
Modular Denotational Semantics for Effects with Guarded

Interaction Trees

DAN FRUMIN, University of Groningen, The Netherlands

AMIN TIMANY, Aarhus University, Denmark

LARS BIRKEDAL, Aarhus University, Denmark

We present guarded interaction trees — a structure and a fully formalized framework for representing higher-

order computations with higher-order effects in Coq, inspired by domain theory and the recently proposed

interaction trees. We also present an accompanying separation logic for reasoning about guarded interaction

trees. To demonstrate that guarded interaction trees provide a convenient domain for interpreting higher-order

languages with effects, we define an interpretation of a PCF-like language with effects and show that this

interpretation is sound and computationally adequate; we prove the latter using a logical relation defined

using the separation logic. Guarded interaction trees also allow us to combine different effects and reason

about them modularly. To illustrate this point, we give a modular proof of type soundness of cross-language

interactions for safe interoperability of different higher-order languages with different effects. All results in

the paper are formalized in Coq using the Iris logic over guarded type theory.

CCS Concepts: • Theory of computation→ Program semantics; Logic and verification; • Software and

its engineering→ Software libraries and repositories.

Additional Key Words and Phrases: Coq, Iris, denotational semantics, logical relations

ACM Reference Format:

Dan Frumin, Amin Timany, and Lars Birkedal. 2024. Modular Denotational Semantics for Effects with Guarded

Interaction Trees. Proc. ACM Program. Lang. 8, POPL, Article 12 (January 2024), 30 pages. https://doi.org/10.

1145/3632854

1 INTRODUCTION

Interaction trees [Xia et al. 2019] are a recently proposed formalism for representing and reasoning
about (possibly) non-terminating programs with side effects in Coq (a terminating type theory
without effects). Since its inception, interaction trees have been applied, including but not limited,
to specifying and verifying network servers [Koh et al. 2019; Zhang et al. 2021], semantics of LLVM
[Zakowski et al. 2021], semantics of a language for robotics [Ye et al. 2022], non-interference [Silver
et al. 2023], and verification of concurrent objects with transactional memory [Lesani et al. 2022].

The introduction of interaction trees was motivated by a desire to simplify mechanized formal-
izations of interactive, effectful, non-terminating computations and the developers of the ITrees
library argued that ITrees can represent computations in a way which is more modular than repre-
sentations based on operational semantics and executable (in contrast to earlier representations
based on traces represented as predicates on events). In particular, the idea is that interaction trees
can be used to give denotational semantics to programming languages and thus allow one to abstract
away from syntactic details and reuse meta-language features such as function composition so as

Authors’ addresses: Dan Frumin, d.frumin@rug.nl, University of Groningen, The Netherlands; Amin Timany, Aarhus

University, Denmark, timany@cs.au.dk; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART12

https://doi.org/10.1145/3632854

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-5864-7278
HTTPS://ORCID.ORG/0000-0002-2237-851X
HTTPS://ORCID.ORG/0000-0003-1320-0098
https://doi.org/10.1145/3632854
https://doi.org/10.1145/3632854
https://orcid.org/0000-0001-5864-7278
https://orcid.org/0000-0002-2237-851X
https://orcid.org/0000-0003-1320-0098
https://doi.org/10.1145/3632854

12:2 Dan Frumin, Amin Timany, and Lars Birkedal

to obtain more robust mechanizations. And, indeed, the applications mentioned above demonstrate
that interaction trees work well for giving semantics to first-order programming languages with
first-order effects.
The challenge we address in this paper is that interaction trees cannot easily be used as a

model of higher-order programming languages with higher-order effects, which, of course, limits
the applicability of interaction trees. Indeed, the ease of use of interaction trees is enabled, in
part, by two restrictions imposed on the computations represented by the interaction trees: the
computations must be first-order, and the effects that the computation performs must be first-order
as well. With those restrictions, the type of interaction trees forms a monad, which allows one to
compose the represented computations and reason about them modularly. (In principle, one could
represent higher-order computations by means of closures in interaction trees, but that would
defeat the purpose of interaction trees and force one to reason about syntactic representations,
which interaction trees otherwise relieves one from.) To understand the limitations to first-order
programs and first-order effects, we call to mind the definition of interaction trees.

Interaction trees are possibly infinite trees with two types of branching. The first type of branch-
ing represents a “delayed” computation (similar to that of the delay monad), or a computation
performing a silent step. The second type of branching represents a computation that performs an
effect; different results of the effect lead to different branches. Interaction trees are formalized as
coinductive types in Coq, allowing one to leverage existing infrastructure for coinductive programs
and proofs:

CoInductive itree (E : Type −> Type) (R : Type) :=

| Ret : R −> itree E R

| Tau : itree E R −> itree E R

| Vis {A : Type } : E A −> (A −> itree E R) −> itree E R

Now the point is that if we wish to represent higher-order computations, then we cannot simply
add a constructor Fun : (itree E R −> itree E R) −> itree E R, as the resulting recursive type would
have negative occurrences of the recursive variable (the itree E R on the left of the first arrow).
Similarly, if we want to support computations with higher-order effects, i.e., the result of an effect
is an interaction tree itself, we run into the same problems with positivity. For example, in the
following potential signature for a higher-order effect, the parameter test occurs in a negative
position:

Inductive test : Type −> Type :=

| T : nat −> test (itree test unit) .

Guarded interaction trees: Iris and guarded type theory. Our goal is to address the challenge of
extending interaction trees to allow for higher-order computations and higher-order effects, in
such a way that we retain some of the advantages of interaction trees; in particular we wish to
obtain a representation with which we can work efficiently in Coq. From the discussion above, it
is clear that a way forward is to work in a setting that allows to solve mixed-variance recursive
domain equations. There are several possible choices for such a setting, including classical Scott
domain theory [Scott 1976; Smyth and Plotkin 1982] and guarded type theory [Birkedal et al. 2012,
2010]. We choose to use the latter since this choice allows us to leverage the Iris program logic
framework in Coq and thence obtain an efficient environment in which we can work efficiently
and formally in Coq.

Thus in this paper we introduce guarded interaction trees, which are formally defined in guarded
type theory as a solution to a guarded recursive domain equation, and we show how guarded
interaction trees can be used to represent higher-order computations and higher-order effects.
Moreover, we demonstrate how we can retain some of the benefits of interaction trees, in particular

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:3

modularity with respect to effects and ease of use in Coq. The extension to higher-order computa-
tions and effects does come with a certain price, in that we need to reason about guardedness, but
we believe the use of Iris alleviates this.

Our Coq formalization is available online at

https://github.com/logsem/gitrees/tree/popl24.

(tag popl24 in the Git repository)

Contributions. In this paper we present the following contributions, all formalized as part of our
extensible and adaptable Coq formalization:

(1) We present guarded interaction trees, describe the associated recursion principle, and demon-
strate how to write combinators to program with guarded interaction trees (Section 3).

(2) We describe a way of reifying effects in the guarded interaction trees, and the reduction
semantics (Section 4).

(3) We show how to give a model of a higher-order programming language with general recursion
and effects in guarded interaction trees, and show that the model is sound (Section 5).

(4) We build a separation logic (a program logic) on top of guarded interaction trees, allowing us
to reason about their behavior (Section 6).

(5) We use the separation logic to show that the model that we construct in Section 5 satisfies
computational adequacy (Section 7).

(6) We demonstrate how multiple different effects can be combined in guarded interaction trees,
and how the separation logic is used to reason about the effects locally (Section 8).

(7) Finally, we utilize the results above, and use guarded interaction trees to show type safety
of cross-language interactions for safe interoperability of languages with different effects
(Section 9).

We discuss related work in Section 10. Before we present our results, we briefly go over some
preliminaries about the setting that we are working in.

2 IRIS LOGIC OVER GUARDED TYPE THEORY

In this section we describe the Iris logic, in which we shall define and work with guarded interaction
trees. Our treatment is brief since Iris has been described in many other papers and we are just
using a small extension of the usual presentation; we refer the reader to the literature on Iris [Jung
et al. 2018] and guarded type theory [Birkedal et al. 2012] for more details.

Iris is usually presented as a separation logic over a simple type theory.The model of Iris, however,
models a richer type theory and in this paper we are going make use of that and consider Iris over
a guarded type theory with (1) a modicum of dependent type theory, and (2) the ability to define
guarded recursive types. Both of these features are supported by the existing Coq implementation
of Iris and the associated Iris proof mode [Krebbers et al. 2017b].
Note that since we are working formally in Iris in Coq, there are two logical levels at play: the

statements and proofs at the Coq level (which we refer to as the meta-logic level, or as the meta
level), and the statements and proofs at the level of Iris (which we refer to as the logic level).
We recall the grammar of Iris in Figure 1; the syntax consists of types, terms, and propositions.

Most of the grammar is standard for higher-order intuitionistic logic, with the parts related to
guarded recursion highlighted in blue. As usual in higher-order logic, we have a well-typedness
judgment G1 : g1, . . . , G= : g= ⊢ C : g stating that the term C has type g , under the assumption that the
variables G8 have types g8 . In the grammar for types, I ranges over so-called discrete types, which
are meta-level types embedded into the types of Iris. Note that types include dependent types over
discrete types. While we have not shown it in the grammar, we can also form types as solutions to

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

https://github.com/logsem/gitrees/tree/popl24

12:4 Dan Frumin, Amin Timany, and Lars Birkedal

g ::= iProp | 0 | 1 | B | Nat | g + g | g × g | g → g | ▶g | � | Σi∈Igi | Πi∈Igi | . . .

C ::= G ∈ Var | � (C1, . . . , C=) | abort C | () | (C, C) | c8 C | _G : g . C | C (C) |

inj8 C | match C with inj1 G . C | inj2 G . C end | next(C) | fixg

% ::= False | True | C =g C | % ∧ % | % ∨ % | % → % | ∃G : g . % | ∀G : g . % | ⊲ % | `G : g . %

Fig. 1. Grammar for the base logic.

guarded recursive domain equations, i.e., type equations where the recursive occurence of the type
being defined is guarded under the ▶ type modality. Such types are defined up to isomorphism; we
will see an example shortly: the type of guarded interaction trees will be such a recursive type and
will be introduced in the following section. A useful semantic intuition for the types of Iris is that
they denote (certain kinds of) time-indexed sets, i.e., families of sets indexed over natural numbers.
At time step = > 0, the later type ▶g consists of the elements of g at a later time step, i.e., at = − 1.
At time step = = 0, the type ▶g is a singleton set. Intuitively, guarded recursive types exist because
to understand what a guarded recusive type is at time step =, one only needs to understand what it
is at = − 1, since the recursion is guarded.
Elements of ▶g can be constructed from elements of g , using the next constructor, and we can

form fixed points for guarded endo-functions:

Γ ⊢ C : g

Γ ⊢ next(C) : ▶g
Γ ⊢ fixg : (▶g → g) → g

The ▶ type former is functorial and we write ▶5 : ▶g1 → ▶g2 for its action on terms 5 : g1 → g2.
The fixed point satisfies the equation fixg (5) = 5 (next(fixg (5))).

For propositions % : iProp we also have the provability judgment Γ | % ⊢ & stating that & is
derivable from % in the typing context Γ = G1 : g1, . . . , G= : g= . The rules corresponding to the
intuitionistic fragment are standard. Here we present the rules concerning the guarded part of the
logic.
On the level of propositions, we have a(nother) later modality ⊲. This is the later modality

most users of Iris are already familiar with. It is related to the later modality on types in that
⊲(C =g C ′) ⊣⊢ next(C) =▶g next(C ′). We recall that ⊲ can be used to define guarded recursive
predicates and and that it supports reasoning via Löb induction:

Γ ⊢ % : iProp

Γ ⊢ ⊲ % : iProp

Γ, G : g ⊢ % : iProp G is guarded in %

Γ ⊢ `G : g . % : iProp

Γ | ⊲ % ⊢ %

Γ | True ⊢ %

Iris also includes separation logic connectives; we recall those later, when we need them, in Section 6.
If % is a proposition that consists only of intuitionistic logic connectives without ⊲, then we can

interpret it both as a meta-level proposition (i.e. a Coq proposition), and as an Iris proposition. For
such propositions we have the following result, connecting Iris with the meta-level:

Theorem 2.1 (Iris Adeqacy). Let % be a proposition containing only intuitionistic connectives.

Then, if True ⊢ % is derivable in Iris, then % also holds at the meta-level.

