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Linearizability is the de facto standard for correctness of concurrent objects—it essentially says that all the

object’s operations behave as if they were atomic. There have been a number of recent advances in developing

increasingly strong linearizability specifications for relaxed memory consistency (RMC), but scalable proof
methods for these specifications do not exist due to the challenges arising from out-of-order executions

(requiring event reordering) and selected synchronization (requiring tracking of view transfers).

We propose a proof recipe for the linearizable history specifications by Dang et al. in the Iris-based iRC11

concurrent separation logic in Coq. Key to our proof recipe is the notion of object modification order (OMO),
which generalizes the modification order of the C11 memory model to an object-local setting. Using OMO we

minimize the conditions that need to be proved for event reordering. To enable proof reuse for concurrent

libraries that are built on top of others, OMO provides the novel notion of a commit-with relation that connects

the linearization points of the lower and upper libraries. Using our recipe, we verify the linearizability of the

Michael–Scott queue, the elimination stack, and Folly’s MPMC queue in RMC for the first time; and verify

stronger specifications of a spinlock and atomic reference counting in RMC than prior work.
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1 INTRODUCTION
Linearizability [Herlihy andWing 1990] is the de facto standard specification for concurrent objects.

It requires that (1) each operation on the object appears to take effect instantaneously at some point

during its execution, called its linearization point; and (2) the linearization points of all operations

form a sequential history according to their execution order, called the linearization order, that
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d := 0; s := new_stack();

L1 d := 42;
L2 push(s, 1);

R1 try_pop(s) ;
R2 if try_pop(s) == 1:
R3 assert(∗d == 42);

𝑇𝐿

𝑇𝑅

𝑡

relaxed delivery

Store 42 Push 1

EmptyPop Pop 1 Load 42

(L1) (L2)

(R1) (R2) (R3)

Fig. 1. An execution trace of a left (𝑇𝐿) and right (𝑇𝑅 ) thread that use a linearizable Treiber’s stack in RMC.
Orange dots represent linearization points and purple arrows represent the causal order.

adheres to the object’s sequential specification. Linearizability of various data structures has been

verified in the sequential consistency (SC) memory model, where all threads take turns to execute

instructions on the latest state of the shared memory.

Linearizability gets complicated in relaxed memory consistency (RMC) models. Relaxed behaviors,
such as instruction reordering, make the linearization order deviate from the execution order. Fig. 1

illustrates the complexities using Treiber [1986]’s stack. The global variable d is initialized with 0

and the stack s is initially empty. Assume the left thread (𝑇𝐿) executes first, storing 42 to d (line L1)
and pushing 1 to s (line L2). The right thread (𝑇𝑅) may fail to pop a value from s (line R1) as the
push event may not be visible for 𝑇𝑅 . This greatly contrasts with the SC model where every event

is immediately visible to all threads, and R1 thus cannot miss the push. Assume the event becomes

visible to 𝑇𝑅 after R1, then the pop (line R2) will succeed. This execution illustrates the following

additional desired properties of the linearization order in RMC over those in the SC model:

• Sequential specification with event reordering: While the execution order of the stack events

is L2, R1, and R2, their linearization order should be R1, L2, and R2 to observe the sequential

specification of the stack: R1 (empty pop) should be linearized before L2 (push) to make sense.

We call such a divergence of the linearization order from the execution order event reordering.
• Causal consistency: Despite event reordering, the linearization order should observe causality

of events. For instance, L2, R2, and R1 (while satisfying the stack’s sequential specification) is
not a valid linearization order as it does not preserve the causally ordered events R1 and R2
that are sequentially executed in the same thread.

• Selective synchronization:𝑇𝑅 should load 42 from d (not the initial value 0) because the matching

push (L2) and pop (R2) events synchronize in RMC, i.e., all events observed in 𝑇𝐿 before L2
should be visible by 𝑇𝑅 after R2. But the synchronization is selective, e.g., the non-matching

push (L2) and empty pop (R1) events do not synchronize even though they are linearized.

State of the art. Various strong specifications that capture linearizability in RMC have been

proposed [Batty et al. 2013; Dang et al. 2022; Dongol et al. 2018; Mével and Jourdan 2021; Mével

et al. 2020; Raad et al. 2019; Singh and Lahav 2023; Smith et al. 2020]. We focus on specifications in

concurrent separation logic [Brookes 2004; O’Hearn 2004] because they provide strong support for

compositional verification and mechanization in a proof assistant. For the SC model, linearizability

is commonly encoded through logically atomic triples (LATs) [da Rocha Pinto et al. 2014], which

are supported by the Iris framework for higher-order concurrent separation logic in Coq [Jung

et al. 2016, 2018, 2015; Krebbers et al. 2018, 2017a,b]. Linearizability of the push operation of

the SC version of Treiber’s stack is encoded by ⟨vs. Stack(𝑠, vs)⟩ push(𝑠, 𝑣) ⟨Stack(𝑠, 𝑣 :: vs)⟩ . The
representation predicate Stack(𝑠, vs) asserts that a stack located at 𝑠 has abstract state vs ∈ List(Val).
The LAT expresses that push(𝑠, 𝑣) appears to transform the stack atomically into a stack with an

additional value 𝑣 at some atomic instruction during push’s execution, which is the linearization

point. The encoding using LATs is canonical in that it coincides with the standard definition of

linearizability in SC [Birkedal et al. 2021].
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Mével and Jourdan [2021]; Mével et al. [2020] first use LATs to encode linearizability in RMC

in the context of the Iris-based Cosmo logic for OCaml’s memory model. Dang et al. [2022] show

how to take this approach further, proposing linearizable history specifications (among others),

in the context of the Iris-based iRC11 logic for ORC11 [Dang et al. 2020], a variant of the RC11

memory model [Lahav et al. 2017].
1
A key difference from LATs in the SCmodel is the representation

predicate. The Stack(𝑠, 𝐻 ) predicate no longer keeps track of a list of values, but it consists of the

whole set 𝐻 of events that have ever been performed on the stack 𝑠 . Linearizability is represented

as the existence of a linearization (total ordering) of𝐻 that satisfies the desired properties. When an

operation is executed, the LAT specification appears to transform Stack(𝑠, 𝐻 ) into Stack(𝑠, 𝐻 ⊎{𝑒})
atomically, where 𝑒 is a new event and 𝐴 ⊎ 𝐵 is the disjoint set union of 𝐴 and 𝐵.

Dang et al. [2022] propose another style of specifications, called partial-order-based specifica-
tions, where Stack(𝑠, 𝐻 ) does not construct a concrete total order but only guarantees functional

correctness (e.g., LIFO property) among events in 𝐻 . While the two styles of specifications can be

equivalent in strength if partial-order-based specifications are sufficiently constrained, linearizable

history specifications are more akin to the concept of linearizability and easier for clients to use

thanks to the total ordering of events. As such, we focus on linearizable history specifications.

Problem. While Dang et al. [2022] show how to give strong linearizability specifications in relaxed

memory separation logic, they did not detail how to verify these specifications. Moreover, for the

linearizable history specifications, they verify Treiber’s stack as the sole case study. This Coq proof

involves a significant effort of 1,615 SLOC (significant lines, excluding comments and blank lines),

which is 48 times the size of the implementation. In our experience of verifying the linearizable

history specifications for other concurrent objects, we faced the following challenges:

C1 Constructing the linearization order : Due to event reordering, correctness of the linearization

order needs to be reproved for each event. This proof should be immediate in easy cases and

manageable in difficult cases. For Treiber’s stack, the linearization order is straightforward as

it coincides with the modification order of the head pointer, but significant bookkeeping is

required. The Michael–Scott queue [Michael and Scott 1996] requires reordering, and hence

Dang et al. prove only a partial-order-based specification.

C2 Compositional verification: Concurrent objects (e.g., Folly’s MPMC queue [Meta 2023]) are

usually composed of smaller objects (e.g., SPSC queue), and this compositional structure of

implementation should ideally carry over to verification by proper library abstraction. Dang

et al. conjecture that their linearizable history specifications can be compositionally verified

(without case studies), but we found that non-trivial development is necessary (see §4).

C3 Inferring the logical state: In the SC model, the logical state of an object invariant is often

straightforward to infer from the physical state. In contrast, in RMC, the connection between

the logical and physical states is much less obvious due to the possibilities of event reordering.

This makes interactive and semi-automated proofs in proof assistants difficult.

Contributions. We propose a linearizability proof recipe for concurrent objects in relaxed

memory separation logic that addresses the aforementioned verification challenges.

In §3, we propose a proof structure recipe to address C1 (constructing the linearization order).

We observe that the linearization order usually evolves like the modification order (total coherence
order of writes) of a shared location in the C11 memory model [Lahav et al. 2017]. We capture this

observation in a novel object modification order (OMO) separation logic predicate. OMO enforces

the linearization order to evolve only by inserting new events into the existing order. We describe

1
Dang et al. [2022] focus on ORC11 because it is the most relaxed among practical RMC memory models. We focus on the

same memory model in this paper, but we believe our recipe can be easily adapted to other memory models (see §8).
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several proof rules for inserting events. These rules minimize the proof obligations needed to

re-establish the desired properties of the linearization order.

Shared location
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Fig. 2. Overview of our case studies (§6). ∗: The first verifi-
cation of linearizability in RMC.

In §4, we propose a proof composition
recipe to address C2 (compositional verifi-

cation). We observe that the linearization

point of an upper-level object event often

coincides with that of its lower-level object

event. We capture these relations using a

novel commit-with relation inspired by the
well-known simulation techniques used

in proving behavior refinement [Brookes

and Rounds 1983], and design proof rules

that enable us to define upper-level object

invariants without inspecting the lower-

level object implementations. As a prelimi-

nary, we tweak Dang et al.’s specifications

to expose the minimal necessary details on the events of the lower-level object, and recognize

shared locations as primitive objects.

In §5, we propose a proof automation recipe to address C3 (inferring the logical state). We observe

that the proof rules for our structure and composition recipes minimize proof obligations so that

many of them can be discharged with pattern-based automation. We adapt the Diaframe [Mulder

and Krebbers 2023; Mulder et al. 2022] separation logic automation framework in Iris to RMC, and

apply it to our recipes to infer the logical state in a best-effort fashion.

In §6, we demonstrate that our recipe is effective on reducing verification efforts and facilitating

new proofs for RMC, see Fig. 2. We verify linearizability of Treiber’s stack with 71 SLOC of Coq

proof (96% reduced from Dang et al.’s proof); those of the Michael–Scott queue [Michael and Scott

1996], the elimination stack [Hendler et al. 2004], and Folly’s MPMC queue [Meta 2023] for the first

time; and stronger specifications of a spinlock and atomic reference counting than prior work. All

our results (including the recipe itself) are mechanized using the iRC11 relaxed memory separation

logic, built in the Iris framework, atop the Coq proof assistant.

In §2, we review the background. In §7 and §8, we discuss related and future work, respectively.

2 BACKGROUND
We review the necessary background about relaxed memory consistency (RMC): view-based opera-

tional models (§2.1), separation logic (§2.2), and linearizability using logically atomic triples (§2.3).

2.1 View-based Operational Models for RMC
In the sequential consistency (SC) model, each thread is guaranteed to read the latest value written

to each location. This is no longer the case for RMC models. To account for the weak semantics

of hardware and compiler optimizations, these models formalize out-of-order executions. RMC

models constrain the values that can be read through the notions of coherence and causality. There
are primarily two styles of RMC models. In axiomatic models [Batty et al. 2011; Lahav et al. 2017]

coherence and causality are expressed in terms of relations between memory events in the complete

execution graph. In view-based operational models, such relations are implicitly modeled by each

thread’s behavior depending on their thread-local view of the memory state. We review operational

models, which form the semantic basis for the separation logic we use in this paper. Our explanation

is simplified for brevity; details can be found in Kang et al. [2017] and Dang et al. [2020].
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ℓ𝑥 :=na 0; ℓ𝑦 :=na 0;

(𝑉𝐴0) ℓ𝑥 :=rlx 42;
(𝑉𝐴1) ℓ𝑦 :=rel 1;

(𝑉𝐵0) if ∗acqℓ𝑦 == 1:
(𝑉𝐵1) assert(∗rlxℓ𝑥 == 42); 0

0 42

1

ℓ𝑥

ℓ𝑦

𝑡

𝑉𝐴1
𝑉𝐵1

𝑉𝑦1

𝑉𝐴0
𝑉𝐵0

Fig. 3. Message passing with release-acquire synchronization from left thread 𝑇𝐴 to right thread 𝑇𝐵 .

