
An Iris Instance for Verifying CompCert C Programs

WILLIAM MANSKY, University of Illinois Chicago, USA

KE DU, University of Illinois Chicago, USA

Iris is a generic separation logic framework that has been instantiated to reason about a wide range of

programming languages and language features. Most Iris instances are defined on simple core calculi, but

by connecting Iris to new or existing formal semantics for practical languages, we can also use it to reason

about real programs. In this paper we develop an Iris instance based on CompCert, the verified C compiler,

allowing us to prove correctness of C programs under the same semantics we use to compile and run them.

We take inspiration from the Verified Software Toolchain (VST), a prior separation logic for CompCert C, and

reimplement the program logic of VST in Iris. Unlike most Iris instances, this involves both a new model of

resources for CompCert memories, and a new definition of weakest preconditions/Hoare triples, as the Iris

defaults for both of these cannot be applied to CompCert as is. Ultimately, we obtain a complete program logic

for CompCert C within Iris, and we reconstruct enough of VST’s top-level automation to prove correctness of

simple C programs.

CCS Concepts: • Software and its engineering→ Software verification.

Additional Key Words and Phrases: program verification, concurrent separation logic, interactive theorem

proving, Verified Software Toolchain, Iris

ACM Reference Format:
William Mansky and Ke Du. 2024. An Iris Instance for Verifying CompCert C Programs. Proc. ACM Program.
Lang. 8, POPL, Article 6 (January 2024), 27 pages. https://doi.org/10.1145/3632848

1 INTRODUCTION
Iris [Jung et al. 2015], a language-independent framework for concurrent separation logic (CSL)

proofs in Coq [Coq Development Team 2023], has been the platform for a wide range of recent

research projects: on distributed systems [Krogh-Jespersen et al. 2020], weak memory [Dang et al.

2019; Kaiser et al. 2017], crash safety [Chajed et al. 2019], and many more. Most instantiations of

Iris use simple core calculi capturing the key features of interest (shared memory, message passing,

weak-memory concurrency, etc.), but several model code in (fragments of) real languages, including

Go [Chajed et al. 2019], Rust [Jung et al. 2017], C [Sammler et al. 2021], and WebAssembly [Rao

et al. 2023]. Most of these instances use ad-hoc language semantics developed for Iris, and in many

cases their code cannot even be run—they are relational models of the languages, not executable

semantics or interpreters. A notable exception is Iris-Wasm [Rao et al. 2023], which is built on an

existing formal semantics derived from the WebAssembly reference interpreter [Watt et al. 2021].

In this paper, we instantiate Iris with the C semantics of CompCert [Leroy 2009], a verified compiler

for a large subset of C. This allows us to use Iris to verify real-world C programs that can then be

compiled with CompCert and executed, using the same semantics for the separation logic and the

verified compilation. This is probably the largest instantiation of Iris with a pre-existing semantics,

and certainly the first attached to a verified compiler.

Authors’ addresses: William Mansky, mansky1@uic.edu, University of Illinois Chicago, USA; Ke Du, kdu9@uic.edu,

University of Illinois Chicago, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART6

https://doi.org/10.1145/3632848

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0002-5351-895X
HTTPS://ORCID.ORG/0009-0008-2465-1082
https://doi.org/10.1145/3632848
https://orcid.org/0000-0002-5351-895X
https://orcid.org/0009-0008-2465-1082
https://doi.org/10.1145/3632848

6:2 William Mansky and Ke Du

There is already a Coq-based separation logic verifier for CompCert C: the Verified Software

Toolchain (VST) [Appel et al. 2014]. However, compared to Iris, the design of VST is quite monolithic:

almost all of its development is specific to C, and Hoare rules are proved directly on the heap model,

making it quite hard to maintain and extend. In contrast, the flexible design of Iris has allowed

various extensions to both the model (transfinite step-indexing [Spies et al. 2021], later credits [Spies

et al. 2022], etc.) and the verification interface (Diaframe [Mulder et al. 2022], Lithium [Sammler

et al. 2021], etc.). In this work, we obtain the best of both worlds by rebuilding the program logic of

VST on top of Iris, exporting exactly the same Hoare rules and adequacy theorems as VST from

our Iris-based logic. Our logic can prove correctness of any program that can be verified with VST,

and gives the same guarantee of correctness on executing programs; at the same time, it makes

free use of the logical innovations of Iris, and can more easily be connected to other pieces of the

extensive Iris ecosystem.

Instantiating Iris with CompCert C presents several theoretical challenges. First, we need a

model that can substantiate our logic. The model of Iris assertions is quite simple and generic: a

map from indices to arbitrary resource algebras (also called cameras), describing all the state that

assertions in the logic will reason on. For program verification, Iris developments usually include in

this map a heap algebra relating the physical memory of the program directly to points-to assertions

in the logic. In a logic for CompCert C, there is reason to make this relation more complex than

usual: CompCert includes permissions on each memory location, which have a clear but nontrivial

relationship to ownership shares in separation logic, and also treats special values like function

pointers differently from standard values.

Second, we need to define the notion of safety that will be used to construct our Hoare triples.

This involves defining in the logic what it means for a program to satisfy a pre- and postcondition,

and is usually stated in terms of the small-step operational semantics of the programming language.

In CompCert and VST, the step relation includes a notion of external function calls, used to implement

separate compilation, concurrency, and other features: these external calls must be reflected in the

semantics that we reason over, and taken into account when proving adequacy of the logic.

Finally, we must prove soundness of our program logic rules against our definition of safety.

The outline of these proofs follows VST, but the proofs themselves are significantly different:

while VST unfolds the definition of the program logic and reasons directly on representations of

logical memories, the Iris approach allows us to prove Hoare rules entirely within the logic itself.

Compared to standard Iris developments, VST’s proof rules include some unusual complexities:

for instance, VST uses a type system in the program logic to ensure that expressions evaluate

correctly. C programs also start with some nontrivial state initialized before the beginning of the

main function (e.g., global variables), which we reflect in a standard precondition for main to allow

users to reason about this state in their proofs.

In summary, our contributions are:

• We define a resource algebra for heap resources suitable for CompCert’s permission model,

including a new generic algebra for possibly-unreadable ownership of resources.

• We adapt Iris’s definition of weakest preconditions and Hoare triples to our resource model,

and to CompCert’s C semantics.

• We re-prove the rules of Verifiable C verbatim on top of our Iris-based logic, giving us a

program logic in Iris for CompCert C with the same correctness guarantees as VST.

• We adapt enough of VST’s automation to prove correctness of simple C programs using our

new logic, and demonstrate that the proof scripts are almost unchanged from VST’s, except

where we may use Iris tactics to make proofs easier.

All definitions and theorems in the paper are formalized in Coq.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:3

The paper is structured as follows. In section 3, we present the model of our logic, and define

the basic points-to predicate. In section 4, we define safety via a weakest precondition assertion,

and prove the adequacy theorem that relates the logic to CompCert’s semantics. In section 5, we

re-prove the Hoare rules of VST on top of our logic, giving us a working program logic for C. In

section 6, we apply our logic to some of VST’s example programs. In section 7.1, we discuss the

structure of our Coq development and compare it to the corresponding components of VST. In

sections 8 and 9, we review related work and discuss potential applications and extensions.

A note on concurrency. Separation logics in Iris are naturally concurrent, but CompCert’s seman-

tics are strictly sequential. Thus, while the program logic we present in this work could easily be

adapted to concurrency, our adequacy result only applies to sequential programs, and our logic

should be considered a sequential logic. We discuss in section 9.1 some possible pathways to a

concurrent separation logic for (a concurrent extension of) CompCert C.

2 BACKGROUND
2.1 Iris
Iris [Jung et al. 2018] is a language-independent separation logic framework implemented in the Coq

theorem prover [Coq Development Team 2023]. Its key innovation is a very generic formulation

of ghost state, abstract logical state that is used in proofs to model features of the program under

consideration that are not explicit in the semantics, such as protocols for access to shared resources.

Iris defines a form of step-indexed resource algebra, called a camera, that behaves “enough like a

heap” to be targeted by separation logic assertions, and then defines a generic separation logic on

an arbitrary collection of cameras. Crucially, because step-indexing is built into the definition of

cameras, they can be used as higher-order ghost state: they can contain program logic assertions,

Hoare triples, state machines where each state is associated with an assertion, and a wide range of

other useful constructions.

(𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐) 𝑎 · 𝑏 = 𝑏 · 𝑎 |𝑎 | · 𝑥 = 𝑥 | |𝑎 | | = |𝑎 |

𝑎 ⪯ 𝑏 ⇒ |𝑎 | ⪯ |𝑏 | ✓(𝑎 · 𝑏) ⇒ ✓𝑎

where 𝑎 ⪯ 𝑏 ≜ ∃𝑐. 𝑏 = 𝑎 · 𝑐

Fig. 1. Iris cameras

A camera consists of a carrier set 𝑆 , a validity predicate ✓, a core operation | · |, and an operator ·
that together satisfy the rules shown in Figure 1. The key feature is the associative, commutative

operator ·, which is used to implement separating conjunction of resources. The core |𝑥 | of a
resource represents persistent information that can be arbitrarily duplicated once learned: for

instance, in an algebra of transition systems, |𝑞 | represents the knowledge that the system is in a

state reachable from state 𝑞. Finally, in separation logic proofs, we are only allowed to own valid
elements of the camera: this allows us to rule out the coexistence of particular elements, e.g., to

declare that two threads cannot both have full ownership of the same memory location.

