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Rust is a modern systems programming language whose ownership-based type system statically guarantees

memory safety, making it particularly well-suited to the domain of safety-critical systems. In recent years, a

wellspring of automated deductive verification tools have emerged for establishing functional correctness of

Rust code. However, none of the previous tools produce foundational proofs (machine-checkable in a general-

purpose proof assistant), and all of them are restricted to the safe fragment of Rust. This is a problem because

the vast majority of Rust programs make use of unsafe code at critical points, such as in the implementation

of widely-used APIs. We propose RefinedRust, a refinement type system—proven sound in the Coq proof

assistant—with the goal of establishing foundational semi-automated functional correctness verification of

both safe and unsafe Rust code. We have developed a prototype verification tool implementing RefinedRust.

Our tool translates Rust code (with user annotations) into a model of Rust embedded in Coq, and then checks

its adherence to the RefinedRust type system using separation logic automation in Coq. All proofs generated

by RefinedRust are checked by the Coq proof assistant, so the automation and type system do not have to be

trusted. We evaluate the effectiveness of RefinedRust by verifying a variant of Rust’s Vec implementation that

involves intricate reasoning about unsafe pointer-manipulating code.
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1 INTRODUCTION
Rust [47] is a modern systems programming language that is seeing increasingly widespread

adoption in industry as an essential tool for building more trustworthy systems code [2, 45]. One

of Rust’s key selling points is that its core type system guarantees memory safety, thus ruling out

common errors made by programmers in legacy systems programming languages like C and C++,

without compromising on performance. Indeed, Rust’s memory safety guarantees are a primary

factor driving its adoption in safety-critical systems like the Linux kernel [50].
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Of course, for safety-critical programs, it is not ultimately sufficient that they are memory-safe—

we also want to establish that they do what they are supposed to do, i.e., that they satisfy functional
correctness properties. Toward that end, there has emerged a wellspring of exciting research in

recent years, leading to a range of new verification tools, such as Prusti [3], Creusot [9], Flux [28],

and Aeneas [12]. These tools have made impressive strides forward, particularly in leveraging the

expressive power of the Rust type system to simplify the task of verifying Rust programs.

However, all the aforementioned verification tools share two key limitations. One is that, like

most practical verification tools, they are standalone software artifacts, the implementations of

which are increasingly complex and thus add significantly to the trusted computing base (TCB)

of any verification conducted with them. The other limitation pertains to the handling of unsafe
code. Although Rust is renowned for its safety guarantees, its type system is sometimes overly

restrictive: there are certain systems programming idioms which cannot be implemented in safe

Rust. As a result, many observably safe Rust APIs are implemented internally with sparing use of

unsafe features of the language (such as raw pointer manipulations or unchecked type casts, which

may result in undefined behavior). Yet none of the previous verification tools for Rust (see §7 for a

comparison to GillianRust [55], which was developed concurrently with RefinedRust) support the

verification of Rust APIs implemented with unsafe code.

Ideally, we would like to develop technology for verifying Rust programs that avoids both of

these limitations—i.e., that handles unsafe code, and that lowers the TCB by producing foundational
proofs in a proof assistant such as Coq—while retaining support for automated verification.

To that end, we present RefinedRust, a new approach to the foundational verification of

Rust programs, based on refined ownership types [41]. RefinedRust is the first approach to Rust

verification that simultaneously (1) handles real (surface) Rust code, (2) provides support for proof

automation, both for safe and unsafe Rust code, and (3) outputs machine-checkable proofs for all

verified code. We have implemented a prototype of RefinedRust in Coq. Its automation support is

fairly basic compared to that of previous non-foundational Rust verification tools, but no previous

tool (foundational or otherwise) supports any automation for verifying unsafe Rust code, and thus

RefinedRust makes an important first step.

As the name suggests, the starting point for RefinedRust is Sammler et al.’s earlier work on

RefinedC [41], a system for verifying functional correctness of C programs that is both foundational

and semi-automated. RefinedC achieves this goal by developing an extension of C’s type system

with refinement and ownership types, which enable it to express rich functional specifications on

the behavior of C code. RefinedC defines a semantic model of its refinement types in the separation

logic Iris [21, 19, 25, 20, 26, 44], so that the soundness of RefinedC type checking is established

foundationally in Coq. Moreover, RefinedC’s typing rules are expressed in a fragment of Iris called

Lithium [40], which is carefully designed to admit efficient proof search without backtracking; as a

result, RefinedC type checking can be performed with a (relatively) high degree of automation.
At a high level, the idea behind RefinedRust is to take RefinedC’s approach of refined ownership

types and figure out how to make it work for Rust. The most obvious challenge in doing so is

developing useful refinement types (and typing rules) to automate reasoning about Rust’s most

distinctive feature: its reference types, along with their attendant notions of lifetimes and borrowing.
Towards that end, we take inspiration from RustBelt [18], leveraging its lifetime logic.

But of course the devil is in the details. In developing RefinedRust, we had to overcome a number

of technical challenges, related to: (1) bridging the gap between Rust and the RustBelt model, and

(2) adapting RefinedC’s refinement type system to handle Rust types.

Challenge #1: Bridging the gap betweenRust andRustBelt. As explained above, RefinedRust
achieves foundational verification by giving a semantic model of Rust types as predicates in the
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Iris separation logic [48]. This semantic model is inspired closely by that of RustBelt, but RustBelt

employs an idealized formalization of Rust called 𝜆Rust. In order to account for real Rust code, we

had to overcome two key gaps between RustBelt/𝜆Rust and Rust.

First of all, RustBelt makes no attempt to capture the notion of “places” in the Rust language (also

known as “lvalues” in C). Places occur on the left-hand side of assignments and as the operands of

the “address of” operator &; for instance, in &x.f, the expression x.f denotes the place in memory

where the f field of variable x is stored. In RustBelt, to port a Rust program to 𝜆Rust, one must

replace uses of general places by a few simple cases that the RustBelt type system can handle. This

requires manual effort and fails to properly reflect the structure of the Rust source code.

Secondly, 𝜆Rust does not accurately reflect all aspects of Rust code. For instance, integers in 𝜆Rust
are unbounded (as opposed to Rust’s real semantics with integer overflows), and 𝜆Rust does not

accurately reflect how data is represented in memory, especially for compound types like structs.

RefinedRust lifts both of these limitations. As a more realistic operational semantics suitable

for functional verification of unsafe code, RefinedRust introduces Radium (based on RefinedC’s

Caesium model for C [41]). Hence, programs verified in RefinedRust are proven to correctly deal

with intricacies such as integer overflows. To ensure correctness independent of the concrete data

layout, RefinedRust parameterizes its verification by an arbitrary “layout algorithm” (§4). And to

properly account for the role places play in Rust, RefinedRust’s type system introduces place types.
This aligns RefinedRust sufficiently well with the Rust type checker that we can automatically

translate Rust code into Radium and type check the result with RefinedRust.

Challenge #2: Extending RefinedC with refinement types for Rust’s mutable references.
The basic structure of RefinedRust is modeled after that of RefinedC: it layers a refinement type

system on top of Rust’s type system, and then expresses its refinement type checking rules in the

Lithium fragment of Iris to make it amenable to proof automation. However, Rust is a very different

language from C, so “porting RefinedC to Rust” is far from straightforward. In particular, C only

has a weak type system that describes the layout of values in memory, but does not give strong

guarantees or provide many mechanisms for abstraction. RefinedC therefore introduces its own

type system with a Rust-inspired notion of exclusive ownership. However, the Rust type system
goes well beyond exclusive ownership, using borrowing to grant temporary access to data without

full ownership transfer. Borrowing in Rust is expressed via reference types: shared references &T for
immutable borrowing, and mutable references &mut T for mutable borrowing.

Extending the RefinedC type system to handle Rust’s shared references is fairly straightforward,

but mutable references constitute a major challenge. To explain why, we have to briefly consider

how RefinedC represents a variable with a known value: 42@ inti32 is the (singleton) type of an
integer with value 42. Similarly, &own(42@ inti32) is the type of an exclusively owned pointer that

points to an integer with value 42. Note how the owned pointer type entirely wraps the integer type,

including its value. If the program changes the value stored behind that pointer to 57, RefinedC uses

a “strong update” (i.e., type-changing update) to enable the pointer type to be changed accordingly

to &own(57@ inti32). Such a strong update is sound precisely because the pointer is exclusively
owned: there is no risk that any other part of the program could have a different view on this data

that would be in conflict with a strong update.

In contrast, a mutable reference in Rust is not exclusively owned—rather, it is borrowed from

somewhere, and once the borrow expires, the original owner will want to use that data again at its
original type. This problem is an instance of the common pattern that when a reference type allows

for shared state (in this case, state that is shared between the borrower and the original owner), the

type must be invariant. As a result, Rust’s mutable references do not allow strong updates, and the

RefinedC strategy for precisely tracking the values stored in them no longer works.
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In RefinedRust, we therefore keep the value “outside” of the mutable reference: a mutable

reference that points to an integer with value 42 would, roughly, have type 42@&
mut

inti32. This
lets us change the value without performing a strong update on themutable reference type. However,

this does not solve the issue that eventually, the lifetime of the reference will expire, and then the

information about the new value stored behind that reference has to be propagated back to its

original owner. To this end, RefinedRust introduces borrow names, which are inspired by RustHorn’s
prophecy variables [32]: the full type of a mutable reference takes the shape (42, 𝛾)@&

mut
inti32

where 42 is the current value, and 𝛾 is a borrow name that lets the original owner incorporate

changes to that value into their own proof (§2.2). This change represents a fundamental departure

from RefinedC in terms of how type constructors interact with refinements, requiring a redesign of

large parts of the type system and a non-trivial extension to RustBelt’s lifetime logic.

Contributions. We presentRefinedRust, a new foundational approach for verifying functional

correctness of safe and unsafe Rust programs. We make the following conceptual contributions:

• We show how to handle Rust’s mutable references in a refinement type system, using the

novel mechanism of borrow names to link the value of a mutable reference with the value of

the borrowed place (§2.2, §2.3).

