
Asynchronous Probabilistic Couplings in
Higher-Order Separation Logic

SIMON ODDERSHEDE GREGERSEN, Aarhus University, Denmark

ALEJANDRO AGUIRRE, Aarhus University, Denmark

PHILIPP G. HASELWARTER, Aarhus University, Denmark

JOSEPH TASSAROTTI, New York University, USA

LARS BIRKEDAL, Aarhus University, Denmark

Probabilistic couplings are the foundation for many probabilistic relational program logics and arise when

relating random sampling statements across two programs. In relational program logics, this manifests as

dedicated coupling rules that, e.g., say we may reason as if two sampling statements return the same value.

However, this approach fundamentally requires aligning or “synchronizing” the sampling statements of the

two programs which is not always possible.

In this paper, we develop Clutch, a higher-order probabilistic relational separation logic that addresses this

issue by supporting asynchronous probabilistic couplings. We use Clutch to develop a logical step-indexed

logical relation to reason about contextual refinement and equivalence of higher-order programs written in a

rich language with a probabilistic choice operator, higher-order local state, and impredicative polymorphism.

Finally, we demonstrate our approach on a number of case studies.

All the results that appear in the paper have been formalized in the Coq proof assistant using the Coquelicot

library and the Iris separation logic framework.

CCS Concepts: • Theory of computation→ Separation logic; Logic and verification; Probabilistic
computation; Program verification; • Mathematics of computing→ Probabilistic algorithms.

Additional Key Words and Phrases: Probabilistic Couplings, Separation Logic, Logical Relations

ACM Reference Format:
Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal.

2024. Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8,
POPL, Article 26 (January 2024), 32 pages. https://doi.org/10.1145/3632868

1 INTRODUCTION
Relational reasoning is a useful technique for proving properties of probabilistic programs. By

relating a complex probabilistic program to a simpler one, we can often reduce a challenging

verification task to an easier one. In addition, certain important properties of probabilistic programs

are naturally expressed in a relational form, such as stability of machine learning algorithms

[Bousquet and Elisseeff 2002], differential privacy [Dwork and Roth 2013], and provable security

[Goldwasser and Micali 1984]. Consequently, a number of relational program logics and models

have been developed for probabilistic programs, e.g., pRHL [Barthe et al. 2015], approximate pRHL

Authors’ addresses: Simon Oddershede Gregersen, Aarhus University, Denmark, gregersen@cs.au.dk; Alejandro Aguirre,

Aarhus University, Denmark, alejandro@cs.au.dk; Philipp G. Haselwarter, Aarhus University, Denmark, pgh@cs.au.dk;

Joseph Tassarotti, New York University, USA, jt4767@cs.nyu.edu; Lars Birkedal, Aarhus University, Denmark, birke@cs.au.

dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART26

https://doi.org/10.1145/3632868

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0001-6045-5232
HTTPS://ORCID.ORG/0000-0001-6746-2734
HTTPS://ORCID.ORG/0000-0003-0198-7751
HTTPS://ORCID.ORG/0000-0001-5692-3347
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://doi.org/10.1145/3632868
https://orcid.org/0000-0001-6045-5232
https://orcid.org/0000-0001-6746-2734
https://orcid.org/0000-0003-0198-7751
https://orcid.org/0000-0001-5692-3347
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.1145/3632868

26:2 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

[Barthe et al. 2016a,b, 2012], EpRHL [Barthe et al. 2018], HO-RPL [Aguirre et al. 2021], Polaris

[Tassarotti and Harper 2019], logical relations [Bizjak and Birkedal 2015; Johann et al. 2010; Wand

et al. 2018], and differential logical relations [Dal Lago and Gavazzo 2022].

Many probabilistic relational program logics make use of probabilistic couplings [Lindvall 2002;
Thorisson 2000; Villani 2008], a mathematical tool for reasoning about pairs of probabilistic pro-

cesses. Informally, couplings correlate outputs of two processes by specifying how corresponding

sampling statements are correlated. To understand how couplings work in such logics, let us

consider a pRHL-like logic. In pRHL and its variants, we prove Hoare quadruples of the form

{𝑃} 𝑒1 ∼ 𝑒2 {𝑄} , where 𝑒1 and 𝑒2 are two probabilistic programs, and 𝑃 and 𝑄 are pre and post-

relations on states of the two programs. Couplings arise when reasoning about random sampling

statements in the two programs, such as in the following rule:

prhl-couple

{𝑃 [𝑣/𝑥1, 𝑣/𝑥2]} 𝑥1
$←− 𝑑 ∼ 𝑥2

$←− 𝑑 {𝑃}

Here, the two programs both sample from the same distribution 𝑑 and store the result in variable 𝑥1
and 𝑥2, respectively. The rule says that we may reason as if the two sampling statements return the

same value 𝑣 in both programs, and one says that the sample statements have been “coupled”. This is

a powerful method that integrates well with existing reasoning principles from relational program

logics. However, this kind of coupling rules require aligning or “synchronizing” the sampling

statements of the two programs: both programs have to be executing the sample statements we

want to couple for their next step when applying the rule. To enable this alignment, pRHL has

various rules that enable taking steps on one side of the quadruple at a time or commuting statements

in a (first-order) program. Nevertheless, with the rules from existing probabilistic relational logics,

it is not always possible to synchronize sampling statements.

For example, consider the following programwritten in anML-like language that eagerly performs

a probabilistic coin flip and returns the result in a thunk:

eager ≜ let 𝑏 = flip() in __. 𝑏

An indistinguishable—but lazy—version of the program only does the coin flip when the thunk is

invoked for the first time but stores the result in a reference that is read from in future invocations:

lazy ≜ let 𝑟 = ref (None) in
__. match ! 𝑟 with

Some(𝑏) ⇒ 𝑏

| None ⇒ let 𝑏 = flip() in
𝑟 ← Some(𝑏);
𝑏

end

The usual symbolic execution rules of relational logics will allow us to progress the two sides

independently according to the program execution, but they will not allow us to line up the flip()
expression in eager with that in lazy. Consequently, the coupling rule prhl-couple cannot be applied.
Intuitively, the flip() expression in eager is evaluated immediately but the flip() expression in lazy
only gets evaluated when the thunk is invoked—to relate the two thunks one is forced to first

evaluate the eager sampling, but this then makes it impossible to couple it with the lazy sampling.

While the example may seem contrived, these kinds of transformations of eager and lazy sampling

are widely used, e.g., in proofs in the RandomOracle Model [Bellare and Rogaway 1993] and in game

playing proofs [Bellare and Rogaway 2004, 2006]. For this reason, systems like EasyCrypt [Barthe

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:3

et al. 2013] and CertiCrypt [Barthe et al. 2009, 2010] support reasoning about lazy/eager sampling

through special-purpose rules for swapping statements that allows alignment of samplings; the

approach is shown to work for a first-order language with global state and relies on syntactic

criteria and assertions on memory disjointness. However, in rich enough languages (e.g. with
general references and closures) these kinds of swapping-equivalences are themselves highly

non-trivial, even in the non-probabilistic case [Dreyer et al. 2012; Pitts and Stark 1998].

In this paper we develop Clutch, a higher-order probabilistic relational separation logic that

addresses this issue by enabling asynchronous probabilistic couplings. To do so, Clutch introduces a

novel kind of ghost state, called presampling tapes. Presampling tapes let us reason about sampling

statements as if they executed ahead of time and stored their results for later use. This converts the

usual alignment problem of coupling rules into the task of reasoning about this special form of

state. Fortunately, reasoning about state is well-addressed with modern separation logics.

Clutch provides a “logical” step-indexed logical relation [Dreyer et al. 2011] to reason about

contextual refinement and equivalence of probabilistic higher-order programs written in Frand
`,ref

, a

rich language with a probabilistic choice operator, higher-order local state, recursive types, and

impredicative polymorphism. Intuitively, expressions 𝑒1 and 𝑒2 of type 𝜏 are contextually equivalent

if no well-typed context C can distinguish them, i.e., if the expression C[𝑒1] has the same observable

behaviors as C[𝑒2]. Contextual equivalence can be decomposed into contextual refinement: we say

𝑒1 refines 𝑒2 at type 𝜏 , written 𝑒1 ≾ctx 𝑒2 : 𝜏 , if, for all contexts C expecting something of type 𝜏 ,

if C[𝑒1] has some observable behavior, then so does C[𝑒2]. As our language is probabilistic, here
“observable behavior” means the probability of observing an outcome, such as termination. Using

the logical approach [Timany et al. 2022], in Clutch, types are interpreted as relations expressed in

separation logic. The resulting model allows us to prove, among other examples, that the eager
program above is contextually equivalent to the lazy program.

The work presented in this paper is foundational [Appel 2001] in the sense that all results,

including the semantics, the logic, the necessary mathematical analysis results, the relational model,

and all the examples are formalized
1
in the Coq proof assistant [The Coq Development Team 2022]

using the Coquelicot library [Boldo et al. 2015] and the Iris separation logic framework [Jung et al.

2016, 2018, 2015; Krebbers et al. 2017a].

In summary, we make the following contributions:

• A higher-order probabilistic relational separation logic, Clutch, for reasoning about proba-

bilistic programs written in Frand
`,ref

, an ML-like programming language with higher-order local

state, recursive types, and impredicative polymorphism.

• A proof method for relating asynchronous probabilistic samplings in a program logic; a

methodology that allows us to reason about sampling as if it were state and to exploit existing

separation logic mechanisms such as ghost state and invariants to reason about probabilistic

programs. We demonstrate the usefulness of the approach with a number of case studies.

• The first coupling-based relational program logic to reason about contextual refinement and

equivalence of programs in a higher-order language with local state, recursive types, and

impredicative polymorphism.

• Novel technical ideas, namely, left-partial couplings, a coupling modality, and an erasure
argument, that allow us to prove soundness of the relational logic.

• Full mechanization in Coq using Coquelicot and the Iris separation logic framework.

1
https://github.com/logsem/clutch

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

https://github.com/logsem/clutch

26:4 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

2 KEY IDEAS
The key conceptual novelties of the Clutch logic are twofold: a logical probabilistic refinement
judgment and a novel kind of ghost resource, called presampling tapes.

Logical refinement. The refinement judgmentΔ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏 should be read as “the expression
𝑒1 refines the expression 𝑒2 at type 𝜏” and it satisfies a range of structural and symbolic execution

rules as showcased in Figure 2 and further explained in §4. Just like contextual refinement, the

judgment is indexed by a type 𝜏—the environment Δ assigns semantic interpretations to type

variables in 𝜏 and E is an invariant mask as elaborated on in §4. Both are safely ignored in this

section. The meaning of the judgment is formally reflected by the following soundness theorem.

Theorem 1 (Soundness). If ∅ ⊨ 𝑒1 ≾ 𝑒2 : 𝜏 is derivable in Clutch then 𝑒1 ≾ctx 𝑒2 : 𝜏 .

The refinement judgment is internal to the ambient Clutch separation logic. This means that we

can combine the judgment in arbitrary ways with other logical connectives: e.g., the separating
conjunction 𝑃 ∗ 𝑄 and its adjoint separating implication (magic wand) 𝑃 ∗ 𝑄 . All inference rules
that we present can be internalized as propositions in the logic and we will use an inference rule

with premises 𝑃1, . . . , 𝑃𝑛 and conclusion 𝑄 as notation for (𝑃1 ∗ . . . ∗ 𝑃𝑛) ⊢ 𝑄 .
The language Frand

`,ref
contains a single probabilistic primitive rand(𝑁) that reduces uniformly at

random to some 𝑛 ∈ {0, 1, . . . , 𝑁 }:
rand(𝑁), 𝜎 −→1/(𝑁+1)

𝑛, 𝜎 𝑛 ∈ {0, 1, . . . , 𝑁 }
where 𝜎 is the current program state and −→⊆ Cfg × [0, 1] ×Cfg is a small-step transition relation,

annotated with the probability that the transition occurs. By defining flip() ≜ if rand(1) =

0 then false else true we recover the Boolean fair coin flip operator used in the motivating example.

To reason relationally about probabilistic choices that can be synchronized, Clutch admits a classical

coupling rule that allows us to continue reasoning as if the two sampled values are related by a

bijection 𝑓 on the sampling space {0, . . . , 𝑁 }:
rel-couple-rands

𝑓 bijection ∀𝑛 ≤ 𝑁 . Δ ⊨E 𝐾 [𝑛] ≾ 𝐾 ′ [𝑓 (𝑛)] : 𝜏
Δ ⊨E 𝐾 [rand(𝑁)] ≾ 𝐾 ′ [rand(𝑁)] : 𝜏

where 𝐾 and 𝐾 ′ are arbitrary evaluation contexts.

Asynchronous couplings. To support asynchronous couplings we introduce presampling tapes.
Reminiscent of how prophecy variables [Abadi and Lamport 1988, 1991; Jung et al. 2020] allow us to

talk about the future, presampling tapes give us the means to talk about the outcome of probabilistic

choices in the future.2 Tapes manifest both in the operational semantics and in the logic.

Operationally, a tape consists of an upper bound 𝑁 ∈ N and a finite sequence of natural numbers

less than or equal to 𝑁 , representing future outcomes of rand(𝑁) commands. Each tape is labeled

with an identifier] ∈ Label, and a program’s state is extended with a finite map from labels to tapes.

Tapes can be dynamically allocated using a tape primitive:

tape(𝑁), 𝜎 −→1

], 𝜎 [] ↦→ (𝑁, 𝜖)] if] = fresh(𝜎)
which extends the mapping with an empty tape and the upper bound 𝑁 , and it returns its fresh

label]. The rand primitive can then optionally be annotated with a tape label]. If 𝜎 (]) = (𝑁, 𝜖), i.e.,
the corresponding tape is empty, rand(𝑁,]) reduces to any 𝑛 ≤ 𝑁 with equal probability:

rand(𝑁,]), 𝜎 −→1/(𝑁+1)
𝑛, 𝜎 if 𝜎 (]) = (𝑁, 𝜖) and 𝑛 ≤ 𝑁

2
As showcased in §7, however, prophecy variables as previously developed in Iris are unsound for the coupling- logic.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:5

.

.

.

𝐾1 [𝑒],] ↦→ 𝑥1 𝑥2 . . . 𝑥𝑘

𝐾1 [𝑒],] ↦→ 𝑥1 𝑥2 . . . 𝑥𝑘 𝑛

𝐾 ′
1
[rand(], 𝑁)],] ↦→ 𝑛 𝑦1 . . .

𝐾 ′
1
[𝑛],] ↦→ 𝑦1 . . .

(after 𝑘 samples from])

...

𝐾2 [rand(𝑁)], 𝜎 ′

𝐾 [𝑓 (𝑛)], 𝜎 ′

...

Fig. 1. Illustration of an asynchronous coupling established through the rule rel-couple-tape-l.

but if the tape is not empty, the rand(𝑁,]) primitive reduces deterministically by taking off the first

element of the tape and returning it:

rand(𝑁,]), 𝜎 −→1

𝑛, 𝜎 [] ↦→ (𝑁, ®𝑛)] if 𝜎 (]) = (𝑁,𝑛 · ®𝑛)
If the tape bounds do not match, then rand(𝑁,]) reduces as if the tape was empty:

rand(𝑁,]), 𝜎 −→1/(𝑁+1)
𝑛, 𝜎 if 𝜎 (]) = (𝑀, ®𝑛) and 𝑁 ≠ 𝑀 and 𝑛 ≤ 𝑁

However, no primitives in the language add values to the tapes! Instead, values are added to tapes

as part of presampling steps that will be ghost operations appearing only in the relational logic.

