
Deadlock-Free Separation Logic: Linearity Yields Progress for
Dependent Higher-Order Message Passing

JULES JACOBS, Radboud University Nijmegen, The Netherlands

JONAS KASTBERG HINRICHSEN, Aarhus University, Denmark

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

We introduce a linear concurrent separation logic, called LinearActris, designed to guarantee deadlock and

leak freedom for message-passing concurrency. LinearActris combines the strengths of session types and

concurrent separation logic, allowing for the verification of challenging higher-order programs with mutable

state through dependent protocols. The key challenge is to prove the adequacy theorem of LinearActris,

which says that the logic indeed gives deadlock and leak freedom “for free” from linearity. We prove this

theorem by defining a step-indexed model of separation logic, based on connectivity graphs. To demonstrate

the expressive power of LinearActris, we prove soundness of a higher-order (GV-style) session type system

using the technique of logical relations. All our results and examples have been mechanized in Coq.

CCS Concepts: • Theory of computation→ Separation logic; Program verification; Programming logic.

Additional Key Words and Phrases: Message passing, deadlocks, session types, separation logic, Iris, Coq

ACM Reference Format:
Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2024. Deadlock-Free Separation Logic: Linearity

Yields Progress for Dependent Higher-Order Message Passing. Proc. ACM Program. Lang. 8, POPL, Article 47
(January 2024), 33 pages. https://doi.org/10.1145/3632889

1 INTRODUCTION
Session type systems [Honda 1993; Honda et al. 1998] allow type checking programs that involve

message-passing concurrency. Session types are protocols, which can be seen as sequences of send

(!) and receive (?) actions. They are associated with channels, and express in what order messages

of what type should be transferred. For example, the session type !Z.?B.end is given to a channel

over which an integer should be sent, after which a boolean is received. More complex session

types can be formed with operators for choice (⊕,&), recursion (𝜇), etc.
Aside from ensuring type safety, linear session type systems [Caires and Pfenning 2010; Wadler

2012] can ensure deadlock freedom. That means that well-typed programs cannot end up in a

state where all threads are waiting to receive a message from another. Deadlock freedom has been

extended to large variety of session type systems [Carbone and Debois 2010; Fowler et al. 2021;

Toninho et al. 2013; Toninho 2015; Caires et al. 2013; Pérez et al. 2014; Lindley and Morris 2015,

2016, 2017; Fowler et al. 2019; Das et al. 2018]. The elegance of session type systems is that they give

deadlock freedom essentially “for free”—it is obtained from “just” linear type checking. Moreover,

session types are compositional—once functions have been type checked, they can be composed by

merely establishing that the types agree. A final strength of session types is that deadlock freedom

Authors’ addresses: Jules Jacobs, Radboud University Nijmegen, The Netherlands, julesjacobs@gmail.com; Jonas Kastberg

Hinrichsen, Aarhus University, Denmark, hinrichsen@cs.au.dk; Robbert Krebbers, Radboud University Nijmegen, The

Netherlands, mail@robbertkrebbers.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART47

https://doi.org/10.1145/3632889

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0003-1976-3182
HTTPS://ORCID.ORG/0000-0001-6143-9031
HTTPS://ORCID.ORG/0000-0002-1185-5237
https://doi.org/10.1145/3632889
https://orcid.org/0000-0003-1976-3182
https://orcid.org/0000-0001-6143-9031
https://orcid.org/0000-0001-6143-9031
https://orcid.org/0000-0002-1185-5237
https://doi.org/10.1145/3632889

47:2 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

is maintained in a higher-order setting where closures and channels are transferred as first-class

data over channels. The goal of this paper is to extend these advantages to separation logic.
Linear session types are unique and different from other methods for deadlock freedom—such as

lock orders [Dijkstra 1971; Leino et al. 2010; Hamin and Jacobs 2018; Balzer et al. 2019; D’Osualdo

et al. 2021], priorities [Kobayashi 1997; Padovani 2014; Dardha and Gay 2018], and global multiparty

session types [Honda et al. 2008, 2016]—because they do not require any additional proof obligations

involving orders, priority annotations, or global types. Still, other methods neither supersede nor

subsume session types in the range of programs they can prove to be deadlock free (§9.1).

The ideas of session types are not limited to type checking, but have previously also been

applied to functional verification. Bocchi et al. [2010]; Francalanza et al. [2011]; Lozes and Villard

[2012]; Craciun et al. [2015]; Oortwijn et al. [2016]; Hinrichsen et al. [2020, 2022] have developed

program logics that incorporate concepts from session types to verify increasingly sophisticated

programs with message-passing concurrency. The protocols of these program logics make it

possible to put logical conditions on the messages, allowing one to specify the contents (e.g.,
the message is an even number) instead of just the shape (e.g., it is an integer). The state of

the art is the Actris logic and its descendants [Hinrichsen et al. 2020, 2022; Jacobs et al. 2023b],

which are embedded in the Iris framework for concurrent separation logic in Coq [Jung et al.

2015, 2016; Krebbers et al. 2017a; Jung et al. 2018b]. The key ingredient of Actris is its notion of

dependent separation protocols, which inspired by dependent session types, can express dependencies
between the data of messages and specify the transfer of resources. For example, the protocol

! (ℓ : Loc, 𝑛 : N)⟨ℓ⟩{ℓ ↦→ 𝑛}; ?⟨𝑛⟩{ℓ ↦→ (𝑛 + 1)}; end says that a location ℓ with value 𝑛 should be

sent, after which the value 𝑛 should be received, and the value of ℓ has been incremented.

Since Actris is a full-blown program logic, instead of a type system that aims to have decidable

type checking, it can express more protocols and therefore verify safety of more programs than

session types. In particular, it can express protocols where the shape (e.g., number of messages) of

the protocol depends on the contents of earlier messages. Moreover, Hinrichsen et al. [2021] show

that Actris can be used to give a semantic model to prove soundness of (affine) session types using

the technique of logical relations in Iris [Timany et al. 2022].

A key ingredient of concurrent separation logics such as Iris (on top of which Actris is built)—and

also other separation logic frameworks such as VST [Appel 2014], CFML [Charguéraud 2020], and

Bedrock [Chlipala 2013]—is their adequacy (a.k.a. soundness) theorem that connects the program

logic to the operational semantics. For Iris, the adequacy theorem is [Jung et al. 2018b, §6.4]:

Theorem 1.1. A proof of {True} 𝑒 {True} implies that 𝑒 is safe, i.e., if ([𝑒], ∅) −→∗t ([𝑒1 . . . 𝑒𝑛], ℎ),
then for each 𝑖 either 𝑒𝑖 is a value or (𝑒𝑖 , ℎ) can step.

Intuitively this theorem says that the logic is doing its job: a verified program 𝑒 “cannot go

wrong”, i.e., it cannot perform illegal operations such as loading from a dangling location (use after

free) or use an operator with wrong arguments (e.g., 3 + 𝜆𝑥.𝑥). Formally it says that if 𝑒 can be

verified (i.e., a Hoare triple with trivial precondition can be proved), and the initial configuration

([𝑒], ∅) (consisting of a single thread 𝑒 and the empty heap) steps to ([𝑒1 . . . 𝑒𝑛], ℎ) (consisting of
threads 𝑒1 . . . 𝑒𝑛 and heap ℎ), then each thread 𝑒𝑖 has either finished (is a value) or can make further

progress (perform a step). Illegal operations cannot step, so adequacy guarantees they do not occur.

Despite the strong trust that the adequacy theorem gives in the correctness of the program

logic—especially when mechanized in a proof assistant such as Coq—the adequacy theorem of

most state-of-the-art program logics says nothing about deadlocks. In Iris, blocking operations (e.g.,
receiving from a channel whose buffer is empty, or acquiring a lock that has already been acquired)

are modeled as busy loops, and thus cannot be distinguished from non-terminating programs. Both

deadlocking and non-terminating programs can always step, and are thus trivially safe.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:3

Goal of the paper. Our goal is to build a program logic for partial correctness that (1) enjoys

an adequacy theorem that guarantees deadlock freedom for message passing concurrency, (2)

combines the strengths of session types and concurrent separation logic to obtain deadlock freedom

“for free” from linearity, without any additional proof obligations, and (3) is strong enough to verify

challenging programs. By partial correctness we mean that we formalize deadlock freedom as a

safety property (it is impossible for all threads to be waiting on a blocking operation), rather than a

liveness property (threads are guaranteed to make progress or terminate). Formalizing deadlock

freedom as a safety property is similar to the standard property of global progress in session type

systems [Caires and Pfenning 2010] (§10 contains a discussion of safety versus liveness).

Before discussing the desiderata of the program logic, let us investigate the operational semantics

and adequacy theorem. To distinguish between deadlock and non-termination, we let the receive

operation on a channel block the thread until a message is sent, instead of letting it perform a

busy loop. With that change at hand, the adequacy theorem becomes similar to the global progress

theorem of session type systems:

Theorem 1.2. A proof of {Emp} 𝑒 {Emp} implies that 𝑒 enjoys global progress, i.e., if ([𝑒], ∅) −→∗t
([𝑒1 . . . 𝑒𝑛], ℎ), then either 𝑒𝑖 is a value for each 𝑖 and ℎ = ∅, or ([𝑒1 . . . 𝑒𝑛], ℎ) can step.

Instead of requiring each thread to step, which would be false if a thread is genuinely waiting for

another thread, we require the configuration as a whole to step. This means that there is always

at least one thread that can step, i.e., there is no global deadlock. Additionally, compared to the

adequacy theorem for safety, we require the final heap to be empty, which means all channels have

been deallocated, i.e., there are no memory leaks. (Note that global progress does not subsume

safety, we still need a theorem that ensures the absence of illegal non-blocking operations.)

Our desired adequacy theorem does not hold for Iris-based logics such as Actris:

• The need for linearity. Iris and Actris are affine, which means that resources must be used

at most once, but can also be dropped (Iris satisfies the proof rule 𝑃 ∗𝑄 ⊢ 𝑃 , or equivalently
Emp ⊣⊢ True). Hence one can verify a program that creates a channel with endpoints 𝑐1 and

𝑐2, have one thread perform a receive, and let the other thread perform a no-op:

Thread 1: 𝑐1 .recv()
Thread 2: do nothing

This program can be verified in Iris/Actris because using affinity, the ownership of 𝑐2 can be

dropped in the second thread. However, this program causes a deadlock: due to the absence

of a send, the receive will block indefinitely. In session types this form of deadlock is ruled

out by making the system linear, which means that resources must be used exactly once, and

cannot be dropped until the protocol has been completed.

• The need for acyclicity Linearity alone is not enough. If a thread could obtain ownership

of both endpoints of a single channel, then it would be able to trivially deadlock itself, by

performing the receive before the send. Linearity would not be violated, as the thread would

still consume both channel ownership assertions according to the rules of the logic, but the

thread would be blocked forever. More generally, if two threads own the endpoints of two

channels, and perform a receive followed by send, there would be a deadlock:

Thread 1: 𝑐1 .recv(); 𝑑1 .send(2)
Thread 2: 𝑑2 .recv(); 𝑐2 .send(1)

In session types, Wadler [2012] addresses this problem by combining thread and channel

creation into a single construct. Together with linearity, this ensures that channel ownership

is acyclic in a certain sense, and rules out all deadlocks without need for annotations.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

47:4 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

In this paper we introduce LinearActris—which amends Actris with the aforementioned re-

strictions from linear session types to satisfy the goals we stated above. The key challenge that we

address in the remainder of the introduction is proving the adequacy theorem of LinearActris.

Key challenge: Proving adequacy. Adequacy is commonly proved by giving a semantic

interpretation of propositions and Hoare triples. For sequential separation logic [O’Hearn et al.

2001], propositions are modeled as heap predicates, and the semantics of Hoare triples is defined so

that safety and leak freedom follow almost by definition. Since we consider a higher-order program

logic, for a concurrent language with dynamic thread and channel spawning, and wish to prove

global progress, this simple setup no longer suffices. We should address the following challenges:

• Circular semantics. Session types and dependent separation protocols of Actris are higher-

order, which means they can specify programs that transfer channels and closures over

channels. In Actris one can write 𝑑 ↣ ! (𝑐 : Loc)⟨𝑐⟩{𝑐 ↣ p}; end to say that 𝑑 is a channel,

over which a channel 𝑐 with protocol p is sent. Here, the protocol p can contain protocol

ownership assertions 𝑐 ↣ p′, where p′ can in turn contain protocol ownership assertions.

This circularity involves a negative recursive occurrence and cannot be solved in set the-

ory. It is similar to the type-world circularity in models of type systems with higher-order

references [Ahmed 2004; Birkedal et al. 2011], and that of storable locks [Hobor et al. 2008]

and impredicative invariants [Svendsen and Birkedal 2014], where step-indexing [Appel and

McAllester 2001] is used to solve the circularity. The original Actris makes (in part) use of

Iris’s impredicative invariant mechanism to avoid solving this circularity explicitly.

• Invariants and linearity. Iris’s invariants are strongly tied to the logic being affine. Jung

[2020, Thm 2] presents a paradox showing that a naïve linear version of Iris’s invariants

cannot be used to obtain even leak-freedom. Bizjak et al. [2019] present Iron, a linear version

of Iris with an invariant mechanism that can be used to prove leak-freedom. Aside from

not considering deadlock freedom, Iron avoids Jung’s paradox by restricting the contents of

invariants—namely, invariants cannot contain permissions to deallocate resources. Ownership

of the end protocol needs to provide permission to deallocate the channel, making Iron’s

invariants insufficient for our purpose.

• Invariants and acyclicity. Linearity alone is not enough to avoid deadlocks—one needs

to maintain an invariant that the channel ownership topology is acyclic. Formalizing this

acyclicity invariant is a key challenge of the syntactic meta theory of session types [Lindley

and Morris 2015, 2016; Fowler et al. 2021; Jacobs et al. 2022a; Jacobs 2022]. Since this prior

work is aimed at syntactic theory of type systems, we need to investigate how to incorporate

acyclicity of the topology into a semantic model of a program logic. Additionally, in type sys-

tems there is a 1-to-1 correspondence between physical references and ownership, but not in

program logics. One can create protocols such as ! (𝑐 : Loc)⟨𝑐⟩{𝑐 ↣ p}; ?⟨()⟩{𝑐 ↣ p′}; end
where a channel reference and ownership is sent, and only an acknowledgment () is returned.
This means that the sending thread has to keep a reference to the channel, although it cannot

use it before it has received the acknowledgment.

We define a step-indexed linear model of separation logic as the solution of a recursive domain

equation [America and Rutten 1989; Birkedal et al. 2010]. To avoid reasoning about step-indices,

we work in the pure step-indexed logic with a later modality (⊲) [Appel et al. 2007; Nakano 2000].

Similar to Iris we define Hoare triples in terms of weakest preconditions. A major difference in

the definition of the weakest precondition compared to Iris is that we thread through the weakest

preconditions of all threads, as well as the ownership and duality invariants of all channels. This

way we can ensure that at all times the threads and channels form an acyclic topology with respect

to channel ownership. To formalize acyclicity we use adapt notion of connectivity graphs by Jacobs

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:5

𝑒 ∈ Expr ::= 𝑥 | 𝑒 𝑒 | 𝜆𝑥 .𝑒 | (𝑒, 𝑒) | inl 𝑒 | inr 𝑒 | rec f 𝑥 . 𝑒 | 𝑛 | 𝑒 + 𝑒 | · · · 2

| match 𝑒 with inl 𝑥 ⇒ 𝑒; inr 𝑥 ⇒ 𝑒 end | let (𝑥1, 𝑥2) = 𝑒 in 𝑒
| fork1 𝑒 | 𝑒.send(𝑒) | 𝑒.recv() | 𝑒.close() | 𝑒.wait() (Channel operations)

| ref 𝑒 | ! 𝑒 | 𝑒 ← 𝑒 | free 𝑒 | assert 𝑒 (Heap operations & assert)

Fig. 1. The syntax of ChanLang.

et al. [2022a]. Connectivity graphs were originally designed for the syntactic meta theory of type

systems for deadlock freedom, but we adapt them so that they can be integrated into a step-indexed

separation logic. To simplify the construction of the model and the operational semantics of the

language, we base ourselves on the work of Dardha et al. [2012]; Jacobs et al. [2023b]: we use

one-shot channels as primitive, and build multi-shot channels on top of those.