To account for out-of-order reads, the shared memory of operational RMC models is a collection

of all values written so far. Formally, a shared memoryM ∈ Mem = Loc ⇀ Time ⇀ Val × View
consists of the location history of messagesM(ℓ) for each location ℓ , where 𝐴 ⇀ 𝐵 is the set

of partial functions from 𝐴 to 𝐵. Each message (𝑣,𝑉 ) =M(ℓ, 𝑡) represents that value 𝑣 has been
written to location ℓ at numeric timestamp 𝑡 (see below for the view 𝑉 ).

Fig. 3 contains an example. The initial memory has messages with value 0 for locations ℓ𝑥 and

ℓ𝑦 . If thread 𝑇𝐴 writes 42 to ℓ𝑥 and 1 to ℓ𝑦 , new messages with value 42 and 1 are added to the

location histories of ℓ𝑥 and ℓ𝑦 , respectively. Subsequently, if thread 𝑇𝐵 is scheduled after thread 𝑇𝐴,

it may non-deterministically read 0 (stale) or 1 (latest) from ℓ𝑦 . However, if thread𝑇𝐵 reads 1 (latest)

from ℓ𝑦 , then the read from ℓ𝑥 cannot result in a stale value, i.e., it surely is 42. That is because of

the release-acquire synchronization through the release store in 𝑇𝐴 and acquire load in 𝑇𝐵 .

View-based RMC models use the following notions to constrain the values that are read:

• Coherence. The coherence-before order from axiomatic models is modeled by considering the

message historyM(ℓ) as totally ordered—i.e., given timestamps 𝑡1 < 𝑡2, the messageM(ℓ, 𝑡1)
is coherence-beforeM(ℓ, 𝑡2). The X-axis in Fig. 3 represents timestamps, and initial messages

have the bottom timestamp (left corner). Timestamps of different locations are not comparable.

• Causality. The happens-before order from axiomatic models is modeled through views. Each
thread has a current view 𝑉cur ∈ View = Loc ⇀ Time, which expresses that for each location ℓ

the write ofM(ℓ,𝑉cur (ℓ)) has been observed by that thread. The current view can only increase

during execution—after performing an instruction, the new current view 𝑉cur′ should extend

the prior current view 𝑉cur, i.e., 𝑉cur ⊑ 𝑉cur′ , which is defined as ∀ℓ .𝑉cur (ℓ) ≤ 𝑉cur′ (ℓ).

Semantics of relaxed (rlx) accesses. The semantics of a relaxed load and store operation are: (1) a
load from ℓ reads a message at 𝑉cur (ℓ) or later inM; (2) a store to ℓ writes a message at (strictly)

later than 𝑉cur (ℓ) inM; and (3) reading or writing a messageM(ℓ, 𝑡) updates 𝑉cur (ℓ) to 𝑡 . For the
example in Fig. 3, the store of 42 to ℓ𝑥 by thread 𝑇𝐴 updates its current view from 𝑉𝐴0 to 𝑉𝐴1 by

incorporating the new message written to ℓ𝑥 .

Semantics of release (rel)/acquire (acq) accesses. The semantics of a release store and an acquire

load operation are similar to that of their relaxed counterparts. However, to account for release-

acquire synchronization it involves view passing from the sender of the message to the receiver.

This is best demonstrated by the example in Fig. 3. When thread 𝑇𝐴 performs a release store to ℓ𝑦 ,

it adds a message (1,𝑉𝑦1) to the location history of ℓ𝑦 (the written value and the updated current

view). Later, when thread 𝑇𝐵 performs an acquire load and obtains that message, its view 𝑉𝑦1 is

incorporated into thread𝑇𝐵 ’s current view, i.e.,𝑉𝐵1 = 𝑉𝐵0 ⊔𝑉𝑦1, where the join𝑉1 ⊔𝑉2 is defined as
ℓ ↦→ max(𝑉1 (ℓ),𝑉2 (ℓ)). After synchronization, this ensures thread𝑇𝐵 reads 42 (not 0) from ℓ𝑥 . Note

that synchronization happens only when a store is release and a load is acquire (or stronger). A

relaxed store operation does not put the thread’s current view in the new message, and a relaxed

load operation does not incorporate the message view into the thread’s current view.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 154. Publication date: June 2024.
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(PointsTo-Load)

{ℓ ↦→ 𝑣} ∗naℓ {v′ .v′ = v ∗ ℓ ↦→ 𝑣}
(PointsTo-Store)

{ℓ ↦→ 𝑣} ℓ :=na 𝑤 {ℓ ↦→ 𝑤 }

(Inv-Alloc)

objective(𝐼 )

𝐼 𝐼

(Inv-Pers)

persistent( 𝐼 )

(Inv-Acc)

{𝐼 ∗ 𝑃 } 𝑒 {v. 𝐼 ∗𝑄 } 𝑒 physically atomic

𝐼 ⊢ {𝑃 } 𝑒 {v.𝑄 }

(LAInv-Acc)

⟨ ®𝑥. 𝐼 ∗ 𝑃 ⟩ 𝑒 ⟨v. 𝐼 ∗𝑄 ⟩
𝐼 ⊢ ⟨ ®𝑥. 𝑃 ⟩ 𝑒 ⟨v.𝑄 ⟩

(VA-intro)

𝑃 ⊢ ∃𝑉 . ⊒𝑉 ∗@𝑉 𝑃

(VA-objective)

objective(@𝑉 𝑃 )
(VA-elim)

⊒𝑉 ∗@𝑉 𝑃 ⊢ 𝑃

Fig. 4. Selected rules of iRC11. (The invariant rules are simplified: we omit later modalities and invariant
masks, which are necessary for soundness in the general case. See Jung et al. [2018, §2.2] for details.)

Semantics of non-atomic (na) accesses. Non-atomic accesses are weaker than relaxed accesses. A

data race on a non-atomic access has undefined behavior, i.e., execution in the operational semantics

gets stuck. Undefined behavior is modeled through a race detector [Dang et al. 2020, §5.1]. Note

that the relaxed store/load on ℓ𝑦 in Fig. 3 can be replaced by a non-atomic store/load because the

release-acquire synchronization prevents data races.

2.2 Separation Logic for RMC
We present the basic principles of the iRC11 relaxed memory separation logic [Dang et al. 2020],

which extends the Iris separation logic [Jung et al. 2018] with support for the ORC11 RMC model.

The key difference between separation logics for SC (such as Iris) and separation logics for RMC

(such as iRC11) is the necessity to account for out-of-order executions. Separation logics for SC

assume that the resources of each thread and the global invariants are interpreted with respect

to the latest memory state—but this principle is not sound in RMC. The resources of each thread

should be interpreted with possibly stale memory states subject to the thread’s current view. The

iRC11 logic achieves this using view-dependent propositions. Fig. 4 shows selected iRC11 proof rules.

View-dependent propositions. The propositions of iRC11 are defined as view-monotone predicates

vProp ≜ View
mon−−−→ iProp, where iProp is the type of Iris propositions. Monotonicity is required to

ensure that a proposition remains valid when a program step increases the thread’s current view.

By interpreting propositions implicitly with respect to the current view, the iRC11 surface logic is

similar to SC separation logic. The usual separation logic connectives (e.g., quantifiers, separating
conjunction) are lifted from iProp to vProp. Hoare triples {𝑃 } 𝑒 {v. 𝑄} use view-monotone predicates

for the precondition 𝑃 and postcondition𝑄 . (Like Iris, the postcondition has a binderv for the return
value, which we omit if the unit value () is returned.) The rules PointsTo-Load and PointsTo-Store

for non-atomic accesses are exactly like their counterparts in SC separation logic. They involve the

points-to assertion ℓ ↦→ 𝑣 , which asserts unique ownership of location ℓ with value 𝑣 .

Invariants and objective resources. To share resources among threads, Iris provides the invariant

connective 𝐼 , which expresses that a proposition 𝐼 holds at all times. Inv-Alloc says that a

proposition 𝐼 can be turned into an invariant 𝐼 . (For simplicity, think of Iris’s update as an

implication.) Inv-Pers says that invariants are persistent [Jung et al. 2018, §2.3], i.e., it does not assert
exclusive ownership. Persistent propositions 𝑃 are duplicable (𝑃 ⊣⊢ 𝑃 ∗ 𝑃 ) and can therefore be

shared among threads. Inv-Acc says a thread can get unique ownership of the resources described

by 𝐼 for the duration of a physically atomic step, provided that ownership is given back afterwards.

Invariants in iRC11 are more restrictive than those in Iris. The shared nature of invariants

mandates their interpretation to be independent of the view, called objective in iRC11. This restriction
is formalized by the premise objective(𝐼 ) of Inv-Alloc. Crucially, the points-to assertion ℓ ↦→ 𝑣 is
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L1 fun push(s, v):
L2 n := new(node);
L3 n.val :=na v;
L4 loop:
L5 h := ∗rlx s.head;
L6 n.next :=na h;
L7 if CASrel(s.head, h, n):
L8 return ();

L9 fun try_pop(s):
L10 loop:
L11 h := ∗acq s.head;
L12 if h == ⊥:
L13 return ⊥;
L14 n := ∗na h.next;
L15 if CASacq(s.head, h, n):
L16 return ∗na h.val;

Fig. 5. An implementation of Treiber’s stack in ORC11.

not objective, and thus cannot immediately be shared through invariants. To put a non-objective

proposition 𝑃 (such as ℓ ↦→ 𝑣) into an invariant, VA-intro is used to freeze 𝑃 with respect to the

thread’s current view, i.e., to turn 𝑃 into ⊒𝑉 ∗@𝑉 𝑃 for the thread’s current view 𝑉 . The view-
seen predicate ⊒𝑉 asserts that the thread’s current view is at least 𝑉 , and is formally defined as

⊒𝑉 ≜ 𝜆𝑉cur.(𝑉cur ⊒ 𝑉 ). The view-at modality @𝑉 𝑃 says that 𝑃 holds at view 𝑉 , and is formally

defined as @𝑉 𝑃 ≜ 𝜆𝑉 ′ . 𝑃 (𝑉 ). Since @𝑉 𝑃 is objective by definition, it can be put in invariants and

transferred to other threads. VA-elim allows retrieving the original resource 𝑃 as soon as the thread

obtains ⊒𝑉 , e.g., by receiving it from another thread via release-acquire synchronization.

To reason about atomic operations, iRC11 provides the atomic points-to assertion ℓ ↦→at ℎ, which

asserts ownership of location ℓ with history ℎ. To constrain relaxed behaviors such as reading

stale values, the history-seen observation ℓ ⊒sn ℎ′ asserts a thread’s observation of writes in the

sub-history ℎ′. For space reasons, we refer to Dang et al. [2020] for details.

2.3 Linearizability and Logically Atomic Triples in RMC
In an SC memory model, an object is linearizable if (1) each of its operations appear to take effect

instantaneously at some point during the operation’s execution, called the linearization point; and
(2) the execution order of operations at their linearization points, called the linearization order,
adheres to the sequential specification of the object. In separation logics such as Iris, linearizability

is commonly formulated using logically atomic triples (LAT) [Birkedal et al. 2021; da Rocha Pinto
et al. 2014]. These triples are of the form ⟨®𝑥 . 𝑃 ( ®𝑥)⟩ 𝑒 ⟨𝑣 .𝑄 ( ®𝑥, 𝑣)⟩ , and express that 𝑒 has an atomic

instruction, called the commit point, which takes the precondition 𝑃 ( ®𝑥) and transforms it into the

postcondition 𝑄 ( ®𝑥, 𝑣), where 𝑣 is the return value. The LAT of the push operation of an SC stack is

⟨vs. Stack(𝑠, vs)⟩ push(𝑠, 𝑣) ⟨Stack(𝑠, 𝑣 :: vs)⟩ , and expresses that a push of 𝑣 to the stack located at

𝑠 takes effect instantaneously at the linearization point, causing the abstract state to be atomically

changed from vs to 𝑣 :: vs. Since LATs allow for interference from other threads, such as concurrent

calls to push and pop, the exact value of vs need not be known when the function is called. As

such, the pre- and postcondition of a LAT can be bound by (a number of) quantifiers ®𝑥 (here, the

single quantifier vs). The fact that a LAT ensures that an operation behaves as if it were atomic is

witnessed by LAInv-Acc in Fig. 4, which says that invariants can be accessed around a LAT.

