ ∗ ζ[γ] = B(Mut,0,⃗v) ∗ V⃗ ∼canon v⃗)

∨ (∃q1 q2. ℓ 7→q1
ML V⃗ ∗ γ 7→q2

blk[0|mut] v⃗∗

V⃗ ∼ML v⃗ ∗ q1 + q2 = 1 ∗ γ ∈ ds)

∨
(
σML[ℓ] = V⃗ ∗ γ 7→blk[0|mut] v⃗ ∗ V⃗ ∼ML v⃗

)
∨ (ℓ /∈ σML ∗ γ /∈ ζ)

PerLocInvML(ζ, ζML, γ, ℓ) ≜∃v⃗.
(
ℓ 7→ML V⃗ ∗ ζML[γ] = B(Mut,0,⃗v) ∗ V⃗ ∼canon v⃗ ∗ γ /∈ ζ

)
∨ (γ /∈ ζ ∗ γ 7→FFI B(Mut,0,⃗v))
∨ (γ /∈ ζ ∗ γ /∈ ζML)

7.2. Canonical Representatives 133

In the per-location invariant for the OCaml side, we need to be a bit more careful.
Because E no longer exists, all blocks that back a λML array are always moved back to
λML ownership, which also means that they are removed from the block-level heap
ζ (compare CToMlAngelic). This includes the blocks whose ownership should
remain within glue code. Since these blocks are no longer part of the physical
block-level heap, we add them to the virtual block-level heap ζML, which keeps the
blocks around that were removed during state switching. The final difficulty is
proving that the state can be switched from OCaml back to C. There, one has the
old virtual heap ζML, and a new heap ζ′ML that reflects the changes made by λML

code. But since the λML points-to storing the canonical representative was retained
by the wrapper program logic, we know that λML did not modify this location. And
since further canonical representatives are unique, this allows us to conclude that
the block in the new block-level heap ζ′ML is equal to the old block. This allows us to
again prove Theorem 6.7.

7.2.3 Finding Canonical Representatives

Almost all primitives are easily verified to still work with this new program logic.
The only problematic one is Store_field, since this primitive actually modifies a block
that could back a λML array. We then need to ensure that there also is a new canonical
representative for the newblock-level value that is being stored. Unfortunately, this is
not straightforward. The issue again is that we do not properly distinguish between
source and runtime values, so that it seems to be possible to store a block-level
location γ that is not in the domain of the visibility map χ, and therefore is without
an assigned foreign identifier. Luckily, this can be worked around. Primitives like
Store_field are not invoked with block-level values directly, but only with λC values
that encode these block-level values. If we want to store a location γ into a block,
we invoke the primitive withw such that γ ∼θC w⇔ θ[γ] =w. We thus know that all
locations for which a canonical representative needs to be found are in dom θ. If we
change our operational semantics to always ensure dom θ ⊆ dom ζ, we can ensure
that all such values have canonical representatives. Adding this requirement to the
operational semantics does not cause any harm. Without this requirement, it was
already the case that both θ and ζ, which are demonically chosen/extended when
switching sides fromOCaml toC, could growwithout bound1 (seeMlToCDemonic).
Almost all requirements imposed by our semantics only provide lower bounds (e.g.,
θ must contain at least all roots), there are no restrictions on these maps that would
prevent them from being larger than required. If we now enforce dom θ ⊆ dom ζ,
than the address map θ is bounded. But it is not really bounded, since it is bounded
by ζ, which can still grow without bound to accommodate all locations in dom θ.

1The address map θ is actually bounded, but only for locations γ ∈ dom ζ.

134 View Reconciliation: Different Approaches

7.3 Further Improvements to the Ghost Theory
We have now developed a custom ghost theory for the visibility map θ. We can
extend this further, by requiring that this map, as well as the fragments (which
define points-tos) has the injectivity requirement we imposed on these maps. This
allows us to prove IsLocInjective and IsFgnInjective without requiring that the GC
token is present as well:

IsLocInjectiveNoGC
isLoc(ℓ1, γ1) isLoc(ℓ2, γ2)

ℓ1 = ℓ2 ⇐⇒ γ1 = γ2

∗

IsFgnInjectiveNoGC
isForeign(ι1, γ1) isForeign(ι2, γ2)

ι1 = ι2 ⇐⇒ γ1 = γ2

∗

Besides this, we can use our ghost maps with remainders to back both the block-level
heap ζ, and the λML heap σML. For λML, we can pick Frem to be the length of the block.
This establishes that in λML, the length of a block never changes. Similarly, for the
block-level heap, we can make the header of a block persistent. The header stores
the tag, and for regular blocks also stores the length. With this addition, we can
now verify that the polymorphic equality function we verified as part of the original
paper [13, §5] is safe2 when invokedwith a location. This program crucially relies on
the fact that the length of a block does not change. Even further, by using read_tag to
guard against non-standard blocks, we can even verify that the program is safe to call
on function types. What prevents us from claiming this program is safe on all types
are recursive and existential types. Both roll and pack have transparent block-level
representations,3 but we need to know the actual kind of value we are working with.
In particular, if this value is a λML location, we also need ownership over this location.
But if our current type is existential, it might just be ∃τ. τ, which is a type that has
location values as elements, but does not (necessarily) carry ownership for them. If
it is a recursive type, then the ownership is hidden behind a potentially unbounded
number of later modalities.