3 GUARDED INTERACTION TREES

The type of guarded interaction trees (or GITrees for short) IT� (�) is defined for a ground type �
and an effect signature �, as we explain below. In Figure 2 IT� (�) is written down as a guarded

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:5

guarded type IT� (�) = Ret : � → IT�

| Fun : ▶(IT� (�) → IT� (�)) → IT� (�)

| Err : Error → IT� (�)

| Tau : ▶IT� (�) → IT� (�)

| Vis :
∏

i∈I

(

Insi (▶IT� (�)) × (Outsi (▶IT� (�)) → ▶IT� (�))
)

→ IT� (�)

Fig. 2. Guarded datatype of interaction trees.

datatype.1 The first constructor Ret says that any element 0 of the ground type � can be associated
with a “terminated” guarded interaction tree Ret(0). The second constructor Fun says that functions
are also guarded interaction trees, and it is this constructor that allows us to model higher-order
computations. Since the function constructor contains a negative occurrence of IT� (�) in its
argument, we must put it under a ▶. The third constructor Err represents an error state, or a
stuck computation, which we take from some predefined set Error of errors. We assume that it
contains at least one element RunTime ∈ Error representing a generic run-time error. The fourth
constructor Tau denotes a delayed computation, or a computation that is available “later”. We also
write Tick : IT� (�) → IT� (�) for the composition Tau ◦ next. Then the term Tick(U) represents
a guarded interaction tree that takes a silent step to U . It satisfies the following rule for equality:
Tick(U) = Tick(V) ⊣⊢ ⊲(U = V).

Finally, the last constructor Vis allows us to model effects. The possible effects are given by
the signature � = (I, Ins−,Outs−), where I is an indexing set on the meta-level (i.e. a set of
operation names), and Ins and Outs are functors determining the arities of the operations. That
is Insi,Outsi : Type → Type for i ∈ I. The Type argument in Insi and Outsi is instantiated with
IT� itself, and is used for giving signatures to higher-order effects. With this, the first argument to
Visi is then the input for the operation, and the second parameter is a continuation which, given
an arbitrary output of the operations, produces the remainder of the computation. One way to
visualize this is to think of Visi as a node in the tree, with the annotation Insi and having Outsi
many branches.
We refer to guarded interaction trees Ret(0) and Fun(5) as GITree values, and write ITE

� (�) ⊆
IT� (�) for the set of values. When quantifying over an indexing set, we implicitly coerce � to I,
i.e. we write i ∈ � to mean i ∈ �.I. Similarly we write Ins for �.Ins and Outs for �.Outs when the
signature � is clear from the context. When the signature � is obvious or unimportant we simply
write IT(�) for IT� (�) and IT

E (�) for ITE
� (�).

Let us demonstrate the syntax of guarded interaction trees with some running examples of
effects.

Example 3.1 (Input/output on a tape). Suppose we want to model two effectful operations, for
reading a number from STDIN and for writing an output on STDOUT. We will model them as

1Formally, the datatype is given by a solution to a recursive equation, which we examine in Section 3.1. But it is convenient

to think of IT� (�) as a recursive datatype in which every recursive occurrence is behind a ▶.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:6 Dan Frumin, Amin Timany, and Lars Birkedal

guarded interaction trees IT�8> (1 + Nat), where 1 = {()} is the unit type and

�8> ≜ {input, output}

Insinput (-) ≜ 1 Outsinput (-) ≜ Nat

Insoutput (-) ≜ Nat Outsouput (-) ≜ 1

We write Input and Output(=) for the GITrees

Input ≜ Visinput ((), _=. next(Ret(inr(=)))) Output(=) ≜ Visoutput (=, _G . next(Ret(inl(()))))

Here we use inl(()) : 1 + Nat as a “dummy” value, since we do not care about the return value of
Output.

The operations Input and Output above are represented as GITrees IT�8> (1+Nat). However, the
exact ground type is not important, as long as it contains the unit 1 and the natural numbers Nat.
As such, we assume that we can write down operations like Input and Output as GITrees IT�8> (�)
where � ≃ 1 + Nat + � for some type �. We return again to this point in Section 8, but for now
we assume that we always pick a ground type � that is “large enough” to represent all the ground
values that we need.

Example 3.2 (Higher-order store). We can model higher-order store with the following signature.

�BC>A4 ≜ {alloc, read, write, dealloc}

Insalloc (-) ≜ - Outsalloc (-) ≜ Loc

Insread (-) ≜ Loc Outsread (-) ≜ -

Inswrite (-) ≜ Loc × - Outswrite (-) ≜ 1

Insdealloc (-) ≜ Loc Outsdealloc (-) ≜ 1

where Loc is a countable type of locations/pointers. We write Alloc, Read,Write, and Dealloc for
the following GITrees:

Alloc(U : IT(�), : : Loc → IT(�)) ≜ Visalloc (next(U), next ◦ :)

Read(ℓ : Loc) ≜ Visread (ℓ, _G . G)

Write(ℓ : Loc, U : IT(�)) ≜ Viswrite ((ℓ, next(U)), _G . next(Ret(inj(()))))

Dealloc(ℓ : Loc) ≜ Visdealloc (ℓ, _G . next(Ret(inj(()))))

Here we assume that the ground type � is isomorphic to 1 + � for some �, with the injection
inj : 1 → �.

3.1 Recursion Principle for Guarded Interaction Trees

In order to write programs that eliminate GITrees, i.e. programs of type IT� (�) → % , we need to
come up with a suitable recursion principle. Recursion principles for inductive datatypes usually
follow from the initiality principles of the defined datatypes. However, the type of GITrees is not
purely inductive, as it has mixed-variance recursive occurrences, and the corresponding recursion
principle should reflect that. To understand the necessary recursion principle we need to understand
first how the GITrees are defined. The definition at the beginning of this section presents GITrees
as a guarded datatype, but how should such a datatype be constructed? In the type theory, the type
IT� (�) is given as the solution to the following guarded equation:

IT� (�) ≃ � + ▶[IT� (�) → IT� (�)] + Error + ▶IT� (�) +

Σi∈�

(

Insi (▶IT� (�)) × (Outsi (▶IT� (�)) → ▶IT� (�))
) (1)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:7

The isomorphism is witnessed by the pair of functions (unfold, fold), and the constructors we
presented at the beginning of the section are compositions of injections and fold. Since Equation (1)
contains recursive occurrences with mixed variance, we cannot use the usual recursion principle for
inductive data type. Instead, we employ a mixed initial-algebra/final-coalgebra principle, following
[Freyd 1991; Pitts 1996]. To understand it better, we first write out the bi-functor, where the fixed
point corresponds to the type of GITrees:2

� (-,.) ≃ � + ▶[- → .] + Error + ▶. + Σi∈�

(

Insi (▶.) × (Outsi (▶-) → ▶.)
)

Here the bi-functor � (−,−) is contravariant in the first argument and covariant in the second one.
The bi-algebra corresponding to the type of GITrees is given by the (fold, unfold) pair:

� (IT, IT)
fold

// IT
unfoldoo

where we write IT as a shorthand for IT� (�). The recursion principle that we are looking for then
states that this bi-algebra is both initial and terminal. That is, for any other bi-algebra (%, 5 , 6) we
have unique maps ℎ and : such that the following diagram commutes:

� (%, %)

5

��

� (:,ℎ) //
� (IT, IT)

fold

��

� (ℎ,:)
oo

%

6

OO

ℎ //
IT

:
oo

unfold

OO

That is, in order to construct a function : : IT → % , one has to provide the “unfolding” % → � (%, %),
as well as functions � → % , Error → % , ▶% → % , ▶(% → %) → % , and

∏

i∈� Insi (▶%) →
(Outsi (▶%) → ▶%) → % . This alone would allow us to iterate over GITrees. However, we would
run intro trouble if we wish to write a primitive-recursive style function. For example, we might
wish to write a destructor function : such that : (U) returns U if U itself is a function Fun(5), and
Err(RunTime) otherwise. We cannot do so with the scheme outlined above, since in the recursive
call we don’t have access to the original argument, only to the result of applying recursion to
the argument. This is similar to how the iteration scheme � → (� → �) → N → � for natural
numbers does not allow us to (easily) write the predecessor function ? : N→ N satisfying ? (0) = 0

and ? (= + 1) = = if we pick � = N.

Recursion from iteration on inductive types. Let us then look at how to solve the issue of defining
primitive recursive functions on inductive types using initiality. Suppose the function ? : N→ �

that we want to construct is defined by equations ? (0) = ?1 and ? (= + 1) = ?2 (=, ? (=)). Then we
can obtain this function ? using the following trick: instead of eliminating N into � using initiality,
we eliminate it into N × �, in such a way that the induced map N→ N × � is the identity on the
first component. More concretely, suppose we have maps ?1 : 1 → � and ?2 : N × � → �, forming
together the equations for primitive recursion. Then we construct an N-algebra over N × � as

1 + (N × �)
[⟨0,?1 ⟩,⟨(,?2 ⟩] // N × �

where (: N→ N is the successor function. The initiality of N will then induce the unique map
? : N → N × �, which, when composed with projection N × � → �, determines the recursive
function given by the clauses ?1 and ?2.

2For a detailed category-theoretic treatment, see [Birkedal et al. 2010].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:8 Dan Frumin, Amin Timany, and Lars Birkedal

Recursion/corecursion from mixed-variance types. Dually, for coinductive datatypes we can obtain
a form of primitive coinduction from coiteration by using coproducts. In our case we have a
datatype with mixed variance, and we use coproducts for the negative occurrences and products
for the positive ones. That is, in order to eliminate IT into a type % we will assume an unfolding
% → � (%, %), and a folding � (IT + %, IT × %) → % . More concretely:

Definition 3.3 (Recursion/corecursion principle). In order to define a pair of maps %
ℎ //

IT
:

oo ,

one has to define maps

• ℎD : % → � + ▶[% → %] + Error + ▶% + Σi∈�

(

Insi (▶%) × (Outsi (▶%) → ▶%)
)

;
• :Ret : � → % ;
• :Fun : ▶

(

(IT + %) → (IT × %)
)

→ % ;
• :Err : Error → % ;
• :Tau : ▶(IT × %) → % ;
• :Vis :

∏

i:� Insi (▶(IT × %)) → (Outsi (▶(IT + %)) → ▶(IT × %)) → % .

The resulting maps (ℎ, :) will then satisfy the following computational rules:

• : (Ret(0)) = :Ret (0);
• : (Fun(5)) = :Fun (▶B (5)) where B (5) = ⟨id, :⟩ ◦ 5 ◦ [id, ℎ];
• : (Err(4)) = :Err (4);
• : (Tau(C)) = :Tau

(

▶⟨id, :⟩(C)
)

;
• : (Visi (G, :)) = :Vis (i, Insi (▶⟨id, :⟩)(G), ▶⟨id, :⟩ ◦ : ◦ Outsi (▶[id, ℎ]));
• plus equations for ℎ.

(Recall that we write ▶B : ▶� → ▶� for a function B : � → �.)

This recursion/corecursion principle is constructed using guarded recursion, and can be used
to define a large variety of combinators. For example, we can write a generalization of the afore-
mentioned function : that returns its argument, if the argument is a function, and returns an error
otherwise.
Using the recursion principle we can define a function get_fun(U : IT, 5 : ▶(IT → IT) → IT)

satisfying the computational rules

• get_fun(Ret(0), 5) = Err(RunTime);
• get_fun(Fun(6), 5) = 5 (6);
• get_fun(Err(4), 5) = Err(4);
• get_fun(Tau(C), 5) = Tau(▶get_fun(C, 5)) and get_fun(Tick(U), 5) = Tick(get_fun(U), 5);
• get_fun(Vis8 (G, :), 5) = Vis8 (G, ▶get_fun(−, 5) ◦ :).

In the next section we will see how to use get_fun to define an application function U • V for
applying a GITree function U to a GITree argument V .

In the rest of the paper we will define other operations on GITrees using just the computational
rules, with the understanding that we can write down the explicit recursor for any such set of
equations. Interested readers are referred to the Coq formalization for the details.

3.2 Programming with GITrees

Using the recursion principle we can define operations on GITrees that correspond to common
programming constructs. For example, with get_fun we can write a function App; (U, V), which
applies U to V if U is a function, and returns Err(RunTime) otherwise.

