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Abstract

Concurrent search structures are a class of concurrent data structures that implement a
key-value store. Concurrent search structures are integral components of modern software
systems, yet they are notoriously difficult to design and implement. In the context of concur-
rency, linearizability is the accepted notion of correctness of a data structure. A concurrent
data structure is said to be linearizable when each of its operation appears to execute instan-
taneously at some point between its invocation and return point. Typically, linearizability is
established by identifying a linearization point for each operation, i.e., an atomic step when
the operation appears to take effect. Verifying linearizability of concurrent search structures
remains a formidable challenge due to the inherent complexity of the underlying algorithms.
The dissertation addresses this challenge by verifying practical implementations of concur-
rent search structures, thereby bridging the gap between theory and practice in concurrent
search structure verification.

Heretofore, verification of concurrent search structures has often lead to large, intricate
proofs that are hard to comprehend and reuse. Hence, this dissertation develops verification
techniques that aid modularity and enables proof reuse. The notion of a template algorithm
has been used in the literature in order to make the proofs of correctness modular in terms
of the algorithmic structure. A template algorithm allows one to capture certain common
design patterns, while abstracting over others. For instance, a template algorithm may
dictate how concurrent threads interact but abstract away from the concrete layout of nodes
in memory. Once the template algorithm is verified, its proof can be instantiated on a variety
of search structures. However, prior work exploring template algorithms has been limited to
lock-based concurrent search structures.

The concrete contribution of the dissertation is developing and verifying new template
algorithms that cover several variants of lock-free skiplists and lock-based log-structured
merge (LSM) trees. The template algorithms capture concurrency mechanisms, but abstract
away node-level details as well as the style and order of the maintenance operations.

The generalizable contribution of the dissertation is the advancement in the verification
technology required to prove the new template algorithms. There are two key contributions
here, first relating to hindsight reasoning and second to keyset reasoning.

Hindsight reasoning has been shown to be useful for dealing with future-dependent and
external linearization points, a challenge that commonly arises when dealing with lock-free
and multicopy data structures. Hindsight reasoning has been explored in the literature, but
not in the context of a foundational program logic. This dissertation is the first to formalize
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hindsight reasoning in a general purpose program logic with foundational correctness. In
particular, the dissertation embeds hindsight reasoning in the concurrent separation logic
Iris via prophecy variables. The dissertation also presents evidence of significant reduction
in proof size when using hindsight reasoning in Iris compared to the standard prophecy-based
reasoning.

Keyset reasoning is useful for lifting assertions on a node’s contents to the global contents
held by the structure. The dissertation develops a keyset resource algebra, an Iris resource
algebra to enable keyset reasoning in Iris.

All of the techniques and proofs are mechanized in Iris/Coq. Verified search structures
include in particular the Michael set, the Harris list, the Herlihy-Shavit skiplist and an
LSM-tree implementation based on LevelDB. The dissertation also verifies a new variant
of Herlihy-Shavit skiplist previously not considered in the literature. The verification effort
represents a significant contribution as it is the first mechanized proof of linearizability for
concurrent skiplists and LSM-trees.
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1 | Introduction

The digital world has become omnipresent in our day to day life. Almost all computer
systems that manage the digital world, from giant databases to smartphones, are composed of
multiple processors that operate on shared data for efficiency. Having n processors, however,
does not immediately imply a factor of n increase in speed, because the individual processors
also need to communicate and synchronize with each other over the shared data. The
shared data is often organized into so called concurrent data structures, and the stored
data is accessed by operations on these data structures. The algorithms that perform these
operations must be designed carefully in order to function correctly. For instance, there must
not be two processes adding contradictory information to the shared data.

Unfortunately, these algorithms are also among the most difficult software artifacts to
develop correctly. Real-world systems are often affected by software bugs due to concurrency.
The Northeast blackout of 2003 was a power outage in northeastern and midwestern parts
of US and Canada affecting 55 million people in total [128]. The blackout was caused
in part due to a concurrency bug in the alarm systems. A similar bug in the radiation
therapy machine Therac-25 caused severe overdose and led to the death of at least six
people [110]. The digital platforms of financial and government services, which cater to
hundreds of thousands of people everyday, are also plagued by such problems. It is clear
therefore that we need systematic and dependable techniques to reason about and ensure
correctness of these complex algorithms.

Formal verification is the process of analyzing a system against a formal specification or
property using mathematical techniques. In the context of software systems, formal verifi-
cation techniques range from ensuring generic correctness properties (such as the absence
of run-time errors) to proving full functional correctness. Functional correctness involves
demonstrating that a program’s behavior aligns with its expected behavior.

Techniques for checking generic correctness properties include static analysis and model
checking. Static analysis tools such as Error Prone for Java [57], Infer [41], Clang Static
Analyzer [156] and the ASTRÉE analyzer [14] are developed and integrated into the workflow
at major companies in the software industry. These tools automatically analyze millions of
lines of code to identify bugs. In addition to static analysis, Amazon has incorporated model-
checking to verify the distributed protocols and authentication mechanisms underlying AWS
cloud services [146, 165]. However, to achieve a high degree of scalability and automation,
these tools either under-approximate program behaviors, potentially missing critical bugs,
or over-approximate and generate spurious errors as false positives.
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To provide the highest level of assurance for a system, one must prove its functional
correctness. Notable projects that have established the functional correctness of real-world
software systems include the verified optimizing C compiler CompCert [107], the verified OS
microkernel seL4 [91], and the verified HTTPS replacement developed in Project Everest [12].
The downside of proving functional correctness is that it requires several person-years of work
by verification experts.

In light of this context, this dissertation aims to prove the functional correctness of
concurrent search structures. A search structure is a key-based store that implements a
mutable set of keys, i.e. the Set abstract datatype (ADT) or, more generally, a mutable
map of keys to values, i.e. the Map ADT. A search structure is also commonly known as a
dictionary data structure. It provides five basic operations: (i) create an empty structure,
(ii) insert a key-value pair, (iii) search for a key and return its value, (iv) delete the entry
associated with a key, and (v) update the value associated with a particular key.

This dissertation presents a strategy designed to minimize the manual effort involved
in proving the functional correctness of commonly used concurrent search structures. We
accomplish this by enhancing the modularity of the verification process and enabling proof
reuse across diverse data structure implementations.

The correctness criterion we target in this dissertation is that of linearizability [70]. A
concurrent data structure is linearizable if for every concurrent execution history of its oper-
ations, each operation appears to take effect at a single atomic step between its invocation
and return point.

We note that our focus is on establishing partial correctness, meaning we do not provide
guarantees of progress, such as ensuring that a thread executing an operation on a search
structure will always terminate. In this dissertation, we assume that all programs operate
within a garbage-collected environment. This assumption is justified by the fact that issues
related to manual memory reclamation can be handled separately. For example, [120, 121]
propose a technique that separates the proof of data structure correctness from the under-
lying memory reclamation algorithm, allowing the correctness proof to be carried out under
the assumption of garbage collection. Recent work has demonstrated how to perform such
modular proofs within concurrent separation logics [81]. Finally, this dissertation also as-
sumes sequential consistency as the underlying memory model for execution. We discuss
this assumption and related works in Chapter 10.

1.1 State of the Art

The inherent complexity of concurrrent algorithms comes from the combination of managing
concurrent interference while simultaneously organizing data in memory to optimize perfor-
mance. As a result, the state of the art verification techniques for concurrent data structures
have emphasized proof modularity. There are four main types of modular proof techniques:
(i) Hoare logic [72] enables proofs to be compositional in terms of program structure; (ii)
local reasoning techniques [10, 89, 99, 100, 125, 132, 144] allow proofs of programs to be
decomposed in terms of the state they modify; (iii) thread modular techniques [70, 80, 136]
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allow one to reason about each thread in isolation; and (iv) refinement techniques [7, 37, 73]
enable reasoning about properties of a system at different levels of abstraction.

Separation Logics (SL) [18, 19, 33, 39, 40, 42, 48, 56, 86, 106, 127, 130, 157, 164]
incorporating all of the above techniques have led to great progress in the verification of
practical concurrent search structures.

A particular breakthrough came with [97] which demonstrated a modular proof method-
ology for verifying complex real-world data structures such as (lock-based) B-link trees, hash-
tables and linked lists. The core ingredients of the methodology are the template algorithms,
the flow framework [99, 100] and the concurrent separation logic Iris [82, 83, 86, 94–96]. We
explain each ingredient in detail.

A template algorithm captures certain common design patterns, while abstracting over
others. For instance, a template algorithm may dictate how concurrent threads interact
(synchronization) but abstract away from the concrete layout of nodes in memory (memory
representation). Once the template algorithm is verified, its proof can be instantiated on a
variety of search structures. The template algorithms for concurrent search structures were
first introduced by Shasha and Goodman [153], who also identified the invariants needed
for decoupling reasoning about synchronization and memory representation for such data
structures.

The flow framework provides an SL-based abstraction mechanism that allows one to rea-
son about global inductive invariants of general graphs in a local manner. Using this frame-
work, the methodology in [97] performs separation-logic-style reasoning about the correctness
of a concurrent search structure template while abstracting from the specific low-level heap
representation of the underlying data structure.

The final ingredient is the separation logic Iris. The approach in [97] shows how to capture
the high-level proof idea in terms of Iris resource algebras, yielding a general methodology
for modular verification of concurrent search structures.

1.2 Contributions

We categorize search structures as either single-copy, i.e., structures that contain at most
one copy of a key at any time (like B-trees and linked-lists) or multicopy, i.e., structures that
may contain multiple copies of a single key such as Log-Structured Merge (LSM) Trees [134].
Single-copy structures follow the in-place update design. For example, if key k has an
associated value 5 and then this is changed to 17, an algorithm on a single-copy structure
would find the node containing k and change the value from 5 to 17. By contrast, multicopy
structure follow the out-of-place update design. Using the previous example, a new pair
(k, 17) would be prepended to the structure in a multicopy structure. A subsequent search
on k would return the value associated with the most recent pair prepended to the structure,
17 in this case.

The pragmatic advantage of multicopy structures is that all modifications update the root
node of the structure, so they can be processed very fast. The pragmatic disadvantage when
compared to single-copy structures is that searches can take longer and the data structure
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may grow larger.
The proof methodology in [97] targets lock-based single-copy structures. This disser-

tation extends the proof methodology to encompass lock-based multicopy structures and
lock-free single-copy structures. There are significant challenges when extending the proof
methodology to a broader class of concurrent search structures. This dissertation presents
generalizable solutions to these challenges, advancing the verification technology in the pro-
cess.

We next discuss the contributions in detail. All of the techniques and proofs are mech-
anized in Iris/Coq. Verified search structures include in particular the Michael set [122],
the Harris list [62], the Herlihy-Shavit skiplist [68, § 14] and an LSM tree implementation
based on LevelDB. The dissertation also verifies a new variant of the Herlihy-Shavit skiplist
previously not considered in the literature. The verification effort represents a significant
contribution as it is the first mechanized proof of linearizability for concurrent skiplists and
LSM-trees.

1.2.1 Contribution 1: Novel Template Algorithms

The dissertation innovates on the template algorithms from [97, 153] in the following two
ways:

1. We introduce (i) an LSM-DAG Template that encompasses a broad class of (lock-
based) LSM Tree implementations; (ii) a Skiplist Template that encompasses lock-free
linked-lists and skiplists.

2. The novel templates include maintenance operations in addition to the core operations
(search, insert, delete, etc.). Thus, instantiations of our templates are closer to their
real-world counterparts.

The LSM-DAG Template. The LSM Tree is a prominent example of a multicopy
structure. The data structure consists of a root node stored in memory, and a linked list
of nodes stored on disk. New updates (to a key) are added at the root node. When the
root node becomes full, the data is flushed out to nodes on the disk. A search for a key k
traverses the list starting from the root node and retrieves the value associated with the first
copy of k that is encountered.

The LSM tree can be tuned by implementing workload- and hardware-specific data struc-
tures at the node level. In addition, research has been directed towards optimizing the
layout of nodes and developing different strategies for the maintenance operations used to
reorganize these data structures. This has resulted in a variety of implementations today
(e.g. [35, 112, 143, 160, 169]). Despite the differences between these implementations, they
generally follow the same high-level algorithms for the core search structure operations.

We construct a template algorithm for concurrent multicopy structures from the high-
level descriptions of their operations and then prove the correctness of these operations.
Notably our LSM DAG template generalizes the LSM tree so that the outer data structure
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can be a DAG rather than just a list. The template also permits implementations that utilize
the DAG structure of the underlying graph to organize the data, such as a data structure
that combines the LSM tree and B-link tree.

The Skiplist Template. Locks ensure non-interference on portions of memory to guaran-
tee that certain needed constraints hold in spite of concurrency. The disadvantage of locks is
that if a thread holding a lock on some portion of memory p stops, then no other thread can
get a conflicting lock on p. For that reason, some practical implementations such as Java’s
ConcurrentSkipListMap [135] use lock-free algorithms.

This dissertation shows how to capture multiple variants of concurrent lock-free skiplists
and linked lists in the form of template algorithms. Thus, proving the correctness of such
a template algorithm results in a proof that is applicable to many variants at once. Our
template algorithms are parametric in the skiplist height and allow variations along the
following three dimensions: (i) maintenance style (eager vs lazy) (ii) node implementations
and (iii) the order of maintenance operations on the higher levels of the skiplists.

By instantiating our template algorithm with appropriate maintenance operations and
node implementations, we obtain verified versions of existing (skip)list algorithms from the
literature such as the Herlihy-Shavit skiplist algorithm, the Michael set, and the Harris list
algorithm. We also obtain new concurrent skiplist algorithms that have not been considered
before. These new algorithms are correct by construction thanks to our modular verification
framework.

1.2.2 Contribution 2: Hindsight Reasoning in Iris

Linearizability in thread-modular logics such as Iris is defined via (logically) atomic triples [33,
85, 86]. Intuitively, an atomic triple

〈
x. P

〉
e
〈
v. Q

〉
says that at some point during the

execution of e, the resources described by the precondition P will be updated to satisfy the
postcondition Q for return value v in one atomic step. The variable x can be thought of as
the abstract state of the data structure before the update at the linearization point.

Linearizability of a data structure operation op can be expressed by an atomic triple of
the form 〈

C. DS(r, C)
〉
op r

〈
res . ∃ C ′. DS(r, C ′) ∗ Ψop(C,C

′, res)
〉
. (ClientSpec)

Here, r is the pointer that provides access to the data structure. The predicate DS(r, C) is
the representation predicate that relates the root pointer with the abstract state C of the
structure. For instance, in the case of a lock-free linked list, the abstract state refers to the
set of keys contained in the structure. The predicate Ψop(C,C

′, res) captures the sequential
specification of the structure. The specification essentially says there is a single atomic step
in op where the abstract state changes from C to C ′ according to the sequential specification
Ψop(C,C

′, res). This step is op’s linearization point. We call (ClientSpec) the client-level
atomic specification for the data structure under proof.

A particular challenge when proving the (ClientSpec) for the new templates is that their
operations exhibit future-dependent and external linearization points. A linearization point
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Figure 1.1: Proof Organization. Each box represents a collection of modules relevant to the label.
The dashed arrows represent module dependence, i.e., assumption of specifications. The normal arrows
represent implementation of the target module (fulfillment of the assumptions).

is said to be future-dependent if it cannot be determined at any fixed moment, but only
at the end of the execution, once any interference of other concurrent operations has been
accounted for. A linearization point of a thread is said to be external when it lies in a
different concurrent thread. Such linearization points are typically difficult to determine, and
reasoning about them in Iris requires prophecy variables [1, 85] and a helping protocol [81, 85].

Hindsight reasoning [46, 47, 108, 117, 118, 133] has emerged as a suitable technique to
address the challenge of verifying data structures exhibiting future-dependent and external
linearization points. It enables temporal reasoning about computations using a past predicate
⟐p, which expresses that proposition p held true at some prior state in the computation. A
critical step when using hindsight reasoning is the temporal interpolation [118], i.e., a lemma
of the form: if there existed a past state that satisfied property p and the current state
satisfies q, then there must have existed an intermediate state that satisfied o. We set up
temporal interpolation in a manner so that the inferred property o implies a linearization
point. Hence, a thread which has knowledge about a past state that it witnessed and the
current state that it observes can employ temporal interpolation to infer its linearization
point in hindsight.

To our knowledge, this dissertation is the first to embed hindsight reasoning within a
foundational program logic (Iris). The dissertation proposes a hindsight framework whose
main feature is connecting linearizability in hindsight to the atomic triple linearizability.
This connection is made via an intermediate specification, called the hindsight specification,
and a proof that any data structure that satisfies the hindsight specification also satisfies its
atomic triple specification. The proof involves a common helping protocol that is applicable
to a broad class of data structures and is done once and for all.

From the perspective of a proof author using the hindsight framework to verify a concur-
rent structure, one has to establish only the hindsight specification to prove the atomic triple
specification. The hindsight specification is a Hoare Triple specification [72]. In essence, it
asks for a thread to establish linearizability in hindsight at the end of its execution. The
proof author does not have to reason about the helping protocol directly in the verification
process. Moreover, the framework also provides a mechanism for storing an abstraction of
the history of computation so that the proof author can express properties about the past
state using the ⟐ modality.
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We use the hindsight framework to establish linearizability of the Skiplist and LSM-
DAG Templates. Figure 1.1 provides an overview of our verification effort. The module
“Hindsight” captures the assumptions regarding the hindsight specification. The module
“Client-level Spec” relates the client-level specification expressed in terms of atomic triples
to the hindsight specification used for the template-level proofs. The corresponding proof
involves the reasoning about prophecies and the helping protocol, which is done once and for
all and applicable to all data structures that fulfill the assumptions made in the “Hindsight”
module. Afterwards, we show that the “Skiplist Template” and the “LSM-DAG Template”
satisfy the requirements of the “Hindsight” module.

1.2.3 Contribution 3: Keyset Reasoning in Iris

The notion of keysets was introduced in [153] where it was integral to the correctness reason-
ing for single-copy search structures laid out in that paper. A keyset is a node-level quantity
and intuitively, a keyset of a node refers to the set of keys that a node is responsible for. Or,
in other words, if k is in the keyset of a node n, then n should contain k or k should not be
in the structure.

In single-copy search structures, the keysets of all nodes partition the set of all keys and
provide the crucial Keyset Property :

∀ n ∈ N, k ∈ K. k ∈ ks(n)⇒ (k ∈ C(N)⇔ k ∈ C(n)) (KeysetPr)

This property enables one to lift a proof of the specification at the node level to a proof of
the sequential specification of the search structure. A particular situation where (KeysetPr)
proves indispensable is when search fails to find the search key. Note that search observes
only the nodes it visited, and hence has only a partial view of the structure. When search
fails to find the key, the proof has to reconcile this partial view of the structure with the
global view. In essence, if a concurrent invocation of search on key k fails to find the key,
can we conclude that there was a point in time during its execution when k was in fact not
present in the structure? Here, the property (KeysetPr) helps us reconcile facts gathered by
search with the global state of the structure. Specifically, if search can determine a node n
such that k ∈ ks(n) and k /∈ C(n), then we can immediately infer that k was not present in
the structure at that point in time.

To capture the properties of keysets naturally in Iris, the dissertation introduces a keyset
resource algebra (RA), a form of ghost state in Iris. An element of the keyset RA is a pair
of sets of keys (K,C) with C ⊆ K. We associate such pairs to regions in the data structure
graph such that C is the union of the node contents in the region and K is the union of the
nodes’ keysets. The composition of such pairs is defined as (pair-wise) disjoint union. The
validity and the composition operator of the keyset RA then implicitly capture the desired
properties of keysets and ensure (KeysetPr).

The keyset RA has proven to be indispensable to the verification of single-copy search
structures. The keyset RA was first introduced in [97]. However, this dissertation claims the
intellectual contribution of the development of the keyset RA from that verification effort.
The keyset RA is also used for the verification of the Skiplist Templates.
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1.3 Outline

The dissertation is composed of three parts. The first part provides the necessary background
beginning with some preliminary concepts in Chapter 2. This is followed by Chapter 3 which
explains the core ingredients of the proof methodology of [97], i.e., the Edgeset Framework,
the templates for (lock-based) single-copy structures and the Flow framework (Chapter 3).
Chapter 4 provides basics of separation logic and Iris (Chapter 4) that is necessary for proof
formalization.

The second part of the dissertation presents the contributions. Chapter 5 explains the
keyset RA and Chapter 6 develops the Hindsight Framework. These techniques are then ap-
plied towards the verification of the the LSM-DAG Templates (Chapter 7) and the Skiplist
Templates (Chapter 8). Chapter 9 offers the evaluation of the verification effort from Chap-
ter 8 and Chapter 7.

The final part of the dissertation presents a discussion of related work (Chapter 10) and
conclusion (Chapter 11).

Funding Acknowledgements

This work was funded in parts by NYU Wireless and by the United States National Science
Foundation under grants CCF-2304758, 1840761, 2304758, and 25-74100-F1202. Further
funding came from an Amazon Research Award Fall 2021. Any opinions, findings, and
conclusions or recommendations expressed in this dissertation are those of the author and
do not reflect the views of Amazon.

Publication Note

Parts of this dissertation have appeared (or will appear) in the following publications below.

Refereed Publications

1. Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies. 2020. Verifying
concurrent search structure templates. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2020). As-
sociation for Computing Machinery, New York, NY, USA, 181-196.
DOI : https://doi.org/10.1145/3385412.3386029

2. Nisarg Patel, Siddharth Krishna, Dennis Shasha, and Thomas Wies. 2021. Verifying
concurrent multicopy search structures. Proc. ACM Program. Lang. 5, OOPSLA,
Article 113 (October 2021), 32 pages.
DOI : https://doi.org/10.1145/3485490
Parts of texts in Chapter 1, Chapter 7, Chapter 9 and Chapter 10 originated from this
publication.

8

https://doi.org/10.1145/3385412.3386029
https://doi.org/10.1145/3485490


3. Nisarg Patel, Dennis Shasha, and Thomas Wies. 2024. Verifying Lock-free Search
Structure Templates. 2024.
To appear at ECOOP 2024.
Parts of texts in Chapter 1, Chapter 9 and Chapter 10 originated from this publication.
Chapter 6 and Chapter 8 are reproduced from this publication.

Monograph

1. Siddharth Krishna, Nisarg Patel, Dennis Shasha, and Thomas Wies. 2021. Automated
Verification of Concurrent Search Structures. Springer Nature Switzerland AG 2021.
DOI : https://doi.org/10.1007/978-3-031-01806-0
Parts of texts in Chapter 1 and Chapter 10 originated from this monograph.
Chapter 2, Chapter 4, Chapter 3 and Chapter 5 are reproduced from this monograph
with minor changes.

9

https://doi.org/10.1007/978-3-031-01806-0


Part I: Background

10



2 | Preliminaries

This chapter provides technical background for some concepts used in this dissertation,
namely, basic mathematical notation and the programming language we use.

2.1 Basics and Notation

We begin with some basic definitions and notation.

• The term (b ? t1 : t2) denotes t1 if condition b holds and t2 otherwise.

• We write f : A → B for a total function from A to B, and f : A ⇀ B for a partial
function from A to B.

• For a partial function f , we write f(x) = ⊥ if f is undefined at x.

• We use the lambda notation (λx. E) to denote a function that maps x to the expression
E (typically containing x).

• If f is a (partial) function from A to B, we write f [x↣ y] to denote the function from
A ∪ {x} defined by f [x↣ y](z) := (z = x ? y : f(z)).

• We use {x1↣ y1, . . . , xn↣ yn} for pairwise different xi to denote the function ϵ[x1↣
y1] · · · [xn↣ yn], where ϵ is the function on an empty domain.

• Given functions f1 : A1 → B and f2 : A2 → B, we write f1 ⊎ f2 for the function
f : A1 ⊎A2 → B that maps x ∈ A1 to f1(x) and x ∈ A2 to f2(x) (if A1 and A2 are not
disjoint sets, f1 ⊎ f2 is undefined).

• We also write λ0 := (λm. 0) for the identically zero function and λid := (λm. m) for
the identity function.

• For functions f1, f2, we write f2 ◦ f1 to denote function composition, i.e. (f2 ◦ f1)(x) =
f2(f1(x)), and use superscript notation fp to denote the function composition of f with
itself p times.
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• For multisets, we use the standard set notation if it is clear from the context. We
also write {x1↣ i1, . . . , xn↣ in} for the multiset containing i1 occurrences of x1, i2
occurrences of x2, etc. For a multiset S, we write S(x) to denote the number of
occurrences of x in S.

• We write _ for an anonymous variable, usually to bind a variable that is never used.

We now turn to introducing some basic algebraic concepts that will be used in the later
chapters.

Definition 1 A partial monoid is a set M , along with a partial binary operation +: M ×
M ⇀ M , and a special zero element 0 ∈M , such that

(1) + is associative, i.e., (m1 +m2) +m3 = m1 + (m2 +m3); and

(2) 0 is an identity element, i.e., m+ 0 = 0 +m = m.

Here, equality means that either both sides are defined and equal, or both sides are undefined.

Partial monoids are the basis of ghost state, an important reasoning technique which will
be introduced in Chapter 4. An example of a partial monoid is the set P(S) of all subsets
of an arbitrary set S, together with disjoint union ⊎ (where S1 ⊎ S2 is undefined if they are
not disjoint) and the empty set ∅. We usually identify a partial monoid (M,+, 0) with its
support set M .

If + is a total function, then we call M a monoid. For example, the set of natural
numbers N together with addition + and zero form a monoid. Let m1,m2,m3 ∈ M be
arbitrary elements of the (partial) monoid in the following. Here is some terminology and
notation associated with (partial) monoids:

• We call a (partial) monoid M commutative if + is commutative, i.e., m1+m2 = m2+m1.
N and Z are commutative monoids, while 2×2 matrices of natural numbers with matrix
multiplication and the identity matrix form a non-commutative monoid.

• Similarly, a commutative (partial) monoid M is cancellative if + is cancellative, i.e.,
if m1 + m2 = m1 + m3 is defined, then m2 = m3. For example, N is cancellative
monoid while the monoid formed by sets of natural numbers under set union is not (as
{1} ∪ {1, 2} = {1} ∪ {2}).

• We say M is positive if m1 +m2 = 0 implies that m1 = m2 = 0. As you might expect,
N is a positive (partial) monoid, while Z is not positive.

• For a positive (partial) monoid M , we can define a partial order ≤ on its elements as
m1 ≤ m2 if and only if ∃m3. m1 +m3 = m2. Positivity also implies that every m ∈M
satisfies 0 ≤ m. For N, this order corresponds to the natural less-than-or-equal-to
ordering on natural numbers.
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2.2 Programming Language

The programming language that we use in this dissertation is an ML-like language with
higher-order store, fork, and compare-and-set, whose grammar is given below:

e ∈ Expr ::= x Variable
| () Unit constant
| z Integer constants
| true | false Boolean constants
| e1 + e2 | e1 - e2 | . . . Arithmetic expressions
| e1 == e2 | e1 <= e2 | . . . Boolean expressions
| (e1, e2) Pair (tuple) expressions
| if e1 then e2 else e3 Conditional
| e1 e2 Function application
| (µ f x. e) (Recursive) function
| let x = e1 in e2 Let binding
| Inj1 e | Inj2 e Constructor expressions
| match e with Inj1 x -> e1 | Inj2 x -> e2 Pattern matching
| ref(e) Reference creation
| !e Dereference
| e1 ← e2 Reference assignment
| CAS(e, e1, e2) Compare-and-set
| FAA(e, e1) Fetch-and-add
| fork {e} Fork

As is standard in languages based on the λ-calculus, all programs are expressions, the
simplest kind of which is just a variable or constant value. The constant values in our
language include the unit value (the return value of expressions that are evaluated only
for their side-effects such as assignments), integers, and Booleans. Arithmetic and Boolean
expressions use infix notation and conditional expressions are as expected.

Function application is written in standard functional programming style as foo arg
instead of foo(arg). It is also left-associative, i.e., a nested function application foo arg1
arg2 should be read as (foo arg1) arg2. A function expression (µ f x. e) evaluates to the
function that satisfies the (possibly recursive) equation f(x) = e. For example, the following
expression evaluates to the factorial function

(µ fac x. if x == 0 then 1 else x * fac (x - 1))

A lambda abstraction expression (λx. e), which describes a function that maps argument
x to the expression e, can be defined as a syntactic shorthand (λx. e) := (µ _ x. e).

A let binding expression let x = e1 in e2 binds the variable x to the result value of the
expression e1, and evaluates e2 with this new binding. That is, e2 in general would depend
on x, so is evaluated assuming x is equal to e1. The value obtained from e2 is then also
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the result value of the whole let binding expression. In the rest of the dissertation, we use
standard syntactic shorthands, such as:

e1; e2 := let _ = e1 in e2

let f x = e1 in e2 := let f = (λx. e1) in e2

let rec f x = e1 in e2 := let f = (µ f x. e1) in e2

We also omit the in keyword when defining top-level functions.
The language provides constructors Inj1 and Inj2 to construct values of a generic disjoint

sum type. If e evaluates to value v, then Inji e evaluates to Inji v which can be thought of
as a pair consisting of v and a tag bit that encodes i. Such tagged values can be decomposed
using pattern matching expressions such as:

match e0 with Inj1 x -> e1 | Inj2 x -> e2

Here, if e0 evaluates to Inji v, then the match expression binds x to v and continues evalu-
ating ei under this binding. The result value of the match expression is that of the chosen
ei. Algebraic data types, which are commonly supported in functional languages, can be
encoded using disjoint sums. For instance, consider the ML type α option where α is a type
parameter. This type has two constructors: None and Some e where e must evaluate to a
value of type α. The type can be used, e.g., to turn a partially defined function returning
values of type α into a total function returning values of type α option by using None to
indicate the absence of a return value and Some x to indicate that the return value is x.
A caller of the function can then distinguish these two cases by pattern matching on the
constructor of the return value. We can encode this type by letting None := Inj1 () and
Some x := Inj2 x.

The reference creation expression ref(e) evaluates to the address of a newly allocated
heap location, whose value is set to the result of evaluating the expression e. Heap locations,
or references, can be read (or dereferenced) by using the !e command, where e evaluates to
a heap location. A heap location obtained by evaluating an expression e1 can be updated to
the value of e2 using an assignment e1 ← e2, which returns the unit value (). The compare-
and-set expression CAS(e, e1, e2) is an instruction that checks if the value at heap location ℓ
obtained by evaluating e is equal to the value of e1; if so, it sets ℓ’s value to the value of e2 and
returns true, otherwise it does nothing and returns false. The compare-and-set is atomic
once the argument expressions are evaluated, which means that during the execution of the
comparison and update, no other thread can read from or write to ℓ (in other words, they
appear to take place instantaneously). The fetch-and-add expression FAA(e, e1) increments
the value at heap location resulting from evaluation of e by the value of e1. Like compare-
and-set, fetch-and-add is also atomic. The fork command fork {e} creates a new thread
that evaluates expression e in parallel with the forking thread. The expression returns the
unit value () without waiting for the new thread to complete its execution.
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3 | Ingredients for modular
verification

This chapter introduces the edgeset framework that allows one to view a single-copy search
structure as an abstract graph whose nodes are labelled by their contents and edges are
labelled by edgesets. Such an abstract view allows us to define template algorithms for con-
current search structures that fix a concurrent technique but can be instantiated to multiple
concrete data structures. The edgeset formulation we use, and the template algorithms based
on them, comes from Shasha and Goodman [153].

We first present the intuition behind the fundamental concept of an edgeset and show that
it applies across existing search structures. Next we describe the B-link tree data structure,
a highly-efficient and popular algorithm that uses the link technique of synchronization. We
then apply the edgeset notion to derive a template algorithm that can be instantiated to any
concurrent search structure algorithm that supports a link-based redirection for operations
that arrive at an incorrect node, including the B-link tree. We end the chapter with a
discussion of the Flow Framework that allows reasoning about global graph properties in a
local manner. The Flow Framework makes it possible to reason about edgesets and related
quantities in a local manner.

3.1 An Intuitive Introduction to Edgesets

Every search structure supports the notion of navigation. This implies that searches (and
the search portion of inserts, deletes, and updates) follow edges (normally in the form of
either explicit or implicit pointers) as they traverse a path to an appropriate destination
node. For example if a search on a binary search tree for key 5 arrives at a node n having
value 7, then the search will proceed to the left child of n. Similarly a search for key 10 on
a hash structure characterized by hash function h will proceed to the node h(10).

In this framework, we associate each edge (n, n′) of a search structure with a set of key
values called the edgeset, written es(n, n′). If a key k belongs to es(n, n′), then a search that
arrives at n will proceed to n′. In a sorted linked list (Figure 3.1, left), if node n has a key 6,
then es(n, n.next) consists of all values greater than 6. In a binary search tree (Figure 3.1,
middle), if node n has the key value 2, then es(n, n.left) consists of all values less than 2.
Similarly, for a hash structure having hash function h and a bucket i, the edgeset from the

15



3

6

8

{k | k > 3}

{k | k > 6}

{k | k > 8}

5

2 7

1 3 9

{k | k < 5} {k | 5 < k}

{k | k < 2} {k | 2 < k} {k | 7 < k}

r

1

2

3

...

i

...