2Note that comparing locations is not proper: In λML, they are compared by-reference (shallowly),
but the λC function implements a deep comparison, since it can not tell blocks backing references from
those backing, e.g., pairs

3Both are just syntactic sugar for the identity function, so they are already transparent in λML.

Chapter 8

Conclusion

In the paper backing this thesis [13], we presented the first program logic for rea-
soning about multi-language programs constructed from languages with different
memory models. While the paper only gives a very brief description of how this is
achieved, this thesis covers the full construction in-detail.
Themain goal in developing this program logicwas language-locality: When verifying
the correctness of a multi-language program, most of the correctness proof should
be able to be carried out in the program logic of each single language. Additionally,
when reasoning about code not using multi-language features, this should be as if
the whole program was single-language. It is only when reasoning about glue code,
that the true multi-language nature of the overall program must be considered. The
motivation for this is that in practice, only a small part of a multi-language program
is genuine glue code. In that regard, our examples are better understood as excerpts,
only attempting to showcase the glue code design patters that are found in larger
programs.
Formally, our language-locality shows up in the compositional correctness rules of
the wrapper, the linker, and the language-to-module lifting rules (CombinedCor-
rect). Additionally, the view reconciliation and other update laws are theorems of
the λC program logic alone, and can therefore be used to reason about glue code
within just the λC program logic. To achieve this language-locality, we started our
development with the two single languages (Chapter 4). We then formally de-
fined how these languages are connected, by means of the wrapper (Sections 5.2
and 5.3) and the linker (Section 5.1.3). The program logic for reasoning about
glue code (Section 6.3) is then forced to make the usually disjoint resources of the
single-language program logics be compatible. This is achieved by a cleverly con-
structed state interpretation / GC token, which validate the view reconciliation laws
UpdateMlToBlock and UpdateBlockToMl. While much of what we developed
is specific to OCaml and C, we expect such view reconciliation laws to show up
whenever two languages with different ABIs are combined.

136 Conclusion

Note that we only claim to be the first program logic for reasoning about multi-
language programs across different memory models. Indeed, there is a lot of related
work on multi-language program in general.

8.1 Related and Prior Work
The paper [13, §6] already discusses the related work, which covers all of our related
work.

Iris-Wasm

Iris-Wasm [37] is a program logic for reasoning aboutWebAssembly code, including
its interaction with the host. In the interaction between both, the host is more “in
control” of the WebAssembly parts: It has to instantiate them before they can be
executed, and can, e.g., manipulate WebAssembly function tables. The Host takes a
role that is more similar to our linker, since it embeds the WebAssembly semantics.
The Host responsible for receiving calls that “bubble up” in WebAssembly, and for
dispatching them properly. In our work, OCaml and C are completely different
languages, which in particular have different memory models, requiring a more
sophisticated FFI. They communicate as equal partners via the linker. Instead of
using protocols to reason about external calls, these are captured by terminating
with a continuation value, which is then handled by the surrounding context.

Cito

Cito [48, 36] is a verified compiler with support for linking with languages. To
accomplish this, they build an operational semantics, where calls can be specified
using specifications similar to our interfaces. Since they build interfaces into the
operational semantics, their interfaces are pure, while ours are separation-logic-
based. Cito focuses more on compiler correctness, and while there are single-
language program logics, they do not construct a program logic for multi-language
programs.

Cogent

Cogent [30, 31] is a functional language with a verified compiler. Cheung et al. [5]
study how this compiler correctness can be extended to functions implemented in C.
To make this work, the paper considers a restricted version of C, and outlines what
kinds of C functions can be safely added to Cogent code, by defining requirements
on the specifications of these C functions. Since the paper aims to extend a compiler
correctness proof, it does not consider how the C functions can be verified, and
starts by assuming specifications about them. In contrast, we assume the behavior
of the OCaml compiler and runtime, and show how OCaml specifications can be
proven for C code. Since OCaml does not have a linear value system, we do not
need to formally restrict its specifications.