App; (U, V) = get_fun(U, _6. Tau(▶6(V))).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:9

This operation gives us “call-by-name” application, in the sense that it satisfies

App; (Fun(next(6)), V) = Tick(6(V))

for 6 : IT� (�) → IT� (�) for any argument V . In particular, it invokes the underlying function 6
even if the argument V is a Tick or an effect, without evaluating the argument first. In order to
define a “call-by-value” application, we compose App; with the following operation.
The function get_val(U, 5) recurses into its argument, looking under Ticks and Vis’s, until it

reaches either a function or a ground type (i.e. a value from IT
E
� (�)), after which it applies the

function 5 : IT� (�) → IT� (�) to it:

get_val(Ret(0), 5) = 5 (Ret(0)) get_val(Fun(6), 5) = 5 (Fun(6))

get_val(Err(4), 5) = Err(4) get_val(Tick(U), 5) = Tick(get_val(U, 5))

get_val(Vis8 (G, :), 5) = Vis8 (G, ▶get_val(−, 5) ◦ :)

As syntactic sugar, we write LetG = U in V (G) for get_val(U, _G . V (G)).
Now we can define the “call-by-value” application U • V as get_val

(

V, _VE .App; (U, VE)
)

. This
strict application then satisfies the following computational rules

U • Tick(V) = Tick(U • V) U • Vis8 (G, :) = Vis8 (G, _~. next(U) (▶•) : ~)

Tick(U) • VE = Tick(U • VE) Vis8 (G, :) • VE = Vis8 (G, _~. : ~ (▶•) next(VE))

Fun(next(6)) • VE = Tick(6(VE)) U • V = Err(RunTime) in other cases

Where − (▶•) − is the lifting of − • − to ▶IT� (�) → ▶IT� (�) → ▶IT� (�), and VE ∈ IT
E
� (�) is

either Ret(0) or Fun(6). The application function − • − not only simulates strict application, but it
also fixes a right-to-left evaluation order of effects and computation steps.

One can see that there are common properties for the computational rules between get_fun(−, 5),
App; (−, V), U • −, and − • VE (where VE ∈ IT

E
� (�)): they all preserve ticks, effects, and errors.

Functions that have these preservation properties are called homomorphisms of GITrees and will
play an important role in later sections.

Definition 3.4. A function 5 : IT� (�) → IT� (�) is a homomorphism, written as 5 ∈ Hom, if it
satisfies the following equations:

• 5 (Err(4)) = Err(4);
• 5 (Tick(U)) = Tick(5 (U));
• 5 (Vis8 (G, :)) = Vis8 (G, ▶5 ◦ :)

As expected from the name, the identity function is a homomorphism and composition of two
homomorphisms is a homomorphism. This notion of homomorphism is inspired by the one in
[Hoshino 2012]. It follows from the definition, that in order to define a homomorphism it suffices
to define its action on GITree values.

Programming with GITrees and natural numbers. In the remainder of this paper we work with a
lot of examples involving programming with natural numbers (as an illustrative ground type). It is
then useful to assume in the remainder of this paper that the ground type � in any type IT� (�)
of GITrees is “large enough” to contain natural numbers, and the unit type. That is, we assume
that � ≃ 1 + Nat + . . . , and we simply write Ret(=) for Ret(inj(=)) and Ret(()) for Ret(inj′ (()))
(for appropriate injections inj : Nat → � and inj′ : 1 → �). We will also abbreviate IT� (�) as IT
or IT� when � is generic as above or is clear from the context.
In Figure 3 we summarize the operations on GITrees that we define using recursion and other

functions. The computational rules described in Figure 3 are only for the base cases; the other
computational rules follow from the fact that those operations are homomorphisms. Concretely, we

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:10 Dan Frumin, Amin Timany, and Lars Birkedal

= ∈ Nat

get_nat(Ret(=), 5) = 5 (=)

1 ∉ Nat

get_nat(Ret(1), 5) = Err(RunTime)

get_nat(Fun(6), 5) = Err(RunTime) get_fun(Ret(0), 5) = Err(RunTime) get_fun(Fun(6), 5) = 5 (6)

If (Ret(0), U1, U2) = U1
= > 0

If (Ret(=), U1, U2) = U2
If (Fun(5), U1, U2) = Err(RunTime)

1 ∉ Nat

If (Ret(1), U1, U2) = Err(RunTime)

=1, =2 ∈ Nat

NatOp5 (Ret(=1),Ret(=2)) = Ret(5 (=1, =2))

UE or VE are not Ret(=)

NatOp5 (UE, VE) = Err(RunTime)
VE ; U = U WhileU do V = If

(

U, (V ; Tick(WhileU do V)),Ret(())
)

Fig. 3. Programming operations on GITrees.

have the following operations. The get_nat function extracts a natural number from a GITree and
applies the function 5 : Nat → IT to it. It is a homomorphism in the first argument. If it encounters
a function Fun(6) or a different ground value Ret(1), then it returns an error. The If operations test
whether the first argument is zero, and picks the appropriate branch. The function If (−, U1, U2) is a
homomorphism. Similarly, if the first argument is not a natural number then If returns an error.
The NatOp5 operation applies the binary function 5 to its integer arguments, returning an error on

all the other values. The maps NatOp5 (U,−) and NatOp5 (−, VE) are homomorphisms for VE ∈ IT
E .

The U ; V is a sequencing operation: it puts all the effects and ticks in U before the effects and ticks
in V . This is witnessed by the fact that (−) ; U is a homomorphism. The WhileU do V represents
a while loop with the conditional U and the body V ; it is defined using guarded recursion, and is
equal to its one-step unfolding using the If construct.

Let us look at some example programs that we can write using the operations we have defined.

Example 3.5 (Factorial). In the first example, we have a factorial function that we implement
using the store operations (Example 3.2).

fact(=) ≜ Alloc (Ret(1), _a22.Alloc(Ret(=), _ℓ . factBody(a22, ℓ) ; Read(a22)))

factBody(a22, ℓ) ≜ While Read(ℓ) do

Let 8 = Read(ℓ) in

Let A = NatOp× (8,Read(a22)) in

Let 8 = NatOp− (8,Ret(1)) in

Write(a22, A) ; Write(ℓ, 8)

The program factBody computes the factorial of the number stored in the location ℓ using an
intermediate location a22 for the accumulated result. The complete program fact then allocates the
needed references and runs factBody before reading off the result from the location a22 .

Example 3.6 (Encoding of pairs). Our definition of GITrees does not include arbitrary algebraic
datatypes, like pairs or sums. We can, however, encode them using a Church-style encoding. We
write (U, V) : IT for the guarded interaction tree

Let~ = V in LetG = U in Fun(next(_5 . 5 • G • ~)) .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:11

Note that (UE, VE) is a GITree value whenever UE and VE are. Furthermore, (U,−) and (−, VE) are
homomorphisms. We then define the projection functions as

c1 (U) = U • Fun(next(_0. Fun(next(_1. 0)))) c2 (U) = U • Fun(next(_0. Fun(next(_1. 1)))).

The projection functions then satisfy the following computational rules:

c1 (UE, VE) = Tick3 (UE) c2 (UE, VE) = Tick3 (VE).

We can use similar style encodings to represent other algebraic datatypes as guarded interaction
trees.

4 REIFICATION OF EFFECTS AND REDUCTIONS OF GITREES

GITrees allow us to conveniently write down and combine various effects. But in order to reason
about the effects we also need a way of giving them meaning. In this section we establish a way of
reifying effects of GITrees and use reification to define reductions of GITrees, which explain how
computations represented by GITrees reduce.
In order to interpret stateful effects we assume that we have a type State, and each effect is

interpreted using the state monad with a function:

A :
∏

i∈�

Insi (▶IT�) × State → option(Outsi (▶IT�) × State).

We call a tuple (�, State, A) a reifier for the effects �. Assuming we have such a reifier, we write a
function reify : IT × State → IT × State that satisfies

A8 (G, f) = Some(~, f ′) : ~ = next(V)

reify(Vis8 (G, :), f) = (Tick(V), f ′)

A8 (G, f) = None

reify(Vis8 (G, :), f) = (Err(RunTime), f)

Example 4.1 (Reification for the input/output operations Example 3.1). We take the state State to
be a pair of two lists of natural numbers, corresponding to input and output tapes. The reifier is
defined as

Ainput ((), (=®=, ®<)) = Some(=, (®=, ®<)) Ainput ((), (n, ®<)) = None

Aoutput (G, (®=, ®<)) = Some((), (®=, G ®<))

Example 4.2 (Reification for the higher-order store operations Example 3.2). For higher-order store

we take State to be the type of finite partial maps Loc
fin
−⇀ ▶IT. The reifier function is defined in the

expected way:

Aalloc (U, f) = Some(ℓ, f [ℓ ↦→ U]) where ℓ is the smallest location not present in f

Aread (ℓ, f) =

{

Some(U, f) if f (ℓ) = U

None otherwise

Awrite ((ℓ, V), f) =

{

Some((), f [ℓ ↦→ V]) if f (ℓ) is defined

None otherwise

Adealloc (ℓ, f) =

{

Some((), f \ {ℓ}) if f (ℓ) is defined

None otherwise

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:12 Dan Frumin, Amin Timany, and Lars Birkedal

From reification to reductions. Using the reification function we can formulate the reduction
relation on interaction trees. The internal reduction relation⇝: (IT×State) → (IT×State) → iProp:

(U, f) ⇝ (V, f ′) ≜
(

U = Tick(V) ∧ f = f ′
)

∨
(

∃8 G :. U = Vis8 (G, :) ∧ reify(U, f) = (Tick(V), f ′)
)

Intuitively, a reduction of GITrees corresponds to either stripping away one computational step, or
to reifying an effect. We consider an (annotated) transitive closure of the reduction relation:

(U, f) ⇝0 (V, f ′) ≜ U = V ∧ f = f ′

(U, f) ⇝=+1 (V, f ′) ≜ ∃U0, f0. (U, f) ⇝ (U0, f0) ∧ (U0, f0) ⇝
= (V, f ′)

We write⇝∗ for the reflexive transitive closure of the reduction relation.

Reductions and homomorphisms. Homomorphisms (Definition 3.4) play an important role in the
reduction relation, allowing us to compute the reductions more easily. Specifically, homomorphisms
preserve and reflect reductions:

Lemma 4.3. Let 5 be a homomorphism. Then (U, f) ⇝ (V, f ′) implies (5 (U), f) ⇝ (5 (V), f ′).

Lemma 4.4. Let 5 be a homomorphism. If (5 (U), f) ⇝ (V ′, f ′) then either

• U is a GITree-value, or;

• there exists V such that (U, f) ⇝ (V, f ′) and ⊲(5 (V) = V ′).

These two lemmas suggest that homomorphisms play the role of evaluation contexts within
the reduction relation ⇝. For example, if (U ; V, f) ⇝ (X, f ′), then either U was a value, or
(U, f) ⇝ (U ′, f ′) and ⊲(U ′ ; V = X).

Continuation-independent reifiers. The reifiers that we consider here produce an output based on
the input, but do not have direct access to the continuation. The reification function reify just calls
the continuation with the produced output. This continuation-independence is crucial for proving
Lemma 4.4 (and the associated rule wp-hom in separation logic in Section 6). Not all effects are
continuation-independent, for example call/cc cannot be implemented this way. In this paper, just
like in [Xia et al. 2019], we stick to working with continuation-independent effects, as it simplifies
the separation logic and the reasoning principles, and we defer studying continuation-dependent
effects to future work.

5 MODELING A HIGHER-ORDER EFFECTFUL PROGRAMMING LANGUAGE

In this section we show how guarded interaction trees provide a model for a programming language
with recursion, higher-order functions, and effects. Specifically, we study a PCF-like higher-order
programming language with input/output effects, give its interpretation into IT8> (see Examples 3.1
and 4.1), and show its soundness, i.e., that the interpretation agrees with the operational semantics.
The same approach applies to other classes of effects for which you can write operational semantics.

Syntax and operational semantics. The syntax for the programming language, which we dub
_rec,io, consists of values and expressions:

E ∈ Val ::= = | rec 5 (G) = 4

4 ∈ Expr ::= G | E | if 4 then 41 else 42 | 41 (42) | 41 + 42 | 41 − 42 | input | output(4)

where = ranges over the set of natural numbers, and 5 , G range over the set Var of variables.
The operational semantics for _rec,io is given in Figure 4 as a small-step reduction relation on

the configurations Expr × State, where State is a pair of lists as in Example 4.1. The reductions are

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:13

red-beta

((rec 5 (G) = 4) E, f) → (4 [E/G] [rec 5 (G) = 4/5], f)

red-natop
=1, =2 ∈ N ⊕ ∈ {+,−,×, . . . } =1 ⊕ =2 = =

(=1 ⊕ =2, f) → (=, f)

red-if-false

(if 0 then 41 else 42, f) → (42, f)

red-if-true
= ∈ N = > 0

(if = then 41 else 42, f) → (41, f)

red-input

(input, (=′®=, ®<)) → (=′, (®=, ®<))

red-output

(output(<), (®=, ®<)) → (0, (®=,<′ ®<))

red-ectx
(41, f1) → (42, f2)

([41], f1) → ([41], f2)

Fig. 4. Small-step operational semantics for _rec,io.