• To support the borrowing patterns that appear when verifying actual Rust code, we build a

place type system for RefinedRust including novel types that enable Rust-specific reasoning

about borrowed places and types with invariants (§3.2, §5.2, §5.3). For our soundness proof

of the type system, we have extended RustBelt’s lifetime logic with a new kind of borrows

(described in the supplementary material [11]).

• To verify Rust’s polymorphic functions and to support layout-generic verification, we develop

a semantics which parameterizes the code with type parameters and a layout algorithm. The

verification then happens generically in the layout algorithm and type parameters (§4.1).

Additionally, we provide an implementation of RefinedRust with the following components:

• The RefinedRust type system, a type system for Rust that combines refined ownership types

with a semantic model of Rust types inspired by RustBelt (§5).

• Radium, a formalization of Rust, based on RefinedC’s Caesium operational semantics (§4).

• A type checker for RefinedRust based on RefinedC’s Lithium proof engine in Coq, and a

frontend that translates Rust code to Radium in Coq by leveraging the Rust compiler (§6).

• We evaluate RefinedRust on a version of the Rust standard library’s Vec vector implementation

(§3, §6). The code has been simplified for engineering reasons, but it still captures many of

the intricate challenges of working with pointer-manipulating unsafe Rust code.

The RefinedRust type system and the RefinedRust type checker are mechanized in Coq using

Iris. §5.4 describes the high-level soundness result—the technical details, including RefinedRust’s

extensions to RustBelt’s lifetime logic, can be found in the supplementary material [11].

Non-goals and limitations. The RefinedRust prototype produces proofs directly in Coq, which

means that its implementation does not need to be trusted. This also limits the approaches that we

can use for automation (e.g., SMT solvers as trusted oracles) compared to other verification tools

for Rust, such as Creusot [9] and Prusti [3]. While RefinedRust closes some gaps between RustBelt

and real Rust, there are still aspects of the Rust semantics that we do not yet account for, such as

some details of Rust’s layouting of structs and enums (e.g., the niche optimizations [4]), some of

Rust’s validity invariants (e.g., that booleans values are always 0 or 1), pointer-integer casts, and the
aliasing model [17] (which remains a topic of active research). A complete and precise specification

of the operational semantics of Rust does not exist yet. RefinedRust does not support some more

advanced features of Rust such as concurrency, recursive types, traits, closures, and unsized types.
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1 #[rr::params("x" : "Z")]

2 #[rr::args("#x")]

3 #[rr::requires("x + 42 ∈ i32")]

4 #[rr::returns("#(x + 42)")]

5 fn box_add_42(mut r: Box<i32>) -> Box<i32>

6 { *r += 42; r }

Fig. 1. Function that adds 42 to an integer stored
in a box.

1 #[rr::params("x" : "Z", "𝛾" : "gname")]

2 #[rr::args("(#x, 𝛾)")]

3 #[rr::requires("x + 42 ∈ i32")]

4 #[rr::ensures(#iris "Res 𝛾 (x + 42)")]

5 fn mut_ref_add_42(r: &mut i32)

6 { *r += 42 }

Fig. 2. Function that adds 42 to an integer stored
in a mutable reference.

2 AN INTRODUCTION TO REFINEDRUST
We outline the basic principles of RefinedRust using our prototype implementation (described in

§6). Then we introduce our notion of refined ownership types (§2.1), and their combination with

Rust’s mutable references (§2.2 and §2.3). Finally, we show our handling of unsafe functions (§2.4).

2.1 Refinement Types
Inspired by RefinedC, RefinedRust enables functional correctness verification through refinement
types. Let us explain refinement types in RefinedRust by considering the function box_add_42, shown

in Figure 1. It takes an argument r of type Box<i32>, where Box<T> is Rust’s type for an owned pointer

to a value of type T. The function adds 42 to the value stored in r, and then returns r to the caller.

The type Box<T> has full ownership of the memory the pointer refers to, which means there cannot

be other pointers to the memory. It is thus necessary that r is returned to give ownership of the

memory back to the caller, otherwise Rust would drop the box and free the memory.

In RefinedRust’s type system, all types come with a notion of mathematical values that they are

refined by. Consider the specification for box_add_42 in Figure 1. Here, refinement type information

is given via Rust attributes #[rr::...]. First, the params attribute introduces a specification variable x

of the mathematical (unbounded) integer type Z. The args attribute then links this variable to the

function argument r of Rust type Box<i32>, by stating that r is refined by the mathematical integer x.

(The injection # is discussed in §2.3.) The requires attribute on line 3 specifies the precondition

that x + 42—the result of the addition performed by the function—must be in the value range

representable by the type i32. The precondition ensures that the addition does not overflow,

which would trigger a panic and abort program execution. The precondition is necessary because

RefinedRust also verifies that no panics occur, similar to other Rust verification tools [3, 9]. Finally,

the returns attribute specifies the mathematical value x + 42 of the box returned by box_add_42.

2.2 Mutable References
The function mut_ref_add_42 in Figure 2 is a more idiomatic version of the previous example. It uses

Rust’s mutable reference type &mut T instead of a Box<T> to avoid returning the box. Like Box<T>, a

mutable reference &mut T asserts exclusive ownership of its memory, and thus allows mutating it

(e.g., by adding 42). However, this exclusive ownership is limited in time: a mutable reference has a

lifetime, and only borrows the referenced memory for this lifetime. Once the function returns, the

lifetime is over and the caller regains ownership of the memory. To illustrate this point, consider:

let mut z = 1; mut_ref_add_42(&mut z); assert!(z == 43);

The use of z in the assert! implicitly ends the lifetime of the reference passed to mut_ref_add_42.

Proving that the assert! succeeds requires knowing that z is indeed incremented by 42. However,

there is no explicit flow of values from mut_ref_add_42 to the assert! since mut_ref_add_42 returns a

unit value. Unlike the previous example, we thus cannot use the returns attribute to specify the

increment of z, and need another way to specify the side-effect of incrementing z.
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To reason about mutable references, RefinedRust uses the notion of borrow names (inspired by

RustHorn’s prophecy variables [32]). The mathematical value of a mutable reference &mut T is a

pair (x,𝛾) , where x is the current mathematical value of type T and the borrow name 𝛾 is used to

communicate the final value of the reference. In our example, &mut z will create a reference with

mathematical value (1,𝛾) for some fresh 𝛾 , and the value of z changes from 1 to ∗𝛾 . In other words,

the value “moves” from z to the new reference, and 𝛾 ties the reference to its referent. This reference

is then passed to mut_ref_add_42 (instantiating x with 1). The ensures clause (i.e., postcondition) of
that function is a resolution Res 𝛾 (x + 42), which states that the final value of the reference with

borrow name 𝛾 is x + 42 (the #iris annotation specifies that the postcondition is a separation logic

assertion). This resolution lets RefinedRust automatically resolve the mathematical value of z from

∗𝛾 to 43. Thus, it can prove that the assert! succeeds.

2.3 Reborrows
Now that we have seen the basics of refinement types and borrows in RefinedRust, let us turn

to a more advanced use case of mutable references: the method get_mut for creating a mutable

reference to an element of a Rust vector. In this section, we use get_mut to explain the concept

of reborrowing. In §2.4, we will verify the implementation of get_mut based on the unsafe helper

function get_unchecked_mut, which we in turn verify in §3. The signature of get_mut is:

fn Vec::get_mut<'a>(&'a mut self, idx: usize) -> Option<&'a mut T>

It takes a mutable reference to the vector self as well as an index idx. It checks if idx is within

bounds of the vector, and if so, returns a reference to that element of the vector (else it returns None).

The returned reference can be used by the caller to modify this element of the vector, and Rust’s

borrow checker makes sure that the vector is inaccessible as long as the reference is in use. This is

especially clear when considering the lifetimes of the references in the type signature: the vector

gets a reference of lifetime 'a, and the returned reference to the element has the same lifetime 'a.
This means that, as long as the returned reference is in use, the reference passed as argument is also

in use. As such, get_mut is an example of a reborrow function common in Rust, taking a reference as

an argument and then providing a “view” into that reference in the return value.

Figure 3 shows a simple client of get_mut. It creates a vector x containing 100, 200, and 300, and

uses x.get_mut(1) to get a mutable reference xr to the element at index 1. The function unwrap takes

an Option<T> and returns t if the input is Some(t), and panics if it is None. Since 1 is within range of

the vector x, such a panic cannot happen. The first assert! checks that xr indeed refers to 200. After

updating the value of xr to 42, the second assert! checks that the write to rx updated the vector x as

expected. Importantly, in the second assert!, the vector is accessed through x again, which means

that the lifetime 'a of the reference returned by get_mut ends and rx cannot be used anymore.

Let us look at the specification for get_mut in Figure 3 to see how it enables the verification of the

assertions in get_mut_client. The first argument self has the Rust type &mut Vec<T>, so it is refined by

a list xs of (borrowable) mathematical values for T,1 together with a borrow name 𝛾 for the mutable

reference. The second argument idx is refined by a mathematical integer i : Z. The remaining

clauses specify the postcondition: exists declares a mathematical variable that is returned by the

function (akin to an existential quantifier in the postcondition). The returns clause specifies the

real return value: if the index i is within bounds of the vector, get_mut returns Some containing a

reference to the i-th element of xs with the fresh borrow name 𝛾i, otherwise it returns None. Here,

the syntax xs !!! i indicates list indexing.