{k
| h
(k
) =

1}

{k | h(k) =
i}

Figure 3.1: Examples of edgesets shown as edge labels. Left: sorted linked list, middle: binary search
tree, right: a hash structure.

root of the hash structure to i consists of {k | h(k) = i} (Figure 3.1, right).
Thus, the edgeset concept gives us the means to express a search/insert/update/delete

algorithm that applies to any search structure. A search for key k starts at a root (it is
fine for search structures to have many roots) and stops at node n if no edgeset leaving n
contains k.

On well-formed search structures, edgesets have the following two properties:

1. For every node n in a search structure, the edgesets leaving n are mutually exclusive.
This ensures that searches have a unique next node to navigate to.

2. The set of keys in n, denoted contents(n), will be disjoint with the edgesets leaving n.
This ensures that a search for k will not leave node n when k is in node n.

In a binary search tree, for example, the edgesets of the left and right children of node n
are disjoint and are of course disjoint from the key in node n.

3.2 B-link Trees

The B-link tree (Figure 3.2) is an implementation of a concurrent search structure based
on the B-tree. A B-tree is a generalization of a binary search tree, in that a node can have
more than two children. In a binary search tree, each node contains a key k0 and up to two
pointers yl and yr. An operation on k takes the left branch if k < k0 and the right branch
otherwise. A B-tree generalizes this by having l sorted keys k0, . . . , kl−1 and l + 1 pointers
y0, . . . , yl at each node, such that B ≤ l + 1 < 2B for some constant B. At internal nodes,
an operation on k takes the branch yi if ki−1 ≤ k < ki.
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Figure 3.2: B-link tree half-split operation. A B-link tree before (top) and after (bottom) a half-split
on node n, which was full, that transferred children y2 and y3 to a new node n′. A subsequent complete-
split will add n′ to the parent r (the dashed edge). Each node contains an array of keys (top array) and
an array of pointers (bottom array), and a separator value in a gray box directing operations on larger
keys to follow the link edge to the right-neighboring node. Edges are labeled by their edgeset (§3.3).
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In the most common implementations of B-trees (called B+ trees), the keys are stored
only in leaf nodes; internal nodes contain “separator” keys for the purpose of routing only, and
therefore are not part of the contents of the structure. For example, the search structure
depicted in Figure 3.2 (bottom) has key contents {1, 2, 4, 6, 7, 8, 9}. When an operation
arrives at a leaf node n, it proceeds to insert, delete, or search for its operation key in the
keys of n. To avoid interference, each node has a lock that must be held by an operation
before it reads from or writes to the node.

When a node n becomes full, a separate maintenance thread performs a split operation
by transferring half its keys (and pointers, if it is an internal node) into a new node n′, and
adding a link to n′ from the parent of n. A concurrent algorithm needs to ensure that this
operation does not cause concurrent operations at n looking for a key k that was transferred
to n′ to conclude that k is not in the structure. The B-link tree solves this problem by
linking n to n′ and storing a key k′ (the key in the gray box in the figure) that indicates to
concurrent operations that the key k can be reached by following the link edge if k > k′.
(That is what we mean by the intuitive notion of redirection above.)

To reduce the time the parent node is locked, this split is performed in two steps: (i) a
half-split step that locks n, transfers half the keys to n′, and adds a link from n to n′ and
(ii) a complete-split performed by a separate thread that takes a half-split node n, locks the
parent of n, and adds a pointer to n′.

Figure 3.2 (top) shows the state of a B-link tree where node n has become full. We thus
perform a half-split that moves its children {y2, y3} to a new node n′ and adds a link edge
from n to n′. The key 5 in the gray box in n directs operations on keys k ≥ 5 via the link edge
to n′. The bottom figure shows the state after this half-split but before the complete-split
when the pointer of n′ will be added to r (shown using a dotted edge in Figure 3.2).

3.3 Abstracting Search Structures using Edgesets

The link technique is not restricted to B-trees: consider a hash table implemented as an
array of pointers, where the ith entry refers to a bucket node that contains an array of keys
k0, . . . , kl that all hash to i. When a node n gets full, it is locked, its keys are moved to a new
node n′ with twice the space, and n is linked to n′. Again, a separate operation locks the
main array entry and updates it from n to n′. Thus, B-link trees and hash-link structures
follow the same principles of forward pointer-based thread redirection.

While these data structures look completely different, the main operations of search,
insert, and delete follow the same abstract algorithm. In both B-link trees and hash-link
structures, there is some local rule by which operations are routed from one node to the
next, and both introduce link edges when keys are moved to ensure that no other operation
loses its way.

Reprising the discussion of §3.1, we view the state of a search structure abstractly as a
mathematical graph. Each node in this graph can represent anything from two adjacent heap
cells (in the case of a singly-linked list) to a collection of arrays and fields (in the case of a
B-tree), and this mapping is determined by the specific implementation under consideration.
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1 let create () =
2 let r = allocRoot () in
3 r
4

5 let rec traverse n k =
6 lockNode n;
7 match findNext n k with
8 | None -> n
9 | Some n′ ->

10 unlockNode n;
11 traverse n′ k

12 let rec cssOp ω r k =
13 let n = traverse r k in
14 match decisiveOp ω n k with
15 | None -> unlockNode n;
16 cssOp ω r k
17 | Some res -> unlockNode n;
18 res

Figure 3.3: The link template algorithm. The cssOp method is the main method, and represents the
core search structure operations (search, insert, and delete) via the parameter ω. It uses an auxiliary
method traverse that recursively traverses the search structure until it finds the node upon which to
operate (the node containing k in its keyset, as described in §3.5). This template can be instantiated to
the B-link tree algorithm by providing implementations of helper functions findNext and decisiveOp.
findNextnk returns Somen′ if k ∈ es(n, n′) and None if there exists no such n′. decisiveOpnk
performs the operation ω (either search, insert, or delete) on k at node n.

We then define the edgeset of an edge (n, n′), written es(n, n′), to be the set of keys for which
an operation on one of those keys arriving at a node n traverses (n, n′).

The B-link tree in Figure 3.2 labels each edge with its edgeset; the edgeset of (n, y1) is
[4, 5) and the edgeset of the link edge (y0, y1) is [4,∞). Note that 4 is in the edgeset of (y0, y1)
even though an operation on 4 would not normally reach y0. This is deliberate. In order
to make edgeset a local quantity, we say k ∈ es(n, n′) if an operation on k would traverse
(n, n′) assuming it somehow found itself at n.

In the hash table, assuming there exists a global root node, the edgeset from the root to
the ith array entry is {k | h(k) = i}, i.e., all the key values for which a search would go to the
node of the ith array entry. By contrast, the edgeset from an array entry to the bucket node
is the set of all keys K, as is the edgeset from a deleted bucket node to its replacement. The
reason is that once we arrive at an array entry (or a deleted node), we follow the outgoing
edge no matter which key we are looking for.

3.4 The Link Template

Figure 3.3 lists the link template algorithm [153] that uses edgesets to describe the algo-
rithm used by all core operations for both B-link trees and hash tables in a uniform manner.
The algorithm is described in the ML-like language that we use throughout the dissertation,
and is described in more detail in §2.2. The algorithm assumes that an implementation
provides certain primitives or helper functions that satisfy certain properties. For example,
findNext is a helper function that finds the next node to visit given a current node n and
an operation key k, by looking for an edge (n, n′) with k ∈ es(n, n′). For the B-link tree,
findNext does a binary search on the keys in a node to find the appropriate pointer to follow.
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For the hash table, when at the root, findNext returns the edge to the array element indexed
by the hash of the key; when at a bucket node n, findNext returns the link edge if it exists
and k is not in n. The function cssOp can be used to build implementations of all three
search structure operations by implementing the helper function decisiveOp to perform the
desired operation (read, add, or remove) of key k on the node n.

An operation on key k starts at the root r, and calls a function traverse on line 13 to
find the node on which it should operate. traverse is a recursive function that works by
following edges whose edgesets contain k (using the helper function findNext on line 7) until
the operation reaches a node n with no outgoing edge having an edgeset containing k. Note
that the operation locks a node only during the call to findNext, and holds no locks when
moving between nodes. traverse terminates when findNext does not find any n′ such that
k ∈ es(n, n′). In the B-link tree example, this corresponds to finding the appropriate leaf.

At this point, the thread performs the decisive operation on n (line 14). Note that for the
link template we assume decisiveOp returns an optional Boolean value so that it can signal
when it fails. If it is not possible for the decisive operation to be completed because, say, an
insert operation encounters a full node, decisiveOp returns None and the algorithm unlocks
n, gives up, and starts from the root again. Note that non-completion does not imply the
existence of race conditions or null pointer exceptions. Our proofs show that such errors are
impossible. If the decisive operation can be completed (i.e., it succeeds), then decisiveOp
returns Some res and the algorithm unlocks n and returns res .

If we can verify this link template algorithm with a proof that is parameterized by the
helper functions, then we can reuse the proof across diverse search structures.

3.5 From Edgesets to Keysets

In this section, we describe the high-level argument behind the correctness of single-copy
structures. The crux of the argument relies on tying the local view of the thread with
the global state of the search structure. For instance, when a thread executing delete for
succeeds in deleting key k from a node, we must establish that k is deleted from the search
structure. In other words, no additional copies of k were present in other nodes.

The edgeset framework helps the proof argument above by defining a keyset for each
node. Intuitively, a keyset of a node, written as ks(n), represents all keys that node is
responsible for. To be precise, if a key k belongs to ks(n), but k is not contained in n, then it
will not be contained in any other node. Below, we provide the technical definition of ks(n).

We once again work on the abstract graph view of the search structure from §3.1. Let
the union of edgesets leaving a node n be the outset outset(n). Suppose we denote the
intersection of edgesets along the path from the root leading to a given node n as the inset
of n, denoted inset(n). We can then define the keyset of n as:

ks(n) := inset(n) \ outset(n)

For example, if a node n in a binary search tree has key 7 (see Figure 3.1), the parent of
n (which is also the root) has key 5, and n has a right child but no left child, then ks(n) is
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the set of keys greater than 5 and less than or equal to 7, {k | 5 < k ≤ 7}. Of course, the
contents of n, namely 7, is in that set.

Sequential search structure algorithms will ensure the following two invariants:

1. For every node n, the contents contents(n) are a subset of the keyset ks(n).

2. The keysets of every pair of distinct nodes are disjoint.

We call these the keyset invariants.1 In Iris, we encode these invariants via Iris’s notion
of ghost state, known as resource algebra (RA, in short). The algebraic properties of the
resource algebra will ensure that these invariants are maintained, and the edgeset framework
can be used to relate the ghost state to the concrete contents of the search structure. We
provide a brief introduction to resource algebras in Section 4.4, and discuss the resource
algebras specifically for keysets in Chapter 5.

Many common single-copy search structures maintain the keyset invariants. A conse-
quence of these invariants is that a search for key k can examine the node n such that
k ∈ ks(n) to determine whether k is anywhere in the search structure (because the keyset
invariants implies that k cannot be anywhere else). That examination of n is called the
decisive operation of the search. For many structures of interest, the decisive operations of
insert, delete, and update of key k would also apply to the node n having k in its keyset.
We revisit these ideas in Chapter 8.

3.6 The Flow Framework

The notion of keyset defined in the previous section is a global quantity defined over the
entire graph. We give a brief introduction to the flow framework by explaining how the
keyset quantity can be expressed as a node-local quantity by using flows.

The flow framework enables separation-logic-style reasoning about recursive functions on
graphs. Certain restrictions apply. The function must be of the form fl : N → M where N
is the set of nodes of the graph and (M,+, 0) is a commutative cancellative monoid, called
the flow domain. Further, fl must satisfy the flow equation:

∀n ∈ N. fl(n) = in(n) +
∑
n′∈N

e(n′, n)(fl(n′)) (FlowEqn)

Intuitively, this equation states that fl can be computed by assigning every node an initial
value according to the inflow function in : N →M and then propagating these values along
the edges of the graph using the edge function e : N × N → M → M to reach a fixpoint.
At each node n, the values propagated from predecessor nodes n′ are aggregated using the
monoid operation +. A function fl that satisfies the flow equation is called a flow and
a graph equipped with a flow is a flow graph. The flow framework then enables us to

1Note that we do not require the invariant that the union of keysets of all nodes cover the keyspace K;
as discussed in §5.2, this is only needed to prove termination.
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reason compositionally about invariants of flow graphs expressed as node-local conditions
that depend on a node’s flow.

As an example, consider the quantity inset discussed in the previous section. Intuitively,
inset(n) represents the set of keys which are contained in the path from the root node to n.
Its formal definition is the following fixpoint equation

∀n ∈ N. inset(n) = in(n) ∪
⋃
n′∈N

es(n′, n) ∩ inset(n′)

where in(n) := (n = r ? K : ∅). The inset of a node n is thus K if n equals the root r, else
the set of keys k that are in the inset of a predecessor n′ such that k ∈ es(n′, n).

Due to its fixpoint definition, the inset can be expressed as an instance of (FlowEqn) using
sets and set operations, and edge functions that take the intersection with the appropriate
edgeset. This means we can define a flow domain where the flow at each node is the inset of
that node. Since keyset of a node is defined in terms of its inset, we have expressed keysets
via the flow framework indirectly.

Once the inset is defined as a flow, we can use the notion of a flow interface to prove
locally that an update to the graph does not change the flow of any nodes outside the
modified region. The flow interface of a region consists of its outflow and inflow, maps that
intuitively capture the contribution of this region to the flow of the rest of the world and
the contribution of the outside world to this region’s flow, respectively. If the interface of a
modified region is preserved, then the framework guarantees that the flow of the rest of the
graph is unchanged.

Technically, this kind of reasoning is enabled by the separation algebra structure of flow
graphs (in particular the definition of flow graph composition), which extends the compo-
sition of partial graphs in standard separation logic so that the frame rule also preserves
flow values of nodes in the frame. Instead of performing an explicit induction over the entire
graph structure to prove that inset values continue to satisfy desired invariants, the necessary
induction is hidden away inside the definition of flow graph composition (for more details
see [100]).

The flow interfaces form a resource algebra in Iris, and hence, we can use them as ghost
values in Iris proofs. We use them extensively in this dissertation in order to reason about
global graph quantities such as keysets. This dissertation uses the formalization of the flow
resource algebra from [97].
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4 | Separation Logic

In this dissertation, we use separation logic to specify and verify concurrent data structures.
Separation logic (SL), is an extension of Hoare logic [72] that is tailored to perform modular
reasoning about programs that manipulate mutable resources. In other words, SL is a
language that allows one to succinctly and modularly describe states of a program. Each
sentence in this language is called a proposition (or formula, assertion), and describes a set of
states. We say a state satisfies a proposition when the state is described by the proposition.
Separation logic also gives us a set of proof rules that can be used to prove that states of
interest (such as the set of resulting states after a program executes) satisfy a particular
proposition.

There are many incarnations of SL, each tailored to reasoning about a particular class of
programs. In this dissertation, we use Iris, a mechanized higher-order concurrent separation
logic framework. The distinguishing feature of Iris is its generality: it is designed as a small
set of core primitives and proof rules that can be used to encode a large variety of common
constructs and techniques for reasoning about concurrent programs. In particular, Iris is
easily extendable with user-defined resources via its ghost state mechanism, which we will
describe in Section 4.4.

The price paid for this generality is that the core Iris logic is very abstract. To make
this dissertation accessible to a wider audience, we present many of the derived features as
though they are primitive Iris features, and avoid talking about the formal semantic model
altogether. We refer the interested reader to a paper by Jung et al. [83] for a more detailed
introduction to Iris, the Iris tutorial at POPL 2021 [22] for a gentle introduction, and to the
documentation [74] for the full details. We discuss other SLs, as well as alternate approaches
to verifying data structures, in Chapter 11.

4.1 Separation Logic by Example

Consider the following program expression that reads the value stored at heap location x
into a variable (v = !x) and then writes v + 1 back into the location:

einc := let v = !x in x← (v + 1)

Informally, einc is a program that increments the value stored at the heap location x.
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We can formalize this specification in SL by using a Hoare triple [72], which is an assertion
of the form

{
P
}
e
{
v. Q

}
, where P and Q are propositions. If

{
P
}
e
{
v. Q

}
holds, then

for every state σ that satisfies P we have (1) the program e does not reach an error state
when run from σ (for example, by trying to read unallocated memory), and (2) that if e
terminates then it returns some value v and the new state is some σ′ that satisfies Q. We
call P the precondition and Q the postcondition of e, and we write

{
P
}
e
{
Q
}

in the case
where Q does not mention the return value v.

Here is the desired specification of our example program einc:1{
x 7→ n

}
einc

{
x 7→ n+ 1

}
The precondition here uses a points-to predicate x 7→ n, a primitive proposition asserting that
the program state contains a heap cell at address x containing value n. The postcondition
uses a similar points-to predicate, and, in simple words, the triple says: if the program einc is
run on a state that contains a heap cell at address x with value n, then it results in a state
where the cell x contains n + 1. It also implicitly asserts that einc does not crash, by, e.g.,
attempting to dereference memory that is not allocated or divide by zero.

To prove that einc meets its specification, we use the proof rules for Hoare triples shown in
Figure 4.1. In the figure, we write e[x↣ v] to denote the expression e after substituting all
occurrences of the variable x with the term v. The function free(Q) computes free variables in
Q. The rules for Hoare triples can be used in the same manner as proof rules in classical proof
systems. We next discuss the core feature of the separation logic, the separating conjunction.

Consider the program expression below that writes to two heap cells in two parallel
threads:

epar := (x← 1 ∥ y ← 2)

In the above program we use the commonly used parallel composition syntax (e1 ∥ e2) which
denotes forking two threads that run e1 and e2 respectively and waiting until they complete.
Parallel composition can be defined in terms of fork and CAS. Note that this program’s
behavior can be described precisely only if x and y are distinct heap locations; if they are
equal, then the two threads would race to write to the same heap cell. As a result, the
two writes on x could happen in either order, and the final value stored at x cannot be
determined.

To specify this program, we use the separating conjunction ∗. Unlike standard conjunc-
tion ∧, separating conjunction conjoins two propositions that describe disjoint portions of
program state. For instance, x 7→ _ ∧ y 7→ _ asserts that x is a heap cell and y is a heap
cell (but they could be the same heap cell), while x 7→ _ ∗ y 7→ _ asserts that x is a heap
cell and separately y is a heap cell.

Formally, a state σ satisfies P ∗Q if it can be broken up into two disjoint states σ = σ1⊚σ2

such that σ1 satisfies P and σ2 satisfies Q. When P and Q are propositions denoting heaps,
this means that they talk about disjoint regions of the heap, i.e. that they do not have any

1In all such triples that we use as specifications in this dissertation, free variables such as n are implicitly
universally quantified.
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hoare-ret
{
True

}
w

{
v. v = w

}
hoare-false

{
False

}
e
{
v. P

}
hoare-alloc

{
True

}
ref(v)

{
ℓ. ℓ 7→ v

}
hoare-load

{
ℓ 7→ v

}
!v

{
w. ℓ 7→ v ∗ w = v

}
hoare-store

{
ℓ 7→ v

}
ℓ← w

{
ℓ 7→ w

}
hoare-cas-suc

{
ℓ 7→ v

}
CAS(ℓ, v, w)

{
b. b = true ∗ ℓ 7→ w

}
hoare-cas-fail

v ̸= v′{
ℓ 7→ v

}
CAS(ℓ, v′, w)

{
b. b = false ∗ ℓ 7→ v

}

hoare-lam

{
P
}
e[x↣ v]

{
w. Q

}{
P
}
(λx. e) v

{
w. Q

} hoare-fork

{
P
}
e
{
True

}{
P
}
fork {e}

{
True

}
hoare-let

{
P
}
e1

{
w. R

}
∀w.

{
R
}
e2[x↣ w]

{
v. Q

}{
P
}
let x = e1 in e2

{
v. Q

}

hoare-csq
P ⇛ P ′ {

P ′} e
{
v. Q′} ∀v. Q′ ⇛ Q{

P
}
e
{
v. Q

}
hoare-frame

{
P
}
e
{
v. Q

}{
P ∗R

}
e
{
v. Q ∗R

} hoare-disj

{
P
}
e
{
v. R

} {
Q
}
e
{
v. R

}{
P ∨Q

}
e
{
v. R

}
hoare-exist

∀x.
{
P
}
e
{
v. Q

}
x /∈ free(Q){

∃x. P
}
e
{
v. Q

}
Figure 4.1: Proof rules for establishing Hoare triples.
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heap addresses in common. In particular, this means that x 7→ _ ∗ y 7→ _ implies that
x ̸= y, while the proposition x 7→ y ∗ x 7→ z is unsatisfiable as it is not possible to split a
heap into two disjoint portions both of which contain the same address x.

We can thus specify epar as follows:{
x 7→ _ ∗ y 7→ _

}
(x← 1 ∥ y ← 2)

{
x 7→ 1 ∗ y 7→ 2

}
To prove this specification, we use the following parallel composition rule (which can be
derived from hoare-fork):

hoare-par

{
P1

}
e1

{
Q1

} {
P2

}
e2

{
Q2

}{
P1 ∗ P2

}
(e1 ∥ e2)

{
Q1 ∗Q2

}
hoare-par tells us that executing two threads in parallel is safe if both threads operate on
disjoint portions of the state.

Every proposition in SL can be thought of as a resource. It may be natural to think of the
predicate x 7→ n as a resource, as it describes a heap cell or a part of the program state. In
the concurrent setting we can think of each thread owning the resources in its precondition.
hoare-par then tells us that a thread can subdivide its resources and distribute them among
the subthreads that it spawns. Primitive resources such as points-to predicates x 7→ _ are
not subdividable, so there is no way to use hoare-par alone to prove that the program
(x ← 1 ∥ x ← 2) is safe. In such situations, we think of resources such as x 7→ _ as being
exclusively owned by a single thread.

Given this, it may seem counter-intuitive that the rules hoare-cas-suc and hoare-cas-
fail require exclusive ownership of the location ℓ despite the fact that the main application
of CAS is fine-grained concurrent programs where multiple threads access the same heap
cell. However, we will see in §4.5.1 proof rules for atomic commands such as CAS (compare-
and-set) that allow one to take exclusive ownership of shared resources for the duration of
an atomic command (since no other thread can interfere).

4.2 Iris Propositions

Iris propositions describe the resources owned by a thread. These resources can be part of
a concrete program state, for example, a set of heap cells, which captures the situations in
which a thread has exclusive ownership over these cells (because, say, it has locked them).
To reason about fine-grained concurrency and more complex concurrency patterns, these
resources can also capture shared ownership and partial knowledge of shared program state.
In order to build intuition, we focus on the simple case where propositions describe concrete
program states, in the form of subsets of the heap, and defer the discussion of advanced
resources to Section 4.4. For a formal definition of program states and the satisfaction
relation in Iris, see the Iris documentation [74].

The grammar of the subset of Iris propositions that we use throughout the dissertation
is shown in Figure 4.2, and includes the following constructs:

26



P,Q,R := True | False | P ∧Q | P ∨Q | P ⇒ Q

| ∃x. P | ∀x. P
| x 7→ v | P ∗Q | P −∗ Q | ∗x∈X P

| P
N
| ▷P | a γ | P ⇛ Q

|
{
P
}
e
{
v. Q

}
|
〈
x. P

〉
e
〈
v. Q

〉
| AUx.P,Q(Φ)

Figure 4.2: The grammar of Iris propositions used in this dissertation.

• The first line consists of standard propositional constructs: the propositions True and
False2, then conjunction, disjunction, and implication.

• The second line introduces quantification. Note that since Iris is a higher-order logic, x
can range over any type, including that of propositions and (higher-order) predicates.

• We have already seen the points-to proposition and separating conjunction on the
third line. Note that Iris is an affine logic, which means P ∗ Q ⊢ P 3 holds for any
propositions P and Q. In particular, this implies that if a state σ satisfies x 7→ v, then
σ can possibly contain more than just the heap cell at address x.

• We also have an iterated version of separating conjunction: ∗x∈X P , where the bound
variable x ranges over a finite set X. For example, ∗x∈X x 7→ 13 denotes states that
contain at least the set of heap cells with addresses in X all of whom store the value
13.

• The separating implication connective −∗, also known as the magic wand, is defined
as: a state σ satisfies P −∗ Q if for every state σ1 disjoint from σ that satisfies P , the
combined state σ ⊚ σ1 satisfies Q. The best way to understand −∗ is to think of ∗
and −∗ as separation logic analogues of ∧ and ⇒ from first-order logic. For instance,
P ∗ Q means you have both P and Q (and that they are disjoint, or more generally,
composable). Similarly, P −∗ Q describes a state such that if you conjoin it with a
state satisfying P , then you get a state satisfying Q.

This property, P ∗ (P −∗ Q) ⊢ Q, is the SL analogue of modus ponens in first-order
logic (P ∧ (P ⇒ Q) ⊢ Q).

• The fourth line contains the invariant proposition P
N

and later modality ▷P (both
explained in §4.3), as well as the ghost state proposition a

γ
and the view shift P ⇛ Q

(both explained in Section 4.4).
2The propositions True and False are semantically distinct from the Boolean constants true and false

which are values of our programming language. Intuitively, propositions can be thought of as describing sets
of program states, where a program state maps program variables to values.

3⊢ is the provable entailment relation; P ⊢ Q means that for any state in which P holds, Q also holds.
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• Finally, the last line contains Hoare and atomic triples (explained in §4.5).

4.3 Invariants

Consider the following concurrent program 4:

eeven := let x = ref(0) in (x← FAA(x, 2) ∥ x← FAA(x, 2)); !x

And say we want to prove the specification{
True

}
eeven

{
v. Even(v)

}
,

where Even(n) := (n%2 = 0) says that the program returns an even number. Unlike epar,
this program manipulates the same heap location in two parallel threads. This means we
cannot use the parallel composition rule hoare-par, as there is no way we can duplicate the
heap cell x 7→ 0 in order to give it to both of the threads:

Nevertheless, the program is safe, and no matter which thread writes to x first, the
returned value will be even. The program does not crash because the threads are using
atomic instructions to store a value at x, so despite the fact that x is a shared heap cell,
both stores are safe. Moreover, since both threads increment by an even number to x, the
final result is also even. We need a proof mechanism that allows us to share state between
threads and formalize the above reasoning.

The solution is to use invariants. An invariant in Iris is a proposition of the form P
N

,
where P is an arbitrary Iris proposition. Invariants provide a mechanism to reason about
ownership of resources describing shared state that can be concurrently accessed by many
threads. Intuitively, an invariant is a property that, once established, will remain true forever.
It is therefore a duplicable resource and can be freely shared with any thread.

However, in order to ensure that the invariant indeed remains valid once it has been
established, Iris’s proof rules for invariants impose restrictions on how the resources contained
in an invariant can be accessed and manipulated. At any point in time, a thread can open
an invariant P

N
and gain ownership of the contained resources P . These resources can

then be used in the proof of a single atomic step of the thread’s execution. After the thread
has performed an atomic step with an open invariant, the invariant must be closed, which
amounts to proving that P has been reestablished. Otherwise, the proof cannot succeed.

The proof rules for invariants are given in Figure 4.3. The ▷ symbol is called the “later”
modality, and is needed to ensure soundness in complex cases when Hoare triples or invariants
themselves are stored inside invariants; we can ignore it for now. inv-alloc is a rule that
allows us to take a resource R that we own and turn it into an invariant. In most proofs, this
signifies the point at which some local state is shared with other threads for the first time.
inv-dup allows invariants to be freely duplicated; this will allow us to share them among

4This example is adapted from [22].
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inv-alloc

{
R

N
∗ P

}
e
{
Q
}
E{

▷R ∗ P
}
e
{
Q
}

inv-dup R
N
⊢ R

N
∗ R

N

inv-open

{
▷R ∗ P

}
e
{
▷R ∗Q

}
E e atomic{

R
N
∗ P

}
e
{
R

N
∗Q

}
E⊎N

Figure 4.3: Proof rules for Iris invariants.

threads. Finally, inv-open allows us to open an invariant and gain ownership of its contents
for the duration of an atomic step.

The N in P
N

refers to the namespace of the invariant. Namespaces are part of the
mechanism used in Iris to keep track of invariants that are currently open and need to be
closed before the next atomic step. This is necessary to avoid issues of re-entrancy in case
of nested invariants, which would lead to logical inconsistencies. The set of namespaces that
one is allowed to open is kept as an annotation (subscript) to the Hoare triple in question;
for instance, note that inv-open ensures that the invariant named N cannot be opened
again. Since most proofs in this dissertation use only a single invariant, we also omit these
namespace annotations from Hoare triples.

We can now prove that eeven returns an even number, using an invariant as follows:{
True

}
let x = ref(0) in{
x 7→ 0

}
(* Using INV-ALLOC *){
∃n. x 7→ n ∗ Even(n)

}
(* Using INV-DUP *) ∃n. x 7→ n ∗ Even(n)

∗ ∃n. x 7→ n ∗ Even(n)


(* Using HOARE-PAR *)
(x← FAA(x, 2) ∥ x← FAA(x, 2)) ∃n. x 7→ n ∗ Even(n)

∗ ∃n. x 7→ n ∗ Even(n)

{
∃n. x 7→ n ∗ Even(n)

}
!x{
v. x 7→ v ∗ Even(v)

}

{
∃n. x 7→ n ∗ Even(n)

}
(* Using INV-OPEN *){
x 7→ n′ ∗ Even(n′)

}
x← FAA(x, 2){
x 7→ n′ + 2 ∗ Even(n′ + 2)

}
(* Using INV-CLOSE *){
∃n. x 7→ n ∗ Even(n)

}

Here we use inv-alloc at the beginning to transfer the newly-created heap cell x 7→ 0
into an invariant5. We then use inv-dup to duplicate it, and then share it among the two

5We omit the namespace of the invariant when it is irrelevant to the context.
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threads using hoare-par. Each thread then uses inv-open to open the invariant around
the atomic store operation, after which we show that the store preserves the invariant that
x contains an even number in each case. After the threads join, we once again open the
invariant to read the contents of x, and the invariant tells us that whatever the value is, it
is even.6

4.4 Ghost State

Ghost state, originally called auxiliary variables [136], is a formal technique where the prover
adds state (variables or resources) to a program that capture knowledge about the history
of a computation not present in the state of the original program in order to verify it. As
long as the added ghost state, and the ghost commands that modify it, have no effect on
the run-time behavior of the program, then a so-called erasure theorem states that a proof
of the augmented program can be transformed into a proof of the program with all ghost
state removed (i.e., the original program). In Iris, ghost state is purely logical and ghost
commands are represented as proof rules, which gives us such an erasure theorem for free.
The ghost state concept has shown itself to be an invaluable tool in the verifier’s toolbox, and
has been used to encode many common reasoning techniques including permissions, tokens,
capabilities, and protocols.

Our treatment of ghost state in Iris is restricted to RAs that have units, as that is
sufficient for the proofs in this dissertation. Iris supports more general and powerful kinds of
ghost state, so-called cameras, and we refer interested readers to the introduction to cameras
by Jung et al. [83]. We also motivate ghost state in this chapter as a means to verifying
template search structures, but ghost state has a wide variety of applications in verifying
many kinds of algorithms and properties. The Iris tutorial at POPL 2021 [22] contains
motivating examples that demonstrate other uses of ghost state.

In this section, we start by motivating the need for ghost state using the eeven as an
example. We then see how Iris supports ghost state via the notion of resource algebras
(RAs), and use a fractional RA to verify a stronger specification for eeven.

4.4.1 Motivation

In Section 4.3, we proved the following specification for eeven:{
True

}
eeven

{
v. Even(v)

}
However, the above specification does not fully capture the behavior of eeven. A stronger
specification for eeven would establish that the value of x read at the end will be 4. That is,
the following Hoare triple: {

True
}
eeven

{
v. v = 4

}
6We throw away the invariant at the end because we no longer need it, which we can do because Iris is

affine.
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The invariant used earlier, ∃n. x 7→ n ∗ Even(n) , is not enough to prove the above spec-
ification. The reason is the existential quantification over the value stored at x. In order
to prove the stronger specification, we need to encode the knowledge that there are exactly
two threads that increment the value at x by 2. We introduce ghost locations γ1 and γ2 to
store the contribution to the value at x by each thread. Additionally, the knowledge about
the contributions must be shared between the invariant and the thread.

Iris expresses ownership of ghost state by the proposition a γ which asserts ownership
of a piece a of the ghost location γ. The values a stored in ghost state belong to a resource
algebra (RA, defined formally below). For example, a fractional RA over integers consists
of elements of the form (q, n), where q ∈ (0, 1] is a rational number and n is an integer, as
well as a unit element ε and a special element  . As we will see, a fractional ghost location
can be split and shared among many threads to permit shared reads, but threads can only
write to the ghost location if they own the full ghost location. This means that they have
the following properties:

True⇛ (1, n)
γ

(4.1)

(q, n)
γ
∗ q = q1 + q2 ⇛ (q1, n)

γ
∗ (q2, n)

γ
(4.2)

(q1, n1)
γ
∗ (q2, n2)

γ
⊢ n1 = n2 (4.3)

(1, n)
γ
⇛ (1, n′)

γ
(4.4)

Here, the first property allows creating a new ghost location with full permission. The second
property tells us that if we own (q, n)

γ
then we can split it into smaller fractions (via a

ghost update ⇛, explained below). The ghost update implicitly assumes q1, q2 ∈ (0, 1]. The
third property tells us that any two fractional states must agree on the set of keys. The final
property allows changing the value at the ghost location if full permission is owned.