Cameras are injected into the separation logic via the ghost state ownership assertion 𝑎
𝛾
, where

𝑎 is an element of a camera and 𝛾 is a ghost name where the element is held (analogous to a memory

location in a physical heap). Some of the rules of ghost state ownership are shown in Figure 2. We

can allocate new ghost state containing any valid element 𝑎 of a camera at any point in a program.

We can also change the value of ghost state using a frame-preserving update, written as ⇝: we can

change 𝑎 to 𝑏 as long as any frame 𝑐 consistent with 𝑎 is also consistent with 𝑏, i.e., the change

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:4 William Mansky and Ke Du

𝑎
𝛾 ∗ 𝑏

𝛾 ⊣⊢ 𝑎 · 𝑏 𝛾
𝑎

𝛾 ⊢ ✓𝑎

alloc

✓𝑎

emp ⊢ |⇛∃𝛾 . 𝑎 𝛾
update

𝑎 ⇝ 𝑏

𝑎
𝛾 ⊢ |⇛ 𝑏

𝛾

where 𝑎 ⇝ 𝑏 ≜ ∀𝑐. ✓(𝑎 · 𝑐) ⇒ ✓(𝑏 · 𝑐)

Fig. 2. Ghost state ownership

from 𝑎 to 𝑏 does not invalidate any possible frame. The separation logic operator |⇛ means “true

under a frame-preserving update”, and is incorporated into program logics through an extended

rule of consequence:

conseq

𝑃 ⇛ 𝑃 ′ {𝑃 ′} 𝑐 {𝑄 ′} 𝑄 ′ ⇛ 𝑄

{𝑃} 𝑐 {𝑄}
where 𝑃 ⇛ 𝑄 is shorthand for 𝑃 ⊢ |⇛𝑄 . In other words, we can freely perform frame-preserving

updates to ghost state (“view shifts”) at any point in a verification.

As an example of ghost state, consider the common proof pattern in which one party holds

authoritative knowledge of the current state of a resource, and another party holds partial knowledge

of one aspect of the state. For any camera𝑅, we can define the authoritative camera on𝑅 as containing

elements of type 𝑅? ×𝑅?
, with validity defined such that ✓(𝑎, 𝑏) ⇔ 𝑏 ⪯ 𝑎. Then •𝑎 ≜ (𝑎,⊥) can be

used to represent the authoritative value of a resource, and ◦𝑎 ≜ (⊥, 𝑎) can represent a fragmentary
or partial value, with a guarantee that if one party knows •𝑎 and another party knows ◦𝑏, then
𝑏 ⪯ 𝑎. This algebra allows frame-preserving updates that simultaneously modify the authoritative

and fragmentary parts of the resource: for instance, if 𝑅 is the algebra of key-value maps and

𝑘 ∉ dom(𝑚), then •𝑚 · ◦𝑛 ⇝ •𝑚[𝑘 ↦→ 𝑣] · ◦𝑛[𝑘 ↦→ 𝑣], allowing us to use a view shift to add a new

key to the authoritative map and a client’s knowledge of the map simultaneously.

Another common use of ghost state, and specifically higher-order ghost state, is to implement

separation-logic invariants that are true at every step of a program’s execution. The construction

of invariants is somewhat complicated (see Jung et al. [2018]), but it rests on the agreement algebra,
defined such that ✓(agree(𝑎) · agree(𝑏)) ⇔ 𝑎 = 𝑏. By instantiating this algebra with separation

logic assertions, we can define an assertion 𝐼
𝜄
that stores an assertion 𝐼 for access by any party at

any time, as long as the accessing party restores 𝐼 by the end of the operation. The name 𝜄 is used to

identify the invariant and ensure that it is not opened while already open; Hoare triples in Iris are

indexed by a set E of enabled invariants, and invariants are accessed through amask-changing view
shift ⇛E E′

,where for instance 𝑃 ∗ 𝐼
𝜄

⇛E E\{𝜄}𝑄 is effectively equivalent to 𝑃 ∗ 𝐼 ⇛ 𝑄 (i.e., the

view shift ⇛E E\{𝜄}
allows us to open the invariant 𝜄). This kind of view shift is similarly reflected in

an extended rule of consequence, where all invariants can be accessed and then restored between

program steps, and is also used in the specification of atomic program operations, which can access

invariants during their execution and restore them afterwards.

2.2 The Verified Software Toolchain
The Verified Software Toolchain (VST) [Appel et al. 2014] is, like Iris, a Coq-based separation logic

verification system. It has its own generic framework for separation logic, but the vast majority of its

development is specialized to one particular programming language: Clight, the first intermediate

language of the CompCert verified compiler [Leroy 2009]. Clight is a syntactically restricted subset

of C supporting most core language features, and CompCert’s correctness proof guarantees that

the assembly code generated from a Clight program has the same behavior as the source program.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:5

Verifiable C

program logic

CompCert

C semantics

MSL logical

framework

Floyd proof

automation

verified C programs

soundness theorem

Fig. 3. The organization of the Verified Software Toolchain

VST defines a program logic for Clight, called Verifiable C, as well as an automation library for

Verifiable C, called Floyd [Cao et al. 2018]. The system has been used to prove correctness of a range

of real C programs in Coq, including cryptographic functions [Beringer et al. 2015], a concurrent

message-passing system [Mansky et al. 2017], and a web server [Zhang et al. 2021]. Unsurprisingly,

reasoning formally about real C programs is more difficult than reasoning about core calculi,

and VST provides rules and automation for features like integer bounds, pointer validity, struct

representation, and other details that are not present in most separation logic systems. At the same

time, VST is a much older system than Iris, and while recent work has updated it with some Iris

features, including limited higher-order ghost state and the Iris Proof Mode [Mansky 2022], it is

still much less flexible and extensible than Iris.

In terms of the layout of VST shown in figure 3, in this work we replace VST’s logical framework

(MSL) with that of Iris, and then define a new resource model and definition of Hoare triples for

Clight in the Iris style. We then state and prove all the Hoare rules of Verifiable C, VST’s program

logic, in our Iris-based logic, obtaining an Iris instance for CompCert C with the same surface rules

as VST. Our new logic can be used to verify any C program previously verified with VST, but can

also take full advantage of Iris’s higher-order ghost state, proof mode, and other theoretical and

practical innovations. Our resource model and our proofs of the rules of Verifiable C are inspired

by VST, but are realized quite differently, building on ideas from Iris and taking advantage of its

higher-order capabilities to do almost all our reasoning within the separation logic, rather than

unrolling the assertions into propositions over program states. We have also mostly reconstructed

VST’s automation (Floyd) and used it to re-verify some simple example programs (see section 6), but

due to the nature of tactic programming in Coq there are still many bugs that will only be observed

in sufficiently complicated examples, and we do not present a complete automation system as part

of this work.

3 A RESOURCE ALGEBRA FOR COMPCERT MEMORY
As described in section 2.1, an Iris assertion is a predicate on a collection of resource algebras, called

cameras, that define the resources in the logic. Unlike other separation logic systems, Iris makes no

hard distinction between “real” and “ghost” resources: all resource assertions involve ownership

of some element of a camera, and it is only in the definition of Hoare triples that one particular

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:6 William Mansky and Ke Du

camera is connected to the actual physical state of the program via a state interpretation assertion

𝑆 . By default, the physical state 𝜎 is a map from locations to values, and points-to assertions are

defined via ownership of fragments of that map
1
:

𝑆 (𝜎) ≜ •𝜎 ℓ ↦→𝑞 𝑣 ≜ ◦[ℓ := (𝑞, 𝑣)]

By the rules of the authoritative camera, •𝜎 ∗ ◦[ℓ := (_, 𝑣)] ⊢ 𝜎 (ℓ) = 𝑣 , so the points-to assertions

reflect the physical values held in the heap. The fraction 𝑞 ∈ (0, 1] is used to share ownership of the

location (e.g., between threads): any fraction of ℓ is sufficient to load from ℓ , while full ownership

is required to store to it.

CompCert complicates this picture in several ways. First, some memory locations should never

be targeted by ordinary load and store operations. Any realistic model of C must include function

pointers, and VST also allows designating certain locations as locks for concurrency purposes. A

CompCert memory will still mark these locations as allocated, and they may even hold values, but

logically they do not contain those values: instead, we associate them with special resources, LK
for locks and FUN for function pointers, that do not appear in the physical memory. Second, in the

standard Iris model the physical state 𝜎 does not include any ownership information: the fraction𝑞 is

purely ghost state. However, CompCert memories include permissions at each location, chosen from

Nonempty, Readable,Writable, and Freeable. The operational semantics of CompCert checks these

permissions on each memory operation: a program cannot write to a location unless the location is

Writable, and cannot free it unless it is Freeable. This helps ensure that optimizations verified in

CompCert will continue to be sound under concurrency. There is a natural correspondence between

ownership shares in separation logic and the permissions in CompCert memories. However, this

correspondence points to another complication: ordinary fractional permissions do not distinguish

between Writable and Freeable, and do not allow non-Readable but Nonempty ownership of a

location. We must complicate our model of resource ownership to allow programs to hold enough

of a location to know that it is allocated, but not enough to observe the location’s value, so that

other parties can write to that location but not free it.