The most interesting part of this specification is the ensures clause: if i is out of bounds, the

caller receives Res 𝛾 xs, stating that the vector is unchanged. (Recall that 𝛾 is the borrow name for

1{math_type T} denotes the type of mathematical values for T. We come back to the bor wrapper shortly.
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1 fn get_mut_client() {

2 let mut x = vec![100, 200, 300];

3 let xr: &/* 'a */mut i32 = x.get_mut(1).unwrap();

4 assert!(*xr == 200);

5 *xr = 42;

6 assert!(*x.get_mut(1).unwrap() == 42);

7 }

8 #[rr::params("xs" : "list (bor {math_type T})", "𝛾" : "gname", "i" : "Z")]

9 #[rr::args("(#xs, 𝛾)", "i"] #[rr::exists("𝛾i")]

10 #[rr::returns("if i < length xs then Some (xs !!! i, 𝛾i) else None")]

11 #[rr::ensures(#iris "if i < length xs then Res 𝛾 (<[i:=*𝛾i]>xs) else Res 𝛾 xs")]

12 fn Vec::get_mut<'a>(&'a mut self, idx: usize) -> Option<&'a mut T> {

13 if idx < self.len() { unsafe { Some (self.get_unchecked_mut(idx)) } }

14 else { None }

15 }

16 #[rr::params("xs" : "list (bor {math_type T})", "𝛾" : "gname", "i" : "Z")]

17 #[rr::args("(#xs, 𝛾)", "i"]

18 #[rr::requires("i < length xs")]

19 #[rr::exists("𝛾i")]

20 #[rr::returns("(xs !!! i, 𝛾i)")]

21 #[rr::ensures(#iris "Res 𝛾 (<[i:=*𝛾i]> xs)")]

22 unsafe fn Vec::get_unchecked_mut<'a>(&'a mut self, idx: usize) -> &'a mut T;

Lifetime 'a alive, xr usable, x unusable

Fig. 3. Implementation, specification, and client of the function Vec::get_mut. The implementation of the
unsafe function Vec::get_unchecked_mut can be found in Figure 5.

the self argument, i.e., the vector.) However, if the index i is within bounds, we do not know yet

what the value of the vector will be once the lifetime 'a ends, as its i-th element can be modified

through the returned references—and we do not know yet how this reference will be used. We

express this in the specification by updating the i-th element of xs to *𝛾i (via the list update syntax

<[i:=*𝛾i]>xs), representing a placeholder for the final value of the reference with borrow name

𝛾i. This placeholder will be resolved once the returned reference goes out of scope. Thus, our

specification essentially describes the value of the vector relative to any modifications through the

returned reference. To make this work, the element type of xs is enriched via bor, where:

bor 𝜏 ∋ 𝑔 ::= #𝑥 | ∗𝛾 (𝑥 ∈ 𝜏)
Intuitively, bor 𝜏 represents a potentially borrowed value of mathematical type 𝜏 , where #𝑥 means

that the value 𝑥 is known, and ∗𝛾 that the value is borrowed by a reference with borrow name 𝛾 .

Going back to the example in Figure 3, calling get_mut on line 3 first implicitly creates a new

mutable reference to x, updating the mathematical value of x to ∗𝛾 . The reference is then passed

to the function. After the call, we obtain Res 𝛾 [#100; *𝛾i; #300] from the postcondition. Once the

lifetime 'a of xr ends (line line 5), we further obtain Res 𝛾i 42. RefinedRust combines these facts to

update the mathematical value of x to [#100; #42; #300], allowing it to prove the assertion (line 6).

2.4 Unsafe Functions
So far, we only considered verifying safe code. This changes when we zoom in to the verification

of the implementation of get_mut, which uses the low-level function get_unchecked_mut (Figure 3).

As the name suggests, get_unchecked_mut does not check for out-of-bounds accesses. It could thus

exhibit undefined behavior and is marked as unsafe. To call get_unchecked_mut one needs to meet

the precondition i < length xs. At the call site in get_mut, the unsafe block indicates that the Rust
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compiler cannot check this precondition; this becomes the programmer’s responsibility. Such

unsafe functions with extra preconditions are fully supported by RefinedRust: the specification

uses a requires clause to express when the function is safe to call. At the call site, checking this

precondition becomes the responsibility of RefinedRust, which invokes its theory solver.

3 UNSAFE APIS
In the previous section we showed that RefinedRust can reason about unsafe functions through

additional preconditions. The more challenging part is to verify APIs that internally use unsafe

C-style raw pointers. An example of such an API that we consider is Vec, but the use of raw pointers

is widespread in the lower levels of the Rust ecosystem—it is used for data structures (e.g., HashMap,
LinkedList), smart pointers (e.g., Cell, RefCell, Rc), concurrency primitives (e.g., Mutex), and more.

C-style raw pointers provide additional flexibility, but do not obey to Rust’s ownership discipline, so

Rust cannot determine their use to be safe (i.e., to not have undefined behavior). In RefinedRust we

can verify safety and functional correctness of APIs that use raw pointers. We do this by equipping

the API with a representation invariant that specifies the internal (pointer) structure in mathematics,

and proving that each function that is part of the API interface preserves the invariant.

Existing Rust verification tools, such as Creusot and Prusti, have to assert specifications for such

functions implemented with unsafe as axioms (and justify them with external manual proofs, such

as RustHornBelt), and thus are necessarily leaving gaps in the chain of trust. A key distinction of

RefinedRust is that it allows us to specify and check such functions in the same framework.

In this sectionwe discuss the vector representation invariant (§3.1) and then verify the functions of

the vector API (§3.2). Our code is based on the implementation of Vec in the Rustonomicon [5],which

is simplified compared to the version in the Rust standard library. The memory representation is

the same between both versions, so our verification captures the core challenges.

3.1 The Vector Representation Invariant
Figure 4 shows the definition of the Vec type, with annotations that we will explain below. We focus

on the case that the type T is not zero-sized (we have slightly simplified the invariants accordingly),

but our actual verification of Vec handles the zero-sized case. Internally, Vec is implemented using a

private data structure RawVec that manages the vector’s buffer and takes care of memory allocation.

The core operation of RawVec is grow, which increases the capacity of the buffer. Vec is implemented

as a layer on top of RawVec; its main job is to track which part of the buffer is initialized.

Representation invariant of RawVec. To define a type’s invariant we first specify its math-

ematical type using the refined_by attribute. Our RawVec exposes a very low-level interface: the

mathematical type of RawVec (line 1) consists of the memory location b and the currently allocated

capacity c. The field attribute specifies the mathematical value of each field. The mathematical

value of cap is the mathematical integer c:Z. The mathematical value of the raw pointer ptr is b:loc

that denotes the memory location storing the vector’s buffer. Following Rust, RefinedRust’s raw

pointer type does not assert ownership of the memory location (i.e., the pointer may be aliased).

The main work is done by the invariant clauses, specifying separation logic propositions that

need to hold when owning a value of the type. For RawVec, we first specify conditions on the

capacity (line 2): the maximum offset must not exceed the maximum value representable by an

isize (a restriction of Rust’s underlying LLVM backend). The second invariant attribute (line 3)

specifies additional ownership owned by RawVec, namely the permission to free the buffer. (The

#own describes how the ownership of this assertion behaves when creating a shared reference to a

RawVec—in this case, it becomes inaccessible.) Maybe surprisingly, the invariant of RawVec does not

contain ownership of the buffer itself. Instead, ownership of the buffer is managed by the user of
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1 #[rr::refined_by("(b, c)" : "(loc * Z)")]

2 #[rr::invariant("{size_of T} * c ≤ max_int isize")]

3 #[rr::invariant(#own "freeable b (c * {size_of T})")]

4 struct RawVec<T> {

5 #[rr::field("b")] ptr: *mut T,

6 #[rr::field("c")] cap: usize }

7

8 #[rr::refined_by("xs" : "list (bor {math_type T})")]

9 #[rr::exists("c" : "Z", "b" : "loc", "els" : "list (bor (option (bor {math_type T})))")]

10 #[rr::invariant(#type "b" : "els" @ "array_t (maybe_init {T}) c")]

11 #[rr::invariant("∀ i, 0 ≤ i < length xs → els !!! i = #(Some (xs !!! i))")]

12 #[rr::invariant("∀ i, length xs ≤ i < c → els !!! i = #None")]

13 #[rr::invariant("length xs ≤ c")]

14 pub struct Vec<T> {

15 #[rr::field("(b, c)")] buf: RawVec<T>,

16 #[rr::field("length xs")] len: usize }

Fig. 4. The Vec data structures and representation invariants (simplified).

RawVec (e.g., Vec) and linked to the ptr field of RawVec via b. This simplifies the verification of Vec as

the Vec operations typically directly access the buffer for reads and writes.

Representation invariant of Vec. As shown in §2.3, the mathematical type for Vec<T> is a list of

mathematical values for type T, decorated with bor to account for the elements that are borrowed.

The exists clause (line 9) specifies existentially quantified variables, internal to the invariant: the

capacity c of the buffer, the concrete location b of the buffer storing the elements, and the elements

els of the buffer. The vector owns the RawVec managing its buffer, as well as a len field specifying the

current length of the vector. The main action happens on lines 10-12. We first assert ownership of

the buffer (line 10); #type lets us express this by assigning a type to location b: b points to an array

(represented by RefinedRust’s array_t type) with the mathematical value els. The array has length

c and stores values of RefinedRust type maybe_init T, expressing that elements may be potentially

uninitialized. Specifically, the mathematical value els of the array is a list of option values. (Note

that the type of els contains bor twice because for each element, either T or maybe_init T can be

borrowed.) The first length xs elements contain the values from xs (line 11), while the remaining

elements until the end of the capacity c are uninitialized (line 12), represented by None.

3.2 Verification of Vector Operations
We turn to the verification of get_unchecked_mut (Figure 5). Recall from §2.4 that get_unchecked_mut

takes a mutable reference self to a vector as well as an index idx, and returns a mutable reference

to the element at idx. While the implementation comprises just a few lines of code, the reasoning of

why this operation is safe (assuming the index is within bounds) is intricate. The function reborrows
a part of the vector by returning a mutable reference to an element, essentially providing a view

into the vector. Crucially, the implementation needs to ensure that, no matter how the returned

reference is used, the vector’s invariant is upheld. In this, Vec is exemplary for the reasoning required

for a whole class of reborrowing functions often provided by Rust APIs with non-trivial invariants.

To understand what makes this challenging, let us consider the terms and conditions that

surround mutable references. The contents of a mutable reference &'a mut T are borrowed from a

lender. For the duration of the loan, the borrower has exclusive access to T. However, this loan is

limited in time: references have a lifetime 'a, and once that lifetime ends, the lender expects to get

back the full contents T of the borrow. Concretely, when verifying get_unchecked_mut, our return type

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 192. Publication date: June 2024.



