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Over the past two decades, there has been a great deal of progress on verification of full functional correctness

of programs using separation logic, sometimes even producing “foundational” proofs in proof assistants like

Coq. Unfortunately, even though existing approaches to this problem provide significant support for automated

verification, they still incur a significant specification overhead: the user must supply the specification against

which the program is verified, and the specification may be long, complex, or tedious to formulate.

In this paper, we introduce Quiver, the first technique for inferring functional correctness specifications in

separation logic while simultaneously verifying foundationally that they are correct. To guide Quiver towards

the final specification, we take hints from the user in the form of a specification sketch, and then complete the

sketch using inference. To do so, Quiver introduces a new abductive deductive verification technique, which

integrates ideas from abductive inference (for specification inference) together with deductive separation

logic automation (for foundational verification). The result is that users have to provide some guidance, but

significantly less than with traditional deductive verification techniques based on separation logic. We have

evaluated Quiver on a range of case studies, including code from popular open-source libraries.
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1 INTRODUCTION
The problem of how to verify functional correctness of large, stateful programs is one of the oldest

challenges of computer science, tracing back to the work of Hoare [24] and Floyd [21]. Over the past

two decades, remarkable progress has been made following the advent of separation logic [41, 49],
an extension of Hoare logic that supports modular reasoning about stateful resources. Based on

the foundation of separation logic, a number of powerful deductive verification tools have been
built, including VeriFast [27], CFML [11], Bedrock [12], GRASShopper [43], VST [2, 7], Viper [39],

Gillian [53, 36], Perennial [8], RefinedC [52], and CN [45]. They provide exceptionally strong

verification guarantees (e.g., memory safety and functional correctness in a pointer-manipulating
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language like C) by working with rich forms of separation logic, featuring, e.g., custom predicates,

user-defined functions, detailed programming language semantics, and large mathematical theories.

In many cases, they even establish these guarantees foundationally—by producing machine checked

proofs in proof assistants like Coq [13].

Sadly, the overhead of functional correctness verification is considerable. For example, for manual

verification in a proof assistant, the proofs are typically an order of magnitude larger than the

code (see, e.g., [9, Fig. 12] and [7, §11]). Hence, one of the longstanding goals has been to reduce

this overhead—to scale verification to larger code bases, lower the entry barrier, and reduce the

overall effort. Toward this goal, many of the aforementioned techniques have made great strides by

developing proof automation (e.g., [27, 43, 39, 52, 53, 45]), which often shrinks the overhead to—or

even below—the code size (see, e.g., [45, §5]). Instead of manual correctness proofs, these tools take

as input the program code and one specification per function and then validate the program against

the specification. To be precise, they offer the verification paradigm:

code + specification (+ annotations & proofs) ⇒ yes/no (program verification)

where the user provides code, specification, and in some cases additional annotations (e.g., to guide

the proof search) and proofs (e.g., lemmas in a proof assistant) and, then, the tool outputs yes
(possibly with a foundational proof) or no (with an error message).

However, for verification of functional correctness to truly scale one day, we believe that proof

automation alone is not enough. The reason is that, in the current verification paradigm, even if the

number of annotations decreases in the future and the proof component shrinks due to better proof

automation, the resulting tools still require their users to provide specifications manually. And these
specifications are rarely small. For a recent example, take RefinedC [52]. RefinedC targets proof

automation for foundational verification of C code. Correspondingly, regarding proof overhead,
its “relative annotation overhead is moderate—less than 0.7 for all examples that do not involve

complex side conditions” [52, §7]. But this statistic does not include the specification overhead,
which is considerable in its own right: specifications contribute an additional 30-50 percent of the

code size to the total verification overhead [52, Fig. 7]. Moreover, specifications often impose as

much of a burden on the verification effort as do annotations, forcing the user to supply tedious

side conditions about integer arithmetic, nontrivial preconditions about pointers, error cases, and

conditionals over the possible return values.

The next frontier: specification inference. So how can we meaningfully reduce the spec-
ification overhead of deductive separation logic techniques? Our answer to this question is to

fundamentally change the verification paradigm. Instead of treating the specification as an input,
make it an output of the verification:

code (+ specification sketches) ⇒ specification/failure (specification inference)

That is, given the code together with possibly additional hints in the form of specification sketches

(explained below), our goal is to infer a specification based on the code. Working in separation logic,

this specification can then be used (1) compositionally in the verification of other code, (2) to infer

specifications of clients, or (3) by humans to compare the specification against their expectations.

Specification inference is an even harder problem than traditional program verification—it

decreases the user-provided input and increases the desired output. Accordingly, it is not solved

all at once but requires a longer journey. With Quiver, we embark on the crucial next steps of

this journey. Quiver is the first technique for inferring—and foundationally verifying—functional

correctness specifications in separation logic. It takes in sketches of function specifications and

completes them to a full separation logic specification—adding missing preconditions, inferring

postconditions, and filling out user-determined holes. To achieve this goal, Quiver proposes a
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Quiver: Guided Abductive Inference of Separation Logic Specifications in Coq 183:3

{𝑛 ∈size_t}malloc(𝑛) {v.v = NULL ∨ (∃ℓ,𝑤 .v = ℓ ∗ ℓ ↦→ 𝑤 ∗ uninit(𝑤,𝑛) ∗ block ℓ 𝑛)}
{ℓ ↦→ v ∗ uninit(v, 𝑛)∗𝑛 ∈ size_t}memset(ℓ, 0, 𝑛) { . ∃𝑤. ℓ ↦→ 𝑤 ∗ zeros(𝑤,𝑛)}

{True} abort() { . False} {𝑛 ∈size_t} xmalloc(𝑛) {v. ∃ℓ,𝑤 .v= ℓ∗ℓ ↦→𝑤 ∗uninit(𝑤,𝑛)∗block ℓ 𝑛}
{𝑛 ∈ size_t} xzalloc(𝑛) {v. ∃ℓ,𝑤 .v= ℓ∗ℓ ↦→𝑤 ∗zeros(𝑤,𝑛)∗block ℓ 𝑛}

Fig. 1. Memory operations and wrappers in separation logic.

new verification approach, abductive deductive verification, which integrates ideas from abductive

inference with deductive separation logic verification to infer specifications in separation logic.

Automating separation logic. For deductive separation logic verification and automation,

we follow in the footsteps of RefinedC [52]. RefinedC is a recently developed separation logic

verification technique for establishing functional correctness of C code. Its distinguishing feature

is that it is foundational and, additionally, automated: Embedded into the Coq proof assistant,

RefinedC (1) provides powerful automation of separation logic, (2) inherits support for a large

variety of functional correctness reasoning from Coq’s ambient meta-logic, and (3) is proven sound

against Caesium, a detailed model of the C semantics in Coq. For Quiver, we take inspiration

from RefinedC’s approach to separation logic proof automation (i.e., goal-directed proof search for

weakest preconditions; see §2), its separation logic-based type system for handling the complexities

of C, and its embedding into Coq to support a large variety of mathematical theories.

As mentioned above, a weak spot of RefinedC is that it—like other deductive verification

techniques—requires considerable amounts of specification. To illustrate this point, let us consider

a poster child example for specification inference:

1 [[rc::parameters(n: Z)]]

2 [[rc::args(n @ int<size_t>)]]

3 [[rc::exists(l : loc)]]

4 [[rc::returns(l @ &own<uninit<n>>)]]

5 [[rc::ensures(block l n)]]

6 void *xmalloc(size_t size) {

7 void *ptr = malloc(size);

8 if (ptr == NULL) abort();

9 return ptr; }

10 [[rc::parameters(n: Z)]]

11 [[rc::args(n @ int<size_t>)]]

12 [[rc::exists(l : loc)]]

13 [[rc::returns(l @ &own<zeros<n>>)]]

14 [[rc::ensures(block l n)]]

15 void *xzalloc(size_t size) {

16 void *ptr = xmalloc(size);

17 memset(ptr, 0, size);

18 return ptr; }

The functions xmalloc and xzalloc are simple helper functions for wrapping memory allocation

in C (inspired by similar wrappers in popular open source projects [15, 22, 48]). They encapsulate

common patterns such as (1) handling the case that allocation fails and malloc returns NULL (xmalloc)

and (2) initializing freshly allocated memory with zeros (xzalloc). The implementations of the two

functions are dead simple. Yet, when verifying them in RefinedC, we end up writing more lines of

specification (Lines 1-5 and Lines 10-14) than there are lines of code. And for no good reason: as

we will see below, the specifications of xmalloc and xzalloc can be inferred from those of malloc,

memset, and abort.

Abductive inference. A key building block for us in reducing the specification burden is the

idea of abductive inference in the sense that we infer the specification for a piece of code by “puzzling
together” existing specifications for its component parts. To illustrate this idea, let us assemble the

specifications of xmalloc and xzalloc from the auxiliary operations malloc, memset, and abort. The

specifications of all operations are depicted in Fig. 1. (For simplicity, we phrase these specifications
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in a separation logic instead of RefinedC’s type system.) The operation malloc takes a size_t
integer 𝑛 and returns either NULL or a pointer ℓ to a memory block of size 𝑛 (denoted block ℓ 𝑛)
whose contents𝑤 are uninitialized (denoted uninit(𝑤,𝑛)). The operation memset, called with zero,

initializes the contents of a pointer with zeros (denoted zeros(𝑤,𝑛)), and the operation abort never

returns (postcondition False). Using these specifications, we can assemble the specification of

xmalloc (and analogously xzalloc) as follows: The precondition 𝑛 ∈ size_t is inherited from

malloc. The postcondition is derived from the post of malloc knowing that, in the NULL-case, we

never return due to abort.

The idea of using abductive inference in separation logic is not new. It was first pioneered by

bi-abduction [5, 6], a landmark technique for compositional shape analysis based on separation logic.

Bi-abduction is one of the cornerstones of Meta’s Infer tool for detecting bugs in millions of lines of

code [4] and also inspired a line of research on bug finding using incorrectness logic [40, 47, 32]. It

takes as input the code of a function and generates a separation logic specification that summarizes

the footprint of the code via abductive inference. However, in the interest of supporting “push-

button” automation, bi-abduction focuses on fixed, restricted fragments of separation logic. For

example, the original work of Calcagno et al. [5, 6] restricts attention to points-to assertions ℓ ↦→ v,
list segments lseg(ℓ, r), and equalities v = v′. As such, it cannot express—or abductively infer—for

example, the specifications of xmalloc and xzalloc in Fig. 1, since they go beyond this fragment.
1

Abductive deductive verification. With Quiver, we pursue a fundamentally different approach.

Rather than trying to build push-button automation by restricting the separation logic fragment,

we instead aim to integrate abductive inference into deductive verification approaches that already

handle rich fragments of separation logic. To do so, we introduce a new technique we call abductive
deductive verification. The main abductive deductive verification judgment Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ}
marries deductive separation logic verification, via the weakest precondition connective wp 𝑒 {Φ},
with abductive inference of a precondition 𝑅, via the abduction judgment Δ ∗ [𝑅] ⊢ 𝐺 . Concretely,
deriving Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ} corresponds to deductively verifying the expression 𝑒 in the context Δ
while, simultaneously, abductively inferring any missing resources 𝑅 that are needed to do so. By

combining both styles of reasoning, we maintain the ability to deductively verify programs with rich

separation logic specifications while additionally benefiting from the advantages of specification

inference (e.g., inferring the specification of xmalloc while verifying it; see §6.2).