JGKd = d (G) J=Kd = Ret(=) Jif 4 then 41 else 42Kd = If (J4Kd , J41Kd , J42Kd)

⊕ ∈ {+,−,×, . . . }

J41 ⊕ 42Kd = NatOp⊕ (J41Kd , J42Kd)
JinputKd = Input Joutput(4)Kd = get_nat(J4Kd ,Output)

J41 42Kd = J41Kd • J42Kd Jrec 5 (G) = 4Kd = fixIT (_(C : ▶IT) . Fun(▶(_U E. J4Kd [G ↦→E] [5 ↦→U]) (C))) .

Fig. 5. Semantic interpretation for _rec,io.

defined, following [Felleisen and Hieb 1992], using evaluation contexts ∈ Ectx, given as:

 ∈ Ectx ::= [•] | output() | if then 41 else 42 | 4 | E | 4 ⊕ | ⊕ E

By [4] we denote the result of replacing the hole [•] in the context with the expression 4 . The
evaluation contexts ensure the call-by-value right-to-left evaluation order of _rec,io, as having a
predefined evaluation order is important in the presence of effects.

Interpretation in guarded interaction trees. We will interpret a closed program 4 as an interaction
tree J4K : ITio (�). The effects io are those of Examples 3.1 and 4.1, and we assume that the ground
type � is “large enough” to have natural numbers. For convenience, we drop the ground type and
write simply ITio for ITio (�).

In order to provide a (compositional) denotational semantics we need to provide an interpretation
not only for closed terms, but for open terms as well. Given a set fv(4) = {G1, . . . , G=} of free
variables of 4 , we define the interpretation J4Kd : ITio, where d maps the free variables of 4 to
interaction trees. The interpretation function is defined in Figure 5. The definition follows the
standard notion of semantics for (untyped) _-calculus, adjusted for effects and explicit recursion.
The interpretation of recursive functions rec 5 (G) = 4 is defined using the guarded fixed pointed
operation fix

IT
: (▶IT → IT) → IT, and satisfies the following equality:

Jrec 5 (G) = 4Kd = Fun(next(_E. J4Kd [G ↦→E] [5 ↦→Jrec 5 (G)=4Kd))

We show that the interpretation is sound:

Theorem 5.1 (Soundness). If (41, f1) → (42, f2), then (J41K, f1) ⇝
∗ (J42K, f2).

We prove Theorem 5.1 by induction on the →-derivation. The most interesting cases are for the
reductions red-beta and red-ectx, which we now sketch. For the former, we need a substitution
lemma, and for the latter we need to extend the interpretation to evaluation contexts.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:14 Dan Frumin, Amin Timany, and Lars Birkedal

wp-val
U ∈ IT

E
Φ(U)

wp U
{

Φ
}

wp-tick
⊲wp U

{

Φ
}

wp Tick(U)
{

Φ
}

wp-hom
5 ∈ Hom wp U

{

VE .wp 5 (VE)
{

Φ
}}

wp 5 (U)
{

Φ
}

wp-reify
has_state(f) reify(Vis8 (G, :), f) = (Tick(V), f′) ⊲

(

has_state(f′) −∗ wp V
{

Φ
})

wp Vis8 (G, :)
{

Φ
}

wp-upd
|⇛wp U

{

UE . |⇛Φ(UE)
}

wp U
{

Φ
}

wp-mono
wp U

{

Ψ
}

∀UE .Ψ(UE) −∗ Φ(UE)

wp U
{

Φ
}

wp-lam
wp V

{

VE . ⊲wp 5 (VE)
{

Φ
}}

wp Fun(next(5)) • V
{

Φ
}

Fig. 6. Selected weakest precondition calculus rules.

Lemma 5.2 (Substitution lemma). For any expression 4 with a free variable G we have

J4 [4′/G]Kd = J4Kd [G ↦→J4′K] .

Proof. By induction on 4 , using Löb induction in the case of recursive functions. □

In order to handle red-ectx we provide the following auxiliary interpretation for evaluation
contexts. Each evaluation context is interpreted as a homomorphism J Kd : IT → IT, such that
J [4]Kd = J Kd (J4Kd), which together with Lemma 4.3 implies the soundness of the red-ectx

reduction.

6 SEPARATION LOGIC OVER GITREES

In this section we define a separation logic as a program logic for guarded interaction trees. We
define a proposition wp U

{

Φ
}

to denote that an interaction tree U is safe to reduce, and if U reduces
to an interaction tree value VE , then VE satisfies the postcondition Φ : ITE → iProp.
In this section we make use of the separation logic connectives of Iris, which we recall here:

% ::= . . . | % ∗ % | % −∗ % | |⇛% | □% | % | . . .

For brevity, we only briefly recall the intuitive reading of these propositions and refer to [Jung
et al. 2018] for details. The proposition % ∗& says that the propositions % and & hold over disjoint
resources; the proposition % −∗ & says that if we were to add any resources which satisfy % , then &
would be satisfied. The proposition |⇛% says that the current resources can be updated to satisfy % .
The proposition □% states that % holds persistently, i.e., without asserting any resources. Crucially,
such propositions can be duplicated: □% ⊢ □% ∗ □% . An example of a persistent proposition is the

invariant proposition % , which satisfies % ⊢ □% .

6.1 Weakest Precondition Rules

Selected rules for the weakest precondition proposition wp U
{

Φ
}

are given in Figure 6. The rule
wp-val states that to verify a value it suffices to check that the value satisfies the postcondition.
The rule wp-tick states that in order to verify Tick(U) it suffices to verify U , under a later ⊲. The
rule wp-hom states that in order to verify 5 (U) for a homomorphism 5 , it suffices to reduce U to a
value UE , and then verify 5 (UE).

The rule wp-reify tells us how to deal with effects. The rule uses the proposition has_state(f)
which signifies the exclusive ownership of the current state f . The use of separation logic is crucial in
this case, as we do not want to allow duplicating that proposition. The rule then states that in order
to verify an effect, one has to provide the current state f ′ and the proof that the interaction tree

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:15

with the effect reifies into some Tick(V). Then, the user has to verify that the resulting V reduces to
a value satisfying the postcondition, under the assumption that the state has been updated to f ′.

The rule wp-upd states that one can update ghost resources before and after reducing U . The rule
wp-mono states that one can always weaken the postcondition in wp U

{

Φ
}

. Finally, wp-lam is an
example of a derived rule. It combines the computational rule for function application of GITrees,
and rules wp-hom and wp-tick. Let us look at an example derivation using these rules.

Example 6.1. Consider a _rec,io expression (input+ 1). It is interpreted as the GITree Jinput+ 1K =
NatOp+ (Input,Ret(1)), for which we can prove the following specification:

has_state(=®=, ®<) ⊲(has_state(®=, ®<) −∗ Φ(Ret(= + 1)))

wp NatOp+ (Input,Ret(1))
{

Φ
}

Proof. Note that NatOp+ (−,Ret(1)) is a homomorphism. We apply wp-hom, reducing our goal
to:

wp Input
{

VE .wp NatOp+ (VE,Ret(1))
{

Φ
}}

.

At this point we can use the assumption has_state(=®=, ®<) and the rule wp-reify. By the reifier of
input/output effects, reify(Input, (=®=, ®<)) = Some(Tick(Ret(=)), (®=, ®<)), and we get the following
goal:

⊲(has_state(®=, ®<) −∗ wp Ret(=)
{

VE .wp NatOp+ (VE,Ret(1))
{

Φ
}}

).

Recall that we still have the assumption ⊲(has_state(®=, ®<) −∗ Φ(Ret(= + 1))). By the monotonicity
of ⊲ we can remove the ⊲ modality both from the goal and the assumption. Since Ret(=) is a GITree
value, we can use wp-val and reduce the goal to

wp NatOp+ (Ret(=),Ret(1))
{

Φ
}

.

By calculation, NatOp+ (Ret(=),Ret(1)) = Ret(= + 1), which is also a GITree value. We can then
apply wp-val again to reduce the goal to Φ(Ret(= + 1)), which follows from the assumption. □

We define the weakest precondition as a guarded recursive predicate, as is standard in Iris. The
weakest precondition then satisfies the following adequacy and safety theorem, the proof of which
relies on the adequacy of Iris (Theorem 2.1).

Theorem 6.2. Let U be an interaction tree and f be a state such that

has_state(f) ⊢ wp U
{

Φ
}

is derivable for some meta-level predicate Φ (containing only intuitionistic logic connectives). Then for

any V and f ′ such that (U, f) ⇝∗ (V, f ′), one of the following two things hold:

• (adequacy) either V ∈ IT
E , and Φ(V) holds in the meta-logic;

• (safety) or there are V1 and f1 such that (V, f ′) ⇝ (V1, f1)

In particular, safety implies that V ≠ Err(4) for any error 4 ∈ Error.3

Finally, it is worth noting that separation logic/Iris is useful for reasoning about higher-order
GITrees even in the absence of effects, as demonstrated by the following example.

Example 6.3. Using guarded recursion, we can write down a GITree Iter that satisfies the equation:

Iter • 5 • U • V = If
(

U, 5 • (Iter • 5 • NatOp− (U,Ret(1)) • V), V
)

.

3While the weakest precondition that we presented in this section disallow any errors in guarded interaction tree, we will

consider in Section 9.3 that allows some errors, at the user’s discretion.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:16 Dan Frumin, Amin Timany, and Lars Birkedal

That is, Iter • 5 • Ret(=) • V computes the iterated application 5 = • V . We can give Iter the
following higher-order specification:

wp V
{

Ψ
}

□∀VE .Ψ(VE) −∗ wp 5 • VE
{

Ψ
}

wp
(

Iter • 5 • Ret(=) • V
) {

Ψ
}

The specification says that if V initially satisfies Ψ and 5 preserves Ψ , then Iter • 5 • Ret(=) • V
will also satisfy Ψ. The second premise is the specification of 5 , and it can be used multiple times
in the proof. For that reason the that premise is behind the persistently modality □.

It is also worth noting that while Iter itself does not use state, the function 5 that we supply to it
might as well use all sorts of effects internally, and our implementation and specification of Iter is
oblivious to that.

6.2 Domain-Specific Logic for Higher-Order Store

Now we show how we can use the standard mechanisms in Iris to recover a fairly standard-looking
separation logic for a programming language with references from the weakest precondition
calculus presented above. We use Iris’s notion of higher-order ghost state [Jung et al. 2016, 2018] to
provide the following logical interface for the higher-order store operations:

wp-alloc
heap_ctx ⊲∀ℓ . ℓ ↦→ U −∗ wp : ℓ

{

Φ
}

wp Alloc(U, :)
{

Φ
}

wp-read
heap_ctx ⊲ ℓ ↦→ U ⊲

(

ℓ ↦→ U −∗ wp U
{

Φ
})

wp Read(ℓ)
{

Φ
}

wp-write
heap_ctx ⊲ ℓ ↦→ U ⊲

(

ℓ ↦→ V −∗ Φ(Ret(()))
)

wpWrite(ℓ, V)
{

Φ
}

wp-dealloc
heap_ctx ⊲ ℓ ↦→ U ⊲Φ(Ret(()))

wp Dealloc(ℓ)
{

Φ
}

heap_ctx ⊢ □heap_ctx

Here heap_ctx is a persistent proposition, which is part of the logical interface.
Thus our goal is to provide definitions of heap_ctx and ℓ ↦→ U that allow us to derive the rules

above. The main challenge is that the resource has_state(f) provides a singular complete view of
the state, without the ability to split it into local portions corresponding to individual locations.
That has_state is not splittable by itself is not surprising – it is an abstract representation of an
arbitrary state for arbitrary effects, and there is no a priori way of splitting it. However, for our

specific state (a heap Loc
fin
−⇀ ▶IT) we know how to do the splitting. What we need to do is to

provide an alternative view of the state, amenable to splitting, and tie it together with the actual
state of the has_state predicate.
Our first step is then to provide a resource algebra for this view of the state. Following the

standard practice of Iris, we use an authoritative resource algebra of the heap. It contains two kinds
of resources: the “full heap” •f and the “fragmental heap” ◦f ′. The fragmental heap is guaranteed
to be a subheap of the full one f ′ ⊆ f . Then we make the following definitions:

heap_ctx ≜ ∃f. has_state(f) ∗ •f ℓ ↦→ U ≜ ◦ [ℓ ↦→ next(U)]

The heap_ctx predicate is an invariant that says that the full view of the heap coincides with
the actual state that we have as part of has_state, and the points-to predicate ℓ ↦→ U states that
[ℓ ↦→ next(U)] is in the fragmental view of the heap. Together those predicates imply that the
actual state f maps ℓ to next(U), which is precisely what allows us to deduce the rules wp-alloc,
wp-read and wp-write from the rule wp-reify.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:17

G : g, Γ ⊢ G : g Γ ⊢ = : Nat
Γ ⊢ 41 : Nat Γ ⊢ 42 : Nat ⊕ ∈ {−, +}

Γ ⊢ 41 ⊕ 42 : #

Γ ⊢ 41 : g1 → g2 Γ ⊢ 42 : g1

Γ ⊢ 41 42 : g2

5 : g1 → g2, G : g1, Γ ⊢ 4 : g1 → g2

Γ ⊢ rec 5 (G) = 4 : g1 → g2

Γ ⊢ 4 : Nat Γ ⊢ 41 : g Γ ⊢ 42 : g

Γ ⊢ if 4 then 41 else 42 : g
Γ ⊢ input : Nat

Γ ⊢ 4 : Nat

Γ ⊢ output(4) : Nat

Fig. 7. Typing rules for _rec,io.