192:10 L. Gäher, M. Sammler, R. Jung, R. Krebbers, and D. Dreyer

1 #[rr::params("xs" : "list (bor {math_type T})", "𝛾" : "gname", "i" : "Z")]

2 #[rr::args("(#xs, 𝛾)", "i")]

3 #[rr::requires("i < length xs")]

4 #[rr::exists("𝛾i")]

5 #[rr::returns("(xs !!! i, 𝛾i)")]

6 #[rr::ensures(#iris "Res 𝛾 (<[i:=*𝛾i]>xs)")]
7 unsafe fn Vec::get_unchecked_mut<'a>(&'a mut self, idx: usize) -> &'a mut T {

8 // (initial state) {self� #(#𝑥𝑠,𝛾 ) @&
'a
mutVec<T> ∗ idx� #𝑖 @ intusize}

9 // (unfolded) {b� #els@ arrayc (maybe_init T) ∗ (∀0 ≤ 𝑖 < |xs | . els !!! 𝑖 = . . .) ∗
10 // self� #( [#(b, c) ; #(length 𝑥𝑠 ) ], 𝛾 ) @&

'a
mutyoinked(Vec<T>; struct [RawVec<T>; intusize ] ) ∗ . . .}

11 unsafe {

12 let p = self.buf.ptr().add(idx);

13 // (get shifted ptr) {p� b +𝑙 𝑖 ∗ size_of T@ raw_ptr ∗ . . .}
14 let ret = &'b mut *p;

15 // (obtain borrow) {b� #(els[𝑖 := #(Some(∗𝛾𝑖 ) ) ] ) @ blocked'b (arrayc (maybe_init T) ) ∗
16 // ret� #(𝑥𝑠 !!! 𝑖,𝛾𝑖 ) @&

'b
mutT ∗ 'b ⊑ 'a ∗ . . .}

17 ret

18 // {'a ≡ 'b ∗ self� #(#(𝑥𝑠 [𝑖 := ∗𝛾𝑖 ] ), 𝛾 ) @&
'a
mut (blocked

'a (Vec<T>) ) ∗ . . .}
19 // (lifetime has been extended, resolve 𝛾) {Res 𝛾 (𝑥𝑠 [𝑖 := ∗𝛾𝑖 ] ) ∗ . . .}
20 }

21 }

Fig. 5. Intermediate type system states of RefinedRust when checking get_unchecked_mut. The comments
are included for presentation purposes, but are not required by RefinedRust. Type assignments are denoted by
𝑙 � 𝑥 @ T , stating that the memory location 𝑙 contains a value of type T with mathematical value 𝑥 .

&'a mut T mandates that we provide (borrowed) ownership of a single vector element. Furthermore,

we have to respect the terms attached to the self argument (of type &'a mut Vec<T>) and give back

all ownership of the entire vector and satisfy its invariant when 'a ends. To achieve that, we are

allowed to rely on the receiver of our return value (of type &'a mut T) to in turn respect its part of

the bargain, and thus return ownership of that vector element back to us when 'a ends.

Thus, the core challenge in verifying get_unchecked_mut is the interaction of this back-and-forth

borrowing, combined with the low-level reasoning about pointer arithmetic.

Unfolding type invariants. Figure 5 shows the implementation augmented with annotations

showing RefinedRust’s type system state. In the initial state, the variables self and i have type

assignments according to the function’s signature (line 8), conjoined with separation logic’s separat-

ing conjunction ∗. In the first step, the RefinedRust type system unfolds the Vec type of self to gain

the required information for accessing its internal fields later on. In particular, this allows the type

system to gain knowledge about the existentially quantified c, b, and els. Unfolding the Vec invariant

is not as easy as one might expect. Since the Vec is only owned below a mutable reference, we need

to first extract the ownership from underneath that reference, effectively altering our perspective

on self. However, remember that when lifetime 'a ends, all that ownership will be taken away and

given back to the lender. Thus, to be allowed to extract ownership from underneath a mutable

reference, we have to ensure that its lifetime does not end until ownership is re-established.

The yoinked type. In RefinedRust, extracting the ownership Vec from underneath the mutable

reference is captured by the yoinked type. Specifically, &
'a
mut
(yoinked(𝑉 ;𝑇 )) denotes that (some

of) the reference’s contents have been extracted. Here, 𝑉 records the original type stored in the

reference, which has to be put back before its lifetime ends. 𝑇 specifies which ownership remains

in the mutable reference; this allows “partial extraction” of the reference’s contents. In the case
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MByte ∋ 𝛽 ::= 𝑧 | (𝑙, 𝑛) | h with 0 ≤ 𝑧 < 256 Val ∋ v ::= 𝛽 x ∈ VarName

Layout ∋ 𝜄 ::= (size : nat, align : nat) Lft ∋ 𝜅 Mut ∋𝑚 ::= Mut | Shr
PExpr ∋ 𝑝 ::= x | 𝑙 | load𝜄 (𝑝) | 𝑝.i | 𝑝 +p 𝑒 VExpr ∋ 𝑒 ::= x | v | 𝑒1 ·𝑜 𝑒2 | use𝜄 (𝑝) | &𝜅

𝑚𝑝 | call 𝑒 (𝑒)
Stmt ∋ 𝑠 ::= goto b | return 𝑒 | if 𝑒 then 𝑠1 else 𝑠2 | store𝜄 (𝑝, 𝑒); 𝑠 | startlft(𝜅); 𝑠 | endlft(𝜅); 𝑠

Fig. 6. Syntax of Radium (excerpted and simplified).

of the vector type, RefinedRust will yoink the representation invariant of the vector from the

reference, leaving just the plain struct type (without the invariant) as 𝑇 . The yoinked ownership of

the invariant then gets added to the proof context—in particular, the type assignment for b (line 9).

Borrowing a component. After this unfolding, the actual verification starts. In the first step,

the ptr field is offset to the i-th component, using the add function (line 12). Doing so requires

proving that the access is within bounds of the vector’s allocated memory, and as a result will also

not overflow. For this, the type system interacts with the pure invariants we have specified, as well

as the function’s precondition that the access is within bounds of the initialized part of the vector.

After add returns, the local variable p has a corresponding raw_ptr type (line 13).

The key operation of get_unchecked_mut is the borrow of the element referenced by the produced

pointer p (line 14). The aliased pointer is accessed, and the type system finds the actual ownership

for the object in the context. Since the pointer is within bounds, the element of type T can be

accessed and borrowed, producing a new reference stored in ret. The new reference’s lifetime is a

new symbolic lifetime 'b, which must live at most as long as 'a, the lifetime of the full vector.

However, creating this reference does come at a cost: we have temporarily borrowed ownership

of a part of the array, and it will only become accessible again once the lifetime 'b has ended. This

is expressed by the blocked'b U type. The key feature of this type is that it can be turned into U
after 'b has ended, while not allowing any operations before that.

Finally, the newly-created reference is returned. Here, the type system extends the lifetime 'b to

'a, making them essentially equal. This is necessary to match the desired return type &'a mut T.

RefinedRust also needs to show that when 'a ends, all the ownership extracted from self can be

put back where it belongs. Concretely, this requires turning yoinked(Vec<T>;U ) back into Vec<T>
by combining U with additional ownership from the context to re-establish the invariant of Vec.

The difficulty is that we are returning part of that ownership, so it is not possible to perform this

step right now. Luckily, we only need to perform this step after 'a has ended, at which point the

borrow we returned has expired. This means we can re-assemble the invariant of Vec using parts

that are still behind blocked'a
(line 18).

In the final step in the proof, the mutable reference self goes out of scope. This generates a

resolution: when a mutable reference with mathematical value (𝑥,𝛾) goes out of scope, Res 𝛾 𝑥 is

created. In our case this generates Res 𝛾 (𝑥𝑠 [𝑖 := ∗𝛾𝑖 ]), which is exactly what is needed to satisfy

the ensures clause and finish the proof.

4 RADIUM
Before diving into the details of the RefinedRust type system (§5), we describe Radium: our formal-

ized operational semantics of a subset of Rust’s MIR (Mid-level Intermediate Representation), which

is based on RefinedC’s Caesium semantics for C. By leveraging MIR, we follow a similar approach

as existing Rust verification tools (e.g., Prusti) and do not base our verification on surface-level Rust.

MIR is attractive for verification as it is a simple CFG-based representation where many complicated

features of surface-level Rust such as loops and match statements have been desugared.
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Figure 6 provides an overview of the syntax of Radium. Radium is a CFG-based language (like

MIR) where basic blocks contain statements 𝑠 . Expressions are split into place-expressions 𝑝 for

computations that result in a location 𝑙 , and value-expressions 𝑒 for computations that result in

a value v. Similar to CompCert [29] and Caesium, values v in Radium are represented as a list of

memory bytes 𝛽 , where each memory byte can either be a normal byte (i.e., an integer between 0 and

255), a location fragment (consisting of the location 𝑙 and the index 𝑛 of the fragment), or poisonh
(e.g., for uninitialized memory). For example, a 32-bit integer is represented as four normal bytes,

while the location a pointer points to is represented by eight location fragments with indices 0

to 7. (RefinedRust assumes 64-bit pointers.) The Radium heap is a map from locations to memory

bytes. This value and heap representation allows Radium to model the semantics of Rust in detail.

In particular, integers are bounded and one can reason about the byte representation of values

stored in memory. The operational semantics of Radium is based on Caesium’s semantics for C,

but adapted to Rust. Specifically, loads and stores are parameterized by a layout 𝜄 that specifies the
size and alignment of the access; pointer offset operations check that the offset stays in bounds of

the allocations; and binary operations on integers check for overflows. (The lifetime annotations

startlft(𝜅) and endlft(𝜅) are automatically inserted by the frontend and described in §5.3.)

4.1 Layout-Parametric Verification
One key challenge of giving a detailed semantics of Rust is that the layout of types in memory

might not be known. This happens for two reasons: First, Rust does not specify how the fields of

structures are laid out in memory. Second, Rust features polymorphic functions, so there can be

structures with an entirely unknown field type. (None of these cases affect C/Caesium, as Caesium

lays out structures according to the System-V ABI and C does not support polymorphic functions).