Specification sketches. Since Quiver targets rich separation logics, fully automatically puzzling

together specifications is not always the right choice (or even feasible). Consider the following

extension of the previous example—a function that allocates a vector initialized with zeros:

20 vec_t mkvec(int n) {

21 size_t s = sizeof(int) * (size_t)n; vec_t vec = xmalloc(sizeof(struct vector));

22 vec->data = xzalloc(s); vec->len = n; [[q::type(? @ vec_t)]] return vec; }

(For now, we ask the reader to ignore the annotation “[[q::...]]”.) A standard functional correct-

ness specification for mkvec would be {𝑛 ∈ int ∗ 𝑛 ≥ 0}mkvec(𝑛) {v. vec(v, 0𝑛)} where vec(v, xs)
is an abstract predicate for vectors with contents xs (a list of integers) and 0

𝑛
is a list filled with 𝑛

zeros. If we simply “puzzle together” a specification for mkvec based on the specifications of xmalloc

and xzalloc (in Fig. 1), we would arrive at a low-level specification in terms of points-to assertions

and the zeros-predicate—not a high-level specification about vectors. The underlying issue is that a

single function can have multiple specifications at different levels of abstraction—depending on the

intent of the developer. To guide the inference to the desired one, we thus use specification sketches.
1
Modifying this fragment is a challenging feat. Considerable follow-on work has gone into adding individual extensions (e.g.,
linear integer arithmetic [57] or low-level pointer representation [25]). See §7 for an overview.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 183. Publication date: June 2024.



Quiver: Guided Abductive Inference of Separation Logic Specifications in Coq 183:5

Guided specification inference à la Quiver. That is, Quiver explores the middle ground in

between (a) taking a complete specification as user input and verifying the code (as in RefinedC) and

(b) taking only the code as input and inferring the entire specification (as in bi-abduction). We take

a specification sketch as input, use it to resolve ambiguity, and complete it to a full specification—but

without requiring the user to provide every little detail. Quiver works in three steps:

(1) Data type declarations. First, the user defines their custom data types that are used in the code

(e.g., arrays, linked lists, maps, buffers, vectors, etc.). This step includes choosing mathematical

domains, imposing invariants on values, and relating mathematical and physical representations.

(2) Function specification sketches. Second, the user can provide sketches for functions. These

sketches are similar to separation logic specifications (e.g., describing the abstract predicates
for arguments). There is, however, a crucial difference: they are incomplete with holes for, e.g.,
arguments of abstract predicates, additional constraints, and missing ownership.

(3) Specification inference. Finally, Quiver takes this sketch and completes it into a specification

for the entire function using abductive deductive verification. This includes adding missing

preconditions, making imprecise annotations precise, adding constraints for unspecified function

arguments, and figuring out the postcondition of the function.

In the resulting system, users control how much specification they want to provide. By default, if

the inference is successful, the resulting specification closely follows the code. If the user decides

to “sprinkle in” some annotations that constrain function arguments or local variables to a certain

data type, Quiver takes these into account and adjusts the specification accordingly. And if the

user provides the complete function specification, Quiver turns into a traditional technique for

verifying functional correctness. For example, the specifications of xmalloc and xzalloc can be

derived fully automatically without any sketches. For mkvec, we only add the sketch in Line 22: it

instructs Quiver that the return value is a vector, which results in the high-level vec-specification.

Contributions. Our key theoretical contribution is Abductive Deductive Verification (§2),

which provides a powerful basis for specification inference in rich separation logics. With the

abductive deductive verification judgment Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ}, we marry traditional deductive

verification via the weakest precondition wp 𝑒 {Φ} with abductive inference via the abduction
judgment Δ ∗ [𝑅] ⊢ 𝐺 . Our key technical contribution is that we realize abductive deductive

verification in the form of Quiver, which consists of four parts:

• The abduction engine Argon (§3), which automates the abduction judgment Δ ∗ [𝑅] ⊢ 𝐺 . Its
key contribution is a goal-directed proof search procedure for abductive inference. It supports
predicate-transformer style reasoning, necessitated by the weakest precondition wp 𝑒 {Φ},
provides extensible proof search, and has powerful support for instantiating existential quantifiers.

• The type system Thorium (§4), which uses types in separation logic (à la RefinedC) to scale

automated reasoning about the weakest precondition wp 𝑒 {Φ} to the complexities of C. Its key

contribution is that it works under incomplete information about the proof context Δ, meaning it

works even when the types that are supposed to guide the proof search are yet to be determined.

• A proof-of-concept Implementation (§5) in the Coq proof assistant [13]—with a frontend

for C, building on Iris [29] and RefinedC’s Caesium semantics for C. The implementation infers

specifications and, at the same time, proves them correct in Coq, which includes proving the

absence of out-of-bounds accesses, use-after-free, and integer overflows.

• An Evaluation (§6), applying Quiver to several interesting case studies, including a dynamically-

allocated vector data type and code from popular open-source libraries.

We provide the implementation and all inferred specifications in the accompanying Coq devel-

opment, along with an appendix containing further details on the inferred specifications [56].
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Expressions 𝑒 F 𝑥 | v | 𝑒1 ⊕ 𝑒2 | 𝑓 (®𝑒) | 𝑒.𝑚 | 𝑒1.𝑚 ← 𝑒2 | new() | let𝑥 = 𝑒1 in 𝑒2 | · · ·
Assertions 𝑃,𝑄 F ℓ ↦→ 𝑡 | loc(v, ℓ) | int(v, 𝑛) | P(v, ®𝑥) | 𝑛1 ≤ 𝑛2 | 𝑛1 = 𝑛2 | · · ·

Fig. 2. The exposition language 𝜆expo.

init(r, a, b) := r.s← a; r.e← b; assert(range(r, ?, ?))
mk_range(a, b) := let r = new() in init(r, a, b); r
size(r) := assert(range(r, ?, ?)); r.e − r.s; assert(range(r, ?, ?))

Fig. 3. The implementation of the range data type. Quiver assertion annotations in blue.

Limitations. Quiver does not infer loop invariants, but supports manually provided invariants.

Quiver does not infer specifications of function pointers and only handles sequential code. Moreover,

while Quiver builds on the detailed Caesium C semantics, Quiver does not handle all features of C.

In particular, it neither enforces that pointer accesses are aligned, nor supports unions, nor supports

integer-pointer casts, and it inherits the limitations of Caesium (e.g., no floating point numbers).

2 KEY IDEA: ABDUCTIVE DEDUCTIVE VERIFICATION
In this section, we explain our approach of abductive deductive verification. Concretely, we discuss the
abductive deductive verification judgment Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ} (in §2.1), the treatment of existential

quantification (in §2.2), and how we steer the inference via specification sketches (in §2.3). To avoid

getting bogged down in the details of C, we focus on a simple, expository language 𝜆expo for this

explanation. From §3 onwards, we will then explain how we scale the approach to actual C code.

A running example. The language 𝜆expo is depicted in Fig. 2. It is a simple, substitution-based

language with heap-allocated data structures, modeled as mutable, finite maps 𝑡 from fields to

values (similar to objects in JavaScript). We write dom 𝑡 for the fields of 𝑡 and 𝜖 for the empty map.

Valuesv can be locations ℓ and integers 𝑛. The expression new() allocates an empty struct, 𝑒.𝑚 ← 𝑒′

assigns 𝑒′ to the field𝑚 of 𝑒 , and 𝑒.𝑚 dereferences field𝑚 of 𝑒 . We abbreviate 𝑒1; 𝑒2 ≜ let = 𝑒1 in 𝑒2.
To reason about 𝜆expo in separation logic, we use resources and pure assertions. The resources are

points-to assertions ℓ ↦→ 𝑡 , which assert ownership of a struct at location ℓ with at least the fields 𝑡 ,

and abstract predicates P(v, ®𝑥) (see §2.3). The pure assertions include loc(v, ℓ) for “v is the location ℓ”

and int(v, 𝑛) for “v is the integer 𝑛”; they state facts without ownership and can thus be duplicated.

To keep matters concrete, we focus on an example in 𝜆expo, a data type for integer ranges [𝑠, 𝑒).
This range data type is represented by a struct with two integer fields: s (for the start of the range)

and e (for one past the end of the range). We define three operations operating on ranges, depicted

in Fig. 3: init for initializing a previously allocated range r with bounds a and b, mk_range for
allocating and initializing a new range from a to b, and size to determine the size of a range r.

2.1 The Essence of Abductive Deductive Verification
We start by explaining the abductive deductive verification judgment Δ∗ [𝑅] ⊢ wp 𝑒 {Φ}. It consists
of two parts: a separation logicweakest preconditionwp 𝑒 {Φ} [17, 29, 28] and an abduction judgment
Δ ∗ [𝑅] ⊢ 𝐺 where Δ is a separation logic context, 𝑅 is an additional inferred precondition, and 𝐺

is the current goal. The basic idea is that when we derive Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ}, we prove that Δ
together with 𝑅 is a sufficient precondition for 𝑒 to satisfy the postcondition Φ. That is:

Δ ∗ [𝑅] ⊢ wp 𝑒 {v. Φv} implies {Δ ∗ 𝑅} 𝑒 {v. Φv}
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Weakest Precondition Rules (Language-Specific)

wp v {Φ} ⊣ Φv (wp-val)

wp (let𝑥 = 𝑒1 in 𝑒2) {Φ} ⊣ wp 𝑒1
{
v.wp (𝑒2 [v/𝑥]) {Φ}

}
(wp-let)

wp (v.𝑚 ← 𝑤) {Φ} ⊣ ℓ ↦→ 𝑡 ∗ (ℓ ↦→ 𝑡 [𝑚 := 𝑤] −∗ Φ ⟨⟩) when loc(v, ℓ) ∗ ℓ ↦→ 𝑡 (wp-assign)

wp (v.𝑚 ← 𝑤) {Φ} ⊣ ∃ℓ, 𝑡 . loc(v, ℓ) ∗ ℓ ↦→ 𝑡 ∗ (ℓ ↦→ 𝑡 −∗ wp (v.𝑚 ← 𝑤) {Φ}) (wp-assign-def)

wp (v.𝑚) {Φ} ⊣ ℓ ↦→ 𝑡 ∗ (ℓ ↦→ 𝑡 −∗ Φ 𝑡 .𝑚) when loc(v, ℓ) ∗ ℓ ↦→ 𝑡 ∗𝑚 ∈ dom 𝑡 (wp-read)

wp new() {Φ} ⊣ ∀ℓ,v. loc(v, ℓ) ∗ ℓ ↦→ 𝜖 −∗ Φv (wp-new)

wp 𝑓 (®v) {Φ} ⊣ apply(𝑇 ®v){Φ} when spec(𝑓 ,𝑇 ) (wp-call)

wp (assert(∃𝑥 . 𝑃 𝑥)) {Φ} ⊣ assert(𝑥 . 𝑃 𝑥){Φ ⟨⟩} (wp-assert)

Abduction Rules (Generic)
abd-embed

𝐸 ⊣ 𝐺 when 𝑃 Δ ⊢ 𝑃 Δ ∗ [𝑅] ⊢ 𝐺
Δ ∗ [𝑅] ⊢ 𝐸

abd-res-ctx

Δ = Δ′, 𝑀 Δ′ ∗ [𝑅] ⊢ 𝐺
Δ ∗ [𝑅] ⊢ 𝑀 ∗𝐺

abd-res-missing

Δ ∗ [𝑅] ⊢ 𝐺
Δ ∗ [𝑀 ∗ 𝑅] ⊢ 𝑀 ∗𝐺

abd-pure-prove

Δ ⊢ 𝜙 Δ ∗ [𝑅] ⊢ 𝐺
Δ ∗ [𝑅] ⊢ 𝜙 ∗𝐺

abd-pure-missing

Δ, 𝜙 ∗ [𝑅] ⊢ 𝐺
Δ ∗ [𝜙 ∗ 𝑅] ⊢ 𝜙 ∗𝐺

abd-wand-res

Δ, 𝑀 ∗ [𝑅] ⊢ 𝐺
Δ ∗ [𝑅] ⊢ 𝑀 −∗ 𝐺

abd-wand-pure

Δ, 𝜙 ∗ [𝑅] ⊢ 𝐺
Δ ∗ [𝑅] ⊢ 𝜙 −∗ 𝐺

abd-exists

∀𝑥 . (Δ ∗ [𝑅𝑥] ⊢ 𝐺𝑥)
Δ ∗ [∃𝑥 . 𝑅𝑥] ⊢ ∃𝑥 . 𝐺𝑥

abd-all

∀𝑥 . (Δ ∗ [𝑅] ⊢ 𝐺𝑥)
Δ ∗ [𝑅] ⊢ ∀𝑥 . 𝐺𝑥

abd-end

Δ ∗ [∀®𝑥 . Δ−∗Φv] ⊢ Φv
abd-true

Δ ∗ [True] ⊢ True

Fig. 4. Weakest precondition rules for 𝜆expo and generic abduction rules. Overlapping weakest precondition
rules are applied top-to-bottom, and overlapping abduction rules are applied left-to-right.