Out-of-order executions and event reordering. A naive adaptation of linearizability to RMC

does not work due to out-of-order executions. Consider an RMC version of Treiber [1986]’s stack

implemented by Dang et al. [2022] in Fig. 5.
2
The stack is represented as a linked list of nodes

pointed to by a head pointer. The method push creates a new node, and tries to append it to the list

by modifying the head pointer. The CAS (atomic compare-and-swap) loop is used to test whether a

stale value for the head pointer was read, or the head pointer was changed by a concurrent push or

pop, and if so tries again. The method try_pop tries to remove a node from the list and returns

its value. If the list is empty, ⊥ (null) is returned. The method try_pop also uses a CAS loop to

2
The keen reader may notice that the CAS on L15 can be relaxed. The implementation of Dang et al. [2022] uses an acquire

CAS for simplification of the proof, which we replicate here.
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(Stack-Push-Spec)

SeenStack(𝑠,𝑀0 ) ∗ ⊒𝑉0

⟨𝐻. Stack(𝑠, 𝐻 ) ⟩ push(𝑠, 𝑣) ⟨ ∃𝑉 ,𝑀, 𝑒, 𝐸, 𝑡 . Stack(𝑠, 𝐻 ⊎ {𝑒 ↦→ 𝐸}) ∗@𝑉 SeenStack(𝑠, {𝑒 } ∪𝑀 ) ∗ ⊒𝑉
∗ 𝑒 ∉ dom(𝐻 ) ∗𝑉0 ⊑ 𝑉 ∗𝑀0 ⊆ 𝑀

∗ 𝐸 = ⟨type : 𝑡, sync : 𝑉 , eview : 𝑀 ⟩ ∗ 𝑡 = Push(𝑣) ⟩
(Stack-Try-Pop-Spec)

SeenStack(𝑠,𝑀0 ) ∗ ⊒𝑉0
⟨𝐻. Stack(𝑠, 𝐻 ) ⟩ try_pop(𝑠) ⟨𝑣. · · · ∗ ( (𝑣 = ⊥ ∧ 𝑡 = EmptyPop) ∨ (𝑣 ≠ ⊥ ∧ 𝑡 = Pop(𝑣) ) ) ⟩

(Stack-Linearizable)

Stack(𝑠, 𝐻 ) ⊢ ∃𝜋, 𝜎. interp(𝐻, 𝜋, [ ] , 𝜎 ) ∧ lhb(𝐻, 𝜋 ) where 𝜋 : N+≤|𝐻 |
1:1−−→ dom(𝐻 )

interp(𝐻, 𝜋, 𝜎0, 𝜎 ) ≜ ∃𝜎1, . . . , 𝜎 |𝐻 |−1 . 𝜎0 𝜋1,𝐻 [𝜋1 ]−−−−−−−→ 𝜎1
𝜋2,𝐻 [𝜋2 ]−−−−−−−→ · · · 𝜋 |𝐻 | ,𝐻 [𝜋 |𝐻 | ]−−−−−−−−−→ 𝜎

lhb(𝐻, 𝜋 ) ≜ ∀𝑒, 𝑒′ . 𝑒′ ∈ 𝐻 [𝑒 ] .eview =⇒ 𝜋−1 (𝑒′ ) < 𝜋−1 (𝑒 )

𝜎
𝑒,𝐸−−→ 𝜎 ′ ≜ (𝐸.type = Init ∧ 𝜎 = 𝜎 ′ = [ ] )

∨ (∃𝑣. 𝐸.type = Push(𝑣) ∧ 𝜎 ′ = (𝑒, 𝑣, 𝐸.sync, 𝐸.eview) :: 𝜎 )
∨ (∃𝑣,𝑉 ,𝑀, 𝑒′ . 𝐸.type = Pop(𝑣) ∧𝑉 ⊑ 𝐸.sync ∧ {𝑒′ } ∪𝑀 ⊆ 𝐸.eview ∧ 𝜎 = (𝑒′, 𝑣,𝑉 ,𝑀 ) :: 𝜎 ′ )
∨ (𝐸.type = EmptyPop ∧ 𝜎 = 𝜎 ′ = [ ] )

Fig. 6. Linearizable history specification of Treiber’s stack.

detect concurrent modifications. Crucially, push uses a release CAS on L7, which makes sure the

thread’s current view is passed to the corresponding try_pop on L11, similar to the message-passing

example in §2.1. Release-acquire synchronization is also necessary to ensure that the value written

at L3 is safe to read at L16 (recall, data races on non-atomic accesses have undefined behavior).

To express linearizability, we consider the events Init, Push(𝑣), Pop(𝑣), and EmptyPop. The
commit points of Push and Pop are successful CAS operations on L7 and L15, respectively, which
atomically change the linked list. The commit point of EmptyPop is on L11 in case ⊥ is read. It is

important to point out that the acquire read on L11 can read a stale value, which is the main cause

of complication compared to SC. Consider the example from Fig. 1, where a thread 𝑇𝐿 successfully

performs push(s,1) on an initial stack, and another thread𝑇𝑅 subsequently performs try_pop(s).
Now 𝑇𝑅 may fail to read the latest value written by 𝑇𝐿 at L11 and commit an EmptyPop event. But

the execution Push(1); EmptyPop contradicts the stack’s sequential specification.

Dang et al. address this problem through linearizable history specifications. Their key idea is to

allow the linearization order to diverge from the execution order, provided causal consistency is

preserved. In the example above, this means the EmptyPop event of 𝑇𝑅 is allowed to be linearized

before the Push(1) event of 𝑇𝐿 . Fig. 6 gives the specification of Treiber’s stack.
3
Compared to the

SC version, the Stack(𝑠, 𝐻 ) predicate no longer involves a list of values representing the abstract

state. Instead, it involves a collection 𝐻 of events, where each event (𝐸) is uniquely identified by

an id (𝑒). An event consists of (1) type: Init, Push(𝑣), Pop(𝑣), EmptyPop; (2) sync: the sync-view to

express synchronization; (3) eview: the event-view collection that tracks which events happened

before. In the example above, the sync-view is displayed as orange dots in Fig. 1. The predicate

SeenStack(𝑠, 𝑀) tracks the collection𝑀 of event ids that have been observed by the thread.

The Stack-Push-Spec rule says that the operation adds a new event (𝐸 with fresh id 𝑒), increases

the current view (from 𝑉0 to 𝑉 ), and increases the thread’s observation (from𝑀0 to𝑀). The Stack-

Try-Pop-Spec rule is similar with the exception of the highlighted area . Since the collection 𝐻 is a

3
We streamline Dang et al. [2022]’s version to make it amenable to generalization to other concurrent objects.
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priori unordered, Stack-Linearizable says that it can be turned into a linearization order, represented
as a sequence 𝜋 of 𝐻 ’s event ids, where:

(1) The interpretation predicate interp(𝐻, 𝜋, [], 𝜎) asserts that the linearization order 𝜋 satisfies

the sequential specification. That is, the events in 𝐻 , ordered by 𝜋 , transform the stack from its

initial state [] to some final state 𝜎 . Here, 𝜎 is fully determined from 𝐻 and 𝜋 .

(2) The local happens before predicate lhb(𝐻, 𝜋) asserts that the linearization order 𝜋 satisfies

causal consistency, i.e., whenever the event 𝑒′ happens before 𝑒 , the event 𝑒′ precedes 𝑒 in 𝜋 .

The interp predicate uses an abstract state transition relation 𝜎
𝑒,𝐸−−→ 𝜎 ′, which says that event 𝐸

with id 𝑒 transforms state 𝜎 into 𝜎 ′. A state is not just the list of the values in the stack. The elements

(𝑒, 𝑣,𝑉 ,𝑀) also track the event id 𝑒 of the Push(𝑣) event, the sync-view 𝑉 , and the observation𝑀

of the thread that performed the push. Let us explain why this bookkeeping is needed.

Selective synchronization. Linearizability in RMC is complicated further by the fact that not all

events synchronize with each other. In Treiber’s stack, only matching Push and Pop events are

synchronized—i.e., on a successful pop, only the sync-view of the thread that pushed the value is

transferred. The blue parts in Fig. 6 ensure that the sync-view 𝑉 and observation𝑀 of the thread

that performed a push is transferred to the thread that performs the matching pop.

3 PROOF STRUCTURE RECIPE
Dang et al. [2022] show that linearizable history specifications are applicable to a variety of

concurrent objects. The highlighted parts in Fig. 6 are specific to Treiber’s stack, while the other

parts are essentially generic. Despite the reuse of the specifications, Dang et al. did not consider

reuse of proofs. For each concurrent object, they needed to build a new proof from scratch—which

involves defining representation predicates such as Stack and SeenStack using ghost state, and

proving that they satisfy rules such as those in Fig. 6. In this paper, we observe that a large portion

of the proof follows a common structure that can be captured in a reusable library.

Our library consists of a number of separation logic predicates and proof rules to keep track of

the object modification order (OMO), which generalizes the modification order in the C11 memory

model. Instead of being global to the whole memory, OMO keeps track of the coherence order of

just the concurrent object in question, and therefore allows object-local reasoning. We show that

to extend the OMO with a new event, it is not necessary to consider an arbitrary permutation. New

events can simply be inserted into the current order, allowing us to reuse the properties of the

existing OMO to prove the desired properties of the updated OMO. We present the predicates of

our OMO library (§3.1), followed by the proof rules to insert events. Our proof rules are optimized

to minimize proof obligations for the case of inserting a totally-ordered write (TOW) event at the

end (§3.2), a read-only event in the middle (§3.3), or an arbitrary event in the middle (§3.4). Fig. 7

contains an overview of the OMO proof rules; the parts in green will be explained in §4.

The predicates of our library are defined on top of Iris’s primitive constructs for ghost state.

They should be considered abstract—implementation details are hidden to the user through our

proof rules. Implementation details can be found in our Coq mechanization [Park et al. 2024].

3.1 Object Modification Order
Our library is parameterized over the object’s sequential specification, which is a tuple (𝑇, 𝑆, 𝜎0, −,−−−−→)
consisting of: (1) the types of events 𝑇 ; (2) the abstract states 𝑆 ; (3) the uninitialized abstract state
𝜎0 ∈ 𝑆 ; and (4) the abstract state transition relation 𝜎

𝑒,𝐸−−→ 𝜎 ′ between states 𝜎, 𝜎 ′ ∈ 𝑆 . We let

𝑒 ∈ EventId and 𝐸 ∈ Event(𝑇 ) ::= ⟨type : 𝑡, sync : 𝑉 , eview : 𝑀⟩ with 𝑡 ∈ 𝑇 and 𝑉 ∈ View and

𝑀 ∈ ℘(EventId). If it is clear from the context, we leave the parameter implicit.
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Key predicates and definitions (§3.1):

(OmoAuth-Linearizable)

OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ)
⊢ interpomo (𝐻,𝑜𝑚𝑜, 𝜎0, Σ) ∧ lhbomo (𝐻,𝑜𝑚𝑜 )

∧ permomo (𝐻,𝑜𝑚𝑜 )

(Omo-Compatible)

interpomo (𝐻,𝑜𝑚𝑜, 𝜎0, Σ) ∧ lhbomo (𝐻,𝑜𝑚𝑜 ) ∧ permomo (𝐻,𝑜𝑚𝑜 )

=⇒ ∃(𝜋 : N+≤|𝐻 |
1:1−−→dom(𝐻 ) ), 𝜎 . interp(𝐻, 𝜋, 𝜎0, 𝜎 ) ∧ lhb(𝐻, 𝜋 )

(OmoSnap-Get)

𝑒 ∈ 𝑜𝑚𝑜 [𝑛] 𝜎 = Σ[𝑛]
OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ) ⊢ OmoSnap(𝛾𝑜 , 𝛾𝑠 , 𝑒, 𝜎 )

(OmoAuth-OmoSnap)

𝑒 ∈ 𝑜𝑚𝑜 [𝑛]
OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ) ∗ OmoSnap(𝛾𝑜 , 𝛾𝑠 , 𝑒, 𝜎 ) ⊢ Σ[𝑛] = 𝜎

(OmoAuth-Alloc)