To tackle this challenge, verification in RefinedRust is parametric over the data layouts used

in the program. Since adding this parameterization directly to the operational semantics would

significantly complicate an already complex semantics, we instead encode it using meta-level

(i.e., Coq) quantification. This allows us to keep the definition of the operational semantics itself

monomorphic. When verifying a concrete closed program, we can instantiate the verification result

with concrete layouts to obtain safety of the closed program (Theorem 5.1 in §5.4).

Specifically, we introduce a notion of syntactic types SynType that abstractly describes the data

layout (see Figure 7). For instance, IntSt describes the layout of integers by their signedness and their
bitwidth. More interestingly, StructSt describes a struct using a struct description sd, containing
its name and a list of fields which each have a name and a SynType. The frontend automatically

generates such a syntactic type for every Rust type.

The concrete operational semantics does not work on abstract syntactic types but rather on

concrete layouts Layout, consisting of a size and alignment. For struct accesses, a StructLayout
describes the location of each field in the struct. Compared to StructDesc, the order of fields in
StructLayout is relevant, and explicit unnamed fields for padding are included.

Conceptually, each abstract syntactic type has a set of concrete realizations as a layout (e.g.,
for structs, they differ in the amount of padding and the order of the fields). To model this, we

define a parameterized layout algorithm LayoutAlg that computes a concrete layout for a given

syntactic type. The layout algorithm is a partial function, e.g., it will fail if the type is too big to fit

into isize::MAX. For structs, enums, and unions, it is parameterized by a subroutine that takes the

type’s name and fields and returns an arbitrary (but valid) layout.

All our verification results are proven for an arbitrary instance of this layout algorithm. We

just have to assume that it computes some valid layout (made explicit in our soundness theorem,
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StructDesc ∋ sd ::= (name : str, fields : list(str × SynType)) IntType ∋ it ::= (sign : bool, bits : nat)
SynType ∋ st ::= IntSt(it) | StructSt(sd) | PtrSt | . . .
Layout ∋ 𝜄 ::= (size : nat, align : nat) StructLayout ∋ sl ::= fields_padded : list(option(str) × Layout)
LayoutAlg(st : SynType) : option(Layout) ≜ . . .

Fig. 7. Core definitions for RefinedRust’s layout parameterization.

see Theorem 5.1). This also allows us to handle verification of generic functions with type parame-

ters: we parameterize the code we verify over the generic type’s syntactic type, and assume that

LayoutAlg is defined for all composite types in which the type parameters appear.

4.2 Comparison of Radium and 𝜆Rust

We describe how Radium compares to the main previous model of Rust used in foundational

verification: the 𝜆Rust model used by RustBelt and RustHornBelt. For primitive types, 𝜆Rust uses

a high-level representation with unbounded integers that fit into a single memory location. In

contrast, Radium models primitive types in more detail, with bounded integers that are spread

across multiple bytes. For instance, an i32 integer only spans one memory location in 𝜆Rust, but

four in Radium. Structs in 𝜆Rust have fixed layout, and the memory model disregards alignment

so there is no need for structs to have padding between their fields. Radium uses a more detailed

memory model that reflects alignment constraints and is able to represent padding, and structs

are properly modeled with arbitrary but fixed layout (see §4.1). As a consequence, Radium can

more accurately model the conditions that unsafe code has to satisfy, e.g., that all accesses are
well-aligned or that pointer offset operations via ptr::offset are using correctly-computed field

offsets. Additionally, memory accesses in Radium are typed and check more of Rust’s validity

constraints than 𝜆Rust (e.g., reading padding bytes as an integer is undefined behavior in Radium).

𝜆Rust does not support integer-pointer conversion, while Radium allows round-trip casts in some

cases and correctly models Rust’s NonNull::dangling semantics, which is used to deal with zero-sized

types (e.g., for handling zero-sized elements of Vec).

5 TYPE SYSTEM
This section describes how the RefinedRust type system extends the Rust type system to enable the

verification of safe and unsafe Rust code. We describe RefinedRust’s value types that correspond
to Rust’s types extended with mathematical refinements (§5.1) and place types for representing
partially borrowed values (including blocked and yoinked from §3) (§5.2). We then show the type

system in action on a simple example (§5.3), and conclude with its soundness theorem (§5.4).

5.1 Value Types
RefinedRust’s value types match Rust’s notion of types: they assign types to program values. Value

types are used to describe the types of argument and return values at function call boundaries.

Figure 8 shows an excerpt of RefinedRust’s value types. Each value type has an associated “math-

ematical” type that gives the mathematical representation of its values, powering RefinedRust’s

functional correctness reasoning (as seen in §2.1).

Value types include the basic boolean and integer types. Integer types intit are parameterized

over their bit-width and signedness via it and are used to represent, for instance, i32. They are

refined by mathematical integers Z, while booleans are refined by mathematical booleans B.
As already seen in §2.2, mutable references in RefinedRust are refined by a pair of the current

value 𝑥 and the borrow name 𝛾 used for its resolution. Shared references are just refined by the
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Rust type RefinedRust type math. type intuitive semantics
i*/u* intit 𝑛 : Z integers of type it with math. value 𝑛

bool bool 𝑏 : B booleans with mathematical value 𝑏

&'a mut T &
'a
mut

T (𝑥,𝛾) : (bor 𝜏) × gname mut. ref. with value 𝑥 and borrow name 𝛾

&'a T &
'a
shr

T 𝑥 : bor 𝜏 shared ref. with current value 𝑥

Box<T> box T 𝑥 : bor 𝜏 owned pointer with current value 𝑥

*mut T raw_ptr 𝑙 : loc a raw pointer to 𝑙 without ownership

structs/tuples structsd ®T ®𝑥 : hlist(bor ®𝜏) structs/tuples with field values ®𝑥
[T; n] array𝑛 T ®𝑥 : list(bor 𝜏) arrays of T with length 𝑛

/ uninitst () : () uninitialized memory with syntype st

/ maybe_init T 𝑥? : option(bor 𝜏) maybe initialized instance of T

/ abstractE T 𝑥 : 𝑋E abstraction over T given by E

Fig. 8. Excerpt of RefinedRust’s value types, where 𝜏 is the mathematical type of T .

value 𝑥 of their contents, while raw pointers are refined by the memory location that the pointer

points to (they do not contain ownership). As described in §2.3, mathematical values for nested

types (like the values of references and structs) are wrapped by bor.
Our structsd ®T type is parameterized by (1) the struct description sd explained in §4.1 (we omit

sd when it is clear from the context), and (2) a list of types ®T of the fields. The mathematical type is

a heterogeneous list hlist(bor ®𝜏) of the mathematical types of its fields (with each element wrapped

by bor). Our array𝑛 T type models homogeneous sequences of values of type T with length 𝑛. It is

refined by the list of mathematical values for the array’s elements (again wrapped in bor).
Additionally, RefinedRust features the uninitst type for representing uninitialized (i.e., arbitrary)

memory described by the syntactic type st. This type has no direct correspondence in Rust, but is

used to reason about uninitialized local variables and unsafe code (e.g., it describes the ownership
returned by Rust’s unsafe allocator APIs).

Let us consider how we can define the type of RawVec as presented in §3. Recall that RawVec has two

fields: the raw pointer ptr to the buffer (of type *mut T) and the capacity cap (of type usize). Thus,

RefinedRust defines RawVec’s basic type as RawVecStruct ≜ structsdRawVec [raw_ptr; intusize], where
sdRawVec ≜ [(“ptr”, PtrSt); (“cap”, IntSt(usize))] specifies the struct’s fields and their syntactic types.
RawVecStruct corresponds to the Rust RawVec struct, however it does not include the representation
invariant given by the annotations in Figure 4. To add this invariant to RawVecStruct and thus

obtain RefinedRust’s RawVec type, we leverage the abstractET type that abstracts the type T (e.g., by
adding invariants) as described by E. Concretely, E contains (1) 𝑋E, the new mathematical type of

abstractET (given by refined_by, e.g., loc × Z for RawVec), and (2) an invariant specifying additional

ownership and linking everything together (given by invariant and field). If an exists annotation

is present, these variables are existentially quantified in the invariant (e.g., b and c for Vec). For

example, the annotations on RawVec in Figure 4 define the following invariant:

invRawVec (b, c) 𝑥 ≜𝑥 = [#b; #c] ∗ size(T ) · c ≤ max_int (isize) ∗ freeable b (c · size(T ))

5.2 Place Types
The attentive reader may wonder where blocked and yoinked (from §3) come in. Recall that

blocked is used to mark memory locations that have been borrowed—so the blocked type only
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RefinedRust type math. type intuitive semantics
𝑥 @ place T bor 𝜏 place containing T

(𝑥,𝛾)@&'a
mut 𝜌 bor (𝜏 × gname) mutable ref. with current value 𝑥 and borrow name 𝛾

𝑥 @&'a
shr 𝜌 bor 𝜏 shared ref. with current value 𝑥

𝑥 @ box 𝜌 bor 𝜏 owned pointer with current value 𝑥

®𝑥 @ structsd ®𝜌 hlist(bor ®𝜏) structs/tuples with field values ®𝑥
®𝑥 @ array𝑛 T list(bor 𝜏) arrays of length 𝑛 of type place T

𝑥 @ blocked'a T bor 𝜏 blocked place containing T after 'a ends

𝑥 @ yoinked(𝜌
full

; 𝜌cur) 𝜏cur yoinked type

Fig. 9. Excerpt of RefinedRust’s place types, where 𝜏 is the mathematical type of 𝜌 or T , respectively.

makes sense when assigned to a location, not to a value. For this reason, blocked is not a value

type but a place type that is assigned to a place (i.e., a memory location, or “lvalue”), not a value.

Intuitively, place types describe what happens when we read from, write to, or borrow (i.e., create
a reference to) a place in memory. Place types are not part of Rust’s syntax of types, but rather

are RefinedRust’s way to track intermediate states of Rust’s type system. As a consequence, place

types only appear during RefinedRust’s type checking process, but not in top-level specifications.