We explain how Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ} works with the rules in Fig. 4. To stage the explanation, we

present it in three steps, moving from verification to inference. In Version 1, we use the judgment

for ordinary verification—without any inference—and explain the proof search strategy underlying

our automation: goal-directed proof search for weakest preconditions. In Version 2, we extend the

judgment to infer preconditions, by incorporating abduction into our goal-directed proof search.

In Version 3, we extend it further to infer complete specifications. In this last version, we explain

why we infer so-called “predicate transformer specifications” instead of Hoare triples.

To keep matters concrete, we focus on the operation init. For now, we ask the reader to ignore

the blue assertion in the code of init (in Fig. 3). We will infer the following specification for init:

{loc(vr, ℓ) ∗ ℓ ↦→ 𝑡} init(vr,va,vb) { . loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 [s := va, e := vb]}

The precondition assumes thatvr is a location ℓ and that this location ℓ stores a struct with contents 𝑡 .
The postcondition ensures that ℓ stores an updated struct with va in its s-field and vb in its e-field.

Version 1: Deductive verification. Say we are given the spec {𝑃init} init(vr,va,vb) { . 𝑄init}
with 𝑃init ≜ loc(vr, ℓ) ∗ℓ ↦→ 𝑡 and𝑄init ≜ loc(vr, ℓ) ∗ℓ ↦→ 𝑡 [s := va, e := vb]. We aim to deductively

verify it via the judgment Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ}, where we instantiate Δ ≜ 𝑃init, Φ ≜ 𝑄init, and 𝑒

with the body of init(vr,va,vb), and for now we ignore the precondition 𝑅 (pretend it is True).
Our proof strategy for deductive verification—following in the footsteps of RefinedC [52]—is to

employ goal-directed proof search for weakest preconditions. It is goal-directed in the sense that, to

derive Δ ∗ [ ] ⊢ 𝐺 , we iteratively inspect the current goal 𝐺 and then apply a matching rule that
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transforms𝐺 into a new goal𝐺 ′. (If multiple rules match, we use the first one whose side conditions

can be proven; the order is described in the figures.) And to reason about weakest preconditions, we

use the rule abd-embed to embed deductive proof rules of the form “𝐸 ⊣ 𝐺 when 𝑃”: here, 𝐸 is the

weakest-pre goal we are trying to solve, and𝐺 is the new subgoal that implies it under the (optional)

side condition 𝑃 . In the case of wp (vr .s← va; vr .e← vb) { . 𝑄init}, we start by using abd-embed

to apply wp-let. It breaks up sequential composition 𝑒1; 𝑒2 ≜ let = 𝑒1 in 𝑒2 by putting the wp of 𝑒2
into the post of 𝑒1, turning the goal into wp (vr.s← va)

{
.wp (vr.e← vb) { . 𝑄init}

}
.

Next, we apply wp-assign. It imposes an additional side condition on the context (via abd-embed),

namely vr should be some location ℓ for which we have a points-to assertion ℓ ↦→ 𝑡 . Thus, leaving:

loc(vr, ℓ), ℓ ↦→ 𝑡 ∗ [ ] ⊢ ℓ ↦→ 𝑡 ∗ (ℓ ↦→ 𝑡 [s := va] −∗ wp (vr .e← vb) { . 𝑄init})
The rule wp-assign has transformed the goal such that we should first give up the ownership of ℓ

(with “ℓ ↦→ 𝑡 ∗ ”) and then we get back the updated ownership again (with “ℓ ↦→ 𝑡 [s := va] −∗ ”).
We do the former with abd-res-ctx and the latter with abd-wand-res, leaving us to prove

loc(vr, ℓ), ℓ ↦→ 𝑡 [s := va] ∗ [ ] ⊢ wp (vr .e← vb) { . 𝑄init}
We proceed in a similar fashion for the second assignment, updating the points-to assertion to

ℓ ↦→ 𝑡 [s := va, e := vb], which satisfies the desired postcondition.

Version 2: Abducting the precondition. We now turn to inference. As before, we deductively
verify Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ} in goal-directed fashion—except that now we allow for the possibility

that the context Δ was not sufficient to prove the goal, and we infer the missing precondition 𝑅.

This means that, whereas Δ, 𝑒 , and Φ are inputs, 𝑅 is an output. To stage the presentation, we will

make the simplifying assumption in this version that the post Φ is simply True.
To infer the precondition 𝑃init, we solve ∅ ∗ [𝑅] ⊢ wp (vr .s← va; vr .e← vb) { . True} where

the context is empty. The proof search proceeds as in Version 1 until we reach the first assignment:

∅ ∗ [𝑅] ⊢ wp (vr .s← va)
{
.wp (vr .e← vb) { . True}

}
At this point, the rule wp-assign does not apply anymore, since the ownership of vr is not in the

context. (It is empty!) Instead, the missing ownership should come from the precondition that we

want to infer, so we must add it to the precondition 𝑅. To do so, we proceed in several steps. First,

we use a second rule for assignment, wp-assign-def, resulting in:

∅ ∗ [𝑅] ⊢ ∃ℓ, 𝑡 . loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 ∗ (ℓ ↦→ 𝑡 −∗ wp (vr .s← va)
{
.wp (vr .e← vb) { . True}

}
)

Next, since the goal has become an existential quantifier, we apply the rule for existential quantifica-

tion, abd-exists (twice). It adds existential quantifiers for ℓ and 𝑡 to the precondition 𝑅. Subsequently,

since loc(vr, ℓ) and ℓ ↦→ 𝑡 are not contained in the context ∅, they are also added to the precondi-

tion 𝑅—with abd-pure-missing for loc(vr, ℓ) and abd-res-missing for ℓ ↦→ 𝑡 . We are left to derive

loc(vr, ℓ) ∗ [𝑅′] ⊢ ℓ ↦→ 𝑡 −∗ wp (vr .s← va)
{
.wp (vr.e← vb) { . True}

}
and have already constructed 𝑅 ≜ ∃ℓ, 𝑡 . loc(vr, ℓ)∗ℓ ↦→ 𝑡 ∗𝑅′ for some 𝑅′ that is yet to be determined.

From here, the derivation proceeds as in Version 1 until we eventually arrive at the post True, facing
loc(vr, ℓ), ℓ ↦→ 𝑡 [s := va, e := vb]∗[𝑅′] ⊢ True. We finish with abd-true, resolving𝑅′ ≜ True. Thus,
we have inferred the pre 𝑅 = (∃ℓ, 𝑡 . loc(vr, ℓ) ∗ ℓ ↦→ 𝑡) such that {𝑅} init(vr,va,vb) { . True} .

Version 3: Abducting the postcondition. Next, let us infer the postcondition. Intuitively,
the postcondition should be the context at the end of the derivation (i.e., “Δ” in abd-true). The

judgment Δ ∗ [𝑅] ⊢ wp 𝑒 {Φ}, however, does not have an output for the postcondition, only for the

precondition 𝑅. The reason is that such a dedicated postcondition output is not needed—rather, we

can encode the post as part of the pre by expressing specifications as predicate transformers.
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A predicate transformer is a function 𝑇 from postconditions Φ to preconditions 𝑇 Φ such that

∀Φ. {𝑇 Φ} 𝑒 {Φ} . Predicate transformers are an alternative to Hoare triples for specifying func-

tions, where we use existential quantification (+ separating conjunctions) to express precondi-

tions, and universal quantification (+ magic wands) to express postconditions. We use colors to

highlight the precondition parts (in light blue) and postcondition parts (in violet). For example,

{loc(vr, ℓ) ∗ ℓ ↦→ 𝑡} init(vr,va,vb) { . loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 [s := va, e := vb]} can be expressed as:

𝑇init (Φ) ≜ ∃ℓ, 𝑡 . loc(vr, ℓ) ∗ ℓ ↦→ 𝑡
precondition

∗ ( loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 [s := va, e := vb]
postcondition

−∗ Φ ⟨⟩)

In this case, the value vr should be a location ℓ storing a struct with contents 𝑡 (precondition), and

afterwards the location ℓ stores the updated contents 𝑡 [s := va, e := vb] (postcondition).
To infer a predicate transformer specification, we treat the predicate Φ abstractly during the

abduction. Then, the resulting precondition 𝑅(Φ) is a predicate transformer, because

∀Φ. ∅ ∗ [𝑅 Φ] ⊢ wp 𝑒 {v. Φv} implies ∀Φ. {𝑅 Φ} 𝑒 {v. Φv}
In the case of init(vr,va,vb), we abduct ∅ ∗ [𝑅] ⊢ wp init(vr,va,vb) {v. Φv} where Φ is ab-

stract. We eventually hit the postcondition Φ ⟨⟩ (in place of “True” in Version 2). At this point,

we face loc(vr, ℓ), ℓ ↦→ 𝑡 [s := va, e := vb] ∗ [𝑅′] ⊢ Φ ⟨⟩. To finish the derivation, we “revert” the

context before the post with abd-end (“∀®𝑥” explained below), resulting in the solution 𝑅′ (Φ) ≜
loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 [s := va, e := vb] −∗ Φ ⟨⟩. Plugging this into the top-level inferred specification

𝑅(Φ) ≜ ∃ℓ, 𝑡 . loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 ∗ 𝑅′ (Φ), we see that 𝑅(Φ) coincides exactly with the specification

𝑇init (Φ). Thus, we have inferred the specification {𝑃init} init(vr,va,vb) { . 𝑄init}—stated as a

predicate transformer instead of a Hoare triple.

2.2 ExistentialQuantification
The goal-directed proof search presented above is overly simplistic in a key dimension: its treatment

of existential quantification. For existential quantification, there are really two options: (1) lift the

quantifier to the precondition (as above) or (2) instantiate the quantifier. For abductive deductive

verification to work, we need both options. With init, we have already seen a case where we

must lift the existential quantifier to the precondition, because the context ∅ is empty (in §2.1). To

illustrate when we want the second option, we consider the function mk_range.
For mk_range, we want to infer the following specification:

𝑇mk_range (Φ) ≜ True ∗ (∀ℓ,vr . loc(vr, ℓ) ∗ ℓ ↦→ { s = va; e = vb } −∗ Φvr)
The precondition isTrue and the postcondition ensures that the return valuevr is a location ℓ storing
a correctly initialized range. To understand why inferring this specification requires existential

instantiation, we unfold the weakest precondition semantics ofwp mk_range(va,vb) {Φ} because it
reveals the existential quantifier that we must instantiate. We write 𝑃 ⊨ 𝑄 for semantic entailment.