3.1 The Camera of Shared Values
The natural algebra for representing partial ownership of resources is a pair (𝜋, 𝑟) of a share 𝜋 and

resource 𝑟 . By using the agreement camera for 𝑟 , where ✓(𝑟1 · 𝑟2) ⇔ 𝑟1 = 𝑟2, we can guarantee

that any two parties that own part of a resource agree on the current value of that resource. We

can then define (𝜋1, 𝑟1) · (𝜋2, 𝑟2) = (𝜋1 · 𝜋2, 𝑟1 · 𝑟2) and obtain exactly the combining and splitting

rules we expect for heap resources. If we use fractions as our shares, with 𝜋1 · 𝜋2 ≜ 𝜋1 + 𝜋2 and
✓(𝜋) ≜ 𝜋 ∈ (0, 1], then we have that all the shares of an element total to (at most) 1, and ownership

of 1 guarantees full and exclusive control over the resource. Iris uses a slightly more complicated

algebra—the shares also include a discarded share □, which represents read-only resources that

can be freely duplicated and never changed—but essentially, this algebra is all we need to describe

ownership of heap fragments and build a separation logic.

In this setup, the absence of 0 shares is essential. For instance, if thread𝐴 were to hold a resource

(0, 𝑣) while thread 𝐵 held (1, 𝑣), then thread 𝐵 would not be able to change the value of the resource

to (1, 𝑣 ′): this would be inconsistent with thread 𝐴’s knowledge of the value 𝑣 . In other words,

changing the value of the resource is justified by holding a large enough share that no other thread

can know the current value. CompCert, however, recognizes another possible distinction: it is

possible for a thread to know that a location exists without knowing its current value, allowing

1
More precisely, both these assertions are indexed by a fixed ghost name 𝛾𝑠 where state information is stored, but by

convention we omit the name when there is only one relevant name in context.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:7

other threads to write to the location without holding full ownership of it. In other words, fractional

shares induce a simple lattice of ownership in which a thread may be able to read or write to a

resource, with Readable < Writable; CompCert, on the other hand, uses a four-element lattice of

Nonempty < Readable < Writable < Freeable. A thread withWritable but not Freeable ownership
of a location can change the value of the location but cannot deallocate it; a thread with Nonempty
but not Readable permission cannot read the value of the location, but can perform other operations

(e.g., pointer comparison) that in C are only valid on allocated pointers. We can generalize our notion

of shares to tree shares [Dockins et al. 2009], which naturally express this four-way distinction, but

we will also have to modify the rules of our algebra to reflect the presence of unreadable shares that
can never know the value of the resource.

The early days of concurrent separation logic saw a proliferation of mathematical models of

shares/permissions for coordinating ownership of memory locations between threads. While

fractions are a natural model, they are also a poor fit for some applications, especially the “token

factory” pattern where a single main share splits off and recollects any number of interchangeable

smaller pieces over time, while tracking the number of shares that have not yet been returned.

Dockins et al. introduced tree shares [Dockins et al. 2009] as a unifying model for both fractional

and token-factory shares: a share is a set of nodes drawn from an infinite binary tree, where each

node can be split into its two child nodes. As applied in VST, the left subtree can be thought of as

the “malloc-free share”, and the right subtree can be thought of as the “read-write share”. A thread

that owns any nodes in the right subtree for a location ℓ can read ℓ ’s value, and a thread that owns

the full right subtree can write to ℓ ; a thread that owns any nodes in the left subtree can know

that ℓ is allocated (but may not be able to read ℓ’s value), and only a thread with full ownership of

both subtrees can free ℓ . For our purposes, the details of tree shares are less important than the

lattice they induce, in which a share may be empty; nonempty but unreadable; readable but not

writable; writable but not full; or full; and any share can be split into two subshares. In fact, all the

definitions in this section are agnostic in the underlying share implementation, requiring only that

it satisfies this lattice; we specialize to tree shares in the next subsection.

The pair camera at the start of this section was convenient because we could combine shares

and resources independently. In an algebra with unreadable shares, this is no longer the case:

instead, our elements are more like dependent pairs {𝜋 & (if readable(𝜋) then 𝑟 else unit)}, where
the second element may only be present if the first element is a readable share. Following VST, we

write readable elements as YES(𝜋, 𝑟) and unreadable elements as NO(𝜋), and define the algebra of

shared values as follows:

YES(𝜋1, 𝑟1) · YES(𝜋2, 𝑟2) = if readable(𝜋1 · 𝜋2) then YES(𝜋1 · 𝜋2, 𝑟1 · 𝑟2) else ⊥
YES(𝜋1, 𝑟) · NO(𝜋2) = NO(𝜋1) · YES(𝜋2, 𝑟) = if readable(𝜋1 · 𝜋2) then YES(𝜋1 · 𝜋2, 𝑟) else ⊥
NO(𝜋1) · NO(𝜋2) = NO(𝜋1 · 𝜋2)

where ⊥ is an invalid “error” element (all non-⊥ elements are valid). Note that the combination

of two unreadable shares is always unreadable; the combination of two readable shares, or one

readable and one unreadable, may be unreadable, but only if the shares fail to combine (e.g., they

add to more than 1 in the fractional case, or overlap in the tree-share case).

The algebra of shared values satisfies all the laws of cameras in Iris. It also admits the updates

we desire:

Lemma 3.1. If 𝜋 is a writable share, then YES(𝜋, 𝑟) ⇝ YES(𝜋, 𝑟 ′).

Proof. We must prove that YES(𝜋, 𝑟) ⇝ YES(𝜋, 𝑟 ′) is a frame-preserving update, i.e., for any

𝑐 such that ✓(YES(𝜋, 𝑟) · 𝑐), it is also the case that ✓(YES(𝜋, 𝑟 ′) · 𝑐). Let 𝜋2 be the share of 𝑐 . If

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:8 William Mansky and Ke Du

readable(𝜋 · 𝜋2) holds, then 𝜋2 must not be readable (since the combination of a writable and a

readable share is ⊥), so 𝑐 must be NO(𝜋2). Then YES(𝜋, 𝑟) · 𝑐 = YES(𝜋 · 𝜋2, 𝑟), YES(𝜋, 𝑟 ′) · 𝑐 =

YES(𝜋 · 𝜋2, 𝑟 ′), and both are equally valid. On the other hand, if readable(𝜋 · 𝜋2) does not hold,
then whether 𝑐 is YES or NO we have YES(𝜋, 𝑟) · 𝑐 = ⊥, which contradicts the assumption that

✓(YES(𝜋, 𝑟) · 𝑐). □

In the pair algebra we started with, only the full share 1 was sufficient to change the value of 𝑟 ; in

the algebra of shared values, we have shown that any writable share is sufficient.

Now we can model the logical heap 𝜎 as a map from keys to shared values, which we call a

resource map or rmap. Our definition of points-to is similar to that of Iris, but we also have an

empty points-to assertion ℓ ↦→ _ to represent ownership of an unreadable share of a location:

ℓ ↦→𝜋 𝑣 ≜ ◦[ℓ := YES(𝜋, 𝑣)] ℓ ↦→𝜋 _ ≜ ◦[ℓ := NO(𝜋)]
Ownership of both readable and unreadable points-to assertions can be split and combined according

to their shares, and ℓ ↦→𝜋1
𝑣 ∗ ℓ ↦→𝜋2

_ ⊢ ℓ ↦→𝜋1 ·𝜋2
𝑣 , as desired. We also now have shares in the

heap itself, so that the information we gain from points-to assertions is as follows:

•𝜎 ∗ ℓ ↦→𝜋 𝑣 ⊢ ∃𝜋 ′ ⪰ 𝜋. 𝜎 (ℓ) = YES(𝜋 ′, 𝑣) •𝜎 ∗ ℓ ↦→𝜋 _ ⊢ ∃𝜋 ′ ⪰ 𝜋. share(𝜎 (ℓ)) = 𝜋 ′

where share(YES(𝜋, 𝑟)) = share(NO(𝜋)) = 𝜋 . Holding ℓ ↦→𝜋 𝑣 guarantees that the value in the

heap 𝜎 at ℓ is 𝑣 , and also that the share in the heap is at least 𝜋 ; holding ℓ ↦→𝜋 _ guarantees that

the share in the heap at ℓ is at least 𝜋 , but does not tell us what the value is or even whether a

value exists (𝜎 (ℓ) could be either YES or NO). This more complicated heap model both allows us to

represent unreadable ownership of resources, and includes ownership shares in the authoritative

heap.

The camera of shared values and its induced generalization of Iris’s heap model are totally

independent of the details of C, CompCert, or tree shares; they could be reused in any setting where

we want to talk about non-readable ownership of a resource. The obvious application is to other

malloc-free languages, where “writable but not freeable” is a natural permission level, but it could

also be used in, e.g., a message-passing language where a thread can have enough permissions to

know that a channel exists without being able to send or receive messages on it.