Place types in RefinedRust. Figure 9 shows an excerpt of RefinedRust’s place types (meta-

variable 𝜌), along with their mathematical type. Like value types, the mathematical types of the

place types use bor to denote where borrows can happen.

The place type place T transforms the value type T into a place type, stating that memory

contains a value of type T . The place type blocked'a T states that the place is blocked for lifetime

'a (since it has been borrowed) and will have type place T after 'a ends. We also have already

seen the place type yoinked(𝜌full; 𝜌cur) which states that the place originally had the place type

𝜌full, but currently has the place type 𝜌cur because ownership has been yoinked.

The primitive reference and struct types appear not only as value types, but also have a corre-

sponding place type. This is because their corresponding Rust types support place accesses below

them. There is a clear correspondence between these value types and their place types:

place(&𝜅
mut

T ) ≡ &𝜅
mut (place T ) place(structsd ®T ) ≡ structsd (

−−−−−−→
place T )

The first equivalence states that a place containing a value of the mutable reference type &
'a
mut

T is

equivalent to a mutable reference place&'a
mut (place T ) with the referenced place containing a value

at type T . Similar “unfolding equations” hold for shared references, arrays, and other types. The

expressiveness of these “simple” place types becomes clear when combining them with blocked𝜅 T :
They allow creating types like struct [blocked'a (inti32);place(inti32)], representing a structure
where the first field has been borrowed. In §5.3 we explain this interplay using an example.

Place types 𝜌 are assigned to memory locations 𝑙 via the place type assignment 𝑙 � 𝑥 @ 𝜌 , where

𝑥 is the mathematical value stored in the place. We already saw place types in action in §3.2.

5.3 RefinedRust’s Type System in Action
Let us now explain some of RefinedRust’s typing rules by following the RefinedRust type checker

through the verification of the Radium code in Figure 10.
2
First, we go over the code, ignoring

the comments that show the state of the type system. The code snippet creates a tuple z of two

2
For space reasons, there are some technical details that we are omitting here: place type assignments have an additional

parameter that is needed in some corner cases, and we need some extra machinery to deal with “later” modalities [44].
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1 // {𝑧 � place(uninit(i32,i32) ) ∗ 𝑧𝑟 � place(uninitPtrSt ) }
2 let mut z = (0, 1);

3 // {𝑧 � #[#0; #1]@ place(struct [inti32; inti32 ] ) ∗ 𝑧𝑟 � place(uninitPtrSt ) }
4 startlft 'a;

5 // {'a alive ∗ 𝑧 � #[#0; #1]@ place(struct [inti32; inti32 ] ) ∗ 𝑧𝑟 � place(uninitPtrSt )
6 let zr = &'a mut z.0;

7 // {'a alive ∗ 𝑧 � #[∗𝛾 ; #1]@ struct [blocked'a (inti32 ) ;place(inti32 ) ] ∗ 𝑧𝑟 � #(#0, 𝛾 ) @ place(&'a
mut (inti32 ) ) }

8 *zr = 42;

9 // {'a alive ∗ 𝑧 � #[∗𝛾 ; #1]@ struct [blocked'a (inti32 ) ;place(inti32 ) ] ∗ 𝑧𝑟 � #(#42, 𝛾 ) @ place(&'a
mut (inti32 ) ) }

10 endlft 'a;

11 // {'a dead ∗ 𝑧 � #[∗𝛾 ; #1]@ struct [blocked'a (inti32 ) ;place(inti32 ) ] ∗ 𝑧𝑟 � place(uninitPtrSt ) ∗ Res 𝛾 42}
12 assert!(z.0 == 42 && z.1 == 1));

13 // {'a dead ∗ 𝑧 � #[#42; #1]@ struct [place(inti32 ) ;place(inti32 ) ] ) ∗ 𝑧𝑟 � place(uninitPtrSt ) }

Fig. 10. A simple type checking example involving a mutable borrow from a pair.

integers, and then mutably borrows its first component as zr. Here, the lifetime 'a of the reference

is created explicitly using the startlft 'a annotation: the RefinedRust type system relies on lifetime

annotations for references as hints. (These annotations are inserted by the frontend translating

Rust into Radium.) The reference zr is then used to write a new value, 42, into the first component.

After that, the lifetime 'a is ended with an annotation by the frontend. In the last step, the code

asserts that the write through the reference updated the tuple as expected.

Now we consider what happens to the types. In the beginning, both z and zr are uninitialized.

Then, line 2 initializes z with (0, 1) which updates the type of z to [#0; #1]@ struct [inti32; inti32]
(converted to a place type using place T ). Next, RefinedRust processes the startlft annotation on

line 4, and allocates a new symbolic lifetime for 'a. The fact that the lifetime 'a is alive is tracked

by the 'a alive assertion in line 5.

Checking mutable borrows. Now, let us consider the creation of the mutable borrow of the

first field of z (line 6) in detail. RefinedRust’s general procedure chk-mut-bor for type checking a

mutable borrow of expression 𝑒 at lifetime 'a is provided in Figure 11. In the case of our example,

this procedure is called with z.0 for 𝑒 . chk-mut-bor first decomposes this expression into a

base location 𝑙𝑜 , in this case 𝑧, and a sequence of place accesses P to it, in this case [Field(“0”)].
We then find the type assignment for 𝑙𝑜 in the context (line 3)—here the place type 𝜌𝑜 of 𝑧 is

place(struct [inti32; inti32]) with the mathematical value 𝑥𝑜 = #[#0; #1].
Then, chk-place-access (explained below) is called (line 4) to check that the sequence of place

accesses P is valid for the given type of 𝑙𝑜 . chk-place-access also determines the resulting memory

location 𝑙𝑖 and type assignment 𝑙𝑖 � 𝑥𝑖 @ 𝜌𝑖 for 𝑙𝑖 . Furthermore, 𝑘min describes the minimum

ownership along the path, i.e., whether the place is fully owned (Owned), or we passed below a

shared (Shared𝜅 ) or mutable (Uniq𝜅 ) reference, as this determines what operations we can perform

on the resulting place. Finally, 𝜌 [·] will be explained below. In this case, the single place access

Field(“0”) needs to be made to 𝑧, and we obtain 𝑙𝑖 = 𝑧 AtField(i32,i32) “0” with the type assignment

𝑙𝑖 � #0 @ place(inti32) (i.e., 𝑥𝑖 = #0 and 𝜌𝑖 = place(inti32)). The AtField computes the offset of

field “0” in the tuple. Since the access does not go below a reference, 𝑘min is Owned. In the next

step, the procedure stratify is used to bring the type into the shape #𝑥𝑖 @ place T𝑖 . This is already
the case in the example, and we have T𝑖 = inti32 and 𝑥𝑖 = 0. We discuss the stratify procedure in

more detail below.

Now that we have obtained the place that is borrowed, we are ready to create the reference.

First of all, we have to check that the minimum ownership mode 𝑘min along the accessed path

allows mutable borrows—here, this is the case, since 𝑘min = Owned (line 7). Next, we create a

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 192. Publication date: June 2024.



RefinedRust: A Type System for High-Assurance Verification of Rust Programs 192:17

1: procedure chk-mut-bor(𝑒 , 'a)
2: (P, 𝑙𝑜 ) ← decompose-expression(𝑒)
3: (𝑥𝑜 , 𝜌𝑜 ) ← find-assignment-for(𝑙𝑜 ) find type assignment 𝑙𝑜 � 𝑥𝑜 @ 𝜌𝑜
4: (𝑙𝑖 , 𝑥𝑖 , 𝜌𝑖 , 𝑘min, 𝜌 [·]) ← chk-place-access(𝑙𝑜 , 𝑥𝑜 , 𝜌𝑜 ,P)
5: apply place accesses P to 𝑙𝑜 , resulting in 𝑙𝑖 � 𝑥𝑖 @ 𝜌𝑖
6: (𝑥𝑖 , T𝑖 ) ← stratify(𝑙𝑖 , 𝑥𝑖 , 𝜌𝑖 , 𝑘min) stratify to 𝑙𝑖 � #𝑥𝑖 @ place T𝑖
7: assert(𝑘𝑚𝑖𝑛 allows mutable borrow at 'a)
8: 𝛾 ← create-borrow-name(𝑥𝑖 )
9: (𝑥 ′𝑜 , 𝜌′𝑜 ) ← fill-pctx(𝜌 [·], ∗𝛾, blocked'a T𝑖 ) new type for 𝑙𝑜 : 𝑙𝑜 � 𝑥 ′𝑜 @ 𝜌′𝑜
10: add-to-context(𝑙𝑜 � 𝑥 ′𝑜 @ 𝜌′𝑜 ) release updated ownership

11: return((#𝑥𝑖 , 𝛾)@&
'a
mut

T𝑖 ) return type of expression

12: procedure chk-place-access(𝑙𝑜 , 𝑥𝑜 , 𝜌𝑜 , P)
13: (𝑘min, 𝑙𝑖 , 𝑥𝑖 , 𝜌𝑖 , 𝜌 [·]) ← (Owned, 𝑙𝑜 , 𝑥𝑜 , 𝜌𝑜 , ·)
14: while (𝑎 :: P) ← P do
15: 𝑥𝑖 ← use-borrow-resolution(𝜌𝑖 , 𝑥𝑖 ) Use resolutions at the head

16: 𝜌𝑖 ← place-unfold-head(𝜌𝑖 ) Unfold placeT at the head, if necessary

17: match 𝑎, 𝜌𝑖 with
18: case Field(𝑓 ), structsd ®𝜌 :
19: assert(field 𝑓 is a field of sd)
20: (𝜌 𝑓 , 𝑥 𝑓 ) ← ( ®𝜌!!𝑓 , 𝑥𝑖 !!𝑓 ) look up the type 𝑥 𝑓 @ 𝜌 𝑓 of the field

21: 𝜌 [·] ← . . .

22: (𝑘min, 𝑙𝑖 , 𝑥𝑖 , 𝜌𝑖 ) ← (𝑘min, 𝑙𝑖 AtFieldsd 𝑓 , 𝑥 𝑓 , 𝜌 𝑓 )
23: case Deref, &𝜅

mut𝜌 : . . .