Contributions. We introduce LinearActris—a concurrent separation logic for proving deadlock-
and leak freedom of message-passing programs, essentially offering these guarantees “for free”

from linearity, without any additional proof obligations. This involves the following contributions:

• We verify a range of examples of that use channels, closures, and mutable references as

first-class data, demonstrating the expressive power of LinearActris (§2).

• We provide a formal description of the proof rules of LinearActris. First for multi-shot

channels, and then for one-shot channels. Based on Jacobs et al. [2023b], we derive the logic

for multi-shot channels from the one for one-shot channels (§ 3 and 4).

• We provide a formal adequacy proof of LinearActris based on a step-indexed model of

separation logic rooted in connectivity graphs [Jacobs et al. 2022a], showing that a derivation

in LinearActris ensures deadlock and leak freedom of the program in question (§ 5 and 6).

• We use LinearActris to construct a logical relations model that establishes deadlock freedom

for a session-typed language (§7). This contribution has two purposes. First, this provides

an application that truly relies on our connectivity based approach to deadlock freedom

(and is out of scope for logics based on e.g., lock orders). Second, this shows that every

program that can be shown to be deadlock free using a GV-style session type system, can

also be shown to be deadlock free using LinearActris. In fact, we go beyond existing GV-like

systems by supporting the combination of recursive types, subtyping, term- and session type

polymorphism, and unique mutable references (§7).

• Wemechanized all our results as well as a number of examples from the original Actris papers

in Coq (§8). See Jacobs et al. [2023a] for the sources.

We conclude the paper with related work (§9) and discussion/future work (§10).

2 LINEAR ACTRIS BY EXAMPLE
In this section we present LinearActris with example programs that we verify. We deliberately

use very small examples. In our Coq mechanization we show that LinearActris can also be used

to prove deadlock freedom of more challenging examples from the Actris papers, in particular, a

number of increasingly complicated versions of parallel merge sort (§8).

The programming language that we use in LinearActris is called ChanLang. It has concurrency,

bidirectional message passing channels, mutable references, and functional programming constructs

(such as lambdas, products, sums, and recursion). The syntax is shown in Fig. 1. ChanLang has the

following constructs for message-passing concurrency:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/lang/lang.v.html#line-29

47:6 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

fork (𝜆𝑐. 𝑒) Fork a new thread that runs 𝑒 with a new channel a location 𝑐 , and also return the

location of the new channel.

𝑐.send(𝑣) Send message 𝑣 over the channel at location 𝑐 .

𝑐.recv() Receive a message over the channel at location 𝑐 .

𝑐.close() Close the channel at location 𝑐 .

𝑐.wait() Wait for the channel at location 𝑐 to be closed.

The 𝑐.recv() and 𝑐.wait() operations are blocking, and could thus potentially lead to deadlocks.

As is common in session-typed languages like GV [Wadler 2012; Gay and Vasconcelos 2010], our

fork operation both spawns the child thread, and sets up a channel for communication between the

parent thread and child thread. This will turn out to be important for deadlock freedom (§ 5 and 6).

The following example illustrates how we can use these constructs to fork off a thread that

receives a message from the main thread, adds one to it, and sends it back:

let 𝑐1 = fork (𝜆𝑐2. 𝑐2.send(𝑐2.recv() + 1); 𝑐2.close()) in
𝑐1.send(1); assert(𝑐1.recv() == 2); 𝑐1 .wait()

2

The assert 𝑒 operation asserts that 𝑒 evaluates to true, and otherwise it gets stuck. Other illegal

operations, such as sending over a closed channel, also get stuck forever. To verify the program, we

need to reason about the channels 𝑐1 and 𝑐2. We do so by means of channel ownership assertions

𝑐 ↣ p, which state that we own a reference to the channel 𝑐 , and we must interact with it according

to the protocol p. Our protocols are dependent separation protocols in the style of Actris [Hinrichsen

et al. 2020]. We can use the following dual pair of protocols for 𝑐1 and 𝑐2 at the fork:

𝑐1↣ ! ⟨1⟩; ?⟨2⟩; ?end 𝑐2↣ ?⟨1⟩; ! ⟨2⟩; !end 2

In these protocols, each step is either !⟨𝑣⟩ or ?⟨𝑣⟩, indicating that the owner of the reference must

send or recv a value 𝑣 , respectively. The final !end / ?end indicates that the protocol is finished,

and that the close / wait operation must be performed.

Quantified protocols. The preceding protocol is inflexible, because it specifies the exact values

that must be sent and received. To alleviate this inflexibility, we can use a quantified protocol instead:

𝑐1↣ ! (𝑛 : N)⟨𝑛⟩; ?⟨𝑛 + 1⟩; ?end 𝑐2↣ ?(𝑛 : N)⟨𝑛⟩; ! ⟨𝑛 + 1⟩; !end 2

This protocol states that if we send 𝑛, then we will receive 𝑛 + 1. When verifying a quantified

protocol step, the sender can instantiate the quantified variable with any logical value. For example,

the sender can instantiate 𝑛 with 1, and send 1 over the channel. The receiver must be verified to

work for any 𝑛 chosen by the sender.

The continuation of the protocol is allowed to be an arbitrary function of the quantified variables.

This can be used to verify examples such as the following:

let 𝑛 = 𝑐.recv() in if 𝑛 < 5 then 𝑐.close() else 𝑐.send(𝑛 − 5); . . . 2

The protocol for 𝑐 will have to have a different length, depending on which branch of the if is

taken. We can verify this program using the following protocol for 𝑐:

𝑐 ↣ ?(𝑛 : N)⟨𝑛⟩; if 𝑛 < 5 then (!end) else (! ⟨𝑛 − 5⟩; . . .) 2

Mutable references. In addition to channels, our language has mutable references:

ref 𝑣 Allocate a new location in the heap and store the value 𝑣 in it, and return the location.

! ℓ Read the value from the location ℓ .

ℓ ← 𝑣 Write the value 𝑣 to the location ℓ .

free ℓ Free the location ℓ .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/examples/tour.v.html#line-5
https://apndx.org/pub/icnp/examples/tour.v.html#line-9
https://apndx.org/pub/icnp/examples/tour.v.html#line-21
https://apndx.org/pub/icnp/examples/tour.v.html#line-33
https://apndx.org/pub/icnp/examples/tour.v.html#line-38

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:7

Illegal operations, such as using a location that has been freed, are modeled as getting stuck

forever. Consider the following variant of the preceding example:

let 𝑐1 = fork (𝜆𝑐2. let 𝑙 = 𝑐2 .recv() in 𝑙 ← ! 𝑙 + 1; 𝑐2.close()) in
let 𝑙 = ref 1 in 𝑐1.send(𝑙); 𝑐1 .wait(); assert(! 𝑙 == 2); free 𝑙

2

We send a mutable reference from the main thread to the forked thread, which increments it.

The main thread waits for the forked thread to close its channel, and then asserts that the value

of the reference is 2. The reference is then freed by the main thread. LinearActris can prove that

this program is safe and does not deadlock. Note that safety relies on the blocking behavior of

𝑐1 .wait(), which ensures that the forked thread has finished before the main thread asserts that

the value is 2 and frees the reference. The protocols to verify this program are as follows:

𝑐1↣ ! (𝑙 : Loc, 𝑛 : N)⟨𝑙⟩{𝑙 ↦→ 𝑛}; ?end{𝑙 ↦→ 𝑛 + 1} 2

𝑐2↣ ?(𝑙 : Loc, 𝑛 : N)⟨𝑙⟩{𝑙 ↦→ 𝑛}; !end{𝑙 ↦→ 𝑛 + 1}
This time, the protocol uses quantifiers for both the location 𝑙 and the value 𝑛 that is initially

stored in the location. The protocol states that if we send a location 𝑙 , then this location will be

incremented by 1. The curly brackets {_} indicate the separation logic resources that are sent along

with the message. In the protocol for 𝑐1 above, the heap ownership assertion 𝑙 ↦→ 𝑛 is transmitted

with the initial send step, and 𝑙 ↦→ 𝑛 + 1 is received in the wait step. As the following example

shows, a reference need not be send over the channel, but can also be captured by the closure:

let 𝑙 = ref 1 in let 𝑐1 = fork (𝜆𝑐2. 𝑙 ← ! 𝑙 + 1; 𝑐2 .close()) in
𝑐1.wait(); assert(! 𝑙 == 2); free 𝑙

2

We transfer 𝑙 ↦→ 1 to the child thread immediately upon the fork, and the protocols simplify to:

𝑐1↣ ?end{𝑙 ↦→ 2} 𝑐2↣ !end{𝑙 ↦→ 2} 2

Sending channels over channels. In addition to exchanging references, LinearActris can also

reason about programs that send channels over channels. Consider the following example:

let 𝑑1 = fork (𝜆𝑑2 . assert(𝑑2.recv().recv() == 2); 𝑑2 .close()) in
let 𝑐1 = fork (𝜆𝑐2. 𝑐2.send(2); 𝑐2.wait()) in
𝑑1 .send(𝑐1); 𝑑1 .wait(); 𝑐1 .close()

2

The program forks off two threads, which gives the main thread two channels 𝑐1 and 𝑑1. The main

thread then sends 𝑐1 over 𝑑1, and waits for 𝑑1 to be closed, and then closes 𝑐1. The first thread

receives 𝑐1 from 𝑑2, and then receives on 𝑐1 and asserts that the value is 2, and then closes 𝑑2. The

second thread sends 2 over 𝑐2, and then waits for 𝑐2 to be closed.

That this program is safe and does not deadlock can be proven by LinearActris, but this is more

subtle than one might think: if we were to swap the two 𝑑1 .wait(); 𝑐1 .close() operations, then
the program would not be safe, as 𝑐1 might be closed before the other threads are done with it. We

can verify the example using the following protocols:

𝑐1↣ ?⟨2⟩; !end 𝑐2↣ ! ⟨2⟩; ?end 2

𝑑1↣ ! (𝑐 : Loc)⟨𝑐⟩{𝑐 ↣ ?⟨2⟩; ?end}; ?end{𝑐 ↣ !end} 2

𝑑2↣ ?(𝑐 : Loc)⟨𝑐⟩{𝑐 ↣ ?⟨2⟩; ?end}; !end{𝑐 ↣ !end}
The protocol for 𝑐1 and 𝑐2 is simple: we send 2 and then end. The protocol for 𝑑1 is more interesting:

we send a (quantified) location 𝑐 , and also send channel ownership for 𝑐 , with the same protocol as

we chose for 𝑐1. The continuation of the protocol is ?end{𝑐 ↣ !end}, which transfers ownership

of 𝑐 back to the main thread, but now at a new protocol.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/examples/tour.v.html#line-51
https://apndx.org/pub/icnp/examples/tour.v.html#line-57
https://apndx.org/pub/icnp/examples/tour.v.html#line-74
https://apndx.org/pub/icnp/examples/tour.v.html#line-79
https://apndx.org/pub/icnp/examples/tour.v.html#line-95
https://apndx.org/pub/icnp/examples/tour.v.html#line-105
https://apndx.org/pub/icnp/examples/tour.v.html#line-107

47:8 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Storing channels in references. Consider the following variation of the previous example, in

which we wrap channel 𝑐1 in a reference:

let 𝑑1 = fork (𝜆𝑑2 . assert((!𝑑2 .recv()) .recv() == 2); 𝑑2.close()) in
let 𝑙 = ref

(
fork (𝜆𝑐2. 𝑐2.send(2); 𝑐2.wait())

)
in

𝑑1.send(𝑙); 𝑑1.wait(); (! 𝑙).close(); free 𝑙

2

We can verify this example using the following protocol:

𝑑1↣ ! (𝑙 : Loc, 𝑐 : Loc)⟨𝑙⟩{𝑙 ↦→ 𝑐 ∗ 𝑐 ↣ ?⟨2⟩; !end}; ?end{𝑙 ↦→ 𝑐 ∗ 𝑐 ↣ !end} 2

Sending closures. LinearActris can reason about higher-order programs that send closures,

which capture references and channels. Consider the following program, which spawns a thread

that receives and runs a closure from the main thread, and then sends the result back:

let 𝑐1 = fork (𝜆𝑐2 . let 𝑓 = 𝑐2.recv() in 𝑐2 .send(𝑓 ()); 𝑐2.close()) in . . . 2

The protocol for 𝑐1 is as follows:

𝑐1↣ ! (𝑓 : Val,Φ :Val→ aProp)⟨𝑓 ⟩{WP 𝑓 () {Φ}}; ?(𝑣 : Val)⟨𝑣⟩{Φ 𝑣}; ?end 2

The protocol allows us to send a closure 𝑓 , provided we also send a weakest precondition assertion

WP 𝑓 () {Φ}, which ensures that the return value 𝑣 of 𝑓 satisfies Φ 𝑣 . We can then receive 𝑣 ,

and obtain the resources Φ 𝑣 . This protocol allows the closure 𝑓 to capture linear resources in its

environment, such as channels and references.

3 THE PROOF RULES OF LINEAR ACTRIS
In this section we present the rules of LinearActris. Like Iris, the key component of LinearActris

is its weakest preconditionWP 𝑒 {𝛷} connective. This connective is a separation logic assertion,

which states that if the program 𝑒 is executed in the current heap, then its return value will satisfy

predicate𝛷 . The Hoare triple {𝑃 } 𝑒 {𝛷} is syntactic sugar for 𝑃 ⊢WP 𝑒 {𝛷}. The adequacy theorem
of LinearActris (Theorem 5.4) guarantees safety, deadlock freedom, and leak freedom for 𝑒 provided

we have a proof of Emp ⊢WP 𝑒 {Emp}.

3.1 Basic Separation Logic
Fig. 2 displays the grammar of LinearActris propositions, as well as the basic rules for reasoning

about weakest preconditions that involve pure expressions and mutable references. The weakest

precondition rules in this figure are fairly standard, so we will only give a brief overview. The

rules WP-pure-step and WP-val are the basic rules for reasoning about pure expressions. The rules

WP-Löb andWP-rec are used to reason about recursive functions. TheWP-bind rule is used to reason

about an expression nested inside a (call-by-value) evaluation context. The WP-wand rule can be

used to weaken the postcondition, as well as to frame away parts of the precondition. The rules

WP-alloc, WP-load, WP-store, and WP-free reason about mutable references. In combination with

inference rules for the logical connectives (which are not shown in the figure), these rules handle

single-threaded programs, such as programs that manipulate mutable linked lists.

Linearity. An important distinction between LinearActris and Iris/Actris, is that LinearActris

is linear, whereas Iris is affine. This means that in LinearActris, the rule 𝑃 ⊢ Emp does not hold

for all 𝑃 , whereas in Iris it does.
1
This distinction is important, because the rule 𝑃 ⊢ Emp can be

used to leak resources. For instance if 𝑃 = ℓ ↦→ 𝑣 , then ℓ ↦→ 𝑣 ⊢ Emp can be used to leak the

location ℓ . Unlike Iris, LinearActris guarantees leak freedom, and thus forces us to free locations.