3.2 Coherence between Logical Heaps and CompCert Memory
Thus far, we have defined a generic algebra of heaps (rmaps) mapping locations to share-annotated

resources. We will now define the type of resources we use for C, and relate our heap model to the

memory model used in CompCert’s semantics.

A CompCert memory [Leroy et al. 2012] consists of a set of numbered blocks, each of which

contains a range of integer offsets. An address is a pair (𝑏, 𝑜) of block and offset. For each allocated

address, the memory tracks its current value (usually either a byte or Undef) as well as both current

and maximum permissions (chosen from Nonempty,Readable,Writable, Freeable as described

above). The memory also records the next block to be allocated, and guarantees that unallocated

blocks have no values and no permissions. The separation of current and maximum permissions is

useful for, e.g., distinguishing between read-only global variables and locations whose ownership

is (temporarily) being shared.

In most Iris instances, the logical heap 𝜎 is the actual physical memory used by the operational

semantics of the language. In our setting, however, a logical rmap does not uniquely determine

a CompCert memory or vice versa. An rmap does not distinguish between an unallocated block

and a block on which it holds no ownership, nor does it record the maximum possible ownership

for a location. In the other direction, each CompCert permission except Freeable corresponds to
an infinite number of possible shares: e.g., a Readable share can always be split into two smaller

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:9

Readable shares. There are also two types of values in memory, locks and function pointers, that

should never be the target of CompCert memory operations (load, store, etc.), and it is useful to

track these separately in our rmaps. We reconcile the two by defining a coherence relation between

rmaps and CompCert memories, and when we state the adequacy of our logic we will reason about

all memories coherent with a given rmap. First, we define the relationship between rmap shares

and memory permissions:

perm_of (YES(⊤, 𝑣)) = Freeable

perm_of (YES(𝜋, 𝑣)) = Writable if 𝜋 is writable but not ⊤
perm_of (YES(𝜋, 𝑣)) = Readable if 𝜋 is readable but not writable

perm_of (NO(𝜋)) = Nonempty

perm_of (YES(𝜋, LK)) = perm_of (YES(𝜋, FUN)) = Nonempty

While the logical share 𝜋 is used to determine the permission for value resources, non-value

resources are associated with minimal Nonempty permissions regardless of their logical ownership.

This is essential for relating assertions to CompCert memories: CompCert always assignsNonempty
permissions to function-pointer locations, ensuring that they are not targeted by ordinary memory

operations, but we still want to be able to reason about the contents of those locations in the logic.

We describe the function-pointer assertion in section 3.3.

Next, we define the correspondence between rmaps and memories.

Definition 3.2. An rmap 𝜎 is coherent with a memory𝑚 when the following conditions hold:

(1) If 𝜎 (ℓ) holds a value 𝑣 (i.e., not a lock or function pointer), then the value at𝑚(ℓ) is 𝑣 .
(2) The current permission of𝑚(ℓ) is at least perm_of (𝜎 (ℓ)).
(3) Blocks that have not been allocated in𝑚 are not in the domain of 𝜎 .

We could require that the current permission of ℓ be exactly perm_of (𝜎 (ℓ)), but this would not

be particularly useful in separation logic, since holding ℓ ↦→𝜋 𝑣 never precludes the existence of

another share ℓ ↦→𝜋 ′ 𝑣 (unless 𝜋 is ⊤, in which case perm_of (𝜋, 𝑣) is already Freeable).
We can now define the state interpretation assertion 𝑆 (𝑚) that connects program-logic assertions

to a physical CompCert memory𝑚:

𝑆 (𝑚) ≜ ∃𝜎. 𝜎 is coherent with𝑚 ∧ •𝜎
In other words, our points-to assertions are “about” a physical𝑚 whenever the logical heap they

describe is coherent with 𝑚. This allows us to derive rules in our separation logic about the

interaction between points-to assertions and CompCert memory operations. For instance:

Theorem 3.3. If 𝜋 is writable, then 𝑆 (𝑚) ∗ ℓ ↦→𝜋 𝑣 ⇛ 𝑆 (storebyte(𝑚, ℓ, 𝑣 ′)) ∗ ℓ ↦→𝜋 𝑣 ′.

Proof. We know that there exists a 𝜎 coherent with𝑚 such that •𝜎 ∗ ℓ ↦→𝜋 𝑣 . The rules of

the heap algebra give us that ∃𝜋 ′ ⪰ 𝜋. 𝜎 (ℓ) = YES(𝜋 ′, 𝑣). Then by coherence, we know that the

permission at𝑚(ℓ) is at leastWritable, so the storebyte operation is allowed. Next, by lemma 3.1,

we know that it is a frame-preserving update to change 𝜎 (ℓ) from YES(𝜋 ′, 𝑣) to YES(𝜋 ′, 𝑣 ′). Thus,
we have •𝜎 ∗ ℓ ↦→𝜋 𝑣 ⇛ •𝜎 (ℓ := YES(𝜋 ′, 𝑣 ′)) ∗ ℓ ↦→𝜋 𝑣 ′. Finally, we must show that 𝜎 (ℓ :=

YES(𝜋 ′, 𝑣 ′)) is once again coherent with storebyte(𝑚, ℓ, 𝑣 ′). The only changed condition from

definition 3.2 is condition 1, and the new value of 𝜎 (ℓ) is exactly the new value of 𝑚(ℓ), so
coherence holds, and the proof is complete. □

In this fashion, even though our points-to assertions are not directly on CompCert memories, we

can prove that operations in the logic correspond exactly to operations in the physical memory. As

in Iris, but in contrast to VST, these theorems are proved entirely within our logic: we do not need

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:10 William Mansky and Ke Du

to unfold the definition of “this assertion holds on a program state” or explicitly construct heaps

that satisfy specific logical assertions corresponding to memory operations. The theorems also do

not yet say anything about the semantics of any programming language; in section 4.1, we will

use this theorem to prove a Hoare triple like {ℓ ↦→𝜋 𝑣} *ℓ = 𝑣 ′ {ℓ ↦→𝜋 𝑣 ′} connecting the effects of

program statements to the logical heap.

The approach of defining a coherence relation between the logical heap and some other notion

of memory, and including this relation in the definition of the state interpretation, is a simple but

general technique for separating the structure used to model the points-to assertions in an Iris

instance from the memory used in the operational semantics of the underlying language. We expect

it to be useful for building Iris instances for languages with more complex models of memory,

especially ones that already have a defined semantics whose physical memory is not just a map

from locations to values.

3.3 Locks and Function Pointers
In older separation logics (including VST’s), locks and function pointers were addressed using “pred-

icates in the heap” [Gotsman et al. 2007], where assertions (lock invariants, function specifications,

etc.) were included directly in heap resources, requiring some logical tricks (e.g., step-indexing)

to break the circularity between the definitions of heaps and assertions. Iris provides a far more

general solution via higher-order ghost state: cameras can include predicates freely as long as their

operations respect step-indexing. As outlined in section 2.1, this lets us define global invariants 𝐼

as a special case of ghost state, and then access the resources in 𝐼 with a view shift. This makes it

easy to define invariant-based locks without including invariants in the LK resource itself. Instead,

the only argument to the LK resource is a boolean indicating whether the lock is currently acquired,

and we define the lock assertion as:

ℓ � 𝑅 ≜ ∃𝑏. ℓ ↦→ LK(𝑏) ∗ if 𝑏 then emp else 𝑅

This invariant captures the idea that the resources 𝑅 are protected by the lock whenever the lock is

not acquired
2
.

We address function pointers with a similar approach. We want to define an assertion ℓ ↦→𝑓

{𝑃}{𝑄} saying that ℓ points to a function with precondition 𝑃 and postcondition 𝑄 . We do so by

defining a camera of function specifications {𝑃}{𝑄}, and setting up ghost state that maps each

function pointer to its specification. We once again use the authoritative-fragment construction,

giving us an authoritative resource •fs that contains the specifications of all declared functions,

and a fragment ◦[ℓ := {𝑃}{𝑄}] that knows the specification of an individual function. Then we

can define the function pointer assertion as:

ℓ ↦→𝑓 {𝑃}{𝑄} ≜ ℓ ↦→□ FUN ∗ ◦[ℓ := {𝑃}{𝑄}] 𝛾𝑓

This assertion connects the specification {𝑃}{𝑄} to the FUN resource in the rmap, which in turn

is connected by coherence to the location ℓ in the CompCert memory. For the share, we use the

“discarded” share □, which is readable and arbitrarily duplicable, and guarantees that no other

thread can change or deallocate the resource at that location. This is where it becomes crucial that

the perm_of function used for coherence behaves differently for different kinds of resources: in

the logic, ℓ ↦→𝑓 {𝑃}{𝑄} involves a readable share of ℓ , but the corresponding permission in the

CompCert memory will still be the unreadable Nonempty, preventing the program from actually

performing load operations on ℓ .