As a simple example, we can use the rules for the store operations to verify the factorial program
from Example 3.5. We show the following specification: wp fact(=)

{

VE . VE = Ret(!=)
}

. For this, we
will use the intermediate lemma:

Lemma 6.4. Under the assumptions heap_ctx, a22 ↦→ Ret(<) and ℓ ↦→ Ret(=), we have

wp factBody(a22, ℓ)
{

_. a22 ↦→ Ret(<×!=)
}

.

Proposition 6.5. Under the assumption heap_ctx we have

wp fact(=)
{

VE . VE = Ret(!=)
}

.

Proof. We proceed by allocating the locations a22 and ℓ symbolically using wp-alloc, and then
appeal to Lemma 6.4. □

As one can see, the logic that we recovered for the higher-order store effects is very close to a
normal separation logic one would normally see for a programming language with a heap [Jung et al.
2018]. Our logic, however, is amenable to extensions with other effects and programming language
constructs. Indeed, we explain how to obtain a logic for reasoning about different combined effects
in Section 8. In the next section we show how to apply the separation logic to show computational
adequacy of the model of _rec,io.

7 COMPUTATIONAL ADEQUACY FOR _rec,io

In Section 5 we constructed a compositional model of _rec,io in guarded interaction trees and proved
that it is sound: if a _rec,io program 4 terminates to a natural number =, then J4K terminates to
Ret(=). In this section we show the other direction, known as computational adequacy in domain
theory [Plotkin 1977], for the well-typed fragment of _rec,io; the typing relation (Γ ⊢ 4 : g) is given
in Figure 7. Computational adequacy is formally stated as the following theorem:

Theorem 7.1 (Adeqacy). If ⊢ 4 : Nat and (J4K, f) ⇝∗ (Ret(=), f ′) then (4, f) →∗ (=, f ′).

Computational adequacy is usually proved using logical relations between the syntax (terms of
_rec,io in our case) and semantics (guarded interaction trees in our case). Here we follow the recent
practice [Krebbers et al. 2017b] of using the separation logic (see Section 6) to define our logical
relations model.

We define a logical relation Γ |= U ≾ 4 : g , relating a guarded interaction tree U and an expression
4 . Here, 4 is an open expression for which we have Γ ⊢ 4 : g while U is “an open interaction tree”, i.e.,
a function of type (fv(Γ) → IT) → IT. As usual, we first define the relation over closed GITrees
and expressions, and then generalize it to the open case. The logical relation, given in Figure 8, is,
as usual for call-by-value languages, is decomposed into an expression relation EJgK and a value

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:18 Dan Frumin, Amin Timany, and Lars Birkedal

EJgK(U, 4) ≜ ∀f. has_state(f) −∗ wp U
{

VE . ∃E, f
′ . (4, f) →∗ (E, f′) ∗ VJgK(VE, E) ∗ has_state(f

′)
}

VJNatK(VE, E) ≜ ∃= ∈ N. VE = Ret(=) ∧ E = =

VJg1 → g2K(VE, E) ≜ ∃5 . VE = Fun(5) ∧ □
(

∀UF , F .VJg1K(UF ,F) −∗ EJg2K(VE • UF , E F)
)

.

V∗JΓK(d1, d2) ≜ ∀(G : g) ∈ Γ.VJgK(d1 (G), d2 (G))

Γ |= U ≾ 4 : g ≜ ∀d1, d2 .V
∗JΓK(d1, d2) =⇒ EJgK(U (d1), 4 [d2])

Fig. 8. Logical relation for _rec,io.

relationVJgK. The expression relation simply states that related expressions should produce related
values. The value relation is defined by induction on the type in the standard way: values of base
types should be equal while functions take related values to related expressions. As values, once
computed, can be used multiple times (cf. the logical relation in Section 9.1) the value relation is
required to be persistent; hence the persistently modality □ in the value relation for functions. In
order to define the relation on open terms we define a relation for typing contextsV∗JΓK which
relates, point-wise, two substitutions respectively of the types fv(Γ) → IT

E and fv(Γ) → Val.

Lemma 7.2 (Fundamental property). For any Γ ⊢ 4 : g , we have Γ |= (_d. J4Kd) ≾ 4 : g .

Computational adequacy follows from the fundamental property together with the following
Lemma which itself is a consequence of the soundness of the weakest precondition calculus
(Theorem 6.2):

Lemma 7.3. Suppose that |= U ≾ 4 : Nat. Then for any state f ,

• 8 5 (U, f) ⇝∗ (Ret(=), f ′), then (4, f) →∗ (=, f ′);
• if (U, f) ⇝∗ (V, f ′), then V ≠ ⊥.

8 MODULAR REASONING ABOUT COMBINATIONS OF EFFECTS

Because (guarded) interaction trees define effects abstractly, one of the main advantages is the
ability to combine programs with different effects modularly in the same setting. In this section we
demonstrate how we achieve this for guarded interaction trees.
Given two signatures � and � , with indexing sets � and � , we say that � is a subsignature of

� , written as � ↣ � , if there is a mapping n : � → � such that �.Ins8 (-) ≃ � .Insn (8) (-) and
�.Outs8 (-) ≃ � .Outsn (8) (-) for any 8 ∈ � and for any type - . Here, ≃ stands for isomorphism of
types.
In regular interaction trees, a subsignature � ↣ � induces an embedding IT� → IT� of

interaction trees. However, such an embedding is not possible for guarded interaction trees due to
the mixed-variance definition: a function IT� → IT� cannot be converted to a function IT� → IT�

which takes a guarded interaction tree with a larger set of effects.
To achieve modularity we will instead work with an open-ended collection of effects which is

large enough to embed all the effects that we need. It is only at the “top-level”, e.g., when applying
the adequacy theorem, that we pick a concrete signature of effects. For example, the precise type of
the Alloc function from Example 3.2 is the following type, for any � such that �store ↣ � :

Alloc : IT� × (Loc → IT�) → IT�

(In practice, the function Alloc is polymorphic in � at the meta-level, i.e., in Coq.) With this, we can
easily combine two programs with different collections of effects, assuming both of the programs
are written in such an open ended manner; we just need to pick � to be large enough to embed

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:19

the effects of both programs. For example, we can combine the factorial implementation from
Example 3.5 with input/output effects, to write a program that takes a natural number from the
input, computes its factorial, and prints the result to the output:

fact_io ≜ get_nat(get_nat(Input, fact),Output).

The resulting program fact_io has type IT� for any � such that �store ↣ � and �io ↣ � .

Reifiers for modular effects. Writing down programs with modular combinations of effects is not
enough by itself: we also want to reason about the reification of effects modularly. Suppose we write
a program with effects � as an GITree IT� with � ↣ � , and suppose that we have a reifier for �.
Recall that we defined a reifier for the effects � to be a tuple (�, State, A :

∏

i∈� Insi (▶IT�)×State →
option(Outsi (▶IT�)×State). However, if the state itself includes interaction trees, as in Example 4.2,
we need also to make the state and the reifier parametric in the effects. Therefore, instead of a
fixed type State we consider a family of states State(-), and instead a single reifier function A we
consider a family of functions

∀- .
∏

i∈�

Insi (-) × State(-) → option(Outsi (-) × State(-)) .

In practice, we assume that the global state is the product of states of reifiers for sub-effects,
in which each sub-effect acts only on its own part of the state. Concretely, given a sequence
®' = (�1, State1, A1), . . . , (�<, State<, A<) of reifiers we define the global reifier '� = (�, State(−), A):

�.� ≜
∑

1≤8≤<

�8 .� � .Ins (8, 9) (-) ≜ �8 .Ins 9 (-) �.Outs (8, 9) (-) ≜ �8 .Outs 9 (-)

State(-) ≜
∏

1≤8≤<

State8 (-)

A-,(8, 9) (G, (f1, . . . , f8 , . . . , f<)) ≜

{

Some(~, (f1, . . . , f
′
8 , . . . , f<)) if A8 (G, f8) = Some(~, f ′)

None otherwise

Turning to the separation logic, we specialize the rule wp-reify to the signature� and the reifier
'� , and simplify it to

wp-reify-local
has_state8 (f8) A8 (G, f8) = Some(~, f′8) : ~ = next(V) ⊲

(

has_state8 (f
′
8) −∗ wp V

{

Φ
})

wp Vis(8, 9) (G, :)
{

Φ
}

where the predicate has_state8 (f) tracks the local component of the global state associated with
the 8th reifier. The predicates are defined to validate the following rule, which allows us to split the
global state into local subcomponents and combine them back together:

has_state(®f) ⊣⊢ has_state1 (f1) ∗ · · · ∗ has_state< (f<) .

Then to write down the abstractions for the domain-specific logic in Section 6.2 we change the
heap_ctx definition to link together only the state corresponding to the specific effects:

heap_ctx ≜ ∃f. has_state8 (f) ∗ •f

where the higher-order store reifier is the 8th subreifier of ®'.

Example 8.1. Recall the program fact_io from the beginning of this section.We use Proposition 6.5
to show the following specification:

heap_ctx ∗ has_state9 (: ®=, ®<) ⊢ wp fact_io
{

_. has_state9 (®=, (!:) ®<)
}

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:20 Dan Frumin, Amin Timany, and Lars Birkedal

where has_state9 tracks the state of the input/output effects. The specification tells us that if we
run fact_io with the starting state (: ®=, ®<) for the input/output effects, then we end up with the
state (®=, (!:) ®<) for the input/output effects.

Modular reasoning with a generic ground type. As we have mentioned in Section 3.2, we often
would like to work with the GITrees IT� (�) for some generic ground type � that is “large enough”
to contain ground values that we need to represent (e.g. the unit type, natural numbers, the type of
locations, etc). That is, we assume that the ground type� is isomorphic to a sum 1+Nat+ Loc+ . . . ,
depending on ground values we need. We tackle this generic ground type in a similar way we deal
with different effect signatures modularly.

Specifically, we write � ⇁ � if � ≃ � + � for some type � . We then have the generic return
constructor Ret : � → IT� (�) for any � ⇁ �. Similarly, we have a generic “destructor” get_ret :
IT� (�) × (� → IT� (�)) → IT� (�) which allows us to extract a ground value of type �, as long as
we have � ⇁ �. such that get_ret is a homomorphism in the first argument, which satisfies:

get_ret(Ret(1), 6) =

{

6(1) if 1 ∈ �,

Err(RunTime) otherwise.

Then, the get_nat function from Section 3.2 is just the specialization of get_ret to the situation
Nat ⇁ �.
The predicate � ⇁ � is formalized in Coq as a typeclass, making it easy to use the generic

operations like Ret and get_ret. In the remainder of this paper we will stick to those generalized
operations, and will assume that the ground type � contains all the ground values we need.

9 TYPE SAFETY FOR CROSS-LANGUAGE INTEROPERABILITY

One of the advantages of using GITrees for denotational semantics is that it provides a common
setting for interpreting and reasoning about different languages with different effects, and then
combining the results in a modular manner. In this section we demonstrate this point by verifying
type safety of interoperability between two different languages. The interoperability is achieved
by allowing embeddings from one language into another at a particular boundary [Matthews
and Findler 2007]. We take inspiration for this case study from the approach of Patterson et al.
[2022], who consider interoperability of different languages at a level of a common third language,
which both the source languages are compiled down to. The communication between the source
languages is done through glue code at the level of the target language, which converts types from
one language to another. The type safety result then states that well-typed programs in a combined
language can only go wrong due to conversion errors at the boundaries.