Furthermore, as we shall see shortly, the linearity of LinearActris is crucial for deadlock freedom,

1
Logically equivalent formulations of the affine rule are 𝑃 ∗𝑄 ⊢ 𝑃 or Emp ⊣⊢ True.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/examples/tour.v.html#line-126
https://apndx.org/pub/icnp/examples/tour.v.html#line-136
https://apndx.org/pub/icnp/examples/tour.v.html#line-157
https://apndx.org/pub/icnp/examples/tour.v.html#line-165

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:9

Separation logic propositions: 2

𝑃,𝑄 ∈ aProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 (Propositional logic)

| ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑥 = 𝑦 (Higher-order logic with equality)

| 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | Emp (Separation logic)

| ⊲ 𝑃 | WP 𝑒 {𝛷} (Step indexing and weakest preconditions)

| ℓ ↦→ 𝑣 | ℓ ↣ p (Heap cell and channel ownership)

Basic weakest precondition rules: 2

WP-pure-step

𝑒1 {pure 𝑒2 WP 𝑒2 {𝛷}
WP 𝑒1 {𝛷}

--∗

WP-val

𝛷 𝑣

WP 𝑣 {𝛷}
--∗

WP-wand

WP 𝑒 {𝛷} ∗ ∀𝑣 . 𝛷 𝑣 −∗ Ψ 𝑣
WP 𝑒 {Ψ}

---∗

WP-rec

WP 𝑒 [𝑥 := 𝑣] [𝑓 := rec f 𝑥 . 𝑒] {𝛷}
⊲WP (rec f 𝑥 . 𝑒) 𝑣 {𝛷}

---∗

WP-Löb

⊲ 𝑃 −∗ 𝑃
𝑃

---□

WP-bind

WP 𝑒 {𝑣 .WP 𝐾 [𝑣] {𝛷}}
WP 𝐾 [𝑒] {𝛷}

--∗

Heap manipulation rules: 2

WP-alloc

WP ref 𝑣 {ℓ . ℓ ↦→ 𝑣}
--∗

WP-load

ℓ ↦→ 𝑣

WP ! ℓ {𝑤.𝑤 = 𝑣 ∗ ℓ ↦→ 𝑣}
---∗

WP-store

ℓ ↦→ 𝑣

WP ℓ ← 𝑤 {ℓ ↦→ 𝑤}
---∗

WP-free

ℓ ↦→ 𝑣

WP free ℓ {Emp}
--∗

Fig. 2. The basic rules of our separation logic.

as it prevents us from dropping the obligation to send a message over a channel (recall, not sending

a message means that the receiving end of the channel would block forever).

3.2 Channels and Protocols
Like Actris, LinearActris uses dependent separation protocols for reasoning about channels. The

grammar of protocols is displayed in Fig. 3, and their meaning is as follows:

• Send protocol ! (®𝑥)⟨𝑣⟩{𝑃 }; p. The variables ®𝑥 are binders that scope over 𝑣 , 𝑃 , and p, that is,
these are functions of ®𝑥 . During the verification of a send operation, we can instantiate ®𝑥
with mathematical values of our choosing, and then 𝑣 must be equal to the physical value

that is sent, 𝑃 is a separation logic proposition that we transfer to the receiver, and p is the

new protocol for the channel.

• Receive protocol ?(®𝑥)⟨𝑣⟩{𝑃 }; p. During the verification of a receive operation, we learn that

there exists a choice of mathematical values ®𝑥 such that the physical value received equals 𝑣 ,

𝑃 is a separation logic proposition we receive, and p is the new protocol for the channel.

• Close protocol !end{𝑃 }. During the verification of a close operation, 𝑃 is a separation logic

proposition that we transfer to the other side.

• Wait protocol ?end{𝑃 }. During the verification of a wait operation, 𝑃 is a separation logic

proposition that we receive.

• Recursive protocol 𝜇𝛼. p. This is a recursive protocol, where 𝛼 is a binder that scopes over

p. The recursive protocol can be unfolded by replacing 𝛼 with p. Recursive protocols with
parameters are also supported, we give an example of such a protocol in §3.4.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/base_logic/aprop.v.html#line-75
https://apndx.org/pub/icnp/base_logic/wp.v.html#line-44
https://apndx.org/pub/icnp/base_logic/wp.v.html#line-140

47:10 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Dependent separation protocols: 2

p ∈ Prot ::= ! (®𝑥)⟨𝑣⟩{𝑃 }; p (Send protocol)

| ?(®𝑥)⟨𝑣⟩{𝑃 }; p (Receive protocol)

| !end{𝑃 } | ?end{𝑃 } (Close and wait protocol)

| 𝜇𝛼. p | 𝛼 (Recursive protocol)

Duality and subprotocols: 2

! (®𝑥)⟨𝑣⟩{𝑃 }; p = ?(®𝑥)⟨𝑣⟩{𝑃 }; p !end{𝑃 } = ?end{𝑃 } (Dual on dependent protocols)

?(®𝑥)⟨𝑣⟩{𝑃 }; p = ! (®𝑥)⟨𝑣⟩{𝑃 }; p ?end{𝑃 } = !end{𝑃 }

Sub-recv

∀𝑥1. 𝑃1 𝑥1 −∗ ∃𝑥2. (𝑣1 𝑥1 = 𝑣2 𝑥2) ∗ 𝑃2 𝑥2 ∗ ⊲(p1 𝑥1 ⊑ p2 𝑥2)
?(𝑥1)⟨𝑣1⟩{𝑃1}; p1 ⊑ ?(𝑥2)⟨𝑣2⟩{𝑃2}; p2

---∗

Sub-wait

𝑃1 −∗ 𝑃2
?end{𝑃1} ⊑ ?end{𝑃2}
--∗

Sub-send

∀𝑥2. 𝑃2 𝑥2 −∗ ∃𝑥1. (𝑣2 𝑥2 = 𝑣1 𝑥1) ∗ 𝑃1 𝑥1 ∗ ⊲(p1 𝑥1 ⊑ p2 𝑥2)
! (𝑥1)⟨𝑣1⟩{𝑃1}; p1 ⊑ ! (𝑥2)⟨𝑣2⟩{𝑃2}; p2

---∗

Sub-close

𝑃2 −∗ 𝑃1
!end{𝑃1} ⊑ !end{𝑃2}
--∗

Sub-chan

⊲ p1 ⊑ p2 ∗ 𝑐 ↣ p1

𝑐 ↣ p2
---∗

Channel weakest precondition rules: 2

WP-fork

∀𝑐. (𝑐 ↣ p) −∗WP 𝑒 𝑐 {Emp}
WP fork 𝑒 {𝑐. 𝑐 ↣ p}

---∗

WP-send

𝑃 [®𝑥 := ®𝑡] ∗ 𝑐 ↣ ! (®𝑥)⟨𝑣⟩{𝑃 }; p
WP 𝑐.send(𝑣 [®𝑥 := ®𝑡]) {𝑐 ↣ p[®𝑥 := ®𝑡]}
---∗

WP-recv

𝑐 ↣ ?(®𝑥)⟨𝑣⟩{𝑃 }; p
WP 𝑐.recv() {𝑤. ∃®𝑡 . 𝑤 = 𝑣 [®𝑥 := ®𝑡] ∗ 𝑃 [®𝑥 := ®𝑡] ∗ 𝑐 ↣ p[®𝑥 := ®𝑡]}
--∗

WP-close

𝑃 ∗ 𝑐 ↣ !end{𝑃 }
WP 𝑐.close() {Emp}
--∗

WP-wait

𝑐 ↣ ?end{𝑃 }
WP 𝑐.wait() {𝑃}
---∗

Fig. 3. The LinearActris dependent separation protocols and channel rules.

The weakest precondition rules for channels in Fig. 3 work as follows:

• WP-fork: This rule is used to verify a fork operation. The rule states that fork returns a

channel 𝑐 , for which we can choose a protocol p. We must then verify that the thread that

is spawned on the other side, operates with its side of the channel according to the dual
protocol p, which is the same as p except that all send and receive operations are swapped.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/session_logic/sessions.v.html#line-23
https://apndx.org/pub/icnp/session_logic/tele_imp.v.html#line-203
https://apndx.org/pub/icnp/session_logic/imp.v.html#line-51

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:11

• WP-send: This rule is used to verify a send operation. The rule states that if we have channel

ownership 𝑐 ↣ ! (®𝑥)⟨𝑣⟩{𝑃 }; p, then we can choose an instantiation ®𝑥 := ®𝑡 . The value that
we send must equal 𝑣 [®𝑥 := ®𝑡], and we must give up ownership of the resources described by

the proposition 𝑃 [®𝑥 := ®𝑡]. In the postcondition, the channel gets the new protocol p[®𝑥 := ®𝑡].
• WP-recv: This rule is used to verify a receive operation. The rule states that if we have channel

ownership 𝑐 ↣ ?(®𝑥)⟨𝑣⟩{𝑃 }; p, then we can receive a message. In the postcondition, we learn

that there exists an instantiation ®𝑥 := ®𝑡 such that the value that we receive equals 𝑣 [®𝑥 := ®𝑡],
and we obtain the ownership of the resources described by the proposition 𝑃 [®𝑥 := ®𝑡]. The
channel gets the new protocol p[®𝑥 := ®𝑡].
• WP-close: This rule is used to verify a close operation. The rule states that if we have channel

ownership 𝑐 ↣ !end{𝑃 }, then we can close the channel. We must also provide ownership of

the proposition 𝑃 , which is transmitted to the other side.

• WP-wait: This rule is used to verify a wait operation. The rule states that if we have channel

ownership 𝑐 ↣ ?end{𝑃 }, then we can wait on the channel, and afterwards we obtain 𝑃 .

Deadlock and leak freedom. The rules in Fig. 3 are designed to ensure deadlock- and leak

freedom. The reader may note that there are no apparent proof obligations for these properties,

other than linearity: there are no preconditions that require us to follow a certain lock- or priority

order. In § 4 to 6 we will see how the rules in Fig. 3 ensure deadlock freedom and leak freedom.

3.3 Subprotocols
An important feature of Actris are subprotocols, analogous to subtyping in type systems. LinearActris

also supports subprotocols. The subprotocol relation is written p1 ⊑ p2, and satisfies the rules in

Fig. 3. The subprotocol relation lets us make the protocol of a channel more specific: we can turn

channel ownership 𝑐 ↣ p1 into 𝑐 ↣ p2, provided that p1 ⊑ p2. The rules of Fig. 3 are general, and
imply various special cases, e.g., the rules allow us to instantiate a quantifier in a send protocol:

! (𝑛 : N)⟨𝑛⟩; ?⟨𝑛 + 1⟩; ?end ⊑ ! ⟨1⟩; ?⟨2⟩; ?end 2

Dually, we can abstract a quantifier in a receive protocol:

?⟨1⟩; ! ⟨2⟩; !end ⊑ ?(𝑛 : N)⟨𝑛⟩; ! ⟨𝑛 + 1⟩; !end 2

We can apply subprotocols deeper inside the protocol using the special case that if p1 ⊑ p2, then:

! ⟨𝑣⟩{𝑃 }; p1 ⊑ ! ⟨𝑣⟩{𝑃 }; p2 and ?⟨𝑣⟩{𝑃 }; p1 ⊑ ?⟨𝑣⟩{𝑃 }; p2 2

We can also use the subprotocol relation to make the propositions that are transferred more specific.

If we have a separating implication 𝑃1 −∗ 𝑃2, then we can replace the proposition that is transferred:

! ⟨𝑣⟩{𝑃2}; p ⊑ ! ⟨𝑣⟩{𝑃1}; p and ?⟨𝑣⟩{𝑃1}; p ⊑ ?⟨𝑣⟩{𝑃2}; p 2

3.4 Guarded Recursive Protocols and Choice
Another important feature of Actris and LinearActris is the ability to construct infinite protocols.

With the constructs we have see so far, we can construct unbounded protocols and verify programs

with them. One can use well-founded recursion in the meta-logic (i.e., a Fixpoint definition in

Coq) to define a recursive function that constructs a protocol, and then use that protocol in the

verification of a program. For example, we can construct a protocol that sends 𝑛 messages, and

then closes the channel, for any 𝑛 determined by the first message:

! (𝑛 : N)⟨𝑛⟩; ! ⟨𝑛 − 1⟩; · · · ! ⟨0⟩; !end 2

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/examples/prots.v.html#line-6
https://apndx.org/pub/icnp/examples/prots.v.html#line-12
https://apndx.org/pub/icnp/examples/prots.v.html#line-19
https://apndx.org/pub/icnp/examples/prots.v.html#line-36
https://apndx.org/pub/icnp/examples/prots.v.html#line-53

47:12 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

However, well-founded recursion does not allow us to construct truly infinite protocols, such as

the following protocol that sends increasing natural numbers forever:

! (𝑛 : N)⟨𝑛⟩; ! ⟨𝑛 + 1⟩; ! ⟨𝑛 + 2⟩; · · · 2

Actris and LinearActris allow us to construct such infinite protocols using guarded recursion:

𝑝 𝑛 ≜ ! ⟨𝑛⟩; 𝑝 (𝑛 + 1) or formally: 𝑝 ≜ 𝜇𝛼. 𝜆𝑛. ! ⟨𝑛⟩; 𝛼 (𝑛 + 1) 2

This definition is guarded, because the recursive call is guarded by a message send. Our notion of

guardedness also allows the recursive call to occur inside the resources. For example:

𝑝 𝑛 ≜ ! (𝑐 : Loc)⟨𝑐⟩{𝑐 ↣ 𝑝 (𝑛 + 1)}; !end 2

Guarded recursion ismost useful in combinationwith choice, whichwe can encode using a quantified
protocol. This lets us express “services” that can perform a certain action (such as sending a natural

number) forever, but allow the receiver to close the channel:

𝑝 ≜ ! (𝑛 : N)⟨𝑛⟩; ?(𝑏 : Bool)⟨𝑏⟩; if 𝑏 then (!end) else 𝑝 2

4 FROMMULTI-SHOT TO ONE-SHOT CHANNELS
Before discussing the adequacy proof of LinearActris (§ 5 and 6), we first reduce multi-shot channels

and protocols to single-shot channels and protocols, inspired by the approach of Dardha et al.

[2012] for session types and Jacobs et al. [2023b] for separation logic.

The reason we encode multi-shot channels in terms of one-shot channels is twofold. First, it is

easier to prove adequacy of the one-shot logic, because it is simpler. The ideas required are not

fundamentally different, but there are fewer cases to handle. Second, we believe that the encoding

of multi-shot channels in terms of one-shot channels showcases the flexibility of LinearActris: the

encoding involves mutable references and transmitting channels over channels and creating new

threads in a non-trivial way. If one considers the examples of §2 in light of the encoding, one

realizes that a lot is going on at run-time, and one might therefore expect it to be difficult to verify

deadlock and leak freedom. The encoding shows that LinearActris is flexible enough to modularly

build the multi-shot abstraction in terms of one-shot channels.

4.1 Primitive One-Shot Logic
The primitive one-shot channels have the following operations:

fork1 (𝜆𝑐. 𝑒) Fork a new thread that runs 𝑒 with a new one-shot channel 𝑐 , and return 𝑐 .

send1 𝑐 𝑣 Send message 𝑣 over the channel 𝑐 .

recv1 𝑐 Receive a message over the channel 𝑐 , and free 𝑐 .

The send1 𝑐 𝑣 and recv1 𝑐 operations may only be used once per one-shot channel. The operation

recv1 𝑐 is blocking.
The primitive one-shot channels are governed by simple one-shot protocols, which are defined in

Fig. 4. A one-shot protocol is either !𝛷 or ?𝛷 , where𝛷 ∈Val→ aProp is a separation logic predicate

that specifies which values are allowed to be transmitted. The dual of !𝛷 is ?𝛷 , and vice versa. The
primitive one-shot channel weakest precondition rules are given in Fig. 4. The rules are similar to

the rules of LinearActris, except that they are simpler because they do not have to deal with the

complexity of multi-shot channels and protocols:

• WP-prim-send: When we send1 𝑐 𝑣 , we must have channel ownership 𝑐 ↣1 !𝛷 , and we must

provide resources 𝛷 𝑣 to be transmitted. The postcondition is Emp, because the channel

ownership is consumed.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/examples/prots.v.html#line-67
https://apndx.org/pub/icnp/examples/prots.v.html#line-67
https://apndx.org/pub/icnp/examples/prots.v.html#line-78
https://apndx.org/pub/icnp/examples/prots.v.html#line-89

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:13

One-shot protocols: 2

p ∈ Prot ::= !𝛷 | ?𝛷 where𝛷 ∈Val→ aProp (Protocols)

𝑐 ↣1 p (Channel points-to)

!𝛷 ≜ ?𝛷 ?𝛷 ≜ !𝛷 (Duality)

One-shot channel weakest precondition rules: 2

WP-prim-fork

∀𝑐. (𝑐 ↣1 p) −∗WP 𝑒 𝑐 {Emp}
WP fork1 𝑒 {𝑐. 𝑐 ↣1 p}

---∗

WP-prim-send

𝛷 𝑣 ∗ 𝑐 ↣1 !𝛷

WP send1 𝑐 𝑣 {Emp}
---∗

WP-prim-recv

𝑐 ↣1 ?𝛷

WP recv1 𝑐 {𝑣 . 𝛷 𝑣}
--∗

Fig. 4. The primitive one-shot channel rules.