2
In practice, we use a cancellable invariant [Jung et al. 2017] so that the lock can be deallocated before the program ends,

allowing us to implement the lock reasoning rules of Hobor et al. [2008].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:11

4 SAFETY AND ADEQUACY
4.1 Weakest Preconditions
Iris builds a program logic on top of a language semantics by defining a notion ofweakest precondition
in the logic:

wpE 𝑒 {𝑄} ≜ (𝑒 ∈ Val ∧ |⇛E𝑄 (𝑒)) ∨
∀𝜎. 𝑆 (𝜎) ⇛E ∅ red(𝑒, 𝜎) ∧ ⊲∀𝑒2 𝜎2. (𝑒, 𝜎) → (𝑒2, 𝜎2) ⇛∅ E 𝑆 (𝜎2) ∗ wpE 𝑒2 {𝑄}

The weakest precondition of 𝑒 is the smallest assertion guaranteeing that either 𝑒 is finished and

satisfies the postcondition 𝑄 , or that given the state interpretation 𝑆 for a physical state 𝜎 , 𝑒 is

not stuck and, for every (𝑒2, 𝜎2) such that (𝑒, 𝜎) steps to (𝑒2, 𝜎2), we can re-establish the new state

interpretation 𝑆 (𝜎2) and 𝑒2’s weakest precondition. The wp assertion is indexed by a set E of

available invariant names, and the updates ⇛E ∅
and ⇛∅ E

allow the program to change ghost

state and access the contents of invariants in each step, as long as all invariants are restored after

the step. A Hoare triple {𝑃} 𝑒 {𝑄}E is then defined as 𝑃 −∗ wpE 𝑒 {𝑄}.
To define wp for our program logic, we need to instantiate this formula with CompCert’s C

semantics. The first question that arises is whether Clight’s semantics fit into this framework at all.

Most of the target languages for Iris are functional programming languages, with memory accesses

and other operations of interest treated as side effects. Even in RefinedC [Sammler et al. 2021],

function parameters and local variables are treated as bound variables that are substituted with

the locations of passed parameters when called. Clight, in contrast, has an environment-based

semantics, a more traditional way of describing imperative languages. A program state includes

the name of the currently executing function, the next statement to execute, the memory, and two

separate environments, one that maps stack-allocated variables to their addresses and one that

maps temporary variables to their values. We resolve this by letting the “expression” 𝑒 contain the

entire program state except the memory (which is held in 𝜎).

Beyond the expressions, there are two more semantic points that merit special attention. First,

the updates ⇛E ∅
and ⇛∅ E

allow the semantics to access the contents of invariants in each step,

as long as they are restored by the end of the step—but this is explicitly unsound in C! Suppose

an invariant contained an assertion ℓ ↦→ 𝑣 : then this definition would allow two separate threads

to write to ℓ without synchronizing, leading to a data race, which in C has undefined behavior

(so we should not be able to prove anything about it). Existing Iris instantiations address this

problem by either allowing races in the semantics (e.g., HeapLang), modifying the semantics so

that race-sensitive operations occur over multiple steps (e.g., RustBelt [Jung et al. 2017]), or making

the points-to assertion “subjective” so that one thread cannot use another’s resources without

synchronization (e.g., iGPS [Kaiser et al. 2017]/iRC11 [Dang et al. 2019]). None of these solutions

are satisfying in our case: C semantics does not allow races, we want to reason about CompCert

semantics directly rather than modifying it, and subjectivity is an idea from weak memory models

that does not translate naturally into our sequentially consistent setting. Instead, we limit access to

invariants by changing the inner masks on the updates from ∅ to E:

wpE 𝑒 {𝑄} ≜ (𝑒 ∈ Val ∧ |⇛E𝑄 (𝑒)) ∨
∀𝜎. 𝑆 (𝜎) ⇛E E red(𝑒, 𝜎) ∧ ⊲∀𝑒2 𝜎2. (𝑒, 𝜎) → (𝑒2, 𝜎2) ⇛E E 𝑆 (𝜎2) ∗ wpE 𝑒2 {𝑄}

Threads can still access the contents of invariants between program steps (e.g., by performing an

opening view shift ⇛E ∅
and then a closing view shift ⇛∅ E

before resuming execution), but all

the invariants in E must be enabled before we can take a program step, ensuring that we do not

use resources from invariants to justify the step.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:12 William Mansky and Ke Du

Second, CompCert’s semantics includes a notion of external function with unknown semantics,

specified by an arbitrary relation on the memories before and after the call. In VST, external calls

are handled separately from the rest of the semantics: they operate on a special piece of external
state that can only be modified by external calls. Prior work used this external state to connect to

system calls provided by a verified operating system [Mansky et al. 2020], and also used external

calls as a hook for a concurrency library [Cuellar et al. 2020]. We can fit external calls into the

formula above by letting the state 𝜎 be a pair (𝑚, 𝑧) of the CompCert memory 𝑚 and external

state 𝑧. Internal steps leave 𝑧 unchanged; external steps may change both𝑚 and 𝑧 according to

their semantic relation. Our full state interpretation is then 𝑆 ((𝑚, 𝑧)) ≜ 𝑆 (𝑚) ∗ •𝑧 𝛾𝑒
(where 𝛾𝑒

is the fixed ghost name for the external state), and the corresponding assertion ◦𝑧 𝛾𝑒
allows the

separation logic to track (but not modify) the current external state, supporting reasoning in the

style of Mansky et al. [2020].

More inconveniently, external functions do not use the same form of nondeterminism as ordinary

program steps. The specification for an external function ef has the form∀𝑥 . {𝑃ef (𝑥)} ef () {𝑄ef (𝑥)},
where the witness 𝑥 provides logical information that does not follow directly from the state—for

instance, the witness may describe the intended invariant to be used when allocating a lock. When

a program reaches an external call, it may choose any witness 𝑥 for the call such that 𝑃ef (𝑥) holds,
and then must be safe for all states satisfying 𝑄ef (𝑥). This means that in the external-function

case, our definition of wp must alternate angelic nondeterminism (existential quantification) and

demonic nondeterminism (universal quantification)
3
. Our final definition of wp is then:

wpE 𝑒 {𝑄} ≜ (𝑒 ∈ Val ∧ |⇛E𝑄 (𝑒)) ∨
∀𝜎. 𝑆 (𝜎) ⇛E E (red(𝑒, 𝜎) ∧ ⊲∀𝑒2 𝜎2. (𝑒, 𝜎) → (𝑒2, 𝜎2) ⇛E E 𝑆 (𝜎2) ∗ wpE 𝑒2 {𝑄}) ∨
(∃ef 𝑥 . 𝑒 = (ef (); 𝑒2) ∗ 𝑃ef (𝑥, 𝜎) ∗ ⊲∀𝜎2 . 𝑄ef (𝑥, 𝜎2) ⇛E E 𝑆 (𝜎2) ∗ wpE 𝑒2 {𝑄})

In the last disjunct, we existentially quantify over a witness 𝑥 satisfying the precondition 𝑃ef , and

then must be able to re-establish 𝑆 (𝜎2) and wp given any 𝜎2 satisfying the postcondition 𝑄ef . As

we will see in the next section, our desired safety property includes this same quantifier alternation

for external calls, and so this definition is sufficient to guarantee that verified programs run safely.

4.2 Adequacy
The adequacy theorem of a program logic connects theorems proved in the logic (e.g., Hoare triples)

with the semantics of the underlying programming language. For our logic, we want to know that if

we prove a Hoare triple for a C program, then the program will execute correctly under CompCert’s

semantics. Most Iris developments use or specialize a generic adequacy theorem, based on Iris’s

definition of wp, that says that for any program 𝑐 , if we can prove {True} 𝑐 {𝑣 . 𝑄 (𝑣)} where 𝑄 is

a pure assertion (i.e., it is independent of program state), then 1) it does not get stuck and 2) if it

terminates in a value 𝑣 , then 𝑄 (𝑣) is true. Because we have modified the definition of wp, we do
not immediately obtain this adequacy theorem; furthermore, our ultimate goal is to re-prove the

existing adequacy theorem for Verifiable C, which is structured to account for external calls:

Definition 4.1. A program configuration (𝑐, 𝜎) is safe for 𝑛 steps with postcondition 𝑄 , where 𝑄

is a predicate on CompCert memories and external states, if:

• 𝑐 is halted and 𝑄 (𝜎) holds, or
• (𝑐, 𝜎) → (𝑐2, 𝜎2) in CompCert’s semantics, and (𝑐2, 𝜎2) is safe for 𝑛 − 1 steps, or

3
The same issue arises in Melocoton, an in-development foreign-function-interface logic for Iris [Guéneau et al. 2023];

they provide a more general solution by transforming their step relation into a multirelation that alternates universal and

existential quantification.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:13

• 𝑐 = (ef (); 𝑐2) for an external function ef , and there is a witness 𝑥 such that 𝑃ef (𝑥, 𝜎) and for
all 𝜎2 satisfying 𝑄ef (𝑥, 𝜎2), (𝑐2, 𝜎2) is safe for 𝑛 − 1 steps.

Theorem 4.2 (Adeqacy). For any program configuration (𝑐, 𝜎),
𝑆 (𝜎) ∗ wp⊤ 𝑐 {𝑄} ⊢ (∀𝑛. (𝑐, 𝜎) is safe for 𝑛 steps with 𝑄).