8.1. Related and Prior Work 137

Logical Relations Across Different Languages

Patterson et al. [33] consider several different case studies of language interoper-
ability, where in each case study, the languages have an interesting difference (e.g.,
affine vs not affine). They then construct logical relations, relating types across
both languages. Their model assumes that both languages are compiled to a shared
target language, to which semantic safety then carries over. Interestingly, the rules
for relating values of both languages are defined by the user, in the shared target
language. We do not consider a shared target language, instead linking both lan-
guages by constructing the wrapper, which also has the conversion rules for values
baked into its operational semantics.

More on Multi-Language Semantics

A lot of work has been focused on verifying compilers that work for more than one
language, handling e.g., closure lowering [25, 34], or using logical relations across
different languages [35]. Hur and Dreyer [16] verify a compiler from an OCaml-like
language with a garbage collector to a lower-level language, and support linking
with low-level code. However, they do not build a program logic, and the behavior of
low-level code must be specified in refinement style, by writing identically behaved
high-level code. There also is work on extending CompCert to handle linking with
code written in another language [46, 44, 20, 12]. The present work does include
any compiler, nor does it attempt to verify any.

More theoretically, Matthew and Findler [26] considered multi-language programs
already in 2007, and identified concepts like boundary states, which we used for
great success. Our semantics are also inspired by DimSum [41], which gives a
compositional framework for designing multi-language semantics. The reason our
semantics are not expressed in DimSum itself is that it was published after we started
our work. Its treatise of angelic non-determinism, undefined, and no behavior helped
clarify our approach and our definitions–even though multi-relations were already
introduced in 2012 [24]. While DimSum introduces a modular way of describing
multi-language state switches, it does neither feature a program logic, nor combine
languages with similar features as ours.

Formal Accounts of the OCaml-C-FFI

Furr and Forster [11] construct a type system for verifying C glue code that is written
when interacting with OCaml. They include a soundness proof, and cover full
inductive datatypes. They type system uses the OCaml types assigned to external C
functions as a basis. While their type system is sound for glue code, it can not be
used to ensure soundness of entire multi-language programs using all features of C.

138 Conclusion

8.2 Future Work
We mentioned in Section 3.5 that our formal model of the OCaml FFI lacks several
features, like support for exceptions, for OCaml 5’s multi-threading features, for full
constructor type definitions, for fully featured custom blocks, for more specialized
allocation procedures like caml_alloc_small, or for direct C access to the block-level
heap. All of these are future work. While some of these (e.g., caml_alloc_small)
seem rather easy to handle, properly accounting for non-linear control flow or for
multi-threaded language interoperability seems more difficult.
Another issue with our operational semantics is the use of angelic (and demonic)
non-determinism, which do not exist in physical machines. We used angelic non-
determinism to model the translation between OCaml and block-level values. One
approach for showing that our semantics are realizable is by formally verifying an
OCaml compiler, which compiles OCaml code down to code operating directly on
block-level values, so that no angelic non-determinism is needed. One can then
show that such a translation preserves our original semantics, but no longer has
angelic non-determinism.
Finally, our theory can be used as a foundation for more practical formal methods.
For instance, our program logic could be encoded into Viper [28], a tool for auto-
matically checking whether programs implement separation logic specifications,
using SMT solvers.
8.3 Coq Development
This thesis (as well as the paper [13] it is based on) are fully formalized in the Coq
proof assistant.1 The Coq development of this thesis is part of the supplementary
material, and can also be found under the following DOI:

http://doi.org/10.5281/zenodo.8197195

Since this thesis presents three variations of the view reconciliation rule (see Chap-
ter 7), there are three versions of the Coq development. The first version, called
melocoton_lightning, contains the version presented in Chapter 6, including the
special λML heap cell E. The version of Section 7.1 is called melocoton_restricted,
it includes the version where points-to trading is restricted. Finally, the version
of Section 7.2 with canonical representatives is called melocoton_canon_reps. It
also includes the extended use of ghost maps with remainders, as described in
Section 6.4, as well as the example discussed in that section.
All three versions have the fractional view reconciliation rules discussed in Sec-
tion 7.3. Additionally, all three versions can be found on GitHub.

1This is not fully true: The two example programs caml_plus1 and caml_plus1_ref have not been
formally verified.

http://doi.org/10.5281/zenodo.8197195
https://github.com/logsem/melocoton/tags

Appendix A

Linking

We give a detailed description of the linking operator, whichwas only discussed very
briefly in Chapter 5. In Section 4.1.2, we saw a simple linking operator for linking
two programs written in the same language. (The linking operator was simply the
disjoint union.) We now develop a linking operator that can link different languages.
Note that the concept of a linking operator is overloaded here: The linking operator
on modules produces a module λL ⊕ λR given two modules λL and λR. The linking
operator on programs takes two programs, pL of λL and pR on λR, and combines
these to a program pL⊕pR of the language λL⊕ λR. These linkage operators require
that the twomodules being linked employ the same linkage models. Remember that
the linkage model describes the interface for function calls, in particular the type
of their arguments, and also describe the shared mutable state that all functions
are able to operate on. Formally, this is captured by a type of values, describing the
arguments of functions, and a type of state. For the C linkage model, this is simply
the type of values and state defined by λC.