• WP-prim-recv: When we recv1 𝑐 , we must have channel ownership 𝑐 ↣1 ?𝛷 , and we obtain

resources𝛷 𝑣 where 𝑣 is the value that was received. The channel ownership is consumed.

4.2 Encoding of Multi-Shot Channels
The multi-shot channels from §3 are implemented in terms of one-shot channels. The implemen-

tation is given in Fig. 5. A multi-shot channel endpoint is represented as a mutable reference

that stores a one-shot channel. When we send a message 𝑣 on a multi-shot channel, we create a

continuation one-shot channel 𝑐′, and we send the message (𝑐′, 𝑣) on the one-shot channel that is

stored in the mutable reference. The channel 𝑐′ is then stored in the mutable reference of the sender,

to be used for communicating the next message. On the other side, we receive a message (𝑐′, 𝑣),
and we store 𝑐′ in the receiver’s mutable reference, and then return 𝑣 . The multi-shot channel is

closed by doing a final synchronisation on the one-shot channel without creating a continuation

channel, and freeing the mutable reference.

We define multi-shot protocols in terms of one-shot protocols, as shown in Fig. 5. The definition

for ?(®𝑥)⟨𝑣⟩{𝑃 }; p specifies that there exists an instantiation of the binders ®𝑥 , such that the message

(𝑐, 𝑣) is sent over the one-shot channel, which means that the value is specified by 𝑣 in the protocol.

We additionally transmit the resources 𝑃 , as well as new channel ownership 𝑐 ↣1 𝑃 for the

continuation channel at the right protocol. The definition of the send protocol is simply dual. The

definitions of the close and wait protocols are special cases of the send and receive protocols, as no

continuation channel is created.

Finally, multi-shot channel ownership ℓ ↣ p is defined in terms of heap ownership and one-shot

channel ownership, as shown in Fig. 5. The definition states that the mutable reference ℓ stores

a one-shot channel 𝑐 , and that the one-shot channel has protocol 𝑞 ⊑ p. This means that the

multi-shot channels support subprotocols, even though the one-shot channels do not.

With these definitions, along with the specifications for one-shot protocols, we can then derive

the specifications for multi-shot channels, as presented in Fig. 3.

5 WHY LINEAR ACTRIS IS DEADLOCK FREE: CONNECTIVITY GRAPHS
Now that we have given the rules of the one-shot logic, we cover how it guarantees deadlock- and

leak freedom by linearity. We first give the general structure of the adequacy proof, and explain

how it uses an invariant that is preserved as the program executes (§5.1). We give an intuition for

the principles that the invariant needs to enforce, by going through some faulty examples, and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/base_logic/miniprot.v.html#line-8
https://apndx.org/pub/icnp/base_logic/wp.v.html#line-114

47:14 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Multi-shot imperative channel implementation: 2

fork 𝑒 ≜ ref (fork1 (𝜆𝑐. 𝑒 (ref 𝑐)))
ℓ .send(𝑣) ≜ let 𝑐 = ! ℓ in ℓ ← fork1 (𝜆𝑐′ . send1 𝑐 (𝑐′, 𝑣))
ℓ .recv() ≜ let (𝑐′, 𝑣) = recv1 (! ℓ) in ℓ ← 𝑐′; 𝑣

ℓ .close() ≜ send1 (! ℓ) (); free ℓ
ℓ .wait() ≜ recv1 (! ℓ); free ℓ

Dependent multi-shot protocol definitions: 2

?(®𝑥)⟨𝑣⟩{𝑃 }; p ≜ ?(𝜆𝑤. ∃®𝑥, 𝑐. 𝑤 = (𝑐, 𝑣) ∗ 𝑃 ∗ 𝑐 ↣1 p) (Receive protocol)

! (®𝑥)⟨𝑣⟩{𝑃 }; p ≜ !(𝜆𝑤. ∃®𝑥, 𝑐. 𝑤 = (𝑐, 𝑣) ∗ 𝑃 ∗ 𝑐 ↣1 p) (Send protocol)

?end{𝑃 } ≜ ?(𝜆𝑤. 𝑤 = () ∗ 𝑃) (Wait protocol)

!end{𝑃 } ≜ !(𝜆𝑤. 𝑤 = () ∗ 𝑃) (Close protocol)

ℓ ↣ p ≜ ∃𝑐, 𝑞. ℓ ↦→ 𝑐 ∗ 𝑐 ↣1 𝑞 ∗ ⊲(𝑞 ⊑ p) (Channel points-to)

Subprotocols: 2

!Φ ⊑ !Ψ ≜ ∀𝑣 . Ψ 𝑣 −∗ Φ 𝑣 !Φ ⊑ ?Ψ ≜ False

?Φ ⊑ ?Ψ ≜ ∀𝑣 . Φ 𝑣 −∗ Ψ 𝑣 ?Φ ⊑ !Ψ ≜ False

Fig. 5. Multi-shot channels and protocols in terms of one-shot channels and protocols.

by showing how the notion of connectivity graphs [Jacobs et al. 2022a] is used (§5.2). We finally

present how we reason about the preservation of the invariant in terms of connectivity graphs

(§5.3). In the next section we will give a more formal presentation of the adequacy proof, including

the use of step-indexing to stratify circular definitions (§6).

5.1 General Approach
Our general approach is to define an invariant 𝐼 (®𝑒, ℎ), which describes the state of the configuration

of threads and heap. The invariant shall satisfy three properties that together imply adequacy. This

approach is similar to the technique of progress and preservation for proving type safety [Wright

and Felleisen 1994; Pierce 2002; Harper 2016], but our invariant is defined semantically (in terms of

the operational semantics of the language) instead of syntactically (in terms of inductively defined

judgments). The first of these properties is that the invariant can be established by the weakest

precondition of the program:

Lemma 5.1 (Initialization 2). If Emp ⊢WP 𝑒 {Emp} holds, then 𝐼 ([𝑒], ∅) holds.
That is, the invariant holds for the initial configuration with one thread 𝑒 and empty heap. The

second property is that the invariant is preserved by the steps of our operational semantics:

Lemma 5.2 (Preservation2). If 𝐼 (®𝑒, ℎ) holds, and (®𝑒, ℎ) −→t (®𝑒′, ℎ′), then 𝐼 (®𝑒′, ℎ′) holds.
The third property is that the invariant implies the conclusion of the adequacy theorem:

Lemma 5.3 (Progress 2). If 𝐼 (®𝑒, ℎ) holds, then either (®𝑒, ℎ) can step, or ®𝑒 are all values and ℎ = ∅.
Together, these three properties imply adequacy, because if we start with the initial configuration,

then we can repeatedly apply the preservation theorem to get to a configuration where the invariant

holds, after which we can apply the progress theorem to establish adequacy:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/session_logic/imp.v.html#line-4
https://apndx.org/pub/icnp/session_logic/sessions.v.html#line-27
https://apndx.org/pub/icnp/session_logic/sub.v.html#line-12
https://apndx.org/pub/icnp/base_logic/adequacy.v.html#line-35
https://apndx.org/pub/icnp/base_logic/adequacy.v.html#line-48
https://apndx.org/pub/icnp/base_logic/adequacy.v.html#line-269

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:15

Theorem 5.4 (Adeqacy 2). If Emp ⊢WP 𝑒 {Emp} is holds, and ([𝑒], ∅) −→∗t (®𝑒, ℎ), then either:
• (®𝑒, ℎ) −→t (®𝑒′, ℎ′) for some (®𝑒′, ℎ′), or,
• ®𝑒 are all values and ℎ = ∅.

In addition to this adequacy theorem, our logic also guarantees safety:

Theorem 5.5 (Safety 2). If Emp ⊢ WP 𝑒 {Emp} is holds, and ([𝑒], ∅) −→∗t (®𝑒, ℎ), then every
thread in ®𝑒 can either reduce, or is a value, or is blocked on a receive or wait operation.

The safety theorem is a straightforward consequence of our invariant, so we will not discuss

it further. The reader can find the proof in the Coq mechanization [Jacobs et al. 2023a]. In the

next subsections we aim to give an intuition of what the invariant 𝐼 (®𝑒, ℎ) looks like, and why it is

preserved by the operational semantics of our language.

5.2 The Invariant Properties
The proof rules of LinearActris rule out deadlocks and leaks. To prove this, we will define the

invariant, as introduced in §5.1. In this section we investigate the properties that we need the

invariant to enforce. We do this by considering program examples that do deadlock or leak to

identify patterns we need to exclude. This allows us to build up to a formulation of our invariant that

is sufficient to make the proof go through, analogous to strengthening the induction hypothesis.

Consider the following example:

let 𝑐1 = fork1 (𝜆𝑐2 . ()) in recv1 𝑐1
The forked-off thread does nothing, and the main thread waits for the forked-off thread by attempt-

ing to receive a message. The problem is that the forked-off thread does not fulfill its obligation to

send a message. The proof rules of LinearActris exclude this example because the forked off thread

gives a linear channel ownership assertion for 𝑐2 that it must consume, and in this example, there

is no operation in the forked-off thread that can consume the ownership assertion. To exclude this

pattern our invariant must uphold the following property:

Channel fulfillment: Terminated threads must not hold ownership assertions of channels.

Now consider the following type of deadlock, where both sides try to receive:

let 𝑐1 = fork1 (𝜆𝑐2 . recv1 𝑐2) in recv1 𝑐1
The rules of LinearActris exclude this example because upon fork, one thread gets a receive

assertion with ?𝛷 and the other gets a send assertion !𝛷 , or vice versa. Our invariant enforces this
with the following property:

Channel duality: Each channel in the configuration is in one of two states:

(1) There exist two channel ownership assertions 𝑐 ↣ !𝛷 and 𝑐 ↣ ?𝛷 for that channel, and

the channel buffer is empty.

(2) There exist only the receiver assertion 𝑐 ↣ ?𝛷 , and the channel contains a value 𝑣 that

satisfies𝛷 𝑣 .

Next, consider the type of deadlock illustrated by the following example:

let 𝑙 = ref 1 in
let 𝑐1 = fork1 (𝜆𝑐2 . 𝑙 ← 𝑐2) in
recv1 𝑐1; send1 (! 𝑙) 2; free 𝑙

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/base_logic/adequacy.v.html#line-290
https://apndx.org/pub/icnp/base_logic/adequacy.v.html#line-290

47:16 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

In this example, the forked-off thread smuggles its own channel back to the main thread by putting

it in the reference 𝑙 . The main thread then attempts to receive, but this will block forever, as the

matching send (on ! 𝑙) is performed after the receive.

The rules of LinearActris exclude this example because the reference 𝑙 must be uniquely owned.

Since the forked-off thread immediately stores a value in the reference, the forked off thread must

get initial ownership over 𝑙 . The forked-off thread then stores its channel 𝑐2 in the reference, but

according to the proof rules of LinearActris, this does not consume the channel ownership assertion

for 𝑐2. Hence, the proof rules prevent this example for similar reasons as before.

This example is not yet ruled out by the invariant property above, however, as the invariant has

no way of excluding the possibility that the main thread might be holding both channel ownership

assertions for 𝑐1 as well as 𝑐2. We depict the situation when the deadlock occurs as follows:

𝑇1 𝐶

𝑐1

𝑐2

Here, the 𝑇1 node represents the main thread, the 𝐶 node represents the channel, and the two

edges labeled 𝑐1 and 𝑐2 represent ownership of the two endpoints of 𝐶 . The red triangle on the

𝑐1 edge represents the fact that the thread 𝑇1 is currently blocked on recv1 𝑐1. This is a deadlock
because 𝑇1 has both endpoints, so recv1 𝑐1 will never get unblocked.

Our invariant rules out this situation with the following property:

Weak channel acyclicity: No thread can hold ownership over both endpoints of a channel.

This property is yet again not enough to guarantee deadlock freedom. In general, it can be the

case that there are several threads that are waiting for each other, and that none of them will ever

perform the send that the others are waiting for. Consider the following situation:

Thread 1: recv1 𝑐1; send1𝑑1 2 Ownership: 𝑐1↣1 ?Φ ∗ 𝑑1↣1 !Ψ
Thread 2: recv1𝑑2; send1 𝑐2 1 Ownership: 𝑑2↣1 ?Ψ ∗ 𝑐2↣1 !Φ

Here, both threads are waiting for each other, but neither of them will ever perform the send that

the other is waiting for. This example does not violate the preceding invariant properties as neither

thread holds both channel ownership assertions for the same channel. Yet, there is still a deadlock:

𝑇1

𝐶

𝐷

𝑇2

𝑐1

𝑑1

𝑐2

𝑑2

This graph shows that thread 𝑇1 is blocked on recv1 𝑐1, and thread 𝑇2 is blocked on recv1𝑑2. The
problem occurs because the graph is cyclic in an undirected sense. Note that there are no cycles

in this directed graph, but deadlocks can already occur if there is a cycle when one is allowed to

traverse ownership edges in either direction.

The rules of LinearActris yet again prevent this situation from arising. In general, it may be

difficult to see why the proof rules of LinearActris ensure weak channel acyclicity. After all, we can

send channel assertions over channels via the transferred resources. One way to understand this

is via the following strengthening of the invariant, which generalizes the preceding invariant by

considering the graph of channel ownership assertions held by the threads:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:17

Strong channel acyclicity (initial version): There exists a connectivity graph of channel

ownership assertions, where there is an edge from thread 𝑇 to channel 𝐶 if 𝑇 holds a channel

ownership assertion 𝑐 ↣1 p for an endpoint 𝑐 of 𝐶 . This graph must be strongly acyclic.

By the term strongly acyclic, we mean that there is at most one path from any node to another,

even if one is allowed to follow edges backwards.

Leaks. The aforementioned properties are enough to rule out the preceding examples, but there

are subtle types of deadlocks that can still occur. The last remaining issue is that we have not yet

taken into account the fact that we can store ownership assertions in channels, by transferring

them via the send operation. There is thus a danger that we can leak channel ownership assertions

circularly into each other, and thus create a cycle of channel ownership assertions. This could

cause deadlocks in the same way as the first example in this section: by leaking a send ownership

assertion, a send will never happen, and the receiver will block indefinitely.

For this reason, deadlocks are intimately related to leaks. It might be tempting to think that

linearity alone is enough to rule out leaks, but as we alluded to, this is not the case. Consider what

would happen if we had two channel endpoints 𝑐1 and 𝑐2, and do the following:

send1 𝑐1 𝑐2

This program would not deadlock, but it would put the channel 𝑐2 in the buffer of 𝑐1. If 𝑐1 and 𝑐2
turned out to be two endpoints of the same channel, then this would be a leak, as the channel would

never be freed. We can use protocol Φ 𝑣 ≜ True with 𝑐1↣1 !Φ and 𝑐2↣1 ?Φ. This protocol allows
us to transfer any resource, including the ownership assertion for 𝑐2. Thus, channel ownership for

the channel would be stored inside itself, and we would have a leak:

𝑇1 𝐶

𝑐2

We strengthen our invariant to ensure there cannot be any cyclic ownership between channels:

Strong channel acyclicity (final version): There exists a connectivity graph of channel

ownership assertions, where there is:

• An edge from a thread𝑇 to a channel𝐶 if𝑇 holds a channel ownership assertion 𝑐 ↣1 p
for an endpoint 𝑐 of 𝐶 .