Proof. By Löb induction. The definition of wp gives us three cases. In the first case, 𝑐 is halted in

a state satisfying 𝑄 , so it is safe for 𝑛 steps trivially. In the second case, (𝑐, 𝜎) steps in CompCert’s

semantics to some (𝑐2, 𝜎2), and wp guarantees that after a view shift we have 𝑆 (𝜎2) ∗ wp⊤ 𝑐2 {𝑄},
so safety follows from the inductive hypothesis. In the third case, 𝑐 is of the form (ef ; 𝑐2), and
there is some 𝑥 such that 𝑃ef (𝑥, 𝜎) holds; we must then show that (𝑐2, 𝜎2) is safe for 𝑛 − 1 steps
for all 𝜎2 satisfying 𝑄ef (𝑥, 𝜎2), which again follows from the definition of wp and the inductive

hypothesis. □

As a side note, because the state 𝜎 includes external state, this definition of safety can be used to

reason about the program’s externally visible behavior: for instance, when 𝑐 is a networked server,

we can instantiate the external state with an interaction tree describing a network protocol [Koh

et al. 2019; Zhang et al. 2021], and the adequacy theorem implies that the server implementation

complies with the protocol.

Even though we do not reuse Iris’s adequacy construction directly, the machinery of Iris still

makes this proof much easier than in VST. Our proof of adequacy is 120 lines of Coq, while VST’s

is over 1000, involving explicit construction of rmaps corresponding to modified program states

and extensive reasoning about the relationship between external function specifications and the

program logic. All of this is avoided by using a separation-logic definition of wp and only exiting

to meta-level reasoning after CompCert-level safety is established.

5 BUILDING THE PROGRAM LOGIC
Thus far, we have constructed a definition of weakest preconditions for CompCert C, the funda-

mental building block of Hoare triples. The next step is to build a program logic on top of this

definition—a set of Hoare rules for the statements of Clight. We could consider reconstructing

the proof rules of RefinedC [Sammler et al. 2021], or developing a new logic from scratch, but in

our initial development we instead aim to reconstruct Verifiable C, the program logic of VST. Our

proof rules will be syntactically identical to those of VST, but their meaning and the proofs of their

soundness will be entirely different, building on the logic we have defined above rather than the

original foundations of VST.

5.1 Proving the Rules of Verifiable C
As one might expect, the proof rules for C are more complicated than in most standard Hoare logics.

For instance, the store rule, which might conventionally be {ℓ ↦→1 𝑣} *ℓ = 𝑣 ′ {ℓ ↦→1 𝑣
′}, appears in

Verifiable C as:

store

writable(𝜋)
{(tc(𝑒1) ∧ tc((typeof 𝑒1) 𝑒2)) ∧ (eval(𝑒1) ↦→𝜋 𝑣 ∗ 𝑃)}

*𝑒1 = 𝑒2
{eval(𝑒1) ↦→𝜋 eval((typeof 𝑒1) 𝑒2) ∗ 𝑃}

Aside from the fact that any writable share is sufficient to store to a location, we can see that 1) the

LHS and RHS are expressions, not fully evaluated values, and 2) the rule includes typechecking

conditions tc on both expressions, and, critically, these conditions are spatial assertions that may

refer to memory resources. We find expressions in our rules because Clight uses a standard big-

step-for-expressions, small-step-for-statements semantics, and so the program *𝑒1 = 𝑒2 does not

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:14 William Mansky and Ke Du

go through a state of the form *ℓ = 𝑣 ′ in its execution; we could potentially define an equivalent

semantics that uses small steps for expressions and decompose this rule further, but here we

work directly on CompCert’s semantics. The inclusion of tc conditions reflects a subtle point: in
CompCert, the evaluation of expressions may depend on memory. This is not because expressions

can perform memory accesses—in Clight, dereferences are broken out into separate statements—but

because certain operations on pointer values (e.g., pointer comparison) have undefined behavior

when their operands are unallocated pointers. Verifiable C reflects this with an enhanced type

system that uses separation logic assertions to guarantee that the relevant pointers are allocated:

ℓ ↦→𝜋 _ is sufficient to guarantee that ℓ is allocated, and so operations on ℓ will not get stuck. The

tc(𝑒) assertion collects the separation logic information needed to guarantee that 𝑒 can be evaluated

without getting stuck
4
, after which the memory-independent eval(𝑒) function can compute the

value that 𝑒 will return. Because the assertions in tc may overlap with eval(𝑒1) ↦→𝜋 𝑣 and may

also require other memory, they are combined via a non-separating conjunction ∧ with both the

points-to assertion and an arbitrary frame 𝑃 .

The theorem relating the memory-independent eval function to CompCert’s evaluation relation

evalCC is a good illustration of the contrast between the proofs of rules in VST and our new

implementation of Verifiable C. The top-level theorem should say:

Theorem 5.1 (informal). If tc(𝑒) holds on a memory𝑚, then eval(𝑒) = 𝑣 ⇔ evalCC (𝑒,𝑚, 𝑣).

In VST, coherence between a CompCert memory and an rmap is defined outside of the logic, and

so the theorem is stated formally as:

Theorem 5.1 (VST). If tc(𝑒) holds on an rmap 𝑟 coherent with a memory𝑚, then eval(𝑒) = 𝑣 ⇔
evalCC (𝑒,𝑚, 𝑣).

In our logic, we have already embedded coherence inside our state interpretation 𝑆 (𝑚), and so we

can write the same theorem inside the logic:

Theorem 5.1 (new). 𝑆 (𝑚) ∗ tc(𝑒) ⊢ eval(𝑒) = 𝑣 ⇔ evalCC (𝑒,𝑚, 𝑣).

We need not mention the rmap 𝑟 ; it is implicit in the model of the separation logic. The proofs are

similar—in either case, we use the fact that ℓ ↦→ _ holds on a logical heap coherent with𝑚 to derive

that ℓ is allocated in𝑚—but the new theorem statement is much easier to use inside the logic as we

move forward.

This inside-the-logic approach carries forward to the proofs of the Hoare logic rules as well:

Theorem 5.2 (store). The store rule is valid given our definition of wp.

Proof. We must show that Pre ⊢ wp *𝑒1 = 𝑒2 Post, where Pre and Post are the pre- and postcondi-
tion of the Hoare triple for store. By the definition of wp, it suffices to show that for any state 𝜎 s.t.

(*𝑒1 =𝑒2, 𝜎) → (𝑠′, 𝜎 ′), 𝑆 (𝜎) ∗Pre ⇛ wp 𝑠′ {𝑃𝑜𝑠𝑡}. By theorem 5.1, we can conclude from 𝑆 (𝜎) ∗Pre
that the calls to eval give us the same values for 𝑒1 and (typeof 𝑒1) 𝑒2 as CompCert’s evalCC. There-
fore, the only 𝜎 ′ that CompCert’s semantics can produce is store(𝜎, eval(𝑒1), eval((typeof 𝑒1) 𝑒2)).
Then by theorem 3.3 we have 𝑆 (𝜎) ∗ eval(𝑒1) ↦→𝜋 𝑣 ⇛ 𝑆 (𝜎 ′) ∗ eval(𝑒1) ↦→𝜋 eval((typeof 𝑒1) 𝑒2),
completing the proof. □

5.1.1 Function Pointers and Function Calls. One particularly interesting aspect of Verifiable C is its

treatment of function pointers and function specifications. In section 3.3, we defined an assertion

ℓ ↦→𝑓 {𝑃}{𝑄} that associates a location ℓ with a function pre- and postcondition. However, this is

4
In contrast, RefinedC’s Caesium semantics [Sammler et al. 2021] explicitly includes provenance in pointer values, which

circumvents this issue but introduces complexity elsewhere in the semantics.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:15

not enough to guarantee that if we call ℓ in a state satisfying 𝑃 , it will return a state that satisfies𝑄 .

For that purpose, we need to know that every function actually satisfies its specification, which is

what we are trying to prove when verifying the program! Verifiable C approaches this problem in

two parts. First, we reason about every function in the context of a set of function specifications fs,
and the full definition of Hoare triple includes an assumption that every function in fs satisfies its
specification:

believe(fs) ≜ ∗
(ℎ,𝑃,𝑄) ∈fs

⊲ {𝑃} body(ℎ) {𝑄}

Second, we carry an assertion that connects each function-pointer assertion to the set fs:

funs_valid(fs) ≜ ∀ℓ 𝑃 𝑄. ℓ ↦→𝑓 {𝑃}{𝑄} ∗−∗ (∃ℎ. (ℎ, 𝑃,𝑄) ∈ fs ∗ symb(ℎ) = ℓ)
where symb is a function constructed from the program that maps each function name to its

location in memory (more on this in section 5.2). This assertion tells us that every function pointer

corresponds to some defined function with a specification in fs, and every function specified in fs
has a corresponding function pointer in memory. (This means that every function pointer must

point to a globally declared function, which would not necessarily be the case in a language with

anonymous functions, but is the case in C and is explicitly required by CompCert’s semantics.)