It turns out that simply using the entire state of a language to define the linkage
model is too simplistic. This would make it impossible to define a module that can
be linked with C, but also has its own private state, used for internal book-keeping,
that should not be accessible to functions it can link with. But this, allowingmodules
to retain some private state when linking with another module, and those modules
being able to rely on that state remaining unchanged, is precisely what we need to
define the wrapper in Section 5.2.
Public and Private State

We thus introduce a distinction between the public (or ABI, or linkage model)
state and the private state of a module. The public state is what defines the linkage
model. The private state is internal to the module. As a further relaxation, we allow
modules to blur the distinction between public and private state, by defining a
third kind of state: overall state. Most of the time, a module will operate on its

140 Linking

CtxλL⊕λR
∋ K ::= • | K · KL | K · KR

SExprλL⊕λR
∋ E ::= v | ⌈eL⌉ | ⌈eR⌉ | BeforeCall fn v⃗ | HandleCallL eL | HandleCallR eR

ExprλL⊕λR
∋ e ≜SExprλL⊕λR

×CtxλL⊕λR

ΣλL⊕λR
∋ σ ::=Boundary(σpub, σpriv,L, σpriv,R)

|StateL(σL, σpriv,R) | StateR(σpriv,L, σR)

Σpriv,λL⊕λR
∋ σpriv ≜Σpriv,L × Σpriv,R

FuncλL⊕λR
∋ F ::= FL | FR

Figure A.1: Syntax of the linking module λL ⊕ λR.

overall state. This state can be split into public and private state, and inversely,
public and private state can be joining into the overall state. But this splitting and
joining is not possible all the time. It only needs to be possible when the linker
intercepts an external call to switch execution to the other language. Since in the
linker, splitting and joining is angelic, not being able to split (or join) is undefined
behavior. Later, we use separation logic to enforce that these kinds of splits and
joins are possible. Formally, we now have the overall state σ, which can be split into
the public state Σpub and Σpriv. To describe the valid splittings and mergings, the
relation Split : Σ→ Σpub → Σpriv → Prop is used. So, for a module to be linkable, it
needs to define its public and private state, as well as its splitting relation Split.
The Linking Operator

We now define the linking operator on modules. Given two modules λL and λR,
the linking operator defines a new module λL ⊕ λR. These two languages must be
ABI-compatible, that is, they have the same kind of values, and the same public
state. They also bring their own types of expressions eL and eR, their own notions
of private and overall states, of evaluation contexts, etc.. We index these with L and
R to indicate their side.

The syntax of this new module is defined in Figure A.1. The definition of contexts is
already interesting: To allow external calls to repeatedly switch sides, evaluation
contexts are now an arbitrary composition of contexts of either side. If we think of
contexts as encoding the call stack, then we allow call stacks that switch between
both implementations. The definition of functions of the linking module is tightly
coupled to the linking operator on programs. When linking two programs pL and
pR, linking should resemble taking the disjoint union pL ∪̇pR. We want a program in
the linked module to consist of several functions, each implemented either in λ1 or
λ2. This formally captures the intuitive understanding of a multi-language program
outlined in Section 2.5, with the choice of language notably being per-function. The

141

BeforeCall fn v⃗

Boundary

HandleCallL eL

Boundary

⌈eL⌉

StateL

⌈e ′L⌉

StateL

⌈v⌉

StateL

v

Boundary

Execution trace of a function not performing external calls.

⌈eL⌉

StateL

⌈KL[callL fn v⃗]⌉

StateL

BeforeCall fn v⃗

KL

Boundary

v

KL

Boundary

⌈KL[v]⌉

StateL

Execution trace when one side calls a function implement in the other language.

Figure A.2: Two execution traces of a linked program.

definition of functions as FL | FR facilitates exactly this. Given a program p of λL⊕λR,
each function in this program is either a function FL or a function FR Thus, the
program p of the linked module can always be written as a combination of two
programs, each in one language: p = pL ∪̇ pR.1