• An edge from a channel 𝐶 to a channel 𝐶′ if 𝐶 contains a message with associated

channel ownership assertion 𝑐′ ↣1 p for an endpoint 𝑐′ of 𝐶′.

This graph must be strongly acyclic.

Note that channel ownership should not be confused with having a reference to a channel. A

thread can have a reference to a channel without having channel ownership for that channel, and a

thread can have channel ownership for a channel without having a reference to that channel.

We can now understand deadlocks and leaks in terms of the connectivity graph:

• Deadlock. In order for a thread to be able to perform a receive or wait operation, it must

have channel ownership for the channel that it is receiving from. Therefore, if we have a

deadlock in which threads are blocked on each other in a circular manner, then there must

be a cycle of threads and channels in the connectivity graph.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

47:18 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

𝑇1

𝑅 ∗ 𝑃

𝑇1

𝑅

C 𝑇2

𝑃

p p

fork1 𝑣

𝑇1 C ?

𝑅 ∗ 𝛷 𝑣

!𝛷 ?𝛷
𝑇1 C ?

𝑅 𝛷 𝑣

?𝛷

send1 𝑐 𝑣

C 𝑇2

𝑅𝛷 𝑣

?𝛷
𝑇2

𝛷 𝑣 ∗ 𝑅

recv1 𝑐

Fig. 6. The one-shot channel operations and the corresponding connectivity graph transformations.

• Leak. If, after the program has terminated, there are still channels in the heap, then the

channel ownership for them must be stored inside each other in a circular manner, and then

there must be a cycle of channels in the connectivity graph.

5.3 Preserving the Invariant
We now discuss how we preserve the invariant by virtue of our program logic rules. The property

of channel fulfillment is preserved by the fact that we work in a linear logic. The property of

channel duality is preserved by the fact that we force channels to be dual when allocated.

The property of strong channel acyclicity is more intricate, as the connectivity graph must be

updated as the program executes. In Fig. 6, we show how the connectivity graph transforms due to

each of the one-shot channel operations:

• Fork. When thread 𝑇1 does a fork operation, it adds a new thread 𝑇2 to the connectivity

graph, and connects it to the original thread via a channel𝐶 . The two edges to the channel are

labeled with dual protocols 𝑝 and 𝑝 . The original thread 𝑇1 originally owned separation logic

resources 𝑅 ∗ 𝑃 , which may contain ownership of other channels (and mutable references,

which we ignore here). This is represented as edges from 𝑇1 to the owned channels. We

let 𝑃 be the ownership of the channel that is transferred to the new thread 𝑇2, while 𝑅 is

the part that thread 𝑇1 keeps for itself. Due to this split of ownership, the fork operation

corresponds to a modification of the graph, as shown in the figure. Crucially, if the original

graph is strongly acyclic, the resulting graph is still strongly acyclic. Note that this relies on

the separation between 𝑅 ∗ 𝑃 . If we had a channel ownership assertion that occurred both in

𝑅 and in 𝑃 , then the resulting graph would not be strongly acyclic.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:19

• Send.When thread 𝑇1 performs a send operation on a channel 𝐶 with protocol !𝛷 , it must

provide resources𝛷 𝑣 , where 𝑣 is the value it wants to send. The resources𝛷 𝑣 get transferred

to the channel, and the thread loses its connection to the channel, because it is one-shot.

Therefore, the send operation corresponds to a modification of the graph, as shown in the

figure. The reader can see strong acyclicity is preserved.

• Receive.When thread 𝑇2 performs a receive operation on a channel 𝐶 with protocol ?𝛷 , it
receives a value 𝑣 and resources 𝛷 𝑣 from the channel. The channel gets deallocated and

removed from the graph, because the channel is one-shot. If the thread initially owned

resources 𝑅, then afterwards it owns resources 𝛷 𝑣 ∗ 𝑅. Note that these resources are

separated—this relies crucially on the acyclicity of the graph before the receive operation: if

thread 𝑇2 already had channel ownership for some channel 𝐶′, and additionally got a second

channel ownership assertion for 𝐶′ via 𝛷 𝑣 , then the original graph would not have been

strongly acyclic.

In short, the proof rules of LinearActris ensure that strong acyclicity of the connectivity graph is

preserved, and thus its adequacy theorem can ensure that the program is deadlock and leak free. In

the next section, we will give an overview of how this is proved formally.

6 FORMAL ADEQUACY PROOF
In this section we give a formal overview of our adequacy proof. We first give a model of the

propositions aProp of LinearActris by solving a recursive domain equation in a step-indexed

universe of sets [America and Rutten 1989; Birkedal et al. 2010] (§6.1). We then define the invariant

that captures the properties presented in §5, which we use in the adequacy proof (§6.2). We then

define the LinearActris weakest preconditions, such that it enforces the invariant (§6.3). Finally, we

sketch how the weakest precondition rules and the adequacy theorem are proved (§6.4).

6.1 The Step-Indexed Model of Propositions
To map the intuition of the previous section to a formal model of separation logic, we will first

give the semantics of the type of propositions. This means we need to define a type aProp with the

usual separation logic operators and the connectives 𝑐 ↣1 p ∈ aProp and ℓ ↦→ 𝑣 ∈ aProp. These
connectives assert ownership of outgoing edges to a channel or a heap location in the connectivity

graph. To define aProp, we solve the following recursive domain equation:

aProp ≃ (

outgoing edges︷ ︸︸ ︷
Node fin−⇀ ▶ ({! , ?} × (Val→ aProp)︸ ︷︷ ︸

protocols !𝛷 and ?𝛷

+ Val︸︷︷︸
ref values

)) → siProp 2

Before discussing the technicalities (siProp, ▶), let us provide the intuition behind this definition.

Recall from §5 that the nodes of the connectivity graph are locations (which can either be channels or

references, collectively called cells) or threads. Formally, we let 𝜈 ∈ Node ::= Cell(ℓ) | Thread(tid)
with ℓ ∈ Loc and tid ∈ N. There is a directed edge from node 𝜈1 to 𝜈2 in the connectivity graph if 𝜈1
owns 𝜈2. Edges are labeled with either a protocol (inl p) in case of ownership of a channel Cell(𝑐),
or the value of the reference (inr 𝑣) in case of ownership of a reference Cell(ℓ). A LinearActris

proposition should always be seen in the context of a particular thread of channel, where the

outgoing edges describe which nodes the thread or channel owns. Threads Thread(𝑛) are never
owned, but are included for conformity with the graph.

The type aProp is not well-defined as an inductive or coinductive definition in the category of

sets, because the recursive occurrence of aProp is in negative position. That is why we use the

results by America and Rutten [1989]; Birkedal et al. [2010] to solve the recursive domain equation

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/base_logic/aprop.v.html#line-44

47:20 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

using step-indexing [Appel and McAllester 2001]. The use of step-indexing is evident by the use of

(pure) step-indexed propositions (siProp) as our meta logic, and the use of the ▶ constructor which

guards the recursion. This construction is similar to how the model of Iris is constructed, with the

crucial difference that Iris considers monotone predicates to obtain an affine logic.

With this definition at hand, we can define the connectives of our separation logic:

𝑐 ↣1 p ≜ 𝜆Σ. Σ = {Cell(𝑐) ↦→ inl p} 2

ℓ ↦→ 𝑣 ≜ 𝜆Σ. Σ = {Cell(ℓ) ↦→ inr 𝑣}
𝑃 ∗ 𝑄 ≜ 𝜆Σ. ∃Σ1, Σ2 . Σ = Σ1 ∪ Σ2 ∧ dom(Σ1) ∩ dom(Σ2) = ∅ ∧ 𝑃 Σ1 ∧𝑄 Σ2

𝑃 −∗ 𝑄 ≜ 𝜆Σ. ∀Σ′ . dom(Σ) ∩ dom(Σ′) = ∅ ⇒ 𝑃 Σ′ ⇒ 𝑄 (Σ ∪ Σ′)
𝑃 ∧𝑄 ≜ 𝜆Σ. 𝑃 Σ ∧𝑄 Σ

We have glossed over several technical details here, such as the embedding of 𝐴 into ▶𝐴, and that

the right hand sides of these definitions live in the step-indexed logic siProp. We refer the interested

reader to our Coq mechanization for the full details [Jacobs et al. 2023a].

6.2 The Invariant
The invariant is defined in terms of a connectivity graph, which is a labeled directed graph that

is strongly acyclic. Recall that the nodes are the logical objects Node in the configuration. The

incoming edges of channels are labeled by the protocols !𝛷 and ?𝛷 appearing in the channel

ownership assertions 𝑐 ↣1 p. The incoming edge of a mutable reference is labeled by the value of

the reference appearing in the reference ownership assertion ℓ ↦→ 𝑣 .

The invariant 𝐼 (𝜎) on a configuration 𝜎 is therefore defined as follows:

I(𝜎) ≜ ∃𝐺 : CGraph. ∀𝜈. local_inv(𝜎 [𝜈], in_labels𝐺 (𝜈), out_edges𝐺 (𝜈)) 2

Here, in_labels𝐺 (𝜈) is the multiset of labels on incoming edges of 𝜈 , and out_edges𝐺 (𝜈) is a finite
map of outgoing edges of 𝜈 (as in Jacobs et al. [2022a]). Furthermore, 𝜎 [𝜈] looks up the physical

state associated to the node 𝜈 in configuration 𝜎 . Given 𝜎 = (®𝑒, ℎ), the value of 𝜎 [𝜈] is:
• Expr(𝑒) if 𝜈 = Thread(tid) and 𝑒 is the expression with thread ID tid in ®𝑒 ,
• Ref (𝑣) if 𝜈 = Cell(ℓ) and 𝑣 is the value of the mutable reference at location ℓ in heap ℎ,

• Chan(⊥) if 𝜈 = Cell(𝑐) and no value has been sent to the channel at location 𝑐 in heap ℎ,

• Chan(𝑣) if 𝜈 = Cell(𝑐) and value 𝑣 has been sent over the channel at location 𝑐 in heap ℎ,

• ⊥ if 𝜈 is not a valid thread in ®𝑒 or cell in ℎ.
The definition of 𝐼 states that there is a connectivity graph 𝐺 (that is strongly acyclic), and that

for every value of 𝜈 , the local invariant local_inv holds. The local invariant constrains the relation
between the physical state of the node 𝜈 , and the incoming and outgoing edges of 𝜈 in the graph,

and thus relates the graph to the configuration. It is defined as:

local_inv(Expr(𝑒), 𝛼, Σ) ≜ 𝛼 = ∅ ∧WP0 𝑒 {Emp} Σ 2

local_inv(Ref (𝑣), 𝛼, Σ) ≜ 𝛼 = {𝑣} ∧ Σ = ∅
local_inv(Chan(⊥), 𝛼, Σ) ≜ ∃𝛷. 𝛼 = {!𝛷, ?𝛷} ∧ Σ = ∅
local_inv(Chan(𝑣), 𝛼, Σ) ≜ ∃𝛷. 𝛼 = {!𝛷} ∧𝛷 𝑣 Σ

local_inv(⊥, 𝛼, Σ) ≜ 𝛼 = ∅ ∧ Σ = ∅
The local invariant for a thread Expr(𝑒) states that the incoming edges 𝛼 are empty, and that we

have a weakest precondition for 𝑒 , which owns the outgoing edges Σ (see the end of §6.3 for the

difference between the primitive WP0 𝑒 {𝛷} and frame-preserving WP 𝑒 {𝛷}). The local invariant
for a reference Ref (𝑣) states that the incoming edges 𝛼 are the singleton set with value 𝑣 , and that

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/base_logic/aprop.v.html#line-80
https://apndx.org/pub/icnp/base_logic/wp_prim.v.html#line-27
https://apndx.org/pub/icnp/base_logic/wp_prim.v.html#line-8

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:21

the outgoing edges Σ are empty. The local invariant for an empty channel Chan(⊥) states that
the incoming edges 𝛼 are the set containing the dual protocols !𝛷 and ?𝛷 , and that the outgoing

edges Σ are empty. The local invariant for a channel Chan(𝑣) with value 𝑣 states that the incoming

edges 𝛼 are the singleton set containing the protocol !𝛷 , and that the outgoing edges Σ are owned

by the protocol predicate 𝛷 𝑣 . The local invariant for a logical object that does not exist in the

physical configuration, states that the incoming edges 𝛼 and outgoing edges Σ are empty.

6.3 Weakest Preconditions
We have now defined the invariant, but we still need to define the weakest preconditions, which is

the main challenge of proving adequacy. To do so, we first define a partial invariant I◦ (𝜎, tid, Σ),
which states that the invariant I holds for all threads and channels in the configuration 𝜎 , except

for the thread tid that our weakest precondition is considering: 2

I◦ (𝜎, tid, Σ) ≜ ∃𝐺. ∀𝜈.
{
in_labels𝐺 (𝜈) = ∅ ∧ out_edges𝐺 (𝜈) = Σ if 𝜈 = Thread(tid)
local_inv(𝜎 [𝜈], in_labels𝐺 (𝜈), out_edges𝐺 (𝜈)) if 𝜈 ≠ Thread(tid)

The partial invariant I◦ (𝜎, tid, Σ) states that there is a strongly acyclic connectivity graph 𝐺 , and

that for every node 𝜈 , the local invariant local_inv holds, except for thread tid, for which we require

that the incoming edges are empty (as threads are never owned), and the outgoing edges are Σ.
Using the partial invariant, we define the primitive weakest preconditionWP0 𝑒 {𝛷} by cases

depending on whether the expression 𝑒 is a value or not:

WP0 𝑣 {𝛷} Σ ≜ ⋄ (𝛷 𝑣 Σ) 2

WP0 𝑒 {𝛷} Σ ≜ ∀tid, ®𝑒, ℎ. ⊲ I◦ ((®𝑒, ℎ), tid, Σ) →
⋄ (reducible_or_blocked(𝑒, ℎ, Σ) ∧ preserved(𝑒, ®𝑒, ℎ, tid,𝛷))

preserved(𝑒, ®𝑒, ℎ, tid,𝛷) ≜ ∀𝑒′, ℎ′, ®𝑒new. (𝑒, ℎ) −→p (𝑒′, ℎ′, ®𝑒new) →
⊲∃Σ′ . I◦ ((®𝑒 ++ ®𝑒new, ℎ′), tid, Σ′) ∧WP0 𝑒′ {𝛷} Σ′

This definition states that if the expression is a value 𝑣 , then the weakest precondition holds if

the predicate𝛷 holds for the value 𝑣 (for technical step-indexing reasons, there is a ⋄modality in

front of the predicate, to allow us to remove ⊲ from pure assumptions [Jung et al. 2018b, §5.7]). If

the expression 𝑒 is not a value, then we operate under the assumption that the partial invariant

I◦ ((®𝑒, ℎ), tid, Σ) holds (under the later modality). We must then show that the expression is either

reducible or blocked, expressed by the predicate reducible_or_blocked(𝑒, ℎ, Σ). This means that 𝑒

can either step in the context of the heap ℎ, or that 𝑒 is blocked on a receive operation on a channel

for which Σ contains the ?𝛷 protocol. Secondly, we must show that the invariant and weakest

precondition are preserved: if 𝑒 steps to 𝑒′, then we must find outgoing edges Σ′ such that the

partial invariant holds for the new configuration (®𝑒 ++ ®𝑒new, ℎ′), and the weakest precondition holds

for 𝑒′ under Σ′. Here, ®𝑒new is the list of new threads that are spawned by the step, and Σ′ are the
new outgoing edges that are owned by the current thread tid.

Recursion. The reader may have noticed that the definition of the weakest precondition

WP0 𝑒 {𝛷} and the partial invariant I◦ (𝜎, tid, Σ) are mutually recursive, and recursive occurrences

appear in negative position. We use Iris’s guarded fixed-point operator [Jung et al. 2018b, §5.6],

which requires all recursive occurrences to appear under a later modality (⊲).