Specifically, we unfold mk_range, the let-binding, the allocation new(), and the init-call:

wp mk_range(va,vb) {v. Φv}

⊨wp let r = new() in init(r,va,vb); r {v. Φv}

⊨wp new()
{
vr .wp init(vr,va,vb) { . Φvr}

}

⊨∀ℓ,vr . loc(vr, ℓ) ∗ ℓ ↦→ 𝜖 −∗
from new()

∃ℓ, 𝑡 . loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 ∗ (loc(vr, ℓ) ∗ ℓ ↦→ 𝑡 [s := va, e := vb] −∗ Φvr)
from init(vr,va,vb)

Note the existential “∃ℓ, 𝑡 . ” arising from the call to init. We should not lift this quantifier into the

precondition, because its value depends on the result of allocating a fresh location insidemk_range.
Instead, we should instantiate this quantifier with the location ℓ obtained from new() (and 𝑡 with 𝜖).
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ex(𝑥 . ∃𝑦. 𝐺 𝑥 𝑦) ⊣ ex(𝑥,𝑦. 𝐺 𝑥 𝑦) (ex-ex)

ex(𝑥,𝑦. 𝑦 = 𝑜 ∗𝐺 𝑥 𝑦) ⊣ ex(𝑥 . 𝐺 𝑜 𝑦) (ex-inst)

ex(𝑥,𝑦. loc(v, 𝑦) ∗𝐺 𝑥 𝑦) ⊣ ex(𝑥,𝑦. 𝑦 = ℓ ∗𝐺 𝑥 𝑦) when loc(v, ℓ) (ex-loc)

ex(𝑥,𝑦. ℓ ↦→ 𝑥 ∗𝐺 𝑥 𝑦) ⊣ ℓ ↦→ 𝑡 ∗ ex(𝑥,𝑦. 𝑥 = 𝑡 ∗𝐺 𝑥 𝑦) when ℓ ↦→ 𝑡 (ex-pointsto)

ex(𝑥 . P(v, ®𝑦) ∗𝐺 𝑥) ⊣ ex(𝑥 . 𝑄 ∗𝐺 𝑥) when known(v) ∗ P(v, ®𝑦) ≜ 𝑄 (ex-unfold)

ex(𝑥 . P(v, ®𝑦) ∗𝐺 𝑥) ⊣ ∃®𝑧. P(v, ®𝑧) ∗ ex(𝑥 . ®𝑦 = ®𝑧 ∗𝐺 𝑥) (ex-pred)

Fig. 5. Existential instantiation rules for 𝜆expo (simplified), where known(v) ≜ (∃ℓ . loc(v, ℓ)) ∨ (∃𝑛. int(v, 𝑛)).

Instantiating existentials. To instantiate existential quantifiers during goal-directed proof

search, we introduce a new goal ex(𝑥 . 𝐺 𝑥) (semantically ∃𝑥 . 𝐺 𝑥 ⊨ ex(𝑥 . 𝐺 𝑥)). It is triggered for

function calls 𝑓 (®v) to instantiate existential quantifiers in the spec of 𝑓 . That is, for function calls

𝑓 (®v), we use wp-call, which looks for a specification𝑇 for 𝑓 (by searching for spec(𝑓 ,𝑇 )) and then

creates the function application goal “apply(𝑇 ){Φ}” (semantically 𝑇 Φ ⊨ apply(𝑇 ){Φ}). The proof
search treats apply(𝑇 ){Φ} roughly as “ex( . 𝑇 Φ)” (see §3) to instantiate existentials in 𝑇 .

For example, in the inference of mk_range, we eventually encounter the goal:

loc(vr, ℓ), ℓ ↦→ 𝜖 ∗ [𝑅] ⊢ ex( . ∃𝑥,𝑦. loc(vr, 𝑥) ∗ 𝑥 ↦→ 𝑦 ∗𝐺rest 𝑥 𝑦)
where ex contains the precondition part of 𝑇init and we summarize the remainder as “𝐺rest”. A

simplified selection of rules for ex(𝑥 . 𝐺 𝑥) is depicted in Fig. 5 (see §3). In this case, we proceed

by (1) gathering existentials (with ex-ex), ex(𝑥,𝑦. loc(vr, 𝑥) ∗ 𝑥 ↦→ 𝑦 ∗𝐺rest 𝑥 𝑦); (2) matching the

location ℓ based on the context (with ex-loc), ex(𝑥,𝑦. 𝑥 = ℓ ∗ 𝑥 ↦→ 𝑦 ∗𝐺rest 𝑥 𝑦); (3) instantiating
𝑥 based on equality (with ex-inst), ex(𝑦. ℓ ↦→ 𝑦 ∗𝐺rest ℓ 𝑦); (4) matching the points-to assertion

(with ex-pointsto), ℓ ↦→ 𝜖 ∗ ex(𝑦. 𝑦 = 𝜖 ∗𝐺rest ℓ 𝑦); and (5) instantiating 𝑦 based on equality

(with ex-inst), ex( . 𝐺rest ℓ 𝜖). In doing so, we arrive at the desired specification 𝑇mk_range (Φ).

∃∀-specifications. One may wonder why we bother with existential quantifier instantiation and

do not use the predicate transformer from semantically unfolding wp mk_range(va,vb) {v. Φv},
∀ℓ,vr . loc(vr, ℓ)∗ℓ ↦→𝜖 −∗ ∃ℓ, 𝑡 . loc(vr, ℓ)∗ℓ ↦→𝑡 ∗ (loc(vr, ℓ)∗ℓ ↦→𝑡 [s := va, e := vb] −∗ Φvr)

as the specification for mk_range. The underlying issue is that while predicate transformers can,

in principle, contain arbitrary quantifier alternations, a predicate transformer 𝑇 that goes beyond

a single ∃∀-alternation can barely be considered a specification: it alternates preconditions (∃)
with postconditions (∀), thus making it difficult to understand what 𝑇 means as a specification.
Therefore, a key design decision of Quiver is to restrict ourselves to a single ∃∀-alternation.

In fact, this is enforced by an asymmetry in our quantifier rules: abd-exists adds existential

quantifiers to the precondition, but abd-all does not add universal quantifiers; it only introduces

them in the goal. The rule that adds universal quantifiers to the precondition is abd-end, used only

at the very end. It adds those universal quantifiers that have been introduced by abd-all in the goal

and are potentially now contained in the context Δ. The key benefit of a single ∃∀-alternation is that,
in the resulting predicate transformers, preconditions (∃) always appear before postconditions (∀).

2.3 Specification Sketches
So far, we have discussed how we can infer specifications without any user guidance. The resulting
specifications describe “low-level” memory footprints, but they do not yet use any abstract predi-

cates (i.e., user defined predicates for data types). Abstract predicates are, however, a hallmark of

separation logic verification. For instance, for the range data type, a standard approach would be to
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conceal the implementation details behind a predicate range(vr, 𝑛s, 𝑛e), which can be understood

abstractly as “vr is the range [𝑛s, 𝑛e)”. To guide the inference towards “high-level” specifications

with abstract predicates, we integrate specification sketches into abductive deductive verification.

Specification sketches. To explain what sketches are and how we integrate them, we continue

with the range example. We define the abstract predicate range(vr, 𝑛s, 𝑛e):
range(vr, 𝑛s, 𝑛e) ≜ ∃ℓ,vs,ve . loc(v, ℓ) ∗ ℓ ↦→ {s = vs; e = ve} ∗ int(vs, 𝑛s) ∗ int(ve, 𝑛e) ∗ 0 ≤ 𝑛s ≤ 𝑛e

The predicate ensures that the s-field and e-field are integers 𝑛s and 𝑛e, and that the integer bounds
form a valid, non-negative range by imposing 0 ≤ 𝑛s ≤ 𝑛e.

To infer specifications involving the range-predicate, we add sketches to the implementation of

the range operations. A sketch is an inline assertion “assert(. . .)”, which describes part of the logical
state at the program point, and which may use question marks “?” to leave holes in the description.

For example, in init, we add the assertion “assert(range(r, ?, ?))” to mean r is some range [?, ?) at
the end of the init function. The idea is that the proof search then takes this sketch into account

and adjusts the resulting specification. That is, for init, the inferred specification becomes:

𝑇 ran
init (Φ)≜∃ℓ, 𝑡, 𝑛a, 𝑛b .loc(vr, ℓ)∗ℓ ↦→𝑡 ∗int(va, 𝑛a)∗int(vb, 𝑛b)∗0≤𝑛a ≤𝑛b ∗ (range(vr, 𝑛a, 𝑛b) −∗Φ⟨⟩)
The precondition is extended by three new assumptions: int(va, 𝑛a) and int(vb, 𝑛b) requiring va
and vb to be integers 𝑛a and 𝑛b, and 0 ≤ 𝑛a ≤ 𝑛b to impose the range constraint on the integers.

The postcondition is changed to indicate that vr stores the range [𝑛a, 𝑛b) after calling the function.

Abducting specification sketches. As far as abductive deductive verification is concerned,

every sketch corresponds to a separation logic proposition ∃𝑥 . 𝑃 𝑥 , with existential quantifiers for

question marks. For example, “assert(range(r, ?, ?))” in init corresponds to “∃𝑥,𝑦. range(vr, 𝑥,𝑦)”.
We use the sketch to update the internal separation logic state at the point of the assertion.

Concretely, to integrate sketches into Δ ∗ [𝑅] ⊢ 𝐺 , we introduce a new goal assert(𝑥 . 𝑃 𝑥){𝐺}.
When we encounter assert(𝑥 . 𝑃 𝑥){𝐺}, we first (1) prove 𝑃 𝑥 for some 𝑥—abducting additional

preconditions where necessary—and, subsequently, (2) assume 𝑃 𝑥 for the remainder of the inference.

To deal with the existential “𝑥” in the sketch “∃𝑥 . 𝑃 𝑥”, we define assert(𝑥 . 𝑃 𝑥){𝐺} using ex, roughly
as “ex(𝑥 . 𝑃 𝑥 ∗ (𝑃 𝑥 −∗ 𝐺))” (see §3). Here, we use the same pattern as wp-assign and wp-read: we

first produce “𝑃 𝑥” and then assume “𝑃 𝑥” again for the remainder of the inference.

For example, inside the derivation of init, we encounter wp (assert(∃𝑥,𝑦. range(vr, 𝑥,𝑦))) {Φ}.
We apply (wp-assert) and are confronted with the new assert-goal:

loc(vr, ℓ), ℓ ↦→ 𝑡 [s := va, e := vb] ∗ [𝑅′] ⊢ assert(𝑥,𝑦. range(vr, 𝑥,𝑦)){Φ ⟨⟩}
It boils down to ex(𝑥,𝑦. range(vr, 𝑥,𝑦) ∗ (range(vr, 𝑥,𝑦) −∗ Φ ⟨⟩)). The first part, “range(vr, 𝑥,𝑦)∗”,
is handled by (a) unfolding range(vr, 𝑥,𝑦) with ex-unfold and, then, (b) abducting anything missing

for proving the body of range(vr, 𝑥,𝑦)—here int(va, 𝑛a) int(vb, 𝑛b), and 0 ≤ 𝑛a ≤ 𝑛b—while also

instantiating 𝑥 ≜ 𝑛a and 𝑦 ≜ 𝑛b. The second part, “range(vr, 𝑥,𝑦) −∗ ”, adds range(vr, 𝑛a, 𝑛b) to the

context (abd-wand-res), which then eventually ends up in the postcondition of 𝑇 ran
init (via abd-end).