The definition of expressions themselves is also more complicated: An expression is
now a simple expression SExpr, along with a context (representing the call stack).
By designing our expressions like this, we avoid having to distinguish head redexes.
This is fine, since a module does not require so detailed tracking of head redexes.
The simple expressions, which describe the “currently active method,” have four
different variations, of which two exist twice due to symmetry between λL and λR.
One expression merely is a value, indicating that the top-level method is done and
can return. The next one is a plain embedding of an expression of one of the source
languages, which is the default case when the method has not terminated. The next
two expressions are administrative. The BeforeCall expression is the state a new stack
frame starts in. Then, if the call is resolved internally, it will step to HandleCall, which
then steps to the contained expression. The BeforeCall expression is also the special
expression that could facilitate an external call out of the entire linked module. This
is useful if one wishes to link more than two modules. It is also the expression we
start in when showing that a linked program satisfies a protocol. Apart from this,
the administrative expressions exist to manipulate the state, mostly by splitting and
merging it. Since the sequence of operations is a bit convoluted, we explain it in
Figure A.2. There, we show some sample reduction sequences, showing both the
expression and the kind of state.
The first subfigure shows what happens once a function is invoked. In the first step,

1Formally, we first f’map either program with the injection FL/R → F.

142 Linking

SLinkStepL
¬IsVal eL

(eL, σL) −↠pL

L XL ∀e ′L σ ′
L. XL(e

′
L, σ

′
L)→ X(⌈e ′L⌉, K,StateL(σpriv,R, σ

′
L))

(⌈eL⌉, K,StateL(σpriv,R, σL)) −↠p
⊕ X

SLinkToExtCallL
fn /∈ dom pL

SplitL σL σpub σpriv,L X(BeforeCall fn v⃗, K · KL,Boundary(σpub, σpriv,R, σpriv,L))

(⌈KL[call fn v⃗]⌉, K,StateL(σpriv,R, σL)) −↠p
⊕ X

SLinkToValL
SplitL σL σpub σpriv,L X(v, K,Boundary(σpub, σpriv,R, σpriv,L))

(⌈v⌉, K,StateL(σpriv,R, σL)) −↠p
⊕ X

SLinkResolveCallL
pL[fn] = FL

applyFuncL FL v⃗ = eL X(HandleCallL eL, K,Boundary(σpub, σpriv,R, σpriv,L))

(BeforeCall fn v⃗, K,Boundary(σpub, σpriv,R, σpriv,L)) −↠p
⊕ X

SLinkHandleCallL
SplitL σL σpub σpriv,L X(⌈eL⌉, K,StateL(σpriv,R, σL))

(HandleCallL eL, K,Boundary(σpub, σpriv,R, σpriv,L)) −↠p
⊕ X

SLinkReturnL
SplitL σL σpub σpriv,L X(⌈KL[v]⌉, K,StateL(σpriv,R, σ

′
L))

(v, K · KL,Boundary(σpub, σpriv,R, σpriv,L)) −↠p
⊕ X

SLinkTerminate

(v, •,Boundary(σpub, σpriv,R, σpriv,L)) −↠p
⊕ X

Figure A.3: Operational Semantics of λL ⊕ λR.

143

the function is found to be defined on the left side, and is dispatched there. In the
next step, the public state and the private state of λL are merged into the overall state
of λL. Afterwards, the left expression starts reducing. Eventually, it reaches a value,
which is then, in a final state, extracted to the administrative return state. In the
second case, we showwhat happens if somewhere during the actual execution of eL,
an external call to the other side happens. Formally, this happens when eL steps to
a call callL fn v⃗, somewhere within an evaluation context KL. (Remember that each
language and each module has a special expression call for external calls, which is
tested for here.) If that call is not immediately resolved inside of the module it came
from (i.e., is not internal), we step to the administrative state BeforeCall, while also
splitting the overall state of λL into its public and private components. However, we
do so by creating a new stack frame, which means that we add the context KL to
the current list of stack frames. Formally, if e = (KL[callL fn v⃗], K) was our overall
expression (composed of a simple expression and a list of stack frames K), we step
to (BeforeCall fn v⃗, K · KL). Then, this reduces (in several steps) as shown in the first
subfigure (but now with eR and StateR). Eventually, this stack frame terminates
with a value v, which is then returned by substituting it into the next lower stack
frame. This is also where the state is merged again.
The actual formal semantics can be found in Figure A.3. It defines the step-relation
−↠⊕ of the linking module. We only give the semantics for the left side. All
rules, except SLinkTerminate, also exist symmetrically for the right side, by simply
replacing all L with R (and vice-versa). The rule SLinkStepL describes the normal
case, where the left side simply steps according to the semantics of λL. When the
left side wants to make an external call (which are undefined behavior in λL alone),
this is picked up by SLinkToExtCallL, which steps to the boundary state. There
are now two options. If the call is not implemented by either module, we have
undefined behavior of the overall linking module. (If we use the linking operator
on itself, this is where the outer linking operator would intercept the call.) The
other case is that either side can implement the call, which is indicated by rule
SLinkResolveCallL (for the left side), which continues by stepping to HandleCallL.
From there, SLinkResolveCallL uses applyFuncL to invoke the left function with the
arguments passed from the other side. Eventually, a call returns with SLinkToValL,
followed by SLinkReturnL, which passes the returned value back to the calling stack
frame. The final rule, SLinkTerminate, makes values (which indicate termination)
have no behavior.
To conclude that our linking operator defines a module, we need to prove that it
never exhibits no behavior, except for the one allowed by SLinkTerminate.