Both funs_valid and believe are then included as assumptions in our definition of Hoare triples:

{𝑃} 𝑐 {𝑄}E with fs ≜ (believe(fs) ∗ funs_valid(fs) ∗ 𝑃) −∗ wpE 𝑐 {𝑄}
Every rule in the program logic is universally quantified over fs. In the top-level soundness proof,

the believe assumption is discharged through Löb induction, while the funs_valid assertion is part

of the precondition of the main function (which we discuss in detail in section 5.2).

Taken together, the believe and funs_valid assertions let us convert a function pointer assertion

ℓ ↦→𝑓 {𝑃}{𝑄} into the knowledge that ℓ corresponds to a defined function that satisfies {𝑃}{𝑄}.
This lets us prove the expected Hoare rule for function calls:

{(tc(𝑒) ∧ tc(®𝑎)) ∧ (eval(𝑒) ↦→𝑓 {𝑃}{𝑄} ∗ 𝑃 ∗ 𝑅)} 𝑒 (®𝑎) {𝑄 ∗ 𝑅}
As long as 𝑒 evaluates to a function pointer with precondition 𝑃 and postcondition𝑄 , we can call it

with that specification; we do not need to prove anything else about 𝑒 in the call rule itself.

As a side note, RefinedC [Sammler et al. 2021] also has a function pointer assertion, but instead

of describing the function’s pre- and postcondition it includes the function body directly, and the

user separately proves that that body satisfies a specification as needed. We have not yet done a

thorough comparison of the advantages and disadvantages of these two approaches, but for now

we use the specification approach for compatibility with Verifiable C.

5.1.2 Analysis. We were able to re-prove all of the rules of Verifiable C in our new logic, with their

statements unchanged up to differences in notation between Iris and VST. This is encouraging: it

means that everything proved in VST should also be provable in our logic. Furthermore, by doing

our reasoning entirely within the program logic and taking advantage of Iris’s tactics, the proofs of

these rules are much simpler and easier to maintain. Discounting derived rules, Verifiable C has

14 distinct surface-level proof rules—comparable to any other program logic—but their proofs are

quite complicated: in the VST development, they comprise ∼12310 lines of Coq code. We prove the

same rules in ∼7060 LoC in our new logic, a 43% decrease.

5.2 Initial State and Whole-Program Correctness
For simple programming languages, we may use emp as the precondition of a whole program,

and then allocate all the state we use inside the proofs of the relevant functions. In C, however,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:16 William Mansky and Ke Du

some parts of the program state are initialized before the program enters the main function, and
we must provide the corresponding assertions in the precondition of main for the user to be able

to reason about them. There are three kinds of resources that must be present in the initial state:

the memory assertions for global variables and function pointers, the table of specifications for

defined functions, and a reference to the external state. The external state is just an arbitrary piece

of authoritative ghost state, but the other two require more complex reasoning: we must describe

an initial logical heap that is coherent with CompCert’s initial memory state, and then transform it

into a collection of points-to assertions for the program’s global variables and function pointers.

We begin by defining a translation from CompCert memories to corresponding logical heaps.

Since CompCert’s permissions each correspond to a wide range of shares, we pick default shares

𝜋𝑤 , 𝜋𝑟 , and 𝜋𝑛 to represent arbitrary writable, readable, and nonempty permissions. Then we can

construct a logical resource for each memory location as follows:

res_of (𝑚, ℓ) ≜

YES(⊤,𝑚(ℓ)) if𝑚(ℓ) is Freeable
YES(𝜋𝑤,𝑚(ℓ)) if𝑚(ℓ) is Writable
YES(𝜋𝑟 ,𝑚(ℓ)) if𝑚(ℓ) is Readable
NO(𝜋𝑛) if𝑚(ℓ) is Nonempty and𝑚(ℓ) is not a function pointer

YES(□, FUN) if𝑚(ℓ) is a function pointer

The logical heap for a memory is then simply rmap_of (𝑚) ≜ 𝜆ℓ. res_of (𝑚, ℓ), which is coherent

with𝑚 by construction:

Theorem 5.3. rmap_of (𝑚) is coherent with𝑚.

Proof. By the definition of res_of, each location with a value in rmap_of (𝑚) has the same value

in𝑚, and we have chosen shares such that perm_of (rmap_of (𝑚) (ℓ)) is exactly the permission

of𝑚(ℓ) for each ℓ . (In particular, recall that CompCert always assigns Nonempty permission to

function pointers, and perm_of (YES(𝜋, FUN)) = Nonempty.) □

This gives us a separation logic assertion that describes an initial memory𝑚0—namely,

◦rmap_of (𝑚0)
𝛾𝑠
—but it is not a particularly useful assertion: it monolithically describes the entire

logical heap, instead of giving us ownership of each individual allocation. Our next step is to

translate it into a collection of points-to assertions for the initialized memory. A CompCert C

program 𝑝 defines a collection of global variables vars(𝑝) of the form (𝑔, 𝑣), where 𝑔 is the identifier

of the global variable and 𝑣 is its initial value, and a collection of functions funs(𝑝); the initial
memory init_mem(𝑝) allocates a memory block for each of these identifiers according to a mapping

symb𝑝 from identifiers to locations.

Theorem 5.4. Let fs be a collection of specifications for the functions in funs(𝑝). Then
•∅ 𝛾𝑓 ∗ ◦rmap_of (init_mem(𝑝)) 𝛾𝑠 ⇛
•fs 𝛾𝑓 ∗ (∗(𝑔,𝑣) ∈vars(𝑝) symb𝑝 (𝑔) ↦→ 𝑣) ∗ (∗ℎ∈funs(𝑝) symb𝑝 (ℎ) ↦→𝑓 fs(ℎ)).

Proof. By induction on the list of definitions in 𝑝 . For each defined identifier 𝑖 , init_mem(𝑝) ini-
tializes the block symb𝑝 (𝑖) with the appropriate data (the initial value 𝑣 for a global variable, Undef
for a function pointer). So rmap_of (init_mem(𝑝)) (symb𝑝 (𝑖)) contains the resources corresponding
to that data, and by splitting those resources from ◦rmap_of (init_mem(𝑝)), we can construct the

appropriate assertion, symb𝑝 (𝑖) ↦→ 𝑣 for a global variable or symb𝑝 (𝑖) ↦→□ FUN for a function

pointer. Finally, in the function pointer case, we use a view shift to add the function’s specification to

the authoritative set of specifications and obtain a fragment assertion ◦[symb𝑝 (𝑖) := fs(𝑖)] 𝛾𝑓
, and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:17

then combine symb𝑝 (𝑖) ↦→□ FUN and ◦[symb𝑝 (𝑖) := fs(𝑖)] 𝛾𝑓
into the function pointer assertion

symb𝑝 (𝑖) ↦→𝑓 fs(𝑖). □

Combining these two theorems, we can conclude that the initial memory of a program is coherent

with the collection of points-to assertions for its initial global variables and function pointers.

We include the global-variable assertions in the precondition for the main function (collected in

the assertion globals(𝑝)), and use the function assertions to establish the funs_valid condition

of section 5.1.1, guaranteeing that every specified function is present in memory and vice versa.

Then in the proof of a program, we start with access to the global variables and functions of the

program, and can reason about them in the same way as with memory allocated during the program.

Combined with the adequacy theorem of section 4.2, this gives us the following top-level safety

result:

Theorem 5.5 (Whole-Program Adeqacy). Let fs be a set of specifications for the functions in a
program 𝑝 , where fs(main) = {globals(𝑝) ∗ 𝑧

𝛾𝑒 }{True}. Then if ⊢ ({𝑃} 𝑓 {𝑄} with fs) is provable
for each specification (𝑓 , 𝑃,𝑄) ∈ fs, we can conclude that (𝑝, init_mem(𝑝), 𝑧) is safe for any number
of steps.

Proof. By theorems 5.3 and 5.4, we can start from emp and use view shifts to allocate ghost

state satisfying both the initial state interpretation 𝑆 (init_mem(𝑝), 𝑧) and the precondition of main.
Instantiating the Hoare triple for main then gives us 𝑆 (init_mem(𝑝), 𝑧) ∗ wp⊤ main {True}. By
theorem 4.2 (adequacy), this implies (∀𝑛. (𝑝, init_mem(𝑝), 𝑧) is safe for 𝑛 steps), as desired. □

6 VERIFYING C PROGRAMS

1 struct list {unsigned head; struct list *tail ;};

2

3 struct list *reverse (struct list *p) {

4 struct list *w, *t, *v;

5 w = NULL;

6 v = p;

7 while (v) {

8 t = v->tail;

9 v->tail = w;

10 w = v;

11 v = t;

12 }

13 return w;

14 }

Fig. 4. A linked-list reverse function in C

To demonstrate the use of our logic, we reconstruct most of VST’s Floyd automation library [Cao

et al. 2018] on top of it, and use the Floyd tactics to verify some of VST’s example programs. Figure 4

shows the code for one of these examples, a linked-list reverse function. While it is quite simple

as C programs go, it does exercise C-specific features like structs and field accesses, as well as

standard separation logic pointer manipulation and loop invariants. The complete proof of the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:18 William Mansky and Ke Du

reverse function is shown in figure 5. We use semax_body to assert a Hoare triple on the Clight

representation of the function, f_reverse, using a pre- and postcondition defined by reverse_spec

(not shown). Vprog collects global variable information from the C program, and Gprog holds the

set of defined functions and their specifications (fs in section 5.2).