Sketches vs. specifications. The other two range operations highlight two important benefits

of specification sketches over full-fledged specifications. First, we can provide similar sketches

for multiple functions, yet obtain different specifications. For example, for the function size, we
provide the same assertion sketches as for init, yet obtain:

𝑇 ran
size (Φ) ≜ ∃𝑛s, 𝑛e . range(vr, 𝑛s, 𝑛e) ∗ (∀𝑤. range(vr, 𝑛s, 𝑛e) ∗ int(𝑤,𝑛e − 𝑛s) −∗ Φ𝑤)

The precondition range(vr, 𝑛s, 𝑛e) arises, because unlike for init, when we encounter the first sketch
in size, the context contains no information about vr that could be used to prove range(vr, 𝑛s, 𝑛e).
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State Proposition 𝑆 F 𝜙 | 𝑀 | 𝑆1 ∗ 𝑆2 | ∃𝑥 . 𝑆 𝑥 (𝑀 ∈ Resource)
Predicate Transformer 𝑇 F ∃®𝑥 . 𝑆 ®𝑥 ∗𝑇 ®𝑥 | 𝑇1 ∧𝑇2 | if 𝜙 then𝑇1 else𝑇2 | ∀®𝑥 . 𝑆 ®𝑥 −∗ Φ ®𝑥

Goal 𝐺 F Φv | 𝐸 | 𝑆 ∗𝐺 | 𝑆 −∗ 𝐺 | 𝐺1 ∧𝐺2 | if 𝜙 then𝐺1 else𝐺2

| ∃𝑥 . 𝐺𝑥 | ∀𝑥 . 𝐺𝑥 | ex(𝑥 . 𝐺𝑥) | simpl(𝑇 ){𝐺} | bind(𝐺1){𝐺2}
Contexts Δ F (Γ,Ω∗,Ω□) (Γ ∈ List(Prop), Ω ∈ List(Resource))

Fig. 6. The syntax of Argon.

abd-if-true

Δ ⊢ 𝜙 Δ ∗ [𝑅] ⊢ 𝐺1

Δ ∗ [𝑅] ⊢ if 𝜙 then𝐺1 else𝐺2

abd-if

Δ, 𝜙 ∗ [𝑅1] ⊢ 𝐺1 Δ,¬𝜙 ∗ [𝑅2] ⊢ 𝐺2

Δ ∗ [if 𝜙 then 𝑅1 else 𝑅2] ⊢ if 𝜙 then𝐺1 else𝐺2

abd-conj

Δ ∗ [𝑅𝑖 ] ⊢ 𝐺𝑖 for 𝑖 = 1, 2

Δ ∗ [𝑅1 ∧ 𝑅2] ⊢ 𝐺1 ∧𝐺2

abd-ex

ex(𝑥 . 𝐺1𝑥 | 𝑆 𝑥) ⊣ 𝐺2 when 𝑃 Δ ⊢ 𝑃 Δ ∗ [𝑅] ⊢ 𝐺2

Δ ∗ [𝑅] ⊢ ex(𝑥 . 𝐺1 𝑥 | 𝑆 𝑥)

abd-simpl

(∀Φ. 𝑇 Φ⇒ 𝑇 ′ Φ) Δ ∗ [𝑅] ⊢ 𝐺𝑇 ′

Δ ∗ [𝑅] ⊢ simpl(𝑇 ){𝑇 ′′ . 𝐺 𝑇 ′′}

abd-bind

∀Φ. Δ ∗ [𝑇 Φ] ⊢ 𝐺1 Φ Δ□ ∗ [𝑅] ⊢ 𝐺2𝑇

Δ ∗ [𝑅] ⊢ bind(Φ. 𝐺1 Φ){𝑇 ′ . 𝐺2𝑇
′}

abd-fail

Δ ∗ [False] ⊢ 𝐺

simplify

𝑃1 ⇒norm 𝑃2 𝑃2 ⇒simp 𝑃3 𝑃3 ⇒ex 𝑃4

𝑃1 ⇒ 𝑃4

Fig. 7. Additional abduction rules, extending the abduction rules of Fig. 4.

Thus, the resource is added as a whole to the precondition (via ex-pred and then abd-res-missing).

The postcondition contains the additional information that the return value𝑤 is the integer 𝑛s −𝑛e.
Second, abductive deductive verification is compositional. The sketch in init not only affects

init, but also mk_range. That is, if we infer a specification of mk_range again—against the new
specification 𝑇 ran

init—we obtain the following specification without any additional sketches:

𝑇 ran
mk_range (Φ) ≜ ∃𝑛a, 𝑛b . int(va, 𝑛a) ∗ int(vb, 𝑛b) ∗ 0 ≤ 𝑛a ≤ 𝑛b ∗ (∀vr . range(vr, 𝑛a, 𝑛b) −∗ Φvr)

The precondition changes to incorporate the additional assumptions on va and vb, and the postcon-

dition ensures that the return value vr is the correctly initialized range(vr, 𝑛a, 𝑛b) from init.

3 THE ABDUCTION ENGINE ARGON
Having introduced the idea of abductive deductive verification (§2), let us now focus on the first

part of Quiver, the abduction engine Argon. It provides automation for the abduction judgment

Δ ∗ [𝑅] ⊢ 𝐺 . Intuitively, Δ ∗ [𝑅] ⊢ 𝐺 means 𝐺 holds under the assumption of the context Δ and the

additional precondition 𝑅. Accordingly, for a context Δ = (Γ,Ω∗,Ω□), we define
Δ ∗ [𝑅] ⊢ 𝐺 ≜ (∗𝜙∈Γ 𝜙) ∗ (∗𝑄∈Ω∗ 𝑄) ∗ (∗𝑄∈Ω□

□𝑄) ∗ 𝑅 ⊨ 𝐺

The context Δ consists of three parts: pure assertions Γ (e.g., 𝑛 ≥ 0 and loc(v, ℓ)), ownership
assertions Ω∗, and persistent assertions Ω□. The assertions in Ω∗ and Ω□ are resources 𝑀 , the basic

building blocks to describe the program state (e.g., ℓ ↦→ 𝑡 and range(v, 𝑛,𝑚) in §2). The persistent

resources in Ω□ remain in the context forever while the ownership resources in Ω∗ can be removed.
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Goal-directed proof search. The key technique that turns Argon’s inference rules into an

automated abduction algorithm is goal-directed proof search: At each step of the abduction with state
Δ ∗ [𝑅] ⊢ 𝐺 , Argon matches on the goal𝐺 and applies the first rule with a matching conclusion and

whose side conditions can be proven (where the order in the paper is left-to-right, top-to-bottom).

After applying the rule, it then recursively proceeds with the premises. The goals that Argon

supports are depicted in Fig. 6. Below, we discuss which purpose they serve, and how they are dealt

with during goal-directed proof search, using the rules in Fig. 4 and Fig. 7.

Embedded goals. Embedded goals 𝐸 sit at the heart of Argon. They embed deductive proof

systems into Argon such as a weakest precondition calculus (in §2) and the type system Thorium

(in §4)—using an extensible set of reasoning rules. Concretely, when Argon encounters an embedded

goal 𝐸 (abd-embed in Fig. 4), it searches for a reasoning rule 𝐸 ⊣ 𝐺 when 𝑃 by matching on 𝐸 and

continues with the goal 𝐺 if the side condition 𝑃 is provable in the current context Δ. Embedded

goals can be weakest preconditions wp 𝑒 {Φ}, but also other auxiliary judgments (e.g., Thorium
introduces a judgment for “type conversion”, discussed in the appendix [56]).

Separating conjunction and magic wand. We turn to separating conjunction 𝑆 ∗ 𝐺 and

the magic wand 𝑆 −∗ 𝐺 . The goal 𝑆 ∗ 𝐺 instructs Argon to prove the assertion 𝑆 while 𝑆 −∗ 𝐺
introduces 𝑆 into the context. Argon avoids ambiguity during the proof search by restricting 𝑆 to

state propositions, i.e., assertions over the state of the program consisting of resources and pure

assertions. (For efficient proof automation, Sammler et al. [52] employ a similar restriction, but not

in the context of abduction.) We consider the two interesting cases: If 𝑆 = 𝜙 is a pure assertion,

we either prove 𝜙 through a pure entailment Δ ⊢ 𝜙 (abd-pure-prove in Fig. 4), or we add 𝜙 to the

precondition and the context (abd-pure-missing in Fig. 4). If 𝑆 = 𝑀 is a resource, we either find

the resource 𝑀 in the context (abd-res-ctx in Fig. 4), or we add it as a missing assertion to the

precondition (abd-res-missing in Fig. 4). The other cases for 𝑆 (namely, 𝑆1 ∗ 𝑆2 and ∃𝑥 . 𝑆 ′ 𝑥) are
handled by straightforward rules (not shown) which serve to hoist out existential quantifiers and

move a 𝜙 or𝑀 to the left side of the goal using associativity of separating conjunction. We adopt a

similar restriction for magic wands 𝑆 −∗ 𝐺 . It lets us split 𝑆 into pure assertions 𝜙 and resources𝑀

that are then added to the context (abd-wand-pure resp. abd-wand-res in Fig. 4).

Conditionals and conjunctions. We turn to conditionals if 𝜙 then𝐺1 else𝐺2 and conjunctions
𝐺1 ∧𝐺2. For a conditional if 𝜙 then𝐺1 else𝐺2, we first try to eliminate it by proving or disproving

the condition 𝜙 (i.e., by applying abd-if-true or the corresponding rule for Δ ⊢ ¬𝜙). Otherwise,
we lift it to the precondition (abd-if).

2
For conjunctions 𝐺1 ∧ 𝐺2, we lift the conjunction to the

precondition (abd-conj). Conceptually, a conjunction means the reason for the choice between both

branches is internal to the function, i.e., it cannot be influenced by the caller. For example, a call to

malloc may return NULL or a valid pointer. A client cannot influence which one it is, making the

predicate transformer for malloc a conjunction of both cases (shown in the appendix [56]).

Quantifiers and post conditions. Existential quantification ∃𝑥 . 𝐺𝑥 in the goal is resolved by

adding an existential quantifier to the precondition 𝑅 (abd-exists in Fig. 4) and universal quantifi-
cation ∀𝑥 . 𝐺𝑥 is resolved by introducing 𝑥 in the goal but leaving the precondition 𝑅 unchanged

(abd-all in Fig. 4). Universal quantifiers are added to the precondition only when we reach the

postcondition goal Φv (abd-end in Fig. 4). Concretely, when we encounter Φv, we revert those ®𝑥
that have been previously introduced in the goal (with abd-all). They are added in front of the

context Δ since the context might refer to them at this point (e.g., vr and ℓ in 𝑇mk_range in §2.2).

2
If the inferred preconditions 𝑅1 and 𝑅2 coincide, the conditional can be removed altogether by simplification. Additionally,

in some cases, the inferred preconditions 𝑅1 and 𝑅2 can also be joined using a heuristic of the Thorium type system.
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ex(𝑥 . ∃𝑦. 𝐺 𝑥 𝑦 | 𝑆 𝑥) ⊣ ex(𝑥,𝑦. 𝐺 𝑥 𝑦 | 𝑆 𝑥) (ex-exists)

ex(𝑥 . 𝜙 ∗𝐺 𝑥 | 𝑆 𝑥) ⊣ 𝜙 ∗ ex(𝑥 . 𝐺 𝑥 | 𝑆 𝑥) (ex-pure)

ex(𝑥 . 𝜙 𝑥 ∗𝐺 𝑥 | 𝑆 𝑥) ⊣ ex(𝑥 . 𝐺 𝑥 | 𝜙 𝑥 ∗ 𝑆 𝑥) (ex-pure-blocked)

ex(𝑥,𝑦. 𝑥 =𝑜 ∗𝐺 𝑥 𝑦 | 𝑆 𝑥 𝑦) ⊣ ex( . 𝐺 ′ | True) when (∃𝑥,𝑦. 𝑥 =𝑜 ∗ 𝑆 𝑥 𝑦 ∗𝐺 𝑥 𝑦) ⇒ 𝐺 ′ (ex-eq)

ex(𝑥,𝑦. 𝐺 𝑥 𝑦 | 𝑆 𝑥 𝑦) ⊣ ∃𝑦. ex(𝑥 . 𝑆 𝑥 𝑦 ∗𝐺 𝑥 𝑦 | True) (ex-lift)

ex( . 𝐺 | True) ⊣ 𝐺 (ex-done)

Fig. 8. Selection of existential instantiation rules for ex(𝑥 . 𝐺𝑥 | 𝑆𝑥).