Theorem A.1 (Absence Of No Behavior For Linking) Let (E, K) : ExprλL⊕λR
not

be a value and σ be given. If ((E, K), σ) −↠p
⊕ X, then X is nonempty.

144 Linking

Proof The only rules where X is not obviously non-empty is SLinkStepL, and sym-
metrically SLinkStepR. There, absence of no behavior follows from the fact that λL,
being a module, also never exhibits no behavior. □

Bibliography

[1] 2023. The OCaml manual – Chapter 22: Interfacing C with OCaml. https:
//v2.ocaml.org/manual/intfc.html

[2] Ralph-JR Back. 1989. Changing data representation in the refinement calculus.
In Proceedings of the Twenty-Second Annual Hawaii International Conference on
System Sciences. Volume II: Software Track, Vol. 2. IEEE Computer Society, 231–
232.

[3] Lars Birkedal and Aleš Bizjak. 2022. Lecture Notes on Iris: Higher-Order
Concurrent Separation Logic. (2022). Available at https://iris-project.
org/tutorial-material.html.

[4] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and An-
drew W. Appel. 2018. VST-Floyd: A separation logic tool to verify correctness
of C programs. JAR 61, 1-4 (2018), 367–422. https://doi.org/10.1007/
s10817-018-9457-5

[5] Louis Cheung, Liam O’Connor, and Christine Rizkallah. 2022. Overcoming
Restraint: Composing Verification of Foreign Functions with Cogent. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Certified Programs
and Proofs (Philadelphia, PA, USA) (CPP 2022). Association for Computing
Machinery, New York, NY, USA, 13–26. https://doi.org/10.1145/3497775.
3503686

[6] Nicolaas Govert De Bruijn. 1972. Lambda calculus notation with nameless
dummies, a tool for automatic formula manipulation, with application to the
Church-Rosser theorem. In Indagationes Mathematicae (Proceedings), Vol. 75.
Elsevier, 381–392.

[7] Paulo Emílio de Vilhena and François Pottier. 2021. A Separation Logic for
Effect Handlers. Proc. ACM Program. Lang. 5, POPL, Article 33 (jan 2021),
28 pages. https://doi.org/10.1145/3434314

[8] Edsger W Dijkstra. 1975. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM 18, 8 (1975), 453–457.

https://v2.ocaml.org/manual/intfc.html
https://v2.ocaml.org/manual/intfc.html
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/3497775.3503686
https://doi.org/10.1145/3497775.3503686
https://doi.org/10.1145/3434314

146 Bibliography

[9] Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bound-
ing data races in space and time. ACM SIGPLAN Notices 53, 4 (2018), 242–255.

[10] Derek Dreyer, Simon Spies, Lennard Gäher, Ralf Jung, Jan-Oliver Kaiser,
Hoang-Hai Dang, David Swasey, and Jan Menz. 2022. Semantics Lecture
Notes. (2022). Available at https://plv.mpi-sws.org/semantics-course/.

[11] Michael Furr and Jeffrey S. Foster. 2005. Checking type safety of foreign
function calls. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Vivek Sarkar and Mary W. Hall
(Eds.). ACM, 62–72. https://doi.org/10.1145/1065010.1065019

[12] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan (Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. 2015.
Deep Specifications and Certified Abstraction Layers. In POPL. ACM, 595–608.
https://doi.org/10.1145/2676726.2676975

[13] Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars
Birkedal, and Derek Dreyer. 2023. Melocoton: A Program Logic for Verified
Interoperability Between OCaml and C. In OOPSLA. ACM.

[14] Charles Antony Richard Hoare. 1969. An axiomatic basis for computer pro-
gramming. Commun. ACM 12, 10 (1969), 576–580.

[15] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The
marriage of bisimulations and Kripke logical relations. In POPL. 59–72. https:
//doi.org/10.1145/2103656.2103666

[16] Chung-Kil Hur and Derek Dreyer. 2011. A Kripke Logical Relation between
ML and Assembly. In POPL. Association for Computing Machinery, New York,
NY, USA, 133–146. https://doi.org/10.1145/1926385.1926402

[17] ISO. 2011. C11 Standard. /bib/iso/C11/n1570.pdf ISO/IEC 9899:2011.