With the fractional RA, we can now prove the stronger specification for eeven via the
following invariant:

Ieven := ∃ n1 n2, x 7→ (n1 + n2) ∗ (½, n1)
γ1 ∗ (½, n2)

γ2

Consider the proof for the stronger specification for eeven below:
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A resource algebra is a tuple (M,V : M → Prop, (·) : M ×M →M, ε ∈M) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (ra-assoc)
∀a, b. a · b = b · a (ra-comm)
∀a. ε · a = a (ra-id)
V(ε) (ra-valid-id)

∀a, b. V(a · b)⇒ V(a) (ra-valid-op)

Figure 4.4: The definition of a (unital) resource algebra (RA).

{
True

}
let x = ref(0) in{
x 7→ 0

}
(* By Eq. 4.1 *){
x 7→ 0 ∗ (1, 0)

γ1

∗ (1, 0)
γ2
}

(* By Eq. 4.2 *)x 7→ 0 ∗ (½, 0)
γ1

∗ (½, 0)
γ2

∗ (½, 0)
γ1

∗ (½, 0)
γ2

{
Ieven ∗ (½, 0)

γ1

∗ (½, 0)
γ2
}

(x← FAA(x, 2) ∥ x← FAA(x, 2)){
Ieven ∗ (½, 2)

γ1

∗ (½, 2)
γ2
}

x 7→ (n1 + n2) ∗ (½, n1)
γ1

∗ (½, n2)
γ2

∗ (½, 2)
γ1

∗ (½, 2)
γ2


(* By Eq. 4.3 *)x 7→ 4 ∗ (½, 2)

γ1

∗ (½, 2)
γ2

∗ (½, 2)
γ1

∗ (½, 2)
γ2


!x{
v. v = 4

}

{
Ieven ∗ (½, 0)

γ1
}

(* Using INV-OPEN *)x 7→ (n1 + n2) ∗ (½, n1)
γ1

∗ (½, n2)
γ2

∗ (½, 0)
γ1


(* By Eq. 4.3 *) x 7→ n2 ∗ (½, 0)

γ1

∗ (½, n2)
γ2

∗ (½, 0)
γ1


x← FAA(x, 2)x 7→ (2 + n2) ∗ (½, 0)

γ1

∗ (½, n2)
γ2

∗ (½, 0)
γ1


(* By Eq. 4.4 *)x 7→ (2 + n2) ∗ (½, 2)

γ1

∗ (½, n2)
γ2

∗ (½, 2)
γ1


(* Using INV-CLOSE *){
Ieven ∗ (½, 2)

γ1
}

The ghost locations are initialized with value 0 as it denotes the contribution to each thread
initially. The invariant Ieven is allocated by splitting the ownership over both ghost locations
into halves. The right hand side shows the proof of one thread updating its contribution
from intial value 0 to 2. The proof solely relies on the properties assumed for the fractional
RA. Coming back to the proof on the left, we can establish that each thread has contributed
2 to the value of x, resulting in the final value of 4.
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ghost-alloc
V(a)

True⇛ ∃γ. a γ ghost-op a · b
γ
⇔ a γ ∗ b

γ

ghost-valid a γ ⇒ V(a)

ghost-update
a⇝ B

a γ ⇛ ∃b ∈ B. b
γ vs-trans

P ⇛ Q Q⇛ R

P ⇛ R

vs-frame
P ⇛ Q

P ∗R⇛ Q ∗R

Figure 4.5: Proof rules for manipulating ghost resources and view shifts.

4.4.2 Resource Algebras

Formally, a resource algebra (RA) consists of a set M , a validity predicate V(−), and a
binary operation (·) : M × M → M that satisfy the axioms in Figure 4.4 (Prop is the
type of propositions of the meta-logic (e.g., Coq)). RAs are a generalization of the partial
commutative monoid (PCM) algebra commonly used by separation logics.7

The two important mechanisms for using ghost state are: (1) a ghost location can be split
and combined using the rule: a γ ∗ b

γ
⊣⊢ a · b

γ
; and (2) at any point, if a thread owns

a resource c γ , then the value c is valid, i.e. V(c). This means that an RA’s composition
operator ·must be associative and commutative.8 The axiom ra-valid-op disallows taking an
invalid element and composing it with another element to make it valid; since Iris maintains
an invariant that the composition of all values in a ghost location is valid, this axiom implies
that any sub-resource in that location is also valid. ra-id makes ε an identity or unit element
with respect to composition, and ra-valid-id says the unit must be valid.

One can think of the ghost state proposition a γ as the ghost analogue of the points-to
predicate x 7→ v that asserts that the (real) location x contains value v.9 However, a γ

asserts only that γ contains a value one of whose parts is a (as we saw with the fractional
ghost state example above). This means ghost state can be split and combined according to

7Iris actually uses cameras as the structure underlying resources, but as we do not use higher-order
resources (i.e. state which can embed propositions) in this dissertation, we restrict our attention to resource
algebras, a stronger, but simpler, structure. Furthermore, RAs technically have a core function |−| that
maps each element to a (potentially different) unit, but since all the RAs we use have a gobal unit (i.e.,
|_| = ε), we omit the core function in our presentation and restrict our attention to unital RAs.

8Readers familiar with separation algebras will notice that the composition operator is not partial; cases
where composition used to be undefined can be encoded by sending them to an invalid element.

9In fact, Iris’s core logic makes no distinction between ghost state and non-ghost state – the heap is
represented using special ghost state, and the points-to predicate x 7→ v is defined using the ghost location
predicate a

γ . However, we continue to use the 7→ symbol for expressing constraints on heap locations as
it is widely-used and will be familiar to readers who have studied SL before.
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the composition operator of the underlying RA.

Example 1 Given a set S, we define the fractional RA over values of S as:

M := (q, s) ∈ (Q ∩ (0, 1])× S | ε |  V(a) := a ̸=  ε · a := a · ε := a

(q1, s1) · (q2, s2) :=

{
(q1 + q2, s1) if q1 + q2 ≤ 1 ∧ s1 = s2

 otherwise
 ·_ := _ ·  :=  

The fractional RA we used above in the proof of eeven can be obtained by instantiating the
set S in Example 1 with the set of all integers. The definition of composition and validity
in the fractional RA ensure that elements must agree on their second element and have
compatible fractions. This implies that ghost locations containing elements of the fractional
RA enjoy the properties (4.2) and (4.3).

Figure 4.5 provides proof rules for manipulating ghost resources. The rule ghost-alloc
is used to allocate a new ghost resource. The rule restricts the allocation to only those
resources that are valid. The remaining rules dictate how a ghost resource can be updated
using the view shift modality⇛, which we explain next through the example of the fractional
RA.

Ghost state by itself is not very useful unless it can be updated. However, unlike physical
state, which can be modified at any point to any value, ghost state updates are restricted
since Iris maintains the invariant that the composition of all the pieces of ghost state at a
particular location is valid (as given by V). Iris allows only frame-preserving updates a⇝ b,
defined below.

Definition 2 A frame-preserving update is a relation between an element a ∈M and a set
B ⊆M , written a⇝ B, such that

∀af ∈M. V(a · af)⇒ ∃b ∈ B. V(b · af).

We write a⇝ b if a⇝ {b}.

Intuitively, a ⇝ b says that every frame af that is compatible with a should also be
compatible with b. Thus, changing a thread’s fragment of the ghost state from a to some b
will not invalidate assumptions about af made by any other thread. The fractional RA has
the following frame-preserving update:

frac-upd (1, s)⇝ (1, s′)

Note that the element (1, s) has no frame (no non-unit element can compose with it), thus
the frame-preserving update condition holds trivially.

This allows us to change the value stored at a ghost location holding a fractional RA
value as long as we own all the pieces of that location. Correspondingly, we also note that
there are no frame-preserving updates from (q, s) to any (q, s′) when q < 1, which means no
thread can change the value s unless that thread holds all the fragments (i.e., q = 1).
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The rule ghost-update in Figure 4.5 lifts frame-preserving updates on RA elements to
ghost updates on Iris propositions, which are captured by Iris’s view shift modality ⇛. The
intuitive meaning of P ⇛ Q is that if we have the resource P , then we can perform one or
more frame-preserving updates in order to transform the resource P to Q. Alternatively, we
can regard P ⇛ Q as a Hoare triple, with P as precondition and Q as postcondition, but no
program code, as P must be transformed to Q solely by manipulating ghost resources. The
rule vs-trans enables combining multiple view shifts into one, while vs-frame allows framing
out resources from the update, similar to Hoare triples. The rule hoare-csq (introduced
in Section 4.1) allows one to use view shifts to perform ghost updates on the pre- and
postcondition of a Hoare triple.

Over the course of this dissertation, we will encounter RAs in many different contexts.
In subsequent chapters, we define and explain them on as needed basis.

4.5 Atomic Triples

In this section we introduce the concept of logical atomicity, which is used to specify programs
that execute in multiple atomic steps but whose effect appears to take place in a single point
in time. This concept will be useful for specifying concurrent search structures in a way that
can be used to verify concurrent client programs.

We begin by explaining why Hoare triples are not sufficient for specifying concurrent
data structures. For example, consider a concurrent search structure with cssOp function
(for concurrent search structure operation) as its operation (subsuming all the core search
structure operations via parameter op). Recall that search structures are data structures
implementing a mathematical set data type, so op is either search, insert, or delete. Suppose
we tried to specify the behavior of a concurrent search structure using a Hoare triple as
follows : {

CSS(r, C)
}
cssOp op r k

{
res . CSS(r, C ′) ∗ Ψop(k, C,C

′, res)
}
, (4.5)

where CSS(r, C) (for concurrent search structure) is a predicate describing a search structure
at location r with contents C. While we might be able to prove that a concurrent search
structure satisfies this specification, this specification will not be helpful when reasoning
about concurrent programs that use the concurrent search structure.

To see why, consider the client program:

eclient := (cssOp insert r k1 ∥ cssOp insert r k2)

This is a program that manipulates a concurrent search structure rooted at r by calling the
insert operation on two keys k1 and k2 on two parallel threads.

A simple specification that captures the fact that eclient is memory-safe in a concurrent
context is: {

CSS(r, C)
}
eclient

{
True

}
One might try to prove this specification the same way we proved that eeven returned an
even number, by creating a new invariant containing CSS(r, C) and sharing it among the
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two threads. However, there is a catch: we cannot use inv-open to open the invariant when
we need to get CSS(r, C) to satisfy the precondition of cssOp in (4.5). The reason is that
inv-open can be applied only to programs that are physically atomic, i.e. that they execute
in a single machine instruction (e.g., !x, or a CAS). Here, on the other hand, we need to
reason about cssOp, which for most realistic search structures executes in multiple physical
steps.

On the other hand, a good concurrent search structure is designed to be used in precisely
such conditions, by using locks or other concurrent protocols to ensure that concurrent
invocations of cssOp from multiple threads is safe. We thus need a stronger specification for
cssOp, one that captures the fact that in concurrent settings cssOp behaves as though it is
atomic.

We can specify the concurrent behavior of such programs using atomic triples [33, 85, 86].
An atomic triple

〈
x. P

〉
e
〈
v. Q

〉
is made up of the precondition P (that can refer to the

pseudo-quantified variable x, as explained below), return value v, postcondition Q (that
can refer to v and x), and a program e. Such a triple means that e, despite executing
in potentially many atomic steps, appears to operate atomically on the shared state and
transforms it from a state satisfying P to one satisfying Q.

Atomic triples are strongly related to the well-known linearizability [49, 70] criterion
for concurrent algorithms. Intuitively, there is a point in time during the course of the
execution of e, known as the linearization point, where e updates P to Q. For the example
of an insert operation on a search structure, this will be the point of time when the inserted
value is visible to other threads. Linearizability requires that a concurrent set of operations
produces the same final state and returns the same values as a sequential execution of the
operations where the ordering is the order of the linearization points. In other literature [11],
linearizability is known as order-preserving serializability.

The specification we want to prove for concurrent search structures is the following:〈
C. CSS(r, C)

〉
cssOp op r k

〈
res . CSS(r, C ′) ∗ Ψop(k, C,C

′, res)
〉

(4.6)

The binder on C in the precondition is a special pseudo-quantifier that captures the fact that
during the execution of op, the value of C can change (e.g., by concurrent operations). At the
linearization point however, cssOp changes CSS(r, C) to CSS(r, C ′) in an atomic step. The
new set of keys C ′ and the eventual return value res satisfy the predicate Ψop(k, C,C

′, res).
Note that the C in the postcondition is bound in the precondition, i.e. to the contents just
before the linearization point. The goal is that clients of the search structure can pretend
that they are using a serial or sequential implementation with specification Ψop.

We call operations that satisfy atomic triples as being logically atomic. Coming back to
our motivating example eclient, once we have proved that cssOp is logically atomic, we can
use the following rule to open an invariant around it:

logatom-inv

〈
R ∗ P

〉
e
〈
v. R ∗Q(v)

〉
R

N
⊢
〈
P
〉
e
〈
v. Q(v)

〉
This allows us to complete the proof of eclient using an invariant and 4.6:
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Note that the invariant that we used in the above proof was

∃C. CSS(r, C)
N
,

which existentially quantifies over the search structure contents C. This means that each time
we open the invariant, the search structure can potentially have a different set of contents.
This also means that when we close the invariant, we “forget” any changes we made to the
contents, for example, that the left thread added k1 to the contents. This weak invariant
(which does not place any constraints on the contents) is sufficient because the postcondition
here is simply True. If we wanted to prove something stronger, for example that the contents
at the end of eclient will be C ∪ {k1, k2}, then we would need a more complex invariant. In
fact, we would need some way of keeping track of the updates the two threads make to the
structure, for which we need to use ghost state (similar to the discussion in Chapter 4.4).

4.5.1 Proving Atomic Triples

Let us now turn to the question of how to prove that a program satisfies an atomic triple
specification.

Recall that an atomic triple
〈
x. P

〉
e
〈
v. Q

〉
means there is a single physical step during

the execution of e when the shared state is transformed from P to Q. Thus, while proving〈
x. P

〉
e
〈
v. Q

〉
, we cannot treat P and Q as the pre- and postconditions of e as a whole

(remember, e is potentially a complex program consisting of multiple atomic steps). It is
more accurate to think of P and Q as the pre- and postcondition to e’s linearization point.
Unlike proofs of Hoare triples, where we are given ownership to the resources in P at the
beginning of e’s execution and are under an obligation to transform them to Q by the end, in
proofs of atomic triples we can read or modify the resources in the precondition only during
atomic steps. Furthermore, our obligation is that all atomic steps accessing P either make a
modification that preserves P , except for (exactly) one step, which has to transform it into
Q.

Figure 4.6 contains the proof rules that help us execute the above proof argument.
Most proofs of atomic triples start by using the rule logatom-intro, which converts the
atomic triple into a standard Hoare triple. The precondition contains an atomic update
token AUx.P,Q(Φ), which records the fact that we are proving an atomic triple with precon-
dition x. P (recall, x is bound by a pseudo-quantifier) and postcondition Q. As we will
see, this token gives us the right to use the resources in the precondition P when executing
atomic instructions, but the token also records our obligation to transform P to Q before
execution completes. One way to use the resources in P is to use the au-abort rule, which
gives us access to the precondition P if the expression e is atomic: i.e. if we can prove that e
atomically transforms a global (shared) precondition P and some local precondition P ′ into
a local postcondition Q′ while leaving P unchanged. This rule is useful when a program has
some initial operations that modify the shared state in a way that does not change the ab-
stract state (for instance, by locking or performing maintenance on a node). At some point,
however, the program must update the shared state to the postcondition Q. logatom-intro
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logatom-intro
∀Φ.

{
AUx.P,Q(Φ)

}
e
{
v.Φ(v)

}〈
x. P

〉
e
〈
v. Q

〉
logatom-atom

∀x.
{
P
}
e
{
v. Q

}
e atomic〈

x. P
〉
e
〈
v. Q

〉
au-abort

〈
x. P ∗ P ′ 〉 e 〈 v. P ∗Q′ 〉{

AUx.P,Q(Φ) ∗ P ′} e
{
v. AUx.P,Q(Φ) ∗Q′}

au-commit

〈
x. P ∗ P ′ 〉 e

〈
v. Q ∗Q′ 〉{

AUx.P,Q(Φ) ∗ P ′} e
{
v.Φ(v) ∗Q′}

logatom-frame

〈
x. P

〉
e
〈
v. Q

〉〈
x. P ∗R

〉
e
〈
v. Q ∗R

〉
Figure 4.6: Proof rules for establishing atomic triples.

enforces this obligation by using an unknown, universally quantified proposition Φ(v), in the
postcondition of the Hoare triple. One can think of Φ(v) as the precondition for the con-
tinuation of the computation performed after e terminates, by a larger program containing
e. The only way to prove Φ(v) is to use rule au-commit, which lets us exchange the atomic
update token for Φ(v) if we can prove that the program e transforms the global state from
P to Q in an atomic step. As with au-abort, the rule allows for some extra local resources
P ′ and Q′ in the pre- and postcondition of e.
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Part II: Contributions
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5 | Keyset Reasoning in Iris

We have seen how to use ghost state in order to enable complex proof arguments in Chapter 4.
In this chapter, we define a keyset resource algebra (RA) that can be used for many single-
copy search structures, and demonstrate it by verifying a simple two-node template.

5.1 A Two-Node Template

1 let create () =
2 let n1, n2 = allocNodes () in
3 (n1, n2)
4

5 let cssOp op n1 n2 k =
6 let n = findNode n1 n2 k in
7 lockNode n;
8 let res = decisiveOp op n k in
9 unlockNode n;

10 res

Figure 5.1: A template algorithm for a two-node search structure.

In this section we present an example of a template algorithm for the simple search
structure containing exactly two nodes (Figure 5.1, left). The create function creates a new
search structure, by calling a allocNodes helper function, and returns the address of the
root of the newly created structure.

The cssOp function (for concurrent search structure operation) stands for any one of the
three core search structure operations, by means of the parameter op. Recall that search
structures are data structures implementing a mathematical set data type, so op is either
search, insert, or delete. Since there are two nodes, the first step in this algorithm is to find
the node in which to search for, insert, or delete the given key. This is done via a new helper
function findNode. Once the appropriate node n is found, the algorithm proceeds by locking
n. Thereafter, it calls a function decisiveOp on the locked node, before unlocking the node
and returning the result. The Boolean value returned indicates if the operation modified the
search structure. For example, an insertion returns true if the given key was not already
present in the structure.
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〈
bR. L(b, x, R)

〉
lockNode x

〈
L(true, x, R) ∗ R

〉
〈
R. L(true, x, R) ∗ R

〉
unlockNode x

〈
L(false, x, R)

〉
Figure 5.2: Abstract specification for lockNode and unlockNode.

Implementations of this template choose not only how to store the keys in a node (e.g.,
as an array of keys or a list of keys) but also how to divide keys between nodes. For instance,
one possible implementation would be to send the odd keys to n1 and the even keys to n2.
We represent this choice in the template proof via an abstract function1 ks(n) that maps
a node n to a set of keys we call the keyset. Intuitively, we expect the implementation to
define the keyset of a node n as the set of keys ks(n) that, if present in the structure, must
be in n. In the above example, ks(n1) is the set of odd numbers, and ks(n2) is the set of even
numbers. The proof of the template can use this keyset function to specify the behavior it
expects from the findNode helper function:{

True
}
findNode n1 n2 k

{
n. InFP(n1, n2, n) ∗ k ∈ ks(n)

}
Here, InFP(n1, n2, n) := (n = n1 ∨ n = n2) is a predicate that captures the fact that n is in
the footprint of the data structure, i.e., that it is one of the nodes in the data structure.2

Before we move on to template algorithms for multi-node structures, we take a brief aside
and present an abstract specification for the lockNode and unlockNode methods so that we
can reuse the part of the proof dealing with the locking mechanism.

We define an abstract higher-order predicate L(b, x, R) that captures a lock region:

L(b, x, R) := lk(x) 7→ b ∗ (b ? True : R)

Here, R is a proposition that denotes an arbitrary resource protected by the lock with lock
location lk(x) and lock bit b. The Boolean b indicates whether the lock is (un)locked. We
express the specification for lockNode and unlockNode using the predicate L(b, x, R) as shown
in Figure 5.2. Note that a thread can call lockNode or unlockNode only on a node x for
which it owns the heap cell lk(x) – this is where the InFP(n1, n2, n) predicate will be used.

The challenge is in providing a suitable specification for decisiveOp. At the point when
decisiveOp is called, only one of the two nodes in the structure is locked by the current
thread, and hence any specification for decisiveOp can speak only about the node n. A
natural first-attempt would be:{

Node(n,Cn)
}
decisiveOp op n k

{
res .Node(n,C ′

n) ∗Ψop(k, Cn, C
′
n, res)

}
,

1Abstract functions are like abstract predicates in that the template proof is done without knowing their
definition; instead, the proof relies on certain assumptions about them.

2While this is a trivial definition for the two-node template, we will use the same predicate to simplify
the more complex proofs in later chapters.
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Ψop(k, C,C
′, res) :=


C ′ = C ∧ (res ⇐⇒ k ∈ C) op = search

C ′ = C ∪ {k} ∧ (res ⇐⇒ k ̸∈ C) op = insert

C ′ = C \ {k} ∧ (res ⇐⇒ k ∈ C) op = delete

Figure 5.3: Sequential specification of a search structure as a Set ADT. k refers to the operation key,
C and C ′ to the abstract state before and after operation op, respectively, and res is the return value
of op.

This spec says decisiveOp converts node n with contents Cn (Node(n,Cn)) into node n
with updated contents C ′

n (Node(n,C ′
n)) such that the search structure specification predi-

cate Ψop(k, Cn, C
′
n, res) holds. In this chapter, we assume that predicate Ψop(k, Cn, C

′
n, res)

represents the Set ADT specification shown in Figure 5.3.
Note that the postcondition of cssOp requires us to show that the contents of the entire

search structure are modified from some C to C ′ such that Ψop(k, C,C
′, res) holds. To

complete the proof, we need to show that Ψop(k, Cn, C
′
n, res)⇒ Ψop(k, C,C

′, res).
This is not true of arbitrary sets Cn ⊆ C and C ′

n ⊆ C ′. Consider the case where node n1

has contents {1, 3, 8}, and n2 has contents {2, 4, 8} and decisiveOp removes key 8 from n1.
Here Cn = {1, 3, 8} and C ′

n = {1, 3}, but C = C ′ = {1, 2, 3, 4, 8}.
So, we need more constraints. Our example implementation assigned each node a distinct

set of keys (n1 got the odd keys and n2 got even keys). The missing piece of the proof is the
property that the keysets of any two nodes are disjoint. If we have a data structure where
all keysets are disjoint and the contents of each node n are a subset of the keyset of n, then
we can show that it is sufficient for decisiveOp to ensure that Ψ holds on some node n such
that k ∈ ks(n). We next show how to encode this argument in separation logic using an
appropriate resource algebra.

5.2 Disjoint Keysets and the Keyset RA

We define an RA that we use to keep track of the keyset and contents of each node simul-
taneously:

Definition 3 Given a key space K, the keyset RA is defined as:

Keyset := (K×K) |  V((K,C)) := (C ⊆ K) V( ) := False

(K1, C1) · (K2, C2) :=

{
(K1 ∪K2, C1 ∪ C2) if C1 ⊆ K1 ∧ C2 ⊆ K2 ∧K1 ∩K2 = ∅
 otherwise

 ·_ := _ ·  :=  

The unit of this RA is the element (∅, ∅).
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This is an RA where elements are pairs of sets of keys, where the first set represents the
keyset and the second represents the contents of a node (or, more generally, a set of nodes).
We also have a special element  representing invalid compositions. The validity predicate
checks if the contents are a subset of the keyset, and composition is only defined between
valid elements whose keysets are disjoint.

In order to use the keyset RA in our proofs, we will need a standard RA construc-
tion useful to reason about shared ownership of a logical value. The authoritative RA
Auth(M) [74, 83], constructed from an arbitrary RA M , is used to model situations where
there exists an authoritative element a of M , and threads own fragments b of a such that
b ≼ a := ∃c. a = b · c.

Definition 4 Given an RA M with unit ε, the authoritative RA Auth(M) is defined as:

Auth(M) := (ex(M) |  )×M V((x, b)) := (∃a. x = ex(a) ∧ b ≼ a ∧ V(a))

(x1, b1) · (x2, b2) :=


(x1, b1) if x2 = ex(ε)
(x2, b1) if x1 = ex(ε)
( , b1 · b2) otherwise

The unit of Auth(M) is the element (ex(ε), ε).

Let a, b ∈ M . When using the Auth(M) RA, we write • a for ownership of an authori-
tative element (ex(a), ε) and ◦ b for fragmental ownership (ex(ε), b) and • a, ◦ b for combined
ownership (ex(a), b). The composition operator is defined so that only one authoritative
element can be owned, as (• a1, ◦ b1) · (• a2, ◦ b2) = ( , b1 · b2) which is invalid. However,
multiple fragmental elements can be owned simultaneously, and they compose according to
the composition of the underlying RA:

auth-frag-op (◦ a) · (◦ b) = ◦ (a · b)

An important property of authoritative RAs is that if one owns both an authoritative element
• a and a fragment ◦ b, then by the definition of validity, we know that the fragment is a
part of the authoritative element, i.e., b ≼ a.

In our proofs, we will be using Auth(Keyset), the authoritative keyset RA. Using
Auth(Keyset), we add the formula •(K, C)

γ
to the definition of CSS to represent the

abstract state of the search structure as one whose keyset is the entire key space K and
contains the keys C. Similarly, we represent the local abstract state of a node n by the
formula ◦(Kn, Cn)

γ
, where Kn and Cn are the keyset and contents, respectively, of n. By

the definition of the authoritative RA, the assertion

•(K, C)
γ
∗∗

n∈N

◦(Kn, Cn)
γ
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expresses that the sets Kn for each n ∈ N are disjoint and their union is included in K .3
Moreover, Cn ⊆ Kn and similarly the Cn sets are disjoint and are included in C. If we can
associate each Cn and Kn to the contents and keyset, respectively, of n, then an assertion
like the one above gives us the desired disjoint decomposition of the abstract state into local
states.

The Auth(Keyset) RA has frame-preserving updates such as the following, which we
will use to update the ghost state when we insert or delete a key k:

ks-ins
k /∈ Kn

•(K,C), ◦(Kn, Cn)⇝ •(K,C ∪ {k}), ◦(Kn, Cn ∪ {k})

ks-del
k ∈ Kn

•(K,C), ◦(Kn, Cn)⇝ •(K,C \ {k}), ◦(Kn, Cn \ {k})

For example, ks-del says that if •(K,C)
γ

and ◦(Kn, Cn)
γ

are valid resources such that
k ∈ Kn then we can update the fragment to (Kn, Cn \ {k}) (for instance when we remove
k from the contents of a node n) and the authoritative resource to (K,C \ {k}) (meaning
k is also removed from the global contents). Combining this with ks-ins for insertions and
case-analysis on op, we get the following lemma:

ks-upd
•(K,C)

γ
∗ ◦(Kn, Cn)

γ
∗ k ∈ Kn ∗Ψop(k, Cn, C

′
n, res)

⇛ ∃C ′. •(K,C ′)
γ
∗ ◦(Kn, C

′
n)

γ
∗Ψop(k, C,C

′, res)

The lemma ks-upd captures the intuition that changes made locally to Cn percolate
through the global contents C due to disjointness of keysets and the fact that a node’s
contents is always a subset of its keyset. The lemma is proved from ks-ins and ks-del
by case analysis on the operation op and application of rules ghost-update, vs-trans and
vs-frame.

5.3 Proof of the Two-Node Template

We can now prove the two-node template (Figure 5.5). The definition of CSS has been ex-
tended to account for two nodes and a lock region for each. It also contains the authoritative
version of the keyset and global contents: •(K, C)

γ
. Each node is represented by the node

3We cannot use the keyset RA to encode the invariant that the union of the sets Kn cover the key space
K because the authoritative RA’s validity predicate tells us only that fragmental elements are included in the
authoritative element. While practical concurrent search structure implementations will ensure that keysets
cover the key space, we do not need to maintain such an invariant in our proofs because we prove only partial
correctness, and not termination. For instance, suppose we had a two-node structure where the keysets did
not cover the key space. Given a k not in the keyset of either node, the only way for findNode n1 n2 k to
satisfy its specification is for it to not terminate.
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{
True

}
allocNodes ()

{
n1, n2.Node(n1, ∅) ∗ lk(n1) 7→ false ∗ Node(n2, ∅) ∗ lk(n2) 7→ false

}
{
True

}
findNode n1 n2 k

{
n. InFP(n1, n2, n) ∗ k ∈ ks(n)

}
{
Node(n,Cn)

}
decisiveOp op n k

{
res .Node(n,C ′

n) ∗Ψop(k, Cn, C
′
n, res)

}
Node(n,Cn) ∗ Node(n,C ′

n) −∗ False

Figure 5.4: The assumptions made by the two-node template on implementations.

predicate N(n), which contains the abstract predicate Node(n,Cn) that is implementation-
specific as well as the fragment containing n’s keyset and contents ◦(ks(n), Cn)

γ
.

We first describe the proof of the create method that constructs the search structure.
The specification of create is a Hoare triple because the search structure is created before the
concurrent context begins or any threads are created. We use the helper function allocNodes
that allocates the nodes Node(n1, ∅) and Node(n2, ∅) with empty contents. It also creates
the lock bit for each node. We then use ghost-alloc to allocate a ghost location γ with
contents • (K, ∅) · ◦ (ks(n1), ∅) · ◦ (ks(n2, ∅)). This ghost state is valid because the keysets of
the two nodes are disjoint and included in the key space K. We then use ghost-op to split
this into the authoritative version and two fragments, which we then fold into the predicates
N(n1) and N(n2). We can then combine these with the lock locations to get the proof context
shown in line 11. By definition of CSS, this gives us the desired postcondition, which is a
search structure with empty contents.

Moving to cssOp, the call to findNode is handled as explained previously, using the
specification given in Figure 5.4. To prove the precondition of lockNode, we open the
precondition and use the predicate InFP(n1, n2, n) that we obtained from findNode to show
that we own L(b, n,N(n)). After lockNode, we can move the predicate N(n) from the shared
state into our local state as before. We then use the specification of decisiveOp to get a
modified node predicate Node(n,C ′

n) and Ψop(k, Cn, C
′
n, res).

The linearization point for the two-node template is at the call to unlockNode. We use
the rule au-commit to open the precondition and get access to the shared state, obtaining
the resources shown in the intermediate assertion on line 28. We then use ks-upd to update
both the node’s fragment of the keyset RA as well as the authoritative element to the new
contents, and obtain the resource Ψop(k, C,C

′, res). This step corresponds to the reasoning
that since the decisive operation was performed on a node n such that k ∈ ks(n), the global
contents also change appropriately. We can then apply unlockNode’s specification to change
the lock location of n, and return N(n) to the shared state, obtaining the postcondition
CSS(n1, n2, C

′) ∗Ψop(k, C,C
′, res).
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1 InFP(n1, n2, n) := (n = n1 ∨ n = n2)

2 N(n) := ∃Cn. Node(n,Cn) ∗ ◦(ks(n), Cn)
γ

3 CSS(n1, n2, C) := ∃b1, b2. •(K, C)
γ
∗ L(b1, n1,N(n1)) ∗ L(b2, n2,N(n2))

4

5
{
True

}
6 let create () =

7
{
True

}
8 let n1, n2 = allocNodes () in
9

{
Node(n1, ∅) ∗ lk(n1) 7→ false ∗ Node(n2, ∅) ∗ lk(n2) 7→ false

}
10

{
Node(n1, ∅) ∗ lk(n1) 7→ false ∗ Node(n2, ∅) ∗ lk(n2) 7→ false ∗ • (K, ∅) · ◦ (ks(n1), ∅) · ◦ (ks(n2, ∅))

γ}
11

{
•(K, ∅)

γ
∗ L(false, n1,N(n1)) ∗ L(false, n2,N(n2))

}
12

{
CSS(n1, n2, ∅)

}
13 (n1, n2)

14
{
CSS(n1, n2, ∅)

}
15

16
〈
C. CSS(n1, n2, C)

〉
17 let cssOp op n1 n2 k =

18
{
True

}
19 let n = findNode n1 n2 k in
20

{
InFP(n1, n2, n) ∗ k ∈ ks(n)

}
21

〈
CSS(n1, n2, C) ∗ InFP(n1, n2, n) ∗ k ∈ ks(n)

〉
22 lockNode n;

23
〈
CSS(n1, n2, C) ∗ N(n) ∗ k ∈ ks(n)

〉
24

{
N(n) ∗ k ∈ ks(n)

}
25

{
Node(n,Cn) ∗ ◦(ks(n), Cn)

γ
∗ k ∈ ks(n)

}
26 let res = decisiveOp op n k in

27

{
Node(n,C ′

n) ∗ ◦(ks(n), Cn)
γ
∗Ψop(k,Cn, C

′
n, res) ∗ k ∈ ks(n)

}
28

〈
Node(n,C ′

n) ∗ ◦(ks(n), Cn)
γ
∗Ψop(k,Cn, C

′
n, res) ∗ •(K, C)

γ
∗ k ∈ ks(n) ∗ · · ·

〉
29

〈
Node(n,C ′

n) ∗ ◦(ks(n), C ′
n)

γ
∗Ψop(k,C,C

′, res) ∗ •(K, C ′)
γ
∗ · · ·

〉
(* By KS-UPD *)

30 unlockNode n;

31
〈
CSS(n1, n2, C

′) ∗Ψop(k,C,C
′, res)

〉
32

{
True

}
33 res

34
〈
v. CSS(n1, n2, C

′) ∗Ψop(k,C,C
′, v)

〉
Figure 5.5: Proof of the two-node template algorithm.
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6 | Hindsight Reasoning

In this chapter, we explain our hindsight framework. We motivate the basics of Hindsight
Reasoning [46, 47, 108, 117, 118, 133] via a simplified distributed counter data structure
from [118]. This is followed by a high-level overview of our framework in Iris. As part of
the overview, we provide the perspective of a proof author using our framework to verify
linearizability of a data structure in Iris. Finally, we close the chapter by providing the
technical details underlying our framework.