That is, presampling will purely be a proof-device that has no operational effect: in the end, tapes

can in fact be erased entirely through refinement as will be clear by the end of this section.

At the logical level, Clutch comes with a] ↩→ (𝑁, ®𝑛) assertion that denotes ownership of the

label] and its contents (𝑁, ®𝑛), analogously to how the traditional points-to-connective ℓ ↦→ 𝑣 of

separation logic denotes ownership of the location ℓ and its contents on the heap. When a tape is

allocated, ownership of the fresh empty tape is acquired, i.e.,
rel-alloc-tape-l

∀].] ↩→ (𝑁, 𝜖) ∗ Δ ⊨E 𝐾 []] ≾ 𝑒 : 𝜏
Δ ⊨E 𝐾 [tape(𝑁)] ≾ 𝑒 : 𝜏

Asynchronous couplings between probabilistic choices can be established in the refinement logic by

coupling ghost presamplings with program steps. For example, the rule below allows us to couple

an (unlabeled) probabilistic choice on the right with a presampling on the] tape on the left:

rel-couple-tape-l

𝑓 bijection 𝑒 ∉Val] ↩→ (𝑁, ®𝑛) ∀𝑛 ≤ 𝑁 .] ↩→ (𝑁, ®𝑛 · 𝑛) ∗ Δ ⊨E 𝑒 ≾ 𝐾 ′ [𝑓 (𝑛)] : 𝜏
Δ ⊨E 𝑒 ≾ 𝐾

′ [rand(𝑁)] : 𝜏
Intuitively, as illustrated in Figure 1, the rule allows us to couple a logical ghost presampling step on

the left (illustrated using a red dashed arrow) with a physical sampling on the right. A symmetric

rule holds for the opposite direction and two ghost presamplings can be coupled as well. When

we—at some point in the future—reach a presampled rand(𝑁,]), we simply read off the presampled

values from the] tape deterministically in a first-in-first-out order, i.e.,
rel-rand-tape-l

] ↩→ (𝑁,𝑛 · ®𝑛)] ↩→ (𝑁, ®𝑛) ∗ Δ ⊨E 𝐾 [𝑛] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [rand(𝑁,])] ≾ 𝑒2 : 𝜏

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:6 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

If we do not perform any presamplings, tapes and labels can be ignored and we can couple labeled

sampling commands as if they were unlabeled:

rel-rand-erase-r

] ↩→s (𝑁, 𝜖) ∀𝑛 ≤ 𝑁 . Δ ⊨E 𝐾 [𝑛] ≾ 𝐾 ′ [𝑛] : 𝜏
Δ ⊨E 𝐾 [rand(𝑁)] ≾ 𝐾 ′ [rand(𝑁,])] : 𝜏

Here the assertion] ↩→s (𝑁, 𝜖) denotes ownership of an empty tape] of the right-hand side program

(the program on the “specification” side).

Example. Using presampling tapes, we can show that lazy is a contextual refinement of eager
from §1, that is, lazy ≾ctx eager : unit→ bool. We first define an intermediate labeled version of

lazy, using flip(]) ≜ if rand(1,]) = 0 then false else true:

lazy′ ≜ let] = tape(1) in
let 𝑟 = ref (None) in
__. match ! 𝑟 with

Some(𝑏) ⇒ 𝑏

| None ⇒ let 𝑏 = flip(]) in
𝑟 ← Some(𝑏);
𝑏

end

By transitivity of contextual refinement and Theorem 1 it suffices to show ⊨ lazy ≾ lazy′ : unit→
bool and ⊨ lazy′ ≾ eager : unit → bool. The former follows straightforwardly using symbolic

execution rules and rel-rand-erase-r. To show the latter we allocate a tape] and a reference ℓ on

the left by symbolic execution and couple the presampling of a 𝑏 ∈ {0, 1} on the] tape with the

flip() on the right using rel-couple-tape-l. This establishes an invariant

(] ↩→ (1, 𝑏) ∗ ℓ ↦→ None) ∨ ℓ ↦→ Some(𝑏)
that expresses how either 𝑏 is on the] tape and the location ℓ is empty or ℓ contains the value 𝑏.
Invariants are particular kinds of propositions in Clutch that, in this particular case, are guaranteed

to always hold at the beginning and at the end of the function evaluation. Under this invariant, we

show that the two thunks are related by symbolic execution and rules for accessing invariants that

we detail in §4. Symmetric arguments allow us to show the refinement in the other direction and

consequently the contextual equivalence.

This example shows how presampling tapes are simple and powerful, yet merely a proof-device:

the final equivalence holds for programs without any mention of tapes. Intuitively, tapes allow us

to separate the process of building a coupling from the operational semantics of the program. One

might be tempted to believe, though, that as soon as the idea of presampling arises, the high-level

proof rules as supported by Clutch are straightforward to state and prove. This is not the case. As
we will show throughout the paper, a great deal of care goes into defining a system that supports

presampling while being sound. In §7 we discuss two counterexamples that illustrate some of the

subtleties involved in defining a sound system.

3 PRELIMINARIES AND THE LANGUAGE Frand
`,ref

To account for non-terminating behavior, we will define our operational semantics using probability

sub-distributions which we recall below.

Definition 2 (Sub-distribution). A (discrete) sub-distribution over a countable set𝐴 is a function
` : 𝐴→ [0, 1] such that

∑
𝑎∈𝐴 ` (𝑎) ≤ 1. We write D(𝐴) for the set of all sub-distributions over 𝐴.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:7

Definition 3 (Support). The support of ` ∈ D(𝐴) is the set of elements

supp(`) ≜ {𝑎 ∈ 𝐴 | ` (𝑎) > 0}

Lemma 4 (Probability Monad). Let ` ∈ D(𝐴), 𝑎 ∈ 𝐴, and 𝑓 : 𝐴→ D(𝐵). Then
(1) bind(𝑓 , `) (𝑏) ≜ ∑

𝑎∈𝐴 ` (𝑎) · 𝑓 (𝑎) (𝑏)

(2) ret(𝑎) (𝑎′) ≜
{
1 if 𝑎 = 𝑎′

0 otherwise

gives monadic structure to D. We write ` ≫= 𝑓 for bind(𝑓 , `).

The syntax of the language Frand
`,ref

is defined by the grammar below.

𝑣,𝑤 ∈Val ::= 𝑧 ∈ Z | 𝑏 ∈ B | () | ℓ ∈ Loc |] ∈ Label | rec f x = 𝑒 | (𝑣,𝑤) | inl(𝑣) | inr(𝑣)
𝑒 ∈ Expr ::= 𝑣 | x | 𝑒1 (𝑒2) | if 𝑒 then 𝑒1 else 𝑒2 | fst(𝑒) | snd(𝑒) | ref (𝑒) | ! 𝑒 | 𝑒1 ← 𝑒2 |

match 𝑒 with inl(𝑣) ⇒ 𝑒1 | inr(𝑤) ⇒ 𝑒2 end | fold 𝑒 | unfold 𝑒 | Λ𝑒 | 𝑒 _ |
pack 𝑒 | unpack 𝑒 as 𝑥 in 𝑒 | tape(𝑒) | rand(𝑒1, 𝑒2) | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | · · ·

𝐾 ∈ Ectx ::= − | 𝑒 𝐾 | 𝐾 𝑣 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣 | tape(𝐾) | rand(𝑒, 𝐾) | rand(𝐾, 𝑣) | . . .
𝜎 ∈ State ≜ (Loc fin−⇀Val) × (Label fin−⇀ Tape)
𝑡 ∈ Tape ≜ {(𝑁, ®𝑛) | 𝑁 ∈ N ∧ ®𝑛 ∈ N∗≤𝑁 }
𝜌 ∈ Cfg ≜ Expr × State

𝜏 ∈ Type ::= 𝛼 | unit | bool | nat | int | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝜏 → 𝜏 | ∀𝛼. 𝜏 | ∃𝛼. 𝜏 | ` 𝛼. 𝜏 | ref 𝜏 | tape
The term language is mostly standard but note that there are no types in terms; we write Λ𝑒 for
type abstraction and 𝑒 _ for type application. fold 𝑒 and unfold 𝑒 are the special term constructs for

iso-recursive types. ref (𝑒) allocates a new reference, ! 𝑒 dereferences the location 𝑒 evaluates to,

and 𝑒1 ← 𝑒2 assigns the result of evaluating 𝑒2 to the location that 𝑒1 evaluates to. We introduce

syntactic sugar for lambda abstractions _𝑥. 𝑒 defined as rec _ 𝑥 = 𝑒 , let-bindings let 𝑥 = 𝑒1 in 𝑒2
defined as (_𝑥 . 𝑒2) (𝑒1), and sequencing 𝑒1; 𝑒2 defined as let _ = 𝑒1 in 𝑒2. We write rand(𝑁) for
rand(𝑁, ()), i.e. an unlabeled probabilistic choice.

We implicitly coerce from 𝜎 ∈ State to heaps and tapes, e.g., 𝜎 (ℓ) = 𝜋1 (𝜎) (ℓ) and 𝜎 (]) = 𝜋2 (𝜎) (]).
Tapes are formally pairs (𝑁, ®𝑛) of 𝑁 ∈ N and a finite sequence ®𝑛 of natural numbers less than or

equal to 𝑁 . The language has a call-by-value single-step-reduction relation −→⊆ Cfg × [0, 1] ×Cfg
defined using evaluation contexts𝐾 ∈ Ectx. The relation is mostly standard: all the non-probabilistic

constructs reduce as usual with weight 1 and rand(𝑒1, 𝑒2) reduces as discussed in §2.

To define full program execution, let step(𝜌) ∈ D(Cfg) denote the distribution induced by the

single step reduction of configuration 𝜌 ∈ Cfg. First, we define a stratified execution probability

exec𝑛 : Cfg→ D(Val) by induction on 𝑛:

exec𝑛 (𝑒, 𝜎) ≜

0 if 𝑒 ∉Val and 𝑛 = 0

ret(𝑒) if 𝑒 ∈Val
step(𝑒, 𝜎) ≫= exec(𝑛−1) otherwise

where 0 denotes the everywhere-zero distribution. That is, exec𝑛 (𝑒, 𝜎) (𝑣) denotes the probability
of stepping from the configuration (𝑒, 𝜎) to a value 𝑣 in less than 𝑛 steps. The probability that a full

execution, starting from configuration 𝜌 , reaches a value 𝑣 is the limit of its stratified approximations,

which exists by monotonicity and boundedness:

exec(𝜌) (𝑣) ≜ lim𝑛→∞ exec𝑛 (𝜌) (𝑣)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:8 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

The probability that a full execution from a starting configuration 𝜌 terminates then becomes

exec⇓ (𝜌) ≜
∑

𝑣∈Val exec(𝜌) (𝑣).
Typing judgments have the form Θ | Γ ⊢ 𝑒 : 𝜏 where Γ is a context assigning types to program

variables, and Θ is a context of type variables that may occur in Γ and 𝜏 . The inference rules for

the typing judgments are standard (see, e.g., Frumin et al. [2021b] or the Coq formalization) and

omitted, except for the straightforward rules for typing tapes and samplings shown below:

t-tape

Θ | Γ ⊢ 𝑒 : nat
Θ | Γ ⊢ tape(𝑒) : tape

t-rand

Θ | Γ ⊢ 𝑒1 : nat Θ | Γ ⊢ 𝑒2 : 𝜏 𝜏 = unit ∨ 𝜏 = tape

Θ | Γ ⊢ rand(𝑒1, 𝑒2) : nat

The notion of contextual refinement that we use is also mostly standard and uses the termination

probability exec⇓ as observation predicate. Since we are in a typed setting, we consider only typed

contexts. A program context is well-typed, written C : (Θ | Γ ⊢ 𝜏) ⇒ (Θ′ | Γ′ ⊢ 𝜏 ′), if for any
term 𝑒 such that Θ | Γ ⊢ 𝑒 : 𝜏 we have Θ′ | Γ′ ⊢ C[𝑒] : 𝜏 ′. We say expression 𝑒1 contextually
refines expression 𝑒2 if for all well-typed program contexts C resulting in a closed program then

the termination probability of C[𝑒1] is bounded by the termination probability of C[𝑒2]:

Θ | Γ ⊢ 𝑒1 ≾ctx 𝑒2 : 𝜏 ≜ ∀𝜏 ′, (C : (Θ | Γ ⊢ 𝜏) ⇒ (∅ | ∅ ⊢ 𝜏 ′)), 𝜎 .
exec⇓ (C[𝑒1], 𝜎) ≤ exec⇓ (C[𝑒2], 𝜎)

Note that contextual refinement is a precongruence, and that the statement itself is in the meta-logic

(e.g., Coq) and makes no mention of Clutch or Iris. Contextual equivalence Θ | Γ ⊢ 𝑒1 ≃ctx 𝑒2 : 𝜏 is
defined as the symmetric interior of refinement: (Θ | Γ ⊢ 𝑒1 ≾ctx 𝑒2 : 𝜏) ∧ (Θ | Γ ⊢ 𝑒2 ≾ctx 𝑒1 : 𝜏).

4 THE CLUTCH REFINEMENT LOGIC
In the style of ReLoC [Frumin et al. 2021b], we define a logical refinement judgment Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏
as an internal notion in the Clutch separation logic by structural recursion over the type 𝜏 . The

fundamental theorem of logical relations will then show that logical refinement implies contextual

refinement. This means proving contextual refinement can be reduced to proving logical refinement,

which is generally much easier. When defining and proving logical refinement, we can leverage the

features of modern separation logic, e.g., (impredicative) invariants and (higher-order) ghost state

as inherited from Iris, to model and reason about complex programs and language features.

Clutch is based on higher-order intuitionistic separation logic and the most important proposi-

tions are shown below.

𝑃,𝑄 ∈ iProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑃 ∗ 𝑄 | 𝑃 ∗ 𝑄 |

� 𝑃 | ⊲ 𝑃 | `𝑥 . 𝑃 | ⌜𝜙⌝ | 𝑃 N | 𝑃 N | ℓ ↦→ 𝑣 | ℓ ↦→s 𝑣 |
] ↩→ (𝑁, ®𝑛) |] ↩→s (𝑁, ®𝑛) | J𝜏KΔ (𝑣1, 𝑣2) | Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏 | . . .

As Clutch is built upon the base logic of Iris [Jung et al. 2018], it includes all its connectives such as

the persistence modality �, the later modality ⊲, fixpoints `𝑥 . 𝑃 , invariants 𝑃
N
, and non-atomic

invariants [The Iris Development Team 2022], written 𝑃
N
, which we will introduce as needed.

The proposition ⌜𝜙⌝ embeds a meta-logic (e.g., Coq) proposition 𝜙 (e.g., equality or a coupling)

into Clutch but we will omit the brackets whenever the type of 𝜙 is clear from the context.

Like ordinary separation logic, Clutch has heap points-to assertions. Since the logic is relational,

these come in two forms: ℓ ↦→ 𝑣 for the left-hand side program’s state and ℓ ↦→s 𝑣 for the right-hand

side’s state (the “specification” side). For the same reason, tape assertions come in two forms as

well,] ↩→ (𝑁, ®𝑛) and] ↩→s (𝑁, ®𝑛) respectively.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:9

4.1 Refinement Judgments
The refinement judgment Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏 should be read as “in environment Δ, the expression 𝑒1
refines the expression 𝑒2 at type 𝜏 under the invariants in E”. We refer to 𝑒1 as the implementation
and to 𝑒2 as the specification. The environment Δ assigns interpretations to type variables occurring

in 𝜏 . These interpretations are Clutch relations of typeVal ×Val → iProp. One such relation is

the binary interpretation J𝜏KΔ (−,−) of a syntactic type 𝜏 ∈ Type which is used to define the

refinement judgment, as discussed in §5.2. For example, for base types such as bool and int, the

value interpretation asserts equality between the values.