[18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. 2018. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

[19] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an
Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637–650. https:
//doi.org/10.1145/2676726.2676980

[20] Jérémie Koenig and Zhong Shao. 2021. CompCertO: compiling certified open C

https://plv.mpi-sws.org/semantics-course/
https://doi.org/10.1145/1065010.1065019
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/1926385.1926402
/bib/iso/C11/n1570.pdf
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980

Bibliography 147

components. In PLDI. ACM, 1095–1109. https://doi.org/10.1145/3453483.
3454097

[21] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-
Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018.
MoSeL: A general, extensible modal framework for interactive proofs in sepa-
ration logic. Proceedings of the ACM on Programming Languages 2, ICFP (2018),
1–30.

[22] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer,
and Lars Birkedal. 2017. The Essence of Higher-Order Concurrent Separation
Logic. In ESOP (LNCS, Vol. 10201). Springer, 696–723. https://doi.org/10.
1007/978-3-662-54434-1_26

[23] Robbert Jan Krebbers. 2015. The C standard formalized in Coq. Ph.D. Dissertation.
[Sl]:[Sn].

[24] C. E. Martin, S. A. Curtis, and I. Rewitzky. 2007. Modelling Angelic and
Demonic Nondeterminism with Multirelations. Sci. Comput. Program. 65, 2
(mar 2007), 140–158. https://doi.org/10.1016/j.scico.2006.01.007

[25] Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control: Com-
positionally Correct Closure Conversion with Mutable State. In PPDP. ACM,
16:1–16:15. https://doi.org/10.1145/3354166.3354181

[26] Jacob Matthews and Robert Bruce Findler. 2007. Operational semantics for
multi-language programs. In POPL. ACM, 3–10. https://doi.org/10.1145/
1190216.1190220

[27] Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo: A
Concurrent Separation Logic for Multicore OCaml. Proc. ACM Program. Lang.
4, ICFP, Article 96 (aug 2020), 29 pages. https://doi.org/10.1145/3408978

[28] P. Müller, M. Schwerhoff, and A. J. Summers. 2016. Viper: A Verification
Infrastructure for Permission-Based Reasoning. In Verification, Model Check-
ing, and Abstract Interpretation (VMCAI) (LNCS, Vol. 9583), B. Jobstmann and
K. R. M. Leino (Eds.). Springer-Verlag, 41–62. https://doi.org/10.1007/
978-3-662-49122-5_2

[29] Guillaume Munch-Maccagnoni and Gabriel Scherer. 2022. Boxroot, fast mov-
able GC roots for a better FFI. InML Family Workshop. Benoît Montagu, Ljubl-
jana, Slovenia. https://hal.inria.fr/hal-03910313

[30] Liam O’Connor, Zilin Chen, Christine Rizkallah, Sidney Amani, Japheth Lim,
Toby C. Murray, Yutaka Nagashima, Thomas Sewell, and Gerwin Klein. 2016.

https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1016/j.scico.2006.01.007
https://doi.org/10.1145/3354166.3354181
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/3408978
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://hal.inria.fr/hal-03910313

148 Bibliography

Refinement through restraint: bringing down the cost of verification. In ICFP.
ACM, 89–102. https://doi.org/10.1145/2951913.2951940

[31] Liam O’Connor, Zilin Chen, Christine Rizkallah, Vincent Jackson, Sidney
Amani, Gerwin Klein, Toby Murray, Thomas Sewell, and Gabriele Keller. 2021.
Cogent: uniqueness types and certifying compilation. J. Funct. Program. 31
(2021), e25. https://doi.org/10.1017/S095679682100023X

[32] Peter O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95.

[33] Daniel Patterson, Noble Mushtak, AndrewWagner, and Amal Ahmed. 2022.
Semantic soundness for language interoperability. In PLDI. ACM, 609–624.
https://doi.org/10.1145/3519939.3523703

[34] Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. 2017.
FunTAL: reasonably mixing a functional language with assembly. In PLDI.
ACM, 495–509. https://doi.org/10.1145/3062341.3062347

[35] James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Us-
ing Multi-language Semantics. In ESOP (LNCS, Vol. 8410). Springer, 128–148.
https://doi.org/10.1007/978-3-642-54833-8_8

[36] Clément Pit-Claudel, Peng Wang, Benjamin Delaware, Jason Gross, and Adam
Chlipala. 2020. Extensible Extraction of Efficient Imperative Programs with
Foreign Functions, Manually Managed Memory, and Proofs. In IJCAR (LNCS,
Vol. 12167). 119–137. https://doi.org/10.1007/978-3-030-51054-1_7

[37] Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-
Pharabod, Philippa Gardner, and Lars Birkedal. 2023. Iris-Wasm: Robust and
Modular Verification of WebAssembly Programs. In Proceedings of the 44th
ACM SIGPLAN International Conference on Programming Language Design and
Implementation (PLDI 2023). Association for Computing Machinery.

[38] John C Reynolds. 2002. Separation logic: A logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science. IEEE, 55–74.