24: return(𝑙𝑖 , 𝑥𝑖 , 𝜌𝑖 , 𝑘min, 𝜌 [·])
Fig. 11. Procedure for type checking mutable borrows and place accesses.

new borrow name 𝛾 (line 8). This allows us to create the mutable reference, in this case of type

(#0, 𝛾)@&
'a
mut
(inti32), which is returned in line 11.

Before we finish up creating the mutable reference, there is however another question that

needs to be answered: what is the new type of 𝑙𝑜? Intuitively, we need to block the place we

borrow until lifetime 'a ends—i.e., 𝑙𝑖 should have type ∗𝛾 @ blocked'a T𝑖 . Now we just need

to translate this type for 𝑙𝑖 to a type for 𝑙𝑜 . This is the purpose of 𝜌 [·]: 𝜌 [·] is a place type
context that describes the type of 𝑙𝑜 with a hole for the new type of 𝑙𝑖 . Concretely, we have

𝜌 [·] = #[·; #1] @ struct [·;place(inti32)] . fill-pctx on line 9 fills 𝜌 [·] with the new type for 𝑙𝑖 ,

obtaining the new place type 𝜌 ′𝑜 = struct [blocked'a (inti32);place(inti32)] with mathematical

value 𝑥 ′𝑜 = #[∗𝛾 ; #1] for 𝑙𝑜 . This type assignment for 𝑙𝑜 is then added back to the context in line 10.

Checking place accesses. Now, let us consider chk-place-access in Figure 11 that is called on

line 4 of chk-mut-bor. In our example, it is called with 𝑙𝑜 = 𝑧, 𝑥𝑜 = #[#0; #1], P = [Field(“0”)],
and 𝜌𝑜 = place(struct [inti32; inti32]). chk-place-access applies the sequence of accesses P to the

place type, while keeping track of the minimum permission 𝑘min along the way. For each access,

it first uses resolutions at the head (line 15) to ensure that the current type assignment is of the

form 𝑙𝑖 � #𝑥𝑖 @ 𝜌𝑖 . Then, for 𝜌𝑖 = place T𝑖 , it unfolds the place type at the head using the already-

discussed equivalences (line 16). In our example, it unfolds 𝜌𝑖 to struct [place(inti32);place(inti32)].
Then, chk-place-access matches on the next place operation and current place type. In the case of

a field access to field 𝑓 of a struct type, we first check that 𝑓 is a valid field for the struct (line 19).

Then, we look up the type 𝜌 𝑓 and mathematical value 𝑥 𝑓 (line 20) for 𝑓 , and update 𝜌 [·] (omitted)

and the iteration variables. Finally, after having processed all place accesses, the current iteration

variables are returned.
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Ending lifetimes. Let us continue with the example in Figure 10. The write to the mutable

reference zr on line 8 updates the current value of the mutable reference to 42, importantly using

the fact that 'a is alive to justify the write. The endlft instruction on line 10 ends the lifetime 'a,
replacing the 'a alive assertion in the context with the 'a dead assertion. In addition, we deinitialize

all mutable references that are now inaccessible and extract resolutions about their final value. In

our example, we get the resolution Res 𝛾 42 about zr’s final value. Note that we do not yet unblock

the inaccessible component z.0: this is done lazily on the next access.

Reading and stratification. Finally, line 12 reads from the two components of z to assert their

final values. The reads happen in a way that is conceptually similar to the mutable borrow before

(Figure 11), as both are place accesses — only instead of creating a new mutable borrow in the end,

we create a copy of the integers in the two components. However, the stratification step is more

interesting here: since the current place type of z.0 is blocked'a (inti32), stratify will unblock the

place by using the fact that 'a is dead and then use the resolution Res 𝛾 42 to update the ∗𝛾 to #42.

5.4 Soundness
We define the RefinedRust type system by building a semantic model in the Iris separation logic

framework [48, 18]. This means that all RefinedRust types and typing judgments are defined

as predicates in separation logic, and each typing rule is phrased as a separation logic lemma

and proven sound against these predicates. An important aspect of the RefinedRust semantic

model is the use of RustBelt’s lifetime logic [18, 15], which extends separation logic with a notion

of “borrowing”, where ownership of an arbitrary separation logic proposition can be split into

ownership during a lifetime, and ownership after the end of that lifetime. This feature is at the

core of RustBelt’s model of references to split the ownership of the borrowed value between the

borrower and the lender. RefinedRust extends the lifetime logic to model place types. Concretely,

to enable introducing the blocked type below mutable references (as e.g., in get_unchecked_mut in

§3), we introduce a notion of pinned borrows that allows temporarily weakening the type under a

mutable reference. Details can be found in the supplementary material [11]. Our formalization of

the type system consists of around 21k lines of specification and 14k lines of proof. Using Iris’s

soundness theorem, we obtain a top-level soundness theorem for RefinedRust.

Theorem 5.1 (Adeqacy). Let F be a “main” function for which the RefinedRust type system
(instantiated with a layout algorithm that can layout all types used by the program) has verified a type
corresponding to the Rust type () -> () . Then F executes safely, i.e., it will neither cause undefined
behavior nor cause a panic.

RefinedRust’s adequacy statement follows the standard structure of adequacy statements for

Iris-based type systems like RustBelt, RustHornBelt, and RefinedC: It states that a well-typed (i.e.,
verified) closed program has no undefined behavior and no panics. To understand the guarantees

provided by this theorem, one has to consider that RefinedRust is compositional: for instance, if a

function promises in its postcondition that it returns an even integer, then compositionality ensures

that we can form a larger closed program that checks whether the integer is actually even, and

panics otherwise. Adequacy on that larger program then says that the panic can never happen,

therefore implying that the postcondition is correct.

6 USING REFINEDRUST FOR VERIFICATION
To demonstrate that it is feasible to use the RefinedRust type system for verifying real Rust code,

we have implemented a type checker for RefinedRust in the Coq proof assistant. The RefinedRust

implementation uses the Lithium separation logic engine [40, 41] to automatically apply RefinedRust

typing rules, and tries to solve as many pure side conditions posed by the typing rules as possible.
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Frontend. The RefinedRust frontend translates Rust’s MIR code into Radium. The frontend is

implemented as a plugin to the rustc compiler that runs after the MIR code has been generated

and after Rust’s borrow checker has run successfully. For the most part, the frontend directly maps

MIR to Radium. However, in addition it generates hints for the RefinedRust type system relating to

lifetimes of references, extracted from the experimental Polonius borrow checker [36] (slated to

eventually replace the current stable borrow checker). A non-trivial aspect of this translation is to

align Polonius’ notion of loans with the concept of lifetimes used in RustBelt and inherited by the

RefinedRust type system. We reuse a few utility functions from the Prusti implementation [3], in

particular to extract information about lifetimes and references from Polonius. In addition to the

code, the RefinedRust frontend translates the RefinedRust annotations into types and specifications

and generates lemmas stating that the code of a function satisfies its specification. The proofs of

these lemmas invoke the RefinedRust type checker implemented using Coq proof automation.

Trusted Computing Base. As RefinedRust directly applies the RefinedRust typing rules proved
sound in Coq and the resulting proofs are checked by Coq, all proofs done with RefinedRust are

fully foundational. RefinedRust’s trusted computing base consists of Radium, which we assume to

provide a reasonably accurate model of the Rust operational semantics, as well as the frontend,

which needs to correctly translate definitions to Radium, and the top-level safety statement (in

addition to the kernel of the Coq proof assistant and its infrastructure). The additional lifetime

annotations generated by the frontend need not be trusted—our verification merely uses them

as hints. One also does not need to trust the RefinedRust type system, the lifetime logic, or its

implementation in Iris, because one can use Theorem 5.1 to obtain a correctness statement that

just refers to the operational semantics of Radium (without referring to the type system or Iris).

Evaluation. Next to the small example functions given in this paper, we have evaluated

RefinedRust’s ability to verify unsafe code by verifying core parts of the Vec API as presented

in the Rustonomicon [5]. Specifically, we have verified the following parts of the Vec API: new, push,

pop, get_unchecked, get, get_mut_unchecked, get_mut, and len (in addition to internal accessor functions).

We also verified RawVec with its new and grow functions as it is used internally by Vec (see §3.1), and

shims for pointer manipulation and allocation (e.g., alloc::{alloc, dealloc, realloc}).

The Vec code in the Rustonomicon is simplified compared to the standard library version in a

few places. First of all, it is not parameterized over the allocator that is used for memory alloca-

tion (instead using Rust’s global allocator). Secondly, get and get_mut on the standard library Vec

implementation work by converting a vector to a slice and then using the get/get_mut methods on

slices, while in the Rustonomicon implementation they are directly implemented on Vec. Addition-

ally, we have modified the Rustonomicon version by writing wrappers for the low-level memory

allocation APIs that the code uses. The Rust standard library memory allocation functions are very

platform-specific and use features that RefinedRust currently does not support.

The functions we have verified for the Vec and RawVecAPIs range between 3 and 20 lines of code. In

total, these APIs are implemented with 120 lines of code (measured with tokei). Our annotations for
representation invariants and function specifications add an additional 76 lines of code. The Radium

code for Vec comprises roughly 1200 lines of (automatically generated) Coq code. A large part of

this blow-up comes from the lowering of (surface) Rust to MIR by the Rust compiler, which induces

a significant overhead by desugaring operations and introducing temporary variables: the MIR code

that the RefinedRust frontend takes as input comprises 900 lines of code. The additional Radium

lines come from annotations for lifetimes and typing hints, as well as for local variable declarations.