Figure 2 showcases a selection of the type-directed structural and computational rules for

proving logical refinement for deterministic reductions. Our computational rules resemble the

typical forward-symbolic-execution-style rules from, e.g., the weakest precondition calculus in

Iris [Jung et al. 2018], but come in forms for both the left-hand side and the right-hand side. For

example, rel-pure-l and rel-pure-r symbolically execute “pure” reductions, i.e. reductions that
do not depend on the state, such as 𝛽-reductions. rel-store-l and rel-store-r on the other hand

depend on the heap and require ownership of a location to store values at it. We remark that all

the rules for the deterministic fragment of the Clutch refinement judgment are identical to the

rules for the sequential fragment of the non-probabilistic relational logic ReLoC [Frumin et al.

2021b]—even though the underlying semantics and model are very different. This is one of the key

reasons behind the support for modular reasoning.

The rules in Figure 3 showcase the computational rules for non-coupled probabilistic reductions

and for interactions with presampling tapes. The rules rel-rand-tape-l and rel-rand-tape-r allow

us to read off values from a tape as explained in §2; if the tapes are empty, rel-rand-tape-empty-l and

rel-rand-tape-empty-r continue with a fresh sampling just like for unlabeled rands in rel-rand-l

and rel-rand-r. Notice how the rules resemble the rules for interacting with the heap.

The main novelty of Clutch is the support for both synchronous and asynchronous couplings for

which rules are shown in Figure 4. rel-couple-rands is a classical coupling rule that relates two

samplings that can be aligned, just like prhl-couple as we saw in §1. The rules rel-couple-tape-l

and rel-couple-tape-r, on the other hand, are asynchronous coupling rules; they both couple a

sampling reduction with an arbitrary expression on the opposite side by presampling a coupled

value to a tape, as discussed in §2. Finally, rel-couple-tapes couples two ghost presamplings to two

tapes, and hence offers full asynchrony.

4.2 Persistence and Invariants
As mentioned above, the environment Δ in Clutch’s refinement judgement provides an interpreta-

tion of types as relations in the logic. However, Clutch is a substructural separation logic, while the

type system of Frand
`,ref

is not substructural. To account for the non-substructural nature of Frand
`,ref

’s

types, we make use of the persistence modality �. We say 𝑃 is persistent, written persistent(𝑃)
if 𝑃 ⊢ � 𝑃 ; otherwise, we say that 𝑃 is ephemeral. Persistent resources can freely be duplicated

(� 𝑃 ⊣⊢ � 𝑃 ∗ � 𝑃) and eliminated (� 𝑃 ⊢ 𝑃). For example, invariants and non-atomic invariants are

persistent: once established, they will remain true forever. On the contrary, ephemeral propositions

like the points-to connective ℓ ↦→ 𝑣 for the heap may be invalidated in the future when the location

is updated. For exactly this reason, the rule rel-pack also requires the interpretation of the type

variable to be persistent, to guarantee that it does not depend on ephemeral resources.

To reason about, e.g., functions that make use of ephemeral resources, a common pattern is to

“put them in an invariant” to make them persistent, as sketched in §2 for the lazy/eager example.

Since our language is sequential, when a function is invoked, no other code can execute before

the function returns. This means that we can soundly keep invariants “open” and temporarily

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:10 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

rel-pure-l

𝑒1
pure

⇝ 𝑒′
1

Δ ⊨E 𝐾 [𝑒′1] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [𝑒1] ≾ 𝑒2 : 𝜏

rel-pure-r

𝑒2
pure

⇝ 𝑒′
2

Δ ⊨E 𝑒1 ≾ 𝐾 [𝑒′2] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [𝑒2] : 𝜏

rel-alloc-l

∀ℓ . ℓ ↦→ 𝑣 ∗ Δ ⊨E 𝐾 [ℓ] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [ref (𝑣)] ≾ 𝑒2 : 𝜏

rel-alloc-r

∀ℓ . ℓ ↦→s 𝑣 ∗ Δ ⊨E 𝑒1 ≾ 𝐾 [ℓ] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [ref (𝑣)] : 𝜏

rel-load-l

ℓ ↦→ 𝑣 ℓ ↦→ 𝑣 ∗ Δ ⊨E 𝐾 [𝑣] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [!ℓ] ≾ 𝑒2 : 𝜏

rel-load-r

ℓ ↦→s 𝑣 ℓ ↦→s 𝑣 ∗ Δ ⊨E 𝑒1 ≾ 𝐾 [𝑣] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [!ℓ] : 𝜏

rel-store-l

ℓ ↦→ 𝑣 ℓ ↦→ 𝑤 ∗ Δ ⊨E 𝐾 [()] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [ℓ ← 𝑤] ≾ 𝑒2 : 𝜏

rel-store-r

ℓ ↦→s 𝑣 ℓ ↦→s 𝑤 ∗ Δ ⊨E 𝑒1 ≾ 𝐾 [()] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [ℓ ← 𝑤] : 𝜏

rel-pack

∀𝑣1, 𝑣2 . persistent(𝑅(𝑣1, 𝑣2)) Δ, 𝛼 ↦→ 𝑅 ⊨⊤ 𝑒1 ≾ 𝑒2 : 𝜏

Δ ⊨⊤ pack 𝑒1 ≾ pack 𝑒2 : ∃𝛼. 𝜏

rel-rec

�
(
∀𝑣1, 𝑣2 . J𝜏KΔ (𝑣1, 𝑣2) ∗ Δ ⊨⊤ (rec 𝑓1 𝑥1 = 𝑒1) 𝑣1 ≾ (rec 𝑓2 𝑥2 = 𝑒2) 𝑣2 : 𝜏 → 𝜎

)
Δ ⊨⊤ rec 𝑓1 𝑥1 = 𝑒1 ≾ rec 𝑓2 𝑥2 = 𝑒2 : 𝜏 → 𝜎

rel-return

J𝜏KΔ (𝑣1, 𝑣2)
Δ ⊨⊤ 𝑣1 ≾ 𝑣2 : 𝜏

rel-bind

Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏 ∀𝑣1, 𝑣2. J𝜏KΔ (𝑣1, 𝑣2) ∗ Δ ⊨⊤ 𝐾 [𝑣1] ≾ 𝐾 ′ [𝑣2] : 𝜎
Δ ⊨E 𝐾 [𝑒1] ≾ 𝐾 ′ [𝑒2] : 𝜎

Fig. 2. Selected structural and symbolic execution rules for the Clutch refinement judgment.

invalidate them for the entire duration of a function invocation—as long as the invariants are

reestablished before returning. Non-atomic invariants allow us to capture exactly this intuition.

Invariants are annotated with invariant names N ∈ InvName and the refinement judgment is

annotated by invariant masks E ⊆ InvName that indicates which non-atomic invariants that are

currently closed. This is needed for bookkeeping of the invariant mechanism in order to avoid

reentrancy issues, where invariants are opened in a nested (and unsound) fashion.

Figure 5 shows structural rules for the refinement judgment’s interaction with non-atomic

invariants. An invariant 𝑃
N
can be allocated (rel-na-inv-alloc) by giving up ownership of 𝑃 .

When opening an invariant (rel-na-inv-open) one obtains the resources 𝑃 together with a resource

closeNaInvN (𝑃) that allows one to close the invariant again (rel-na-inv-close) by reestablishing 𝑃 .

We guarantee that all invariants are closed by the end of evaluation by requiring ⊤, the set of all
invariant names, as mask annotation on the judgment in all value cases (see, e.g., rel-rec, rel-pack,
and rel-return in Figure 2).

Clutch invariants are inherited from Iris and hence they are impredicative [Svendsen and Birkedal

2014] which means that the proposition 𝑃 in 𝑃
N
is arbitrary and can, e.g., contain other invariant

assertions. To ensure soundness of the logic and avoid self-referential paradoxes, invariant access

guards 𝑃 by the later modality ⊲. When invariants are not used impredicatively, the later modality

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:11

rel-rand-l

∀𝑛 ≤ 𝑁 . Δ ⊨E 𝐾 [𝑛] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [rand(𝑁)] ≾ 𝑒2 : 𝜏

rel-rand-r

𝑒1 ∉Val ∀𝑛 ≤ 𝑁 . Δ ⊨E 𝑒1 ≾ 𝐾 [𝑛] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [rand(𝑁)] : 𝜏

rel-alloc-tape-l

∀].] ↩→ (𝑁, 𝜖) ∗ Δ ⊨ 𝐾 []] ≾ 𝑒 : 𝜏
Δ ⊨ 𝐾 [tape(𝑁)] ≾ 𝑒 : 𝜏

rel-alloc-tape-r

∀].] ↩→s (𝑁, 𝜖) ∗ Δ ⊨ 𝑒 ≾ 𝐾 []] : 𝜏
Δ ⊨ 𝑒 ≾ 𝐾 [tape(𝑁)] : 𝜏

rel-rand-tape-l

] ↩→ (𝑁,𝑛 · ®𝑛)] ↩→ (𝑁, ®𝑛) ∗ Δ ⊨E 𝐾 [𝑛] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [rand(𝑁,])] ≾ 𝑒2 : 𝜏

rel-rand-tape-r

] ↩→s (𝑁,𝑛 · ®𝑛)] ↩→s (𝑁, ®𝑛) ∗ Δ ⊨E 𝑒1 ≾ 𝐾 [𝑛] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [rand(𝑁,])] : 𝜏

rel-rand-tape-empty-l

] ↩→ (𝑁, 𝜖) ∀𝑛 ≤ 𝑁 .] ↩→ (𝑁, 𝜖) ∗ Δ ⊨E 𝐾 [𝑛] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [rand(𝑁,])] ≾ 𝑒2 : 𝜏

rel-rand-tape-empty-r

𝑒1 ∉Val] ↩→s (𝑁, 𝜖) ∀𝑛 ≤ 𝑁 .] ↩→s (𝑁, 𝜖) ∗ Δ ⊨E 𝑒1 ≾ 𝐾 [𝑛] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [rand(𝑁,])] : 𝜏

Fig. 3. Rules for non-relational probabilistic choices and tapes for the Clutch refinement judgment.

rel-couple-rands

𝑓 bijection ∀𝑛 ≤ 𝑁 . Δ ⊨E 𝐾 [𝑛] ≾ 𝐾 ′ [𝑓 (𝑛)] : 𝜏
Δ ⊨E 𝐾 [rand(𝑁)] ≾ 𝐾 ′ [rand(𝑁)] : 𝜏

rel-couple-tape-l

𝑓 bijection 𝑒1 ∉Val] ↩→ (𝑁, ®𝑛) ∀𝑛 ≤ 𝑁 .] ↩→ (𝑁, ®𝑛 · 𝑛) ∗ Δ ⊨E 𝑒1 ≾ 𝐾 [𝑓 (𝑛)] : 𝜏
Δ ⊨E 𝑒1 ≾ 𝐾 [rand(𝑁)] : 𝜏

rel-couple-tape-r

𝑓 bijection] ↩→s (𝑁, ®𝑛) ∀𝑛 ≤ 𝑁 .] ↩→s (𝑁, ®𝑛 · 𝑓 (𝑛)) ∗ Δ ⊨E 𝐾 [𝑛] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [rand(𝑁)] ≾ 𝑒2 : 𝜏

rel-couple-tapes

𝑓 bijection 𝑒1 ∉Val] ↩→ (𝑁, ®𝑛)
]′ ↩→s (𝑁, ®𝑛′) ∀𝑛 ≤ 𝑁 .] ↩→ (𝑁, ®𝑛 · 𝑛) ∗]′ ↩→s (𝑁, ®𝑛′ · 𝑓 (𝑛)) ∗ Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏

Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏

Fig. 4. Coupling rules for the Clutch refinement judgment.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:12 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

rel-na-inv-open

N ∈ E 𝑃
N

⊲ 𝑃 ∗ closeNaInvN (𝑃) ∗ Δ ⊨E\N 𝑒1 ≾ 𝑒2 : 𝜏
Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏

rel-na-inv-close

⊲ 𝑃 closeNaInvN (𝑃) Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏

Δ ⊨E\N 𝑒1 ≾ 𝑒2 : 𝜏

rel-na-inv-alloc

⊲ 𝑃 𝑃
N ∗ Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏

Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏

Fig. 5. Non-atomic invariant access rules for the Clutch refinement judgment.

can mostly be ignored as we have done and will do throughout the paper. The later modality is

essential for the soundness of the logical relation and taking guarded fixpoints `𝑥 . 𝑃 that require

the recursive occurrence 𝑥 to appear under the later modality, but our use is entirely standard. We

refer to Jung et al. [2018] for more details on the later modality and how it is generally used in Iris.

5 MODEL OF CLUTCH
In this section we show how the connectives of Clutch are modeled through a shallow embedding

in the base logic of the Iris separation logic [Jung et al. 2018]. First, we describe how we define a

relational coupling logic (§5.1) that is used to establish couplings between programs. Next, we show

how the coupling logic in combination with a binary interpretation of types is used to define the

refinement logic (§5.2). Finally, we summarize how the final soundness theorem is proven (§5.3).

The general structure and skeleton of our model mimics the construction of several non-
probabilistic logical relations found in prior work [Frumin et al. 2021b; Krebbers et al. 2017b;

Turon et al. 2013a,b]. A key contribution and benefit of Clutch is that that same structure can be

adapted to handle probabilistic refinements through the right choice of intermediate definitions

and abstractions, as we will highlight throughout this section. While some aspects of the model are

Iris-specific, the key ideas are general and should apply to other frameworks as well.

5.1 Coupling Logic
We recall that probabilistic couplings are used to prove relations between distributions by con-

structing a joint distribution that relates two distributions in a particularly desirable way:

Definition 5 (Coupling). Let `1 ∈ D(𝐴), `2 ∈ D(𝐵). A sub-distribution ` ∈ D(𝐴 × 𝐵) is a
coupling of `1 and `2 if
(1) ∀𝑎. ∑𝑏∈𝐵 ` (𝑎, 𝑏) = `1 (𝑎)
(2) ∀𝑏. ∑𝑎∈𝐴 ` (𝑎, 𝑏) = `2 (𝑏)

Given a relation 𝑅 ⊆ 𝐴×𝐵 we say ` is an 𝑅-coupling if furthermore supp(`) ⊆ 𝑅. We write `1 ∼ `2 : 𝑅
if there exists an 𝑅-coupling of `1 and `2.

Couplings can be constructed and composed along the monadic structure of sub-distributions.

Lemma 6 (Composition of couplings). Let 𝑅 ⊆ 𝐴 × 𝐵, 𝑆 ⊆ 𝐴′ × 𝐵′, `1 ∈ D(𝐴), `2 ∈ D(𝐵),
𝑓1 : 𝐴→ D(𝐴′), and 𝑓2 : 𝐵 → D(𝐵′).
(1) If (𝑎, 𝑏) ∈ 𝑅 then ret(𝑎) ∼ ret(𝑏) : 𝑅.
(2) If `1 ∼ `2 : 𝑅 and for all (𝑎, 𝑏) ∈ 𝑅 it is the case that 𝑓1 (𝑎) ∼ 𝑓2 (𝑏) : 𝑆 then `1≫= 𝑓1 ∼ `2≫= 𝑓2 : 𝑆

Once a coupling has been established, we can often extract a concrete relation from it between

the probability distributions. In particular, for (=)-couplings, we have the following result.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:13

Lemma 7. If `1 ∼ `2 : (=) then `1 = `2.