Simplification. One of the main ways
3
to integrate reasoning about mathematical theories into

the Argon proof search is simplification. It comes in two forms: (1) a general-purpose simplification

judgment 𝑃 ⇒ 𝑄 (semantically𝑄 ⊨ 𝑃 ), which simplifies 𝑃 into𝑄 and (2) a goal simpl(𝑇 ){𝑇 ′ . 𝐺 𝑇 ′}
that uses the judgment 𝑃 ⇒ 𝑄 to simplify a predicate transformer𝑇 (abd-simpl). The simplification

judgment 𝑃 ⇒ 𝑄 proceeds in three steps
4
(simplify), 𝑃1 ⇒norm 𝑃2 ⇒simp 𝑃3 ⇒ex 𝑃4: First, with

𝑃1 ⇒norm 𝑃2, we normalize 𝑃1 into a normal form analogous to predicate transformers in Fig. 6 (e.g.,
by lifting out existentials). Then, with 𝑃2 ⇒simp 𝑃3, we simplify pure propositions in 𝑃2. Finally,

with 𝑃3 ⇒ex 𝑃4, we instantiate existentials based on equalities 𝑎 = 𝑏 in 𝑃3. For example,

𝑥 ≥ 0∗(∃𝑦. 4𝑥 =4𝑦 ∗𝑇𝑦)⇒norm∃𝑦. 𝑥 ≥ 0 ∗ 4𝑥 =4𝑦 ∗𝑇𝑦⇒simp∃𝑦. 𝑥 ≥ 0 ∗ 𝑥 =𝑦 ∗𝑇𝑦⇒ex𝑥 ≥ 0 ∗𝑇𝑥

Normalization lifts the existential to the outside, then simplification removes the multiplication

with 4 (since 4𝑥 =4𝑦 iff 𝑥 =𝑦), and finally instantiation resolves 𝑦 ≜ 𝑥 based on the equality.

As illustrated above, the simplification step 𝑃3 ⇒simp 𝑃4 integrates mathematical theories. It

uses (a) pure abduction rules 𝜙 ⇒simp 𝜓 , (b) rewriting simplification rules 𝜙 [𝑎] ⇒simp 𝜙 [𝑏] if 𝑎 = 𝑏,

and (c) solvers 𝜙 ⇒simp True if 𝜙 . We use simplification rules and solvers for, e.g., integers, injective
functions, and lists, and the simplification rules can be extended as needed.

Existential instantiation. The goal ex(𝑥 . 𝐺 𝑥) is used for existential instantiation. It has the

following key characteristics: it is agnostic to the order of existential quantifiers in 𝐺 ; it is agnostic

to the order of conjuncts in a separating conjunction; it inherits the simplification of 𝑃 ⇒ 𝑄 ; and it

allows us to destruct existential quantifiers in the context. Moreover, similar to embedded goals 𝐸,

it is extensible in the sense that additional rules can be added. To achieve these characteristics, we

generalize ex(𝑥 . 𝐺 𝑥) to the form “ex(𝑥 . 𝐺 𝑥 | 𝑆 𝑥)”, where the state proposition 𝑆 collects “blocked”

assertions (explained below) and define ex(𝑥 . 𝐺 𝑥) ≜ ex(𝑥 . 𝐺 𝑥 | True).
The proof search for ex(𝑥 . 𝐺 𝑥 | 𝑆 𝑥) proceeds by applying existential instantiation rules of the

form ex(𝑥 . 𝐺1 𝑥 | 𝑆 𝑥) ⊣ 𝐺2 when 𝑃 (abd-ex), analogous to the rule for embedded goals (abd-embed

in Fig. 4). We discuss the most important rules, depicted in Fig. 8 (and omit rules such as applying

associativity for separating conjunction): For existential quantifiers ∃𝑦. 𝐺 𝑦, we add a binding (ex-

exists). For pure propositions 𝜙 that do not depend on 𝑥 , we lift them out of the goal (ex-pure). For

pure propositions 𝜙 that make 𝑥 precise (e.g., equality), we use simplification to instantiate the

existential (ex-eq). For pure propositions that depend on 𝑥 but do not lead to instantiation, we

put them on the “blocked stack”, meaning we add them to the state goal 𝑆 (ex-pure-blocked). The

blocked stack allows us to traverse further into the goal𝐺 and, thereby, we can be agnostic about

3
Additionally, Argon allows integrating solvers for mathematical theories via Δ ⊢ 𝜙 .

4
We may apply simplification multiple times to benefit from existential instantiations for further simplification and vice

versa. By default, the implementation of Quiver simplifies twice.
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the order of conjuncts in a separating conjunction. A blocked assertion may become unblocked

when we can instantiate an existential. Thus, ex-eq adds the “blocked stack” back into the goal.

For resources𝑀 , each instantiation of Argon can handle them as desired by extending the rules of

ex(𝑥 . 𝐺1 𝑥 | 𝑆 𝑥) ⊣ 𝐺2 when 𝑃 . For example, we have seen (simplified) rules in Fig. 5, and Thorium

adds rules for its resources: type assignments (see §4). Finally, we have rules for when the goal𝐺 is

stuck in the sense that no other rule applies: if there are existentials left to instantiate (ex-lift), we

lift one of them outside and, once there are none left (ex-done), we continue with the goal 𝐺 .

Sequential composition. The goal bind(Φ. 𝐺1 Φ){𝑇 . 𝐺2𝑇 } implements sequential composition
of abduction goals (abd-bind). It works as follows: First, it will abduct𝐺1 for an arbitrary postcondi-

tion Φ. The result of this abduction is a predicate transformer 𝑇 . Then, it will abduct𝐺2, passing it

the newly abducted predicate transformer𝑇 as an argument. (To implement sequential composition,

abd-bind has to avoid duplicating ownership, and therefore gives only the persistent part of the

context Δ□ to 𝐺2.) In other words, bind makes abduction available inside of an abduction.
With bind, we finally have all the pieces needed to define the goals for applying predicate

transformers apply(𝑇 ){Φ} (from §2.2) and specification sketches assert(𝑥 . 𝑆 𝑥){Φ} (from §2.3):

apply(𝑇 ){Φ} ≜ bind(Ψ. ex( . 𝑇 Ψ)){𝑇 ′ . simpl(𝑇 ′){𝑇 ′′ . 𝑇 ′′ Φ}}
assert(𝑥 . 𝑆 𝑥){Φ} ≜ bind(Ψ. ex(𝑥 . 𝑆 𝑥 ∗ (𝑆 𝑥 −∗ Ψ))){𝑇 ′ . simpl(𝑇 ′){𝑇 ′′ . 𝑇 ′′ Φ}}

Both goals have a similar structure. For apply, we instantiate the existentials in 𝑇 using ex, and
for assert, we instantiate the existentials in the sketch “𝑆 𝑥” using ex. We wrap the instantiation

of existentials in the sequential composition bind to “cleanup” after ex with a simplification

simpl. That is, since the rules for existential instantiation are extensible (abd-ex), they can trigger

arbitrary auxiliary goals, which may (indirectly) add existential quantifiers to the precondition 𝑅.

By simplifying afterwards, we can potentially eliminate some of these quantifiers (e.g., one goal
might add “∃𝑛. · · · ” and another might add “𝑛 = 0”, which is then simplified by picking 𝑛 ≜ 0).

Loops. Argon does not infer loop invariants, but supports loops with manually provided loop

invariants (without sketches). For a given loop invariant 𝑆inv, the proof search proceeds in four

steps: (1) when we reach the loop, we abduct the invariant 𝑆inv using ex; (2) we abduct the body of

the loop assuming the loop invariant 𝑆inv; (3) before the next iteration, we reestablish 𝑆inv again

using ex; finally, (4) we check that 𝑆inv is indeed a loop invariant by ensuring the abduction of the

loop body did not require any additional preconditions.

Failure. Finally, if no other Argon rule applies, the inference fails (abd-fail). In this case, Argon

terminates by inserting amarker into the precondition and provides the partial inferred precondition

to the user. In impossible cases (e.g., a location is NULL, but we are supposed to provide ownership), the
marker can contain information explaining what went wrong, provided by the Argon instantiation.

To remain sound, the marker is semantically interpreted as False, as indicated in abd-fail.

4 THE TYPE SYSTEM THORIUM
In §2, we have seen how to apply abductive deductive verification to a simple separation logic. In

Quiver, to scale to the complexities of C, we use a richer separation logic, Thorium. Following in

the footsteps of RefinedC [52], Thorium is a separation logic-based type system. In the following,

we explain its core ingredients: type assignments and typed weakest preconditions. A more detailed

discussion of how Thorium builds proof search on top of these core ingredients—using typing rules
in place of the weakest precondition rules in Fig. 4—is contained in the accompanying appendix [56].

Type assignments. Instead of abstract predicates P(v, 𝑥) and points-to assertions ℓ ↦→ v (as we

considered in §2), resources in Thorium are type assignments. They are of the form v ⊳𝑣 𝐴 (read “v is
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Types 𝐴, 𝐵 F void | null | num[it]𝑛 | any𝑛 | zeros𝑛 | value𝑛v | ∃𝑥 . 𝐴 𝑥 | 𝐴 ∗ 𝑃
| own ℓ 𝐴 | optional𝜙 𝐴 | fn𝑇 | ®𝑥 @ P | struct[s] ®𝐴 | array[P] xs | · · ·

Resources 𝑀, 𝑁 F v ⊳𝑣 𝐴 | ℓ ⊳𝑙 𝐴 | block ℓ 𝑛 | · · ·
Embedded Goal 𝐸 F wp 𝑒 {v, 𝐴. Φv𝐴} | cast (it2)it1 (v : 𝐴){𝑤, 𝐵. Φ𝑤 𝐵} | · · ·

Fig. 9. Thorium types, resources, and goals.

an 𝐴”) and ℓ ⊳𝑙 𝐴 (read “ℓ stores an 𝐴”; semantically (∃v. ℓ ↦→ v ∗v ⊳𝑣 𝐴) ⊨ ℓ ⊳𝑙 𝐴). For each type 𝐴,

they have an interpretation in terms of more traditional separation logic assertions. For example,

the resource v ⊳𝑣 own ℓ (num[int]𝑛) means “v is an owned pointer ℓ storing the int-integer 𝑛”,
which formally boils down to v ⊳𝑣 own ℓ (num[int]𝑛) ⇔ v = ℓ ∗ ℓ ↦→ 𝑛 ∗ 𝑛 ∈ int.

The types of Thorium are depicted in Fig. 9. We explain the most important types by returning to

the range data type (§2). In C, it would be declared as typedef struct ran {int s; int e} *range;

and, for the predicate range(v, 𝑛s, 𝑛e) (from §2.3), the analogous Thorium type is defined as:

(𝑛s, 𝑛e) @ range ≡ty ∃ℓ . own ℓ (struct[ran] [𝐴s;𝐴e]) ∗ 0 ≤ 𝑛s ≤ 𝑛e ∗ block ℓ szran
where 𝐴s ≜ num[int]𝑛s, 𝐴e ≜ num[int]𝑛e, and szran ≜ sizeof(struct ran)

Types of the form ®𝑥 @ P correspond to user-defined abstract predicates and are defined via a

(possibly recursive) equation ®𝑥 @ P ≡ty 𝐴. The type (𝑛s, 𝑛e) @ range ensures that its values are

owned pointers ℓ (via “own ℓ 𝐴”) to a ran-struct (via “struct[s] ®𝐴”) with two fields: s containing
int-integer 𝑛s (via “num[it]𝑛”), and e containing the int-integer 𝑛e. To hide the location ℓ , we

use type-level existential quantification “∃𝑥 . 𝐴 𝑥” and, to impose the bounds constraint 0 ≤ 𝑛s ≤ 𝑛e,

we use type-level separating conjunction “𝐴 ∗ 𝑃”. Besides the bounds constraint, the type carries an
additional constraint: the resource “block ℓ 𝑛”. It tracks the length of dynamically allocated blocks

(e.g., via malloc; see Fig. 1) to ensure that ownership of the entire block is given up when freeing ℓ .