𝐸.eview = ∅ 𝜎0
𝑒,𝐸−−→ 𝜎

Token(𝛾𝑜ℓ , 𝑒ℓ ) ∃𝛾𝑜 , 𝛾𝑠 .OmoAuth(𝛾𝑜 , 𝛾𝑠 , {𝑒 ↦→ 𝐸}, [ [𝑒 ] ], [𝜎 ] ) ∗@𝐸.sync (⊒𝛾𝑜 {𝑒 }) ∗ 𝑒
𝛾𝑜 ,𝛾𝑜ℓ−−−−−→ 𝑒ℓ ∗ Token(𝛾𝑜 , 𝑒 )

interpomo (𝐻,𝑜𝑚𝑜, 𝜎prev, Σ) ≜ (𝑜𝑚𝑜 = [ ] ∧ Σ = [ ] )

∨
(
∃𝑒, ®𝑒, 𝑜𝑚𝑜′, 𝜎, Σ′ . 𝑜𝑚𝑜 = (𝑒 :: ®𝑒 ) :: 𝑜𝑚𝑜′ ∧ Σ = 𝜎 :: Σ′

∧ 𝜎prev 𝑒,𝐸 [𝑒 ]−−−−→ 𝜎 ∧ (∀𝑒′∈ ®𝑒. 𝜎 𝑒′,𝐻 [𝑒′ ]−−−−−−→ 𝜎 ) ∧ interpomo (𝐻,𝑜𝑚𝑜′, 𝜎, Σ′ )

)
maxGen(𝑜𝑚𝑜,𝑀 ) ≜ max {𝑛 | ∃𝑒. 𝑒 ∈ 𝑀 ∧ 𝑒 ∈ 𝑜𝑚𝑜 [𝑛] }
lhbomo (𝐻,𝑜𝑚𝑜 ) ≜ ∀𝑛, 𝑒. 𝑒 ∈ 𝑜𝑚𝑜 [𝑛] =⇒ maxGen(𝑜𝑚𝑜,𝐻 [𝑒 ] .eview) ≤ 𝑛

lin( [ ®𝑒1, . . . , ®𝑒𝑛 ] ) ≜ ®𝑒1 ++ · · · ++ ®𝑒𝑛
permomo (𝐻,𝑜𝑚𝑜 ) ≜ ∃(𝜋 : N+≤|𝐻 |

1:1−−→dom(𝐻 ) ) . (∀𝑖 ∈ N+≤|𝐻 | . 𝜋 (𝑖 ) = lin(𝑜𝑚𝑜 ) [𝑖 ] ) ∧ len(lin(𝑜𝑚𝑜 ) ) = |𝐻 |

Proof rule for totally-ordered write events (§3.2):

(OmoAuth-Insert-Last)

𝑒 ∉ dom(𝐻 ) last(Σ) = 𝜎 𝐸.eview = 𝑀 𝜎
𝑒,𝐸−−→ 𝜎 ′

OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ) ∗@𝐸.sync (⊒𝛾𝑜𝑀 ) ∗ Token(𝛾𝑜ℓ , 𝑒ℓ )
OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻 ⊎ {𝑒 ↦→ 𝐸}, 𝑜𝑚𝑜 ++ [ [𝑒 ] ], Σ ++ [𝜎 ′ ] ) ∗ @𝐸.sync (⊒𝛾𝑜 ({𝑒 } ∪𝑀 ) ) ∗ 𝑒

𝛾𝑜 ,𝛾𝑜ℓ−−−−−→ 𝑒ℓ ∗ Token(𝛾𝑜 , 𝑒 )
Proof rule for read-only events (§3.3):

(OmoAuth-Insert-Ro)

𝑒 ∉ dom(𝐻 ) 𝐸.eview = 𝑀 𝑛 = len(𝑜𝑚𝑜1 ) = len(Σ1 ) 𝜎
𝑒,𝐸−−→ 𝜎 maxGen(𝑜𝑚𝑜1 ++ [®𝑒 ] ++ 𝑜𝑚𝑜2, 𝑀 ) ≤ 𝑛

OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜1 ++ [®𝑒 ] ++ 𝑜𝑚𝑜2, Σ1 ++ [𝜎 ] ++ Σ2 ) ∗@𝐸.sync (⊒𝛾𝑜𝑀 ) ∗ Token(𝛾𝑜ℓ , 𝑒ℓ )
OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻 ⊎ {𝑒 ↦→ 𝐸}, 𝑜𝑚𝑜1 ++ [®𝑒 ++ [𝑒 ] ] ++ 𝑜𝑚𝑜2, Σ1 ++ [𝜎 ] ++ Σ2 )

∗@𝐸.sync (⊒𝛾𝑜 ({𝑒 } ∪𝑀 ) ) ∗ 𝑒
𝛾𝑜 ,𝛾𝑜ℓ−−−−−→ 𝑒ℓ ∗ Token(𝛾𝑜 , 𝑒 )

Proof rule for general write events (§3.4):

(OmoAuth-Insert)

𝑒 ∉ dom(𝐻 ) 𝐸.eview = 𝑀 𝑛 = len(𝑜𝑚𝑜1 ) = len(Σ1 ) + 1
interpomo (𝐻 ⊎ {𝑒 ↦→ 𝐸}, [𝑒 ] :: 𝑜𝑚𝑜2, 𝜎, Σ3 ) maxGen(𝑜𝑚𝑜1 ++ 𝑜𝑚𝑜2, 𝑀 ) < 𝑛

OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜1 ++ 𝑜𝑚𝑜2, Σ1 ++ [𝜎 ] ++ Σ2 ) ∗@𝐸.sync (⊒𝛾𝑜𝑀 ) ∗ Token(𝛾𝑜ℓ , 𝑒ℓ )
∃𝛾 ′𝑠 .OmoAuth(𝛾𝑜 , 𝛾 ′𝑠 , 𝐻 ⊎ {𝑒 ↦→ 𝐸}, 𝑜𝑚𝑜1 ++ [ [𝑒 ] ] ++ 𝑜𝑚𝑜2, Σ1 ++ [𝜎 ] ++ Σ3 )

∗@𝐸.sync (⊒𝛾𝑜 ({𝑒 } ∪𝑀 ) ) ∗ 𝑒
𝛾𝑜 ,𝛾𝑜ℓ−−−−−→ 𝑒ℓ ∗ Token(𝛾𝑜 , 𝑒 )

Fig. 7. Selected proof rules of the OMO library.

Given a sequential specification (𝑇, 𝑆, 𝜎0, −,−−−−→), we provide a number of separation logic predi-

cates. The key predicate is the authoritative object modification order OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ),
which encodes the current linearization order. The parameter (1) 𝐻 ∈ EventId ⇀ Event(𝑇 ) rep-
resents the events that occurred so far; (2) 𝑜𝑚𝑜 ∈ List(List(EventId)) describes the current order
using the event ids in dom(𝐻 ); (3) Σ ∈ List(𝑆) describes the intermediate abstract states; and (4) 𝛾𝑜
and 𝛾𝑠 are the logical id and version id, respectively (see §3.4 for details).
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Init Push 1 Pop 1 Push 2 Push 3 Pop 3

EmptyPop

Gen 0 Gen 1 Gen 2 Gen 3 Gen 4 Gen 5

Stack OMO

Head pointer
OMO

Physical
structure

1

3 2

𝑛1

𝑛3 𝑛2

⊥

⊥

[ ] [ ] [1] [ ] [2] [3,2] [2]

Init (⊥, 𝑉0 ) Update (𝑛1, 𝑉1 ) Update (⊥, 𝑉2 ) Update (𝑛2, 𝑉3 ) Update (n3, 𝑉4 ) Update (n2, 𝑉5 )

Load (⊥, 𝑉2 )

Stack(𝑠, 𝐻,𝛾𝑜 , 𝑜𝑚𝑜 ) ≜ ∃𝛾𝑠 , 𝛾𝑜𝑠 , Σ, 𝐻𝑠 , 𝑜𝑚𝑜𝑠 .

OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ) ∗ 𝑠 𝛾𝑜𝑠↦−−→ (𝐻𝑠 , 𝑜𝑚𝑜𝑠 )

∗ ©­«
∀𝑒𝑠 ∈ dom(𝐻𝑠 ) . ∃𝑒,𝑛, 𝜎. 𝑒 𝛾𝑜 ,𝛾𝑜𝑠−−−−−→ 𝑒𝑠 ∗ LocVal(𝐻𝑠 [𝑒𝑠 ] .type, 𝑛)

∗ OmoSnap(𝛾𝑜 , 𝛾𝑠 , 𝑒, 𝜎 )
∗@𝐻𝑠 [𝑒𝑠 ] .sync

(
PhysList(𝜎,𝑛) ∗ ⊒𝛾𝑜 ({𝑒 } ∪𝐻 [𝑒 ] .eview)

)ª®¬
∗ CWMono(𝛾𝑜 , 𝐻 )

SeenStack(𝑠,𝛾𝑜 , 𝑀 ) ≜ ∃𝛾𝑜𝑠 , 𝑀𝑠 . ⊒𝛾𝑜𝑀 ∗ SeenLoc(𝑠,𝛾𝑜𝑠 , 𝑀𝑠 ) ∗ ∀𝑒 ∈ 𝑀. ∃𝑒𝑠 ∈ 𝑀𝑠 . 𝑒
𝛾𝑜 ,𝛾𝑜𝑠−−−−−→ 𝑒𝑠

LocVal(𝑡, 𝑣) ≜ 𝑡 = Load(𝑣, _, _) ∨ 𝑡 = Store(𝑣, _, _) ∨ 𝑡 = Update(_, _, 𝑣, _, _)
PhysList(𝜎,𝑛) ≜ (𝜎 = [ ] ∧ 𝑛 = ⊥)

∨(∃𝑣, 𝑛′, 𝜎 ′ . 𝜎 = (_, 𝑣, _, _) :: 𝜎 ′ ∧ 𝑛.val ↦→□ 𝑣 ∧ 𝑛.next ↦→□ 𝑛′ ∧ PhysList(𝜎 ′, 𝑛′ ) )

Fig. 8. Treiber’s stack representation predicates (below) with an illustration of the key invariants (above).
Some Load events that are not used as commit points of Treiber’s stack are omitted in head pointer’s OMO
structure for simplicity. The parts in orange correspond to operations discussed in §3.2 and §3.3.

The parameter 𝑜𝑚𝑜 is a list of lists, rather than a list, to distinguish write and read-only events.

Given 𝑜𝑚𝑜 = [®𝑒1, . . . , ®𝑒𝑛] and Σ = [𝜎1, . . . , 𝜎𝑛], the head of each list of events ®𝑒𝑖 represents a write
transition from 𝜎𝑖−1 to 𝜎𝑖 , while the elements in the tail of ®𝑒𝑖 represent a read-only transition from 𝜎𝑖
to itself. In §3.3 we show how distinguishing read-only events enables simpler proof rules. We call

the 𝑛th element of 𝑜𝑚𝑜 and Σ the 𝑛th generation. The predicate interpomo (𝐻,𝑜𝑚𝑜, 𝜎, Σ) says that
𝑜𝑚𝑜 and Σ represent a valid chain of transitions starting in 𝜎 with events 𝐸, and lhbomo (𝐻,𝑜𝑚𝑜)
says that 𝑜𝑚𝑜 ensures causal consistency. The rules OmoAuth-Linearizable and Omo-Compatible

collectively say that OMO correctly encodes the sequential specification and causal consistency.

The snapshot predicate OmoSnap(𝛾𝑜 , 𝛾𝑠 , 𝑒, 𝜎) is a persistent snapshot of the intermediate abstract

state after interpreting the events in the linearization order up to 𝑒 .OmoSnap-Get produces snapshots,

while OmoAuth-OmoSnap says that 𝑒 and 𝜎 match up with the Σ parameter of OmoAuth.
The rule OmoAuth-Alloc initializes the predicateOmoAuth from an initial event (𝑒, 𝐸). The initial

event is essential to support initialization parameters such as data structure size.

The seen event predicate ⊒𝛾𝑜𝑀 provides persistent knowledge of thread-local observation of

events in the set𝑀 . When OmoAuth is initialized (OmoAuth-Alloc) or modified by inserting a new

event (OmoAuth-Insert-Last, OmoAuth-Insert-Ro, OmoAuth-Insert), the new event 𝑒 is observed at

the sync-view of 𝐸. Observations can be merged and split, i.e., ⊒𝛾𝑜𝑀1 ∗ ⊒𝛾𝑜𝑀2 ⊣⊢ ⊒𝛾𝑜 (𝑀1 ∪𝑀2).