6.1 A Distributed Counter

A distributed counter object abstractly represents a natural number n with two operations,
read which returns the current value of the counter and incr which increments the value of
the counter by 1. The counter is composed of two memory locations each storing a natural
number. The abstract value of the counter is the sum of the numbers stored in the two
memory locations.

1 let mk_counter #() =
2 let l1 = ref 0 in
3 let l2 = ref 0 in
4 (l1, l2)
5

6 let read c =
7 let x = !(fst c) in
8 let y = !(snd c) in
9 x + y

10 let incr c =
11 if (nondet ()) then
12 FAA (fst c) 1
13 else
14 FAA (snd c) 1

Figure 6.1: Implementation of a distributed counter. Command ref allocates a new memory location.
Commands fst and snd evaluate a pair of values to its first and second component respectively. Function
nondet returns a boolean value chosen non-deterministically. Command FAA stands for the atomic fetch-
and-add operation.

Figure 6.1 provides an implementation of the distributed counter. Operation mk_counter
creates a new distributed counter object by allocating two memory locations with value
0 stored in both locations. Operation read reads the values stored in the two locations
successively and returns their sum. Operation incr non-deterministically picks one of the
locations and increments it by 1 atomically via a fetch-and-add operation.
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6.2 Linearizability of the Distributed Counter

Ψop(n, n
′, res) :=

{
n′ = n ∧ res = n op = read

n′ = n+ 1 ∧ res = () op = incr

Figure 6.2: Sequential specification of the distributed counter. Parameters n and n′ refer to the
abstract state of the distributed counter before and after operation op, respectively, and res is the
return value of op.

Let us focus on the correctness reasoning for the distributed counter. In order to establish
linearizability of the distributed counter, we must determine linearization points for each of
its operations. That is, an atomic step where the effect of the operation takes place according
to the sequential specification of the counter. The sequential specification of a counter is
shown in Figure 6.2. It establishes that read does not change the abstract state and returns
the current value of the counter. On the other hand, incr increments the counter value by
one and returns a unit value.

We refer to a linearization point as modifying if the operation changes the abstract state
of the data structure (like incr) and otherwise refer to it as unmodifying (like read). The
modifying linearization points of a data structure are typically easier to reason about. For
instance, the linearization point for incr is when the fetch-and-add FAA (in Line 12 or Line 14)
takes effect. However, it is not easy to determine the unmodifying linearization points of an
operation because they may be future-dependent. For instance, the linearization point of
read cannot be determined at any fixed moment, but only at the end of the execution, once
any interference of other concurrent operations has been accounted for. In other words, no
atomic step in read can be confirmed as its linearization until the read has terminated. Let
us explain this in further detail.

We introduce an abstract predicate counter(n1, n2) to represent the state of the counter
where the first location stores value n1 and the second n2. Let Tr be a thread executing read,
while concurrently there are two threads T1 and T2 executing incr. Let the initial state of
the counter be counter(0, 0). Consider the following interleaving steps of the concurrent
execution of the three threads :

(S1) Tr reads the first location to be 0.

(S2) T1 increments the first location : counter(0, 0)⇝ counter(1, 0).

(S3) T2 increments the second location : counter(1, 0)⇝ counter(1, 1).

(S4) Finally, Tr reads the second location and returns with final value 1.

In summary, Tr observes the first location with value 0 and second with value 1, although
the counter never attained the state counter(0, 1). Nevertheless, this execution of read is
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linearizable, with the linearization point being the step (S2) when T1 increments the first
location. To emphasize, the linearization point for thread Tr is an atomic step of thread
T1. Contrast this execution trace with one where steps (S3) and (S4) are swapped. That is,
Tr reads the second location with value 0 before T2 increments it. In this case, Tr returns
0 and its linearization point is step (S1). This is why the linearization point of read is
future-dependent.

The intuitive argument for linearizability of the read operation relies on the following
two invariants of the distributed counter:

Invariant 1 The values in the two locations of the distributed counter are monotonically
non-decreasing.

Invariant 2 The abstract value of the distributed counter (i.e. the sum of the values in
the two locations) increases by at most one for every atomic step.

Invariant 1 ensures that if a thread observes a state of the counter as counter(a1, a2) first
and then counter(b1, b2) at some later point in time, then we can infer a1 ≤ b1 and a2 ≤ b2.
In a similar vein, if a thread observes the abstract value of the counter to be n1 first and
then n2 at some later point in time, then Invariant 2 allows us to infer: (i) n1 ≤ n2; and (ii)
the abstract state of the counter must have attained all values between n1 and n2.

Equipped with the two invariants, we can now present the intuitive argument for the
linearizability of the read operation. From the perspective of a thread executing read, let
the state of the counter be counter(a1, a2) when the first location is read (Line 7). The
value read is a1. Let the state of the counter be counter(b1, b2) when the second location
is read (Line 8). The value read is b2. From Invariant 1 above, the thread can infer that
a1 + a2 ≤ a1 + b2 ≤ b1 + b2. Additionally, by Invariant 2, the thread can establish that in
the time period between the two reads, the counter must have attained a state with abstract
value a1 + b2 at some point. This point becomes its linearization point, completing the
intuitive proof argument.

Hindsight reasoning [117, 118] is designed to formalize proof arguments like one for the
read operation above. It enables temporal reasoning about computations using a past predi-
cate ⟐p, which expresses that proposition p held true at some prior state in the computation
(up to the current state). For instance, thread Tr can establish ⟐(counter(0, 0)) at step (S4)
even though the current state of the counter at that point is counter(1, 1). The reason is
that counter(0, 0) was true at an earlier point in time, namely at (S1). Note that the past
operator ⟐ abstracts away the exact time point when the predicate held true. Note also
that a past predicate is not affected by concurrent interferences, as it merely records some
fact about a past state.

There are two ways to establish a past predicate that are relevant for our proofs. The
first is to establish the predicate in the current state directly. That is, ⟐p holds if p holds
in the current state. As an example, thread Tr observes the state counter(0, 0) at step (S1).
Thus, for all subsequent steps (S2-S4), Tr can establish ⟐(counter(0, 0)). The second way
to establish a past predicate is through the use of temporal interpolation [118]. That is, one
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proves a lemma of the form: if there existed a past state that satisfied property p and the
current state satisfies q , then there must have existed an intermediate state that satisfied o.
As an example, thread Tr observes the counter with state counter(1, 1) at step (S4), while also
holding the knowledge ⟐(counter(0, 0)). Invariant 2 allows thread Tr to infer via temporal
interpolation that there must have been an intermediate state where the abstract value of
the counter was 1 (namely, at the end of step (S2)). Note that the temporal interpolation
does not establish that state counter(1, 0) existed in particular. It only establishes that at
some point, the abstract state must have obtained value 1.

6.3 Hindsight Reasoning in Iris

Linearizability in Iris is defined via (logically) atomic triples [33, 86] described in Section 4.5.
Linearizability of a data structure operation op can be expressed by an atomic triple of the
form

Inv(r) −∗
〈
C. DS(r, C)

〉
op r

〈
res . ∃ C ′. DS(r, C ′) ∗ Ψop(C,C

′, res)
〉
. (ClientSpec)

Here, r is the pointer that provides access to the data structure. The predicate DS(r, C) is
the representation predicate that relates the head pointer with the abstract state C of the
structure. For instance, in the case of the distributed counter the abstract state refers to the
sum of the two locations of the counter. The predicate Inv(r) is the shared data structure
invariant. It can be thought of as a thread-local precondition of the atomic triple, which we
express using a separating implication. The invariant ties DS(r, C) to the data structure’s
physical representation and may contain other resources necessary for proving the atomic
triple. The predicate Ψop(C,C

′, res) captures the sequential specification of the structure.
The specification essentially says there is a single atomic step in op where the abstract state
changes from C to C ′ according to the sequential specification Ψop(C,C

′, res) (Figure 6.2
for the distributed counter). This step is op’s linearization point. We call (ClientSpec) the
client-level atomic specification for the data structure under proof.

Proving atomic triples. The proof of establishing an atomic triple involves a linearizabil-
ity obligation that must be discharged directly at the linearization point. However, it can be
challenging to determine the linearization point precisely and to discharge the linearizability
obligation exactly at that point. When the program execution reaches a potential lineariza-
tion point that depends on future interferences by other threads, then the proof will fail if
it is unable to determine whether the linearizability obligation should be discharged now or
later. In Iris, this challenge is overcome using prophecy variables [85], which enable the proof
to reason about the remainder of the computation that has not yet been executed.

Another challenge is that the linearization point of an operation may be an atomic step
of another operation that is executed by a different thread (like thread Tr executing read in
Section 6.2). Data structures that demonstrate such behavior are said to deploy helping. This
behavior complicates thread modular reasoning. The conventional solution to this challenge
in Iris is to use a helping protocol [81, 85, 138]. The helping protocol is specified as part
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of the shared data structure invariant and consists of a registry that tracks which threads
are expected to be linearized by other threads as well as conditional logic that governs the
correct transfer and discharge of the associated linearizability obligations.

Both the use of prophecy variables and the helping protocol need to be tailored to the
specific data structure at hand, which adds considerable overhead to the proof. To reduce this
overhead, we present an alternative proof method that enables linearizability proofs based
on hindsight arguments in Iris. Rather than identifying the linearization point precisely, the
proof can establish linearizability in hindsight using temporal interpolation in the style of
the intuitive proof argument for the distributed counter presented in Section 6.2.

Hindsight specification. Our proof method offers an intermediate specification, a Hoare
triple specification, which in essence expresses that linearizability has been established in
hindsight. In our Iris formalization, we show that any data structure whose operations satisfy
the hindsight specification also satisfy the client-level atomic specification. This proof relates
the two specifications via prophecy variables and a helping protocol. However, the helping
protocol is data structure agnostic, making our proof method applicable to a broad class of
structures exhibiting future-dependent unmodifying linearization points.

From the perspective of a proof author using our method to prove linearizability of some
structure, one has to only establish the hindsight specification to obtain the proof of the
client-level atomic specification. To this end, our method provides further guidance to the
proof author.

In order to use hindsight reasoning, one has to have the history of computation at hand.
Here, we offer a shared state invariant with a mechanism to store the history. The shared
state invariant has three main components: a mechanism to store the history, the helping
protocol, and finally, an abstract predicate that can be instantiated with invariants specific
to the structure at hand. The first two components are data structure agnostic. The proof
author only needs to specify the data structure-specific invariant and what information about
the data structure state should be tracked by the history.

In the rest of this section, we discuss our method in detail. We begin with the hindsight
specification, followed by a discussion of the shared state invariant and how to use it.

6.3.1 Linearizability in Hindsight

We motivate the hindsight specification using the challenges we face when proving the client-
level atomic specification for the operations of the distributed counter. Let us recall the
intuitive proof argument from Section 6.2. A thread executing incr will modify the structure
and it can fulfill its linearizability obligation when the structure is modified. On the other
hand, a thread executing read exhibits an unmodifying linearization point, which requires
helping.

Prophecy reasoning. An important detail of our proof method is how it determines
whether a thread requires helping. Whether a thread requires helping or not is dependent
on whether it modifies the structure. In the following, we refer to the operation that may
potentially change the abstract state of the structure as its decisive operation. In incr, these
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are FAA operations on the locations (Line 12 or Line 14). Operation read on the other hand
has no decisive operation. Across data structures, a decisive operation can take many forms.
It may be physically atomic (like FAA) or only logically atomic (as we will see with the skiplist
data structure).

In order to determine in advance whether a thread requires helping, our proof method
attaches a prophecy to each thread. A prophecy in Iris can predict a sequence of values
and is treated as a resource that can be owned by a thread. Ownership of a prophecy
p is captured by the predicate Proph(p, pvs), where pvs is the list of predicted values. The
predicate signifies the right to resolve p when the thread makes a physical step that produces
some result value v. The resolution of p establishes equality between v and the head of the
list pvs (i.e., the next value predicted by p). The resolution step yields the updated predicate
Proph(p, pvs ′) where pvs ′ is the tail of pvs . This mechanism enables the proof to do a case
analysis on the predicted values pvs before these values have been observed in the program
execution1.

The prophecy attached to a thread predicts the results of the thread’s decisive operation.
Note that an operation may have multiple decisive operations. It is also possible that a deci-
sive operation fails and the operation restarts to attempt it again. Therefore, the prophecy
needs to predict a sequence of result values, one for each attempted call to the thread’s
decisive operation.

For the purpose of this discussion, we assume that the prophecy predicts a sequence of
Success or Failure values. If the sequence contains a Success value, then the decisive
operation will succeed and the thread will modify the structure. Otherwise, the thread’s
linearization point is unmodifying. Let predicate Upd(pvs) hold when pvs contains at least
one Success value.

The proof author needs only to identify the decisive operations that potentially change
the abstract state of the structure (like incr as discussed above) by resolving the prophecy
around these decisive calls.

Hindsight specification. Before we can present the hindsight specification, we recall the
details regarding atomic triples in Iris from Chapter 4. An atomic triple

〈
x. P

〉
e
〈
v. Q

〉
is

defined in terms of standard Hoare triples of the form ∀ Φ.
{
AUx.P,Q(Φ)

}
e
{
v.Φ(v)

}
. The

predicate AUx.P,Q(Φ) is the atomic update token and represents the linearizability obligation
of the atomic triple. At each atomic step, it offers the thread a choice to linearize by
committing the atomic update. Once committed, the atomic update transforms to Φ(v),
which serves as a receipt of linearization.

We also introduce two auxiliary predicates:

• Thread(tid , t0): this predicate is used to register the thread with identifier tid in the
shared invariant. The argument t0 denotes the time when thread tid began its execu-
tion.

• PastLin(op, res , t0): this predicate holds if there was a past state in the history be-
tween time t0 and the point when this predicate is evaluated for which the sequential

1For further details on prophecies in Iris, we refer to [85].
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specification Ψop held with result res . It essentially captures whether the sequential
specification was true for any point after time t0.

We now have all the ingredients to present the hindsight specification:

∀ tid t0 pvs . Inv(r) −∗ Thread(tid , t0) −∗{
Proph(p, pvs) ∗ (Upd(pvs) −∗ AUop(Φ))

}
op r k

res . ∃pvs ′. Proph(p, pvs ′) ∗ pvs = (_ @ pvs ′)

∗ (Upd(pvs) −∗ Φ(res))
∗ (¬Upd(pvs) −∗ PastLin(op, res , t0))


(HindSpec)

We explain the specification piece by piece. The local precondition Thread(tid , t0) ties the
thread to its identifier tid and provides knowledge that tid begins executing at time t0. The
Hoare triple can be best understood by observing how prophecy resources are allowed to
change (highlighted in brown) and what are the obligations when Upd(pvs) holds (in teal)
versus when it does not hold (in magenta). Let us look at each of these in detail. First,
the prophecy resource Proph(p, pvs) in the precondition changes to Proph(p, pvs ′) in the
postcondition where pvs ′ is a suffix of pvs . It basically says that operation op is allowed to
resolve the prophecy p as many times as necessary and then return the remaining resource
at the end.

Now let us consider the case when Upd(pvs) holds. The precondition here provides the
atomic update token AUop(Φ) to op, expecting the receipt of linearization Φ(res) in return.
Thus, the responsibility of linearization is delegated to op when Upd(pvs) holds. We can
gain better insight by relating this situation to the distributed counter as before. This case
corresponds to verifying the incr operation. The point when FAA is called becomes the
linearization point and so the thread does not require help from other threads to linearize.
The hindsight specification simply asks for the receipt from linearization Φ(res) at the end.

Next, let us consider the case when Upd(pvs) does not hold. The precondition provides no
additional resources here, while the postcondition requires the predicate PastLin(op, res , t0).
In simple terms, this means that if Upd(pvs) is not true, i.e., the prophecy says the thread
is not going to modify the structure, then the hindsight specification allows exhibiting a
past state from history when the sequential specification was true. Relating again to the
distributed counter, this is applicable when verifying the read operation. According to the
specification, the thread can look at the history of the structure and exhibit precisely the
point when its return value matches the abstract state of the counter.

The proof argument for establishing the hindsight specification is significantly simpler
than if one were to attempt a direct proof of the client-level atomic specification2. In par-
ticular, the proof author does not need to reason about helping and atomic update tokens
in last case discussed above. Instead, they need only to reason about the structure-specific
history invariant.

2See Section 9.2 for a detailed comparison of the two approaches.
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6.4 Soundness of the hindsight specification

We establish the soundness of the hindsight specification by proving that any structure that
satisfies the hindsight specification (HindSpec) must also satisfy its client-level specification
(ClientSpec). Our proof that relates the two specifications involves a helping protocol stored
as part of the shared state invariant. We begin by providing an overview of the helping
protocol first. This is followed by details that make precies the role of prophecy variables.
Finally, we provide the description of the shared state invariant encoding the helping protocol
and an overview of the proof relating (HindSpec) to (ClientSpec).

Before op begins executing, the proof creates the prophecy resource Proph(p, pvs) assumed
in the precondition of the hindsight specification. If the prophecy determines that the thread
requires helping, then its client-level atomic triple is registered to a predicate which encodes
the helping protocol as part of the shared state invariant Inv(r). The registered atomic triple
serves as an obligation for the helping thread to commit the atomic triple. This obligation
will be discharged by the appropriate concurrent operation determined by the op’s sequential
specification Ψop. The proof then uses the hindsight specification to conclude that it can
collect the committed triple from the shared predicate. The committed triple serves as a
receipt that the obligation to linearize has been fulfilled.

To govern the transfer of linearizability obligations and fulfillment receipts between
threads via the shared invariant, the helping protocol tracks a registry of thread IDs with
unmodifying linearization points that require helping from other concurrent threads. Each
thread registered for helping is in either the pending state or the done state, depending on
whether the thread has already been linearized. A thread registered for helping must be
able to determine its current protocol state in order to be able to extract its committed
atomic triple from the registry. For this purpose, the helping protocol includes a lineariza-
tion condition that holds iff a registered thread tid has linearized (and is, hence, in done
state).

From the point of view of a thread which does the helping, the linearization condition
forces its proof to scan over the pool of uncommitted triples registered in the helping protocol
and identify those that need to be linearized at its linearization point, changing their protocol
state from pending to done. This step involves a proof obligation for the helping thread to
show that the sequential specification of tid ’s operation is indeed satisfied at the linearization
point.

One crucial innovation in our helping protocol is that we have formulated a linearization
condition that is parametric in the sequential specification of the data structure operations,
making the soundness proof for the hindsight specification applicable to many structures
at once. In particular, we deal with the aspect of scanning and updating the registry in
the proof of the helping thread, the proof author simply invokes a lemma provided by our
method at the identified linearization points. Therefore, the helping protocol mechanism
remains fully opaque to the proof author.
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1 let op r =
2 let tid = NewThreadID in
3 let p = NewProph in
4 let v = op p r in
5 Resolve p to END(v); v

prophecy-creation{
True

}
NewProph

{
p. ∃ pvs . Proph(p, pvs)

}
prophecy-resolution{
Proph(p, pvs)

}
Resolve p to v{

∃ pvs ′. Proph(p, pvs ′) ∗ pvs = v :: pvs ′
}

Figure 6.3: Wrapper augmenting op with prophecy-related ghost code, whose specification is given on
the right.

6.4.1 Augmenting op with Prophecies

In light of the discussion in Section 6.3.1, we must augment op with auxiliary ghost code that
creates and resolves the relevant prophecies. We do this by defining the wrapper function
op given in Figure 6.3. Let us first briefly discuss how prophecy variables can be used in
Iris. The right side of Figure 6.3 shows the specifications of the two functions related to
manipulating prophecies. The function NewProph returns a fresh prophecy p that predicts a
sequence of values pvs, captured by the resource Proph(p, pvs). This resource can be owned
and shared among threads via a shared invariant. The resource is also non-duplicable.

The values contained in the sequence pvs are determined by how p is resolved using
the Resolve command. The rule prophecy-resolution ties the observed value (v) to the
next prophesied value (the head of pvs). It also updates Proph(p, pvs) to the tail of pvs for
the remaining prophesied values that are yet to be observed. In our context, we want the
prophecy to predict whether the decisive operations (i.e. FAA in incr) will succeed as well
as their return value. Hence, we augment incr by wrapping its decisive operations inside
a Resolve command. The return value is captured by the resolution on Line 5. For our
purposes, we assume that pvs is a sequence of Success or Failure values (i.e., the result of
each attempted call to the decisive operation) followed by a special value END(res) indicating
that no further future calls are expected, and that res will be the final return value3. Given
the prophesied sequence of values pvs , a thread will exhibit an unmodifying linearization
point iff pvs does not contain any Success values.

Let us now turn to op, which starts by generating a unique thread identifier using
NewThreadID on Line 2. We also implement NewThreadID using the NewProph construct.
There are two benefits to this: (i) Iris makes sure that prophecy identifiers are unique out
of the box, and (ii) now we can use Iris’s erasure theorem for prophecies to argue that the
augmented code op has the same behavior as op. After, op creates a prophecy p as described
above, it invokes the underlying operation op, and finally, terminates after resolving p to the
result of op.

We can now finally present the client-level specification with op:

Inv(r) −∗
〈
C. DS(r, C)

〉
op p r

〈
res C ′. DS(r, C ′) ∗ Ψop(C,C

′, res)
〉
.

3We have to also consider the case where pvs is not of this form, but that is a trivial case to handle and
thus we do not consider it in this discussion.
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The next section provides details on our choice of Inv(r) and the proof of op.

6.4.2 Invariant for Hindsight Reasoning

Tracking the history of computation. Hindsight arguments involve reasoning about
past program states. Our encoding therefore tracks information about past states using
computation histories. We define computation histories as finite partial maps from times-
tamps, N, to snapshots, S. A snapshot describes an abstract view of a program state. It
is a parameter of our method. For instance, a snapshot may capture the physical memory
representation of the data structure under proof, while abstracting from the remainder of
the program state. Another parameter is a function | · | that computes the abstract state of
the data structure from a given snapshot.

In order to track the history of computation, we rely on resource algebras. To reduce
the burden on the proof author, Iris provides a library of predefined parameterized cameras.
One such camera that we will use below is the agreement camera Ag(X) which is defined for
any set X. The elements take the form agree(x) for x ∈ X and composition is only defined in
the case of identity: agree(x) · agree(x) = agree(x). Another predefined camera we will use is
that of finite partial maps from some set X to some camera R, Map(X,R), with composition
defined by lifting the composition on R pointwise to maps. We also use the authoritative RA
defined in Section 5.2. the camera Auth(MaxNat) is very useful to establish lower bounds of
a monotonically non-decreasing quantity. The definitions of Auth(MaxNat) yields the valid
entailment: • Max(n)

γ
∗ ◦ Max(n′)

γ
⊢ n′ ≤ n. The permitted frame-preserving updates

are shown below:

auth-max-upd
n ≤ n′

•Max(n)
γ
⇛ •Max(n′)

γ

auth-max-snap •Max(n)
γ
⇛ •Max(n)

γ
∗ ◦Max(n)

γ

The rule auth-max-upd requires that the update only increases the authoritative value to
guarantee that the new authoritative value n′ still composes with all fragmental values.

The predicate Hist(H,T ) is then defined as

Hist(H,T ) := • Max(T )
γt
∗ • agree(H)

γm

∗ dom(H) = {0 . . . T} ∗ ∀t < T.H(t) ̸= H(t+ 1) .

Here, we abuse notation and write agree(H) for the function that takes the history H to an
element of Auth(Map(N,Ag(S))) in the expected way. This resource allows us to define a past
predicate ⟐s,t0(q) with the intuitive meaning that the history contains state s recorded after
(or at) time t0 for which proposition q holds true. The second last conjunct ensures that the
authoritative history contains no gaps. The purpose of the last conjunct is to ensure that
a thread appends to the history whenever any change to the program state is made that
affects the snapshot (see discussion in Section 6.4.2).
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Inv(r) := ∃H T C. DS(r, C) ∗ |H(T )| = C

∗ Hist(H,T ) ∗ Invhelp(H,T ) ∗ Invtpl(r,H, T )

Invtpl(r,H, T ) := resources(r,H(T ))

∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))

∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t+ 1)))

Invhelp(H,T ) := ∃R. • R
γr

∗∗
tid∈R

∃ op vp t0ΦTok. Reg(tid , op, vp, t0,Φ,Tok)

Reg(tid , op, vp, t0,Φ,Tok) := Thread(tid , t0) ∗ State(op, vp, t0,Φ,Tok)

State(op, vp, t0,Φ,Tok) := Pending(op, vp, t0,Φ) ∨ Done(op, vp, t0,Φ,Tok)

Pending(op, vp, t0,Φ) := AUop(Φ) ∗ ¬PastLin(op, vp, t0)

Done(op, vp, t0,Φ,Tok) := (Φ(vp) ∨ Tok) ∗ PastLin(op, vp, t0)

Figure 6.4: Definition of the shared state invariant encoding the hindsight reasoning. Variable H
represents the history, T the current timestamp in use and C the abstract state of the structure.

Invariant. Figure 6.4 shows a simplified definition of the invariant that encodes the hindsight
reasoning4. The conjunct |H(T )| = C and the predicate DS(r, C) together tie the abstract
state C of the data structure to the latest snapshot in the history. The predicate DS(r, C) is
the dual of the representation predicate DS(r, C) used in the client-level atomic specification.
Both represent one half of an ownership over the abstract state of the structure, keeping the
abstract state defined by Inv(r) synchronized with the representation predicate DS(r, C).

The helping protocol predicate Invhelp(H,T ) contains a registry • R
γr of thread IDs

with unmodifying linearization points that require helping from other concurrent threads.
For each thread ID tid in the registry, the shared state contains Thread(tid ,_) along with
the state of tid , which is either Pending or Done. Pending captures an uncommitted atomic
triple, and Done describes the operation after it has been committed. Note that we use the
notation AUop(Φ) to refer to the atomic update token of op and write just AU(ϕ) when op is
clear.

The predicate Invtpl(r,H, T ) captures invariants particular to the data structure under
proof. It is further composed of three abstract predicates that are meant to be instantiated
with the structure-specific invariants. The three predicates serve the following purpose. The
first predicate resources(r,H(T )) ties the current snapshot to the physical representation
of the structure. As an example, when verifying the distributed counter, this predicate

4For presentation purposes, the proof outline presented here abstracts from some technical details of the
actual proof in Iris.
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holds the points-to resources providing access to read and write over the two locations.
The predicate Hist(H,T ) contains a conjunct (∀t, t < T ⇒ H(t) ̸= H(t + 1)). Together
with the predicate resources, this conjunct forces a thread to update the history whenever
the structure is modified. For this reason, the hindsight framework makes it mandatory
to define this predicate. Other predicates in Invtpl , like per_snapshot and transition_inv
explained below, are not mandatory but are typically useful.

The predicate per_snapshot(H(T )) captures the structural invariants that hold for any
given snapshot. For instance with the distributed counter, this predicate holds facts such
as that the abstract value of the counter is the sum of the values contained in the two
locations. The predicate transition_inv(s, s′) captures a transition invariant on snapshots
observed in the history. That is, it constrains how certain quantities evolve over time.
Again as an example from the distributed counter, the facts about how values stored in
two locations evolve according to Invariants 1 and 2 are stored here. Crucially, the facts in
transition_inv(s, s′) allow temporal interpolation required to establish facts about past states
in the history (like in Section 6.2).

To summarize, the proof author defines the snapshot of the structure, the function | · |,
and instantiates the three abstract predicates in Invtpl appropriately. The resulting shared
state invariant then tracks the history and handles the helping protocol without requiring
further fine-tuning to the data structure at hand.

6.4.3 Proof of op

We are now finally ready to prove the client-level specification for op. The proof outline
for op is shown in Figure 6.5. The proof begins by creating a thread identifier tid and
prophecy p. As alluded to earlier, NewThreadID is also just NewProph in disguise, hence we
obtain two prophecy resources, one each for tid and p. Before we can invoke op, we must
record the start time of this thread and perform a case split on Upd(pvs) to determine if
this thread requires helping. For this, we open the invariant at Line 7. To record the start
time, we give up the resource Proph(tid ,_) to gain a duplicable resource Thread(tid , T0) in
exchange ( T0 is the current timestamp). The exact details of this exchange are not relevant,
so we continue with the case split on Upd(pvs). First consider the case that Upd(pvs) holds.
Then, thread tid does not require helping and the hindsight specification can ensures that
op linearizes correctly. This is quite straightforward, so we focus on the other case, i.e.
Upd(pvs) does not hold.

In order to register the thread for helping, we must establish PastLin(op, vp, T0) or its
negation. Here, vp is the return value obtained by scanning for the end marker in pvs .
We proceed by first checking if the thread can be linearized at the current timestamp T0.
If so, then we can safely linearize the thread right away. So let us focus on the more
interesting case where we cannot linearize right away (Line 14). Here, the thread registers
itself with the helping protocol by updating R to R ∪ {tid} using an update rule for the
authoritative set camera (in Line 18). As part of registering for helping, it first establishes
Pending(op, vp, T0,Φ) by transferring its obligation to linearize to the shared state, captured
by the update token AU(Φ). The condition PastLin(op, vp, T0) follows from the fact that
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1 Inv(r) ∗
〈
C. DS(r, C)

〉
2 let op r =

3
{
AU(Φ)

}
4 let tid = NewThreadID

5
{
AU(Φ) ∗ Proph(tid , _)

}
6 let p = NewProph in

7

{
AU(Φ) ∗ Proph(tid , _) ∗ Proph(p, pvs) ∗ Inv(r)

}
8 (* Open invariant *)

9
{
AU(Φ) ∗ Thread(tid , T0) ∗ Proph(p, pvs) ∗ DS(r, C0) ∗ Invhelp(H0, T0) ∗ . . .

}
10 (* Case analysis on Upd(pvs) : only showing ¬Upd(pvs) *)

11

{
AU(Φ) ∗ Thread(tid , T0) ∗ Proph(p, pvs) ∗ DS(r, C0) ∗ • R

γr ∗ tid /∈ R ∗ . . .
}

12 (* Let vp such that pvs contains END(vp) *)
13 (* Case analysis on Ψop(|H0(T0)|, |H0(T0)|, vp) : only showing ¬Ψop(|H0(T0)|, |H0(T0)|, vp) *)

14

{
Thread(tid , T0) ∗ Proph(p, pvs) ∗ DS(r, C0) ∗ • R

γr ∗ tid /∈ R
}

15
{
· · · ∗ AU(Φ) ∗ Thread(tid , T0) ∗ ¬PastLin(op, vp, T0)

}
16

{
· · · ∗ AU(Φ) ∗ Thread(tid , T0) ∗ Pending(op, vp, T0,Φ) ∗ Tok

}
17

{
· · · ∗ State(op, vp, T0,Φ,Tok) ∗ Tok

}
18 (* Ghost update: • R

γr

⇛ • R ∪ {tid}
γr

*)

19

{
Thread(tid , T0) ∗ Proph(p, pvs) ∗ ◦ {tid}

γr

∗ Tok ∗ DS(r, C0) ∗ • R ∪ {tid}
γr

∗ . . .
}

20

{
Thread(tid , T0) ∗ Proph(p, pvs) ∗ ◦ {tid}

γr

∗ Tok ∗ DS(r, C0) ∗ Invhelp(H0, T0) ∗ . . .
}

21 (* Close invariant *)

22

{
Thread(tid , T0) ∗ Proph(p, pvs) ∗ ◦ {tid}

γr

∗ Tok
}

23 let v = op p r in

24

Thread(tid , T0) ∗ ◦ {tid}
γr

∗ Tok ∗ Proph(p, pvs ′) ∗ (pvs = prf ++ pvs ′)

∗(Upd(pvs) −∗ Φ(v)) ∗ (¬Upd(pvs) −∗ PastLin(op, vp, T0))


25

{
Thread(tid , T0) ∗ ◦ {tid}

γr

∗ Tok ∗ Proph(p, pvs ′) ∗ PastLin(op, vp, T0)
}

26 Resolve p to END(v);

27

{
Thread(tid , T0) ∗ ◦ {tid}

γr

∗ Tok ∗ Proph(p, []) ∗ (vp = v) ∗ PastLin(op, vp, T0)
}

28 (* Open invariant *)

29

{
Thread(tid , T0) ∗ ◦ {tid}

γr

∗ Tok ∗ PastLin(op, v, T0) ∗ DS(r, C1) ∗ Invhelp(H1, T1) ∗ . . .
}

30

{
· · · ∗ Tok ∗ ◦ {tid}

γr

∗ PastLin(op, v, T0) ∗ State(op, v, T0,Φ,Tok)
}

31
{
· · · ∗ Tok ∗ PastLin(op, v, T0) ∗ Done(op, v, T0,Φ,Tok)

}
32

{
· · · ∗ Tok ∗ PastLin(op, v, T0) ∗ (Φ(v) ∨ Tok)

}
33

{
· · · ∗ Φ(v) ∗ PastLin(op, v, T0) ∗ (Φ(v) ∨ Tok)

}
34

{
· · · ∗ Φ(v) ∗ PastLin(op, v, T0) ∗ Done(op, v, T0,Φ,Tok)

}
35

{
Φ(v) ∗ DS(r, C1) ∗ Invhelp(H1, T1) ∗ . . .