Framing. The frame rule of separation logic does not hold forWP0 𝑒 {𝛷}. Thus, to obtain the

LinearActris weakest precondition, we define it as the frame-preserving closure [Charguéraud 2020]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/base_logic/wp_prim.v.html#line-48
https://apndx.org/pub/icnp/base_logic/wp_prim.v.html#line-60

47:22 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

of the primitive weakest precondition, which satisfies the frame rule:

WP 𝑒 {𝛷} ≜ ∀𝑅. ?

⊲𝑅 −∗WP0 𝑒 {𝑣 . 𝑅 ∗𝛷 𝑣} 2

In this definition, there is a later modality (⊲) in front of 𝑅, but only if 𝑒 is not a value. This makes

sure that we get the step-framing rule of Iris: ⊲𝑅 ∗WP 𝑒 {𝛷} ⊢WP 𝑒 {𝑣 . 𝑅 ∗𝛷 𝑣} if 𝑒 ∉Val.

6.4 Weakest Precondition Rules and Adequacy
With the definition of the weakest precondition connective at hand, we prove the weakest precon-

dition rules of LinearActris. These proofs are relatively complex, as we need to reason about the

connectivity graph, and how it is transformed when we perform a step, as shown in Fig. 6.

The adequacy proof (Theorem 5.4) follows the structure sketched in §5, by proving the initial-

ization, preservation, and progress theorems. For the progress theorem, we use the fact that the

connectivity graph is acyclic, which means that we can always find a thread that can step. Formally,

we apply the principle of waiting induction [Jacobs et al. 2022a]. We refer the interested reader to

the Coq mechanization for the full details [Jacobs et al. 2023a].

7 SEMANTIC TYPING
This section shows that every program that can be shown to be deadlock free using an advanced

session type system, can also be shown to be deadlock free using LinearActris. We prove this result

using the “logical approach” to semantic typing [Appel et al. 2007; Dreyer et al. 2011; Jung et al.

2018a; Timany et al. 2022]. In short, we translate a typing derivation of ⊢ 𝑒 : 𝐴 from a syntactic

session type system into a proof of wp 𝑒 {⟦𝐴⟧} in LinearActris, where ⟦𝐴⟧ ∈ Val → aProp is

the semantic interpretation of the syntactic type 𝐴. Due to our adequacy theorem for weakest

preconditions (Theorem 5.4), we obtain the corollary that all well-typed programs in the syntactic

session type system are deadlock and leak free when executed. This theorem is quite easy to prove,

as our program logic does all the heavy lifting.

Our session type system is inspired by the GV family [Wadler 2012; Gay and Vasconcelos 2010],

but uses strong updates to track changes to the session types of channels. Moreover, our type system

is more expressive than earlier deadlock-free type systems that have appeared in the literature: it

supports the combination of session-typed channels with recursive types, subtyping, term- and

session type polymorphism, and unique mutable references.

We give a brief overview of the key ingredient of semantic typing (§7.1) before applying it to

session types (§7.2).

7.1 Semantic Typing in a Nutshell
A type system involves a set of types 𝐴 ∈ Type and a typing judgment ⊢ 𝑒 : 𝐴 (we omit typing

contexts for brevity). Conventionally both notions are defined syntactically, i.e., the set of types is
defined as an inductive type where each constructor corresponds to a type former, and the typing

judgment is defined as an inductive relation where each constructor corresponds to a typing rule.

The key property of a type system for deadlock freedom is:

Corollary 7.1 (Syntactic type soundness). If the typing judgment ⊢ 𝑒 : 𝐴 is derivable for a
base type 𝐴 (integer, boolean), then 𝑒 is deadlock and leak free.

To prove this property using semantic typing one carries out the following steps:

(1) Define the semantic interpretation ⟦𝐴⟧ ∈ Val→ aProp of each syntactic type 𝐴. One should

think of ⟦𝐴⟧ as being the set of values of type 𝐴. However, ⟦𝐴⟧ is not an ordinary set, but a

predicate in separation logic, making it possible to give a meaningful interpretation to types

that describe stateful objects, in our case, session types that describe channels.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/base_logic/wp.v.html#line-4

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:23

Term types: 2

any ≜ 𝜆𝑤. Emp
Z ≜ 𝜆𝑤. 𝑤 ∈ Z

𝐴 ⊸ 𝐵 ≜ 𝜆𝑤. ∀𝑣 . ⊲(𝐴𝑣) −∗ wp (𝑤 𝑣) {𝐵}
chan 𝑆 ≜ 𝜆𝑤. 𝑤 𝑆

Session types: 2

!𝐴. 𝑆 ≜ ! (𝑣 :Val)⟨𝑣⟩{𝐴𝑣}; 𝑆
?𝐴. 𝑆 ≜ ?(𝑣 :Val)⟨𝑣⟩{𝐴𝑣}; 𝑆

Subtyping: 2

𝐴 <: 𝐵 ≜ ∀𝑣 . 𝐴 𝑣 −∗ 𝐵 𝑣
𝑆 <: 𝑇 ≜ 𝑆 ⊑ 𝑇

Judgments: 2

Γ ⊨ 𝜎 ≜ ∗(𝑥,𝐴) ∈Γ . 𝐴(𝜎 (𝑥))
Γ ⊨ 𝑒 : 𝐴 ⊨Γ′ ≜ ∀𝜎. (Γ ⊨ 𝜎) −∗

wp 𝑒 [𝜎] {𝑣 . 𝐴 𝑣 ∗ (Γ′ ⊨ 𝜎)}

Semantic typing rules for terms: 2

Γ1, 𝑥 :𝐴 ⊨ 𝑒 : 𝐵 ⊨[]
Γ1 · Γ2 ⊨ 𝜆𝑥. 𝑒 : 𝐴 ⊸ 𝐵 ⊨Γ2

Γ1 ⊨ 𝑒1 : 𝐴 ⊨Γ2 Γ2, 𝑥 :𝐴 ⊨ 𝑒2 : 𝐵 ⊨Γ3

Γ1 ⊨ let 𝑥 = 𝑒1 in 𝑒2 : 𝐵 ⊨Γ3 \ 𝑥
Semantic typing rules for channels: 2

Γ1 ⊨ 𝑒 : chan 𝑆 ⊸ any ⊨[]
Γ1 · Γ2 ⊨ fork 𝑒 : chan 𝑆 ⊨Γ2

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′, 𝑥 : chan (!𝐴. 𝑆)
Γ ⊨ send 𝑥 𝑒 : 1 ⊨Γ′, 𝑥 : chan 𝑆

Γ, 𝑥 : chan (?𝐴. 𝑆) ⊨ recv 𝑥 : 𝐴 ⊨Γ, 𝑥 : chan 𝑆

Fig. 7. Typing judgements and type formers of the semantic type system.

(2) Define the semantic typing judgment ⊨ 𝑒 : 𝐴 in terms of the interpretation of types. This

judgment roughly says that 𝑒 is deadlock and leak free, and when 𝑒 terminates with value 𝑣 ,

it satisfies ⟦𝐴⟧ 𝑣 . With a program logic at hand, the semantic typing judgment can simply be

defined using the weakest precondition, i.e., ⊨ 𝑒 : 𝐴 ≜ wp 𝑒 {⟦𝐴⟧}.
(3) Prove the fundamental theorem, which says that every expression that is syntactically typed

is also semantically typed. That is, ⊢ 𝑒 : 𝐴 implies ⊨ 𝑒 : 𝐴. The fundamental theorem is proved

by induction on the typing derivation ⊢ 𝑒 : 𝐴. This means that for each syntactic typing rule

(with ⊢) we have to prove a semantic version (with ⊨). The semantic typing rules are proved

using the corresponding weakest precondition rules.

The fundamental theorem almost immediately gives syntactic type soundness. Since the semantic

typing judgment is defined in terms of weakest preconditions, it gives us deadlock and leak freedom

by adequacy (§7.1). Hence, when composing the fundamental theorem and adequacy, we obtain

that every syntactically typed expression is deadlock and leak free, i.e., Corollary 7.1.

To streamline this development, we follow the foundational approach to semantic typing, inspired

by Appel and McAllester [2001]; Ahmed [2004]; Ahmed et al. [2010]; Jung et al. [2018a]. We omit

the syntactic definition of the type system, and immediately define types and the typing judgment

in terms of their semantics. Type formers are simply combinators on semantic types, and typing

rules are simply lemmas about the semantic typing judgment.

7.2 Type System
An overview of the key definitions appears in Fig. 7.We omit details about uniquemutable references,

polymorphism, and copy (a.k.a. unrestricted) types for brevity’s sake, and refer the interested reader

to our Coq mechanization and the affine type system which we adopted [Hinrichsen et al. 2021], as

the details revolving these aspects are mostly unchanged.

Type formers. The type system consists of two kinds of types, term types and session types. We

have the usual linear term type constructs such as any, Z, and 𝐴 ⊸ 𝐵, in addition to the channel

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/logrel/term_types.v.html#line-40
https://apndx.org/pub/icnp/logrel/session_types.v.html#line-13
https://apndx.org/pub/icnp/logrel/subtyping.v.html#line-8
https://apndx.org/pub/icnp/logrel/term_typing_judgment.v.html#line-15
https://apndx.org/pub/icnp/logrel/term_typing_rules.v.html#line-150
https://apndx.org/pub/icnp/logrel/session_typing_rules.v.html#line-14

47:24 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

type chan 𝑆 , which is parametric on a session type 𝑆 . We support the usual session types such as

!𝐴. 𝑆 and ?𝐴. 𝑆 , as well as the ones for closing and branching (omitted for brevity’s sake).

In a semantic type system, term types are defined as propositions over values (Type ≜Val →
aProp). For example, the type chan 𝑆 is defined in terms of the channel ownership 𝑐 ↣ 𝑆 . Session

types 𝑆 are defined using our dependent protocols p. We use the protocol binders to capture that

channels exchange values 𝑣 for which the term type predicate 𝐴 holds.

Typing judgment. As we work with a language with strong updates, we use a typing judgment

Γ ⊨ 𝑒 : 𝐴 ⊨Γ′ with a pre- and post-context Γ, Γ′ ∈ List(String × Type), similar to RustBelt [Jung

et al. 2018a]. Using the post-context can track how types of variables change throughout evaluation.

We use closing substitutions to define our typing contexts, as is standard in logical relation models.

Closing substitutions 𝜎 ∈ String fin−⇀Val are finite partial functions that map the free variables of

an expression to corresponding values. Closing substitutions come with a judgment Γ ⊨ 𝜎 , which
expresses that the closing substitution 𝜎 is well-typed in the context Γ. The judgment says that for

every typed variable (𝑥,𝐴) ∈ Γ there is a corresponding value in the closing substitution 𝜎 (𝑥), for
which we own the resources 𝐴(𝜎 (𝑥)).

The typing judgment Γ ⊨ 𝑒 : 𝐴 ⊨Γ′ is defined using our weakest precondition. That is, given a

closing substitution 𝜎 and resources Γ ⊨ 𝜎 for the pre-context Γ, the weakest precondition holds for

𝑒 (under substitution with 𝜎), with the postcondition stating that the resources 𝐴𝑣 for the resulting

value 𝑣 are owned separately from the resources Γ′ ⊨ 𝜎 for the post-context Γ′.

Typing rules. In a semantic type system, every typing rule corresponds to a lemma, which

states that if the premises hold semantically, then the conclusion holds semantically. These lemmas

are proved using the rules of LinearActris, by unfolding the typing judgment and the type formers,

which yields goals that are directly provable using the corresponding weakest precondition rules.

Semantic type soundness. As the semantic typing judgment is defined in terms of weakest

precondition, we obtain a type soundness theorem as a direct corollary of adequacy (Theorem 5.4).

Theorem 7.2 (Semantic type soundness2). If [] ⊨ 𝑒 : any ⊨[] holds, and ([𝑒], ∅) −→∗t (®𝑒, ℎ),
then either (®𝑒, ℎ) can step, or ®𝑒 are all values and ℎ = ∅.

This theorem says that our type systems ensures there are no deadlocks and leaks. We obtain a

similar type soundness theorem for safety (no illegal non-blocking operations, such as use-after-free)

using LinearActris’s safety theorem (Theorem 5.5).

8 COQMECHANIZATION AND EVALUATION
All definitions, theorems, and examples in this paper have been mechanized in Coq using the Iris

framework.
2
The full sources are available in our artifact [Jacobs et al. 2023a].

The components of our mechanization and the corresponding line counts are displayed in Table 1.

The definition of ChanLang includes the syntax and small-step operational semantics. LinearActris

is built on top of an abstract separation logic modeled as step-indexed predicates over a partial

commutative monoid (PCM). The abstract separation logic is adapted from Iris, with the crucial

difference that Iris considers monotone predicates to obtain an affine logic, while our logic is linear.

The mechanization of connectivity graphs is adapted from Jacobs et al. [2022a], but many lemmas

had to be ported to the step-indexed setting (i.e., from Coq’s Prop to siProp). To construct the

propositions aProp of LinearActris we instantiate our abstract separation logic with the PCM of

finite maps with disjoint union, and subsequently use Iris’s solver for recursive domain equations.

2
To ease working in a pure-step indexed logic (siProp), we are using a modified version of Iris that attempts to address

https://gitlab.mpi-sws.org/iris/iris/-/issues/420. We will upstream our modifications of Iris in future work.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/logrel/term_typing_judgment.v.html#line-87
https://gitlab.mpi-sws.org/iris/iris/-/issues/420

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:25

Component Section LOC

Definition of ChanLang with one-shot channels §2, §4 757

Abstract linear separation logic §6 693

Connectivity graphs §5 2350

LinearActris propositions aProp §6 704

Weakest preconditions and adequacy for one-shot channels §3, §6 1474

Encoding of the multi-shot logic §4 1190

Semantic typing §7 2020

Tactics §8 568

Miscellaneous - 379

Examples:
• Basic examples from this paper §2 179

• Basic examples from Hinrichsen et al. [2022] §8 654

• Merge sort from Hinrichsen et al. [2022] §8 585

• Semantic typing examples from Hinrichsen et al. [2021] §8 324

Total 11877

Table 1. Overview of the LinearActris Coq mechanization

With these components at hand, we define the weakest precondition connective and prove adequacy

for the one-shot logic, and finally define the multi-shot logic and our semantic typing system.

Tactics. Inspired by the original Actris papers, we provide custom tactics for symbolic execution

and reasoning about subprotocols. These tactics are built on top of the Iris Proof Mode [Krebbers

et al. 2017b, 2018], and are used for the verification of all of our examples.

Basic examples. We mechanize Hoare triples for examples presented in § 2, as well as the

examples presented in §1 of the Actris 2.0 paper [Hinrichsen et al. 2022]. The proofs of these Hoare

triples are the same as those in the original Actris mechanization, but due to our strong adequacy

theorem we obtain that these examples satisfy deadlock and leak freedom “for free”.