The Clutch coupling logic can be seen as a higher-order separation logic analogue of Barthe

et al. [2015]’s pRHL logic. However, unlike pRHL, which uses the four-part Hoare quadruples that
we saw in §1 to do relational reasoning, the coupling logic instead follows CaReSL [Turon et al.

2013a] and encodes one of the programs as a separation logic ghost resource. In particular, the

coupling logic consists of two components: (1) a unary weakest precondition theory wp 𝑒 {Φ}; and
(2) a specification resource spec(𝑒′) with specification context specCtx. We think of the program 𝑒 in

the weakest precondition predicate as representing the program that occurs on the left side of a

quadruple, while the specification program 𝑒′ represents the right side program. The specification

context assertion specCtx will be used to connect the weakest precondition to the specification

resource. Ultimately, by showing

specCtx ∗ spec(𝑒′) ⊢ wp 𝑒 {𝑣 .∃𝑣 ′ . spec(𝑣 ′) ∗ 𝜑 (𝑣, 𝑣 ′)}

in the logic, we will have established a 𝜑-coupling of the executions of the programs 𝑒 and 𝑒′.

The weakest precondition. The weakest precondition connective wp 𝑒 {𝑣 .Φ} is a new proba-

bilistic weakest precondition that we formally define below. In isolation it simply means that the

execution of 𝑒 is safe (i.e., the probability of crashing is zero), and for every possible return value 𝑣

of 𝑒 , the postcondition Φ(𝑣) holds. Note however, that it encodes partial correctness, as it does not
imply that the probability of termination is necessarily one, meaning the program may diverge.

In most Iris-style program logics, the weakest precondition wp 𝑒 {Φ} is a predicate stating that
either the program 𝑒 is a value satisfying Φ or it is reducible such that for any other term 𝑒′ that it
reduces to, then wp 𝑒′ {Φ} must hold as well. This guarantees safety of the full execution of the

program 𝑒 . The weakest precondition that we define in this section has—in isolation—the same

intuition but it is fundamentally different. It is still a unary predicate, but in order to do relational

reasoning, the weakest precondition pairs up the probability distribution of individual program

steps of the left-hand side with the probability distribution of individual steps of some other program
in such a way that there exists a probabilistic coupling among them. Through the specCtx we will

guarantee that this “other” program is tied to the program tracked by the spec(𝑒′) resource. The
weakest precondition itself satisfies all the usual structural rules such as wp-wand and wp-bind

found in Figure 6 as well as language-level primitive rules such as wp-load, but in combination

with the specCtx and spec(𝑒′) resources, the coupling logic satisfies rules like wp-couple-rands

and wp-couple-tape-l. Notice the resemblance between wp-couple-rands and prhl-couple from §1.

The weakest precondition connective is given by a guarded fixpoint of the equation below—the

fixpoint exists because the recursive occurrence appears under the later modality.
3

wp 𝑒1 {Φ} ≜ (𝑒1 ∈Val ∧ Φ(𝑒1)) ∨
(𝑒1 ∉Val ∧ ∀𝜎1, 𝜌 ′1. 𝑆 (𝜎1) ∗ 𝐺 (𝜌 ′1) ∗
execCoupl((𝑒1, 𝜎1), 𝜌 ′1) (_(𝑒2, 𝜎2), 𝜌 ′2. ⊲ 𝑆 (𝜎2) ∗ 𝐺 (𝜌 ′2) ∗ wpE 𝑒2 {Φ}))

The base case says that if the expression 𝑒1 is a value then the postcondition Φ(𝑒1) must hold. On

the other hand, if 𝑒1 is not a value, we get to assume two propositions 𝑆 (𝜎1) and 𝐺 (𝜌 ′1) for any
𝜎1 ∈ State, 𝜌1′ ∈ Cfg, and then we must prove execCoupl((𝑒1, 𝜎1), 𝜌 ′1) (. . .). The 𝑆 : State → iProp
predicate is a state interpretation that interprets the state (the heap and the tapes) of the language

as resources in Clutch and gives meaning to the ℓ ↦→ 𝑣 and] ↩→ (𝑁, ®𝑛) connectives. The𝐺 : Cfg→
3
We omit from the definition occurrences of the Iris fancy update modality needed for resource updates and necessary

book-keeping related to Iris invariants—these matters are essential but our use is entirely standard. For the Iris expert we

refer to the appendix [Gregersen et al. 2023b] for the full definition.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:14 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

wp-wand

∀𝑣 . Φ(𝑣) ∗ Ψ(𝑣) wp 𝑒 {Φ}
wp 𝑒 {Ψ}

wp-bind

wp 𝑒
{
𝑣 .wp 𝐾 [𝑣] {Φ}

}
wp 𝐾 [𝑒] {Φ}

wp-load

ℓ ↦→ 𝑣 ℓ ↦→ 𝑣 ∗ Φ(𝑣)
wp ! ℓ {Φ}

wp-couple-rands

𝑓 bijection specCtx spec(rand(𝑁)) ∀𝑛 ≤ 𝑁 . spec(𝑓 (𝑛)) ∗ Φ(𝑛)
wp rand(𝑁) {Φ}

wp-couple-tape-l

𝑓 bijection 𝑒 ∉Val specCtx

spec(rand(𝑁))] ↩→ (𝑁, ®𝑛) ∀𝑛 ≤ 𝑁 . (spec(𝑓 (𝑛)) ∗] ↩→ (𝑁, ®𝑛 · 𝑛)) ∗ wp 𝑒 {Φ}
wp 𝑒 {Φ}

Fig. 6. Selected structural rules of the weakest preconditon.

iProp predicate is a specification interpretation that allows us to interpret and track the “other”

program that we are constructing a coupling with—we return to its instantiation momentarily.

The key technical novelty and the essence of the weakest precondition is the coupling modality:
Intuitively, the proposition execCoupl(𝜌1, 𝜌 ′1) (_𝜌2, 𝜌 ′2. 𝑃) says that there exists a series of (compos-

able) couplings starting from configurations 𝜌1 and 𝜌
′
1
that ends up in some configurations 𝜌2 and

𝜌 ′
2
such that the proposition 𝑃 holds. With this intuition in mind, the last clause of the weakest

precondition says that the execution of (𝑒1, 𝜎1) can be coupled with the execution of 𝜌 ′
1
such that

the state and specification interpretations still hold for the end configurations, and the weakest

precondition holds recursively for the continuation 𝑒2.

Coupling modality. The coupling modality is an inductively defined proposition in Clutch,

formally defined as a least fixpoint of an equation with six different disjuncts found in the appendix

[Gregersen et al. 2023b]. The modality supports both synchronous and asynchronous couplings on

both sides while ensuring that the left program takes at least one step. As it is inductively defined,

we can chain together multiple couplings but it always ends in base cases that couple a single

step of the left-hand side program—this aligns with the usual intuition that each unfolding of the

recursively defined weakest precondition corresponds to one physical program step.

For instance, we can couple two physical program steps through the following constructor:

red(𝜌1) step(𝜌1) ∼ step(𝜌 ′
1
) : 𝑅 ∀𝜌2, 𝜌2′ . 𝑅(𝜌2, 𝜌2′) ∗ 𝑍 (𝜌2, 𝜌2′)

execCoupl(𝜌1, 𝜌 ′1) (𝑍)

Intuitively, this says that to show execCoupl(𝜌1, 𝜌1′) (𝑍) we (1) have to show that the configuration

𝜌1 is reducible which means that the program can take a step (this is to guarantee safety of the

left-hand side program), (2) pick a relation 𝑅 and show that there exists an 𝑅-coupling of the two

program steps, and (3) for all configurations 𝜌2, 𝜌2
′
in the support of the coupling, the logical

predicate 𝑍 (𝜌2, 𝜌2′) holds. This rule is used to justify the classical coupling rule wp-couple-rands

that (synchronously) couples two program samplings.

The coupling modality also allows to construct a coupling between a program step and a trivial

(Dirac) distribution; this is used to validate proof rules that symbolically execute just one of the

two sides. Indeed, the rule below allows us to progress the right-hand side independently from the

left-hand side, but notice the occurrence of the coupling modality in the premise—this allows us to

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:15

chain multiple couplings together in a single coupling modality.

ret(𝜌1) ∼ step(𝜌 ′
1
) : 𝑅 ∀𝜌2′ . 𝑅(𝜌1, 𝜌2′) ∗ execCoupl(𝜌1, 𝜌2′) (𝑍)

execCoupl(𝜌1, 𝜌1′) (𝑍)

To support asynchronous couplings, we introduce a state step reduction relation −→]⊆ State ×
[0, 1] × State that uniformly at random samples a natural number 𝑛 to the end of the tape]:

𝜎 −→1/(𝑁+1)
] 𝜎 [] → (𝑁, ®𝑛 · 𝑛)] if 𝜎 (]) = (𝑁, ®𝑛) and 𝑛 ≤ 𝑁

Let step] (𝜎) denote the induced distribution of a single state step reduction of 𝜎 . The coupling

modality allows us to introduce couplings between step] (𝜎) and a sampling step:

step] (𝜎1) ∼ step(𝜌1′) : 𝑅 ∀𝜎2, 𝜌2′ . 𝑅(𝜎2, 𝜌2′) ∗ execCoupl((𝑒1, 𝜎2), 𝜌2′) (𝑍)
execCoupl((𝑒1, 𝜎1), 𝜌1′) (𝑍)

Note that here the left-hand side program does not take a physical step, thus the coupling modality

appears in the premise as well. This particular rule is key to the soundness of the asynchronous

coupling rulewp-couple-tape-l that couples a sampling to a tape on the left with a program sampling

on the right. We use similar constructors of execCoupl to prove, e.g. rel-couple-tape-r. The crux is,
however, that the extra state steps that we inject in the coupling modality to prove the asynchronous

coupling rules do not matter (!) in the sense that they can be entirely erased as part of the coupling

logic’s adequacy theorem (Theorem 11).

A specification resource and context with run ahead. We will encode a relational specifica-

tion into a unary specification by proving a unaryweakest precondition about 𝑒 (the implementation),
in which 𝑒′ (the specification) is tracked using a ghost resource spec(𝑒′) that can be updated to

reflect execution steps. The ghost specification connective spec(𝑒′), together with the specCtx

proposition, satisfies a number of symbolic execution rules following the operational semantics.

The specCtx proposition is an Iris invariant and its purpose is twofold: (1) it gives meaning to

the ghost specification resource spec(𝑒) and the heap and tape assertions, ℓ ↦→s 𝑣 and] ↩→s (𝑁, ®𝑛),
and (2) it connects the spec(𝑒) resource to the program 𝑒′ that we are constructing a coupling with
in the weakest precondition. We keep track of 𝑒′ through the specification interpretation 𝐺 . When

constructing a final closed proof we will want 𝑒 to be equal to 𝑒′, however, during proofs they are

not always going to be the same—we will allow 𝑒 to run ahead of 𝑒′. As a consequence, it will be
possible to reason independently about the right-hand side without consideration of the left-hand

side as exemplified by the rules below
4
, that allow us to progress the specification program but

without considering the weakest precondition or the left-hand side program.

spec-pure

specCtx spec(𝐾 [𝑒]) 𝑒
pure

⇝ 𝑒′

spec(𝐾 [𝑒′])

spec-store

specCtx spec(𝐾 [ℓ ← 𝑤]) ℓ ↦→s 𝑣

spec(𝐾 [()]) ∗ ℓ ↦→s 𝑤

Similarly looking rules exists for all the deterministic right-hand side reductions.

To define specCtx we will use two instances of the authoritative resource algebra [Jung et al.

2015] from the Iris ghost theory. It suffices to know that an instance 𝐹 gives us two resources 𝐹• (𝑎)
and 𝐹◦ (𝑎) satisfying 𝐹• (𝑎) ∗ 𝐹◦ (𝑏) ⊢ 𝑎 = 𝑏 and that 𝐹• (𝑎) ∗ 𝐹◦ (𝑏) can be updated to 𝐹• (𝑎′) ∗ 𝐹◦ (𝑎′).
To connect the two parts we will keep specInterp• (𝜌) in the specification interpretation 𝐺 (that

4
Technically, the consequence of the rules is under a fancy update modality that we omit for the sake of presentation.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:16 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

“lives” in the weakest precondition), and the corresponding specInterp◦ (𝜌) in specCtx:

𝐺 (𝜌) ≜ specInterp• (𝜌)
specInv ≜ ∃𝜌, 𝑒, 𝜎, 𝑛. specInterp◦ (𝜌) ∗ spec• (𝑒) ∗ heaps(𝜎) ∗ execConf𝑛 (𝜌) (𝑒, 𝜎) = 1

specCtx ≜ specInv

N.spec

This ensures that the configuration 𝜌 tracked in the weakest precondition is the same as the config-

uration 𝜌 tracked in specCtx. On top of this, specCtx contains resources spec• (𝑒) and heaps(𝜎)
while guaranteeing that the configuration (𝑒, 𝜎) can be reached in 𝑛 deterministic program steps

from 𝜌 . The heaps(𝜎) resource gives meaning—using standard Iris ghost theory—to the heap

and tape assertions, ℓ ↦→s 𝑣 and] ↩→s (𝑁, ®𝑛), just like the state interpretation in the weakest

precondition. execConf𝑛 : Cfg → D(Cfg) denotes the distribution of 𝑛-step partial execution.

By letting spec(𝑒) ≜ spec◦ (𝑒) this construction permits the right-hand side program to progress

(with deterministic reduction steps) without consideration of the left-hand side as exemplified by

spec-pure and spec-store. However, when applying coupling rules that actually need to relate the

two sides, the proof first “catches up” with spec(𝑒) using the execCoupl rule that progresses the
right-hand side independently, before constructing the coupling of interest.

5.2 Refinement Logic
Contextual refinement is a typed relation and hence logical refinement must be typed as well. To

define the refinement logic, we first define a binary value interpretation J𝜏KΔ that characterizes the

set of pairs of closed values (𝑣1, 𝑣2) of type 𝜏 such that 𝑣1 contextually refines 𝑣2. The definition

follows the usual structure of (“logical”) logical relations, see, e.g., Frumin et al. [2021b]; Timany

et al. [2022], by structural recursion on 𝜏 and uses corresponding logical connectives. Functions

are interpreted via (separating) implication, universal types are interpreted through universal

quantification, etc., as found in the appendix [Gregersen et al. 2023b]. The only novelty is the

interpretation of the new type of tapes shown below:

JtapeKΔ (𝑣1, 𝑣2) ≜ ∃]1,]2, 𝑁 . (𝑣1 =]1) ∗ (𝑣2 =]2) ∗]1 ↩→ (𝑁, 𝜖) ∗]2 ↩→s (𝑁, 𝜖)
N.]1 .]2

The interpretation requires that the values are tape labels, i.e., references to tapes, and that they are

always empty as captured by the invariant. Intuitively, this guarantees through coupling rules and

the symbolic execution rules from Figure 3 that we always can couple samplings on these tapes

as needed in the compatibility lemma for t-rand as discussed in §5.3. Point-wise equality of the

two tapes would also have been sufficient for the compatibility lemma but by requiring them to be

empty we can prove general equivalences such as] : tape ⊢ rand(𝑁) ≃ctx rand(𝑁,]) : nat.
The refinement judgment is defined using the coupling logic in combination with the binary

value interpretation. Recall how the intuitive reading of the refinement judgment Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏
is that the expression 𝑒1 refines the expression 𝑒2 at type 𝜏 under the invariants in the mask E
with interpretations of type variables in 𝜏 taken from Δ. Besides the coupling logic and the binary

value interpretations, we will also make use of the resource naTok(E) that keeps track of the set of

non-atomic invariants that are currently closed.
Putting everything together, the refinement judgment is formally defined as follows:

Δ ⊨E 𝑒1 ≾ 𝑒2 : 𝜏 ≜ ∀𝐾. specCtx ∗ spec(𝐾 [𝑒2]) ∗ naTok(E) ∗
wp 𝑒1

{
𝑣1 .∃𝑣2. spec(𝐾 [𝑣2]) ∗ naTok(⊤) ∗ J𝜏KΔ (𝑣1, 𝑣2)

}
The definition assumes that the right-hand side program is executing 𝑒2 and that the invariants in

E are closed, and it concludes that the two executions can be aligned so that if 𝑒1 reduces to some

value 𝑣1 then there exists a corresponding execution of 𝑒2 to a value 𝑣2 and all invariants have been

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:17

closed. Moreover, the values 𝑣1 and 𝑣2 are related via the binary value interpretation J𝜏KΔ (𝑣1, 𝑣2).
By quantifying over 𝐾 , we close the definition under evaluation contexts on the right-hand side.