}
36 (* Close invariant *)

37
{
Φ(v)

}
38 v

39
〈
res C ′. DS(r, C ′) ∗ Ψop(C,C

′, res)
〉

Figure 6.5: Outline for the proof of the client-level specification for op.
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Ψop(k, |H0(T0)|, |H0(T0)|, vp) does not hold. The thread also creates a fresh non-duplicable
token Tok that it will later trade in for the receipt Φ(vp).

We are now at the point of invocation for op. Before continuing further, let us briefly
switch to the role played by the concurrent thread that must linearize thread tid . The helping
thread must update the structure, and as per the invariant, update the history M as well
as the helping protocol Invhelp(H,T ). In particular, while updating the helping protocol, it
scans over all threads registered for helping so far, moving them from state Pending to state
Done as per the prophesied return value vp.

Let us now return to the proof thread tid at Line 23. As precondition of (HindSpec),
we give away Proph(p, pvs) and obtain the postcondition (Line 24). Simplifying the post-
condition of (HindSpec) for our case ¬Upd(pvs), we obtain the predicate PastLin(op, vp, T0).
Next, we make a final resolution of the prophecy on Line 26. Since, pvs ′ is the suffix of pvs ,
END(vp) must also be the final item in pvs ′. After resolution, we obtain END(vp) = END(v) and
by injectivity of the end marker, vp = v.

We now have the predicate PastLin(op, v, T0) which we use to obtain the receipt of lin-
earization from the shared invariant. Because PastLin(op, v, T0) holds now, we know thread
tid cannot be in the Pending state. Hence, we know that thread tid must be in the Done
state. Since the thread owns the unique token Tok, it trades it in to obtain Φ(v), which lets
it complete the proof of its client-level specification.
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7 | Multicopy Structures

This chapter introduces the LSM-DAG template that covers lock-based multicopy structures
like LSM Trees. We provide the intuitive proof of correctness for the template using hindsight
reasoning. Following this, we show how to use the hindsight framework from Chapter 6 to
prove linearizability of the LSM-DAG Template.

7.1 Introduction

Single-copy structures achieve high performance for reads. However, some applications, such
as event logging, require high write performance, possibly at the cost of decreased read speed
and increased memory overhead. This demand is met by data structures that store upserts
(inserts, deletes or updates) to a key k out-of-place at a new node instead of overwriting a
previous copy of k that was already present in some other node. Performing out-of-place
upserts can be done in constant time (e.g., always at the head of a list). A consequence of
this design is that the same key k can now be present multiple times simultaneously in the
data structure. Hence, we refer to these structures as multicopy (search) structures.

Examples of multicopy structures include the differential file structure [152], the log-
structured merge (LSM) tree [134], and the Bw-tree [109]. These concurrent data structures
are widely used in practice, including in state-of-the-art database systems such as Apache
Cassandra [4] and Google LevelDB [58].

Like the verification method proposed by Krishna et al. [97], we aim to prove that the
concurrent search structure of interest is linearizable [69], i.e., each of its operations appears
to take effect atomically at a linearization point and behaves according to a sequential
specification. For multicopy structures, the sequential specification is that of a (partial)
mathematical map that maps a key to the last value that was upserted for that key. The
framework proposed in [97, 153] does not extend to multicopy structures as it critically relies
on the fact that every key is present in at most one node of the data structure at a time.
Moreover, searches in multicopy structures exhibit dynamic non-local linearization points
(i.e., the linearization point of a search is determined by and may be present during the
execution of concurrently executing upserts). This introduces a technical challenge that is
not addressed by this prior work. We discuss further related work in Chapter 10.

In this chapter, we introduce template algorithms for multicopy structures. We analyse
them by first providing intuitive proof of their linearizability. This is followed by connecting
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the intuitive proof to the hindsight framework from Chapter 6.

7.2 Motivation and Overview

From a client’s perspective, a multicopy structure implements a partial mathematical map
M : K ⇀ V of keys k ∈ K to values v ∈ V. We refer to M as the logical contents of the
structure. The data structure supports insertions and deletions of key/value pairs on M and
searches for the value M(k) associated with a given key k.

The insert and delete operations are implemented by a single generic operation referred
to as an upsert. The sequential specification of upsert is as follows. The operation takes
a key-value pair (k, v) and updates M to M [k ↣ v], associating k with the given value v.
To delete a key k from the structure, one upserts the pair (k,□) where □ is a dedicated
tombstone value used to indicate that k has been deleted. The sequential specification of a
search for a key k is then as expected: it returns M(k) if M is defined for k and □ otherwise.

Multicopy structures are commonly used in scenarios where the nodes representing the
data structure’s logical contents M are spread over multiple media such as memory, solid-
state drives, and hard disk drives. Each node therefore contains its own data structure that
is designed for the particular characteristics of the underlying medium, typically an unsorted
array at the root to allow upserts to perform fast appends and a classical single-copy search
structure (e.g., a hash structure or arrays with bloom filters) for non-root nodes. The non-
root nodes are typically read-only, so concurrency at the node level is not an issue. In
this dissertation, we consider the multicopy data structure as a graph of nodes. We study
template algorithms on that graph.

7.2.1 A Library Analogy to Multicopy Search Structures

To train your intuition about multicopy structures, consider a library of books in which new
editions of the same book arrive over time. Thus the first edition of book k can enter and
later the second edition, then the third and so on. A patron of this library who enters the
library at time t and is looking for book k should find an edition that is either current at time
t or one that arrives in the library after t. We call this normative property search recency.

Now suppose the library is organized as a sequence of rooms. All new books are put
in the first room (near the entrance). When a new edition v of a book arrives in the first
room, any previous editions of that book in that room are thrown out. When the first room
becomes full, the books in that room are moved to the second room. If a previous edition
of some book is already in the second room, that previous edition is thrown out. When the
second room becomes full, its books are moved to the third room using the same throwing
out rule, and so on. This procedure maintains the time-ordering invariant that the editions
of the same book are ordered from most recent (at or nearer to the first room) to least recent
(farther away from the first room) in the sequence of rooms.

A patron’s search for k starting at time t begins in the first room. If the search finds any
edition of k in that room, the patron takes a photocopy of that edition. If not, the search
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Figure 7.1: LSM tree representations. (a) High-level structure of an LSM tree. (b) LSM tree obtained
from (a) after flushing node r to disk. (c) LSM tree obtained (a) after compacting nodes n1 and n2.

proceeds to the second room and so on.
Now suppose that the latest edition at time t is edition v and there is a previous edition

v′. Because of the time-ordering invariant and the fact that the search begins at the first
room, the search will encounter v before it encounters v′. The search may also encounter
an even newer edition of k, but will never encounter an older one before returning. That
establishes the search recency property.

Any concurrent execution of inserts and searches is equivalent to a serial execution in
which (i) each insert is placed in its relative order of entering the root node with respect
to other inserts and (iia) a search s is placed after the insert whose edition s copies if that
insert occurred after s began or (iib) a search s is placed at the point when s began, if the
edition that s copies was inserted before s began (or if s returns no edition at all).

Because the searches satisfy the search recency property, the concurrent execution is
linearizable [70], which is our ultimate correctness goal.

Note that the analogy as written has treated only inserts and searches. However, updates
and deletions can be implemented as inserts: an update to book k can be implemented as
the insertion of a new edition; a delete of book k can be implemented as the insertion of an
edition whose value is a “tombstone” which is an indication that book k has been deleted.

7.2.2 Log-Structured Merge Trees

A prominent example of a multicopy structure is the LSM tree, which closely corresponds
to the library analogy described above. The data structure consists of a root node r stored
in memory (the first room in the library), and a linked list of nodes n1, n2, . . . , nl stored on
disk (the remaining rooms). Figure 7.1 (a) shows an example.

The LSM tree operations essentially behave as outlined in the library analogy. The upsert
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operation takes place at the root node r. A search for a key k traverses the list starting from
the root node and retrieves the value associated with the first copy of k that is encountered.
If the retrieved value is □ or if no entry for k has been found after traversing the entire list,
then the search determines that k is not present in the data structure. Otherwise, it returns
the retrieved value. For instance, a search for key k1 on the LSM tree depicted in Figure 7.1
(a) would determine that this key is not present since the retrieved value is □ from node n1.
Similarly, k4 is not present since there is no entry for this key. On the other hand, a search
for k2 would return d and a search for k3 would return c.

To prevent the root node from growing too large, the LSM tree performs flushing. As
the name suggests, the flushing operation flushes the data from the root node to the disk by
moving its contents to the first disk node. Figure 7.1 (b) shows the LSM tree obtained from
Figure 7.1 (a) after flushing the contents of r to the disk node n1.

Similar to flushing, a compaction operation moves data from a full node on disk to its
successor. In case there is no successor, then a new node is created at the end of the structure.
During the merge, if a key is present in both nodes, then the most recent (closer-to-the-root)
copy is kept, while older copies are discarded. Figure 7.1 (c) shows the LSM tree obtained
from Figure 7.1 (a) after compacting nodes n1 and n2. Here, the copy of k2 in n2 has been
discarded. In practice, the length of the data structure is bounded by letting the size of
newly created nodes grow exponentially.

The net effect of all these operations is that the data structure satisfies the time-ordering
invariant and searches achieve search recency.

The LSM tree can be tuned by implementing workload- and hardware-specific data struc-
tures at the node level. In addition, research has been directed towards optimizing the
layout of nodes and developing different strategies for the maintenance operations used to
reorganize these data structures. This has resulted in a variety of implementations today
(e.g. [35, 112, 143, 160, 169]). Despite the differences between these implementations, they
generally follow the same high-level algorithms for the core search structure operations.

We construct template algorithms for concurrent multicopy structures from the high-level
descriptions of their operations and then prove the correctness of these operations. Notably
our LSM DAG template generalizes the LSM tree so that the outer data structure can be
a DAG rather than just a list. A number of existing LSM structures are based on trees
(e.g. [148, 169]). Practical implementations of tree-based concurrent search structures often
have additional pointer structures layered on top of the tree that make them DAGs. For
instance, many implementations use the link technique to increase performance. Here, when
a maintenance operation relocates a key k from one node to another, it adds a pointer linking
the two nodes, which ensures that k remains reachable via the old search path. A concurrent
thread searching for k that arrives at the old node can then follow the link, avoiding a
restart of the search from the root. Our verified templates can be instantiated to lock-based
implementations of this technique.
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7.3 Multicopy Search Structures

We abstract away from the data organization within the nodes, and treat the data structure
as consisting of nodes in a mathematical directed acyclic graph.

Since copies of a single key k can be present in different nodes simultaneously, we need a
mechanism to differentiate among these copies. To that end, we augment each entry (k, v)
stored in a node with the unique timestamp t identifying the point in time when (k, v)
was upserted: (k, (v, t)). The timestamp plays the role of the book edition in the library
analogy from the last section. For example in Figure 7.2, (k3, c) was upserted after (k2, a),
which was upserted after (k3, b). These timestamps are derived from the timestamps used
to store computation history in the hindsight framework from Section 6.4.2. Note that the
timestamp associated with an upserted value is auxiliary, or ghost, data that we use in our
proofs to track the temporal ordering of the copies present in the structure at any point.
Implementations do not need to explicitly store this timestamp information.

Formally, let K be the set of all keys and V a set of values with a dedicated tombstone
value □ ∈ V. A multicopy (search) structure is a directed acyclic graph G = (N,E) with
nodes N and edges E ⊆ N ×N . We assume that there is a dedicated root node r ∈ N which
uniquely identifies the structure.

Each node n of the graph is labeled by its contents Cn : K ⇀ V × N, which is a partial
map from keys to pairs of values and timestamps. For a node n and its contents Cn, we
say (k, (v, t)) is in the contents of n if Cn(k) = (v, t). We denote the absence of an entry
for a key k in n by Cn(k) = ⊥ and let dom(Cn) := {k | Cn(k) ̸= ⊥}. We further write
val(()Cn) : K ⇀ V for the partial function that strips off the timestamp information from the
contents of a node, val(Cn) := λk. (∃v. Cn(k) = (v,_) ? v : ⊥).

For each edge (n, n′) ∈ E in the graph, the edgeset es(n, n′) is the set of keys k for which
an operation arriving at a node n would traverse (n, n′) if k /∈ dom(Cn). We require that the
edgesets of all outgoing edges of a node n are pairwise disjoint. Figure 7.2 shows a potential
abstract multicopy structure graph consistent with the LSM tree depicted in Figure 7.1 (a).
Here, all edges have edgeset K.

A multicopy structure abstractly represents a map ADT, i.e., the logical contents of
the data structure is a mathematical map from keys to values, M : K → V. The map M
associates every key k with the most recently upserted value v for k, respectively, □ if k has
not yet been upserted:

M(k) :=

{
v if ∃n t. Cn(k) = (v, t) ∧ t = max {t′ | ∃n′ v′. Cn′(k) = (v′, t′)}
□ otherwise

We call M(k) the logical value of key k.

7.3.1 The LSM DAG Template

This section presents a general template for multicopy structures that generalizes the LSM
(log-structured merge) tree discussed in §7.2.2. We prove linearizability of the template by
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Figure 7.2: Abstract multicopy data structure graph for the LSM tree in Figure 7.1 (a).

1 let rec traverse r n k =
2 lockNode n;
3 match inContents r n k with
4 | Some v -> unlockNode n; v
5 | None ->
6 match findNext r n k with
7 | Some n′ ->
8 unlockNode n;
9 traverse r n′ k

10 | None -> unlockNode n; □
11

12 let search r k = traverse r r k

13 let rec upsert r k v =
14 lockNode r;
15 let res = addContents r k v in
16 if res then
17 unlockNode r
18 else begin
19 unlockNode r;
20 upsert r k v
21 end

Figure 7.3: The LSM-DAG template for multicopy operations search and upsert. The template
can be instantiated by providing implementations of helper functions inContents, findNext, and
addContents. inContents r n k returns Some v if (v, t′) = Cn(k) for some t′, and None otherwise.
findNext r n k returns Somen′ if n′ is the unique node such that k ∈ es(n, n′), and None otherwise.
addContents r k v updates the contents of r by setting the value associated with key k to v. The return
value of addContents is a Boolean which indicates whether the insertion was successful (e.g., if r is
full, insertion may fail leaving r’s contents unchanged).

verifying that all operations satisfy the client-level atomic triples (ClientSpec). The template
and the proof abstract away the implementation of the single-copy data structures used
at the node-level. Instantiating the template for a specific implementation involves only
sequential reasoning about the implementation-specific node-level operations.

We split the template into two parts. The first part is a template for search and upsert
that works on general multicopy structures, i.e., arbitrary DAGs with locally disjoint edge-
sets. The second part (discussed in §7.7) is a template for a maintenance operation that
generalizes the compaction mechanism found in existing list-based LSM tree implementa-
tions to tree-like multicopy structures.

Figure 7.3 shows the code of the template for the core multicopy operations. The opera-
tions search and upsert closely follow the high-level description of these operations on the
LSM tree (§7.2.2). The operations are defined in terms of implementation-specific helper
functions findNext, addContents, and inContents.

The search operation calls the recursive function traverse on the root node. Function
traverse r n k first locks the node n and uses the helper function inContents r n k to check
if a copy of key k is contained in n. If a copy of k is found, then its associated value v
is returned after unlocking n. Otherwise, traverse uses the helper function findNext to
determine the unique successor n′ of the given node n and query key k (i.e., the node n′
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satisfying k ∈ es(n, n′)). If such a successor n′ exists, traverse recurses on n′. Otherwise,
traverse concludes that there is no copy of k in the data structure and returns □. Note that
this algorithm uses fine-grained concurrency, as the thread executing the search holds at
most one lock at any point (and no locks at the points when traverse is called recursively).

The upsert r k v operation locks the root node and adds a new copy of the key k with
value v to the contents of the root node using addContents. addContents r k v adds the
pair (k, v) to the root node when it succeeds. upsert terminates by unlocking the root node.
The addContents function may however fail if the root node is full. In this case upsert calls
itself recursively1.

7.4 Intuitive Proof Argument

We next discuss the correctness proof of the template operations. We will focus on the
high-level proof ideas and key invariants and defer the detailed proof outline and encoding
of the invariants in Iris to the later sections.

Our goal is to prove the linearizability of concurrent multicopy structure templates with
respect to their desired sequential client-level specification. As discussed earlier, the sequen-
tial specification is that of a map ADT as shown in Figure 7.4.

Ψop(M,M ′, res) :=

{
M ′ = M ∧ res = M(k) op = search(k)

M ′ = M [k↣ v] op = upsert(k, v)

Figure 7.4: Sequential specification of a multicopy search structure as a Map ADT. k refers to the
operation key, v to the upsert value and M and M ′ to the abstract state before and after operation op,
respectively, and res is the return value of op.

Recall that the client-level atomic specification (ClientSpec) that corresponds to lineariz-
ability is as follows:

Inv(r) −∗
〈
M. MCS(r,M)

〉
op r

〈
res . ∃M ′. MCS(r,M ′) ∗ Ψop(M,M ′, res)

〉
. (7.1)

Here, MCS is a representation predicate denoting the abstract state M for the multicopy
structure rooted at r. In order to prove the atomic triple, we must determine the atomic
step for each operation at which the operation take effect. In other words, the operation’s
linearization point. As we have seen with the distributed counter data structure in Chapter 6
and the Skiplist template in Chapter 8, it is straightforward to determine the linearization
point for the operation which changes the abstract state. In case of the multicopy structure,
it is the upsert operation that changes the abstract state. Its linearization point is when the

1For simplicity of presentation, we assume that a separate maintenance thread flushes the root if it is full
to ensure that upserts eventually make progress.
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Figure 7.5: Problem execution for the LSM-DAG template. Sub-figures show possible states of
search(k) in the presence of interference from concurrent upsert(k, v1) and upsert(k, v2).

new copy of the key is successfully added to the root node. However, the search operation
exhibits future-dependent linearization points. Let us explain this in further detail.

Consider a multicopy structure depicted in Figure 7.5 (S1) as its initial state. For simplic-
ity, assume that the structure handles operations on a single key k. The structure contains
only two nodes: the root node r and a disk node n. Let there be thread Ts executing
search(k) concurrently with threads T1 and T2 executing upsert(k, v1) and upsert(k, v2)
respectively. There is also a maintenance thread running in the background which flushes
data from node r to n. Consider the following interleaving steps of concurrent execution of
Ts, T1 and T2:

(S1) Ts finds no copy of k in r and arrives at n, but has not locked n yet.

(S2) T1 upserts copy (k, (v1, 2)) at r.

(S3) The maintenance thread flushes copy (k, (v1, 2)) from r to n, throwing away the copy
(k, (v0, 1)).

(S4) T1 upserts copy (k, (v2, 3)) at r.

(S5) Ts finally locks n, finds copy (k, (v1, 2)) and returns it.

Figure 7.5 depicts the state of the multicopy at the end of each step. In the above
concurrent execution, the linearization point for Ts lies after step (S2), right after copy
(k, (v1, 2)) is added and which Ts finds eventually. However, if Ts is able to obtain the lock
on n right after step (S1), then it returns the copy (k, (v0, 1)). In this case, the linearization
point of Ts would be at the beginning of its execution. Thus, the linearization point of Ts is
dependent on the concurrent operations, and it can be determined only by judging the copy
of k returned by Ts.

The intuitive proof argument for linearizability of search relies on the observation of
search recency: each concurrent invocation search(k) either returns the logical value asso-
ciated with k at the point when the search started, or any other copy of k that was upserted
between the search’s start time and the search’s end time. Using the above concurrent ex-
ecution as an example, the logical value of k when Ts started in (S1) is (k, (v0, 1)). Search
recency says that Ts either returns (k, (v0, 1)), or a newer copy (such as (k, (v1, 2))).
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Search recency provides a strategy for determining the linearization point for search.
If an invocation of search(k) returns the logical value associated with k when the search
started, then it can be linearized at the beginning of the invocation. Otherwise, search
finds a newer copy of k upserted by a concurrent upsert. Here, its linearization point is the
point when the newer copy of k was upserted. Note that the linearization point can only be
determined in hindsight, once search returns.

We next expand on the intuitive argument above by making concrete why multicopy
structures satisfy search recency. In the next section, we will show that if searches satisfy
search recency and upserts take effect in a single atomic step that changes the logical contents
according to the sequential specification in Figure 7.4, then the multicopy structure satisfies
the hindsight specification described in Section 6.3.1. This establishes the linearizability of
the concurrent multicopy structures.

7.5 Search Recency

Keeping Track of Upsert History. The logical contents of a multicopy structure only
stores knowledge about the latest copy of each key. However, in order to express search
recency as a property we must additionally view a multicopy structure in terms of its upsert
history U ⊆ K× (V×N) as the set of all copies (k, (v, t)) that have been upserted thus far.
In particular, we require that any multicopy structure will maintain the following predicates
concerning U and the global clock t:

Init(U) := ∀k. (k, (□, 0)) ∈ U

HUnique(U) := ∀k t′ v1 v2. (k, (v1, t′)) ∈ U ∧ (k, (v2, t
′)) ∈ U ⇒ v1 = v2

MaxTS(t, U) := ∀(k, (_, t′)) ∈ U. t′ < t

The predicate HUnique(U) ensures that we can lift the total order t1 ⩽ t2 on timestamps to
a total order (v1, t1) ⩽ (v2, t2) on the pairs of values and timestamps occurring in U . The
lifted order simply ignores the value component. Together with Init(U), this ensures that
the following function is well-defined:

Ū(k) := max {(v, t) | (k, (v, t)) ∈ U} = (M(k),_).

The latest copy of a key will always be contained in some node n of the data structure.
If the data structure implementation maintains the additional invariant, U ⊇

⋃
n∈N Cn,

then this guarantees that Ū is consistent with the logical contents M , i.e., for all keys
k, Ū(k) = (M(k),_). Finally, the predicate MaxTS(t, U) guarantees that HUnique(U) is
preserved when a new entry (k, (v, t)) is added to U for the current value of the global clock
t.

Proof of Search Recency. Using upsert history U , we can state search recency as the
following property: if t0 is the logical timestamp of k at the point when search r k is invoked,
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then the operation returns v such that (k, (v, t′)) ∈ U and t′ ⩾ t0. Since the value v of k
retrieved by search comes from some node in the structure, we must examine the relationship
between the upsert history U of the data structure and the physical contents Cn of the nodes
n visited as the search progresses. We do this by identifying the main invariants needed for
proving search recency for arbitrary multicopy structures.

We refer to the spatial ordering of the copies (k, (v, t)) stored in a multicopy structure
as the ordering in which those copies are reached when traversing the data structure graph
starting from the root node. Our first observation is that the spatial ordering is consistent
with the temporal ordering in which the copies have been upserted. We referred to this
property as the time-ordering invariant in our library analogy in §7.2.1: the farther from the
root a search is, the older the copies it finds are. Therefore, if a search r k traverses the
data structure without interference from other threads and returns the first copy of k that
it finds, then it is guaranteed to return the logical value of k at the start of the search.

We formalize this observation in terms of the contents-in-reach of a node. The contents-
in-reach of a node n is the partial function Cir(n) : K ⇀ V × N defined recursively over the
graph of the multicopy structure as follows:

Cir(n)(k) :=


Cn(k) if k ∈ dom(Cn)

Cir(n
′)(k) else if ∃n′. k ∈ es(n, n′)

⊥ otherwise
(7.2)

Note that Cir(n) is well-defined because the graph is acyclic and the edgesets labeling the
outgoing edges of every node n are disjoint. We further define ts(Cir(n)(k)) = t if Cir(n)(k) =
(_, t) and ts(Cir(n)(k)) = 0 if k /∈ dom(Cir(n)).

For example, in the multicopy structure depicted in Figure 7.2, we have Cir(r) = {k1↣
(□, 6), k2↣ (d, 7), k3↣ (c, 4)} and Cir(n3) = Cn3 .

The observation that interference-free searches will find the current logical timestamp of
their query key is then captured by the following invariant:

Invariant 1 The logical contents of the multicopy structure is the contents-in-reach of
its root node: Ū = Cir(r).

In order to account for concurrent threads interfering with the search, we prove the condi-
tion t0 ≤ t′ for the timestamp t′ associated with the value returned by the search. Intuitively,
this is true because the contents-in-reach of a node n can be affected only by upserts or main-
tenance operations, both of which only increase the timestamps associated with every key
of any given node: upserts insert new copies into the root node and maintenance operations
move recent copies down in the structure, possibly replacing older copies. This observation
is formally captured by the following invariant:

Invariant 2 The contents-in-reach of every node only increases. That is, for every node
n and key k, if ts(Cir(n)(k)) = t at some point in time and ts(Cir(n)(k)) = t′ at any
later point in time, then t ≤ t′.
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Finally, in order to prove the condition (k, (v, t′)) ∈ U of search recency, we need one
additional property:

Invariant 3 All copies present in the multicopy structure have been upserted at some
point in the past. That is, for all nodes n, Cn ⊆ U .

Now let us consider an execution of search on a operation key k. In addition to the
above three general invariants, we need an inductive invariant for the traversal performed
by the search: we require as a precondition for traverse r n k that ts(Cir(n)(k)) ⩾ t0 where
t0 is the timestamp of the logical value v0 of k at the point when search was invoked. To
see that this property holds initially for the call to traverse r r k in search, let Ū0 be the
logical contents at the time point when search was invoked. The precondition SR(k, v0, t0)
implies ts(Ū0(k)) ⩾ t0, which, combined with Invariant 1 implies that we must have had
ts(Cir(r)(k)) ⩾ t0 at this point. Since ts(Cir(r)(k)) only increases over time because of
Invariant 2, we can conclude that ts(Cir(r)(k)) ⩾ t0 when traverse is called. We next
show that the traversal invariant is maintained by traverse and is sufficient to prove search
recency.

Consider a call to traverse r n k such that ts(Cir(n)(k)) ⩾ t0 holds initially. We must
show that the call returns v such that (k, (v, t′)) ∈ U and t′ ⩾ t0 for some t′. We know that
the call to inContents on line 3 returns either Some v such that (v, t′) = Cn(k) or None if
Cn(k) = ⊥. Let us first consider the case where inContents returns Some v. In this case,
traverse returns v on line 4. By definition of Cir(n) we have Cir(n)(k) = Cn(k). Hence, we
have ts(Cir(n)(k)) = t′ and the precondition ts(Cir(n)(k)) ⩾ t0, together with Invariant 2,
implies t′ ⩾ t0. Moreover, Invariant 3 guarantees (k, (v, t′)) ∈ U .

Now consider the case where inContents returns None. Here, k /∈ domCn(k), indicating
that no copy has been found for k in n. In this case, traverse calls findNext to obtain the
successor node of n and k. In the case where the successor n′ exists (line 7), we know that
k ∈ es(n, n′) must hold. Hence, by definition of contents-in-reach we must have Cir(n)(k) =
Cir(n

′)(k). From tsCir(n)(k) ⩾ t0 and Invariant 2, we can then conclude ts(Cir(n
′)(k)) ⩾ t0,

i.e. that the precondition for the recursive call to traverse on line 9 is satisfied and search
recency follows by induction.

On the other hand, if n does not have any next node, then traverse returns □ (line 10),
indicating that k has not yet been upserted at all so far (i.e., has never appeared in the
structure). In this case, by definition of contents-in-reach we must have Cir(n)(k) = ⊥.
Invariant 2 then guarantees ts(Cir(n)k) = 0 = t0. The invariant Init(U) on the upsert
history then gives us (k, (□, 0)) ∈ U . Hence, search recency holds in this case for t′ = 0.
Proof of upsert. In order to prove the logically atomic specification (ClientSpec) of upsert,
we must identify an atomic step where the astract state is modified. Intuitively, this atomic
step is when the addContents succeeds at the root node (line 17 in Figure 7.3). Note that in
this case addContents changes the contents of the root node from Cr to C ′

r = Cr[k↣ (v, t)].
Hence, in the proof we need to update the ghost state for the upsert history from U to
U ′ = U ∪ {(k, (v, t))}, reflecting that a new copy of k has been upserted. It then remains
to show that the three key high-level invariants of multicopy structures identified above are
preserved by these updates.
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First, observe that Invariant 3, which states ∀n. Cn ⊆ U , is trivially maintained: only
Cr is affected by the upsert and the new copy (k, (v, t)) is included in U ′. Similarly, we can
easily show that Invariant 2 is maintained: Cir(n) remains the same for all nodes n ̸= r and
for the root node it increases, provided Invariant 1 is also maintained.

Thus, the interesting case is Invariant 1. Proving that this invariant is maintained
amounts to showing that Ū ′(k) = (v, t). This step critically relies on the following addi-
tional observation:

Invariant 4 All timestamps in U are smaller than the current time of the global clock
t.

This invariant implies that Ū ′(k) = max(Ū(k), (v, t)) = (v, t), which proves the desired
property. We note that Invariant 4 is maintained because the global clock is incremented
when U is updated to U ′, and, as we describe below, while r is locked.

In the next section, we connect search recency with the hindsight specification from
Section 6.3.1. We also discuss the key technical issues that arise when formalizing the above
proof in a separation logic like Iris.

7.6 Verifying the Template

We begin by providing a high-level overview on how multicopy structures satsify hindsight
specification. The proof crucially uses the fact that searches in multicopy structures satisfy
search recency. We then discuss the technical details on formalizing the proof of search
recency as well as hindsight specification in Iris.

7.6.1 Proof overview

Recall the hindsight specification (HindSpec) from Section 6.3.1 shown below:

∀ tid t0 pvs . Inv(r) −∗ Thread(tid , t0) −∗{
Proph(p, pvs) ∗ (Upd(pvs) −∗ AUop(Φ))

}
op r k

res . ∃pvs ′. Proph(p, pvs ′) ∗ pvs = (_ @ pvs ′)

∗ (Upd(pvs) −∗ Φ(res))
∗ (¬Upd(pvs) −∗ PastLin(op, res , t0))


(HindSpec)

In the context of multicopy structures, Upd(pvs) holds when op = upsert(k) as it
modifies the abstract state of the structure. To satisfy the (HindSpec) for upsert, it must be
linearized at the point when the abstract state is modified. This point is when addContents
succeeds (Line 17).

Contrary to upsert, Upd(pvs) does not hold when op = search. In this case, (HindSpec)
requires establishing the predicate PastLin(search(k), res , t0). That is, for a thread executing
search(k) that begins at time t0 and returns res , we must establish a time point after t0
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at which the sequential specification of search(k) is true. To be precise, the predicate
PastLin(search(k), res , t0) translates to the following:

PastLin(search(k), res , t0) := ∃ t, t0 ≤ t ∧ Mt(k) = res

Here, Mt refers to the logical contents of the multicopy structure at time t. Let us next
show how search recency helps us establish the above predicate.

Search recency can be stated in precise terms as follows: let (vs, ts) be the logical copy of
k when thread T executing search(k) begins at time t0. Then, T will find a copy (v, t) of
k such that ts ≤ t. Additionally, both copies of k, namely (vs, ts) and (v, t) are part of the
upsert history.

To show PastLin(search(k), res , t0), let us do a case-analysis based on whether ts = t or
not. First, let us say ts = t. By HUnique, we can establish that vs = v in this case. Note
that (vs, ts) was the logical copy of k at time t0. Hence, Mt0(k) = vs. Thus, we can establish
the predicate PastLin(search(k), res , t0) with t0 as the witness.

Now let us consider the case ts < t. Note that (v, t) is part of the upsert history. We
claim that we can establish PastLin(search(k), res , t0) with t as the witness. To see this,
first consider the following observation regarding the fidelity of the timestamps:

Invariant 5 For any (k, (v, t)) that is part of the upsert history, the copy (v, t) must be
contained in the root node at time t.

As a consequence of Invariant 5 and the fact that (k, (v, t)) is part of the upsert history, we
can establish that Cir(r)(k) = v at time t as well as Mt(k) = v. We need to additionally
establish that t0 ≤ t. For the sake of contradiction, assume that t < t0. Consider the
following sequence of logical steps to derive a contradiction:

(1) At time t, Cir(r)(k) = (v, t) by Invariant 5.

(2) At time t0, Cir(r)(k) = (vs, ts) by definition of search recency.

(3) By Invariant 2 and t < t0, we know ts(Cir(r)(k)) at time t is less than or equal to that
at time t0. Hence, by (1) and (2), we have t ≤ ts. A contradiction!

This completes the proof connecting the hindsight specification with search recency. We
next discuss how to encode the above argument in Iris.

7.6.2 Iris Invariant

The Iris proof must capture the key invariants identified in the proof outline given above
in terms of appropriate ghost state constructions. We start by addressing the key technical
issue that arises when formalizing the above proof in a separation logic like Iris: contents-in-
reach is a recursive function defined over an arbitrary DAG of unbounded size. This makes
it difficult to obtain a simple local proof that involves reasoning only about the bounded
number of modified nodes in the graph. The recursive and global nature of contents-in-reach
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mean that modifying even a single edge in the graph can potentially change the contents-in-
reach of an unbounded number of nodes (for example, deleting an edge (n1, n2) can change
Cir(n) for all n that can reach n1). A straightforward attempt to prove that a template
algorithm preserves Invariant 2 would thus need to reason about the entire graph after every
modification (for example, by performing an explicit induction over the full graph). We solve
this challenge using the flow framework [100].