Merge sort examples. We verify the Hoare triples for all merge sort examples from §5 of the

Actris 2.0 paper [Hinrichsen et al. 2022]. This includes choice, recursion, higher-order quantification

(for generic sorting functions), and delegation. The most advanced version of merge sort recursively

creates new child processes for handling the divide-and-conquer part of the merge sort algorithm,

and sends the list element-by-element from the parent process to the child processes. We use the

following dependent separation protocols, which use the encodings of the choice protocols (⊕,&)
presented in Hinrichsen et al. [2022, §5.3]:

psort ≜ pheadsort 𝜖 pheadsort ®𝑥 ≜ (! (𝑥 : 𝑇, 𝑣 :Val)⟨𝑣⟩{𝐼 𝑥 𝑣}; pheadsort (®𝑥 · [𝑥])) ⊕ ptailsort ®𝑥 𝜖 2

ptailsort ®𝑥 ®𝑦 ≜ (?(𝑦 : 𝑇, 𝑣 :Val)⟨𝑣⟩{(∀𝑖 < | ®𝑦 |. ®𝑦𝑖 ≤ 𝑦) ∗ 𝐼 𝑦 𝑣}; ptailsort ®𝑥 (®𝑦 · [𝑦])) &{ ®𝑥≡p ®𝑦} !end
Given a total order (𝑇, ≤) and an interpretation predicate 𝐼 : 𝑇 →Val→ aProp, the protocol psort
expresses that the input list is sent, and the sorted list is sent back. The auxiliary protocol pheadsort ®𝑥
is used for sending the input list, where the parameter ®𝑥 keeps track of the elements that have

been sent so far. At every iteration, there is a choice (⊕) between (1) sending more elements, and

(2) indicating that the whole input list has been sent. The auxiliary protocol ptailsort ®𝑥 ®𝑦 is used for

receiving back the sorted list, where the parameter ®𝑦 keeps track of the elements that have been

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/examples/sort_fg.v.html#line-117

47:26 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

received so far. At every iteration, there is a branch (&) between (1) receiving more elements, and

(2) protocol termination. The conditions in the protocol ensure that the elements of ®𝑦 are returned

in sorted fashion, and that when terminated, the resulting list ®𝑦 is a permutation of the input list ®𝑥 .

Semantic typing examples. Inspired by Hinrichsen et al. [2021] we show that the type sys-

tem from §7 can be used to type check a computation service that uses choice, recursion, and

polymorphism. We use the following session type:

Scompute ≜ (?(𝑇 :⋆) (() ⊸ 𝑇). !𝑇 . Scompute) & ?end 2

The session type says that a client can repeatedly send computations () ⊸ 𝑇 to a service, which

returns the result𝑇 of forcing the computation. Due to the support for polymorphism, it is possible

to send a computation () ⊸ 𝑇 with a different type 𝑇 in each iteration of the protocol.

9 RELATEDWORK
We first discuss other approaches to prove deadlock freedom (§9.1), then discuss mechanizations

of session types (§9.2), and channel implementations (§9.3). Finally, we discuss related work on

models of separation logic (§9.4).

9.1 Proof Methods for Deadlock Freedom
Linear session types. The GV type system [Wadler 2012; Gay and Vasconcelos 2010] and

follow-up work [Lindley and Morris 2015, 2016, 2017; Fowler et al. 2019, 2021] ensure deadlock

freedom for a functional language with session types by linearity. Earlier work proved deadlock

freedom for a linear 𝜋-calculus using a graphical approach [Carbone and Debois 2010]. Toninho

et al. [2013]; Toninho [2015]’s deadlock-free SILL embeds session-typed processes into a functional

language via a monad. Like GV, the seminal paper by Caires and Pfenning [2010] and Toninho

[2015]’s PhD thesis spurred a series of derivatives [Caires et al. 2013; Pérez et al. 2014; Das et al.

2018], in which deadlock freedom is guaranteed by linearity. The contribution of our work is to

obtain deadlock freedom from linearity in separation logic instead of a type system.

Multiparty session types. Multiparty session types [Honda et al. 2008, 2016] generalize session

types from bidirectional channels to n-to-n channels. To ensure deadlock freedom, multiparty

session type systems use a consistency check that generalizes the duality condition of binary

session types. The consistency check can be performed via projections of a global type, or via an

explicit check on a collection of local types [Scalas and Yoshida 2019]. Purely multiparty approaches

generally assume a static topology, and thus do not support dynamic creation of threads and

channels. This makes them orthogonal in the programs they can establish to be deadlock free

compared to linear binary session types (hybrid approaches exist, see below).

Lock orders. Dijkstra originally proposed lock orders as a mechanism to ensure deadlock

freedom for his Dining Philosophers problem [Dijkstra 1971]. Lock orders have been incorporated

into a number of verification tools and separation logics that support proving deadlock freedom,

for example [Leino et al. 2010; Le et al. 2013; Zhang et al. 2016; Hamin and Jacobs 2018]. Lock-order

based approaches are orthogonal in expressive strength compared to session types. For instance,

it is far from clear how to build a logical relation for a language with session types in terms of

a separation logic with lock orders. In the session-typed source language, deadlock freedom is

ensured by linearity, and it does not seem possible to translate this into order-based reasoning in

the target program logic. Since session types do not have order obligations, it is not clear how the

order conditions on the receive operations are justified.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://apndx.org/pub/icnp/logrel/examples/compute_service.v.html#line-44

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:27

LiLi [Liang and Feng 2016, 2018] is a program logic for proving liveness (and therein deadlock

freedom) of concurrent objects using a method they call definite actions, which is conceptually

similar to lock orders. The definite actions act as obligations which can be used to impose an order

of use of multiple (encoded) blocking operations, such as acquisition and releases of locks. The

TaDA Live separation logic for proving liveness of concurrent programs [D’Osualdo et al. 2021]

uses a similar concept called layers. Similar to LiLi—and thereby lock orders—these layers form a

hierarchy of conditions, which can be used to encode an ordering between locks.

Choreographies. Choreographic languages [Montesi 2021; Cruz-Filipe et al. 2021b,a,b] allow

the programmer to write a global program that is automatically split into local programs that

communicate via channels for which deadlock freedom is guaranteed by construction. Since

choreographies are based on program generation, they are very different from our approach.

Usages and obligations. Yet another mechanism for deadlock freedom are usages and obliga-

tions [Kobayashi 1997; Igarashi and Kobayashi 1997; Kobayashi et al. 1999; Igarashi and Kobayashi

2001; Kobayashi 2002; Igarashi and Kobayashi 2004], which ensure that channels are used in a

non-deadlocking order. In contrast to lock orders, the priority involved in usages and obligations

always increases in the order. These mechanisms have also been extended to session-typed lan-

guages [Dardha and Gay 2018]. Similar to lock orders, usages and obligations entail additional

proof obligations, and as such, are orthogonal to obtaining deadlock freedom from linearity.

Hybrid approaches. Message passing has been extended with locks and sharing [Benton 1994;

Villard et al. 2009; Reed 2009b; Lozes and Villard 2011, 2012; Pfenning and Griffith 2015; Balzer et al.

2018, 2019; Hinrichsen et al. 2020; Qian et al. 2021; Rocha and Caires 2021; Jacobs and Balzer 2023].

Some of these approaches ensure deadlock or leak freedom, e.g., via lock orders, linearity, or other

checks. Multiparty session types have been combined with linearity to guarantee progress beyond

one session [Carbone et al. 2015, 2016, 2017; Jacobs et al. 2022b]. In this paper we used bidirectional

channels (built on top of one-shot channels) as the sole concurrency primitive. In future work, we

would like to add locks and multiparty session types, inspired by the preceding work (§10).

9.2 Mechanization of Session Types
Hinrichsen et al. [2021] use Actris to prove soundness of a session type system via the method

of semantic typing, inspired by RustBelt [Jung et al. 2018a]. We follow a similar approach, but in

addition to proving type safety, we prove deadlock and leak freedom. Thiemann [2019] proves type

safety of a linear GV-like session type system using dependent types in Agda, Rouvoet et al. [2020]

streamline this approach via separation logic. Goto et al. [2016]; Ciccone and Padovani [2020];

Castro-Perez et al. [2020]; Reed [2009a]; Chaudhuri et al. [2019] mechanize 𝜋-calculus with session

types. These works generally show safety, but Jacobs et al. [2022a]’s Coq mechanization shows

deadlock freedom. We generalize their approach of connectivity graphs to the context of separation

logic. Lastly, Castro-Perez et al. [2021]; Jacobs et al. [2022b] mechanize multiparty session types.

9.3 Verification of Message-Passing Implementations
While channels are a primitive of our operational semantics, others have verified message-passing

implementations that use atomic primitives, such as compare-and-swap or atomic-exchange. Man-

sky et al. [2017] verifies a message-passing system written in C using VST [Appel 2014; Cao et al.

2018]. Tassarotti et al. [2017] proves the correctness of a compiler for an affine session-typed lan-

guage, showing that the target terminates iff the source program terminates (under fair scheduling

assumptions). In the future, we would like to implement our channels using atomic primitives. In

this setting, it is less clear how to formulate the adequacy theorem. As low-level implementations

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

47:28 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

of channels perform busy loops, we would need to model deadlock freedom as a liveness property

such as progress under fair scheduling (§10).

Recent work applies Actris to obtain reliable message-passing specifications for channels built

on top of UDP-like primitives [Gondelman et al. 2023]. Similarly to the shared memory setting, the

implementation busy loops until a message has been successfully transferred over the unreliable

network, which can only be guaranteed under fair scheduling and a fair network.

9.4 Linear Models of Separation Logic
The original presentations of sequential separation logic [O’Hearn et al. 2001] and concurrent

separation logic (CSL) [O’Hearn 2004; Brookes 2004] use a linear model. For sequential separation

logic, linearity gives leak freedom, and with scoped CSL-style invariants this scales to concurrent

programs that use parallel composition. When extending the language with more general invariant

mechanisms that support unscoped thread creation [Hobor et al. 2008; Svendsen and Birkedal 2014]

the situation becomes more complicated. Jung [2020, Thm 2] shows that linearity alone does not

give leak freedom, and other mechanisms are needed. The Iron logic [Bizjak et al. 2019] provides

such a mechanism: by disallowing deallocation permissions in invariants, leak freedom can be

obtained. Unfortunately, ownership of the end protocol needs to include permission to deallocate

the channel, making Iron’s invariants insufficient for higher-order session types.

While all resources in Iris are affine, and all resources in LinearActris are linear, there have been

various efforts to make hybrid models of separation logics that have both linear and affine resources

[Tassarotti et al. 2017; Cao et al. 2017; Krebbers et al. 2018; Mansky 2022]. Typically they use

some form of partial commutative monoids equipped with an order that specifies which resources

can be dropped. The model of LinearActris is an instance of the step-indexed ordered resource

algebra model by Krebbers et al. [2018], taking the order to be the reflexive relation, meaning no

resources can be dropped. An interesting direction for future work is to add a notion of ghost state

to LinearActris, for which these hybrid models could be useful.

10 CONCLUSION AND FUTUREWORK
The key strength of LinearActris is deadlock and leak freedom “for free” from linearity, while being

otherwise very close to the original Actris logic [Hinrichsen et al. 2020, 2022]. As such, we are able

to verify example programs that use higher-order channels (sending channels over channels as

messages), higher-order functions (passing closures as arguments to other closures, and sending

closures over channels as messages), and higher-order store (sending references over channels as

messages), as illustrated in §2. As an added benefit of LinearActris being close to the Actris logic,

we were able to port most of the examples from the original Actris papers to LinearActris (§8).

We now discuss some limitations of LinearActris and directions for future work.

Asynchronous subtyping. Actris 2.0 [Hinrichsen et al. 2022] supports asynchronous subtyping

of channels, which allows the subtyping rule ?⟨𝑣⟩; ! ⟨𝑤⟩; p ⊑ ! ⟨𝑤⟩; ?⟨𝑣⟩; p. This rule allows the
user of a channel to perform send steps ahead of time. The reason why this rule is sound in the

original Actris framework, is that channels have two separate buffers, one for sending and one for

receiving. In the LinearActris logic, we only have one buffer, and messages must enter this buffer

in the order specified in the protocol, and hence we cannot support asynchronous subtyping. We

believe we could support asynchronous subtyping if we add a second buffer to channels. However,

this would introduce complications that are orthogonal to the main contributions of this paper, as

we can no longer use the single-shot buffer encoding of channels by Jacobs et al. [2023b].

Other concurrency constructs. LinearActris is designed for message-passing concurrency, and

does not support other concurrency constructs such as locks, semaphores, or monitors. The original

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:29

Actris logic supports these constructs, in particular, it employs locks to model sharable channels,

inspired by manifest sharing in session types [Balzer et al. 2018, 2019]. In the original Actris, these

constructs are implemented using busy loops and verified using Iris’s mechanisms for ghost state

and invariants. When stating deadlock freedom using global progress, it is significantly more

complicated to add other concurrency constructs. To ensure that deadlocks can be distinguished

from ordinary loops, one would need to add such constructs as primitive blocking operations, and

they need to be explicitly handled as part of the connectivity graph. In future work, we would like

to pursue this direction. Our reason for believing this to be possible, is that the connectivity graph-

based approach to deadlock freedom has been designed to be flexible in the kind of concurrency

constructs, and has already been applied to a type system for locks [Jacobs and Balzer 2023].

Multiparty communication. We would like to extend the LinearActris logic with multiparty

communication inspired by multiparty session types [Honda et al. 2008]. In prior work, Jacobs

et al. [2022b] used connectivity graphs to prove deadlock freedom of a session type system that

combines GV-style dynamic thread and channel spawning with multiparty session types. However,

we believe that extending these results to separation logic is non-trivial, even without considering

deadlock and leak freedom. In particular, it is not clear how global types could be generalized to

Actris-style dependent separation protocols.

Liveness. LinearActris guarantees deadlock freedom, but does not guarantee liveness. Deadlock

freedom (stated as global progress—the standard way of formulating this property in the session

types literature [Caires and Pfenning 2010; Carbone and Debois 2010; Wadler 2012]) means that

the program as a whole cannot get stuck on message receives indefinitely, but does not guarantee

that the program will eventually terminate or produce a result. In particular, deadlock freedom

does not rule out infinite loops written by the user. To guarantee liveness, one needs to prove that

loops in the program eventually terminate, or produce a result that counts as progress, and prove

that the program cannot get stuck in other ways, such as by waiting for a message that will never

arrive. In future work, we plan to investigate whether the LinearActris logic can be extended to

guarantee liveness for higher-order message passing, by taking inspiration from liveness logics

such as LiLi [Liang and Feng 2016] and TaDa Live [D’Osualdo et al. 2021], and existing work on

termination and liveness in Iris [Tassarotti et al. 2017; Spies et al. 2021].

Iris invariants. Wehope that ourwork can be a step towards bringing deadlock and leak freedom

to full-fledged separation logics for fine-grained concurrencywith Iris-style impredicative invariants

[Svendsen and Birkedal 2014]. Recent progress has been made for leak freedom [Bizjak et al. 2019],

and termination, as well as termination-preserving refinement [Spies et al. 2021; Tassarotti et al.

2017]. Nevertheless, key challenges related to Iris-style invariants remain. As channels can be seen

as a particular type of invariant, we hope that our connectivity graph approach can be generalized,

e.g., to a linear form of invariants that are compatible with leak- and deadlock freedom.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments. This work was supported in part

by a Villum Investigator grant (no. 25804), Center for Basic Research in Program Verification (CPV).

DATA AVAILABILITY STATEMENT
The Coq development for this paper can be found in Jacobs et al. [2023a].

REFERENCES
Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. Princeton University.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

47:30 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic

foundations for typed assembly languages. TOPLAS (2010). https://doi.org/10.1145/1709093.1709094

Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in a Category of Complete Metric Spaces.

JCSS (1989). https://doi.org/10.1016/0022-0000(89)90027-5

Andrew W. Appel. 2014. Program Logics for Certified Compilers. https://doi.org/10.1017/CBO9781107256552

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying

Code. TOPLAS (2001). https://doi.org/10.1145/504709.504712

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A very modal model of a

modern, major, general type system. In POPL. https://doi.org/10.1145/1190216.1190235

Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. 2018. A Universal Session Type for Untyped Asynchronous

Communication. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2018.30

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-Freedom for Shared Session Types. In

ESOP. https://doi.org/10.1007/978-3-030-17184-1_22

Nick Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract). In CSL. https:

//doi.org/10.1007/BFb0022251

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, and Hongseok Yang. 2011. Step-

indexed kripke models over recursive worlds. In POPL. https://doi.org/10.1145/1926385.1926401

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The category-theoretic solution of recursive metric-space

equations. TCS (2010). https://doi.org/10.1016/j.tcs.2010.07.010

Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Managing obligations in higher-order concurrent

separation logic. POPL (2019). https://doi.org/10.1145/3290378

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of Design-by-Contract for Distributed

Multiparty Interactions. In CONCUR. https://doi.org/10.1007/978-3-642-15375-4_12

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR. https://doi.org/10.1007/978-3-540-

28644-8_2

Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behavioral Polymorphism and Parametricity in

Session-Based Communication. In ESOP. https://doi.org/10.1007/978-3-642-37036-6_19

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR. https://doi.org/10.