For the left-hand side this is not needed as the weakest precondition already satisfies wp-bind.

5.3 Soundness
The soundness of the refinement judgment hinges on the soundness of the coupling logic. The goal

of the coupling logic is to show a coupling of the execution of the two programs, but to establish a

coupling of two distributions they must have the same mass. Intuitively, due to the approximative

nature of step-indexed logics like Clutch, we need to show—at every logical step-index—that a

coupling exists, even when the left-hand side program has not yet terminated. This means we

might not have enough mass on the left-hand side to cover all of the mass on the right-hand side.

For this reason we introduce a new notion of left-partial coupling.

Definition 8 (Left-Partial Coupling). Let `1 ∈ D(𝐴), `2 ∈ D(𝐵). A sub-distribution ` ∈
D(𝐴 × 𝐵) is a left-partial coupling of `1 and `2 if
(1) ∀𝑎. ∑𝑏∈𝐵 ` (𝑎, 𝑏) = `1 (𝑎)
(2) ∀𝑏. ∑𝑎∈𝐴 ` (𝑎, 𝑏) ≤ `2 (𝑏)

Given a relation 𝑅 ⊆ 𝐴 × 𝐵 we say ` is an 𝑅-left-partial-coupling if furthermore supp(`) ⊆ 𝑅. We
write `1 ≲ `2 : 𝑅 if there exists an 𝑅-left-partial-coupling of `1 and `2.

This means that, for any ` ∈ D(𝐵) and any 𝑅 ⊆ 𝐴 × 𝐵, the zero distribution 0 trivially satisfies

0 ≲ ` : 𝑅. This reflects the asymmetry of both contextual refinement and our weakest precondition—

it allows us to show that a diverging program refines any other program of appropriate type.

Left-partial couplings can also be constructed and composed along the monadic structure of the

sub-distribution monad and are implied by regular couplings:

Lemma 9. If `1 ∼ `2 : 𝑅 then `1 ≲ `2 : 𝑅.

Additionally, proving a (=)-left-partial-coupling coincides with the point-wise inequality of

distributions that will allow us to reason about contextual refinement.

Lemma 10. If `1 ≲ `2 : (=) then ∀𝑎. `1 (𝑎) ≤ `2 (𝑎).

The adequacy theorem of the coupling logic is stated using left-partial couplings.

Theorem 11 (Adeqacy). Let 𝜑 :Val ×Val→ Prop be a predicate on values in the meta-logic. If

specCtx ∗ spec(𝑒′) ⊢ wp 𝑒 {𝑣 .∃𝑣 ′ . spec(𝑣 ′) ∗ 𝜑 (𝑣, 𝑣 ′)}
is provable in Clutch then ∀𝑛. exec𝑛 (𝑒, 𝜎) ≲ exec(𝑒′, 𝜎 ′) : 𝜑 .

As a simple corollary, contextual refinement follows from continuity of exec𝑛 .

The proof of the adequacy theorem goes by induction in both 𝑛 and the execCoupl fixpoint,

followed by a case distinction on the big disjunction in the definition of execCoupl. Most cases are

simple coupling compositions along the monadic structure except the cases where we introduce

state step couplings that rely on erasure in the following sense:

Lemma 12 (Erasure). If 𝜎1 (]) ∈ dom(𝜎1) then
exec𝑛 (𝑒1, 𝜎1) ∼ (step] (𝜎1) ≫= _𝜎2 . exec𝑛 (𝑒1, 𝜎2)) : (=)

Intuitively, this lemma tells us that we can prepend any program execution with a state step

reduction and it will not have an effect on the final result. The idea behind the proof is that if we

append a sampled value 𝑛 to the end of a tape, and if we eventually consume 𝑛, then we obtain

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:18 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

the same distribution as if we never appended 𝑛 in the first place. This is a property that one

should not take for granted: the operational semantics has been carefully defined such that reading

from an empty tape reduces to a value as well, and none of the other program operations can

alter or observe the contents of the tape. This ensures that presampled values are untouched until

consumed and that the proof and the execution is independent.

To show the soundness theorem of the refinement logic, we extend the interpretation of types to

typing contexts—JΓKΔ (®𝑣, ®𝑤) iff for every 𝑥𝑖 : 𝜎𝑖 in Γ then J𝜎𝑖KΔ (𝑣𝑖 ,𝑤𝑖) holds—and the refinement

judgment to open terms by closing substitutions as usual:

Δ | Γ ⊨ 𝑒1 ≾ 𝑒2 : 𝜏 ≜ ∀®𝑣, ®𝑤. JΓKΔ (®𝑣, ®𝑤) ∗ Δ ⊨ 𝑒1 [®𝑣/Γ] ≾ 𝑒2 [®𝑤/Γ] : 𝜏
where 𝑒1 [®𝑣/Γ] denotes simultaneous substitution of every 𝑥𝑖 from Γ in 𝑒1 by the value 𝑣𝑖 .

We then show, using the structural and symbolic execution rules of the refinement judgment,

that the typing rules are compatible with the relational interpretation: for every typing rule, if

we have a pair of related terms for every premise, then we also have a pair of related terms for

the conclusion. See for instance the compatibility rule for t-rand below in the case 𝜏 = tape that

follows using rel-bind and rel-couple-tapes.

rand-compat

Δ | Γ ⊨ 𝑒1 ≾ 𝑒1′ : nat Δ | Γ ⊨ 𝑒2 ≾ 𝑒2′ : tape
Δ | Γ ⊨ rand(𝑒1, 𝑒2) ≾ rand(𝑒1′, 𝑒2′) : nat

As a consequence of the compatibility rules, we obtain the fundamental theorem of logical relations.

Theorem 13 (Fundamental theorem). Let Ξ | Γ ⊢ 𝑒 : 𝜏 be a well-typed term, and let Δ assign a
relational interpretation to every type variable in Ξ. Then Δ | Γ ⊨ 𝑒 ≾ 𝑒 : 𝜏 .

The compatibility rules, moreover, yield that the refinement judgment is a congruence, and

together with Theorem 11 we can then recover contextual refinement:

Theorem 14 (Soundness). Let Ξ be a type variable context, and assume that, for all Δ assigning
a relational interpretation to all type variables in Ξ, we can derive Δ | Γ ⊨ 𝑒1 ≾ 𝑒2 : 𝜏 . Then
Ξ | Γ ⊢ 𝑒1 ≾ctx 𝑒2 : 𝜏

6 CASE STUDIES
In the coming sections, we give an overview of some of the example equivalences we have proven

with Clutch. Further details are found in the appendix [Gregersen et al. 2023b] and our Coq develop-

ment. In particular, in the appendix [Gregersen et al. 2023b] we discuss an example by Sangiorgi and

Vignudelli [2016], which previous probabilistic logical relations without asynchronous couplings

could not prove [Bizjak 2016, Sec. 1.5].

6.1 Lazy/Eager Coin
In this section we give a more detailed proof of the lazy-eager coin example from §1. We will go

through the proof step by step but omit the use of rel-pure-l and rel-pure-r which should be

interleaved with the application of most of the mentioned proof rules.

Recall the definitions of lazy and eager from §1. The goal is to show ⊢ lazy ≃ctx eager : unit→
bool by first showing lazy ≾ctx eager : unit→ bool and then eager ≾ctx lazy : unit→ bool.

To show lazy ≾ctx eager : unit→ bool, we first define an intermediate labeled version lazy′ of
lazy (found in §2). By transitivity of contextual refinement and Theorem 1 it is sufficient to show

⊨ lazy ≾ lazy′ : unit→ bool and ⊨ lazy′ ≾ eager : unit→ bool.

The first refinement ⊨ lazy ≾ lazy′ : unit → bool is mostly straightforward. By applying

rel-alloc-l followed by rel-alloc-tape-r and rel-alloc-r we are left with the goal of proving that

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:19

the two thunks are related, given] ↩→s (1, 𝜖), ℓ ↦→ None and ℓ ′ ↦→s None for some fresh label]

and fresh locations on the heap ℓ and ℓ ′. Using rel-na-inv-alloc we allocate the invariant

] ↩→s (1, 𝜖) ∗ ((ℓ ↦→ None ∗ ℓ ′ ↦→s None)
∨ (∃𝑏. ℓ ↦→ Some(𝑏) ∗ ℓ ′ ↦→s Some(𝑏)))

with some name N that expresses how the] tape is always empty and that either both ℓ and ℓ ′

contain None or both contain Some(𝑏) for some 𝑏. We continue by rel-rec after which we open

the invariant and do a case distinction on the disjunction in the invariant. If ℓ and ℓ ′ are empty,

this is the first time we invoke the function. We continue using rel-load-l and rel-load-r after

which we are left with the goal

⊨⊤\N
let 𝑏 = flip() in
𝑟 ← Some(𝑏);𝑏 ≾

let 𝑏 = flip(]) in
𝑟 ← Some(𝑏);𝑏 : unit→ bool

We continue using rel-rand-erase-r to couple the two flips, we follow by rel-store-l and rel-store-r

to store the fresh bit on the heaps, we close the invariant (now showing the right disjunct as the

locations have been updated) using rel-na-inv-close, and we finish the case using rel-return as

the program returns the same Boolean 𝑏 on both sides.

If ℓ and ℓ ′ were not empty, this is not the first time the function is invoked and we straightfor-

wardly load the same Boolean on both sides using rel-load-l and rel-load-r and finish the proof

using rel-na-inv-close and rel-return.

For the second refinement ⊨ lazy′ ≾ eager : unit→ bool we start by allocating the tape on the

left using rel-alloc-tape-l which gives us ownership of a fresh tape] ↩→ (1, 𝜖). We now couple the

] tape with the unlabeled flip() on the right using rel-couple-tape-l. This gives us that for some

𝑏 then] ↩→ (1, 𝑏) and the flip() on the right returned 𝑏 as well. We continue by allocating the

reference on the left using rel-alloc-l which gives us some location ℓ and ℓ ↦→ None. Now, we

allocate the invariant

(] ↩→ (1, 𝑏) ∗ ℓ ↦→ None) ∨ ℓ ↦→ Some(𝑏)
which expresses that either the location ℓ is empty but 𝑏 is on the] tape, or 𝑏 has been stored at ℓ .

We are now left with proving that the two thunks are related under this invariant. We continue

using rel-rec after which we open the invariant using rel-na-inv-open, do a case distinction on the

disjunction, and continue using rel-load-l. If the location ℓ is empty, we have to show

⊨⊤\N
let 𝑏 = flip(]) in
𝑟 ← Some(𝑏);𝑏 ≾ 𝑏 : unit→ bool

But as we own] ↩→ (1, 𝑏) we continue using rel-rand-tape-l, rel-store-l, rel-na-inv-close (now

establishing the right disjunct as ℓ has been updated), and rel-return as the return value 𝑏 is the

same on both sides. If the location ℓ was not empty, we know ℓ ↦→ Some(𝑏) which means rel-load-l

reads 𝑏 from ℓ and we finish the proof using rel-na-inv-close and rel-return.

The proof of eager ≾ctx lazy : unit → bool is analogous and we have shown the contextual

equivalence of the programs eager and lazy.

6.2 ElGamal Public Key Encryption
An encryption scheme is seen as secure if no probabilistic polynomial-time (PPT) adversary A
can break it with non-negligible probability. A common pattern in cryptographic security proofs

are security reductions. To perform a reduction, one assumes that such an adversary A exists,

and constructs another PPT adversary B that, using A, solves a computational problem 𝑃 that is

believed to be hard. By contradiction, this means the construction is secure under the assumption

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:20 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

keygen ≜ _ _ . let 𝑠𝑘 = rand(𝑛) in
let 𝑝𝑘 = 𝑔𝑠𝑘 in

(𝑠𝑘, 𝑝𝑘)
dec ≜ _ 𝑠𝑘 (𝐵,𝑋). 𝑋 · 𝐵−𝑠𝑘

enc ≜ _ 𝑝𝑘 𝑚𝑠𝑔. let 𝑏 = rand(𝑛) in
let 𝐵 = 𝑔𝑏 in

let𝑋 =𝑚𝑠𝑔 · 𝑝𝑘𝑏 in
(𝐵,𝑋)

Fig. 7. The ElGamal public key scheme.

PK real ≜

let (𝑠𝑘, 𝑝𝑘) = keygen() in
let 𝑐𝑜𝑢𝑛𝑡 = ref 0 in

let query = _ 𝑚𝑠𝑔.

if ! 𝑐𝑜𝑢𝑛𝑡 ≠ 0 then

None

else

𝑐𝑜𝑢𝑛𝑡 ← 1;

let (𝐵,𝑋) = enc 𝑝𝑘 𝑚𝑠𝑔 in
Some (𝐵,𝑋)

in (𝑝𝑘, query)

PK rand ≜

let (𝑠𝑘, 𝑝𝑘) = keygen() in
let 𝑐𝑜𝑢𝑛𝑡 = ref 0 in

let query = _ 𝑚𝑠𝑔.

if ! 𝑐𝑜𝑢𝑛𝑡 ≠ 0 then

None

else

𝑐𝑜𝑢𝑛𝑡 ← 1;

let 𝑏 = rand(𝑛) in
let 𝑥 = rand(𝑛) in
let (𝐵,𝑋) = (𝑔𝑏, 𝑔𝑥) in
Some (𝐵,𝑋)

in (𝑝𝑘, query)

(a) The security games.

𝐶 [−] ≜
let (𝑝𝑘, 𝐵,𝐶) = − in
let 𝑐𝑜𝑢𝑛𝑡 = ref 0 in

let query = _ 𝑚𝑠𝑔.

if ! 𝑐𝑜𝑢𝑛𝑡 ≠ 0 then

None

else

𝑐𝑜𝑢𝑛𝑡 ← 1;

let𝑋 =𝑚𝑠𝑔 ·𝐶 in

Some (𝐵,𝑋)
in (𝑝𝑘, query)

(b) The DH reduction context.

Fig. 8. Public key security.

that the problem 𝑃 is hard. A crucial proof step is showing that B together with 𝑃 corresponds to

the original construction which can be thought of as the “soundness” of the security reduction. In

this section, we use Clutch to show the soundness of a security reduction of the ElGamal public

key encryption scheme [Elgamal 1985] to the decisional Diffie-Hellman (DDH) computational

assumption.