Example. Fig. 8 defines the predicates Stack(𝑠, 𝐻,𝛾𝑜 , 𝑜𝑚𝑜) and SeenStack(𝑠,𝛾𝑜 , 𝑀) for Treiber’s
stack. They have more parameters (𝛾𝑜 and 𝑜𝑚𝑜) compared to Fig. 6, which are used for library

abstraction (§4.1). For now you can assume these parameters are existentially quantified.

The predicate Stack(𝑠, 𝐻,𝛾𝑜 , 𝑜𝑚𝑜) is decomposed into (1) the OmoAuth predicate; (2) the own-
ership of the shared head pointer 𝑠

𝛾𝑜𝑠↦−−→ (𝐻𝑠 , 𝑜𝑚𝑜𝑠 ); and (3) data structure specific invariants.

Instead of using iRC11’s primitive atomic points-to assertion 𝑠 ↦→at ℎ for the head pointer, we use

𝑠
𝛾𝑜𝑠↦−−→ (𝐻𝑠 , 𝑜𝑚𝑜𝑠 ). We discuss this predicate in detail in §4.1, but for now it is sufficient to know that

it equips the location 𝑠 with a set 𝐻𝑠 of event ids for Load, Store and Update (CAS) and an OMO

structure 𝑜𝑚𝑜𝑠 . The predicate SeenStack(𝑠, 𝛾𝑜 , 𝑀) is decomposed into (1) the seen event predicate

for general OMO (⊒𝛾𝑜𝑀) to track observations to the stack; (2) the seen event predicate for OMO
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location (SeenLoc(𝑠, 𝛾𝑜𝑠 , 𝑀𝑠 )) to track observations to the head pointer (§4.1); and (3) data structure
specific invariants. The data structure specific invariants for Treiber’s stack are as follows.

Stk1 Every event to the head pointer (𝑒𝑠 ) has a corresponding event for Treiber’s stack (𝑒). This

relation is established whenever 𝑒 is committed at the instruction point of 𝑒𝑠 , and is visualized

by the green dotted lines in Fig. 8. This is formalized by 𝑒
𝛾𝑜 ,𝛾𝑜𝑠−−−−→ 𝑒𝑠 , whose exact meaning is

discussed in §4.2. The intermediate abstract state (𝜎) for the event (𝑒) matches up with the

corresponding value of the head pointer (𝑛) and the physical linked list structure, formalized

by PhysList(𝜎, 𝑛), The PhysList predicate is similar to the usual representation predicate for

linked-lists in separation logic. The main difference is that we use the persistent points-to

assertion 𝑠 ↦→□ 𝑣 , which compared to 𝑠 ↦→ 𝑣 is freely duplicable but forbids any operation other

than load [Vindum and Birkedal 2021] (nodes of Treiber’s stack are immutable).

Stk2 The green dotted lines are monotone. This is formalized by CWMono(𝛾𝑜 , 𝐻 ), see §4.2.
Stk3 An observation of an event for Treiber’s stack (𝑒) is equivalent to the observation of the

corresponding memory event (𝑒𝑠 ). This invariant is marked in red in Fig. 8.

Representation predicates for other concurrent data structures are defined with a similar pattern:

an OmoAuth predicate to govern the insertion of events, predicates to describe the state of con-

current component objects (like 𝑠
𝛾𝑜𝑠↦−−→ (𝐻𝑠 , 𝑜𝑚𝑜𝑠 )), and data structure specific invariants. The key

here is that OmoAuth directly captures the linearizability condition for a given data structure.

3.2 Proof Rule for Totally Ordered Write Events
The rule OmoAuth-Insert-Last allows for the insertion of a totally-ordered write (TOW) event into

the OMO structure. Compared to the rule for general write events (§3.4) the premises are easy to

prove. Since there is no reordering, we do not have to re-establish interpomo. We only need to prove

that there is a transition 𝜎
𝑒,𝐸−−→ 𝜎 ′ from the last abstract state 𝜎 with the new event 𝐸 to the new

state 𝜎 ′. This is the minimal condition to re-establish the correctness of the linearization order. The

rule transforms OmoAuth by adding {𝑒 ↦→ 𝐸} to 𝐻 , and appending [𝑒] and 𝜎 ′ to end of 𝑜𝑚𝑜 and

Σ, respectively. The rule requires an observation of the event view (⊒𝛾𝑜𝑀) with 𝐸.eview = 𝑀 , and

returns an observation that includes the new event 𝑒 (⊒𝛾𝑜 ({𝑒} ∪𝑀)).

Example. TOW events are very common in libraries for RMC, supported by the fact that all write

events in the concurrent objects we verified are totally ordered, with a few exceptions such as the

Dequeue event in the Michael–Scott queue (§6.2). As an example, consider the situation in Treiber’s

stack in Fig. 8, where we commit a Pop(3) event (marked orange) after a successful CAS (L15 in
Fig. 5). By OmoAuth-Insert-Last, we only need to prove a one-step state transition. We can deduce

that the last abstract state is [3, 2]. The return value 3 matches with the first element of the abstract

state by the invariant Stk1 in the previous subsection. Thus, by setting the new abstract state to be

[2], we can prove a one-step state transition which immediately re-establishes the invariant.

3.3 Proof Rule for Read-Only Events
The rule OmoAuth-Insert-Ro allows for the insertion of a read-only event into the middle of the

OMO structure. We have a special treatment for read-only events since they do not change the

abstract state after taking a state transition, which allows most of the conditions on the linearization

order to be reused when re-establishing it. As a result, the rule only requires one to prove (1) a
one-step state transition that does not change the abstract state (𝜎

𝑒,𝐸−−→ 𝜎), even if the new event is

inserted in the middle; and (2) causal consistency for just the new event (marked in red). These are

the minimal conditions to re-establish the correctness of the linearization order.
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Example. As EmptyPop of Treiber’s stack is a read-only event, OmoAuth-Insert-Ro can be used in

this case. Consider the situation in Fig. 8 where we insert an EmptyPop event at the 2nd generation

(marked orange) after reading ⊥ at timestamp 𝑡2 from the head pointer (L11 in Fig. 5). Among the

two obligations, the one-step state transition can be easily proven by the invariant Stk1 since

reading ⊥ ensures that the intermediate abstract state of the 2nd generation is empty. The second

condition on causal consistency can be proven by Stk2 and Stk3. If the thread has observed a

later event (e.g., Push(2)), it would have also observed the corresponding message (e.g., at 𝑡3),
contradicting the fact that it read ⊥ at 𝑡2 from the head pointer. Proving only these conditions is

sufficient to re-establish the invariant on the linearization order after insertion.

3.4 Proof Rule for General Write Events
The rule OmoAuth-Insert covers the general case of inserting a write event in the middle of the

OMO structure. This rule is used in the verification of the Michael–Scott queue (§6.2), where a

Dequeue event requires the linearization order to be reordered. Due to its generality, this rule does

not preserve the correctness of the previous linearization order. A new write event can invalidate

the interpretability of later events with respect to the sequential specification. Hence one needs

to re-establish the chain of state transitions for all later events captured by the interpomo premise.

However, causal consistency only needs to be proven for the new event (marked in red).

The invalidation of later events may invalidate snapshots taken using the predicate OmoSnap.
To cope with this problem without losing persistence of the predicate, we equip OmoAuth and

OmoSnap with a parameter 𝛾𝑠 representing the version id. When using OmoAuth-Insert, one gets a

new version id 𝛾 ′𝑠 , thereby invalidating snapshots with the old version id 𝛾𝑠 .

4 PROOF COMPOSITION RECIPE
Concurrent objects are often built on top of another. For example, Folly’s MPMC queue [Meta 2023]

is built on top of an SPSC queue, which in turn is built on top of a turn sequencer (see §6.3). To
make verification scalable and compositional, it is crucial to observe library abstraction, i.e., the
proof of the upper-level object is done purely in terms of the specification of the lower-level object,

without inspecting its implementation. To this end, we observe that the linearization point of an

upper-level object event often coincides with that of its lower-level object event. We capture these

relations using the commit-with relation of our OMO library, which is inspired by the well-known

simulation techniques used in proving behavior refinement [Brookes and Rounds 1983].

We first generalize linearizable history specifications to composable linearizability specifications,
which expose the necessary details on the events of the lower-level object to enable compositional

verification of upper-level objects (§4.1). We make shared locations the lowest-level objects with

corresponding composable linearizability specifications by equipping them with an OMO structure.

Finally, we discuss the formal definition of the commit-with relation in our OMO library through

the persistent separation logic predicate 𝑒
𝛾𝑜 ,𝛾𝑜ℓ−−−−→ 𝑒ℓ and the exclusive permission Token(𝛾𝑜 , 𝑒) (§4.2).

These predicates formalize the green dotted lines in the verification of Treiber’s stack in Fig. 8.

4.1 Composable Linearizability Specification
The rule Stack-Try-Pop-Spec-Comp in Fig. 9 gives the composable linearizability specification for

the pop operation of Treiber’s stack. The differences compared to Stack-Try-Pop-Spec from §2.3 are

highlighted : (1) the postcondition contains a permission Token(𝛾𝑜 , 𝑒), which is needed to establish
a commit-with relation (more details in §4.2); and (2) the Stack predicate exposes 𝑜𝑚𝑜 and includes

postconditions ((𝑜𝑚𝑜, 𝑒) ⇝𝑤 𝑜𝑚𝑜 ′ and (𝑜𝑚𝑜, 𝑒) ⇝𝑟 𝑜𝑚𝑜 ′) to guarantee that the OMO structure is

constructed incrementally. To see how these conditions are used in compositional proofs, let us

first describe the lower-level object of Treiber’s stack—a shared location for the head pointer—in
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Composable specification of Treiber’s stack (§4.1, generalized from Fig. 6):

(Stack-Try-Pop-Spec-Comp)

SeenStack(𝑠,𝛾𝑜 , 𝑀0 ) ∗ ⊒𝑉0

⟨𝐻, 𝑜𝑚𝑜 . Stack(𝑠, 𝐻, 𝛾𝑜 , 𝑜𝑚𝑜 ) ⟩ try_pop(𝑠) ⟨ 𝑣 . · · · ∗ Token(𝛾𝑜 , 𝑒 ) ∗

( (𝑣 = ⊥ ∧ 𝑡 = EmptyPop ∧ (𝑜𝑚𝑜, 𝑒 ) ⇝𝑟 𝑜𝑚𝑜′ )

∨ (𝑣 ≠ ⊥ ∧ 𝑡 = Pop(𝑣) ∧ (𝑜𝑚𝑜, 𝑒 ) ⇝𝑤 𝑜𝑚𝑜′ ) ) ⟩
(Stack-Linearizable-Comp)

Stack(𝑠, 𝐻, 𝛾𝑜 , 𝑜𝑚𝑜 ) ⊢ ∃Σ. interpomo (𝐻, 𝑜𝑚𝑜 , [ ] , Σ) ∧ lhbomo (𝐻, 𝑜𝑚𝑜 ) ∧ permomo (𝐻,𝑜𝑚𝑜 )

(𝑜𝑚𝑜, 𝑒 ) ⇝𝑤 𝑜𝑚𝑜′ ≜ ∃𝑜𝑚𝑜1, 𝑜𝑚𝑜2 . 𝑜𝑚𝑜 = 𝑜𝑚𝑜1 ++ 𝑜𝑚𝑜2 ∧ 𝑜𝑚𝑜′ = 𝑜𝑚𝑜1 ++ [ [𝑒 ] ] ++ 𝑜𝑚𝑜2

(𝑜𝑚𝑜, 𝑒 ) ⇝𝑟 𝑜𝑚𝑜′ ≜ ∃𝑜𝑚𝑜1, 𝑜𝑚𝑜2, ®𝑒. 𝑜𝑚𝑜 = 𝑜𝑚𝑜1 ++ [®𝑒 ] ++ 𝑜𝑚𝑜2 ∧ 𝑜𝑚𝑜′ = 𝑜𝑚𝑜1 ++ [®𝑒 ++ [𝑒 ] ] ++ 𝑜𝑚𝑜2

Composable specification of shared location (§4.1):

(OmoLoc-Alloc)

ℓ ↦−→ 𝑣 ∃𝛾𝑜 ,𝑉 , 𝑒. ℓ
𝛾𝑜↦−−→ ({𝑒 ↦→ ⟨type : Init(𝑣,𝑉 ), sync : 𝑉 , eview : ∅⟩}, [ [𝑒 ] ] )