Encoding Contents-in-Reach using Flows. Equation (7.2) defines contents-in-reach in
a bottom-up fashion, starting from the leaves of the multicopy structure graph. That is, the
computation proceeds backwards with respect to the direction of the graph’s edges. This
makes a direct encoding of contents-in-reach in terms of a flow difficult because the flow
equation (FlowEqn) describes computations that proceed in the forward direction.

We side-step this problem by tracking auxiliary ghost information in the data structure
invariant for each node n in the form of a function Qn : K ⇀ V × N. If these ghost values
satisfy

Qn = λk.

{
Cir(n

′)(k) if ∃n′. k ∈ es(n, n′)

⊥ otherwise
(7.3)

and we additionally define

Bn := λk. (k ∈ dom(Cn(k)) ? Cn(k) : Qn(k))

then Cir(n) = Bn. The idea is that each node stores Qn so that node-local invariants can
use it to talk about Cir(n). We then use a flow to propagate the purported values Qn

forward in the graph to ensure that they indeed satisfy (7.3). Note that while an upsert
or maintenance operations on n may change Bn, it preserves Qn. That is, operations do
not affect the contents-in-reach of downstream nodes, allowing local reasoning about the
modification of the contents of n.

In what follows, let us fix a multicopy structure over nodes N and some valuations of
the partial functions Qn. The flow domain M for our encoding of contents-in-reach consists
of multisets of key/value-timestamp pairs M := K × (V × N) → N with multiset union as
the monoid operation. The edge function induced by the multicopy structure is defined as
follows:

e(n, n′)(_) := χ({(k,Qn(k)) | k ∈ es(n, n′) ∧ k ∈ dom(Qn)}) (7.4)

Here, χ takes a set to its corresponding multiset. Additionally, we let the function in map
every node to the empty multiset. With the definitions of e and in in place, there exists
a unique flow fl that satisfies (FlowEqn). Now, if every node n in the resulting flow graph
satisfies the following two predicates

ϕ1(n) := ∀k. Qn(k) = ⊥ ∨ (∃n′. k ∈ es(n, n′)) (7.5)
ϕ2(n) := ∀k p. fl(n)(k, p) > 0⇒ Bn(k) = p (7.6)

then Bn = Cir(n). Note that the predicates ϕ1 and ϕ2 depend only on n’s own flow and its
local ghost state (i.e., Qn, Cn and the outgoing edgesets es(n,_)).
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Invtpl(r,H, T ) := resources(r,H(T ))

∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))

∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t+ 1)))

∗ (∀n k v t t′, B(H(t), n)(k) = (v, t′)⇒ B(H(t′), r)(k) = (v, t′))

resources(s) := ∗
n∈FP(s)

∃b, L(b, n,Node(r, n, es(s, n), val(C(s, n))))

per_snapshot(s) := (B(s, r) = |s|)
∗ (∀n, n ∈ FP(s)⇒ C(s, n) ⊆ U(s))

∗ Init(U(s)) ∗ HUnique(U(s)) ∗MaxTS(T,U(s))

∗ (∀n, n ∈ FP(s)⇒ ϕ1(s, n) ∧ ϕ2(s, n))

transition_inv(s, s′) := (FP(s) ⊆ FP(s′)) ∗ (U(s) ⊆ U(s′))

∗ (∀n k, ts(B(s, n)(k)) ≤ ts(B(s′, n)(k)))

Figure 7.6: Instantiating Invtpl with invariants of the LSM-DAG template.

7.6.3 Snapshot and the LSM-DAG Template Invariant

We define the snapshot of the multicopy structure as a tuple containing the following com-
ponents:

• the set of nodes N comprising the structure (also referred to as the footprint below)

• the abstract state of the structure (a map from keys to values : K→ V)

• the upsert history

• the edgesets (a map from N to N → P(K))

• the node contents (a map from N to K→ V × N)

• the (purported) contents-in-reach Bn and Qn for each node

• the representation of flow values

For the scope of this section, we reparameterize each of the above quantities to take
snapshot s as an additional parameter, so as to be able to express the value at s. For
instance, U(s) refers to upsert history at s. We also represent the purported contents-in-
reach values as B(s, n) to mean the contents-in-reach of node n in s.

Figure 7.6 provides the definition of Invtpl for the multicopy template. It contains four
conjuncts, we describe each in detail. The predicate resources guards the access to the
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1
〈
bR. L(b, n,R)

〉
lockNode n

〈
L(true, n,R) ∗R

〉
2
〈
R. L(true, n,R) ∗R

〉
unlockNode n

〈
L(false, n,R)

〉
3
{
Node(r, n, es, Vn)

}
inContents n k

{
x.Node(r, n, es, Vn) ∗ x = (k ∈ dom(Vn) ? Some(Vn(k)) : None)

}
4
{
Node(r, n, es, Vn)

}
findNext n k

{
x.Node(r, n, es, Vn) ∗ x = (∃n′. k ∈ es(n′) ? Some(n′) : None)

}
5
{
Node(r, r, es, Vr)

}
addContents r k v

{
b.Node(r, r, es, V ′

r ) ∗ V ′
r = (b ? Vr[k↣ v] : Vr)

}
Figure 7.7: Specifications of helper functions used by search and upsert.

node-level resources Node via predicate L(b, n,Rn) introduced in Chapter 5. The predicate
L(b, n,Rn) captures the abstract state of n’s lock and is used to specify the protocol providing
exclusive access to the resource Rn protected by the lock via the helper functions lockNode
and unlockNode. The Boolean b indicates whether the lock is (un)locked. We discuss the
predicate Node later.

Predicate per_snapshot captures Invariant 1 and 3. It contains properties that hold
for the upsert history such as HUnique. The conjunct MaxTS(T,U(s)) implies Invariant 4.
Finally, the invariants to express contents-in-reach via flow interfaces are also part contained
here.

Predicate transition_inv captures Invariant 2 as well as monotone properties such as the
upsert history never decreases. The final conjunct in Invtpl captures the fidelity of the time
stamps, i.e., Invariant 5.

The Node(r, n, es(n, ·), val(Cn)) predicate encapsulates all resources specific to the im-
plementation of the node-specific data structure abstracted by node n. In particular, this
predicate owns the resources associated with the physical representation of the data structure
and ties them to the abstract ghost state representing the high-level multicopy structure:
the node’s physical contents val(Cn) (i.e., Cn without timestamps) and the edgesets of its
outgoing edges es(n, ·). Our template proof is parametric in the definition of Node and de-
pends only on the following two assumptions that each implementation used to instantiate
the template must satisfy. First, we require that Node is not duplicable:

Node(r, n, es , Vn) ∗ Node(r′, n, es ′, V ′
n) ⊢ False

Moreover, Node must guarantee disjoint edgesets:

Node(r, n, es , Vn) ⊢ ∀n1 n2. n1 = n2 ∨ es(n1) ∩ es(n2) = ∅

The specifications of the helper functions used by search and upsert, given in terms of
the predicates L(b, n,Rn) and Node(r, n, es , Vn) are shown in Figure 7.7.

With above definition of Invtpl and the helper function specifications, formalizing the
intuitive proof is straightforward. Hence, we turn to the maintenance operations for the
multicopy structures.

7.7 Multicopy Maintenance Operations

We next show that we can extend our multicopy structure template in §7.3.1 with a generic
maintenance operation without substantially increasing the proof complexity. The basic idea
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of our proofs here is that for every timestamped copy of key k, denoted as the pair (k, (v, t)),
every maintenance operation either does not change the distance of (k, (v, t)) to the root or
increases it while preserving an edgeset-guided path to (k, (v, t)). Using these two facts, we
can prove that all the structure invariants are also preserved.

7.7.1 Maintenance template

For the maintenance template, we consider a generalization of the compaction operation
found in LSM tree implementations such as LevelDB [58] and Apache Cassandra [4, 79].
While those implementations work on lists for the high-level multicopy structure, our main-
tenance template supports arbitrary tree-like multicopy structures. The code is shown in
Figure 7.8. The template uses the helper function atCapacity r n to test whether the size
of n (i.e., the number of non-⊥ entries in n’s contents) exceeds an implementation-specific
threshold. If not, then the operation simply terminates. In case n is at capacity, the function
chooseNext is used to determine the node to which the contents of n can be merged. If the
contents of n can be merged to successor m of n, then chooseNext returns Somem. In case no
such successor exists, then it returns None. If chooseNext returns Somem, then the contents
of n are merged to m. By merge, we mean that some copies of keys are transferred from n
to m, possibly replacing older copies in m. The merge is performed by the helper function
mergeContents. It must ensure that all keys k merged from Cn to Cm satisfy k ∈ es(n,m).

On the other hand, if chooseNext returns None, then a new node is allocated using the
function allocNode. The new node is then added to the data structure using the helper
function insertNode. Here, the new edgeset es(n,m) must be disjoint from all edgesets for
the other successors m′ of n. Afterwards, the contents of n are merged to m as before. Note
that the maintenance template never removes nodes from the structure. In practice, the
depth of the structure is bounded by letting the capacity of nodes grow exponentially with
the depth. The right hand side of Figure 7.8 shows the intermediate states of a potential
execution of the compact operation.

7.7.2 High-level proof of compact

The verification framework presented in Chapter 6 can be easily extended to accommo-
date any maintenance operation as it does not change the data structure’s abstract state.
Essentially, we need to prove that compact satisfies the following atomic triple:〈

M. MCS(r,M)
〉
compact r

〈
MCS(r,M)

〉
This specification says that compact logically takes effect in a single atomic step, and at
this step the abstract state of the data structure does not change. We prove that compact
satisfies this specification relative to the specifications of the implementation-specific helper
functions shown in Figure 7.9. The postcondition of mergeContents is given with respect to
an (existentially quantified) set of keys K that are merged from Vn to Vm, resulting in new
content sets V ′

n and V ′
m. The new contents are determined by the functions mergeLeft and
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1 let rec compact r n =
2 lockNode n;
3 if atCapacity r n then begin
4 match chooseNext r n with
5 | Some m ->
6 lockNode m;
7 mergeContents r n m;
8 unlockNode n;
9 unlockNode m;

10 compact r m
11 | None ->
12 let m = allocNode () in
13 insertNode r n m;
14 mergeContents r n m;
15 unlockNode n;
16 unlockNode m;
17 compact r m
18 end
19 else
20 unlock n

k1 7

k2 5

k3 6

k4 8

n

k1 3

k2 ⊥
k3 ⊥
k4 4

k1 2

k2 1

k3 ⊥
k4 ⊥

K {k1, k2}

k1 ⊥
k2 ⊥
k3 ⊥
k4 ⊥

n

k1 7

k2 5

k3 6

k4 8

m

k1 2

k2 1

k3 ⊥
k4 ⊥

K {k1, k2}

k1 ⊥
k2 ⊥
k3 ⊥
k4 ⊥

k1 7

k2 5

k3 ⊥
k4 ⊥

n

k1 2

k2 1

k3 ⊥
k4 ⊥

k1 ⊥
k2 ⊥
k3 6

k4 8

m

K {k1, k2}

{k3, k4}

Figure 7.8: Maintenance template for tree-like multicopy structures. The template can be instantiated
by providing implementations of helper functions atCapacity, chooseNext, mergeContents, allocNode,
and insertNode. atCapacity r n returns a Boolean value indicating whether node n has reached its
capacity. The helper function chooseNext r n returns Some m if there exists a successor m of n in the
data structure into which n should be compacted, and None in case n cannot be compacted into any of
its successors. mergeContents r nm (partially) merges the contents of n into m. Finally, allocNode is
used to allocate a new node and insertNode r nm inserts node m into the data structure as a successor
of n. The right hand side shows a possible execution of compact. Edges are labeled with their edgesets.
The nodes n and m in each iteration are marked in blue. For simplicity, we here assume that the values
are identical to their associated timestamps and only show the timestamps.

mergeRight which are defined as follows:

mergeLeft(K,Vn,Es , Vm) := λk. (k ∈ K ∩ dom(Vn) ∩ Es ? ⊥ : Vn(k))

mergeRight(K,Vn,Es , Vm) := λk. (k ∈ K ∩ dom(Vn) ∩ Es ? Vn(k) : Vm(k))

Technically, the linearization point of the operation occurs when all locks are released, just
before the function terminates. However, the interesting part of the proof is to show that the
changes to the physical contents of nodes n and m performed by each call to mergeContents
at line 7 preserve the abstract state of the structure as well as the invariants. In particular,
the changes to Cn and Cm also affect the contents-in-reach of m. We need to argue that this
is a local effect that does not propagate further in the data structure, as we did in our proof
of upsert.

Auxiliary invariants. When proving the correctness of compact, we face two technical
challenges. The first challenge arises when establishing that compact changes the contents of
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1
{
Node(r, n, esn, Vn)

}
atCapacity r n

{
b.Node(r, n, esn, Vn)

}
2

3
{
Node(r, n, esn, Vn)

}
4 chooseNext r n

5
{
v.Node(r, n, esn, Vn) ∗ (v = Some(m) ∗ esn(m) ̸= ∅ ∨ v = None ∗ needsNewNode(r, n, esn, Vn))

}
6

7
{
True

}
allocNode r

{
m.Node(r,m, (λn′. ∅), ∅)

}
8

9
{
Node(r, n, esn, Vn) ∗ needsNewNode(r, n, esn, Vn) ∗ Node(r,m, (λn′. ∅), ∅)

}
10 insertNode r n m

11
{
Node(r, n, es ′n, Vn) ∗ Node(r,m, (λn′. ∅), ∅) ∗ es ′n = esn[m↣ es ′n(m)] ∗ es ′n(m) ̸= ∅

}
12

13
{
Node(r, n, esn, Vn) ∗ Node(r,m, esm, Vm) ∗ esn(m) ̸= ∅

}
14 mergeContents r n m

15

{
Node(r, n, esn, V

′
n) ∗ Node(r,m, esm, V ′

m)

∗V ′
n = mergeLeft(K,Vn,Es, Vm) ∗ V ′

m = mergeRight(K,Vn,Es, Vm)

}

Figure 7.9: Specifications of helper functions used by compact.
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k2 ⊥
n
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p
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m
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(2)

k1 ⊥
k2 ⊥

n

k1 5

k2 4

p
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k2 6

m

{k1}

{k1, k2}{k2}

(3)

k1 ⊥
k2 ⊥

n

k1 ⊥
k2 ⊥

p

k1 5

k2 4

m

{k1}

{k1, k2}{k2}

(4)

Figure 7.10: Possible execution of the compact operation on a DAG. Edges are labeled with their
edgesets. The nodes undergoing compaction in each iteration are marked in blue.

the nodes involved in such a way that the high-level invariants are maintained. In particular,
we must reestablish Invariant 2, which states that the contents-in-reach of each node can only
increase over time. Compaction replaces downstream copies of keys with upstream copies.
Thus, in order to maintain Invariant 2, we need the additional auxiliary invariant that the
timestamps of keys in the contents of nodes can only decrease as we move away from the
root:

Invariant 6 The (timestamp) contents of a node is not smaller than the contents-in-
reach of its successor. That is, for all keys k and nodes n and m, if k ∈ es(n,m) and
Cn(k) ̸= ⊥ then ts(Cir(m)(k)) ⩽ ts(Cn(k)).

We can capture Invariant 6 in our template invariant Invtpl(r,H, T ) by adding the follow-
ing predicate as an additional conjunct to the predicate per_snapshot:

ϕ3(n) := ∀k. ts(Qn(k)) ⩽ ts(Bn(k)) (7.7)

The second challenge is that the maintenance template generates only tree-like structures.
This implies that at any time there is at most one path from the root to each node in the
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structure. We will see that this invariant is critical for maintaining Invariant 6. However,
the data structure invariant presented thus far allows for arbitrary DAGs.

To motivate this issue further, consider the multicopy structure in step (1) of Figure 7.10.
The logical contents of this structure (i.e. the contents-in-reach of n) is {k1 ↣ (5, 5), k2 ↣
(6, 6)}.

The structure in step (2) shows the result obtained after executing compact r n to com-
pletion where n has been considered to be at capacity and the successor m has been chosen
for the merge, resulting in (k2, (6, 6)) being moved from n to m. Note that at this point
the logical contents of the data structure is still {k1 ↣ (5, 5), k2 ↣ (6, 6)} as in the orig-
inal structure. However, the structure now violates Invariant 6 for nodes p and m since
ts(Bm(k2)) > ts(Cp(k2)).

Suppose that now a new compaction starts at n that still considers n at capacity and
chooses p for the merge. The merge then moves the copy (k1, (5, 5)) from n to p. The
graph in step (3) depicts the resulting structure. The compaction then continues with p,
which is also determined to be at capacity. Node m is chosen for the merge, resulting in
(k1, (5, 5)) and (k2, (4, 4)) being moved from p to m. At this point, the second compaction
terminates. The final graph in step (4) shows the structure obtained at this point. Observe
that the logical contents is now {k1↣ (5, 5), k2↣ (4, 4)}. Thus, this execution violates the
specification of compact, which states that the logical contents must be preserved. In fact,
a timestamp in the contents-in-reach of n has decreased, which violates Invariant 2.

We observe that although compact will create only tree-like structures, we can prove
its correctness using a weaker invariant that does not rule out non-tree DAGs, but instead
focuses on how compact interferes with concurrent search operations. This weaker invariant
relies on the fact that for every key k in the contents of a node n, there exists a unique
search path from the root r to n for k. That is, if we project the graph to only those nodes
reachable from the root via edges (n,m) that satisfy k ∈ es(n,m), then this projected graph
is a list. Using this weaker invariant we can capture implementations based on B-link trees
or skip lists which are DAGs but have unique search paths.

To this end, we recall from [153] the notion of the inset of a node n, inset(n), which is
the set of keys k such that there exists a (possibly empty) path from the root r to n, and k
is in the edgeset of all edges along that path. That is, since a search for a key k traverses
only those edges (n,m) in the graph that have k in their edgeset, the search traverses (and
accesses the contents of) only those nodes n such that k ∈ inset(n). Now observe that
compact, in turn, moves new copies of a key k downward in the graph only along edges that
have k in their edgeset. The following invariant is a consequence of these observations and
the definition of contents-in-reach:

Invariant 7 A key is in the contents-in-reach of a node only if it is also in the node’s
inset. That is, dom(Cir(n)) ⊆ inset(n).

This invariant rules out the problematic structure in step (1) of Figure 7.10 because we have
k2 ∈ dom(Cir(p)) but k2 /∈ inset(p) = {k1}.

Invariant 7 alone is not enough to ensure that Invariant 6 is preserved. For example,
consider the structure obtained from (1) of Figure 7.10 by changing the edgeset of the edge
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(n, p) to {k1, k2}. This modified structure satisfies Invariant 7 but allows the same prob-
lematic execution ending in the violation of Invariant 6 that we outlined earlier. However,
observe that in the modified structure k2 ∈ es(n, p) ∩ es(n,m), which violates the prop-
erty that all edgesets leaving a node are disjoint. We have already captured this property
in our data structure invariant (as an assumption on the implementation-specific predicate
Node(r, n, es , Cn)). However, in our formal proof we need to rule out the possibility that a
search for k can reach a node m via two incoming edgesets es(n,m) and es(p,m). Proving
that disjoint outgoing edgesets imply unique search paths involves global inductive reason-
ing about the paths in the multicopy structure. To do this using only local reasoning, we
will instead rely on an inductive consequence of locally disjoint outgoing edgesets, which
we capture explicitly as an additional auxiliary invariant (and which we will enforce using
flows):

Invariant 8 The distinct immediate predecessors of any node n have disjoint insets.
More precisely, for all distinct nodes n, p, m, and keys k, if k ∈ es(n,m) ∩ es(p,m)
then k /∈ inset(n) ∩ inset(p).

Note that changing the edgeset of (n, p) in Figure 7.10 to {k1, k2} would violate Invariant 8
because the resulting structure would satisfy k2 ∈ es(n,m) ∩ es(p,m) and k2 ∈ inset(n) ∩
inset(p).

In order to capture invariants 7 and 8 in Invtpl(r, T,H), we introduce an additional flow
that we use to encode the inset of each node. The encoding of insets in terms of a flow
follows [97]. That is, the underlying flow domain is multisets of keys M = K → N and the
actual calculation of the insets is captured by (FlowEqn) if we define:

e(n, n′) := λm.m ∩ es(n, n′) in(n) := χ (n = r ? K : ∅)

If fl inset is a flow that satisfies (FlowEqn) for these definitions of e and in, then for any node
n that is reachable from r, fl inset(n)(k) > 0 iff k ∈ inset(n). Invariants 7 and 8 are then
captured by the following two predicates, which we add to NS:

ϕ4(n) := ∀k. k ∈ dom(Bn)⇒ fl inset(n)(k) > 0 ϕ5(n) := ∀k.fl inset(n)(k) ⩽ 1

Note that ϕ5 captures Invariant 8 as a property of each individual node n by taking advantage
of the fact that the multiset fl inset(n) explicitly represents all of the contributions made to
the inset of n by n’s predecessor nodes.

We briefly explain why we can still prove the correctness of search and upsert with
the updated data structure invariant. First note that search does not modify the contents,
edgesets, or any other ghost resources of any node. So the additional conjuncts in the
invariant are trivially maintained.

Now let us consider the operation upsert r k v. Since upsert does not change the edgesets
of any nodes, the resources and constraints related to the inset flow are trivially maintained,
with the exception of ϕ4(r): after the upsert we have k ∈ dom(Br) which may not have
been true before. However, from in(r)(k) = 1, the flow equation, and the fact that the flow
domain is positive, it follows that we must have fl inset(r)(k) > 0 (i.e., k ∈ inset(r) = K).
Hence, ϕ4(r) is preserved as well.
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8 | Lockfree Templates

This chapter introduces the Skiplist template that covers lock-free linked lists and skiplists.
Following the same outline as Chapter 7, we first provide an intuitive proof of correctness of
the Skiplist template, followed by details on how to establish the hindsight specification for
the Skiplist template.

8.1 Introduction

Earlier works [97, 98, 138] developed a framework to verify a wide range of lock-based
implementations of concurrent search structures. Specifically, they proved that these imple-
mentations are linearizable [70].

A core ingredient of the framework is the idea of template algorithms [153]. A template
algorithm dictates how threads interact but abstracts away from the concrete layout of nodes
in memory. Once the template algorithm is verified, its proof can be instantiated on a variety
of search structures.

The template algorithms of [97, 98, 138] use locks as a synchronization technique. Locks
ensure non-interference on portions of memory to guarantee that certain needed constraints
hold in spite of concurrency.

The disadvantage of locks is that if a thread holding a lock on some portion of memory p
stops, then no other thread can get a conflicting lock on p. For that reason, some practical
implementations such as Java’s ConcurrentSkipListMap [135] use lock-free algorithms.

This chapter shows how to capture multiple variants of concurrent lock-free skiplists
and linked lists in the form of template algorithms. Thus, proving the correctness of such
a template algorithm results in a proof that is applicable to many variants at once. Our
template algorithms are parametric in the skiplist height and allow variations along the
following three dimensions: (i) maintenance style (eager vs lazy) (ii) node implementations
and (iii) the order of maintenance operations on the higher levels of the skiplists.

By instantiating our template algorithm with appropriate maintenance operations and
node implementations, we obtain verified versions of existing (skip)list algorithms from the
literature such as the Herlihy-Shavit skiplist algorithm [68, § 14], the Michael set [122], and
the Harris list algorithm [62]. We also obtain new concurrent skiplist algorithms that have
not been considered before. These new algorithms are correct by construction thanks to our
modular verification framework.
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Figure 8.1: Skiplist with four levels. A node that is marked (logically deleted) at a level is shaded gray
at that level. The red line indicates the path taken by a traversal searching for key 42.

We mechanize our development in the concurrent separation logic Iris [84, 86]. The
mechanization heavily relies on the hindsight reasoning in Iris developed in Chapter 6.

The roadmap for this chapter is as follows: we begin by describing the Skiplist template
algorithms, followed by the intuitive proof argument for the linearizability of the Skiplist
templates using hindsight reasoning. Finally, we obtain the formal proof of linearizability by
connecting the intuitive proof to the developement on hindsight reasoning from Chapter 6.

8.2 The Skiplist Template Algorithm

A skiplist is a search structure over a totally ordered set of keys K. We focus our discussion
on skiplists that implement mutable sets rather than maps. The extension of the presented
algorithms to mutable maps is straightforward. The data structure is composed of sorted
lists at multiple levels, with the base list determining the actual contents of the structure,
while higher level lists are used to speed up the search. An example is shown in Figure 8.1.
A skiplist node contains a key and has a height, determining how many higher level lists
this node is a part of. Each node has a next pointer for each of its levels. Two sentinel
nodes signify the head (hd with key −∞) and the tail (tl with key ∞) of the skiplist. Lock-
free linked lists often use the technique of logical deletion by marking a node before it is
physically unlinked from the list. This involves storing a mark bit together with the next
pointer, so as to allow reading and updating them together in a single (logically) atomic
step. Lock-free skiplist implementations also use this technique. Since a skiplist node can
be part of multiple lists, it has one mark bit per level.

The traversal for a key not only goes left to right as usual, but also top to bottom. The
red line in Figure 8.1 depicts a traversal searching for key 42. The traversal begins at the
highest level of the head node. At each non-base level, the traversal continues till it reaches
a node with a key greater than or equal to the search key. Thereafter, the traversal drops
down a level, and continues at the lower levels until it terminates on the bottom level at the
first node whose key is greater than or equal to the search key.

The traversals in a concurrent skiplist perform maintenance in the form of physically
unlinking encountered marked nodes. In Figure 8.1, node n5 has been unlinked at level 2,
thus the traversal does not visit it at that level. Operations that mark and change the next
pointers at the higher levels do not affect the actual contents of the structure. We therefore
consider them to be part of the maintenance.
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Many variants of lock-free skiplist algorithms have been proposed in the literature and
implemented in practice. These variants differ in (i) their node implementations, (ii) the
styles of maintenance operations and/or (iii) the orders in which they perform maintenance
operations with regard to other operations.

For example, node implementations in low-level languages often use bit-stealing [68] (or
an equivalent of Java’s AtomicMarkableReference) so that both the next pointer and mark
bit can be atomically read or updated. Other implementations use more complex solutions.
For instance, the skiplists in [51] use nodes with back links to reduce traversal restarts due
to marked nodes. Java’s ConcurrentSkipListMap [135] implements each node as a list of
simpler nodes, one per level. The higher level nodes have both right pointers and down
pointers, while the base nodes only have right pointers. Java’s implementation also uses
marker nodes for marking, instead of bit-stealing.

In terms of style of maintenance, the traversal in the Michael Set [122] and Herlihy-Shavit
lock-free skiplist [68, § 14] unlinks one marked node at a time. By contrast, the traversal in
the Harris List [62] unlinks the entire sequence of marked nodes in one shot with a single
CAS operation. The variants also differ in the order of marking of a node at higher levels.
In the Herlihy-Shavit skiplist, the marking of a node goes from top level to the bottom level.
This differs from skiplists in [135] and [51], whose marking goes from bottom to top.

Despite the differences in the skiplist algorithms described above (and others to be in-
vented in the future), the bulk of their correctness reasoning remains the same. A goal of
this dissertation is to show how to exploit that fact.

Template algorithm. Our template algorithm for skiplists abstracts away from node-
level implementation details and the way in which traversals perform maintenance. As we
shall see, the particular details regarding how the data is stored internal to the node does
not affect the correctness of the core operations - search, insert and delete. Nor is the
correctness affected by whether the traversal unlinks one marked node at a time or an entire
sequence of marked nodes. We also show that the order in which maintenance operations
are performed on the higher levels of the list does not matter for correctness. In summary,
the template algorithm we present abstracts from: (i) node-level details; (ii) the style of
unlinking marked nodes and (iii) the order of maintenance operations on higher levels.

The template algorithm is assumed to be operating on a set of nodes N that contains
the two sentinel nodes head hd and tail tl . Let the maximum allowed height of a skiplist
node be L (> 1). Each node n is associated with (i) its key key(n) ∈ K = N ∪ {−∞,∞},
(ii) its height height(n) ∈ [1, L) , (iii) the next pointers next(n, i) ∈ N for each i from 0 to
height(n) − 1, and (iv) its mark bits per level mark(n, i) ∈ {true, false} for each i from 0
to height(n) − 1. When discussing next(n, i) or mark(n, i), we implicitly assume that i lies
between 0 and height(n) − 1. We sometimes say a node n is unmarked to mean that it is
unmarked at the base level, i.e., mark(n, 0) = false. The structural invariant maintains the
following facts: key(hd) = −∞, key(tl) =∞, height(hd) = height(tl) = L, next(tl , i) = tl for
all i, next(hd , L− 1) = tl , mark(hd , i) = mark(tl , i) = false for all i.

The core operations of the Skiplist template are expressed using helper functions such as
findNext and markNode that abstract from the details of the node implementation. We describe
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1 let search k =
2 let ps = allocArr L hd in
3 let cs = allocArr L tl in
4 let _, _, res = traverse ps cs k in
5 res
6

7 let delete k =
8 let ps = allocArr L hd in
9 let cs = allocArr L tl in

10 let p, c, res = traverse ps cs k in
11 if not res then
12 false
13 else
14 maintainanceOp_del c;
15 match markNode 0 c with
16 | Success -> traverse ps cs k; true
17 | Failure -> false

18 let insert k =
19 let ps = allocArr L hd in
20 let cs = allocArr L tl in
21 let p, c, res = traverse ps cs k in
22 if res then
23 false
24 else
25 let h = randomNum L in
26 let e = createNode k h cs in
27 match changeNext 0 p c e with
28 | Success ->
29 maintainanceOp_ins k ps cs e; true
30 | Failure -> insert k

Figure 8.2: The template algorithm for lock-free skiplists. The template can be instantiated by pro-
viding implementations of traverse and the helper functions markNode, createNode and changeNext.
The markNode i c attempts to mark node c at level i atomically, and fails if c has been marked already.
createNode k h cs creates a new node e of height h containing k, and whose next pointers are set
to nodes in array cs. Finally, changeNext i p c cn is a CAS operation attempting to change the next
pointer of p from c to cn. changeNext i p c cn succeeds only if mark(p, i) = false and next(p, i) = c.
Other functions used here include randomNum to generate a random number and maintenance opera-
tions associated with insert and delete. maintainanceOp_del marks node c at the higher levels,
while maintainanceOp_ins inserts a new node e at the higher levels.

the behavior of these helper functions as and when we encounter them. The template
is instantiated by implementing these functions. The helper functions are assumed to be
logically atomic, i.e., appear to take effect in a single step during its execution.

Figure 8.2 shows the core operations of the Skiplist template algorithm. (We omit the
code for the data structure initialization as it is straightforward.) All three operations begin
by allocating two arrays ps and cs via allocArr, each of size L and values initialized to
hd and tl respectively. These arrays are then populated by the traverse operation as it
computes the predecessor-successor pair for operation key k at each level. Intuitively, these
pairs indicate where k would be inserted at each level. The template algorithm here abstracts
away from the concrete traverse implementation. We later consider two implementations
of traverse that differ in the way that maintenance is performed, as discussed earlier.

As far as the core operations are concerned, they rely on traverse to satisfy the following
specification. First, it returns a triple (p, c, res) where p and c are nodes and res a Boolean
such that p = ps [0], c = cs [0] and res is true iff k is contained in c. Second, the node c
must have been unmarked at some point during the traversal; and third, for each 0 ⩽ i < L,
the traversal observes that key(ps [i]) < k ⩽ key(cs [i]).

Let us now describe the core operations, starting with the search operation. The search
operation simply invokes the traverse function, whose result establishes whether k was in
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the structure. The delete operation starts similarly by invoking traverse and checking
if the key is present in the structure. If it is, then delete invokes the maintenance oper-
ation maintainanceOp_del, which attempts to mark c at the higher levels (i.e. all levels
except 0). We provide the implementation of maintainanceOp_del in a moment. Once
maintainanceOp_del terminates, delete finally attempts to mark c via markNode at the
base level. If marking succeeds, it terminates by invoking traverse (which performs the
task of physically unlinking marked nodes at all levels) and returning true. Otherwise, a
concurrent thread must have already marked c, in which case delete returns false.

The insert operation also begins with traverse. If the traversal returns true, then the
key must already have been present. Hence, insert returns false in this case. Otherwise, a
new node e is created using createNode. The node’s height is determined randomly using
randomNum, which generates a random number h such that 0 < h < L. After creating a new
node, the algorithm attempts to insert it into the list by calling changeNext at the base level
(line 27). If the attempt succeeds, insert proceeds by invoking the maintenance operation
maintainanceOp_ins, which also inserts the new node into the list at all higher levels. The
insert then returns with true. If the changeNext operation fails, then the entire operation
is restarted.

We now describe the maintenance operations for insert and delete, shown in Figure 8.3.
The maintenance operations here differ from those in traditional skiplist implementations
in regards to the order in which maintenance is performed at higher levels. In traditional
implementations, the marking of a node goes from top to bottom, while insertion of a new
node goes from bottom to top. The Skiplist template presented here makes sure that the
base level gets marked at the end and the insertion first happens at the base level, but it
imposes no order on how it proceeds at higher levels. That is, when marking a node, a
delete thread could for instance first mark odd levels, then even levels and finally the base
level 0. The maintenance operations in the Skiplist template captures all such permutations.
As our proof shows later, the order of maintenance at higher levels has no bearing on the
correctness of the algorithm.