The ElGamal construction is a public key encryption scheme consisting a tuple of algorithms

(keygen, enc, dec) whose implementation in Frand
`,ref

is shown in Figure 7. The implementation is

parameterized by a group 𝐺 which serves to represent messages, ciphertexts, and keys. We write

𝐺 = (1, · ,−−1) for a finite cyclic group of order |𝐺 |, generated by 𝑔, and let 𝑛 = |𝐺 | − 1. Intuitively,
to show that ElGamal encryption is secure it suffices to show that, given the DDH assumption

holds for the group 𝐺 , an adversary A cannot distinguish an encrypted message from a random

ciphertext (see, e.g., [Rosulek 2020, §15.3]). The DDH assumption for a group 𝐺 says that the two

games DHreal and DHrand in Figure 9 are PPT-indistinguishable which intuitively means that the

value 𝑔𝑎𝑏 looks random, even to someone who has seen 𝑔𝑎 and 𝑔𝑏 .

The intuitive notion of encryption scheme security can be made precise
5
as the indistinguisha-

bility of two security games, i.e., stylized interactions, PK real and PK rand shown in Figure 8, by a

PPT
6
adversary. Here we interpret the notion of an “adversary” as a program context. Both security

5
Several formulations exist in the literature; we take inspiration from the textbook presentation of Rosulek [2020].

6
Polynomial-time with respect to the security parameter, i.e. the logarithm of the size of the group for ElGamal.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:21

DHreal ≜ let 𝑎 = rand(𝑛) in
let 𝑏 = rand(𝑛) in
(𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏)

DHrand ≜ let 𝑎 = rand(𝑛) in
let 𝑏 = rand(𝑛) in
let 𝑐 = rand(𝑛) in
(𝑔𝑎, 𝑔𝑏, 𝑔𝑐)

Fig. 9. The Decisional Diffie-Hellman game.

games are initialised by generating a secret/public-key pair (𝑠𝑘, 𝑝𝑘), of which 𝑝𝑘 is returned to the

adversary (the context). The adversary gets to examine the public key and an “encryption oracle”

query, i.e., a partial application of the encryption function specialized to a particular key. The differ-

ence between PK real and PK rand lies in the query function. While PK real encrypts the message𝑚𝑠𝑔

provided as input, PK rand instead returns a randomly sampled ciphertext. Both games use a counter

𝑐𝑜𝑢𝑛𝑡 to ensure that the query oracle can be called only once. One attempt at distinguishing the

security games will thus correspond exactly to one attempt at distinguishing DHreal from DHrand .

The idea now is to use Clutch as a step towards reducing indistinguishability of PK real and PK rand
to the indistinguishability of DHreal and DHrand . Specifically, we will exhibit a context C and show

⊢ PK real ≃ctx C[DHreal] : 𝜏PK (1)

⊢ PK rand ≃ctx C[DHrand] : 𝜏PK (2)

Then we can complete the reduction on paper (outside of Clutch) as follows.
7
To prove that the

DDH assumption implies public key security, we assume the contrapositive, i.e., that there exists
an adversarial context A that can distinguish PK real from PK rand . Using (1) and (2) we then get

that A can distinguish C[DHreal] from C[DHrand]. But this means that A[C[−]] is a context that
can distinguish the DDH games, and hence contradicts our assumption, if A[C[−]] is PPT. The
context C for (1) and (2) is given by Figure 8b (note that the hole is in the first line). The proof that

A[C[−]] is PPT if A[−] is PPT is outside of the scope of Clutch.

We will only focus on the first equation (1), since the proof of (2) is similar. The proof proceeds

via an intermediate program, PK tape
real , which differs from PK real only in that the random sampling in

query is labelled with the tape 𝛽 . By transitivity, it suffices to show that ⊢ PK real ≃ctx PK tape
real : 𝜏 and

⊢ PK tape
real ≃ctx C[DHreal] : 𝜏 , as displayed in Figure 10. The first equivalence is trivial. The essential

difference between PK tape
real and C[DHreal] is that the query function in PK tape

real samples 𝑏 lazily,

whereas in C[DHreal], the sampling of 𝑏 occurs eagerly in the beginning. The proof now proceeds

in a manner similar to the lazy-eager coin example; details can be found in the formalization.

Clutch is well-suited for proving the soundness of the reduction for two reasons. Firstly, any

public key encryption scheme can only be secure if it employs randomized encryption [Goldwasser

and Micali 1984]. Dealing with randomization is thus unavoidable. Secondly, reasoning about the

encryption oracle involves moving the random sampling used in the encryption across a function

boundary (the query oracle) as we saw. This part of the argument crucially relies on asynchronous

couplings. Systems like EasyCrypt and CertiCrypt handle this part of the argument through

special-purpose rules for swapping statements that allows moving the random sampling outside

the function boundary. However, it crucially relies on the fact that these works consider first-order

languages with global state and use syntactic criteria and assertions on memory disjointness.

7
To mechanize the argument one would need to formalize a notion of PPT and a proof that the context is in fact PPT which

is out of scope for the work at hand.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:22 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

PK real ≃ctx

let 𝑠𝑘 = rand(𝑛) in
let 𝑝𝑘 = 𝑔𝑠𝑘 in

let 𝑐𝑜𝑢𝑛𝑡 = ref 0 in

let query = _ 𝑚𝑠𝑔.

if ! 𝑐𝑜𝑢𝑛𝑡 ≠ 0 then

None

else

𝑐𝑜𝑢𝑛𝑡 ← 1;

let 𝑏 = rand(𝑛) in
let 𝐵 = 𝑔𝑏 in

let𝑋 =𝑚𝑠𝑔 · 𝑝𝑘𝑏 in
Some (𝐵,𝑋)

in (𝑝𝑘, query)

PK tape
real ≃ctx

let 𝛽 = tape(𝑛) in
let 𝑠𝑘 = rand(𝑛) in
let 𝑝𝑘 = 𝑔𝑠𝑘 in

let 𝑐𝑜𝑢𝑛𝑡 = ref 0 in

let query = _ 𝑚𝑠𝑔.

if ! 𝑐𝑜𝑢𝑛𝑡 ≠ 0 then

None

else

𝑐𝑜𝑢𝑛𝑡 ← 1;

let 𝑏 = rand(𝑛, 𝛽) in
let 𝐵 = 𝑔𝑏 in

let𝐶 = 𝑝𝑘𝑏 in

let𝑋 =𝑚𝑠𝑔 ·𝐶 in

Some (𝐵,𝑋)
in (𝑝𝑘, query)

C[DHreal]
let (𝑝𝑘, 𝐵,𝐶) =

let 𝑎 = rand(𝑛) in
let 𝑏 = rand(𝑛) in
(𝑔𝑎, 𝑔𝑏, 𝑔𝑎𝑏) in

let 𝑐𝑜𝑢𝑛𝑡 = ref 0 in

let query = _ 𝑚𝑠𝑔.

if ! 𝑐𝑜𝑢𝑛𝑡 ≠ 0 then

None

else

𝑐𝑜𝑢𝑛𝑡 ← 1;

let𝑋 =𝑚𝑠𝑔 ·𝐶 in

Some (𝐵,𝑋)
in (𝑝𝑘, query)

Fig. 10. The “real” direction of the security reduction.

Note moreover that our security formulation makes crucial use of the fact that Frand
`,ref

is higher-

order, randomized, and supports local state to return the query closure as a first class value. This

allows us to capture the textbook cryptographic notion of adversaries and of a (closed-box) “oracle”

precisely using standard notions such as higher-order functions and contextual equivalence, without

introducing special linguistic and logical categories of adversaries parameterized by a set of oracles.

6.3 Hash Functions
When analyzing data structures that use hash functions, one commonly models the hash function

under the uniform hash assumption or the random oracle model [Bellare and Rogaway 1993]. That

is, a hash function ℎ from a set of keys 𝐾 to values 𝑉 behaves as if, for each key 𝑘 , the hash ℎ(𝑘)
is randomly sampled from a uniform distribution over 𝑉 , independently of all the other keys. Of

course, hash functions are not known to satisfy this assumption perfectly, but it can nevertheless

be a useful modeling assumption for analyzing programs that use hashes.

The function eager_hash in Figure 11 encodes such amodel of hash functions in Frand
`,ref

. (We explain

the reason for the “eager” name later.) Given a non-negative integer 𝑛, executing eager_hash 𝑛
returns a hash function with 𝐾 = {0, . . . , 𝑛} and𝑉 = B. To do so, it initializes a mutable map𝑚 and

then calls sample_all, which samples a Boolean 𝑏 with flip for each key 𝑘 and stores the results in

𝑚. These Booleans serve as the hash values. On input 𝑘 , the hash function returned by eager_hash
looks up 𝑘 in the map𝑚 and returns the result, with a default value of false if 𝑘 ∉ 𝐾 .

However, this model of uniform hash functions can be inconvenient for proofs because all of

the random hash values are sampled eagerly when the function is initialized. To overcome this, an

important technique in pencil-and-paper proofs is to show that the hash values can be sampled

lazily (see, e.g., Mittelbach and Fischlin [2021]). That is, we only sample a key 𝑘’s hash value when

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:23

eager_hash ≜

_𝑛. let𝑚 = init_map () in
sample_all𝑚 (𝑛 + 1);
(_𝑘. match get 𝑚 𝑘 with

Some(𝑏) ⇒ 𝑏

| None ⇒ false

end)

lazy_hash ≜

_𝑛. let 𝑣𝑚 = init_map () in
let 𝑡𝑚 = init_map () in
alloc_tapes 𝑡𝑚 (𝑛 + 1);
(_𝑘. match get 𝑣𝑚 𝑘 with

Some(𝑏) ⇒ 𝑏

| None ⇒ match get 𝑡𝑚 𝑘 with

Some(]) ⇒
let 𝑏 = flip(]) in
set 𝑣𝑚 𝑏;𝑏

| None⇒ false

end

end)

Fig. 11. Eager and lazy models of hash functions.

it is hashed for the first time. This lets us more conveniently couple that sampling step with some

step in another program.

Motivated by applications to proofs in cryptography, Almeida et al. [2019] formalized in Easy-

Crypt a proof of equivalence between an eager and lazy random oracle. Although sufficient for

their intended application, this proof was done in the context of a language that uses syntactic

restrictions to model the hash function’s private state. To the best of our knowledge, no such

equivalence proof between lazy and eager sampling has previously been given for a language with

higher-order state and general references.

As an application of Clutch, we prove such an equivalence in Frand
`,ref

. The function lazy_hash
shown in Figure 11 encodes the lazy sampling version of the random hash generator. For its internal

state, the lazy hash uses two mutable maps: the tape map 𝑡𝑚 stores tapes to be used for random

sampling, and the value map 𝑣𝑚 stores the previously sampled values for keys that have been

hashed. After initializing these maps, it calls alloc_tapes, which allocates a tape for each key 𝑘 ∈ 𝐾
and stores the associated tape in 𝑡𝑚, but does not yet sample hashes for any keys. The hash function

returned by lazy_hash determines the hash for a key 𝑘 in two stages. It first looks up 𝑘 in 𝑣𝑚 to see

if 𝑘 already has a previously sampled hash value, and if so, returns the found value. Otherwise, it

looks up 𝑘 in the tape map 𝑡𝑚. If no tape is found, then 𝑘 must not be in 𝐾 , so the function returns

false. If a tape] is found, then the code samples a Boolean 𝑏 from this tape with flip, stores 𝑏 for

the key 𝑘 in 𝑣𝑚, and then returns 𝑏.

We prove that the eager and lazy versions are contextually equivalent, that is, ⊢ eager_hash 𝑛 ≃ctx
lazy_hash 𝑛 : int→ bool. The core idea behind this contextual equivalence proof is to maintain an

invariant between the internal state of the two hash functions. Let𝑚 be the internal map used by

the eager hash and let 𝑡𝑚 and 𝑣𝑚 be the tape and value maps, respectively, for the lazy hash. Then,

at a high level, the invariant maintains the following properties:

(1) dom(𝑚) = dom(𝑡𝑚) = {0, . . . , 𝑛}.
(2) For all 𝑘 ∈ {0, . . . , 𝑛}, if𝑚[𝑘] = 𝑏 then either

(a) 𝑣𝑚[𝑘] = 𝑏, or
(b) 𝑣𝑚[𝑘] = ⊥ and 𝑡𝑚[𝑘] =] for some tape label] such that] ↩→ (1, 𝑏).

Case (a) and (b) of the second part of this invariant capture the two possible states each key 𝑘 can

be in. Either the hash of 𝑘 has been looked up before (case a), and so the sampled value stored

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:24 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

init_hash_rng ≜

__. let 𝑓 = lazy_hash MAX in

let 𝑐 = ref 0 in

(__. let 𝑛 = ! 𝑐 in

let 𝑏 = 𝑓 𝑛 in

𝑐 ← 𝑛 + 1;𝑏)

(a) Hashing random number generator.

init_bounded_rng ≜

__. let 𝑐 = ref 0 in

(__. let 𝑛 = ! 𝑐 in

let 𝑏 = if 𝑛 ≤ MAX then flip()
else false in

𝑐 ← 𝑛 + 1;𝑏)

(b) Bounded random number generator.

Fig. 12. Random number generators.

in 𝑣𝑚 must match that of𝑚, or it has not been looked up (case b) and the tape for the key must

contain the same value as𝑚[𝑘] for its next value.
To establish this invariant when the hashes are initialized, we asynchronously couple the eager

hash function’s flip for key 𝑘 with a tape step for the tape] associated with 𝑘 in the lazy table. The

invariant ensures that the values returned by the two hash functions will be the same when a key

𝑘 is queried. The cases of the invariant correspond to the branches of the lazy function’s match

statements: if the key 𝑘 is in 𝐾 and has been queried before, the maps will return the same values

found in𝑚 and 𝑣𝑚. If it has not been queried before, then flip in the lazy version will sample the

value on the tape for the key, which matches𝑚[𝑘]. Moreover, the update that writes this sampled

value to 𝑣𝑚 preserves the invariant, switching from case (b) to case (a) for the queried key.

We have used this more convenient lazy encoding to verify examples that use hash functions.

For instance, one scheme to implement random number generators is to use a cryptographic

hash function [Barker and Kelsey 2015]. The program init_hash_rng in Figure 12a implements a

simplified version of such a scheme.

When run, init_hash_rng generates a lazy hash function 𝑓 for the key space 𝐾 = {0, . . . , MAX}
for some fixed constant MAX. It also allocates a counter 𝑐 as a reference initialized to 0. It returns a

sampling function, let us call it ℎ, that uses 𝑓 and 𝑐 to generate random Booleans. Each time ℎ is

called, it loads the current value 𝑛 from 𝑐 and hashes 𝑛 with 𝑓 to get a Boolean 𝑏. It then increments

𝑐 and returns the Boolean 𝑏. Repeated calls to ℎ return independent, uniformly sampled Booleans,

so long as we make no more than MAX calls.
We prove that init_hash_rng is contextually equivalent to a “bounded” random number generator

init_bounded_rng in Figure 12b that directly calls flip. The proof works by showing that, so long

as 𝑛 ≤ MAX, then each time a sample is generated, the value of 𝑛 will not have been hashed before.

Thus, we may couple the random hash value with the flip call in init_bounded_rng. This argument

relies on the fact that the counter 𝑐 is private, encapsulated state, which is easy to reason about

using the relational judgment since Clutch is a separation logic.