∗@𝑉 SeenLoc(ℓ,𝛾𝑜 , {𝑒 }) ∗ ⊒𝑉 ∗ Token(𝛾𝑜 , 𝑒 )

(OmoLoc-Load)

SeenLoc(ℓ,𝛾𝑜 , 𝑀0 ) ∗ ⊒𝑉0 ∗ 𝑜 ≠ na

⟨𝐻,𝑜𝑚𝑜. ℓ
𝛾𝑜↦−−→ (𝐻,𝑜𝑚𝑜 ) ⟩ ∗𝑜 ℓ ⟨ 𝑣 . · · · ∗ 𝑡 = Load(𝑣,𝑉𝑟 , 𝑜 ) ∧ (𝑜𝑚𝑜, 𝑒 ) ⇝𝑟 𝑜𝑚𝑜′ ⟩

(OmoLoc-Store)

SeenLoc(ℓ,𝛾𝑜 , 𝑀0 ) ∗ ⊒𝑉0 ∗ 𝑜 ≠ na

⟨𝐻,𝑜𝑚𝑜. ℓ
𝛾𝑜↦−−→ (𝐻,𝑜𝑚𝑜 ) ⟩ ℓ :=𝑜 𝑤 ⟨· · · ∗ 𝑡 = Store(𝑤,𝑉𝑤 , 𝑜 ) ∧ (𝑜𝑚𝑜, 𝑒 ) ⇝𝑤 𝑜𝑚𝑜′ ⟩

(OmoLoc-CAS)

SeenLoc(ℓ,𝛾𝑜 , 𝑀0 ) ∗ ⊒𝑉0 ∗ 𝑜 ≠ na

⟨𝐻,𝑜𝑚𝑜. ℓ
𝛾𝑜↦−−→ (𝐻,𝑜𝑚𝑜 ) ⟩ CAS𝑜 (ℓ, 𝑣𝑟 , 𝑣𝑤 ) ⟨ 𝑏 . · · · ∗

( 𝑏 = false ∧ 𝑡 = Load(𝑣𝑟 𝑓 ,𝑉𝑟 𝑓 , rlx) ∧ (𝑜𝑚𝑜, 𝑒 ) ⇝𝑟 𝑜𝑚𝑜′

∨ 𝑏 = true ∧ 𝑡 = Update(𝑒𝑟 , 𝑣𝑟 , 𝑣𝑤 ,𝑉𝑤 , 𝑜 ) ) ∧ (𝑜𝑚𝑜, 𝑒 ) ⇝𝑤 𝑜𝑚𝑜′ ⟩
(OmoLoc-Linearizable)

ℓ
𝛾𝑜↦−−→ (𝐻,𝑜𝑚𝑜 ) ⊢ ∃Σ. interpomo (𝐻,𝑜𝑚𝑜, 𝜎0 , Σ) ∧ lhbomo (𝐻,𝑜𝑚𝑜 ) ∧ permomo (𝐻,𝑜𝑚𝑜 )

Compositional linearizability verification (§4.2):

(OmoLe-Get)

𝑒1 ∈ 𝑜𝑚𝑜 [𝑛1 ] 𝑒2 ∈ 𝑜𝑚𝑜 [𝑛2 ] 𝑛1 ≤ 𝑛2

OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ) ⊢ Omo≤ (𝛾𝑜 , 𝑒1, 𝑒2 )

(OmoLe-Le)

𝑒1 ∈ 𝑜𝑚𝑜 [𝑛1 ] 𝑒2 ∈ 𝑜𝑚𝑜 [𝑛2 ]
OmoAuth(𝛾𝑜 , 𝛾𝑠 , 𝐻, 𝑜𝑚𝑜, Σ) ∗ Omo≤ (𝛾𝑜 , 𝑒1, 𝑒2 ) ⊢ 𝑛1 ≤ 𝑛2

CWMono(𝛾𝑜 , 𝐻 ) ≜ □∀𝛾𝑜ℓ , 𝑒ℓ , 𝑒′ℓ , (𝑒, 𝑒′ ∈ dom(𝐻 ) ) . Omo≤ (𝛾𝑜ℓ , 𝑒ℓ , 𝑒′ℓ ) ∗ 𝑒
𝛾𝑜 ,𝛾𝑜ℓ−−−−−→ 𝑒ℓ ∗ 𝑒′ 𝛾𝑜 ,𝛾𝑜ℓ−−−−−→ 𝑒′ℓ ∗

−∗ Omo≤ (𝛾𝑜 , 𝑒, 𝑒′ )

Fig. 9. Selected proof rules of the OMO library for compositional verification.

the form of composable linearizability specification to present a unified theory for compositional

proofs that applies to all lower-level objects including shared locations.

The OMO points-to assertion ℓ 𝛾𝑜↦−→ (𝐻,𝑜𝑚𝑜) and the SeenLoc(ℓ, 𝛾𝑜 , 𝑀) predicate are thin wrappers

around the atomic points-to assertion ℓ ↦→at ℎ and the history-seen observation ℓ ⊒sn ℎ′ of iRC11.
They are created from a non-atomic points-to predicate ℓ ↦→ 𝑣 using OmoLoc-Alloc. The memory

operations enjoy the composable linearizability specifications OmoLoc-Load, OmoLoc-Store, and

OmoLoc-CAS. Fig. 10 shows the relation between a sample location’s history and its OMO structure.
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𝑡

(𝑣0,𝑉0 ) (𝑣1,𝑉1 ) (𝑣2,𝑉2 )

𝑡0 𝑡1 𝑡1 + 1 𝑡2

(𝑣3,𝑉3 )
Init (𝑣0,𝑉0 )

𝑒
0 Store (𝑣1,𝑉1 )

𝑒
1 Update (𝑒1, 𝑣2,𝑉2 )

𝑒
2 Store (𝑣3,𝑉3 )

𝑒
3

Load (𝑣0,𝑉0 )
𝑒
4 Load (𝑣2,𝑉2 )

𝑒
5

Location
history

OMO
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Fig. 10. Sample evolution of the history and OMO structure on a shared location. (For brevity, we omit the
memory ordering 𝑜 and the previous value 𝑣𝑟 in Update events.)
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Fig. 11. Committing an upper-level object event 𝑒ℎ4 at the commit point of a lower-level object event 𝑒ℓ4.

The key to equipping shared locations with an OMO structure is their sequential specification

(𝑇, 𝑆, 𝜎0, −,−−−−→). The abstract states 𝑆 of shared location are of the form (𝑒, 𝑣,𝑉 ), where 𝑒 is the event
id of the latest message, 𝑣 is its value, and 𝑉 is its released view. The event types 𝑇 are Init(𝑣,𝑉 )
for initialization, Load(𝑣,𝑉 , 𝑜) for reading 𝑣 , Store(𝑣,𝑉 , 𝑜) for writing 𝑣 , and Update(𝑒, 𝑣𝑟 , 𝑣𝑤,𝑉 , 𝑜)
for atomically updating (e.g., through a CAS) the location from value 𝑣𝑟 to new value 𝑣𝑤 . Event

types are equipped with the acquired view 𝑉 and memory ordering 𝑜 . The abstract state transition

relation 𝜎
𝑒,𝐸−−→ 𝜎 ′ gives the semantics of memory accesses. The most interesting case is the one

for Update. A transition (𝑒, 𝑣,𝑉 ) 𝑒′,𝐸−−−→ (𝑒′, 𝑣 ′,𝑉 ′) requires the previous abstract state’s event id 𝑒 to
coincide with that of the one specified in the event 𝐸 = ⟨type : Update(𝑒, 𝑣𝑟 , 𝑣𝑤,𝑉 , 𝑜), · · ·⟩. This is
needed to forbid future write events from being inserted between 𝑒 and 𝑒′.

4.2 Compositional Linearizability Verification
To enable compositional proofs, our OMO library makes it possible to connect the linearization

point of upper-level object event 𝑒 to that of a lower-level object event 𝑒ℓ . These relations are

formalized using the commit-with predicate 𝑒
𝛾𝑜 ,𝛾𝑜ℓ−−−−→ 𝑒ℓ , which provides persistent knowledge of a

commit-with relation between 𝑒 and 𝑒ℓ in OMOs with logical ids 𝛾𝑜 and 𝛾𝑜ℓ , respectively.

The OMO allocation rule (OmoAuth-Alloc) and insertion rules (e.g., OmoAuth-Insert) illustrate
that the 𝑒

𝛾𝑜 ,𝛾𝑜ℓ−−−−→ 𝑒ℓ predicate is created when 𝑒 is inserted into 𝛾𝑜 . In doing so, the rule consumes the

exclusive permission Token(𝛾𝑜ℓ , 𝑒ℓ ) for the lower-level event, and provides the exclusive permission

Token(𝛾𝑜 , 𝑒) for the higher-level event. The initial permission Token(𝛾𝑜ℓ , 𝑒ℓ ) is produced by the

composable linearizability specifications of the memory operations (e.g., OmoLoc-Load). The rule
Stack-Try-Pop-Spec-Comp exposes the token Token(𝛾𝑜 , 𝑒) so that one can verify higher-level objects

that use Treiber’s stack as the lower-level object.

The transfer of tokens is visualized in Fig. 11. At the common linearization point for the upper-

level object 𝛾𝑜ℎ and lower-level object 𝛾𝑜ℓ , inserting the event 𝑒ℓ4 to 𝛾𝑜ℓ produces Token(𝛾𝑜ℓ , 𝑒ℓ4),
which is subsequently consumed to insert the event 𝑒ℎ4 to 𝛾𝑜ℎ , producing Token(𝛾𝑜ℎ , 𝑒ℎ4) that can
also be consumed by a further upper-level object atomically.

To link lower- and higher-level objects, it is often useful to ensure that their linearization orders

are monotone. As demonstrated in §3.3, monotonicity of the stack invariant (Stk2) is used to

re-establish causal consistency. The commit-with monotonicity predicate CWMono(𝛾𝑜 , 𝐻 ) provides
the persistent knowledge (through Iris’s persistence modality □) that the events 𝐸 in the OMO with

logical id 𝛾𝑜 are monotone w.r.t. its lower-level object. It is defined using Omo≤ (𝛾𝑜 , 𝑒1, 𝑒2), which
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persistently tracks the order of the generations of events 𝑒1 and 𝑒2. Formally, CWMono says that
any generation ordering of two upper-level events, Omo≤ (𝛾𝑜 , 𝑒, 𝑒′), follows from that of the events

projected to the same lower-level object 𝛾𝑜ℓ , Omo≤ (𝛾𝑜ℓ , 𝑒ℓ , 𝑒′ℓ ).

Example. In the definition of the Stack(𝑠, 𝐻,𝛾𝑜 , 𝑜𝑚𝑜) predicate (Fig. 8), the OMO points-to assertion

𝑠
𝛾𝑜𝑠↦−−→ (𝐻𝑠 , 𝑜𝑚𝑜𝑠 ) is used for the head pointer, using it as a lower-level object. The green dotted lines

are formalized using the commit-with predicate 𝑒
𝛾𝑜 ,𝛾𝑜𝑠−−−−→ 𝑒𝑠 . In the proofs of the LATs for the push

and pop operations, a new commit-with relation is established by consuming the head pointer’s

Token obtained by reading/writing to it. Monotonicity of the commit-with relationCWMono(𝛾𝑜 , 𝐻 )
is re-established because in the case of (Push or Pop), new write events of both head pointer and

Treiber’s stack are appended to the end; in the case of (EmptyPop) a new EmptyPop event is

inserted at the same generation with the corresponding load event on the head pointer.

5 PROOF AUTOMATION RECIPE
As the last piece of our proof recipe, we develop automation for the proof rules from §3 and §4 by

building upon the Diaframe [Mulder et al. 2022] proof automation framework for Iris. We briefly

review Diaframe (§5.1) and address the challenges to apply it to RMC: maintaining an up-to-date

lower bound on the current thread view (§5.2), and handling invariants where the physical state of

a concurrent object no longer fully determines its logical state (§5.3).

5.1 Background on Diaframe
The backbone of Diaframe is a goal-directed proof search technique—it decides the next step in the

proof by looking at the current goal and the available resources in the context. For instance, when

the current goal concerns a write on memory location ℓ and if a points-to assertion ℓ ↦→ 𝑣 is in

some invariant, then Diaframe opens that invariant and performs the write operation using ℓ ↦→ 𝑣 .

After the operation, Diaframe tries to close the invariant to proceed onto the next step. This pattern

is repeated until the proof is finished, or when the automation cannot find a way to proceed.