Typed weakest preconditions. Instead of standard weakest preconditionswp 𝑒 {v. Φv} (in §2),

we use typed weakest preconditionswp 𝑒 {v, 𝐴. Φv𝐴} in Thorium: their postcondition Φ is about the

resulting value v and, additionally, its type 𝐴. This type 𝐴 can then be used by auxiliary embedded

goals like cast (it2)it1 (v : 𝐴){Φ} (for C-level integer type cast) to steer the proof search—via typing
rules in place of the weakest precondition rules in Fig. 4. For example, to cast an int into a size_t in-
teger, the typing rule cast (size_t)int (v : num[int]𝑛){Φ} ⊣ 𝑛 ≥ 0 ∗ ∀𝑤. Φ𝑤 (num[size_t]𝑛)
requires 𝑛 to be non-negative and continues with 𝑛 as a size_t-integer in the postcondition. We

expand on how types and typing rules affect the proof search in the accompanying appendix [56].

5 IMPLEMENTATION
We have developed a prototype implementation of Quiver in Coq. More specifically, we have

implemented the goal-directed abduction engine Argon Δ ∗ [𝑅] ⊢ 𝐺 (which embeds the typing

rules of Thorium) as an automated abduction procedure in Coq. For a given C function (and possibly

a sketch), it (1) infers a specification and, at the same time, (2) proves its correctness.

We use the Coq proof assistant as a foundation for Quiver for two main reasons: First, Quiver

inherits Coq’s rich logic for expressing complex correctness properties (as evaluated in §6). Second,

it allows us to ensure the correctness of the inferred specifications. Concretely, we have proven

Quiver’s inference foundationally sound against RefinedC’s C semantics, Caesium. Caesium pro-

vides a detailed formalization of C, modeling many challenging features ranging from bounded

integers and pointer arithmetic, over uninitialized memory with poison semantics and address-of

operator (also on local variables), to manipulation of the underlying byte-level representation of
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1 vec_t mkvec(int n){ size_t s=sizeof(int)*(size_t)n; vec_t vec=xmalloc(sizeof(*vec));

2 vec->data=xzalloc(s); vec->len=n; [[q::type(? @ vec_t)]] return vec; }

3

4 [[q::requires(ˆvec ⊳𝑣 ? @ vec_t)]][[q::ensures(ˆvec ⊳𝑣 ? @ vec_t)]]

5 int vec_grow(vec_t vec, int new_size)

6 { if (vec == NULL) { return 0; }

7 if (new_size <= vec->len) { return vec->len; }

8 int *buf = xmalloc(sizeof(int) * new_size);

9 memcpy(buf, vec->data, sizeof(int) * vec->len);

10 free(vec->data); vec->data = buf;

11 memset(&(vec->data[vec->len]), 0, sizeof(int) * (new_size - vec->len));

12 vec->len = new_size; return vec->len; }

Fig. 10. The implementation of the vector. Quiver annotations in blue.

values.
5
To prove Quiver sound against Caesium, we have used the separation logic framework

Iris [29, 28, 30] to model Argon and Thorium. We have proven all rules sound against this model:

Theorem 5.1. All Argon and Thorium rules are sound wrt. the Caesium C semantics.

The automated abduction procedure combines the soundness of the individual rules into a foun-

dational proof that the inferred specifications are sound. In our examples, we assume specifications

for common operations from the C standard library (e.g., malloc, memset, and abort in Fig. 1), which

can be found in the accompanying appendix [56]. Thus,

Corollary 5.2. Assuming the standard library function satisfy their specifications, the specifica-
tions inferred by Quiver are sound wrt. the Caesium C semantics.

Finally, Quiver comes with a frontend that automatically translates annotated C code into

(1) corresponding Caesium code, (2) type declarations in Thorium, and (3) calls to the abduction

procedure for Argon. The abduction procedure is implemented using Coq’s Ltac tactic language [16]

and typeclass mechanism [55].

6 EVALUATION
To evaluate Quiver, we have applied it to several interesting case studies, listed in Fig. 12. We split

our evaluation into two parts: First, we take a closer look at a specific case study, a vector, to get a

sense of the kind of specifications that Quiver can infer (in §6.1). Then, we discuss the aggregate

results of evaluating Quiver on these case studies (in §6.2).

6.1 The Vector Case Study
Inspired by C++ and Rust, a vector is a dynamically-sized array that tracks its length. An excerpt

of the vector implementation is depicted in Fig. 10. In this implementation, vectors are of C type

typedef struct vector {int *data; int len;} *vec_t. They are pointers to a struct with two fields:

the data-field storing the contents of the vector in a dynamically allocated array of integers and the

len-field tracking the length of the vector. For vectors in Quiver, we define the Thorium-data type:

xs @ vec_t ≡ty ∃ℓ . own ℓ (struct[vector] [𝐴data;𝐴len]) ∗ block ℓ szvec
where 𝐴data ≜ ∃r .own r (array[num[int]] xs)∗block r (szint ·len xs), 𝐴len ≜ num[int] (len xs)
5
Quiver’s version of Caesium forgoes checking alignment of accesses as the resulting constraints would clutter the inferred

specifications and we do not use the integer-pointer-casting semantics introduced by Lepigre et al. [34].
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𝑇mkvec (vn) (Φ) ≜ ∃𝑛. (vn ⊳𝑣 num[int]𝑛 ∗ 𝑛 ≥ 0) ∗ (∀𝑤.𝑤 ⊳𝑣 0
𝑛 @ vec_t −∗ Φ𝑤)

𝑇grow (vvec,vnew) (Φ) ≜ ∃xs, 𝑛. (vvec ⊳𝑣 xs @ vec_t ∗vnew ⊳𝑣 num[int]𝑛) ∗
if 𝑛 ≤ len xs then∀𝑤.vvec ⊳𝑣 xs @ vec_t ∗𝑤 ⊳𝑣 num[int] (len xs) −∗ Φ𝑤

else∀𝑤.vvec ⊳𝑣 (xs ++ 0𝑛−len xs) @ vec_t ∗𝑤 ⊳𝑣 num[int]𝑛 −∗ Φ𝑤

Fig. 11. Inferred vector specifications, preconditions in light blue and postconditions in violet.

That is, for a mathematical list of integers xs, a value of type xs @ vec_t is an owned pointer ℓ to

a vector-struct. It stores in its data-field an owned pointer r to an array of integers xs and in its

len-field the length of xs as an integer. It tracks the memory block resources of ℓ of size szvec and r
of size szint · len xs where szvec ≜ sizeof(struct vector) and szint ≜ sizeof(int).

We focus on two vector operations (see the appendix [56] for more): The operation mkvec creates

a new vector of length 𝑛 initialized with zeros, and the operation vec_grow extends a vector by

allocating a new underlying buffer. Concretely, vec_grow allocates a new content array buf of larger

size (Line 8), copies the contents of the old array over (Line 9), frees the old array (Line 10), sets all

uninitialized memory to zero (Line 11), and returns the new length (Line 12).

Sketches and inferred specifications. For each operation, the specification sketches are an-
notated with “[[q::...]]” in Fig. 10, where q::requires sketches preconditions, q::ensures
postconditions, q::type the type of an expression, and ˆvec means vvec. The inferred specifications
are depicted in Fig. 11. For mkvec, Quiver infers that the size 𝑛 must be a non-negative int-integer
and that the return value is a vec_t-vector filled with 0

𝑛
, a list of 𝑛 zeros. For vec_grow, Quiver

infers a conditional specification: if 𝑛 ≤ len xs, the vector is unchanged and len xs is returned;
otherwise, the vector grows by 𝑛 − len xs zeros and 𝑛 is returned as the new length. To arrive at this

specification, Quiver (1) infers the type of the unspecified argument vnew, (2) resolves the quantifier
alternations that arise from each memory operation (a ∃∀ for each operation), (3) instantiates the

sketches (including xs ++ 0𝑛−len xs @ vec_t for the second case), (4) proves that len(xs ++ 0𝑛−len xs) = 𝑛

when 𝑛 > len xs, and (5) prunes the branch returning 0 using the fact that xs @ vec_t is never NULL.

Abductive deductive verification. The vector case study illustrates concisely the benefits

of abductive deductive verification. On the one hand, we are doing expressive separation logic

verification. For example, (a) vectors track their contents as a mathematical list of integers, (b)

vectors maintain the invariant that the length of the list is stored in the field len, (c) dynamically

allocated memory can be of variable length, which is tracked via a predicate block, (d) pointer
arithmetic is used to compute fields of structs andmembers of arrays, and (e) pointer-level operations

(e.g., memset and memcpy) are used to manipulate high-level data types (e.g., arrays). On the other

hand, we can significantly benefit from inference for the verification. In particular, we only need

to provide the key bit of information—that a certain value is a vector—and can use inference to

complete the rest. In the accompanying appendix [56], we show that the same sketches suffice for

additional, quite different vector operations (e.g., for getting and setting elements in the vector).

6.2 Aggregate Evaluation
We evaluate the prototype implementation of Quiver on three axes: (1) the expressivity (compared

to bi-abduction), (2) the specification overhead (compared to RefinedC), and (3) the merit of the

inferred specifications. We do so using the case studies in Fig. 12. For each case study, we provide a

more detailed discussion in the appendix and all implementations and inferred specifications can
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Implementation Specification Execution

Name Functions Code Type Specs Sketch Annot Coq ∃ 𝜙 Time

Allocators xmalloc, xzalloc, xrealloc, . . . (+3) 41 mem 55 0 0 0 77 44/31 0:58

Linked list

init, is_empty, push, pop,
37

mem 27 0 0 0 16 11/2 0:27

reverse (only functional) func 25 10 11/5/0 0 39 21/8 0:46

Vector

mkvec, get_unsafe, grow,
59

mem 147 0 0 0 106 62/27 2:48

get_checked, vec_free, . . . (+3) func 75 14 11/0/0 0 117 164/43 2:40

Bipbuffer new, free, request, push, . . . (+11) 105 len 210 21 10/0/2 0 378 476/160 8:51

OpenSSL BUF_MEM_new, BUF_MEM_free,
107

mem 249 0 0 0 285 302/113 14:14

Buffer BUF_MEM_grow, . . . (+3) len 94 9 14/0/4 0 310 431/90 9:50

Binary search bin_search 14 func 11 5 7/8/0 49 18 49/3 0:41

Hashmap init, probe, realloc, . . . (+5) 101 func 79 72 19/18/7 506 221 375/123 7:56

Fig. 12. Evaluation ofQuiver. Code: lines of C code as formatted by clang-format; Type: type of inferred speci-
fication (i.e., mem: memory safety, len: length and type invariants, func: functional); Specs: size of the inferred
specification; Sketch: size of the function sketches; Annot: size of type definitions/size of loop invariants/addi-
tional inference instructions; Coq: pure Coq definitions and lemmas; “∃”: number of instantiated existential
quantifiers; “𝜙”: number of proven/simplified side conditions; Time: execution time in minutes:seconds.

be found in the Coq development [56]. The Allocators case study considers common wrappers

around standard library functions for memory allocation (e.g., xmalloc and xzalloc). The Linked

List case study considers a singly linked-list implementation with pointer elements, and the Vector

case study extends the vector from §6.1. The OpenSSL Buffer and Bipbuffer case studies consider

open-source buffer implementations from OpenSSL [42] and memcached [37]. The Binary Search

case study considers binary search on sorted integer lists, and the Hashmap case study considers a

hashmap with linear probing. For each case study, we measure the execution time on a single core

of an Apple M1 Pro processor (Time).