The maintainanceOp_del marks node c from levels 1 to height(c). It begins by reading
the height of c as h, and generating a permutation of [1 . . . (h − 1)] stored in array pm via
the permute function. The maintainanceOp_del_rec then recursively marks c in the order
prescribed by pm. Note that the maintenance continues regardless of whether markNode
succeeds or fails, because c will be marked at the end regardless.

The maintainanceOp_ins begins in the same way by reading the height, generating the
permutation and invoking maintainanceOp_ins_rec. The maintainanceOp_ins_rec first
collects the predecessor-successor pair at the current level from arrays ps and cs , respectively.
Then it tries to insert the new node e using changeNext on predecessor node p. If changeNext
succeeds, then the recursive operation continues. Otherwise, it recomputes the predecessor-
successor pairs using traverse. After the recomputation, the insertion is retried at the same
level.

We can now finally turn to the implementations of traverse. We consider two imple-
mentations that differ in their treatment of marked nodes. The eager traversal attempts
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1 let maintainanceOp_del_rec i h pm c =
2 if i < h-1 then
3 let idx = pm[i] in
4 markNode idx c;
5 maintainanceOp_del_rec (i+1) h pm c
6 else ()
7

8 let maintainanceOp_del c =
9 let h = getHeight c in

10 let pm = permute h in
11 maintainanceOp_del 0 h pm c

12 let maintainanceOp_ins_rec i h pm ps cs e =
13 if i < h-1 then
14 let idx = pm[i] in
15 let p = ps[idx] in
16 let c = cs[idx] in
17 match changeNext idx p c e with
18 | Success ->
19 maintainanceOp_ins_rec (i+1) h pm ps cs e
20 | Failure ->
21 traverse ps cs k;
22 maintainanceOp_ins_rec i h pm ps cs e
23 else ()
24

25 let maintainanceOp_ins k ps cs e =
26 let h = getHeight e in
27 let pm = permute h in
28 maintainanceOp_ins 0 h pm ps cs e

Figure 8.3: The maintenance operations for the Skiplist template. The getHeight c helper function
returns height(c). The permute function generates a permutation of [1 . . . (h− 1)] as an array.

to unlink every marked node it encounters, while the lazy traversal simply walks over the
marked nodes till it reaches an unmarked node. The traversal then attempts to unlink the
entire marked segment at once. We begin with the eager traversal first.

The eager traversal is shown in Figure 8.4. The traverse function is implemented using
mutually-recursive functions eager_rec and eager_i1. The function eager_rec populates
the arrays ps and cs with the predecessor-successor pair at level i computed by eager_i.
The eager_i performs a traversal at level i by first reading the mark bit and next pointer of
c using findNext. If c is found to be marked, then eager_i attempts to physically unlink
the node using changeNext. In the case that changeNext fails (because either p is marked
or it does not point to c anymore), eager_i simply restarts the traverse function. In the
case of Success of changeNext, the traversal continues. If c is unmarked, then traverse_i
proceeds by comparing k to key(c). For key(c) < k, the traversal continues with c and cn.
Otherwise, eager_i ends at c, returning (p, c, true) if key(c) = k and (p, c, false) otherwise.
As mentioned before, eager_i attempts to unlink immediately whenever a marked node is
encountered.

Finally, we describe the lazy traversal. The code for the lazy traversal is shown in
Figure 8.5. While the lazy_rec implementation is almost identical to eager_rec, the two
differ in the per-level traversal in lazy_i and eager_i. The lazy_i function here keeps track
of three nodes while traversing: node p is the last unmarked node it witnessed, node pn is
the node that p was pointing to when p was traversed, and c is the node that is currently
being traversed. The function lazy_i begins by reading the next pointer and mark bit of

1For ease of exposition, the implementation of the eager traversal shown in Figure 8.4 differs slightly from
the version we have verified in Iris. The Iris version uses option return types instead of mutually-recursive
functions in order to obtain a more modular proof of the eager traversal. We use the mutually recursive
implementation here for clarity of exposition.
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1 let eager_i i k p c =
2 match findNext i c with
3 | cn, true ->
4 match changeNext i p c cn with
5 | Success -> eager_i i k p cn
6 | Failure -> traverse ps cs k
7 | cn, false ->
8 let kc = getKey c in
9 if kc < k then

10 eager_i i k c cn
11 else
12 let res = (kc = k ? true : false) in
13 (p, c, res)

14 let eager_rec i ps cs k =
15 let p = ps[i+1] in
16 let c, _ = findNext i p in
17 let p′, c′, res = eager_i i k p c in
18 ps[i] <- p′;
19 cs[i] <- c′;
20 if i = 0 then
21 (p′, c′, res)
22 else
23 eager_rec (i-1) ps cs k
24

25 let traverse ps cs k =
26 eager_rec (L - 2) ps cs k

Figure 8.4: The eager traversal for the Skiplist template. findNext i k c returns a pair
(next(c, i),mark(c, i)). The getKey c helper function returns key(c).

c. If c is found to be marked, then lazy_i simply continues with the successor of c. If c is
unmarked, then the operation key k is compared with key(c). In case key(c) < k, then again
lazy_i continues with c as the last seen unmarked node. Otherwise, k ⩽ key(c). In this
case, it attempts to unlink the marked segment between nodes p and c. The conditional on
Line 10 checks if there is a segment to remove. If that is indeed the case, then lazy_i calls
changeNext to unlink the segment between p and c. If changeNext succeeds, then there is
a further check to make sure c is still unmarked. If so, then lazy_i returns with p and c.
In all other cases where changeNext fails or c is found to be marked, lazy_i restarts the
traverse function.

1 let lazy_i i k p pn c =
2 match findNext i c with
3 | cn, true -> lazy_i i k p pn cn
4 | cn, false ->
5 let kc = getKey c in
6 if kc < k then
7 lazy_i i k c cn cn
8 else
9 let res = (kc = k ? true : false) in

10 if pn = c then
11 (p, c, res)
12 else
13 match changeNext i p pn c with
14 | Success ->
15 let _, b = findNext i c in
16 if b then traverse ps cs k
17 else (p, c, res)
18 | Failure -> traverse ps cs k

19 let lazy_rec i ps cs k =
20 let p = ps[i+1] in
21 let c, _ = findNext i p in
22 let p′, c′, res = lazy_i i k p c c in
23 ps[i] <- p′;
24 cs[i] <- c′;
25 if i = 0 then
26 (p′, c′, res)
27 else
28 lazy_rec (i-1) ps cs k
29

30 let traverse ps cs k =
31 lazy_rec (L - 2) ps cs k

Figure 8.5: The lazy traversal for the Skiplist template corresponding to the Harris List style traversal.
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8.3 Proof Intuition

Our goal is to show that the Skiplist template is linearizable. That is, we must prove that
each of the core operations takes effect in a single atomic step during its execution, the
linearization point, and satisfies the sequential specification shown in Figure 8.6. For the
Skiplist template, we define the abstract state C(N) to be the union of the logical contents
C(n) of all nodes in N , where C(n) := (mark(n, 0) ? ∅ : {key(n)}). In other words, the
abstract state of the structure is a collection of keys contained in unmarked nodes at the base
level. We rely on techniques developed in the earlier chapters to analyse the Skiplist template.

Ψop(k, C,C
′, res) :=


C ′ = C ∧ (res ⇐⇒ k ∈ C) op = search

C ′ = C ∪ {k} ∧ (res ⇐⇒ k ̸∈ C) op = insert

C ′ = C \ {k} ∧ (res ⇐⇒ k ∈ C) op = delete

Figure 8.6: Sequential specification of a search structure as a Set ADT (repeated). k refers to the
operation key, C and C ′ to the abstract state before and after operation op, respectively, and res is the
return value of op.

The two main techniques that we rely on are the Edgeset Framework from Chapter 3 and
Hindsight Reasoning from Chapter 6. We begin by giving a brief overview of the hindsight
reasoning in the context of the Skiplist template.

8.3.1 Hindsight Reasoning

To show the applicability of the hindsight framework to the Skiplist template, we elaborate on
how the Skiplist template operations exhibit future-dependent linearization points. That is,
the linearization point of an operation cannot be determined at any fixed moment, but only
at the end of the execution, once any interference of other concurrent operations has been
accounted for. To understand the interference issue, consider the search operation. Since,
search returns the result of traverse, let us look at the eager traversal implementation. To
simplify the explanation further, let us assume that the maximum height allowed for every
non-sentinel node is one. Then, we can ignore the eager_rec function and focus on eager_i
called at the base level.

Let there be a thread T executing search(7). Concurrently, there is a thread Td executing
delete(7) and a thread Ti executing insert(7). Figure 8.7 shows interesting scenarios that
thread T might potentially observe. Box (a) captures the state of the structure at the
beginning of the eager_i call processing n2. Let Scenario 1 be the situation when thread
T faces no interference from Td and Ti. Here, thread T finds the key 7 in n2 and eager_i
returns true. The point when eager_i finds n2 to be unmarked becomes the linearization
point for this scenario.
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Figure 8.7: Problem execution for the Skiplist template. Boxes represent possible states of search(7)
on the base level in presence of interference from concurrent delete(7) and insert(7).

Now consider Scenario 2 to be the situation where thread Td marks n2 before eager_i
processes it, as shown in Box (b). Thread T will attempt to unlink n2, and assuming no
further interference, the unlink will result in the structure in Box (c). Thread T will process
n3 next, finding n3 to be unmarked with key greater than 7, and will terminate with result
false. So when is the linearization point in this scenario? It cannot be when T finds n3

unmarked when processing it. Because there could be further interference from thread Ti

which inserts key 7 in a new node as shown in Box (d). The new node could be added right
before T reads the mark bit of n3. Thus, when eager_i finds n3 unmarked and returns false,
key 7 could actually be present in the structure at that point in time.

The linearization point is actually the point in time shown in Box (c), i.e., right after n2 is
unlinked. However, thread T cannot confirm this when n2 is unlinked because eager_i may
not terminate at n3 with false as the result. The reason is that by the time T processes n3,
it could get marked in a manner similar to n2 in Box (b), resulting in the unlinking of n3 and
potentially a restart. That Box (c) is the linearization point is confirmed when T has found
n3 to be unmarked later. The structure maintains the invariant that once a node is marked,
it remains marked. Using this invariant, an analysis of thread T ’s history concludes that n3

must have been unmarked at the point when n2 was unlinked. Once eager_i terminates at
n3 with false, an analysis can establish in hindsight that Box (c) indeed was the linearization
point.

The discussion above makes clear that the intermediate hindsight specification (HindSpec)
developed in Chapter 6 will be a significant step towards proving the client-level specifica-
tion of the Skiplist template.We are now ready to provide an intuitive proof argument for
establishing linearizability of the core operations of the Skiplist template via hindsight.

90



8.3.2 Proof Outline for Core Operations

Recall that a linearization point is called modifying if the operation changes the abstract
state of the data structure and unmodifying otherwise. In the context of the Skiplist tem-
plate, succeeding delete and insert operations exhibit modifying linearization points, while
search and failing delete or insert exhibit unmodifying linearization points. The modify-
ing linearization points of the Skiplist template are easier to reason about because they are
not future-dependent. For delete, the linearization point occurs when markNode succeeds,
and similarly, for insert the linearization point occurs when the call to changeNext on line 27
succeeds. The proof strategy for unmodifying linearization points is to combine (KeysetPr)
with the ⟐ operator from hindsight reasoning. Let us expand on this proof strategy in detail
and show why the Skiplist template is linearizable.

We begin by describing the specification for traverse that is assumed for analyzing the
core operations of the template. Then, we analyze each of the operations in detail. Finally,
we show how the eager implementations of traverse satisfies the specification that was
assumed in the beginning. Along the way, we introduce (as and when necessary) invariants
maintained by the Skiplist template that are crucial for proving linearizability.

Specification of traverse. The function traverse ps cs k updates arrays ps and cs
with predecessor-successor pairs for each level and returns a triple (p, c, res) that satisfies
the following past predicate regarding node c: ⟐(k ∈ ks(c) ∧ (res ⇐⇒ k ∈ C(c))). Recall
that our definition of edgesets in Chapter 3 implies the following invariant:

Invariant 1 For all nodes n, if mark(n, 0) is set to true then ks(n) = ∅.

Using Invariant 1, we can establish that c is unmarked at the base level at the time point
when k ∈ ks(c) holds. Note that traverse may physically unlink marked nodes. However,
this step does not change the abstract state of the structure. Hence, the specification for
traverse involves no change of the abstract state.

We now consider each of the core operations in detail.
Proof of search. Function search returns res out of the triple (p, c, res) returned by

traverse. The specification of traverse says res ⇐⇒ k ∈ C(c) at some point, say t, during
its execution. The specification additionally guarantees k ∈ ks(c) at time t. These two facts,
combined with the (KeysetPr) at time point t, allow us to immediately infer that res is true
iff k was in the structure at that point. Hence, we can establish that (res ⇐⇒ k ∈ C(c))
was true at some point during the execution of search.

Proof of delete. We analyze delete by case analysis on the value res returned by
traverse. If res is false, then again we can establish that k was not in the structure at some
point during traverse’s execution by the same reasoning used in the proof of search. So
let us consider the case that res is true. By the specification of traverse, we can establish
a time point when c was unmarked and contained k. The delete operation then calls
maintainanceOp_del which marks c at all the higher levels. Finally, the markNode on Line 15
attempts to mark c at the base level. If markNode succeeds, then this step becomes the
linearization point of delete and k can be considered to be deleted from the structure. But
if markNode fails, then we gain the knowledge that mark(c, 0) = true. Hindsight reasoning
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allows us to infer that c was marked at the base level by a concurrent thread between the
end of traverse and the invocation of markNode. The point right after c was marked by a
concurrent thread becomes the linearization point of delete in this case, as we can determine
that k was not present in the structure at that point.

This hindsight reasoning relies on two facts: first, the key of a node never changes and
second, once a mark bit is set to true by a successful markNode operation (at line 15 in
delete or line 4 in maintainanceOp_del), no other operation will set it back to false. In
fact, these two facts are invariant for the Skiplist template:

Invariant 2 For all nodes n and level i, once mark(n, i) is set to true, it remains true.

Invariant 3 For all nodes n, key(n) remains constant.

Proof of insert. Similar to delete, we begin by case analysis on res returned by
traverse. If res is true, then we can establish that k was already present in the structure
at some point. Otherwise, res is false and insert creates a new node e with key k. Using
changeNext, an attempt is made to insert node e between nodes p and c. If the attempt
succeeds, then k is now part of the structure and this becomes the linearization point. The
following maintainanceOp_ins operation does not change the abstract state of the structure,
and thus, has no effect in terms of linearizability. If the changeNext fails, then insert simply
restarts.

As is evident with the proof outline for the core operations, the specification assumed
for traverse plays a critical role in case the operation exhibits an unmodifying linearization
point. Let us now turn to traverse and show how its specification can be proved. We first
analyze the eager traversal in detail in the following section. This is followed by the proof
argument for the lazy version, which is similar to the one for eager traversal.

8.3.3 Proof Outline for Eager Traversal

As stated earlier, traverse returns (p, c, res) such that ⟐(k ∈ ks(c) ∧ (res ⇐⇒ k ∈ C(c))).
Since the returned triple is the result of a call to eager_i at the base level, let us begin by
analyzing the behavior of this call.

In the sequential setting, the traversal in a search structure maintains the invariant that
the search key is always in the inset of the current node. This invariant holds by the design
of the Edgeset Framework. Unfortunately, this invariant no longer holds for the Skiplist
template in the concurrent setting as evidenced by Box (c) in Figure 8.7. However, we argue
first that eager_i does maintain the invariant that the search key was in the inset of the
current node c between the start of the traversal and the point at which the eager_i accesses
c. We call this the inset in hindsight invariant.

We prove this invariant inductively. We make use of the following locally maintained
invariants: (i) At all times, there is one list, denoted the reachable list, from the head node
that includes all unmarked and some marked nodes. (This list is characterized by the set of
nodes with non-empty inset). (ii) The keys in the reachable list are sorted. A consequence
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of these two invariants is that if a node n is in the reachable list (whether n is marked or
not) and has a key less than k, then k is in the inset of n.

To prove that inset in hindsight is an invariant, we have to show that (a) it is an invariant
when eager_i takes a step (Line 2) when traversing the base level, and (b) that we can
establish inset in hindsight when eager_rec initiates eager_i (Line 17) at the base level.

To show (a), observe that if a node n becomes unlinked from the reachable list, then it
will never again be part of the reachable list. Hence, if n is not in the reachable list when
eager_i begins executing at the base list, then eager_i will never visit n. The contrapositive
of this statement allows us to say that if eager_i reaches some node c, then it must have
been part of the reachable list at some point during the execution of eager_i. Additionally,
eager_i proceeds to the node following c only when key(c) < k. With the help of invariants
(i) and (ii) above, we can thus establish that k was in the inset of n at some point.

To show (b), we must do a case analysis on whether node p (Line 16) is marked. If
it is unmarked, then it is straightforward to establish that k is in the inset of c currently.
However, if p is marked, then we require temporal interpolation based on the following
invariant:

Invariant 4 For all nodes n and level i, once mark(n, i) is set to true, next(n, i) does
not change.

This invariant tells us that if p was known to be unmarked in the past, and it is marked
currently, then p must have been pointing to c right before it got marked. At that point in
time, we can establish that k must have been in the inset of c.

This completes the inductive proof that inset in hindsight is indeed an invariant main-
tained by the traversal. The inset in hindsight invariant is sufficient to prove the traverse
specification by the following simple argument. If the traverse encounters k in an unmarked
node n, then traverse will return true as it should. If, by contrast, traverse encounters
an unmarked node n such that key(n) > k, then by the inset in hindsight invariant, k must
have been in the inset of n at some point t in the past and k cannot be in the outset of n
(because key(n) > k and n is unmarked), so therefore k must have been in the keyset of n
at time t.

Let us make precise the intuitive proof argument above. We define the traversal invariant
EagerInv for eager_i as follows:

EagerInv(k, p, c) := ⟐(mark(p, 0) = false ∧ key(p) < k) ∗⟐(k ∈ inset(c))

The predicate EagerInv captures the fact that eager_i witnessed node p to be unmarked and
its key less than k at some point during its traversal. Additionally, it witnessed that k was
in the inset of c at some prior state of the structure. We put the two facts about p and c in
separate ⟐ predicates because the two facts may hold for different past states.

For the moment, assume that predicate EagerInv(k, p, c) holds at the beginning of the
function call eager_i 0 k p c. The proof outline in Figure 8.8 shows that this is sufficient to
prove the traverse specification. We explain the critical steps of the proof in the following.

The first critical step occurs when c is found to be marked, and the subsequent changeNext
call on p succeeds (Line 6). Immediately after this step, we can establish that mark(p, 0) =
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1
{
EagerInv(k, p, c)

}
2 let eager_i 0 k p c =
3 match findNext 0 c with
4 | cn, true ->
5 match changeNext 0 p c cn with
6 | Success ->

7
{
EagerInv(k, p, c) ∗mark(p, 0) = false ∗ next(p, 0) = cn ∗ key(p) < k

}
8

{
mark(p, 0) = false ∗ key(p) < k ∗ k ∈ inset(p) ∗ k ∈ outset(p) ∗ k ∈ inset(cn)

}
9

{
EagerInv(k, p, cn)

}
10 eager_i 0 k p cn
11 | Failure -> traverse ps cs k
12 | cn, false ->

13
{
EagerInv(k, p, c) ∗mark(c, 0) = false ∗ next(c, 0) = cn

}
14


EagerInv(k, p, c) ∗mark(c, 0) = false ∗ next(c, 0) = cn

∗(key(c) < k =⇒ k ∈ EagerInv(k, c, cn))

∗(k ⩽ key(c) =⇒ ⟐(k ∈ ks(c)))


15 let kc = getKey c in
16 if kc < k then
17

{
EagerInv(k, c, cn)

}
18 eager_i 0 k c cn
19 else
20

{
⟐(k ∈ ks(c))

}
21 let res = (kc = k ? true : false) in
22 (p, c, res)

23
{
⟐(k ∈ ks(c) ∧ res ⇐⇒ k ∈ C(c))

}
Figure 8.8: Outline for the proof of the eager_i for the base level.

false and next(p, 0) = cn due to the success of changeNext. The Invariant 3 allows us to
infer key(p) < k from EagerInv(k, p, c). In addition, we use the following structural invariant:

Invariant 5 For all nodes n, if mark(n, 0) is set to false then [key(n),∞) ⊆ inset(n).
As a consequence of the definition of edgesets and outset(n) (from Chapter 3), we
additionally obtain outset(n) = (key(n),∞).

Invariant 5 helps us establish that k ∈ inset(p), k ∈ outset(p) and since next(p, 0) = cn,
also k ∈ inset(cn). Using the rule that p implies ⟐p for an arbitrary proposition p, we can
establish EagerInv(k, p, cn) before the recursive call on Line 10.

The second critical step is when findNext determines c to be unmarked (Line 12). The
proof goes by case analysis, depending on whether key(c) < k holds. First consider that this
condition is true. Similar to the first critical step, we are able to establish EagerInv(k, c, cn)
here as we have all the relevant facts at this moment. The predicate EagerInv(k, c, cn) is
used for the recursive call on Line 18. Now consider the case that k ⩽ key(c). Here, we
use ⟐(k ∈ inset(c)) provided by EagerInv(k, p, c). Let t be the time point when k ∈ inset(c)
held true. Since c is unmarked currently, c must also have been unmarked at time t due to
Invariant 2. And by Invariant 4, we can establish that k /∈ outset(c) at time t. Thus, we
conclude that also k ∈ ks(c) held at time t. Similarly we conclude that C(c) = {key(c)} as
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c is unmarked. Putting this all together, we obtain:

k ∈ C(c) ⇐⇒ k = key(c) ⇐⇒ res .

This concludes the proof that predicate EagerInv is indeed an invariant for eager_i and is
sufficient to prove the traverse specification.

In the previous proof, we assumed EagerInv holds when eager_i begins executing at the
base level. The final piece remaining from the complete proof of the traverse specification
is to show that eager_i collects enough information at higher levels to establish EagerInv
before traversing the base level. We explain this below.

It is easy to see that for all higher levels i, eager_i can establish ⟐(mark(p, i) = false ∧
key(p) < k) when it returns (p,_,_). (In fact, EagerInv contains the exact same facts about
p and the same argument as in the proof outline for the base level is applicable.) Thus,
when a predecessor p is chose from the higher level to initiate eager_i at the base level, we
know that ⟐(mark(p, i) = false ∧ key(p) < k) holds. The current node c is chosen by calling
findNext 0 p at Line 16 in Figure 8.4. If findNext determines p to be unmarked, then we
can establish k ∈ inset(c) using the fact ⟐(key(p) < k) and Invariant 4. However, if p is
found to be marked, then it is a bit tricky to establish that ⟐(k ∈ inset(c)). We require the
following additional structural invariant.

Invariant 6 For all nodes n, if there exists an i such that mark(n, i) is set to false, then
mark(n, 0) is set to false.

Invariant 5 captures the fact that the base level gets marked at the end. This fact is useful
for us because we can combine it with ⟐(mark(p, i) = false) to obtain ⟐(mark(p, 0) = false).
Since findNext has found p to be marked at the base level, we can determine that it got
marked at some time point between the point in time when ⟐(mark(p, 0) = false) held and
the present. Let t be the time point right before p got marked. Invariant 4 gives us useful
information about which node next(p, 0) can be pointing to at time t. It preceisely says that
next(p, 0) = c at time t. Thus, we have found a moment in time when mark(p) = false,
key(p) < k and next(p, 0) = c. These three facts allow us to immediately conclude that
k ∈ inset(c) at time t. This finally completes the proof of traverse.

8.3.4 Proof Outline for Lazy Traversal

The proof idea for the lazy traversal is similar to that of the eager traversal. We provide
a brief overview of the traversal invariant for lazy_i, and why it is sufficient to establish
the required specification for traverse. The following discussion focuses on the lazy_i
executing on the base level, for sake of simplicity.
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The traversal invariant for lazy_i is defined as below:

LazyInv(k, p, pn, c) := EagerInv(k, p, pn) ∗ (pn ̸= c ⇒ ∃ ls . MarkedSeg(pn, ls , c))

MarkedSeg(pn, ls , c) := (ls = []⇒ ⟐(next(pn, i) = c))

∗ (ls = [n0,...,nl]⇒ ⟐(next(pn, 0) = n0)

∗ (∀ 0 ⩽ j < l. ⟐ next(nj, 0) = nj+1))

∗⟐(next(nl, 0) = c)

The invariant LazyInv relies on EagerInv and a new predicate MarkedSeg that stores the
segment of marked nodes. Additionally, the predicate establishes that the nodes pn and c
are the start and end points of the marked segment.

To see that LazyInv is indeed an invariant, consider Lines 3 and 7 where lazy_i is recur-
sively called. At Line 3, the marked segment can be extended by including the marked node
c, while p and pn remain unchanged. On the other hand, at Line 7, the second conjunct of
LazyInv becomes trivially true, and EagerInv(k, c, cn) can be established in the same way as
for eager_i.

Let us now show why LazyInv is sufficient to prove the traverse specification. Consider
the points where lazy_i terminates (lines 11 and 17). When terminating at Line 11, we
know that pn = c. Hence, LazyInv provides the predicate EagerInv(k, p, c). Using the same
argument as eager_i, we can establish the required postcondition. Now consider Line 17.
In this case, the thread has successfully unlinked the marked segment, hence it can establish
that mark(p, 0) = false and next(p, 0) = c right after the call to changeNext. Note that the
later check whether c is unmarked must succeed in order for lazy_i to terminate. Hence,
at the point of the successful changeNext, c must also be unmarked, giving us all the facts
necessary to establish the required postcondition. This completes the proof of lazy_i.

8.4 Verifying the Skiplist Template

We relate the intuitive proof argument from Section 8.3 to the development on hindsight
reasoning in Iris in Section 6.3 to obtain a complete proof of the Skiplist template. To achieve
this, we must perform three tasks required by the proof method in Section 6.3. The first
task is to determine the decisive operations that potentially alter the structure, and resolve
the prophecy around those operations. As discussed previously, the decisive operations are
markNode for delete and changeNext for insert. The search operation does not modify
the abstract state and hence, it has no decisive operation.

The second task is to define a snapshot in the context of the Skiplist template and instan-
tiate Invtpl appropriately. This includes the predicate resources that ties the concrete state of
the structure to the latest snapshot, as well as invariants that allow temporal interpolation.
The third and the final task is to prove the hindsight specification for the core operations.

In this section we focus on the second task of defining the snapshot and providing in-
variants necessary to formalize the intuitive proof argument. Once, we have set up the right
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invariants, the formalized proof follows the intuitive proof very closely. We explain this with
delete as an example.

8.4.1 Snapshot and the Skiplist Template Invariant

Recall that the notion of keysets are central to the intuitive proof argument for the core oper-
ations of the Skiplist template. Hence, a snapshot of the structure must contain information
about the keysets. For encoding keysets in Iris, we borrow heavily from [97], especially the
representation of keysets via the Flow Framework (from Section 3.6). In addition, we use
the keyset RA from Chapter 5.

We define the snapshot of the Skiplist template as a tuple containing the following com-
ponents:

• the set of nodes N comprising the structure (also referred to as the footprint below)

• the abstract state of the structure (a set of keys)

• the mark bits (a map from N to N→ Bool, i.e., a Boolean per level)

• the next pointers (a map from N to N→ N)

• the keys (a map from N to K)

• the height of nodes (a map from N to N)

• the representation of flow values

We reparameterize the mark(n, i) function introduced earlier to take the snapshot as an
argument. Thus, we use mark(s, n, i) to mean the mark bit of node n at level i in snapshot s.
We redefine next(·), key(·), ks(·) and other such functions similarly by adding the snapshot s
as an additional parameter. We also use FP(s) to represent the footprint of the snapshot s.

We now present the Skiplist template invariant in Figure 8.9. The resources predi-
cate ties the snapshot to the concrete state through an intermediary node-level predicate
Node(n, k, h,mk , nx ). This predicate actually ties the physical representation of a node in
the heap to the abstract quantities (key(·), height(·), mark(·) and next(·), respectively) that
the Skiplist template relies on. The Node predicate also owns all the resources needed to
execute the helper functions. The Skiplist template proof is parametric in the definition of
Node. Thus, we achieve proof reuse across skiplist variants that follow the same high-level
skiplist algorithm, but implement the node differently. We provide more details on this
matter later. We discuss some concrete node implementations in Chapter 9.

The predicate resources_keyset(s) capture the ownership resources required for keyset
reasoning. Using the ghost resources in Iris and the keyset camera from [97], it ensures
that the keysets and the logical contents of nodes in s satisfy (KeysetPr). The assertion
•(K, C(s))

γ
signifies ownership of the logical contents C(s) of the structure in the state

captured by snapshot s. Recall that K is the set of all keys. Each individual node n ∈
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Invtpl(r,H, T ) := resources(r,H(T ))

∗ (∀t, 0 ⩽ t ⩽ T ⇒ per_snapshot(H(t)))

∗ (∀t, 0 ⩽ t < T ⇒ transition_inv(H(t), H(t+ 1)))

resources(s) := ∗
n∈FP(s)

Node(n,mark(s, n), next(s, n), key(s, n), height(s, n))

∗ resources_keyset(s)

resources_keyset(s) := •(K, C(s))
γ
∗ ∗

n∈FP(s)

◦(ks(s, n), C(s, n))
γ

transition_inv(s, s′) := (FP(s) ⊆ FP(s′))

∗ (∀n, key(s′, n) = key(s, n) ∧ height(s′, n) = height(s, n))

∗ (∀n i, mark(s, n, i) = true ⇒ mark(s′, n, i) = true)

∗ (∀n i, mark(s, n, i) = true ⇒ next(s′, n, i) = next(s, n, i))

Figure 8.9: Instantiating Invtpl with invariants of the Skiplist template.

FP(s) owns its keyset ks(s, n) and node-local logical contents C(s, n). The keyset camera
enforces that the ks(s, n) are pairwise disjoint, C(s, n) ⊆ ks(s, n) for each n, and that C(s) =⋃

n∈FP(s) C(s, n), respectively, K =
⋃

n∈FP(s) ks(s, n).
The predicate per_snapshot captures structural invariants that hold for all snapshots

recorded in the history. This includes invariants of three kinds: first, invariants to ensure
that each component of the snapshot is of the correct type and the maps (from nodes to
mark bits, next pointers, etc.) are defined for all nodes in the footprint; second, the node-
level invariants relating the node’s inset, outset, mark bit, etc (like Invariant 1); and third,
invariants about the hd and tl nodes, such as key(s, hd) = −∞, height(tl) = L, etc.

The predicate transition_inv(s, s′) captures invariants about how certain quantities evolve
over time, such as that mark bits once set to true remain true. The invariants 2, 3, and 6
presented in Section 8.3 are part of this predicate. These invariants form the crux of the
hindsight reasoning, as they enable temporal interpolation.

Helper Function Specifications. Before we go into the formal proof argument for delete,
we must discuss how to reason about the node-level helper functions. Figure 8.10 shows the
specification for the helper functions assumed by the Skiplist template. The specifications are
logically atomic, i.e., they behave like a single atomic step in the template. The preconditions
for all of the functions rely solely on the predicate Node. The functions getKey, getHeight
and findNext read various components of the node. Note that findNext reads both the
mark bit and the next pointer together.

The specification for functions markNode and changeNext is slightly more complex because
they potentially change the structure. Our encoding of the hindsight specification (HindSpec)
requires us to resolve a prophecy around each program step that may modify the structure.
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1
〈
k hmk nx . Node(n, k, h,mk ,nx )

〉
getKey n

〈
k. Node(n, k, h,mk ,nx )

〉
2
〈
k hmk nx . Node(n, k, h,mk ,nx )

〉
getHeight n

〈
h. Node(n, k, h,mk ,nx )

〉
3
〈
k hmk nx . Node(n, k, h,mk ,nx ) ∗ (i < h)

〉
findNext i n

〈
n′. Node(n, k, h,mk ,nx ) ∗ (nx (i) = n′)

〉
4

5
〈
k hmk nx . Node(n, k, h,mk ,nx ) ∗ (i < h)∗Proph(p, pvs) ∗ (i = 0)

〉
6 markNode i n p

7

〈 x. Node(n, k, h,mk ′,nx )∗Proph(p, pvs ′) ∗ (pvs = prf ++ pvs ′)

∗(mk(i) = false ⇒ x = Success ∗mk ′ = mk [i↣ true]∗Upd(pvs))
∗(mk(i) = true ⇒ x = Failure ∗mk ′ = mk∗¬Upd(prf ))

〉
8

9
〈
k hmk nx . Node(n, k, h,mk ,nx ) ∗ (i < h)∗Proph(p, pvs) ∗ (i = 0)

〉
10 changeNext i n n′ e p

11

〈 x. Node(n, k, h,mk ,nx ′)∗Proph(p, pvs ′) ∗ (pvs = prf ++ pvs ′)

∗((mk(i) = false ∧ nx (i) = n′)⇒ x = Success ∗mk ′ = mk [i↣ true]∗Upd(pvs))
∗((mk(i) = true ∨ nx (i) ̸= n′)⇒ x = Failure ∗mk ′ = mk∗¬Upd(prf ))

〉

Figure 8.10: Specifications of the helper functions used by the Skiplist template.