6.4 Lazily Sampled Big Integers
Certain randomized data structures, such as treaps [Seidel and Aragon 1996], need to generate

random priorities as operations are performed. One can view these priorities as an abstract data

type equipped with a total order supporting two operations: (1) a sample function that randomly

generates a new priority according to some distribution, and (2) a comparison operation that takes a

pair of priorities (𝑝1, 𝑝2) and returns −1 (if 𝑝1 < 𝑝2), 0 (if 𝑝1 = 𝑝2), or 1 (if 𝑝2 < 𝑝1). The full details
of how priorities are used in such data structures are not relevant here. Instead, what is important

to know is that it is ideal to avoid collisions, that is, sampling the same priority multiple times.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:25

A simple way to implement priorities is to represent them as integers sampled from some fixed

set {0, . . . , 𝑛}. However, to minimize collisions, we may need to make 𝑛 very large. But making 𝑛

large has a cost, because then priorities requires more random bits to generate and more space

to store. An alternative is to lazily sample the integer that represents the priority. Because we

only need to compare priorities, we can delay sampling bits of the integer until they are needed to

resolve ties during comparisons. A lazily-sampled integer can be encoded as a pair of a tape label]

and a linked list of length at most 𝑁 , where each node in the list represents a digit of the integer in
base 𝐵, with the head of the list being the most significant digit.

In the appendix [Gregersen et al. 2023b], we describe such an implementation of lazily-sampled

integers, with 𝑁 = 8 and 𝐵 = 2
32
. Our Coq development contains a proof that this implementation

is contextually equivalent to code that eagerly samples a 256-bit integer by bit-shifting and adding 8

32-bit integers. Crucially, this contextual equivalence is at an abstract existential type 𝜏 . Specifically,
we define the type of abstract priorities 𝜏 ≜ ∃𝛼. (unit→ 𝛼) × ((𝛼 × 𝛼) → int). Then we have the

equivalence ⊢ (sample_lazy_int, cmp_lazy) ≃ctx (sample256, cmp) : 𝜏 where cmp is just primitive

integer comparison. The proof uses tapes to presample the bits of the lazy integer and couples these

with the eager version. The cmp_lazy function traverses and mutates the linked lists representing

the integers being compared, which separation logic is well-suited for reasoning about.

7 COUNTEREXAMPLES
This section justifies some design choices in Clutch by presenting counterexamples showing the

unsoundness of two variants of the logic. In the first counterexample, we show that annotating

sampling statements with tape labels is needed in our current formulation of the logic, since their

omission leads to unsoundness. In the second, we show that combining prophecy variables [Jung

et al. 2020] with the usual coupling rules of pRHL (without presampling) is unsound, implying that

presampling cannot somehow be implemented in terms of prophecy variables.

7.1 Syntactic Restriction on Presampling
One may wonder whether it is necessary for tapes and labels to appear in the program and program

state, but they do in fact play a subtle yet crucial role. Consider the following program flip_or that
applies a logical disjunction to two fresh samples:

flip_or ≜ let 𝑥 = flip() in
let𝑦 = flip() in
𝑥 | | 𝑦

and compare it to the program flip ≜ flip() that just samples a bit. These two programs are

obviously not contextually equivalent: with probability 3/4 the program flip_or will return true

whereas the program flip only does so with probability 1/2. Yet, if we introduce a rule for flip that

could draw from any presampling tape (i.e., without requiring sampling statements to be annotated

with the tape they will draw from), the logic would allow one to “prove” that they are equivalent.

Assume the following (unsound!) rule

rel-tape-unsound

] ↩→ (1, 𝑏 · ®𝑏)] ↩→ (1, ®𝑏) ∗ Δ ⊨E 𝐾 [𝑏] ≾ 𝑒2 : 𝜏
Δ ⊨E 𝐾 [flip()] ≾ 𝑒2 : 𝜏

that says that when sampling on the left-hand side, we may instead draw a bit 𝑏 from some prover-
chosen presampling tape]. To see why this rule cannot be sound, wewill show ⊨ flip ≾ flip_or : bool.
First, we introduce two tapes with resources]1 ↩→ (1, 𝜖) and]2 ↩→ (1, 𝜖) on the left-hand side,

either explicitly allocated in code as in Clutch or as pure ghost resources, if that is possible in our

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:26 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

hypothetical logic. Second, we couple the tape]1 with the 𝑥-sampling and]2 with the 𝑦-sampling

using rel-couple-tape-l such that we end up with]1 ↩→ (1, 𝑏1) and]2 ↩→ (1, 𝑏2) and the goal

⊨ flip() ≾ 𝑏1 | | 𝑏2 : bool. Finally, we do a case distinction on both 𝑏1 and 𝑏2: if both are true, or both

are false, it does not matter which tape we use when applying rel-tape-unsound. If, on the other

hand, only 𝑏𝑖 is true, we choose]𝑖 and apply rel-tape-unsound which finishes the proof.

The crucial observation is that by labeling tapes in the program syntax, however, we prevent the
prover from doing case analysis on presampled values to decide which tape to read—the syntax will

dictate which tape to use and hence which value to read. Concretely, in Frand
`,ref

, unlabeled flips always

reduce uniformly at random and only labeled sampling statements will read from presampling

tapes which prevents us from proving the unsound rel-tape-unsound.

Besides motivating why soundly allowing presampling is subtle, this counterexample also em-

phasizes why the fact that labels appear in the program and in the program syntax is important.

We do not claim that these annotations are absolutely necessary for some kind of presampling to

be sound, as some very different formulation of the logic might be able to avoid them, but like

for prophecy variables [Jung et al. 2020] where similar “ghost information” is needed in the actual

program code, it is not obvious how to do without it. We remind the reader that presampling tapes

nevertheless remain a proof-device as tapes can be erased through refinement as discussed in §2.

7.2 Incompatibility with Prophecy Variables
Presampling tapes bear some resemblance to prophecy variables in that they give us the means to

talk about the future. However, prophecy variables, as previously developed in the context of Iris

[Jung et al. 2020], are unsound for the (synchronous) coupling logic as illustrated below.

Assume the existence of two operators NewProph and Resolve𝑝 to𝑏 in our programming lan-

guage and their (unsound for Clutch!) Hoare-triple specifications found below.

wp-newproph-unsound

{True} NewProph {𝑝.∃𝑏 ∈ B. Proph(𝑝, 𝑏)}
wp-resolve-unsound

{Proph(𝑝, 𝑏) ∗ 𝑏′ ∈ B} Resolve𝑝 to𝑏′ {𝑏 = 𝑏′}

The specifications give us access to Boolean one-shot prophecies [Jung et al. 2020]. NewProph

allocates a fresh prophecy variable 𝑝 and a resource Proph(𝑝,𝑏) that tracks its future resolution 𝑏.
Given ownership of Proph(𝑝, 𝑏) then Resolve𝑝 to𝑏′ resolves the prophecy variable 𝑝 to a value 𝑏′

and knowledge that 𝑏 = 𝑏′ was the case all along. To see why these operations and rules cannot be

sound in the coupling logic, we will show ⊨ flip_proph ≾ flip : bool where

flip_proph ≜ let 𝑝 = NewProph in

let 𝑥 = flip() in
let𝑦 = flip() in
Resolve𝑝 to𝑦;

𝑥 && 𝑦

which cannot be the case as flip_proph returns true only with probability 1/4.
We unfold the relational judgment and apply wp-newproph-unsound which gives us a prophecy

about 𝑦 and its future resolution 𝑏. If 𝑏 is true, the evaluation on the left is predetermined to be

𝑥&&true = 𝑥 . By coupling the sampling of 𝑥 with the flip() on the right using rel-couple-rands, we

finish using rel-rand-l and wp-resolve-unsound. On the other hand, if 𝑏 is false, the evaluation on

the left is predetermined to be 𝑥 && false = false. We apply rel-rand-l first and couple the sampling

of 𝑦 with the flip() on the right using rel-couple-rands and finish using wp-resolve-unsound.

The counterexample shows that prophecy variables are unsound for the coupling logic, for the

same reason that presampling is unsound without syntactic tape labels: If the prover can predict

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:27

the outcomes of random samples ahead of time, it gives them too much power to choose which

sampling they couple with.

8 COQ FORMALIZATION
All the results presented in the paper, including the background on probability theory, the formal-

ization of the logic, and the case studies have been formalized in the Coq proof assistant [The Coq

Development Team 2022]. The results about probability theory are built on top of the Coquelicot

library [Boldo et al. 2015], extending their results to real series indexed by countable types.

Although we build our logic on top of Iris [Jung et al. 2018], significant work is involved

in formalizing the operational semantics of probabilistic languages, our new notion of weakest

precondition that internalizes the coupling-based reasoning, and the erasure theorem that allows

us to conclude the existence of a coupling. Our development integrates smoothly with the Iris Proof

Mode [Krebbers et al. 2017b] and we have adapted much of the tactical support from ReLoC [Frumin

et al. 2021b] to reason about the relational judgment.

9 RELATEDWORK
Separation logic. Relational separation logics have been developed on top of Iris for a range of

properties, such as contextual refinement [Frumin et al. 2021b; Krebbers et al. 2017b; Timany and

Birkedal 2019; Timany et al. 2018], simulation [Chajed et al. 2019; Gäher et al. 2022; Timany et al.

2021], and security [Frumin et al. 2021a; Georges et al. 2022; Gregersen et al. 2021]. The representa-

tion of the right-hand side program as a resource is a recurring idea, but our technical construction

with run ahead is novel. With the exception of Tassarotti and Harper [2019], probabilistic languages

have not been considered in Iris. Tassarotti and Harper develop a logic to show refinement between

a probabilistic program and a semantic model, not a program. The logic relies on couplings, but it

requires synchronization of sampling.

In Batz et al. [2019], a framework in which logical assertions are functions ranging over the non-

negative reals is presented. The connectives of separation logic are given an interpretation as maps

from pairs of non-negative reals to the positive reals. This work focuses on proving quantitative

properties of a single program, e.g., bounding the probability that certain events happen. A variety

of works have developed separation logics in which the separating conjunction models various

forms of probabilistic independence [Bao et al. 2021, 2022; Barthe et al. 2020]. For example, the

statement 𝑃 ∗ 𝑄 is taken to mean “the distribution of 𝑃 is independent from the distribution of 𝑄”.

Prophecy variables [Abadi and Lamport 1988, 1991] have been integrated into separation logic

in both unary [Jung et al. 2020] and relational settings [Frumin et al. 2021b]. The technical solution

uses program annotations and physical state reminiscent of our construction with presampling

tapes, but prophecy resolution is a physical program step, whereas presampling in our work is a

logical operation. Prophecies can also be erased through refinement [Frumin et al. 2021b].

Probabilistic couplings. Probabilistic couplings are a technique from probability theory that

can be used to prove equivalences between distributions or mixing times of Markov chains [Aldous

1983]. In computer science, they have been used to reason about relational properties of programs

such as equivalences [Barthe et al. 2015] and differential privacy [Barthe et al. 2016a]. However,

these logics requires the sampling points on both programs to be synchronized in order to construct

couplings. In a higher-order setting, the logic by Aguirre et al. [2018] establish so-called “shift

couplings” between probabilistic streams that evolve at different rates, but these rules are ad-hoc

and limited to the stream type. Also in the higher-order setting, Aguirre et al. [2021] use couplings to

reason about adversarially-defined properties, however they only support synchronous couplings,

first-order global state, and use a graded state monad to enforce separation of adversary memories.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

26:28 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

Logical relations. Step-indexed logical relations have been applied to reason about contextual

equivalence of probabilistic programs in a variety of settings. Bizjak and Birkedal [2015] develop

logical relations for a language similar to ours, although only with first-order state. This work has

since been extended to a language with continuous probabilistic choice (but without state and

impredicative polymorphism) [Wand et al. 2018], for which equivalence is shown by establishing a

measure preserving transformation between the sources of randomness for both programs. Recently,

this was further extended to support nested inference queries [Zhang and Amin 2022].

Another line of work [Dal Lago and Gavazzo 2021, 2022] uses so called differential logical

relations to reason about contextual distance rather than equivalence. Programs are related using

metrics rather than equivalence relations, which allows to quantify how similar programs are.

Cryptographic frameworks. CertiCrypt [Barthe et al. 2009, 2010] is a framework for crypto-

graphic game-playing proofs written in a simple probabilistic first-order while-language (“pWhile”).

CertiCrypt formalizes a denotational semantics for pWhile in Coq and supports reasoning about the

induced notion of program equivalence via a pRHL, and provides dedicated tactics for lazy/eager

sampling transformations. These kind of transformations are non-trivial for expressive languages

like ours. CertiCrypt also provides a quantitative unary logic.

EasyCrypt [Barthe et al. 2013] is a standalone prover for higher-order logic building on Cer-

tiCrypt’s ideas. It leverages the first-order nature of pWhile for proof automation via SMT solvers.

EasyCrypt extends pWhile with a module system [Barbosa et al. 2021] to support reasoning about

abstract code as module parameters. It integrates a quantitative unary logic with pRHL, and sup-

ports reasoning about complexity in terms of oracle calls [Barbosa et al. 2021]. Both automation and

these kind of properties are out of scope for our work but would be interesting future directions.

In FCF [Petcher and Morrisett 2015], programs are written as Coq expressions in the free

subdistributions monad. Proofs are conducted in a pRHL-like logic, where successive sampling

statements can be swapped thanks to the commutativity of the monad.

SSProve [Abate et al. 2021; Haselwarter et al. 2021] supports modular crypto proofs by composing

“packages” of programs written in the free monad for state and probabilities. The swap rule

in SSProve allows exchanging commands which maintain a state invariant. Reasoning about

dynamically allocated local state is not supported.

IPDL [Gancher et al. 2023] is a process calculus for stating and proving cryptographic obser-

vational equivalences. IPDL is mechanized in Coq and targeted at equational reasoning about

interactive message-passing in high-level cryptographic protocol models, and hence considers a

different set of language features.

10 CONCLUSION
Wehave presented Clutch, a novel higher-order probabilistic relational separation logic with support

for asynchronous probabilistic coupling-based proofs of contextual refinement and equivalence of

probabilistic higher-order programs with local state and impredicative polymorphism. We have

proved the soundness of Clutch formally in Coq using a range of new technical concepts and ideas

such as left-partial couplings, presampling tapes, and a coupling modality. We have demonstrated

the usefulness of our approach through several example program equivalences that, to the best of

our knowledge, were not possible to establish with previous methods.

DATA AVAILABILITY STATEMENT
The Coq formalization accompanying this work is available on Zenodo [Gregersen et al. 2023a]

and on GitHub at https://github.com/logsem/clutch.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

https://github.com/logsem/clutch/tree/popl24

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:29

ACKNOWLEDGMENTS
This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic

Research in Program Verification (CPV), from the VILLUM Foundation. This work was co-funded

by the European Union (ERC, CHORDS, 101096090). Views and opinions expressed are however

those of the author(s) only and do not necessarily reflect those of the European Union or the

European Research Council. Neither the European Union nor the granting authority can be held

responsible for them. This material is based upon work supported in part by the National Science

Foundation under Grant No. 2318724.

REFERENCES
Martín Abadi and Leslie Lamport. 1988. The Existence of RefinementMappings. In Proceedings of the Third Annual Symposium

on Logic in Computer Science (LICS ’88), Edinburgh, Scotland, UK, July 5-8, 1988. 165–175. https://doi.org/10.1109/LICS.