Specifically, we first consider an affine programming language _⊸,ref with linear references and
strong updates, which we interpret in guarded interaction trees using the higher-order store effects
(Example 3.2). We show the type safety of _⊸,ref by building a logical relations model.

We then consider cross-language interoperability, by allowing embedding of (higher-order)
programs from the non-affine language _rec,io (Section 5) into _⊸,ref , thus combining two languages
with different type systems and different effects. Following the approach outlined in Section 8
we reuse the standalone interpretations of _rec,io and _⊸,ref to interpret the combined language in
ITstore,io. Finally, we show type safety of this combined language, by building the logical relations
model out of the models for the individual languages.

We stress that our approach here allows us to prove type safety of _rec,io and _⊸,ref separately, and
then prove type safety of the combined language by reusing the logical relations for the individual
languages, thus highlighting the modular nature of the GITrees framework.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:21

1 ∈ B

Ω ⊢ 1 : Bool

= ∈ N

Ω ⊢ = : Nat
Ω ⊢ () : Unit Ω1, 0 : g,Ω2 ⊢ 0 : g

0 : g1,Ω ⊢ 4 : g2

Ω ⊢ _0. 4 : g1⊸g2

Ω1 ⊢ 41 : g1⊸g2 Ω2 ⊢ 42 : g1

Ω1,Ω2 ⊢ 41 42 : g2

Ω1 ⊢ 41 : g1 Ω2 ⊢ 42 : g2

Ω1,Ω2 ⊢ (41,42) : g1⊗g2

Ω1 ⊢ 41 : g1⊗g2 01 : g1, 02 : g2,Ω2 ⊢ 42 : g

Ω1,Ω2 ⊢ let (01,02) = 41 in 42 : g

Ω ⊢ 4 : g

Ω ⊢ alloc(4) : ref g

Ω ⊢ 4 : ref g

Ω ⊢ dealloc(4) : Unit

Ω1 ⊢ 41 : ref g1 Ω2 ⊢ 42 : g2

Ω1,Ω2 ⊢ replace(41, 42) : g1⊗ ref g2

Fig. 9. Type system for _⊸,ref .

9.1 An Affine Programming Language

First, we consider an affine programming language _⊸,ref with references with strong updates,
and show how to interpret it in GITrees in a way that enforces linearity. We then consider the
combination _⊸,ref + _rec,io, which allows us to embed _rec,io programs, including functions, into
_⊸,ref . The syntax for the affine language _⊸,ref is as follows:

g ∈ Type ::= Bool | Nat | Unit | g1⊗g2 | g1⊸g2 | ref g

4 ∈ Expr ::= = | 1 | () | 0 | _0. 4 | 41 42 | (41,42) | let (01,02) = 41 in 42

| alloc(4) | dealloc(41) | replace(41, 42)

To differentiate between the terms of _⊸,ref and the terms of _rec,io, we use the orange color to refer
to types and programs of _⊸,ref . The type system for _⊸,ref is given in Figure 9. Let us explain some
of the details. The language _⊸,ref contains Booleans, natural numbers, and the unit type. It also
features linear functions g1⊸g2. Note that in the typing rule for function application, the context
is split between typing of the function and typing of the argument. This ensures that the function
and its argument do not share any variables or resources in common.

The language also features linear pairs g1⊗g2. In the typing rule for pairs the typing environment
has to be split between the two components. This ensures that we cannot have, e.g., pairs of the
form (G,G).

Finally, the language features references with strong updates, i.e., references that can store values
of different types. The constructors alloc and dealloc are used to allocate and free the references,
respectively. To ensure linearity, we have a single operation that combines reading from a reference
and performing a strong update. The program replace(A, E) reads the value that is stored in the
reference A and updates it to the value E . It then returns a linear pair consisting of the old value
and the reference itself, allowing one to reuse the reference later on.
The meaning of _⊸,ref is given by the interpretation function J4Kd : IT� (�), where d is the

environment mapping the free variables of 4 to GITrees, and where � is a signature which contains
the higher-order store effects (Example 3.2). We assume that the ground type� contains, in addition
to natural numbers and the unit type, the type Loc of locations. The semantic interpretation of
_⊸,ref is given in Figure 10. In the interpretation of compound expression we split the environment
d into the environments d1 and d2, for the free variables of 41 and 42 respectively.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:22 Dan Frumin, Amin Timany, and Lars Birkedal

J1Kd ≜

{

Ret(1) if b = true

Ret(0) otherwise
J()Kd ≜ Ret(())

J=K ≜Ret(=) J_0. 4Kd ≜ Fun(next(_U. J4Kd [0 ↦→U]))

J0Kd ≜ Force(d (0)) J41 42Kd ≜ LetG = J42Kd2 in

J41Kd1 • Thunk(G)

Jlet (01,02) = 41 in 42Kd ≜ LetG = J41Kd1 in

Let~ = Thunk(c1 (G)) in

Let I = Thunk(c2 (G)) in

J42Kd2 [01 ↦→~,02 ↦→I]

J(41,42)Kd ≜ (J41Kd2 , J42Kd2)

Jalloc(4)Kd ≜ LetG = J4Kd in Alloc(G,Ret) Jdealloc(4)Kd ≜ get_ret(J4Kd ,Dealloc)

Jreplace(41, 42)Kd ≜ Let~ = J42Kd2 in get_ret(J41Kd1 , _ℓ . LetG = Read(ℓ) in

Write(ℓ,~) ; (G,Ret(=)))

Fig. 10. Interpretation of _⊸,ref .

In order to ensure that the variables from the context Ω are used at most once, we wrap every
variable in a thunk which can be evaluated at most once:

Thunk(U) ≜ Alloc
(

(0), _ℓ . Fun(next(__. If (Read(ℓ), Err(!8=),Write(ℓ,Ret(1)) ; U)))
)

Force(U) ≜ U • Ret(0)

When we called a thunked GITree for the second time, it will return the error Err(!8=), signifying
that we broke the linearity condition. Here we assume that we have a separate error state !8= ∈
Error, because we want to treat linearity condition errors separate from type errors or memory
safety errors. As such, in the interpretation of a function application we put the argument in a
Thunk, and whenever we use the argument (or any affine variable) we then have to Force it.

We can show that if we have a well-typed program, then it does not have any run-time errors,
and that all the thunks are evaluated at most once:

Proposition 9.1. Suppose that ⊢ 4 : g , and suppose that (f, J4K) ⇝∗ (f ′, V). Then V ≠ Err(4AA).

To prove Proposition 9.1 we use a logical relation, given in Figure 11, defined similarly to the
logical relation from Section 7. The interpretationVJ−K of the base types cover the appropriate
subsets of natural numbers. Reference types are interpreted using the “pointsto” ℓ ↦→ UE proposition,
and affine pairs are interpreted component-wise. The main differences to note here are: (1) variables
in _⊸,ref are interpreted as thunks, and thus we adjust the interpretation V∗JΩK to account for
that; (2) values in _⊸,ref can be used at most once; hence the value interpretation is not persistent,
i.e., there is no persistently modality □ in the interpretation of function types.

Lemma 9.2 (Fundamental property). For any expression 4 , if Ω ⊢ 4 : g , then Ω |= _d. JUKd : g .

We prove the fundamental property by induction on the typing derivation. More specifically,
for each typing rule we prove an associated compatibility lemma, by replacing expressions with
interaction trees and the derivability ⊢ with validity |=. For example, the compatibility lemma for
dealloc looks as follows:

Lemma 9.3. Suppose that Ω |= U : ref g . Then Ω |= _d. get_ret(U (d),Dealloc) : Unit.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:23

VJUnitK(VE) ≜ VE = Ret(()) VJNatK(VE) ≜ ∃= ∈ N. VE = Ret(=)

VJg1⊸g2K(VE) ≜ ∀UF .VJg1K(UF) −∗ EJg2K(VE • UF) VJBoolK(VE) ≜ VE = Ret(0) ∨ VE = Ret(1)

VJref gK(VE) ≜ ∃ℓ ∈ Loc, UE .
(

VE = Ret(ℓ))
)

∗

ℓ ↦→ UE ∗ VJgK(UE)

VJg1⊗g2K(VE) ≜ ∃WE, XE . VE = (WE, XE) ∗

VJg1K(WE) ∗ VJg2K(XE)

EJgK(U) ≜ heap_ctx −∗ wp U
{

VE .VJgK(VE)
}

protected(Φ) (VE) ≜ wp Force(VE)
{

Φ
}

V∗JΩK(d) ≜ ∀(0 : g) ∈ Ω. protected(VJgK) (d (0)) Ω |= U : g ≜ ∀d.V∗JΩK(d) =⇒ EJgK(U (d))

Fig. 11. Logical relation for _⊸,ref .

Proving all the compatibility lemmas is relatively straightforward using the separation logic
rules. Having separate compatibility lemmas will be useful for us in the next section.
By combining the fundamental property with the safety theorem for the weakest precondition

calculus (Theorem 6.2) we obtain a proof of Proposition 9.1.

Safety for _rec,io. Similar to the logical relation for safety for _⊸,ref , we define a logical relation
for _rec,io. It is simply an unary version of the logical relation from Section 7. For example, the
expression relation is defined as

EJg ′K(U) ≜ ∀f ′ . has_state8 (f
′) −∗ wp U

{

VE . ∃f
′
1.VJg ′K(VE) ∗ has_state8 (f

′
1)
}

where has_state8 tracks the state for the input/output effects. We omit the other details here and
direct an interested reader to the Coq formalization. We only note that just like for _⊸,ref , we split
the proof of the fundamental property into compatibility lemmas, which we will use in the next
section.

9.2 Interoperability Between Languages

Following the approach of [Patterson et al. 2022], we allow the interaction between the languages
_rec,io and _⊸,ref , using the guarded interaction trees as the “common ground”, combining the effects
of the two languages. At the syntactic language level, this is done by allowing one to embed the
expressions of _rec,io into the _⊸,ref programs. The embedding is given by the following typing
rule:4

typed-conv

⊢ 4 : g ′ g ′ ∼ g

Ω ⊢ L4Mg ′∼g : g

The crucial ingredient for the interaction is a type conversion relation g ′ ∼ g stating that the _rec,io
type g ′ is convertible to the _⊸,ref type g .
We have the following type conversions:

Nat ∼ Nat Nat ∼ Unit Nat ∼ Bool
g ′1 ∼ g1 g ′2 ∼ g2

(Nat → g ′1) → g ′2 ∼ g1⊸g2

The first three type conversions say that we can freely convert between integers, Booleans, and
the unit type (since all of them have similar internal representation). The last conversion is more
interesting. It says that we can convert between affine functions and non-affine functions. The
affine argument g1 is represented as a thunk (Nat → g ′

1
), which we will protect at runtime to

4For simplicity, we only consider one-way embeddings from _rec,io to _⊸,ref , and we only consider embeddings of closed

terms. This simplifies the type system, but does not lead to loss of expressivity, since we allow type conversions of functions.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:24 Dan Frumin, Amin Timany, and Lars Birkedal

ensure that it is not invoked more than once. The type Nat is used in lieu of the unit type which is
absent from _rec,io.

Glue code for conversion functions. In order to (1) convert between different types, and (2) ensure
the linearity of _⊸,ref programs that might cross the boundary to _rec,io, we need to interpret
embedded terms with additional glue code. For every type conversion g ′ ∼ g we generate recursively
a pair of conversion functions �g ′,g and �g,g ′ which convert the representations from g ′ to g and
vice versa. The glue code for converting between the base types ensures that the underlying natural
number representation stays within the range. For example, for Nat ∼ B we have:

�Nat,Bool (U) ≜ If (U,Ret(1),Ret(0)) �Bool,Nat (U) ≜ U

The glue code for converting functions is a bit more involved:5

� (Nat→g ′
1
)→g ′

2
,g1⊸g2 (U) ≜ Let? = U in

Fun(next(_G. Let~ = �g1,g
′
1
(Force(G)) in�g ′

2
,g2 (? • Thunk(~))))

�g1⊸g2,(Nat→g ′
1
)→g ′

2
(U) ≜ Let? = U in Let?′ = Thunk(?) in

Fun(next(_G . Let 5 = Force(?) in Let~ = �g ′
1
,g1 (Force(G)) in�g ′

2
,g2 (5 • Thunk(~))))

When we convert a function, we need to recursively convert the argument and the result; in
addition the argument to the function needs to be protected with a Thunk. Furthermore, when
affine functions are converted to non-affine ones, we need to protect the function itself with a
Thunk, to ensure that the function is not invoked multiple times. Calling an affine function multiple
times might be unsound, e.g., calling the following function twice will attempt to deallocate an
already deallocated reference:

(_ℓ. __. (__. 7) dealloc(ℓ)) (alloc(42)) : Unit⊸Nat.