Expressivity (vs. Bi-abduction). To understand the degree of expressivity that Quiver supports,
we consider several types of specifications (Type in Fig. 12), increasing in complexity: We infer

memory safety specifications (mem) for several examples—including the Allocators, whose inferred

specifications (e.g., xmalloc and xzalloc) we use in other case studies. We infer length specifications
(len) for the open-source buffers, which track the length of the buffer and data type invariants about

its fields. We infer functional specifications (func) for the Linked List and the Vector, which track

their contents as mathematical lists. And, to test the boundaries of Quiver, we consider a binary

search implementation and a Hashmap, a version of the most complex functional correctness case

study of Sammler et al. [52] specialized to integer values.
6

The case studies demonstrate that Quiver, embedded into Coq, supports expressive separation

logic reasoning over a variety of mathematical domains (e.g., integers, lists, maps, and custom

inductive types). For example, Quiver figures out that (a) if 𝑛 < 0x5ffffffc, then (𝑛 + 3)/3 · 4
will not overflow the size_t type (OpenSSL Buffer) and (b) grow results in the vector xs ++ 0𝑛−len𝑥𝑠 ,
which extends the original list xs with 𝑛 − len𝑥𝑠 zeros (Vector). Moreover, provided with loop

invariants and additional Coq lemmas and definitions, Quiver does significant functional correctness

reasoning for the Binary Search and Hashmap. The expressivity of Quiver goes considerably beyond

6
Differences to the implementation of Sammler et al. [52] are discussed in the supplementary material.
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the original bi-abduction inference [5, 6] and also what is nowadays used in Infer [26].
7
In exchange,

it requires more input from the user, in particular for more expressive specifications.

Specification overhead (vs. RefinedC). To understand how much specification Quiver infers,

we compare the size of the inferred specifications (Specs) with the size of our sketches (Sketch)

and other annotations (Annot). We measure the size of specifications and sketches by counting

the number of quantifiers, conditionals, conjunctions, type assignments, and other individual pre-

and postconditions (e.g., the size of 𝑇mkvec would be 5). We separately count other annotations

such as type definitions, loop invariants, and inference instructions. A handcrafted specification—

as it would be provided in RefinedC—could in some cases reduce the size (e.g., by joining the

branches in 𝑇grow), but nevertheless comparing sketches and specs gives an idea how much Quiver

infers. Concretely, for the “memory” case studies, we provide no sketches—the specifications are

completely inferred. By design, they are low-level (e.g., see Fig. 1) and can be verbose. For all

other case studies, we provide sketches. They are typically significantly smaller than the resulting

specification and often contain ? -holes (e.g., all 14 Vector sketches boil down to ? @ vec_t). In
RefinedC, by contrast, specifications have to be provided in full. Among our case studies, there are

two outliers: the Binary Search and the Hashmap. This is no surprise, since both require nuanced,

ad-hoc functional correctness reasoning with additional pure Coq definitions and lemmas (Coq). For

them, the specification overhead is overshadowed by the additional proof overhead. Nevertheless,

even for those two, Quiver does interesting inference: it completes the return type of Hashmap

init, and it derives the postcondition of the Binary Search from a loop invariant.

Merit of the specifications. The specifications that Quiver infers provide four key benefits:

First, they are an additional form of documentation. Quiver outputs a pretty-printed version of

the inferred predicate transformer, which can be read by humans. For example, in the Vector,

Quiver adds the constraints on the vector size in the specification of mkvec. Second, the inferred

specifications provide assurances about the code. That is, due to soundness (Corollary 5.2), the

inferred specifications cannot “hide” any preconditions that are undocumented in the code. For

example, in the Bipbuffer, Quiver discovers a fact about the implementation that is easy to miss in

the code: the implementation uses mismatched integer types (e.g., the size field of the buffer uses

unsigned long int, but the corresponding accessor function returns int), resulting in an additional
precondition in the generated specifications. Third, the inferred specifications are compositional. We

inherit compositionality from working in separation logic. In particular, in many of the case studies,

we infer specifications of auxiliary functions, which are then reused in the inference of others

(e.g., BipBuffer, OpenSSL Buffer, and Hashmap); and we use the inferred Allocator specifications in

other case studies (e.g., in the Vector, List, Hashmap). Fourth, the inferred specifications abstract
over the implementation. By insisting on a single ∃∀-alternation, Quiver ensures that the inferred
specification condenses the implementation into preconditions and postconditions. In doing so,

it takes care of the intricacies of the C implementation and intermediate proof obligations. To

gain some insight into how much work goes into this summarization, we count the number of

instantiated existentials (∃) and proven/simplified side conditions (𝜙).

Real-world code. Finally, our case studies test whether Quiver can handle the complexities of

real-world code. We have applied Quiver to two buffer implementations taken from popular open

source libraries, OpenSSL [42] and memcached [37]. For the OpenSSL buffer, we track the length

and capacity of the buffer and enforce an invariant that the buffer capacity is always larger than

7
For example, Infer does not do integer reasoning such as (a) if 𝑛 < 0x5ffffffc, then (𝑛 + 3)/3 · 4 ≤ 0xffffffff from the

OpenSSL buffer or (b) after the loop int k = 0; while (k < 10) k++ the counter 𝑘 is 10. Quiver automatically proves

the former without any guidance, and infers the latter when guided with the loop invariant 𝑘 ≤ 10.
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the contents. For the memcached buffer, a bipartite buffer, we track the length and the relationship

between the fields that track the segments of the buffer.

7 RELATEDWORK
In the literature on separation logic verification, there is a wide gap between approaches for (a)

automatically inferring specifications vs. (b) verifying functional correctness in rich separation

logics. In the first camp, there are approaches such as bi-abduction [5, 6], which fix a particular

fragment of separation logic, and then carefully design automation to infer specifications in it. This

line of work started out with shape specifications (i.e., linked list segments and points-to assertions)

and, over the years, edged closer toward functional properties by extending the base domain to

include constraints on integers, arrays, or bags. In the second camp, there are approaches such

as RefinedC [52], which are designed for proving full functional correctness in rich separation

logics, as supported by the verification frameworks in which they are embedded (e.g., Coq [13] and

Iris [29]). This line of work, over the years, developed increasingly strong proof automation but

left specification inference largely untouched.

Quiver sits right in between these two camps, supporting a wide range in between automated

and expressive specifications (see §6.2). Typically, Quiver requires more specification guidance from

users than a fully automatic inference (increasing with expressiveness of the specification), but

significantly less than traditional, deductive approaches for rich separation logics. In exchange, it

does not fix any particular mathematical domain and, instead, is implemented in a general-purpose

proof assistant—producing certifiably correct specifications. We first compare closely with work in

both camps, and then branch out to other related work.

Inferring ownership specifications in separation logic. In their seminal work, Calcagno

et al. [5, 6] introduced bi-abduction as a technique for compositional shape analysis in separation

logic. Over the years, extensions to its original domain (i.e., points-tos and list segments) have

been proposed, including pure constraints over booleans, integers, and bags [57, 46, 23]; ordering

constraints [14]; low-level data representations [25]; second-order predicates [31]; and arrays [3].

The key contribution of these extensions is to automate the inference over their respective domain.

In contrast, Quiver’s specification inference is fundamentally different. By using abductive

deductive verification, Quiver is less automated but, in exchange, handles a much richer separation

logic by building on existing approaches for deductive proof automation. For example, the vector

example (§6.1)—combining low-level pointer operations, arrays, and integer arithmetic—goes

beyond all of these extensions, especially considering the detailed C semantics it is verified against.

Outside of the context of bi-abduction, Dohrau et al. [19] use a static analysis to infer access per-

missions for array-manipulating programs, and Ferrara and Müller [20] show how to automatically

infer access permissions using abstract interpretation. They handle different permission models

and loop invariant inference but do not consider functional correctness properties.

Functional correctness verification using separation logic. There is a wide range of ap-
proaches for verifying functional correctness based on separation logic [27, 2, 7, 39, 52, 45], most of

which do not infer specifications. We compare to the most closely related work and approaches

with some form of specification inference.

A key inspiration for Quiver is RefinedC [52], which provides automated and foundational

verification of C code. Its approach of using a type system embedded in separation logic served as a

direct inspiration for Quiver. However, RefinedC does not infer specifications and, hence, relies on

user-provided, complete specifications. To tackle specification inference, we introduced the abductive

deductive verification approach, implemented a proof engine for abduction—Argon—from scratch,

and designed a type system—Thorium—that integrates seamlessly with abduction.
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For VeriFast [27], a separation logic-based functional correctness verifier for C and Java, Vogels

et al. [59] implement a bi-abduction-based shape analysis. Unlike Quiver, it does not infer functional

correctness specifications and only infers a postcondition from a user-provided precondition.

Separately, Automated VeriFast [38] leverages errors reported by VeriFast to extend user-written

specs with additional pre- and postconditions. Automated VeriFast has only been demonstrated on

predicates tracking the length of singly-linked lists.

Dohrau [18] presents a learning-based permission inference for the Viper automated verifier [39].

Their approach can automatically infer loop invariants and predicate definitions, but only considers

permissions, not functional correctness properties.

Liquid types. Liquid types [50, 51, 58, 33] provide a refinement type-based approach for light-

weight verification. Liquid types focus on the inference of pure refinements, not separation logic

ownership, and often consider more shape-like properties than Quiver. For example, Lehmann

et al. [33] describe a vector similar to vec_t from §2, but only track the length in the refinements,

not its precise contents. In exchange, liquid types are more automated: they infer refinements and,

additionally, loop invariants automatically.

Specification inference for other logics. Outside of the context of separation logic, a separate

body of research [54, 1, 44] considers inferring specifications for programs that do not involve

pointer manipulation or a heap. This restriction sidesteps the main challenges this paper focuses on

(see, e.g., the vector in §6.1). In exchange, they typically obtain exact (i.e., sufficient and necessary)

preconditions, whereas Quiver infers sufficient preconditions.

Characteristic formulae. A characteristic formula [10, 11] is a direct translation of a program

into a separation logic formula. Characteristic formulae are not intended as specifications, but

as an intermediate representation used during verification. In particular, they still contain all

intermediate proof obligations required to verify a function. In contrast, Quiver infers specifications

that summarize the behavior of a function in terms of pre- and postconditions (i.e., in ∃∀-form;

see §2.2) by resolving quantifier dependencies and solving side conditions.

8 CONCLUSION AND FUTUREWORK
With Quiver, we have introduced the idea of abductive deductive verification (§2) and applied it to

specification inference of C programs, using the abduction engine Argon (§3) and the separation

logic based type system Thorium (§4). In the future, it would be interesting to apply abductive

deductive verification, and in particular Argon, to other languages and flavors of separation logic.

Moreover, it would be interesting to investigate loop invariant inference. Finding loop invariants in
separation logic is a non-trivial task: it requires finding pure invariants and, additionally, invariants

about resources. For restricted fragments of separation logic, loop invariant inference techniques

have been developed [35, 5, 23, 25]. But for rich separation logics like the one targeted by Quiver,

no loop invariant inference algorithms are known. Thus, like Quiver, deductive verification tools

for expressive separation logics (e.g., VeriFast, CN, Viper, and RefinedC) require user-provided

loop invariants. It would be interesting to investigate how to integrate (a) existing loop invariant

inference algorithms for separation logic when the invariant falls into a supported fragment, (b)

learning techniques as an approach to loop invariant inference, or (c) existing non-separation logic
loop invariant inference techniques by requiring loop invariant sketches (for the resources) but

leaving holes for the pure invariants—potentially using abduction to determine how the pure values

evolve inside the loop.
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