Closing the invariant is the main hurdle here. To see why, suppose we have an idealized invariant

∃𝑣, 𝑥,𝑦. 𝑙 ↦→ 𝑣 ∗𝑃 (𝑣, 𝑥) ∗𝑄 (𝑥,𝑦). We can classify resources in invariants into three major categories:

(1) physical resources such as ℓ ↦→ 𝑣 that represent physical state; (2) logical resources such as ghost

resources (𝑄 (𝑥,𝑦) in our example); (3) connective resources such as 𝑃 (𝑣, 𝑥) that relate physical state
(e.g., the stored value 𝑣) to logical state (e.g., the value 𝑥 ). A priori, the values 𝑥 and 𝑦 are not directly

related to the physical value 𝑣 . However, to uphold the invariant after writing a new value𝑤 to

location ℓ , we must find appropriate 𝑥 ′ and 𝑦′ so that we can derive 𝑃 (𝑤, 𝑥 ′) and 𝑄 (𝑥 ′, 𝑦′) from
the resources 𝑃 (𝑣, 𝑥) and𝑄 (𝑥,𝑦). The specification of the write operation itself does not do this for

us—the corresponding update rules for logical resources must be determined separately. Note that

a wrong choice of existential variables 𝑣 , 𝑥 or 𝑦 will make the goal unprovable.

Diaframe tackles this by restoring invariants from left to right, and having an extensible hint

database of update rules. For example, if we register a hint 𝑃 (𝑣, 𝑥) ⊢ 𝑃 (𝑤, 𝑡) in Diaframe (where 𝑡

can be determined from 𝑣 , 𝑥 and𝑤 ) the invariant gets restored as follows in the proof:

choose 𝑣 ′ := 𝑤

apply hint: 𝑃 (𝑣, 𝑥) ⊢ 𝑃 (𝑤, 𝑡)
𝑄 (𝑥,𝑦) ⊢ ∃𝑦′ . 𝑄 (𝑡, 𝑦′)

𝑃 (𝑣, 𝑥), 𝑄 (𝑥,𝑦) ⊢ ∃𝑥 ′ 𝑦′ . 𝑃 (𝑤, 𝑥 ′) ∗𝑄 (𝑥 ′, 𝑦′)
ℓ ↦→ 𝑤, 𝑃 (𝑣, 𝑥), 𝑄 (𝑥,𝑦) ⊢ ∃𝑣 ′ 𝑥 ′ 𝑦′ . 𝑙 ↦→ 𝑣 ′ ∗ 𝑃 (𝑣 ′, 𝑥 ′) ∗𝑄 (𝑥 ′, 𝑦′)

The order of resources in the invariant is crucial for this strategy to work. It is generally advised to

place physical resources earlier than any other resources in the invariant, so that Diaframe can infer

the logical state correctly from the physical state. Additionally, Diaframe needs to be provided with

hints for manipulating the connective resources 𝑃 and logical resources 𝑄 .
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5.2 Exposing Views in View-Dependent Predicates
Release-writes in RMC synchronize the view of the writer to subsequent acquire-readers. This

is reflected in the logic as a precondition “∃𝑉𝑟 . ⊒𝑉𝑟 ” to release-write operations—i.e., the release
thread provides a lower bound for its current view, which the acquiring thread can then rely upon.

It is crucial that this lower bound 𝑉𝑟 is up-to-date enough. Proofs will otherwise get stuck, since

the acquiring thread cannot provably witness required resources.

Suppose we try to prove ∃𝑉𝑟 . ⊒𝑉𝑟 ∗ ∃𝑉𝑖 . (@𝑉𝑖𝑃) ∗ (𝑉𝑖 ⊔𝑉𝑡 ⊑ 𝑉𝑟 ) given 𝑃 ∗ ⊒𝑉𝑡 in our context.

This goal is analogous to the proof obligation for verifying some release-writes:𝑉𝑡 is a lower bound

on the view of our current thread,𝑉𝑟 is a lower bound of a view that we want to transfer to another

thread by a release-write, and “∃𝑉𝑖 .@𝑉𝑖𝑃 ∗ (𝑉𝑖 ⊔𝑉𝑡 ⊑ 𝑉𝑟 )” is the resource put in an invariant to

transfer 𝑃 , where the recipient will obtain 𝑃 by using VA-elim after acquire-loading 𝑉𝑟 . The hard

part of this goal is that 𝑃 does not necessarily hold at view 𝑉𝑡 : the lower bound on the view of our

current thread may not be up-to-date. This means we cannot just instantiate 𝑉𝑟 with 𝑉𝑡 : we must

use VA-intro on 𝑃 to obtain a 𝑉𝑖 for which@𝑉𝑖𝑃 ∗ ⊒𝑉𝑖 holds, and then instantiate 𝑉𝑟 with 𝑉𝑖 ⊔𝑉𝑡 .
To address this, we set up Diaframe to always use VA-intro to all view-dependent resources

before each access to shared memory. This discipline makes sure we always have an up-to-date

lower bound on the view of our thread around every memory access, which in turn ensures that we

have sufficient information in the logic to verify release-writes. We will thus be able to prove the

goal discussed above: before performing release-write, we directly apply VA-intro to 𝑃 to obtain a

𝑉𝑖 for which@𝑉𝑖𝑃 ∗ ⊒𝑉𝑖 holds, then merge ⊒𝑉𝑖 with ⊒𝑉𝑡 to ⊒(𝑉𝑖 ⊔𝑉𝑡 ).

Example. The proof of push of Treiber’s stack crucially relies on up-to-date lower bounds for views.

The linearization point of push is a successful release-CAS (L7 in Fig. 5), which synchronizes the

writes to the (non-atomic) value and next fields, to the acquire-read in L11 in the pop function. We

ensure that this part of the proof goes through automatically: the non-atomic points-to assertions

of the value and next fields go through VA-intro, and the joined view is sent to the acquire-reader.

5.3 Inferring Logical State
Recall from §5.1 that Diaframe usually infers the logical state from the physical state after sym-

bolically executing instructions. However, the connection between physical and logical states is

much less obvious in RMC. Consider the existentially quantified variables in Stack (Fig. 8). Unlike

SC, where we only keep the most recent state, in RMC we are required to keep all past states (i.e.,
inside 𝐻 and Σ) and maintain invariants for all of them. This makes inference of the logical state

more difficult, especially in situations where a new event must be inserted before a past state. Even

worse, incorrect choices for such variables can cause the proof to reach a stuck state, requiring the

proof engineer to manually intervene and backtrack to the point of the incorrect choice.

We designed the proof rules in §3 and §4 carefully to reduce the search space of existential

variables for Diaframe to explore as follows. First, we constrain the evolution of the linearization

order by requiring new events to be inserted only into the current OMO (§3.1). This constrains the

possibilities for choosing a new logical state—it is often enough to choose the correct insertion

rule to correctly infer the logical state. In addition, our proof rules require only minimal proof

obligations to re-establish the correctness of OMO, decreasing the overhead of closing the invariant.

Notably, one does not need to reprove linearizability after every change to the logical state: lineariz-

ability always follows from OmoAuth-Linearizable. This is in contrast with partial-order-based

specifications [Batty et al. 2013; Raad et al. 2019] that allow more possibilities on the logical state,

and have a larger number of proof obligations.

Second, we use the OMO-based specifications of operations on lower-level objects (§4.1) as a

guide for updating the upper-level object. After a write or read-only operation on a lower-level
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object, a corresponding Token(𝛾𝑜 , 𝑒) is added to the proof state. Our hints detect such Tokens, and
update the logical state accordingly by choosing the corresponding insertion rule for the composite

structure. For example, following the observation that the linearization point of a lower-level object

usually corresponds to an event of the same type (i.e., write or read-only) of the upper-level object,
the presence of Token𝑊 (𝛾𝑜 , 𝑒) (indicating that (𝑒) is a write event), triggers the hint for insertion
of a write event (OmoAuth-Insert-Last).

4
Similarly, Token𝑅 (𝛾𝑜 , 𝑒) indicates a read-only event (𝑒),

and triggers the hint for OmoAuth-Insert-Ro. Moreover, we ensure our hints extend the proof state

appropriately, e.g., on insertion of a new event (𝑒) into the OMO, a commit-with relation is added.

These can be matched with later proof obligations as demonstrated in the example below.

Third, we ensure that Diaframe stops at the key moments in the proofs where manual reasoning

is necessary. For instance, inferring the correct sync-view for Folly’s MPMC queue is extremely

non-trivial since it is dependent on synchronization done after the linearization point. To these

existentially quantified variables, we add a marker—either in the invariant or in the postcondition

of the specification. This marker tells Diaframe to stop the proof automation, and explicitly ask for
a witness, whenever it would otherwise try to infer a value. Another point of interest is possible

linearization points. Due to the complex nature of the OMO predicates, it is difficult for Diaframe to

automatically recognize the linearization point. Thus, we make Diaframe stop before attempting to

close the invariant, and ask the user whether the linearization point happens now. This approach

enables a fruitful collaboration between interactive proofs and proof automation.

Example. We illustrate how these ideas work together during the verification of the Treiber stack’s

pop. Specifically, we consider the insertion of an EmptyPop event, which happens directly after

reading ⊥ in L11 (Fig. 5), producing a location event 𝑒𝑠 . Treiber’s stack invariant is in Fig. 8.

(1) Before attempting to restore the stack invariant (i.e., Stack(𝑠, 𝐻, . . .)), Diaframe stops and asks

whether the linearization point happens now or later. In the case of EmptyPop, linearization
happens now, and so the prover tells Diaframe to commit to the linearization point.

(2) The specification Stack-Try-Pop-Spec-Comp dictates the insertion of the EmptyPop event. Specif-

ically, it prescribes a transition from Stack(𝑠, 𝐻, . . .) to Stack(𝑠, 𝐻 ⊎ {𝑒 ↦→ . . .}, . . .) for a fresh
event id 𝑒 ∉ dom(𝐻 ). In the proof, this means we must make OmoAuth do a corresponding

transition, and show the Stack predicate holds for these arguments.

(3) Diaframe performs this transition automatically: it finds a hint that applies OmoAuth-Insert-Ro.

This hint is triggered by the Token𝑅 resource, obtained after symbolically executing the load

instruction with OmoLoc-Load. The hint additionally creates related resources, including the

event mapping 𝑒
𝛾𝑜 ,𝛾𝑜𝑠−−−−→ 𝑒𝑠 , OmoSnap for the new event 𝑒 , and monotonicity of the event

mapping with the new event included (CWMono(𝛾𝑜 , 𝐻 ⊎ {𝑒 ↦→ . . .})).
(4) To create the new Stack predicate, from left to right, Diaframe instantiates the OmoAuth

obtained from (3), and the physical obligation 𝑠
𝛾𝑜𝑠↦−−→ (𝐻𝑠 ⊎ {𝑒𝑠 ↦→ . . .}, . . .) in the proof context.

(5) The third line of the stack predicate (∀𝑒′𝑠 ∈ dom(𝐻𝑠 ⊎ {𝑒𝑠 ↦→ . . .}) . . . .) is partially instantiated

for old events in 𝐻𝑠 by re-using the corresponding part from the old Stack predicate. Proof

obligations remain for the new 𝑒𝑠 , which has three existentially quantified variables 𝑒 , 𝑛, and 𝜎 .

𝑒 is automatically instantiated by the resource 𝑒
𝛾𝑜 ,𝛾𝑜𝑠−−−−→ 𝑒𝑠 obtained in step (3). 𝑛 can be inferred

by the location event 𝑒𝑠 ’s type, and 𝜎 can be inferred by the OmoSnap also obtained in step (3).
PhysList is trivial since we have 𝑛 = ⊥ ∧ 𝜎 = [].

(6) Finally, Diaframe uses the CWMono predicate that we just obtained from (3).

4
There is no hint for the general insertion rule OmoAuth-Insert since it is too complicated for automation. Instead, the

user can pause automation, manually apply the rule, and resume automation.
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Table 1. Quantitative analysis in SLOC of the Coq proofs (excluding empty lines and comments). “N/A” in
Comparison column: previous work does not exist. “N/A” in OMO + Diaframe column: we leave it as future
work due to performance problems in Coq.