[39] Andreas Rossberg, Claudio Russo, and Derek Dreyer. 2014. F-ing modules.
Journal of functional programming 24, 5 (2014), 529–607.

[40] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian,
Derek Dreyer, and Deepak Garg. 2021. RefinedC: Automating the Founda-
tional Verification of C Code with Refined Ownership Types. In PLDI (Virtual,
Canada) (PLDI 2021). Association for Computing Machinery, New York, NY,
USA, 158–174. https://doi.org/10.1145/3453483.3454036

https://doi.org/10.1145/2951913.2951940
https://doi.org/10.1017/S095679682100023X
https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-030-51054-1_7
https://doi.org/10.1145/3453483.3454036

Bibliography 149

[41] Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert
Krebbers, Deepak Garg, and Derek Dreyer. 2023. DimSum: A Decentralized
Approach to Multi-Language Semantics and Verification. Proc. ACM Program.
Lang. 7, POPL, Article 27 (jan 2023), 31 pages. https://doi.org/10.1145/
3571220

[42] Steven Schäfer, Tobias Tebbi, and Gert Smolka. 2015. Autosubst: Reasoning
with de Bruijn terms and parallel substitutions. In Interactive Theorem Prov-
ing: 6th International Conference, ITP 2015, Nanjing, China, August 24-27, 2015,
Proceedings 6. Springer, 359–374.

[43] KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly,
Anmol Sahoo, Sudha Parimala, Atul Dhiman, and Anil Madhavapeddy. 2020.
Retrofitting Parallelism onto OCaml. Proceedings of the ACM on Programming
Languages 4, ICFP (2020), 1–30.

[44] Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and
Chung-Kil Hur. 2020. CompCertM: CompCert with C-assembly linking and
lightweight modular verification. Proc. ACM Program. Lang. 4, POPL (2020),
23:1–23:31. https://doi.org/10.1145/3371091

[45] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Kreb-
bers, Derek Dreyer, and Lars Birkedal. 2021. Transfinite Iris: Resolving an
Existential Dilemma of Step-Indexed Separation Logic. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing
Machinery, New York, NY, USA, 80–95. https://doi.org/10.1145/3453483.
3454031

[46] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and AndrewW. Appel.
2015. Compositional CompCert. In POPL. ACM, 275–287. https://doi.org/
10.1145/2676726.2676985

[47] Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A
Logical Approach to Type Soundness. (2022). https://iris-project.org/
pdfs/2022-submitted-logical-type-soundness.pdf (Under submission).

[48] Peng Wang, Santiago Cuellar, and Adam Chlipala. 2014. Compiler verification
meets cross-language linking via data abstraction. In OOPSLA. ACM, 675–690.
https://doi.org/10.1145/2660193.2660201

https://doi.org/10.1145/3571220
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1145/2676726.2676985
https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf
https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf
https://doi.org/10.1145/2660193.2660201

	Preface
	Abstract
	Erklärung für Fachfremde
	Acknowledgements

	Contents
	Introduction
	Outline and Key Ideas
	Authorship Disclaimer

	Background
	Notes on Used Notation
	Classical Hoare Logic
	Separation Logic
	Program Logics in Iris
	Transfinite Iris

	What Is A Multi-Language Program?

	Explaining the OCaml-C Foreign Function Interface
	Basics
	Structured Values
	Working with Blocks

	Roots and Garbage Collection
	Advanced Topics
	Callbacks
	Custom Blocks

	Features Not Considered
	Anticipating the Formal Model

	Modelling Single Languages
	Programs and Functions
	More on Protocols
	Intra-Language Linking

	Lambda-C
	Lambda-ML
	Examining the Differences
	A Logical Relation for Lambda-ML

	The Combined Operational Semantics
	Modules and Angelic Non-determinism
	Executions and Safety
	Lifting Languages to Modules
	Linking and Private State

	Wrapping OCaml to the C ABI
	Defining Primitives
	Callbacks
	Allocating Primitives
	Simple Primitives

	The Combined Program Logic
	Weakest Preconditions for Linkable Modules
	Program Logic and Adequacy
	Weakest Preconditions and Linking

	Verifying Glue Code By Example
	A First Example
	Working With References
	Callbacks
	Foreign Blocks and Semantic Types
	Combining Verified Programs

	Formal Implementation
	Boundary and Initialization

	Fractional Trading
	A Pathological OCaml Program
	A Law About Discardable Fractions

	View Reconciliation: Different Approaches
	A Restrictive Theory
	Canonical Representatives
	Ghost Maps with Remainders
	Achieving Canonical Representatives
	Finding Canonical Representatives

	Further Improvements to the Ghost Theory

	Conclusion
	Related and Prior Work
	Future Work
	Coq Development

	Linking
	Bibliography