Partial safety for the combined language. We interpret the combined language with embeddings
using the glue code. The embedding from _rec,io to _⊸,ref is interpreted as follows:

JL4Mg ′∼gKd = �g ′,g (IOJ4K),

where IOJ−K is the interpretation function for _rec,io expressions from Section 5. The interpretation
for all the operations, except for the embedding, remains unchanged.
Using the modular approach we described in Section 8, we interpret the extended language

_rec,io + _⊸,ref into the guarded interaction trees ITstore,io with the signature that combines the
input/output effects and the store effects. This ensures that the interpretation of the languages end
up in the same domain, where they can interact. By combining the reifiers for the effects of the
individual languages we also get the reduction relation ((f1, f

′
1
), U) ⇝ ((f2, f

′
2
), V), where f1 and

f2 are stores, and f
′
1
and f ′

2
are input/output tapes.

Of course, in the combined language with conversions, our programs can actually violate the
linearity condition, since it is no longer enforced by the type system. However, we can prove that
linearity violations at the boundary are the only errors that we will possibly get. Thus we will to
prove the following safety theorem:

Theorem 9.4. Suppose that ⊢ 4 : g with the embedding rule, and suppose that ((f1, f
′
1
), J4K) ⇝∗

((f2, f
′
2
), V). Then either V is not an error, or V = Err(!8=).

5The glue code for functions is a bit more complicated than in [Patterson et al. 2022]. Specifically, they do not protect the

converted affine functions. This is fine in their setting, because their affine functions are pure, and invoking them multiple

times does not lead to run-time errors. However, in the presence of references with strong updates this assumption is no

longer true, and not protecting the converted functions will lead to unsound behavior!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:25

9.3 Logical Relations for the Combined Safety

We will prove Theorem 9.4 by constructing a logical relation similarly to what we did for the
individual languages in Section 9.1. Our goal is to do so modularly, by reusing as much material
from Section 9.1 as possible. In particular, we will reuse all the compatibility lemmas we used to
prove Lemma 9.2, and only prove one (!) new compatibility lemma for typed-conv. Letting EJg ′K and
EJgK be the expression relations for the logical relation for _rec,io and _⊸,ref resp., this compatibility
lemma is:

Lemma 9.5. Suppose that EJg ′K(U) and g ′ ∼ g . Then EJgK(�g ′,g (U)). Moreover, for the other

direction, suppose that EJgK(U) and g ′ ∼ g . Then EJg ′K(�g,g ′ (U)).

When we presented the separation logic and logical relations earlier, we presented a slightly
simplified version which was sufficient for our purposes. However, in order to prove Lemma 9.5 we
need to make use of features that we have not yet presented. We describe those features now.

Separation logic for weak safety. The first feature is that our notion of weakest precondition is
actually parameterized by a stuckness predicate B : Error → iProp, and satisfies the following rule
(in addition to the rules presented in Section 6):

B (4) ⊢ wpB Err(4)
{

Φ
}

This means that if the stuckness predicate B holds for some error 4 , then the weakest precondition
predicate holds for that error, irrespectively of the postcondition. The earlier presented weakest
precondition, which did not allow for errors, is obtained by using B (4) = False. The general weakest
precondition with the stuckness predicate satisfies a version of the adequacy/safety property
(Theorem 6.2), in which the (safety) condition is replaced with the following condition:

• (weak safety) either there are V1 and f1 such that (V, f ′) ⇝ (V1, f1), or V = Err(4) with 4
satisfying the predicate B .

All the logical relations presented earlier are actually parameterized by a predicate B and uses
wpB U

{

Φ
}

in the expression interpretation — to recover the earlier stated theorems for full safety
we simply instantiate the logical relations with B = _4. False.

Freely adjoined Kripke structure. In addition to the stuckness bit, we actually formulate our logical
relations a bit more generally than what we have shown so far. This is because in the logical
relations for individual languages require particular resources that we need to combine when
constructing a logical relation for the combined language.
Indeed, to ensure that our logical relations are sufficiently modular, we parameterize the ex-

pression relation by an arbitrary predicate % : � → iProp of an arbitrary type �. We refer to this
predicate % as freely adjoined Kripke structure (because, in the underlying model of Iris, it allows
us to make arbitrary transitions between worlds, constrained by the predicate %). The general
definition of the expression relation for all our logical relation is thus:

E%
B (Φ) (U) ≜ ∀G : �. % (G) −∗ wpB U

{

VE . ∃~ : �.Φ(VE) ∗ % (~)
}

.

The idea is that the % parameter describes additional resources (for other effects) and ensures that
ITrees in the expression relation preserve any such additional resources. The idea is akin to the
“baking-in” of the frame rule in models of separation logic for higher-order languages [Birkedal
et al. 2008; Birkedal and Yang 2008].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:26 Dan Frumin, Amin Timany, and Lars Birkedal

The expression relations for individual languages _rec,io and _⊸,ref are then both parameterized
by predicates % : � → iProp and B : Error → iProp and defined as

EJg ′K(U) ≜ E
_ (f ′,G) . has_state8 (f

′)∗% (G)
B (VJg ′K) (U)

EJgK(U) ≜ E
_G. heap_ctx∗% (G)
B (VJgK) (U).

For _rec,io and for _⊸,ref we prove the compatibility properties for arbitrary % and B (in the proofs
of the compatibility lemmas, the resources described by % are just passed through). We obtain full
safety for the individual languages by instantiating % with _G. True and B with _4. False.
When we prove partial safety for the combined language, we reuse the same logical relations

and the same compatibility lemmas for the individual languages, by instantiating % in EJg ′K with
% (G) = heap_ctx, and by instantiating % in EJgKwith % (G) = has_state8 (G), and B with _4. (4 = !8=)
in both cases. Then, to prove the fundamental property of the combined language we can reuse
the compatibility lemmas for individual languages, and it only remains to prove the compatibility
Lemma 9.5 for the type conversion.
The most interesting case of Lemma 9.5 is the conversion between functions, which involves

showing soundness of the glue code. The interpretation of non-affine functions is persistent,
as it begins with □, since it is expected that you can use non-affine functions multiple times.
The interpretation of affine functions, however, is not persistent — functions can be invoked
only once. Because of that, we cannot directly use the interpretation VJg1⊸g2K when proving
VJ(Nat → g ′

1
) → g ′

2
K. Instead, we put the interpretation of the affine function in a persistent

invariant, which states:

(ℓ ↦→ Ret(0) ∗ VJg1⊸g2K(UE)) ∨ (ℓ ↦→ Ret(1)) .

This describes when the affine function UE is protected with the Thunk via a reference ℓ : either
the function has not been invoked yet (ℓ ↦→ Ret(0)) and it satisfies the value interpretation, or the
function has already been invoked (ℓ ↦→ Ret(1)) and forcing its thunk will result in Err(!8=), in
which case we do not invoke the function. (As a side remark, we note that we here crucially rely
on Iris’s powerful notion of invariants — this is another example of why it is advantageous to use
Iris as the basis for our separation logic.)
Having established the compatibility lemma for type conversions, and the compatibility lem-

mas for the operations for each individual language, we prove the fundamental property for the
logical relation for the combined language. In particular, for a closed term ⊢ 4 : g we obtain

E
_G. heap_ctx∗has_state8 (G)

_4. 4=!8=
(VJgK) (J4K). From the adequacy property of the weakest precondition we

can then conclude Theorem 9.4.
In summary, this approach to logical relations, with freely adjoined Kripke structure as a param-

eter, allows us to scale proofs to interoperability between multiple different languages in a modular
way. For each individual language we can prove safety separately (without knowing in advance
with which other languages we are going to interface). Then we can combine logical relations for
individual languages together, by instantiating the freely adjoined Kripke structure with the shared
resources or with resources needed to verify the glue code, and reusing the compatibility lemmas.

10 DISCUSSION AND RELATED WORK

We have already discussed a lot of related work throughout the paper; in this section we include
some further discussion of related work.

Differences with interaction trees. Whilst our work takes direct inspiration from the interaction
trees approach, there are some crucial differences. One of the main difference comes from the
treatment of effect reification. The original type of interaction trees is a monad, and the effects in

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:27

an interaction tree can be reified “in one go”, for example, with a state monad transformer over
ITrees. In our case, we cannot reify all the effects in a guarded interaction tree, due to higher-order
functions and higher-order effects. For example, a guarded interaction tree can be a function that
contains latent effects, but these effects can only be reified at the point when the function is invoked.
Because regular interaction trees contain only first-order structures, it is possible to traverse them
completely, reifying all the effects.
Another difference worth mentioning, is that regular interaction trees can be extracted and

executed from Coq. Our formalization cannot be directly extracted, as it is built upon a layer
of guarded type theory. One potential approach would be to erase the guarded parts from the
formulation of GITrees and obtain that way a representation of GITrees in a functional language
like OCaml or Haskell, which already supports mixed-variance datatypes. Then, the extraction can
be set up in such a way as to use this representation. We have not researched this direction and
leave it to future work.

Finally, an important difference between our work and that on ITrees, is that the ITrees develop-
ment relies heavily on the weak bisimilarity theory of interaction trees, while we opt for developing
separation logic and refinements instead. There are several things that complicate the study of
bisimilarity for guarded interaction trees. Firstly, the higher-order nature of GITrees suggests that
we need to study a more involved notion of behavioral equivalence, like applicative bisimilarity.
Secondly, we believe that developing a theory of weak bisimilarity in the context of Iris and guarded
type theory is still an open question, complicated by issues with step-indices. For these reasons we
believe that developing weak applicative bisimularity for guarded interaction trees will require
new techniques and we leave it for future work.

Differences with the standard Iris approach to verification. The standard Iris-based approach to
separation logic [Jung et al. 2016, 2015; Krebbers et al. 2017a] is based on operational semantics, and
has been proven to scale well to complicated programming language features. The main difference
with our work, is that we are the first to build an Iris-based separation logic over denotational
semantics, in a way that is tightly integrated with the existing Iris ecosystem. In particular, we rely
on the Iris ecosystem for various data structures, resource algebras, base logic (but not the program
logic), and the Iris Proof Mode. As such, in terms of reasoning about specific concrete programs,
the GITrees-based approach is not that different from what a normal Iris user expects, with the
added advantage of using equational reasoning for many computation steps that usually requires
some form of symbolic execution.

The main advantage of our approach comes into play when we want to consider new models of
programming languages, or reasoning about programs with combinations of effects (as in Section 8),
or reasoning about interoperability (as in Section 9).

Domain theory and guarded type theory. Guarded type theory [Birkedal and Møgelberg 2013;
Bizjak et al. 2016] has been studied as a setting for domain theory before [Birkedal et al. 2012;
Møgelberg and Paviotti 2019; Møgelberg and Vezzosi 2021; Paviotti et al. 2015], but previous works
mostly focused on specific typed models and was not formalized. In contrast, here we work with
guarded interaction trees as a “universal domain”, similar to domain theoretic models of untyped
_-calculus.
The previous work used (dependent) guarded type theory not just for modeling, but also for

reasoning about programs. This required a more complicated type theory and precluded the work
from being formalized in a traditional proof assistant like Coq. By contrast, our reasoning is done
in the logic over a guarded type theory. This is arguably simpler, and allowed us to make use of Iris
and formalize all of our results in Coq.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

12:28 Dan Frumin, Amin Timany, and Lars Birkedal

Logical relations and language interoperability. Our case study on language interoperability in
Section 9 is inspired by the seminal work of Patterson et al. [2022]. We believe that the approach we
take in our work is more modular. Firstly, our approach here is less syntactic, as we use the domain
theory of guarded interaction trees as the common setting for interpreting different languages with
different effects, and we do not need to come up with a target language for each pair of source
languages for which we wish to set up interoperability. Secondly, the models that we construct
for individual languages are “local”, and that is exactly what allows for true reuse of proofs and
for constructing a common model for the combined language from the individual models. This
opens up the possibility of a model for a single language to be reused for different cross-language
interactions. In contrast, the type safety of individual source languages in [Patterson et al. 2022]
requires to have a model for the combined language in advance. And finally, the treatment of effects
and step-indices is more abstract and high-level in our work, since we construct our models using
separation logic.