1988.5115

Martín Abadi and Leslie Lamport. 1991. The Existence of Refinement Mappings. Theor. Comput. Sci. 82, 2 (1991), 253–284.
https://doi.org/10.1016/0304-3975(91)90224-P

Carmine Abate, Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Catalin Hritcu, Kenji

Maillard, and Bas Spitters. 2021. SSProve: A Foundational Framework for Modular Cryptographic Proofs in Coq. In

34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. 1–15. https:

//doi.org/10.1109/CSF51468.2021.00048

Alejandro Aguirre, Gilles Barthe, Lars Birkedal, Ales Bizjak, Marco Gaboardi, and Deepak Garg. 2018. Relational Reasoning

for Markov Chains in a Probabilistic Guarded Lambda Calculus. In Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 214–241. https://doi.org/10.1007/978-3-319-89884-1_8

Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, Shin-ya Katsumata, and Tetsuya Sato. 2021. Higher-order

probabilistic adversarial computations: categorical semantics and program logics. Proc. ACM Program. Lang. 5, ICFP
(2021), 1–30. https://doi.org/10.1145/3473598

David J. Aldous. 1983. Random walks on finite groups and rapidly mixing Markov chains. Séminaire de probabilités de
Strasbourg 17 (1983), 243–297. http://www.numdam.org/item/SPS_1983__17__243_0/

José Bacelar Almeida, Cécile Baritel-Ruet, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Grégoire, Vincent

Laporte, Tiago Oliveira, Alley Stoughton, and Pierre-Yves Strub. 2019. Machine-Checked Proofs for Cryptographic

Standards: Indifferentiability of Sponge and Secure High-Assurance Implementations of SHA-3. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London, UK, November 11-
15, 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 1607–1622. https:

//doi.org/10.1145/3319535.3363211

Andrew W. Appel. 2001. Foundational Proof-Carrying Code. In 16th Annual IEEE Symposium on Logic in Computer Science,
Boston, Massachusetts, USA, June 16-19, 2001, Proceedings. 247–256. https://doi.org/10.1109/LICS.2001.932501

Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A Bunched Logic for Conditional Independence. In 36th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–14.
https://doi.org/10.1109/LICS52264.2021.9470712

Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. A separation logic for negative dependence. Proc. ACM
Program. Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498719

Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, and Pierre-Yves Strub. 2021. Mechanized Proofs

of Adversarial Complexity and Application to Universal Composability. In CCS ’21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, Yongdae Kim, Jong Kim,

Giovanni Vigna, and Elaine Shi (Eds.). ACM, 2541–2563. https://doi.org/10.1145/3460120.3484548

Elaine B. Barker and John M. Kelsey. 2015. Recommendation for Random Number Generation Using Deterministic Random Bit
Generators. National Institute of Standards and Technology. https://doi.org/10.6028/nist.sp.800-90ar1

Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt:

A Tutorial. In Foundations of Security Analysis and Design VII - FOSAD 2012/2013 Tutorial Lectures. 146–166. https:

//doi.org/10.1007/978-3-319-10082-1_6

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Stefanesco, and Pierre-Yves Strub. 2015. Relational

Reasoning via Probabilistic Coupling. In Logic for Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings. 387–401. https://doi.org/10.1007/978-3-662-

48899-7_27

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1109/CSF51468.2021.00048
https://doi.org/10.1109/CSF51468.2021.00048
https://doi.org/10.1007/978-3-319-89884-1_8
https://doi.org/10.1145/3473598
http://www.numdam.org/item/SPS_1983__17__243_0/
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1145/3319535.3363211
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1109/LICS52264.2021.9470712
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3460120.3484548
https://doi.org/10.6028/nist.sp.800-90ar1
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1007/978-3-662-48899-7_27

26:30 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2018. Proving expected sensitivity of

probabilistic programs. Proc. ACM Program. Lang. 2, POPL (2018), 57:1–57:29. https://doi.org/10.1145/3158145

Gilles Barthe, Noémie Fong, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016a. Advanced

Probabilistic Couplings for Differential Privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,

Andrew C. Myers, and Shai Halevi (Eds.). ACM, 55–67. https://doi.org/10.1145/2976749.2978391

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016b. Proving Differential Privacy

via Probabilistic Couplings. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’16, New York, NY, USA, July 5-8, 2016. 749–758. https://doi.org/10.1145/2933575.2934554

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic

proofs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
Savannah, GA, USA, January 21-23, 2009. 90–101. https://doi.org/10.1145/1480881.1480894

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2010. Programming Language Techniques for Crypto-

graphic Proofs. In Interactive Theorem Proving, First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings. 115–130. https://doi.org/10.1007/978-3-642-14052-5_10

Gilles Barthe, Justin Hsu, and Kevin Liao. 2020. A probabilistic separation logic. Proc. ACM Program. Lang. 4, POPL (2020),

55:1–55:30. https://doi.org/10.1145/3371123

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012. Probabilistic relational reasoning for

differential privacy. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012. 97–110. https://doi.org/10.1145/2103656.2103670

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

separation logic: a logic for reasoning about probabilistic pointer programs. Proc. ACM Program. Lang. 3, POPL (2019),

34:1–34:29. https://doi.org/10.1145/3290347

Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.

In CCS ’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA,
November 3-5, 1993. 62–73. https://doi.org/10.1145/168588.168596

Mihir Bellare and Phillip Rogaway. 2004. Code-Based Game-Playing Proofs and the Security of Triple Encryption. Cryptology

ePrint Archive, Paper 2004/331. https://eprint.iacr.org/2004/331 https://eprint.iacr.org/2004/331.

Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption and a Framework for Code-Based Game-

Playing Proofs. In Advances in Cryptology - EUROCRYPT 2006, Serge Vaudenay (Ed.). 409–426.

Aleš Bizjak. 2016. On Semantics and Applications of Guarded Recursion. Ph. D. Dissertation. Aarhus University.
Ales Bizjak and Lars Birkedal. 2015. Step-Indexed Logical Relations for Probability. In Foundations of Software Science and

Computation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings. 279–294. https://doi.org/10.1007/

978-3-662-46678-0_18

Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. 2015. Coquelicot: A User-Friendly Library of Real Analysis for

Coq. Math. Comput. Sci. 9, 1 (2015), 41–62.
Olivier Bousquet and André Elisseeff. 2002. Stability and Generalization. J. Mach. Learn. Res. 2 (mar 2002), 499–526.

https://doi.org/10.1162/153244302760200704

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe systems

with Perennial. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON,
Canada, October 27-30, 2019. 243–258. https://doi.org/10.1145/3341301.3359632

Ugo Dal Lago and Francesco Gavazzo. 2021. Differential logical relations, part II increments and derivatives. Theor. Comput.
Sci. 895 (2021), 34–47. https://doi.org/10.1016/j.tcs.2021.09.027

Ugo Dal Lago and Francesco Gavazzo. 2022. Effectful program distancing. Proc. ACM Program. Lang. 6, POPL (2022), 1–30.

https://doi.org/10.1145/3498680

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. Log. Methods Comput. Sci. 7, 2
(2011). https://doi.org/10.2168/LMCS-7(2:16)2011

Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order state and control effects on local relational

reasoning. J. Funct. Program. 22, 4-5 (2012), 477–528. https://doi.org/10.1017/S095679681200024X

Cynthia Dwork and Aaron Roth. 2013. The Algorithmic Foundations of Differential Privacy. Foundations and Trends® in
Theoretical Computer Science 9, 3-4 (2013), 211–407. https://doi.org/10.1561/0400000042

Taher Elgamal. 1985. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf.
Theory 31, 4 (1985), 469–472. https://doi.org/10.1109/TIT.1985.1057074

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021a. Compositional Non-Interference for Fine-Grained Concurrent

Programs. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. 1416–1433.
https://doi.org/10.1109/SP40001.2021.00003

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

https://doi.org/10.1145/3158145
https://doi.org/10.1145/2976749.2978391
https://doi.org/10.1145/2933575.2934554
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1007/978-3-642-14052-5_10
https://doi.org/10.1145/3371123
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/3290347
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1162/153244302760200704
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1016/j.tcs.2021.09.027
https://doi.org/10.1145/3498680
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1561/0400000042
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/SP40001.2021.00003

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic 26:31

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021b. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/10.46298/lmcs-17(3:9)2021

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and Derek

Dreyer. 2022. Simuliris: a separation logic framework for verifying concurrent program optimizations. Proc. ACM
Program. Lang. 6, POPL (2022), 1–31. https://doi.org/10.1145/3498689

Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. 2023. A Core Calculus for Equational Proofs

of Cryptographic Protocols. Proc. ACM Program. Lang. 7, POPL, Article 30 (jan 2023), 27 pages. https://doi.org/10.1145/

3571223

Aïna Linn Georges, Alix Trieu, and Lars Birkedal. 2022. Le temps des cerises: efficient temporal stack safety on capability

machines using directed capabilities. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1–30. https://doi.org/10.1145/3527318
Shafi Goldwasser and Silvio Micali. 1984. Probabilistic Encryption. J. Comput. Syst. Sci. 28, 2 (1984), 270–299. https:

//doi.org/10.1016/0022-0000(84)90070-9

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2023a.

Asynchronous Probabilistic Couplings in Higher- Order Separation Logic - Coq Artifact. https://doi.org/10.5281/zenodo.

8424490

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2023b.

Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. CoRR abs/2301.10061 (2023). https://doi.org/

10.48550/ARXIV.2301.10061 arXiv:2301.10061

Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. 2021. Mechanized logical relations for

termination-insensitive noninterference. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434291
Philipp G. Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Carmine Abate, Nikolaj Sidorenco, Catalin

Hritcu, Kenji Maillard, and Bas Spitters. 2021. SSProve: A Foundational Framework for Modular Cryptographic Proofs in

Coq. Cryptology ePrint Archive, Paper 2021/397. https://eprint.iacr.org/2021/397 https://eprint.iacr.org/2021/397.

Patricia Johann, Alex Simpson, and Janis Voigtländer. 2010. A Generic Operational Metatheory for Algebraic Effects. In

Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,
United Kingdom. 209–218. https://doi.org/10.1109/LICS.2010.29

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. 256–269.
https://doi.org/10.1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.

2020. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1–45:32.

https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
637–650. https://doi.org/10.1145/2676726.2676980

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The Essence

of Higher-Order Concurrent Separation Logic. In Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings. 696–723. https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in higher-order concurrent separation logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017. 205–217. https://doi.org/10.1145/3009837.3009855

T. Lindvall. 2002. Lectures on the Coupling Method. Dover Publications, Incorporated.
Arno Mittelbach and Marc Fischlin. 2021. The Theory of Hash Functions and Random Oracles - An Approach to Modern

Cryptography. Springer. https://doi.org/10.1007/978-3-030-63287-8

Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptography Framework. In Principles of Security and Trust -
4th International Conference, POST 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015, Proceedings. 53–72. https://doi.org/10.1007/978-3-662-46666-7_4

Andrew M. Pitts and Ian D. B. Stark. 1998. Operational Reasoning for Functions with Local State. In Higher Order Operational
Techniques in Semantics, A. D. Gordon and A. M. Pitts (Eds.). Cambridge University Press, 227–273.

Mike Rosulek. 2020. The Joy of Cryptography. http://web.engr.oregonstate.edu/~rosulekm/crypto/

Davide Sangiorgi and Valeria Vignudelli. 2016. Environmental bisimulations for probabilistic higher-order languages. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3571223
https://doi.org/10.1145/3571223
https://doi.org/10.1145/3527318
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.5281/zenodo.8424490
https://doi.org/10.5281/zenodo.8424490
https://doi.org/10.48550/ARXIV.2301.10061
https://doi.org/10.48550/ARXIV.2301.10061
https://arxiv.org/abs/2301.10061
https://doi.org/10.1145/3434291
https://eprint.iacr.org/2021/397
https://eprint.iacr.org/2021/397
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-030-63287-8
https://doi.org/10.1007/978-3-662-46666-7_4
http://web.engr.oregonstate.edu/~rosulekm/crypto/

26:32 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal

St. Petersburg, FL, USA, January 20 - 22, 2016. 595–607. https://doi.org/10.1145/2837614.2837651

Raimund Seidel and Cecilia R. Aragon. 1996. Randomized Search Trees. Algorithmica 16, 4/5 (1996), 464–497. https:

//doi.org/10.1007/BF01940876

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In Programming Languages and
Systems - 23rd European Symposium on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings. 149–168. https://doi.org/10.1007/978-

3-642-54833-8_9

Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM Program.
Lang. 3, POPL (2019), 64:1–64:30. https://doi.org/10.1145/3290377

The Coq Development Team. 2022. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.7313584

The Iris Development Team. 2022. The Iris 4.0 Reference. https://plv.mpi-sws.org/iris/appendix-4.0.pdf

Hermann Thorisson. 2000. Coupling, stationarity, and regeneration. Springer-Verlag, New York. xiv+517 pages.

Amin Timany and Lars Birkedal. 2019. Mechanized relational verification of concurrent programs with continuations. Proc.
ACM Program. Lang. 3, ICFP (2019), 105:1–105:28. https://doi.org/10.1145/3341709

Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon Gondelman, Abel Nieto, and Lars Birkedal. 2021. Trillium:

Unifying Refinement and Higher-Order Distributed Separation Logic. CoRR abs/2109.07863 (2021). arXiv:2109.07863

https://arxiv.org/abs/2109.07863

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical Approach to Type Soundness. (2022).

https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf Unpublished manuscript.

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A logical relation for monadic encapsulation

of state: proving contextual equivalences in the presence of runST. Proc. ACM Program. Lang. 2, POPL (2018), 64:1–64:28.

https://doi.org/10.1145/3158152

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013a. Unifying refinement and hoare-style reasoning in a logic for higher-

order concurrency. In ACM SIGPLAN International Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013. 377–390. https://doi.org/10.1145/2500365.2500600

Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013b. Logical relations for fine-

grained concurrency. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013. 343–356. https://doi.org/10.1145/2429069.2429111

C. Villani. 2008. Optimal Transport: Old and New. Springer Berlin Heidelberg.

Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb. 2018. Contextual equivalence for a

probabilistic language with continuous random variables and recursion. Proc. ACM Program. Lang. 2, ICFP (2018),

87:1–87:30. https://doi.org/10.1145/3236782

Yizhou Zhang and Nada Amin. 2022. Reasoning about "reasoning about reasoning": semantics and contextual equivalence

for probabilistic programs with nested queries and recursion. Proc. ACM Program. Lang. 6, POPL (2022), 1–28. https:

//doi.org/10.1145/3498677

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 26. Publication date: January 2024.

https://doi.org/10.1145/2837614.2837651
https://doi.org/10.1007/BF01940876
https://doi.org/10.1007/BF01940876
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/3290377
https://doi.org/10.5281/zenodo.7313584
https://plv.mpi-sws.org/iris/appendix-4.0.pdf
https://doi.org/10.1145/3341709
https://arxiv.org/abs/2109.07863
https://arxiv.org/abs/2109.07863
https://iris-project.org/pdfs/2022-submitted-logical-type-soundness.pdf
https://doi.org/10.1145/3158152
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2429069.2429111
https://doi.org/10.1145/3236782
https://doi.org/10.1145/3498677
https://doi.org/10.1145/3498677

	Abstract
	1 Introduction
	2 Key Ideas
	3 Preliminaries and the Language F_(μ,ref,rand)
	4 The Clutch Refinement Logic
	4.1 Refinement Judgments
	4.2 Persistence and Invariants

	5 Model of Clutch
	5.1 Coupling Logic
	5.2 Refinement Logic
	5.3 Soundness

	6 Case Studies
	6.1 Lazy/Eager Coin
	6.2 ElGamal Public Key Encryption
	6.3 Hash Functions
	6.4 Lazily Sampled Big Integers

	7 Counterexamples
	7.1 Syntactic Restriction on Presampling
	7.2 Incompatibility with Prophecy Variables

	8 Coq Formalization
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