1007/978-3-642-15375-4_16

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. JAR (2018). https://doi.org/10.1007/s10817-018-9457-5

Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. 2017. Bringing Order to the Separation Logic Jungle. In APLAS.
https://doi.org/10.1007/978-3-319-71237-6_10

Marco Carbone and Søren Debois. 2010. A Graphical Approach to Progress for Structured Communication in Web Services.

In ICE. https://doi.org/10.4204/EPTCS.38.4

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. 2016. Coherence Generalises Duality:

A Logical Explanation of Multiparty Session Types. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2015. Multiparty Session Types as Coherence

Proofs. In CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2015.412

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2017. Multiparty session types as coherence

proofs. Acta Informatica (2017). https://doi.org/10.1007/s00236-016-0285-y

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. 2021. Zooid: A DSL for Certified Multiparty

Computation: From Mechanised Metatheory to Certified Multiparty Processes. In PLDI. https://doi.org/10.1145/3453483.

3454041

David Castro-Perez, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST: Engineering the Meta-theory of Session Types.

In TACAS. https://doi.org/10.1007/978-3-030-45237-7_17

Arthur Charguéraud. 2020. Separation logic for sequential programs (functional pearl). ICFP (2020). https://doi.org/10.

1145/3408998

Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. 2019. Formalized Meta-Theory of Sequent Calculi for Linear Logics.

TCS (2019). https://doi.org/10.1016/j.tcs.2019.02.023

Adam Chlipala. 2013. The Bedrock structured programming system: combining generative metaprogramming and Hoare

logic in an extensible program verifier. In ICFP. https://doi.org/10.1145/2500365.2500592

Luca Ciccone and Luca Padovani. 2020. A Dependently Typed Linear 𝜋 -Calculus in Agda. In PPDP. https://doi.org/10.1145/

3414080.3414109

Florin Craciun, Tibor Kiss, and Andreea Costea. 2015. Towards a Session Logic for Communication Protocols. In ICECCS.
https://doi.org/10.1109/ICECCS.2015.33

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.4230/LIPIcs.CONCUR.2018.30
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1145/3290378
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/978-3-319-71237-6_10
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2015.412
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1145/3408998
https://doi.org/10.1145/3408998
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1109/ICECCS.2015.33

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:31

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021a. Certifying Choreography Compilation. In ICTAC. https:

//doi.org/10.1007/978-3-030-85315-0_8

Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. 2021b. Formalising a Turing-Complete Choreographic Language

in Coq. In ITP. https://doi.org/10.4230/LIPIcs.ITP.2021.15

Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for Deadlock-Free Session-Typed Processes. In FOSSACS.
https://doi.org/10.1007/978-3-319-89366-2_5

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session types revisited. In PPDP. https://doi.org/10.1145/

2370776.2370794

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Work Analysis with Resource-Aware Session Types. In LICS.
https://doi.org/10.1145/3209108.3209146

Edsger W. Dijkstra. 1971. Hierarchical Ordering of Sequential Processes. Acta Informatica (1971). https://doi.org/10.1007/

BF00289519

Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. 2021. TaDA Live: Compositional Reasoning

for Termination of Fine-grained Concurrent Programs. TOPLAS (2021). https://doi.org/10.1145/3477082

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical step-indexed logical relations. LMCS (2011). https:

//doi.org/10.2168/LMCS-7(2:16)2011

Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. 2021. Separating Sessions Smoothly. In

CONCUR. https://doi.org/10.4230/LIPIcs.CONCUR.2021.36

Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. 2019. Exceptional Asynchronous Session Types: Session

Types Without Tiers. POPL (2019). https://doi.org/10.1145/3290341

Adrian Francalanza, Julian Rathke, and Vladimiro Sassone. 2011. Permission-Based Separation Logic for Message-Passing

Concurrency. LMCS (2011). https://doi.org/10.2168/LMCS-7(3:7)2011

Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type theory for asynchronous session types. JFP (2010).

https://doi.org/10.1017/S0956796809990268

Leon Gondelman, Jonas Kastberg Hinrichsen, Marío Pereira, Amin Timany, and Lars Birkedal. 2023. Verifying Reliable

Network Components in a Distributed Separation Logic with Dependent Separation Protocols. ICFP (2023). https:

//doi.org/10.1145/3607859

Matthew A. Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2016. An Extensible Approach to Session

Polymorphism. MSCS (2016). https://doi.org/10.1017/S0960129514000231

Jafar Hamin and Bart Jacobs. 2018. Deadlock-Free Monitors. In ESOP. https://doi.org/10.1007/978-3-319-89884-1_15

Robert Harper. 2016. Practical Foundations for Programming Languages (2nd ed.).

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: Session-Type Based Reasoning in Separation

Logic. POPL (2020). https://doi.org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0: Asynchronous Session-Type Based

Reasoning in Separation Logic. LMCS (2022). https://doi.org/10.46298/lmcs-18(2:16)2022

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. 2021. Machine-checked semantic

session typing. In CPP. https://doi.org/10.1145/3437992.3439914

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle Semantics for Concurrent Separation Logic.

In ESOP. https://doi.org/10.1007/978-3-540-78739-6_27

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR. https://doi.org/10.1007/3-540-57208-2_35

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In ESOP. https://doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In POPL. https:

//doi.org/10.1145/1328438.1328472

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchronous Session Types. J. ACM (2016).

https://doi.org/10.1145/2827695

Atsushi Igarashi and Naoki Kobayashi. 1997. Type-Based Analysis of Communication for Concurrent Programming

Languages. In SAS. https://doi.org/10.1007/BFb0032742

Atsushi Igarashi and Naoki Kobayashi. 2001. A Generic Type System for the Pi-calculus. In POPL. https://doi.org/10.1145/

360204.360215

Atsushi Igarashi and Naoki Kobayashi. 2004. A Generic Type System for the Pi-calculus. TCS (2004). https://doi.org/10.

1016/S0304-3975(03)00325-6

Jules Jacobs. 2022. A Self-Dual Distillation of Session Types. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2022.23

Jules Jacobs and Stephanie Balzer. 2023. Higher-Order Leak and Deadlock Free Locks. POPL (2023). https://doi.org/10.1145/

3571229

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022a. Connectivity graphs: a method for proving deadlock freedom

based on separation logic. POPL (2022). https://doi.org/10.1145/3498662

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.1007/BF00289519
https://doi.org/10.1007/BF00289519
https://doi.org/10.1145/3477082
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.4230/LIPIcs.CONCUR.2021.36
https://doi.org/10.1145/3290341
https://doi.org/10.2168/LMCS-7(3:7)2011
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/3607859
https://doi.org/10.1145/3607859
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1007/978-3-319-89884-1_15
https://doi.org/10.1145/3371074
https://doi.org/10.46298/lmcs-18(2:16)2022
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/BFb0032742
https://doi.org/10.1145/360204.360215
https://doi.org/10.1145/360204.360215
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.1016/S0304-3975(03)00325-6
https://doi.org/10.4230/LIPIcs.ECOOP.2022.23
https://doi.org/10.1145/3571229
https://doi.org/10.1145/3571229
https://doi.org/10.1145/3498662

47:32 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022b. Multiparty GV: Functional Multiparty Session Types with

Certified Deadlock Freedom. ICFP (2022). https://doi.org/10.1145/3547638

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2023a. Coq Mechanization of “Deadlock-Free Separation

Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing”. https://doi.org/10.5281/zenodo.8415020

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2023b. Dependent Session Protocols in Separation Logic

from First Principles (Functional Pearl). ICFP (2023). https://doi.org/10.1145/3607856

Ralf Jung. 2020. Understanding and Evolving the Rust Programming Language. Ph. D. Dissertation. Universität des Saarlandes.
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of the

Rust Programming Language. POPL (2018). https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. https://doi.org/10.

1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. JFP (2018). https://doi.org/10.1017/

S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. https://doi.org/10.1145/2676726.

2676980

Naoki Kobayashi. 1997. A Partially Deadlock-Free Typed Process Calculus. In LICS. https://doi.org/10.1109/LICS.1997.614941
Naoki Kobayashi. 2002. A Type System for Lock-Free Processes. I&C (2002). https://doi.org/10.1006/inco.2002.3171

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the pi-calculus. TOPLAS (1999). https:

//doi.org/10.1145/330249.330251

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.

ICFP (2018). https://doi.org/10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The Essence of

Higher-Order Concurrent Separation Logic. In ESOP. https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive Proofs in Higher-Order Concurrent Separation Logic.

In POPL. https://doi.org/10.1145/3009837.3009855

Duy-Khanh Le, Wei-Ngan Chin, and Yong Meng Teo. 2013. An Expressive Framework for Verifying Deadlock Freedom. In

ATVA. https://doi.org/10.1007/978-3-319-02444-8_21

K. Rustan M. Leino, Peter Müller, and Jan Smans. 2010. Deadlock-Free Channels and Locks. In ESOP. https://doi.org/10.

1007/978-3-642-11957-6_22

Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In POPL. https:

//doi.org/10.1145/2837614.2837635

Hongjin Liang and Xinyu Feng. 2018. Progress of concurrent objects with partial methods. POPL (2018). https://doi.org/10.

1145/3158108

Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In ESOP. https://doi.org/10.1007/978-3-

662-46669-8_23

Sam Lindley and J. Garrett Morris. 2016. Talking Bananas: Structural Recursion For Session Types. In ICFP. https:

//doi.org/10.1145/2951913.2951921

Sam Lindley and J. Garrett Morris. 2017. Lightweight Functional Session Types. In Behavioural Types: from Theory to Tools.
Étienne Lozes and Jules Villard. 2011. Reliable Contracts for Unreliable Half-Duplex Communications. In Web Services and

Formal Methods (WS-FM). https://doi.org/10.1007/978-3-642-29834-9_2

Étienne Lozes and Jules Villard. 2012. Shared Contract-Obedient Endpoints. In ICE. https://doi.org/10.4204/EPTCS.104.3

William Mansky. 2022. Bringing Iris into the Verified Software Toolchain. https://doi.org/10.48550/arXiv.2207.06574

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A verified messaging system. OOPSLA (2017). https:

//doi.org/10.1145/3133911

Fabrizio Montesi. 2021. Introduction to Choreographies. (2021). Accepted for publication by Cambridge University Press.

Hiroshi Nakano. 2000. A modality for recursion. In LICS. https://doi.org/10.1109/LICS.2000.855774

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR. https://doi.org/10.1007/978-3-540-

28644-8_4

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In CSL. https://doi.org/10.1007/3-540-44802-0_1

Wytse Oortwijn, Stefan Blom, and Marieke Huisman. 2016. Future-based Static Analysis of Message Passing Programs. In

PLACES. https://doi.org/10.4204/EPTCS.211.7

Luca Padovani. 2014. Deadlock and lock freedom in the linear 𝜋 -calculus. In LICS. https://doi.org/10.1145/2603088.2603116

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://doi.org/10.1145/3547638
https://doi.org/10.5281/zenodo.8415020
https://doi.org/10.1145/3607856
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1109/LICS.1997.614941
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-319-02444-8_21
https://doi.org/10.1007/978-3-642-11957-6_22
https://doi.org/10.1007/978-3-642-11957-6_22
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/2837614.2837635
https://doi.org/10.1145/3158108
https://doi.org/10.1145/3158108
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1007/978-3-642-29834-9_2
https://doi.org/10.4204/EPTCS.104.3
https://doi.org/10.48550/arXiv.2207.06574
https://doi.org/10.1145/3133911
https://doi.org/10.1145/3133911
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.1145/2603088.2603116

Deadlock-Free Separation Logic: Linearity Yields Progress for Dependent Higher-Order Message Passing 47:33

Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. 2014. Linear Logical Relations and Observational

Equivalences for Session-Based Concurrency. I&C (2014). https://doi.org/10.1016/j.ic.2014.08.001

Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In FoSSaCS. https://doi.org/10.1007/978-3-

662-46678-0_1

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.).
Zesen Qian, G. A. Kavvos, and Lars Birkedal. 2021. Client-Server Sessions in Linear Logic. ICFP (2021). https://doi.org/10.

1145/3473567

Jason Reed. 2009a. A Hybrid Logical Framework. Ph. D. Dissertation. Carnegie Mellon University.

Jason Reed. 2009b. A Judgmental Deconstruction of Modal Logic. (2009). http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf

Unpublished manuscript.

Pedro Rocha and Luís Caires. 2021. Propositions-as-Types and Shared State. Technical Report. NOVA LINCS. https:

//doi.org/10.1145/3473584

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020. Intrinsically-Typed Definitional Interpreters

for Linear, Session-Typed Languages. In CPP. https://doi.org/10.1145/3372885.3373818

Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. POPL (2019). https://doi.org/10.

1145/3290343

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021.

Transfinite Iris: resolving an existential dilemma of step-indexed separation logic. In PLDI. https://doi.org/10.1145/

3453483.3454031

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In ESOP. https://doi.org/10.1007/978-
3-642-54833-8_9

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In ESOP. https://doi.org/10.1007/978-3-662-54434-1_34

Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types. In PPDP. https://doi.org/10.1145/

3354166.3354184

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2022. A Logical Approach to Type Soundness. Manuscript.

Bernardo Toninho. 2015. A Logical Foundation for Session-Based Concurrent Computation. Ph. D. Dissertation. Carnegie
Mellon University and New University of Lisbon.

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In ESOP. https://doi.org/10.1007/978-3-642-37036-6_20

Jules Villard, Étienne Lozes, and Cristiano Calcagno. 2009. Proving Copyless Message Passing. In APLAS. https://doi.org/10.

1007/978-3-642-10672-9_15

Philip Wadler. 2012. Propositions as sessions. In ICFP. https://doi.org/10.1145/2364527.2364568

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. I&C (1994). https://doi.org/10.

1006/inco.1994.1093

Dan Zhang, Dragan Bosnacki, Mark van den Brand, Cornelis Huizing, Bart Jacobs, Ruurd Kuiper, and Anton Wijs. 2016.

Verifying Atomicity Preservation and Deadlock Freedom of a Generic Shared Variable Mechanism Used in Model-To-Code

Transformations. In MODELSWARD. https://doi.org/10.1007/978-3-319-66302-9_13

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 47. Publication date: January 2024.

https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1145/3473567
https://doi.org/10.1145/3473567
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://doi.org/10.1145/3473584
https://doi.org/10.1145/3473584
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-642-10672-9_15
https://doi.org/10.1007/978-3-642-10672-9_15
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1007/978-3-319-66302-9_13

	Abstract
	1 Introduction
	2 Linear Actris By Example
	3 The Proof Rules of Linear Actris
	3.1 Basic Separation Logic
	3.2 Channels and Protocols
	3.3 Subprotocols
	3.4 Guarded Recursive Protocols and Choice

	4 From Multi-Shot to One-Shot Channels
	4.1 Primitive One-Shot Logic
	4.2 Encoding of Multi-Shot Channels

	5 Why Linear Actris is Deadlock Free: Connectivity Graphs
	5.1 General Approach
	5.2 The Invariant Properties
	5.3 Preserving the Invariant

	6 Formal Adequacy Proof
	6.1 The Step-Indexed Model of Propositions
	6.2 The Invariant
	6.3 Weakest Preconditions
	6.4 Weakest Precondition Rules and Adequacy

	7 Semantic Typing
	7.1 Semantic Typing in a Nutshell
	7.2 Type System

	8 Coq Mechanization and Evaluation
	9 Related Work
	9.1 Proof Methods for Deadlock Freedom
	9.2 Mechanization of Session Types
	9.3 Verification of Message-Passing Implementations
	9.4 Linear Models of Separation Logic

	10 Conclusion and Future Work
	Acknowledgments
	References