In the context of the Skiplist template, the structure is modified using calls to the helper
functions markNode and changeNext on the base-level list. Unfortunately, prophecies in Iris
can only be resolved around physical computation steps in the Iris programming language
HeapLang and not at a more abstract level around logical atomic triples. Hence, the atomic
triples for markNode and changeNext themselves must capture the relevant aspects of the
reasoning related to prophecy resolution.

We focus on the markNode specification in particular. The assertions in blue described
possible changes to the node-level quantities. For markNode on node n at level i, the return
value (Success or Failure) is determined by whether n is already marked at i. If it is,
then the function returns Failure without modifying the node. If it is unmarked, then
markNode successfully marks it, and updates the node accordingly. The additional assertions
in brown are concerned with the prophecy reasoning and applicable only when markNode
is called on the base level. The precondition Proph(p, pvs) gives the right to resolve the
prophecy p. The additional postcondition says that marknode resolves the prophecy an
arbitrary number of times, but if it succeeds, then a Success value was seen in the list of
prophesied values pvs , yielding Upd(pvs). Otherwise, it says that no Success value was
seen so far, yielding Upd(prf ). The template proof for delete then uses this information to
infer whether Upd(pvs) holds and prove the appropriate postcondition from the hindsight
specification. The specification for changeNext can be interpreted similarly. Here, the return
value hinges upon the mark bit being false and the next pointer of n pointing to n′ at i.

8.4.2 Proof of delete

In this section, we discuss the proof of code in more detail. The proof outline is shown in
Figure 8.11. We want to show that delete satisfies (HindSpec). The precondition provides
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access to the invariant Inv(r) and knowledge that the thread ID is tid with start time t0.
Additionally, the precondition provides the conjunct (Upd(pvs) −∗ AU(Φ)), signifying that
the thread can perform its linearization in case of a successful decisive operation. The
precondition also provides the right to resolve prophecies. It is easy to see how prophecies
are manipulated by the helper functions from the specifications in Figure 8.10, hence we
ignore them in the proof outline.

The algorithm of delete begins with a call to traverse. The specification for traverse
provides the postcondition

⟐s,t0(k ∈ ks(s, c) ∧ (res ⇐⇒ k ∈ C(s, c))).

Note that we use the past operator ⟐s,t0 from Section 6.4.2 in the postcondition of traverse.
Intuitively, this assertion captures that there is a past state s in the history (after time point
t0) in which k is in the keyset of c and res is true iff k is in the logical contents of c. Note
that this implies mark(s, c, 0) = false due to Invariant 1.

The delete algorithm proceeds by case analysis on the result of traverse. Let us first
consider the case that res is false (Line 8). The delete operation terminates with result false.
The specification (HindSpec) requires establishing the predicate PastLin(del, k, false, t0) in
this case. To this end, we must provide a witness past state in which k was not part of the
abstract state. We obtain this witness from the postcondition of traverse which provides
a past state s such that k ∈ ks(s, c) and k /∈ C(s, c). Applying (KeysetPr) in state s, we can
establish the predicate PastLin(del, k, false, t0) (Line 12).

Let us now consider the case when res is true. The delete algorithm here calls the
helper function maintainanceOp_del, which marks node c at the higher levels. Thus, after
maintainanceOp_del terminates, we obtain the information that all higher levels of c are
marked (Line 16). Next, the helper function markNode is called at the base level to logically
delete c from the structure. In order to apply the specification of markNode, we open the
invariant Inv(r) to access the Node predicate for c (Line 18). Let the current snapshot at this
point (obtained by opening the invariant) be s0. The call to markNode call either succeeds
or fails depending on whether mark(s0, c, 0) = false holds. We consider both of the cases in
turn.

First, suppose that markNode succeeds (Line 21). This implies that mark(s0, c, 0) = false
and a new snapshot s1 must be constructed to record the marking of c. The proof then
appends s1 to the history stored in Inv(r) in order to reestablish Inv(r). Additionally, success
of markNode implies that Upd(pvs) holds. Hence, the thread must use the resource AU(Φ) to
linearize itself. The receipt of linearization Φ is exactly what is required in the postcondition
of (HindSpec) in this case (Line 25).

Finally, consider the case that markNode fails (Line 27). The delete algorithm terminates
with result false in this case. Hence, we must again establish PastLin(del, k, false, t0) to
complete the proof. That is, we must identify a witness past state such that k was not part of
the abstract state of the structure. To compute this witness, note that mark(s, c, 0) = false
for state s observed by traverse, while mark(s0, c, 0) = true for the current state s0. By
transition_inv in Figure 8.9 and temporal interpolation, there must exist consecutive states
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s1 and s2 when c was marked at the base level (Line 28). Here, the predicate Past(s, t)
represents the knowledge that the history recorded snapshot s at time t. The snapshot s2 is
the required witness to establish the postcondition of (HindSpec) (Line 32). This completes
the proof of delete.
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1

{
Inv(r) ∗ Thread(tid , t0) ∗ (Upd(pvs) −∗ AU(Φ))

}
2 let delete k =
3 let ps = allocArr L hd in
4 let cs = allocArr L tl in
5 let p, c, res = traverse ps cs k in
6

{
⟐s,t0(k ∈ ks(s, c) ∧ (res ⇐⇒ k ∈ C(s, c)))

}
7 if not res then
8

{
⟐s,t0(k ∈ ks(s, c) ∧ (k /∈ C(s, c)))

}
9

{
⟐s,t0(k /∈ |s|)

}
10

{
⟐s,t0(Ψdel(k, |s|, |s|, false))

}
11 false

12
{
¬Upd(pvs) ∗ PastLin(del, k, false, t0)

}
13 else
14

{
⟐s,t0(k ∈ ks(s, c) ∧ (k ∈ C(s, c)))

}
15 maintainanceOp_del c;

16
{
⟐s,t0(mark(s, c, 0) = false) ∗⟐s′,t0(∀i, 0 < i < height(s′, c)⇒ mark(s′, c, i) = true)

}
17

{
⟐s,t0(mark(s, c, 0) = false) ∗ Hist(H0, T0) ∗ resources(s0) ∗ · · ·

}
18

{
⟐s,t0(mark(s, c, 0) = false) ∗ Hist(H0, T0) ∗ Node(c, s0) ∗ · · ·

}
19 match markNode 0 c with
20 | Success ->

21
{
(mark(s0, c, 0) = false) ∗ (mark(s1, c, 0) = true) ∗ Upd(pvs) ∗ · · ·

}
22

{
Upd(pvs) ∗ AU(Φ) ∗Ψdel(k, |s0|, |s1|, true) ∗ · · ·

}
23

{
Upd(pvs) ∗ Φ ∗ Hist(H0[T0 + 1↣ s1], T0 + 1) ∗ resources(s1) ∗ · · ·

}
24 traverse ps cs k; true

25
{
Upd(pvs) ∗ Φ

}
26 | Failure ->

27
{
⟐s,t0(mark(s, c, 0) = false) ∗ (mark(s0, c, 0) = true) ∗ · · ·

}
28

{
(∃ s1 s2 t, (t0 ≤ t) ∗ Past(s1, t) ∗ Past(s2, t+ 1)

∗(mark(s1, c, 0) = false) ∗ (mark(s2, c, 0) = true)) ∗ · · ·

}
29

{
(t0 ≤ t) ∗ Past(s1, t) ∗ Past(s2, t+ 1) ∗ (key(s2, c) /∈ |s2|) ∗ · · ·

}
30

{
⟐s2,t0(Ψdel(k, |s2|, |s2|, false)) ∗ · · ·

}
31 false

32
{
¬Upd(pvs) ∗ PastLin(del, k, false, t0)

}
Figure 8.11: Outline for the proof of the delete.
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9 | Proof Mechanization and
Evaluation

This chapter sheds light on the mechanization of the techniques and proofs in Chapters 5
to 8. The full development of our mechanization effort is available online1. These proofs
have been mechanically checked using the Coq proof assistant, building on the formalization
of Iris [86, 94, 96].

For the Skiplist template, we have derived and verified implementations based on the
Herlihy-Shavit skiplist algorithm [68, § 14], the Michael set [122] and the Harris list algo-
rithm [62]. For the LSM-DAG template, we instantiatiate an implementation inspired by
Google’s LevelDB [58].

The organization of our proofs is shown in Figure 9.1. Going from left to right, the
first column relates to the formalization of hindsight reasoning in Iris. The box “Hindsight”
captures the assumptions regarding the hindsight specification from Section 6.3. These as-
sumptions not only include the hindsight specification itself but also the relevant definitions of
snapshots, histories, etc. The module “Client-level Spec” relates the client-level specification
expressed in terms of atomic triples to the hindsight specification used for the template-level
proofs. The corresponding proof involves the reasoning about prophecies and the helping
protocol, which is done once and for all and applicable to all data structures that fulfill the
assumptions made in the “Hindsight” module.

The middle column consists of modules for the verified templates and the associated
proofs verifying the template operations against the hindsight specification. We discuss
them in detail next.

9.1 Skiplist template case study

All of the proofs we discuss below are mechanized in Iris/Coq. The templates, traversals and
the node implementations are written in Iris’s default programming language HeapLang. In
order to correctly capture the dependence between different layers of the proofs (such as
hindsight specification and the templates, the templates and the traverse/node implemen-
tations), we heavily make use of Coq’s module system.

1https://github.com/nyu-acsys/template-proofs/tree/lockfree
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Figure 9.1: Proof organization with additional details. Each box represents a collection of modules
relevant to the label. The dashed arrows represent module dependence, i.e., assumption of specifications.
The normal arrows represent implementation of the target module (fulfillment of the assumptions).

The Skiplist template, as described in Figure 8.2, abstracts from the concrete implemen-
tations of nodes and the traverse operation. Hence, we package their specifications into
separate modules. To ensure that the specified data structure invariant for the Skiplist tem-
plate is not vacuous, we also verified an init routine that initializes the data structure and
establishes the invariant.

The final column shows modules for the two node implementations of the Skiplist tem-
plate, as well as the eager and lazy traversal discussed in Section 8.2. The helper functions
markNode and changeNext are implemented using an atomic CAS operation in both of the
node implementations. The crux of the node implementation for the Skiplist template is
to determine a memory representation of the mark bit and the next pointer (at some level)
such that both values can be read or written together with one atomic CAS operation. The
first node implementation does this by using a sum type. The second node implementation
is conceptually similar but uses more low-level data types instead of a sum type.

The traversal and node implementations above correspond to several existing lock-free
(skip)list algorithms from the literature. The Herlihy-Shavit skiplist algorithm [68, § 14] is
obtained by instantiating our template with the eager traversal, the node implementation
2, and maintenance operations that link higher-level nodes in increasing order of level and
unlink nodes in the opposite order. The Michael set [122] is obtained as a degenerate case of
the Herlihy-Shavit template instantiation where the skiplist is restricted to L = 2 (For L = 2,
Level 1 consists of only a fixed single edge between the sentinel nodes. So, conceptually, Level
1 can be ignored in this case.)

We obtain a novel variant of a skiplist by replacing the eager traversal in the Herlihy-
Shavit instantiation with the lazy traversal. The lazy traversal is inspired by the Harris list
algorithm [62], which is obtained as a degenerate case of this new lazy skiplist algorithm by
restricting it to L = 2.

We present a summary of the proof effort for the Skiplist template in Table 9.1. The
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Skiplist Template (Iris/Coq)
Module Code Proof Total Time(secs)
Flow Library 0 5330 5330 33
Hindsight 0 950 950 11
Client-level Spec 9 329 338 18
Skiplist 12 1693 1705 26
Skiplist Init(∗) 6 319 325 15
Skiplist Search(∗) 7 62 69 6
Skiplist Insert(∗) 37 3457 3494 111
Skiplist Delete(∗) 28 2401 2429 72
Node Impl. 1 118 908 1026 35
Node Impl. 2 106 836 942 35
Eager Traversal 38 1165 1203 96
Lazy Traversal 47 2063 2110 145
Total 408 19513 19921 603
Herlihy-Shavit 243 11212 11455 390

Table 9.1: Summary of the proof effort for the Skiplist template. For each module, we show the number
of lines of program code, lines of proof, total number of lines, and the proof-checking time in seconds.
The code for the initialization and the core operations of the skiplist (entries with (∗)) is technically
defined in the “Skiplist” module, however here we present them separately for each operation to provide
a better picture. The count for Herlihy-Shavit is the summation of rows “Hindsight”, “Client-level Spec”,
all “Skiplist” modules, “Node Impl. 2” and “Eager Traversal”.

proof-checking time was measured on the Docker image running on an Apple M1 Pro chip
with 16GB RAM. The flow library contains the Iris formalization of the Flow Framework
developed in [97, 138]. As a minor contribution, we extend this library with general lemmas
for reasoning about graph updates that have an affect on an unbounded number of nodes.
These lemmas are useful for the proofs of insert, delete and lazy traverse. The unbounded
updates, as well as the maintenance operations, are the reason for the relatively high number
of proof lines for the insert and delete operations.

9.2 LSM-DAG template case study

The LSM-DAG was verified twice during the course of this dissertation. It was verified first
in [138] which focused on verification of multicopy structures. This approach proposed the
search recency (from Section 7.5) as an intermediate template-level specification in a fashion
similar to the hindsight specification. The LSM-DAG template was reverified in [139] using
the hindsight framework presented in Chapter 6. Table 9.2 presents a comparison of the
proof effort using the two approaches for the purpose of evaluating the hindsight framework.

Table 9.2 presents a detailed comparison of the multicopy template proofs from [138]
versus the new proof based on the hindsight framework. The original proof consists of a

105



Multicopy Template (Iris/Coq)
Module Original Hindsight
Defs 866 (950)
Client-level Spec 434 (338)
LSM 741 540
Search 411 399
Upsert 327 371
Total 2779 1310

Table 9.2: Comparison of multicopy template proofs. The column “Original” shows the number of lines
from the proofs in [138], while “Hindsight” shows them for our new proof effort. Module “Defs” represents
definitions required for proving the client-level specification (helping invariant, history predicate, etc).
Module “Client-level Spec” contains the proof relating the intermediate specification (Search Recency
Specification from [138] and Hindsight Specification in this dissertation) to the client specification.
Module “LSM” contains definitions required to instantiate the frameworks for LSM trees. Modules
“Search” and “Upsert” refer to the proofs for the search and upsert operations, respectively. Entries in
‘()’ for the ‘Hindsight’ column are not included in the total due to being part of the hindsight library.

total of 2779 lines. By contrast, the definitions (“Defs”) and “Client-level Spec” proofs can be
factored out of the total cost of the hindsight-based proof, because it is part of the hindsight
library itself. Hence, the new proof based on hindsight reasoning consists of only 1310 lines,
which is a reduction of 53%. To summarize, the improvement stems from the fact that the
original proof relies on an intermediate specification and a helping protocol that is tailored
to multicopy structures, while our new proof uses a helping protocol that is shared among
all proofs that build on the new hindsight proof method.

While the majority of the reduction in the proof size stems from the elimination of
structure-specific specifications and helping protocol proofs, we also saw a minor reduction
in the size of the remainder of the proof. One outlier is the proof of upsert. Here, the
increase is attributed to the fact that the proof has to construct a fresh snapshot when the
operation succeeds. However, this construction is conceptually simple and could be factored
out into more abstract lemmas that are provided directly by the hindsight library.

The LSM-DAG template, as shown Figure 9.1, parameterizes over the (multicopy) node
implementations. Our implementation uses an unsorted array to store key-timestamp pairs
for the (in-memory) root node (with upserts adding to one end of the array), and a read-only
sorted array (also known as a sorted string table [58]) for the other (on-disk) nodes. This
array models the contents of a file. The implementation uses a library of utility functions
and lemmas for arrays that represent partial maps from keys to values.

We verify both the helper functions for the core search structure operations (Figure 7.3)
as well as those needed by the maintenance template (Figure 7.8). Each operation demuxes
between the code for in-memory and on-disk nodes based on the reference to the operation
node. For instance, in the case of mergeContents r nm, if r = n then the operation flushes
the in-memory node n to the on-disk node m. Otherwise, both n and m must be on-disk
nodes, which are then compacted. Alternatively, one could use separate implementations of
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each helper function for the two types of nodes. The polymorphism could then be resolved
statically by unfolding the recursion in the template algorithms once, letting helper function
calls in the unfolded iteration go to the in-memory versions and all remaining ones to the
on-disk versions.

Note that the helper functions are invoked by the LSM-DAG template under a lock. We
take advantage of this fact in [138] by using SMT-based tool GRASShopper for verifying the
node implementation. The verification effort in [138] also verified the maintenance operation
compact. The maintenance operation satisfes the trivial specification of not changing the
abstract state of the structure. Proofs of both, the node implementation as well as compact,
do not benefit from the hindsight reasoning. Hence, we ignore it for our case-study and
instead focus solely on the core operations for comparison.
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Part III: Discussion
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10 | Related Work

This chapter discusses prior work related to the topics covered in this dissertation. Sec-
tion 10.1 gives a broad overview of the verification techniques for concurrent programs and
situates our techniques in the landscape. Section 10.2 discusses work related to the notion
of template algorithms. Section 10.3 discusses work relating to hindsight reasoning. Finally,
Section 10.4 and Section 10.5 discuss verification efforts targeting skiplists and multicopy
structures.

10.1 Deductive verification of concurrent
programs

In this dissertation, we follow a deductive verification approach, which reduces reasoning
about program correctness to discharging proof obligations expressed in a formal logic. Here,
the program code is annotated with intermediate assertions that enable complex proof obliga-
tions to be mechanically decomposed into simpler ones according to program structure. This
idea was pioneered by Turing [161] and later cast into formal reasoning systems, starting with
the development of (Floyd-)Hoare logic [50, 72] and its mechanization due to Dijkstra [38].
Since then, many formal systems have been proposed that enable compositional reasoning
along dimensions of program complexity that are orthogonal to syntactic structure, including
concurrency [70, 80, 103, 136], data representation [32, 73], and time [141]. A number of
textbooks provide detailed introductions to the relevant topics (see e.g. [113, 140, 168]).

Separation logic [75, 132, 144] is an extension of Hoare logic that was originally conceived
to deal with the complexities imposed by mutable state. Separating conjunction and the
accompanying frame rule enable “reasoning and specification to be confined to the cells that
the program actually accesses” [132]. O’Hearn soon realized that these reasoning principles
naturally extend to concurrent programs that manipulate shared resources. This led to the
development of concurrent separation logic [20, 129], which has spawned a proliferation of
logics that provide a sophisticated arsenal of modular reasoning techniques [15, 33, 39, 40,
48, 60, 71, 86, 127, 142, 164, 171]. For a more comprehensive survey and discussion of the
history of this development we refer the reader to [19, 131].

We have formalized the verification of our template algorithms in the concurrent sepa-
ration logic Iris [82, 83, 86, 95]. Our formalization particularly benefits from Iris’s support
for logically atomic triples [33, 54, 76, 86] and user-definable resource algebras, which can
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capture nontrivial ghost state such as keysets and flow interfaces. However, we expect
that our methodology can be replicated in other concurrent separation logics that support
these features, such as FCSL [149], which would also be useful if one wanted to extend the
template-based approach to verifying non-linearizable data structures [151].

We make use of Iris’s support for prophecy variables [85] to reason modularly about
the non-local dynamic linearization points of searches in multicopy structures. Our proof
discussed in Chapter 6 builds on the prophecy-based Iris proof of the RDCSS data struc-
ture from [85] and generalizes it by adapting the helping protocol to consider the sequential
specification of the data structure. The idea of using prophecy variables to reason about
non-fixed linearization points has also been explored in prior work building on other log-
ics than Iris [163, 173], including situations that involve unbounded helping [111, 162]. A
possible alternative approach to using prophecies is to prove that the template-level atomic
specification contextually refines the client-level atomic specification of multicopy structures
using a relational program logic [9, 54, 111].

Separating conjunction in Iris is affine, which means that it can be weakened by dropping
one of its conjuncts. That is, the resources in an assertion can be “thrown away” without
invalidating the assertion. In particular, this applies to resources that express ownership of
allocated memory. Consequently, Iris cannot be used directly to reason about absence of
memory leaks. Iron [13], a recent extension of Iris, allows proving absence of memory leaks
in the context of manual memory management. In this dissertation, we assume a garbage
collected environment in our proofs. We argue below that this is a reasonable assumption,
but relaxing this assumption is certainly attractive.

Another limitation of Iris is that it assumes that memory reads and writes are sequentially
consistent. The logic lacks support for reasoning about the weaker consistency notions
supported by modern hardware architectures. Several recent projects explore extensions
to Iris in order to accommodate weak memory models [34, 61, 87, 158, 166]. The LSM-
DAG template presented in this dissertation is lock-based and guarantees data race freedom,
provided the locks are implemented correctly. Thus, reasoning about weak consistency can
be confined to the verification of the lock implementation. The Skiplist template on the
other hand is lock-free, and will require tackling new challenges arising from the underlying
weak memory model.

There are numerous other formal proof systems that provide mechanisms for struc-
turing the verification of complex concurrent programs and that do not build on sep-
aration logic. A common approach is to transform an abstract mathematical descrip-
tion of an algorithm to an efficient implementation using a sequence of refinement steps,
each of which is formally justified by establishing a simulation relation between the model
and its refinement [3, 7, 8, 26, 101, 104]. Other approaches use abstractions and reduc-
tions to combine primitive atomic operations into composite operations that are logically
atomic [45, 53, 65, 92, 93]. These approaches can be combined with techniques for reasoning
about shared resources that specify frame conditions in classical logic using explicit ghost
variables. Such techniques include, e.g., ownership-based techniques [30, 31, 77, 125, 126],
dynamic frames [89], and region logic [10]. Compared to separation logic, the explicit han-
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dling of frame reasoning incurs some overhead in terms of the complexity of specifications.
Nevertheless, reasoning about these specifications can also be automated more directly using
classical first-order theorem provers. Approaches such as implicit dynamic frames [105, 155]
and linear maps [102] aim to combine the best of both worlds (concise specifications and
ease of automation). The verification methodology presented in this dissertation is not in-
herently tied to separation logic. A formal comparison between implicit dynamic frames and
separation logic is given in [137].

10.2 Template algorithms

Our work builds on the concurrent template algorithms for single-copy search structures
of Shasha and Goodman [153], extends it to multicopy and lock-free single-copy structures,
and develops a formal verification framework to verify such algorithms using state-of-the-art
verification technology.

Several other works present generic proof arguments for verifying concurrent traver-
sals [44, 46, 47, 133]. These focus on lock-free search structures that have dynamic lin-
earization points. However, they do not aim to decouple the reasoning about the thread
synchronization mechanism from that of the underlying memory representation and data
structure invariant. These works also do not provide foundational correctness guarantees.

Meyer and Wolff [120, 121] propose a technique that decouples the proof of data struc-
ture correctness from that of the underlying memory reclamation algorithm, allowing the
correctness proof to be carried out under the assumption of garbage collection. The verified
data structure implementations can then be composed with standard reclamation algorithms,
e.g., based on epochs [52] or hazard pointers [123]. It is a promising direction of future work
to integrate these approaches and our technique in order to obtain verified data structures
where the user can mix-and-match the synchronization technique, memory layout, and the
memory reclamation algorithm.

10.3 Hindsight Reasoning

Our work builds on the idea of template algorithms for lock-based concurrent search struc-
tures of [97, 98, 138], which we extend to the setting of lock-free implementations. A common
challenge when verifying linearizability of lock-free data structures is the prevalence of future-
dependent and external linearization points. Hindsight theory [46, 47, 108, 117, 118, 133]
has emerged as a suitable technique to address this challenge in the context of concurrent
search structures. To our knowledge, we are the first to formalize hindsight reasoning within
a foundational program logic. Tools like Poling [174], plankton [117, 118], and nekton [116]
automate hindsight reasoning at the expense of an increased trusted code base. However,
these tools currently cannot handle complex data structures with unbounded outdegree like
skiplists. Also, they do not aim to characterize the design space of related concurrent data
structures like our template algorithms do.
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Other techniques for dealing with future-dependent linearization points include argu-
ments based on forward simulation (e.g., by tracking all possible linearizations of ongoing
operations [78], tracking a partial order [90], or using commit points [17]) and backward
simulation (e.g., using prophecy variables [1, 85, 111]). The idea of tracking auxiliary ghost
state about a data structure’s history to simplify its linearizability proof has been used in
many prior works (e.g. [17, 36, 150]).

Our encoding of hindsight reasoning in Iris combines forward reasoning (by tracking the
history of the data structure state) and backward reasoning (by using prophecies). However,
the details of this encoding are for the most part hidden from the proof engineer by providing
a higher-level reasoning interface based on past predicates and temporal interpolation as
proposed in [118]. Our comparison with a prior proof of multicopy structure templates [138]
suggests that this abstraction helps to reduce the proof complexity.

A proof that uses only history-based verification and does not rely on atomic triples
is likely possible. For instance, one alternative approaches to using atomic triples is to
prove that the template-level atomic specification contextually refines the client-level atomic
specification of multicopy structures using a relational program logic. A number of prior
works have developed such refinement-based approaches [9, 54, 55], including for settings that
involve unbounded helping [111, 162]. An alternative approach to using prophecy variables
for reasoning about non-fixed linearization points is to explicitly construct a partial order of
events as the program executes, effectively representing all the possible linearizations that
are consistent with the observations made so far [90].

10.4 Skiplists

Several works propose techniques for automatically verifying concurrent skiplists. Abdulla et
al. [2] propose a technique for verifying linearizability of lock-free list-based data structures
using forest automata. The evaluation considers bounded skiplists with up to 3 levels.
However, the implementation does not scale to larger bounds and the unbounded case is
outside the scope of the technique. We note that the height of the skiplist is tied to the
expected runtime of the skiplist operations. To guarantee the expected worst-case runtime
bounds, the skiplist’s height must be of order O(log(n)) where n is the expected maximal
number of entries in the list. For this reason, real-world skiplist implementations are also
parametric in the height. Heights up to 63 levels are feasible in deployed skiplists [Meta], so
the restriction to height of 3 in [2] is unrealistic. By contrast, our proofs cover skiplists of
arbitrary height.

Sánchez and Sánchez [147] present an SMT-based approach towards an automated ver-
ification of concurrent lock-based skiplists. The approach is based on a decidable theory of
unbounded skiplists. However, it does not consider lock-free implementations and focuses on
establishing shape invariants preserved by the structure instead of proving linearizability.

Unlike these automated tools, our approach does not rely on data-structure specific de-
cidable theories for reasoning about inductive properties of heap graphs. Instead, we build on
the Flow Framework [99, 100, 119], which enables local reasoning about such properties over
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general graphs in separation logic. As a minor contribution, we extend the mechanization
of the Flow Framework from [98] with lemmas to reason about graph updates that affect
properties of an unbounded number of nodes.

There are some skiplist algorithms that are not immediately covered by our template
algorithm. For example, skiplists based on the algorithm presented in [51] such as Java’s
ConcurrentSkipListMap [135] use backlinks to avoid restarts when a traversal fails. However,
we believe that our template algorithm can be extended to subsume such algorithms by
abstracting from the restart policy, similarly to how the present template abstracts from the
maintenance policy.

There are several works formalizing results about the run-time complexity of skiplists.
Haslbeck and Eberl [64] have verified the commonly known logarithmic runtime for search
under the sequential setting. The result ties the expected path length of a search to the
height of the skiplist. This work does not consider any concrete algorithm for a skiplist,
but instead defines an abstract search operation whose steps simulate the skiplist search
operation. Tassarotti and Harper [159] perform complexity analysis of skiplists using Polaris,
an extension of Iris for concurrent randomized programs. The skiplist algorithm under
consideration follows the (concurrent) lock-based skiplist algorithm from [67]. However, the
skiplists are restricted to height of 2 here and the obtained upper bound for the search
operation is linear. The work in [6], conceptually in line with [159], analyzes probablistic
programs via a program logic. They re-establish the logarithmic runtime for the search
operation for a concrete skiplist algorithm of arbitrary height. However, they only consider
sequential skiplists.

10.5 Multicopy Structures

Most closely related to our work is the edgeset framework for verifying single-copy structure
templates [97, 153]. The edgeset framework hinges on the notion of the keyset of a node,
which is the set of keys that are allowed in the node. That is, a node’s contents must be a
subset of its keyset. Moreover, the keysets of all nodes must be disjoint. The contribution
of Krishna et al. [97] is to show how keysets can be related to the search structure graph
using flows to enable local reasoning about template algorithms for single-copy structures.
Note that this work [97, 153] is limited to single-copy structures since the keyset invariants
enforce that every key appears in at most one node. In multicopy structures, the same key
may appear in multiple nodes with different associated values.

Relative to [97, 153], the main technical novelties are: (i) we identify a node-local quantity
(contents-in-reach) for multicopy structures that plays a similar role to the keyset in the
single-copy case. Both the invariants that the contents-in-reach must satisfy as well as how
the contents-in-reach is encoded using flows is substantially different from the keyset, (ii)
hindsight-based linearizability proof for multicopy structures, and (iii) we develop and verify
new template algorithms for multicopy structures.

In data structures based on RCU synchronization such as the Citrus tree [5], the same
key may temporarily appear in multiple nodes. However, such structures are not necessarily
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multicopy structures. Notably, in a Citrus tree, all copies of a key have the same associated
value even in the presence of concurrent updates. Moreover, searches have fixed linearization
points. This structure can therefore be handled, in principle, using the single-copy framework
of Krishna et al. [97] (by building on the formalization of the RCU semantics developed in [59]
and the high-level proof idea for the Citrus tree of Feldman et al. [47]).

Multicopy structures such as the LSM tree are often used in file and database systems to
organize data that spans multiple storage media, e.g., RAM and hard disks. Several prior
projects have considered the formal verification of file systems. SibyllFS [145] provides formal
specifications for POSIX-based file system implementations to enable systematic testing of
existing implementations. FSCQ [28], Yggdrasil [16, 154], and DFSCQ [27] provide formally
verified file system implementations that also guarantee crash consistency. However, these
implementations do not support concurrent execution of file system operations.

In regard to concurrent file system implementations, Perennial [23, 24] is a program logic
built as an extension of Iris for reasoning about concurrent and crash-safe storage systems.
Perennial has been used to verify a Network File System [25] and a journaling system [24].
These systems were verified to be crash-safe and functionally correct.

Our work provides a framework for reasoning about the in-memory concurrency aspects
of multicopy structures. However, we mostly abstract from issues related to the interaction
with the different storage media. Notably, in our verified LSM tree implementation, we do
not model disk failure and hence do not address crash consistency.

Distributed key/value stores have to contend with copies of keys being present in multiple
nodes at a time. Several works verify consistency of operations performed on such data
structures [29, 88, 170], including linearizability [167]. Lock-free multicopy structures require
the development of new template algorithms, which then need to be shown linearizable with
respect to the hindsight specification. However, once this is established, linearizability with
respect to the client-level specification is obtained for free. We also believe that the high-level
invariants from Chapter 7 are applicable towards proving the template-level specification.
For instance, each lock-free node-local list of the Bw-tree behaves like a multicopy structure
and satisfies the identified invariants.

JellyFish Skiplist [172] is an intersting multicopy structure that borrows heavily from
the design of skiplists. The search structure is essentially an insert-only skiplist, where
each node stores (time-stamped) values corresponding to the key of the node. Carrott [21]
verified a JellyFish implementation with an underlying lock-based skiplist algorithm using
Iris. Carrott [21] does not prove the logically atomic specification for the Map ADT (like
in Chapter 7), but instead prove a weaker Hoare triple akin to the Set ADT specification over
(key, value, timestamp) triples. We believe that the techniques presented in this dissertation
are sufficient to prove the logically atomic specification for the JellyFish search structure.
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11 | Conclusion

This dissertation began with the aim of verifying at scale real-world concurrent data struc-
tures that were beyond the state of the art. To achieve this, the dissertation introduced novel
techniques that aid proof modularity. In particular, the template algorithms in Chapter 8
and Chapter 7 bring algorithmic modularity to a broad class of lock-free single-copy and
lock-based multicopy structures. The hindsight framework from Chapter 6 decomposes the
proof argument for the novel template algorithms to increase proof reuse. The hindsight
framework is applicable beyond search structures and relates prior verification techniques of
hindsight reasoning and prophecy variables. Chapter 5 introduced a novel Iris ghost state
that has proven to be indispensable for correctness reasoning of single-copy search structures.
All of the proofs and techniques above are mechanized in the foundational program logic Iris
(built on Coq). This provides the highest form of assurance towards the soundness of the
work presented in this dissertation.

11.1 Future Work

For future work, we consider the following avenues:

• Increased Proof Automation: The Iris proofs can be automated to a certain degree
by assimilating a tool like Diaframe [124] into the methodology. Our invariants and
specification are of similar shape across proofs, resulting repeated patterns in the proof.
These patterns can be the prime target for automation.

• Generalization to a broader class of search structures: The proof methodology
of this dissertation can be extended to lock-free multicopy structures [109], and mixed
lock and lock-free [43, 66, 114].

• Generlized Helping Protocol: The helping protocol can be generalized to include
data structures that exhibit modifying future-dependent linearization points such as
RDCSS [63] and Herlihy-Wing Queue [70].

• Proving Liveness: So far we have not considered liveness of the template algorithms.
This would require strengthening the invariants presented in this dissertation, as well
as developing new proof techniques.
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