The code size blow-up, the complexities of RefinedRust’s type system for handling reference types,

and the generation (and checking) of the foundational proof in Coq make verification performance

intensive. In total, the verification of the whole Vec API takes about 6 minutes wall time (and 22

minutes CPU time) on a recent Apple M1 Max processor. In addition to specifications for individual
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func. correct. foundational unsafe mem. automated
RustBelt [18] #   # #

RustHornBelt [31]    # #

Creusot [9]  # # #  

GillianRust [55]  #    

Flux [28]  # # #  

Verus [27]  # G# #  

Prusti [3]  # # #  

Aeneas [12]  G# # # G#

RefinedRust     G#

Fig. 12. Comparison of related work (func. correct. = proving functional correctness; foundational = foun-
dational proofs in a proof assistant; unsafe: supports verifying unsafe code; mem. = has a detailed memory
model that captures UB when working with (raw) pointers (e.g., alignment, out-of-bound offsets, zero-sized
types); automated = provides automated verification and takes real Rust programs as input).

functions, the verification uses around 80 lines of manually-proved Coq theory for reasoning about

Vec’s representation invariant. For example, for Vec::pop, the type system makes roughly 3.000

automatic steps for ownership reasoning, and generates 100 pure Coq side conditions. Of these

side conditions, all but five are solved automatically. Solving the remaining side conditions for pop

requires about 20 lines of manual Coq proofs.

7 RELATEDWORK
There is a long line of work on verifying low-level pointer manipulating code, especially in the

context of C [8, 24, 13, 1, 10, 41, 37, 35], and on the theory of ownership/region-based type systems

similar to/or preceding Rust [7, 51, 49, 14, 6]. We now zoom in on tools for verifying Rust programs.

Figure 12 compares recent approaches for verifying Rust programs based on the aspects focussed

on by this work. As Figure 12 shows, RefinedRust is the first tool that supports automated and

foundational functional correctness proofs for unsafe Rust code against a detailed memory model.

In particular, most existing automated verification tools do not support reasoning about unsafe

code and do not provide foundational proofs. On the other hand, RustBelt and RustHornBelt rely on

manual verification and translation of Rust code while also using a significantly simpler operational

model than RefinedRust (see §4.2). Let us now compare with the different approaches in detail.

RustHorn, Creusot, RustHornBelt, and GillianRust. RustHorn [32] is an approach to func-

tionally verifying safe Rust programs by generating an encoding of them in terms of Horn clauses,

building on the key insight that purely safe Rust programs are essentially functional. RustHorn

uses this insight to encode mutable references as a pair of the current value and a prophecy variable

for the final value (which also inspired RefinedRust’s encoding).

This approach has been implemented in a practical tool, Creusot [9]. Creusot supports a wide

range of Rust language features (e.g., traits and closures) and has been used to verify intricate case

studies, such as the verification of an optimized SAT solver [43].

However, RustHorn’s approach inherently cannot be used to reason about pointer-manipulating

unsafe code. The best that can be done is reason about safe code calling such unsafe code, and even

that only works if the unsafe code has a purely functional specification. That specification is then

assumed as an axiom by RustHorn/Creusot.
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RustHornBelt [31] can be used to formally verify those axioms in Coq, and shows that the

core verification technique of these tools is sound. However, RustHornBelt is closely based on

RustBelt, so proofs in RustHornBelt share some of the same limitations: compared to RefinedRust,

significantly more manual work is required, both in translating the original Rust code into a

model suitable for formal verification, and in actually carrying out the proof. Furthermore, the

connection between RustHorn/Creusot and RustHornBelt has not been made formal even on paper.

In contrast, RefinedRust demonstrates a methodology for verifying safe and unsafe code in a unified

semi-automated framework.

Another approach to verifying Creusot specifications of unsafe code is explored by Gillian-

Rust [55] (developed concurrently with RefinedRust). GillianRust is a non-foundational Rust verifier

built on the Gillian verification framework [42, 30]. GillianRust enables reasoning about unsafe Rust

code using an axiomatization of RustBelt’s lifetime logic and achieves a high degree of automation

thanks to its SMT-based verification (e.g., demonstrated on the verification of a doubly-linked list).

Flux. Flux [28] extends Rust’s type system with refinement types for functional verification,

inspired by the “liquid types” approach [38]. To handle writes to mutable references, Flux introduces

a notion of “strong references” that permit the reference’s type to change (i.e., allow strong updates)

by tracking the exact location that is borrowed, reminiscent of RefinedC’s &own type described in

§1. Flux leverages these strong borrows to build a lightweight and highly automated verification

tool that can automatically synthesize refinements and loop invariants. In contrast, RefinedRust

requires significantly more annotations and proof guidance, and handles a smaller subset of Rust.

However, Flux is limited in expressivity: it targets the verification of safe code, while RefinedRust

can also verify unsafe code. In particular, Flux cannot reason about low-level pointer manipulation,

so none of the methods of Vec we verified could be verified in Flux (already the safety invariant on

the Vec structure in Figure 4 is inexpressible in Flux, as it requires specifying custom ownership

over memory). Instead, Vec is axiomatized in Flux with a weaker interface that tracks only the

length of the vector instead of its contents (and so, the Flux specification of get_mut (Figure 3 in

§2.3) also does not link the returned reference to the contents of the vector).

Verus. Verus [27] is a Rust verifier that leverages Rust itself as the specification and proof

language. As proofs are checked by an SMT solver and rely on Rust’s type checker (including the

borrow checker) for soundness, proofs in Verus are not foundational. Verus is more mature and

supports a larger subset of safe Rust than RefinedRust, and even supports some patterns that would

traditionally require unsafe code. Verus’s support for unsafe code works by providing abstractions

over raw pointers that are safe in conjunction with side conditions checked by the SMT solver,

essentially delegating ownership reasoning to Rust’s ownership type system. This is powerful, but

any ownership reasoning requires using dedicated Rust types that encode this ownership. Thus,

Verus cannot verify the Vec implementation that is written with raw pointers directly. Moreover,

any of these abstractions (as well as the Rust type checker) have to be trusted. Moreover, Verus

currently cannot verify reborrowing functions that return a mutable reference like the function

Vec::get_unchecked_mut we verify in §3.

Prusti. Prusti [3] is a Rust verification tool based on the Viper [34] verification infrastructure.

Prusti uses Rust type signatures to infer the requisite ownership in pre- and postconditions (which

has served as inspiration of RefinedRust’s handling of safe code). Thanks to Viper’s SMT-based

solver, Prusti provides a high degree of automation. To model Rust’s mutable reference types, Prusti

has a notion of pledges, describing assertions that hold once the lifetime of a reference ends. Pledges

are similar in flavor to RefinedRust’s borrow names, but less flexible. For instance, Prusti cannot

state the Vec::get_mut specification shown in §2.2 since it does not support mutable references inside

of Option. Prusti does have a model of mutable state (albeit a more high-level one than RefinedRust),
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so it would in principle support reasoning about raw pointers. However, it has not been used yet

for unsafe verification. In particular, specifications for Rust’s vectors are asserted as axioms.

Aeneas. Aeneas [12] is a verification toolchain for safe Rust based on a translation to a borrow

calculus with a pure, functional semantics. Programs in this calculus can be translated into multiple

provers, e.g., F∗ or Coq, which are then used to reason about the generated code. The assurances

and automation depend on the chosen backend.

Other tools for increasing Rust assurances. Apart from deductive verification, other tools

have been proposed for finding bugs or verifying Rust programs. Most of these tools have a lower

barrier to entry for programmers than the deductive verification tools, but are more restricted in

terms of expressivity or the provided assurances.

KRust [52] and RustSEM [22] formalize Rust’s semantics in the K framework [39]. KRust formal-

izes core parts of safe Rust (including some parts not handled by RefinedRust like closures), but

does not formalize unsafe Rust. RustSEM formalizes more extensive parts both of safe and unsafe

Rust, but at a comparatively high-level (e.g., the memory model does not reflect the byte-level repre-

sentation of values). The authors of RustSEM use the K framework’s ability to derive a verification

tool from the semantics and use it to verify some unsafe code, including four functions of Rust’s

VecDeque API. However, they only verify that the head, tail, and capacity of the VecDeque are staying

consistent with each other; they do not verify a full functional correctness specification like our

Vec case study. Furthermore, their framework does not support unbounded heap fragments, so the

verification is limited to VecDeque’s of length 16, making it more akin to bounded model checking.

Miri [33] is an interpreter for Rust’s MIR intermediate representation that can check for many

forms of undefined behavior in unsafe Rust code. Thanks to its ease of use, Miri has become the

de-facto tool for programmers of unsafe Rust to check their code for compliance with Rust’s rules,

and it has been successful in uncovering bugs in Rust’s standard library. Due to Miri’s focus on

checking individual executions, it is limited to bug-finding as opposed to verification.

Kani [23] is a bounded model checker for Rust, which can reason about all program executions

(if a computable bound on the execution length can be found). Kani supports raw pointers with

a low-level memory model, and has thus turned into a valuable tool for programmers of unsafe

Rust to gain basic assurances. Kani has some limitations inherent to bounded model checking: its

expressiveness around loops is limited, requiring easily computable loop bounds, and it cannot

express modular Hoare-style specifications (with preconditions and postconditions).

8 FUTUREWORK
The RefinedRust type system represents a crucial first step towards high-assurance verification

of Rust programs with both safe and unsafe code. Our prototype implementation of RefinedRust

in Coq enables the first foundational functional correctness proofs of real Rust code with respect

to a realistic operational semantics. In future work, we would like to improve the user friendli-

ness, verification times, and handling of pure side conditions. These aspects are orthogonal to the

foundations of the type system. For example, we plan to explore if a recently developed solver

for arrays in Coq [53] could be integrated to discharge the side conditions in our Vec case study.

RefinedRust might also provide a basis for standalone verification tools, similar to the way founda-

tional logics for weak-memory verification have been axiomatized in the Viper framework [46]

(that also underlies Prusti). Another avenue for future work is to expand RefinedRust’s support

for advanced features of Rust, such as closures, e.g., by taking inspiration from Wolff et al. [54].

Finally, while Radium, our formal model of Rust, is strictly more accurate than the models used by

prior deductive verification tools, there are aspects of Rust we do not model; most of them do not

even have an official specification yet. The ongoing development of a normative specification for

Rust [16] could provide essential guidelines to improve Radium.
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ARTIFACT AVAILABILITY
The supplementary material, including our implementation of RefinedRust and the formalization

of RefinedRust’s type system, is available online [11].
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