Object OMO OMO+Diaframe Comparison
Treiber’s stack 386 (- 76%) 71 (- 96%) 1,615 (Linearizable history specification)

Spinlock 322 (+374%) 83 (+ 22%) 68 (Weaker specification)

Michael–Scott queue 1,319 (- 41%) 613 (- 73%) 2,246 (Partial-order-based specification)

Turn sequencer (Folly) 259 136 N/A

SPSC queue (Folly) 403 154 N/A

MPMC queue (Folly) 690 282 N/A

Exchanger 399 (- 67%) 147 (- 88%) 1,219 (Partial-order-based specification)

Elimination stack 841 (- 51%) 436 (- 75%) 1,721 (Partial-order-based specification)

Atomic reference counting 4,786 (+117%) N/A 2,202 (Weaker specification)
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Fig. 12. OMO structures and commit-with relations of a spinlock (left) and the Michael–Scott queue (right).

6 CASE STUDIES
Table 1 compares, for several RMC objects, the line counts of (OMO) our manual proof with OMO;

(OMO+Diaframe) our automated proof with OMO and Diaframe; and (Comparison) the existing
proof in separation logic for RMC. Using the OMO structure reduces the proof effort by 57%,

while the use of Diaframe additionally reduces the proof effort by 58% (overall 81% reduction) in

comparison to prior work.
5
All our predicates and rules for OMO are formalized in Coq with 10,243

SLOC, while Diaframe’s hint databases are also formalized in Coq with 4,404 SLOC.

6.1 Spinlock
We verify the linearizability of a spinlock with the following operations: (1) new_lock() allocates a
spinlock, producing an Init event; (2) try_lock(ℓ) tries to acquire the lock at ℓ , producing either a

Lock or a LockFail event; and (3) unlock(ℓ) releases the lock, producing an Unlock event. Fig. 12

illustrates that the commit-with relation between a spinlock and its location’s events is bijective

(like for Treiber’s stack in Fig. 8). The linearizability specification we verify is stronger than the

version of Dang et al. [2020]: their specification of try_lock does not rule out spurious failures in

a single thread. Safety of the following can only be proved with our specification:

ℓ ← new_lock(); assert(try_lock(ℓ)) /* must succeed */; unlock(ℓ).

5
Verifications of spinlock and atomic reference counting are not considered when comparing proof efforts with ours since

they are verified for weaker specifications by Dang et al. [2020].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 154. Publication date: June 2024.



154:20 Sunho Park, Jaewoo Kim, Ike Mulder, Jaehwang Jung, Janggun Lee, Robbert Krebbers, and Jeehoon Kang

6.2 Michael–ScottQueue
We verify the linearizability of the Michael–Scott queue (MSQ) [Michael and Scott 1996] with the

following operations: (1) new_queue() allocates a queue, producing an Init event; (2) enq(𝑞, 𝑣)
enqueues a value 𝑣 to the queue at 𝑞, producing an Enq 𝑣 event; and (3) try_deq(𝑞) tries to dequeue
from the queue at 𝑞, producing a Deq 𝑣 or an EmptyDeq event. The only existing verification of

MSQ in RMC separation logic is done for the partial-order-based specification [Dang et al. 2022].

Fig. 12 illustrates the commit-with relation fromMSQ. Unlike Treiber’s stack, multiple lower-level

objects (including the head and next field of each node) participate in the commit-with relation.

Remember that write events on different locations may be reordered, preventing these events

from having a total order. For example, consider a situation where a thread sequentially performs

two try_deq(𝑞) operations without observing an Enq 2 event, producing Deq 1 and EmptyDeq as

presented in Fig. 12. In this case, we should not add Deq 1 to the end of OMO structure, otherwise

we cannot incrementally construct OMO structure when inserting an EmptyDeq event. In general,

to account for possible EmptyDeq events,Deq events are inserted in the middle by OmoAuth-Insert.

6.3 Folly’s MPMCQueue
We verify the linearizability of the MPMC queue and its components from the Folly library [Meta

2023]. This case study demonstrates that (1) our proof composition recipe (§4) works even for a

nested composition from location to “turn sequencer”, to SPSC queue, and finally to MPMC queue;

and (2) our proof structure recipe (§3) supports external linearization points that are determined by

external factors like other threads. The Deq operation has an external linearization point, which is

delayed until the matching Enq event is committed. Our recipe supports helping by sending the

component Token and an atomic update (representing the obligation to find a linearization point)

to another thread, which then consumes it and establishes the commit-with relation.

6.4 Elimination Stack
We verify the linearizability of the elimination stack [Hendler et al. 2004] as a composition of the

Treiber’s stack and exchanger. This case study also demonstrates the effectiveness of our proof

composition recipe (§4) and support of external linearization points. The elimination stack has the

same specification as Treiber’s stack, but its events can be actually reordered unlike Treiber’s stack.

6.5 Atomic Reference Counting
We verify the linearizability of a simplified version of Rust’s atomic reference counting (Arc) library

verified by Dang et al. [2020]. This case study showcases the scalability of our proof recipe to

complex libraries with (1) a variety of functionalities, totaling 14 specifications for 11 functions;

(2) complex synchronization patterns, e.g., collecting distributed ownerships along with thread

views to destroy the object in the end; and (3) release and acquire fences. As in the case of the

spinlock, our specification is stronger than that of Dang et al. in that ours can rule out spurious

failures in most realistic cases while the latter cannot. For example, safety of the following example

(simplified for presentation purpose; see [Park et al. 2024]) can only be proved with our specification:

ℓ ← new_arc(); assert(drop_arc(ℓ)); /* must succeed in deallocation */.

6.6 Clients
To ensure that our specification is strong enough, we verify several programs such as the Treiber’s

stack client shown in Fig. 1, the spinlock client presented in §6.1, and the Arc client presented in

§6.5. Recall from §1, §6.1 and §6.5 that these programs are not provable with weaker (but simpler)

specifications that exhibit spurious behaviors.
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7 RELATEDWORK
Verification in relaxed memory separation logic. Dang et al. [2020] develop the iRC11 relaxed

memory separation logic to verify the Rust type system and its standard libraries. They consider

several concurrent objects, including a spinlock and an Arc. Being concerned with the type safety

instead of functional correctness, they use weaker specifications than ours (§6.1, §6.5).

Building on top of iRC11, Dang et al. [2022] verify Treiber’s stack, the Michael–Scott queue,

and the elimination stack w.r.t. several specifications encoded through LATs. Our compositional

linearizability specifications (Fig. 9) further develop their linearizable history specifications. We

improve their verifications of the linearizable history specification of Treiber’s stack, and the

partial-order-based specifications of the Michael–Scott queue and the elimination stack (§1).

Mével et al. [2020] develop the Cosmo separation logic for the multicore OCaml memory model,

in which Mével and Jourdan [2021] verify a concurrent bounded queue specified using an LAT.

Their work influenced the aforementioned work by Dang et al. [2022] and thus ours. However,

their work is based on OCaml memory model, which is less relaxed than C11 (and thus ORC11).

Verification of concurrent objects in RMC. Several strong correctness conditions for concurrent

objects have been verified directly on low-level RMC semantics [Batty et al. 2013; Dongol et al.

2018; Raad et al. 2019; Singh and Lahav 2023; Smith et al. 2020]. Compared to this work, most of

these works do not consider modular client reasoning or mechanization in a proof assistant.

Raad et al. [2019] propose partial-order-based specifications that support more relaxed, non-

linearizable objects such as a weak version of the Herlihy–Wing queue [Herlihy and Wing 1990;

Raad et al. 2019]. In contrast, our total-order-based specifications are tailored for more tight objects.

Batty et al. [2013]; Dongol et al. [2018]; Singh and Lahav [2023] advocate for the use of contextual

refinement as the correctness condition for RMC libraries to provide a complete library abstraction

for clients. Contextual refinement coincides with linearizability in the SC model [Filipović et al.

2010], but it remains future work to investigate if this is the case in RMC too.

Automated verification. Existing work on automated verifications of RMC libraries does not

target strong specifications such as linearizability, while automated verifications of linearizability

mostly focus on the SC memory model.

GenMC [Kokologiannakis et al. 2019] is a model checker parameterized over various memory

models including RC11. Given a complete program, it enumerates all possible executions and checks

such properties as code assertions, data race freedom, and liveness of spin loops. GenMC does not

support compositional specifications of libraries as it targets closed programs only.

Summers and Müller [2018] encode the RSL [Vafeiadis and Narayan 2013], FSL [Doko and

Vafeiadis 2016], and FSL++ [Doko and Vafeiadis 2017] relaxed memory separation logics into

the Viper tool for automated deductive verification [Müller et al. 2017]. They verify Hoare-style

specifications of several libraries including Arc and RWSpinlock, but do not consider stronger

specifications such as linearizability. They exploit single-location invariants to automate invariant

access when the corresponding location is accessed. However, to verify sophisticated concurrent

objects (such as the Michael–Scott queue and Folly’s MPMC queue) we rely on Iris/iRC11 invariants

that involve multiple locations, which are not supported by these encodings in Viper.

In the context of the SC model, Voila [Wolf et al. 2021] is a proof outline checker for LATs in

the TaDA logic [da Rocha Pinto et al. 2014], built on top of the Viper framework. Being a proof

outline checker, Voila is not fully automated—annotations need to be added for every key step. This

is in contrast with fully-automated tools such as Cave [Vafeiadis 2010] and Poling [Zhu et al. 2015]

based on shape analysis. Full automation comes at the cost of compositional verification and limits

the range of concurrent objects that can be verified. Plankton [Meyer et al. 2022, 2023] is a recently
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developed linearizability checker based on the Flow framework [Krishna et al. 2018] that extends the

range of supported objects while retaining automation. Plankton performs temporal interpolation

to prove the linearization of concurrent search structures with minimal user annotations. None of

the aforementioned tools for the SC model are foundational—neither their soundness (meta theory)

nor their implementation has been verified in a proof assistant. Diaframe [Mulder and Krebbers

2023; Mulder et al. 2022] addresses this problem by building a tool with strong automation on top

of Iris in Coq. Diaframe is extensible with user-defined hints, and has been used to automatically

verify various properties in the SC model, including LATs. Its extensibility has been key for us to

extend it with support for the iRC11 logic and linearizability in RMC. To the best of our knowledge,

we are the first to design a framework for linearizability in RMC that is amenable to automation.

8 CONCLUSION AND FUTUREWORK
Our proof recipe addresses a problem of scalability that arises in verifying concurrent objects in

RMC by encapsulating complexities of relaxed memory in simple abstractions. Our key observation

is threefold: the linearization order of a concurrent object usually evolves like the modification

order of a shared location (§3); for library abstraction, the linearization points of an upper-level

object event often coincides with that of its lower-level object event (§4); and even for RMC, many

proof obligations can be discharged with pattern-based automation (§5). As future work, we will

apply our recipe to more diverse and complex objects in more realistic settings as follows.

Hindsight reasoning. We expect our recipe to support hindsight reasoning, even without additional
reasoning principles such as prophecy variables [Jung et al. 2020]. Hindsight reasoning has the

common proof pattern of generating an event early in the time and checking whether the event

is valid later in retrospect. This is non-trivial in the SC setting, because only the latest state is

maintained in the invariant. We expect this to be easier in our recipe for relaxed memory, as it

maintains the entire history of events in the OMO structure of the invariant.

Other RMC memory models. We expect that our recipe can be adapted to other RMC memory

models for the following reasons. (1) The core ideas of the OMO structure and the commit-with

relation are not specific to iRC11 but generally applicable to linearizability in RMC. Essentially, the

OMO structure streamlines the reasoning of event reordering (§3) and the commit-with relation

exposes the minimal information to observe library abstraction (§4). (2) The C11 memory model

(on which ORC11 and iRC11 are based) has arguably the most relaxed semantics among practical

RMC memory models. The synchronization mechanisms in the OCaml memory model [Dolan et al.

2018] (using atomic locations) and Java memory model [Bender and Palsberg 2019] (using volatile

and VarHandle) can be encoded with various C11 memory access modes.

Other styles of specifications. We expect that a large portion of our development can be readily

reused in proving other styles of specifications (e.g., partial-order-based specifications). One can use

the OMO structure with a trivial state transition system (i.e., ∀𝜎, 𝜎 ′, 𝑒, 𝐸. 𝜎 𝑒,𝐸−−→ 𝜎 ′ holds). By doing

so, one can enjoy all the proof rules (§3, §4) and existing automation supports (§5). However, one

might need to design a sophisticated invariant with less help from the OMO library, and additional

hints for Diaframe that facilitate automatic re-establishment of the invariant.
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