(Guarded) Interaction Trees and Algebraic Effects and Handlers. The treatment of effects in in-
teraction trees is reminiscent of effects in programming languages based on algebraic effects and
handlers [Bauer and Pretnar 2015; Plotkin and Pretnar 2013]. Algebraic effects and handlers have
been extensively studied in various contexts, including separation logic [de Vilhena and Pottier
2021], and both higher-order effects [Bach Poulsen and van der Rest 2023; van den Berg et al. 2021;
Wu et al. 2014] and reasoning about combinations of effects [Johann et al. 2010; Yang and Wu
2021] have been investigated. Despite the aesthetic and moral similarities to (guarded) interaction
trees, there are some substantial differences between the two approaches. Under algebraic effects
and handlers, both the representation and reification of effects is done inside the programming
language. As such, a particular theory and implementation of algebraic effects is always tied to a
specific programming language. Whereas in the interaction trees-based approach, the effects are
handled in the ambient type theory, outside the type of the (guarded) interaction trees itself. See
also the discussion in [Xia et al. 2019, Section 8.2].

To our knowledge, the two approaches have not been formally compared. It would be interesting
to consider a denotational model of a programming language with algebraic effects inside guarded
interaction trees, and to see what kind of properties can be proved using such a model.

Additionally, such a comparison might help us understand the exact class of effects that can be
represented with the GITrees-based approach. As it currently stands, our approach to representing
effects is “open-ended”, in the sense that we can consider different classes of effects by varying the
reification procedure. Of course, different classes of effects allow for different reasoning principles.
For example, as we mentioned in the end of Section 4, we consider context-independent effects,
which preclude us from modeling call/cc, but allows us to use the bind rule for the weakest precon-
dition calculus. We leave a formal comparison with algebraic effects and further investigations in
that area to future work.

ACKNOWLEDGMENTS

This work was supported in part by a Villum Investigator grant (no. 25804), Center for Basic
Research in Program Verification (CPV), from the VILLUM Foundation. The authors are grateful to
the anonymous reviewers for their comments and suggestions.

DATA AVAILABILITY STATEMENT

The Coq formalization corresponding to this article is available as a Git repository at https://github.
com/logsem/gitrees/tree/popl24 (tag popl24), or under a permanent DOI at https://doi.org/10.5281/
zenodo.10124427.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

https://github.com/logsem/gitrees/tree/popl24
https://github.com/logsem/gitrees/tree/popl24
https://doi.org/10.5281/zenodo.10124427
https://doi.org/10.5281/zenodo.10124427

Modular Denotational Semantics for Effects with Guarded Interaction Trees 12:29

REFERENCES

Casper Bach Poulsen and Cas van der Rest. 2023. Hefty Algebras: Modular Elaboration of Higher-Order Algebraic Effects.

Proceedings of the ACM on Programming Languages 7, POPL (Jan. 2023), 62:1801–62:1831. https://doi.org/10.1145/3571255

Andrej Bauer and Matija Pretnar. 2015. Programming with Algebraic Effects and Handlers. Journal of Logical and Algebraic

Methods in Programming 84, 1 (Jan. 2015), 108–123. https://doi.org/10.1016/j.jlamp.2014.02.001

Lars Birkedal and Rasmus Ejlers Møgelberg. 2013. Intensional Type Theory with Guarded Recursive Types qua Fixed Points

on Universes. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June

25-28, 2013. IEEE Computer Society, 213–222. https://doi.org/10.1109/LICS.2013.27

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. 2012. First steps in synthetic guarded

domain theory: step-indexing in the topos of trees. Log. Methods Comput. Sci. 8, 4 (2012). https://doi.org/10.2168/LMCS-

8(4:1)2012

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, and Hongseok Yang. 2008. A Simple Model of Separation Logic for

Higher-Order Store. In Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,

Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security and

Cryptography Foundations (Lecture Notes in Computer Science, Vol. 5126), Luca Aceto, Ivan Damgård, Leslie Ann Goldberg,

Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz (Eds.). Springer, 348–360. https://doi.org/10.1007/978-

3-540-70583-3_29

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The Category-Theoretic Solution of Recursive Metric-Space

Equations. Theoretical Computer Science 411, 47 (Oct. 2010), 4102–4122. https://doi.org/10.1016/j.tcs.2010.07.010

Lars Birkedal and Hongseok Yang. 2008. Relational Parametricity and Separation Logic. Log. Methods Comput. Sci. 4, 2

(2008). https://doi.org/10.2168/LMCS-4(2:6)2008

Ales Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2016. Guarded Dependent

Type Theory with Coinductive Types. CoRR abs/1601.01586 (2016). arXiv:1601.01586 http://arxiv.org/abs/1601.01586

Paulo Emílio de Vilhena and François Pottier. 2021. A Separation Logic for Effect Handlers. Proceedings of the ACM on

Programming Languages 5, POPL (Jan. 2021), 33:1–33:28. https://doi.org/10.1145/3434314

Matthias Felleisen and Robert Hieb. 1992. The revised report on the syntactic theories of sequential control and state.

Theoretical Computer Science 103, 2 (1992), 235–271. https://doi.org/10.1016/0304-3975(92)90014-7

Peter Freyd. 1991. Algebraically Complete Categories. In Category Theory (Lecture Notes in Mathematics), Aurelio Carboni,

Maria Cristina Pedicchio, and Guiseppe Rosolini (Eds.). Springer, Berlin, Heidelberg, 95–104. https://doi.org/10.1007/

BFb0084215

Naohiko Hoshino. 2012. Step Indexed Realizability Semantics for a Call-by-Value Language Based on Basic Combinatorial

Objects. In 2012 27th Annual IEEE Symposium on Logic in Computer Science. 385–394. https://doi.org/10.1109/LICS.2012.74

Patricia Johann, Alex Simpson, and Janis Voigtländer. 2010. A Generic Operational Metatheory for Algebraic Effects. In

Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,

United Kingdom. IEEE Computer Society, 209–218. https://doi.org/10.1109/LICS.2010.29

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, Jacques

Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 256–269. https://doi.org/10.1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,

Sriram K. Rajamani and David Walker (Eds.). ACM, 637–650. https://doi.org/10.1145/2676726.2676980

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve

Zdancewic. 2019. From C to Interaction Trees: Specifying, Verifying, and Testing a Networked Server. In Proceedings of

the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2019). Association for Computing

Machinery, New York, NY, USA, 234–248. https://doi.org/10.1145/3293880.3294106

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The Essence

of Higher-Order Concurrent Separation Logic. In Programming Languages and Systems - 26th European Symposium on

Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.).

Springer, 696–723. https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in higher-order concurrent separation logic.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,

January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 205–217. https://doi.org/10.1145/3009837.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

https://doi.org/10.1145/3571255
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1007/978-3-540-70583-3_29
https://doi.org/10.1007/978-3-540-70583-3_29
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.2168/LMCS-4(2:6)2008
https://arxiv.org/abs/1601.01586
http://arxiv.org/abs/1601.01586
https://doi.org/10.1145/3434314
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1007/BFb0084215
https://doi.org/10.1007/BFb0084215
https://doi.org/10.1109/LICS.2012.74
https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855

12:30 Dan Frumin, Amin Timany, and Lars Birkedal

3009855

Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C. Pierce, and Steve Zdancewic.

2022. C4: Verified Transactional Objects. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (April 2022),

80:1–80:31. https://doi.org/10.1145/3527324

Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. ACM SIGPLAN

Notices 42, 1 (Jan. 2007), 3–10. https://doi.org/10.1145/1190215.1190220

Rasmus E. Møgelberg and Marco Paviotti. 2019. Denotational Semantics of Recursive Types in Synthetic Guarded Domain

Theory. Mathematical Structures in Computer Science 29, 3 (March 2019), 465–510.

Rasmus Ejlers Møgelberg and Andrea Vezzosi. 2021. Two Guarded Recursive Powerdomains for Applicative Simulation.

Electronic Proceedings in Theoretical Computer Science 351 (Dec. 2021), 200–217. arXiv:2112.14056 [cs]

Daniel Patterson, Noble Mushtak, AndrewWagner, and Amal Ahmed. 2022. Semantic Soundness for Language Interoperabil-

ity. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI 2022). Association for ComputingMachinery, NewYork, NY, USA, 609–624. https://doi.org/10.1145/3519939.3523703

Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A Model of PCF in Guarded Type Theory. Electronic

Notes in Theoretical Computer Science 319 (Dec. 2015), 333–349.

Andrew M. Pitts. 1996. Relational Properties of Domains. Information and Computation 127, 2 (June 1996), 66–90. https:

//doi.org/10.1006/inco.1996.0052

G. D. Plotkin. 1977. LCF Considered as a Programming Language. Theoretical Computer Science 5, 3 (Dec. 1977), 223–255.

https://doi.org/10.1016/0304-3975(77)90044-5

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science Volume 9,

Issue 4 (Dec. 2013). https://doi.org/10.2168/LMCS-9(4:23)2013

Dana Scott. 1976. Data Types as Lattices. SIAM J. Comput. 5, 3 (Sept. 1976), 522–587. https://doi.org/10.1137/0205037

Lucas Silver, Paul He, Ethan Cecchetti, Andrew K Hirsch, and Steve Zdancewic. 2023. Semantics for Noninterference with

Interaction Trees. (2023).

M. B. Smyth and G. D. Plotkin. 1982. The Category-Theoretic Solution of Recursive Domain Equations. SIAM J. Comput. 11,

4 (Nov. 1982), 761–783. https://doi.org/10.1137/0211062

Birthe van den Berg, Tom Schrijvers, Casper Bach Poulsen, and Nicolas Wu. 2021. Latent Effects for Reusable Language

Components. In Programming Languages and Systems (Lecture Notes in Computer Science), Hakjoo Oh (Ed.). Springer

International Publishing, Cham, 182–201. https://doi.org/10.1007/978-3-030-89051-3_11

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. In Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell (Haskell ’14). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/

10.1145/2633357.2633358

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2019. Interaction Trees: Representing Recursive and Impure Programs in Coq. Proceedings of the ACM on Programming

Languages 4, POPL (Dec. 2019), 51:1–51:32. https://doi.org/10.1145/3371119

Zhixuan Yang and Nicolas Wu. 2021. Reasoning about Effect Interaction by Fusion. Proceedings of the ACM on Programming

Languages 5, ICFP (Aug. 2021), 73:1–73:29. https://doi.org/10.1145/3473578

Kangfeng Ye, Simon Foster, and Jim Woodcock. 2022. Formally Verified Animation for RoboChart Using Interaction Trees.

In Formal Methods and Software Engineering (Lecture Notes in Computer Science), Adrian Riesco and Min Zhang (Eds.).

Springer International Publishing, Cham, 404–420. https://doi.org/10.1007/978-3-031-17244-1_24

Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva, and Steve Zdancewic. 2021. Modular, Compositional,

and Executable Formal Semantics for LLVM IR. Proceedings of the ACM on Programming Languages 5, ICFP (Aug. 2021),

67:1–67:30. https://doi.org/10.1145/3473572

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer, William Mansky, Benjamin

Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In 12th

International Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

32:1–32:19. https://doi.org/10.4230/LIPIcs.ITP.2021.32

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 12. Publication date: January 2024.

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3527324
https://doi.org/10.1145/1190215.1190220
https://arxiv.org/abs/2112.14056
https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1006/inco.1996.0052
https://doi.org/10.1006/inco.1996.0052
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1137/0205037
https://doi.org/10.1137/0211062
https://doi.org/10.1007/978-3-030-89051-3_11
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3473578
https://doi.org/10.1007/978-3-031-17244-1_24
https://doi.org/10.1145/3473572
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	Abstract
	1 Introduction
	2 Iris Logic over Guarded Type Theory
	3 Guarded Interaction Trees
	3.1 Recursion Principle for Guarded Interaction Trees
	3.2 Programming with GITrees

	4 Reification of Effects and Reductions of GITrees
	5 Modeling a Higher-Order Effectful Programming Language
	6 Separation Logic over GITrees
	6.1 Weakest Precondition Rules
	6.2 Domain-Specific Logic for Higher-Order Store

	7 Computational Adequacy for rec,io
	8 Modular Reasoning About Combinations of Effects
	9 Type Safety for Cross-language Interoperability
	9.1 An Affine Programming Language
	9.2 Interoperability Between Languages
	9.3 Logical Relations for the Combined Safety

	10 Discussion and Related Work
	Acknowledgments
	References