Lemma body_reverse: semax_body Vprog Gprog ⊤ f_reverse reverse_spec.

Proof.

start_function.

do 2 forward.

forward_while (∃ s1 s2 w v,

PROP (sigma = rev s1 ++ s2)

LOCAL (temp _w w; temp _v v)

SEP (listrep s1 w; listrep s2 v)).

* Exists (@nil val) sigma nullval p; unfold listrep at 2; entailer !.

* entailer !.

* destruct s2 as [| h r].

- unfold listrep at 2; Intros; subst; contradiction.

- unfold listrep at 2; fold listrep; Intros y.

do 4 forward.

Exists (h::s1,r,v,y); entailer !.

+ simpl. rewrite ← app_assoc; auto.

+ unfold listrep at 3; fold listrep.

Exists w; entailer !.

* forward.

rewrite → (proj1 H1) by auto.

unfold listrep at 2; rewrite → app_nil_r , rev_involutive.

Exists w; entailer !.

Qed.

Fig. 5. The proof of the reverse function

The proof is not complicated, but it uses several tactics from VST’s Floyd automation library:

start_function to unfold the function definition and its specification, forward to symbolically exe-

cute straight-line code, forward_while to provide a loop invariant, Intros and Exists to manipulate

separation logic quantifiers, and entailer! to automatically solve separation logic entailments. Our

implementations of these tactics are fundamentally unchanged from VST’s version of Floyd [Cao

et al. 2018], but almost every supporting lemma and tactic needed at least slight changes to work

with our Iris-based definitions. Once these changes were made, the VST proof script for the function

body worked almost verbatim in our system: the only changes are the use of Iris’s ∃ in place of VST’s
notation, and the addition of the invariant mask⊤ in the arguments of semax_body, reflecting the fact

that our Hoare triples are now parameterized by masks, as in Iris. We have reconstructed 13/20 of

VST’s basic example programs (https://github.com/PrincetonUniversity/VST/tree/master/progs64)

in this way, and we expect that the rest can be reconstructed similarly—they are blocked only by

various bugs in our reimplementations of the Floyd tactics, which are time-consuming but not

difficult to solve. Table 1 summarizes the examples, their status, and the features of C they cover.

There are two categories of example programs whose translation to our new logic is more

interesting: those that benefit from using Iris tactics in place of VST’s existing automation, and

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

https://github.com/PrincetonUniversity/VST/tree/master/progs64

An Iris Instance for Verifying CompCert C Programs 6:19

VST example C LoC working features used

append.c 17 Y linked-list struct, while loops

bin_search.c 18 Y arrays, shift operator, while loops

bst.c 115 N binary search tree struct, while loops

field_loadstore.c 23 Y nested struct field access

float.c 11 Y integer-float casts

global.c 19 Y global variables

logical_compare.c 10 Y boolean operators

message.c 38 N casting between structs and byte arrays

min.c 10 N arrays, for loop

nest2.c, nest3.c 14, 35 Y nested structs

object.c 47 Y object-oriented programming with method table

printf.c 48 N printf, fprintf

ptr_cmp.c 12 Y pointer comparison

queue.c 71 N queue struct

revarray.c 20 N arrays, while loops

reverse.c 34 Y linked-list struct, while loops

strlib.c 44 N characters, strings, for loops

sumarray.c 17 Y arrays, while loops

switch.c 15 Y switch statements

union.c 26 Y unions

Table 1. VST’s basic examples and their status in our system

those that used VST’s prior ad-hoc ghost state implementation [Mansky 2022] and can now use

Iris cameras instead. The latter examples are exclusively concurrent programs, which are out of

the scope of this paper, but the former category already gives us a taste of the benefits of joining

VST and Iris. For instance, VST’s object example implements an object-oriented dynamic dispatch

pattern in C using structs and function pointers: each object has a method table that contains

pointers to its implementation of two methods defined in an interface. In the proof of this program,

the representation predicate for the mtable field contains assertions about the two function pointers
in the interface, whose specifications are parameterized by an underlying object implementation 𝑜 :

object_methods(𝑜, 𝑝) ≜ ∃𝜋 𝑝reset 𝑝twiddle. readable(𝜋) ∧ 𝑝 ↦→𝜋 (𝑝reset, 𝑝twiddle) ∗
𝑝reset ↦→𝑓 reset_spec(𝑜) ∗ 𝑝twiddle ↦→𝑓 twiddle_spec(𝑜)

Because the share 𝜋 of the mtable pointer is existentially quantified and function pointers are

persistent, this assertion can be duplicated, i.e., object_methods(𝑜, 𝑝) ⊢ object_methods(𝑜, 𝑝) ∗
object_methods(𝑜, 𝑝). In VST (see the left-hand side of figure 7), proving this involves explicitly

rewriting with a lemma saying that function pointers can be duplicated, and then using the

automated entailment solver entailer. Iris, on the other hand, has built-in support for duplicating

and canceling persistent assertions; an invocation of Iris’s iIntros tactic with the #$ pattern (#

for persistence, $ for cancelation) automatically matches one ↦→𝑓 assertion on the left-hand side

with any number on the right-hand side. When we encounter proof goals that directly manipulate

separating hypotheses, manage persistent assertions, etc., we can immediately take advantage of

Iris tactics that support these kinds of reasoning, simplifying our proofs.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:20 William Mansky and Ke Du

1 struct object;

2

3 struct methods {

4 void (*reset) (struct object *self);

5 int (* twiddle) (struct object *self , int i);

6 };

7

8 struct object {

9 struct methods *mtable;

10 };

11

12 struct foo_object {

13 struct methods *mtable;

14 int data;

15 };

16

17

18 void foo_reset (struct object *self) {

19 ((struct foo_object *)self) -> data = 0;

20 }

21

22 int foo_twiddle (struct object *self , int i) {

23 int d = ((struct foo_object *)self)->data;

24 ((struct foo_object *)self) -> data = d+2*i;

25 return d+i;

26 }

27

28 struct methods foo_methods = {foo_reset , foo_twiddle };

Fig. 6. Object-oriented programming in C

7 EVALUATION
By re-implementing the logic of VST on top of Iris foundations, we obtain a new logic that

(1) can prove anything that can be proved in VST, with equally strong guarantees about the

behavior of verified programs;

(2) is easier to maintain and extend than VST; and

(3) allows users to write simpler proofs in some cases by taking advantage of Iris tactics and

automation.

In this section, we summarize the evidence for these assertions, give an overview of the Coq

implementation of our logic, and discuss further evaluation of the system that we or others could

perform.

For assertion 1, we observe that, as described in section 5.1.2, the rules of our program logic

are exactly the same as VST’s (up to difference in notation). This tells us that on paper, every C

program that can be verified in VST can also be verified in our logic. In practice, as we have seen

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:21

Proof.

intros.

unfold object_methods.

Intros sh reset twiddle.

destruct (split_readable_share sh)

as (sh1 & sh2 & ? & ? & ?); [

assumption |].

Exists sh1 reset twiddle.

Exists sh2 reset twiddle.

rewrite ← (data_at_share_join sh1

sh2 sh) by assumption.

rewrite (split_func_ptr ' (

reset_spec o) reset) at 1.

rewrite (split_func_ptr ' (

twiddle_spec o) twiddle) at 1.

entailer !!.

Qed.

Proof.

intros.

unfold object_methods.

Intros sh reset twiddle.

destruct (split_readable_share sh)

as (sh1 & sh2 & ? & ? & ?); [

assumption |].

Exists sh1 reset twiddle.

Exists sh2 reset twiddle.

rewrite ← (data_at_share_join sh1

sh2 sh) by assumption.

iIntros "(#$ & #$ & $ & $)"; auto.

Qed.

Fig. 7. Proving duplicability of object_methods with VST (left) and Iris (right) tactics

in section 6, some VST proofs do not immediately work in our system, but this is only because

of bugs in our reimplementation of the automation, and we can be sure that once we fix these

bugs all prior verifications will work again. Furthermore, we prove adequacy (Theorem 4.2) against

exactly the same definition of safety as VST, so the guarantees we obtain about verified programs

are exactly the same as in VST. This rules out the possibility that, for instance, we have proved

the same assertions about a program but subtly changed the meaning of those assertions in a way

that makes the proof useless. In fact, we have changed the meaning of assertions by replacing their

foundations, but our adequacy result shows that this does not in any way weaken the properties

we prove about C programs.

For assertion 2, while we have not yet demonstrated a substantial extension of the logic (e.g.,

with transfinite step-indexing or later credits), we have certainly seen that it is easier to maintain.

As mentioned in section 5.1.2, the soundness proofs of the logic are more than 40% smaller than

in VST (we give more statistics about our Coq development in section 7.1). Those proofs are also

performed at a higher level of abstraction than in VST, so they should be unaffected by minor

changes in the foundations of the logic. On the foundational side, using Iris instead of an ad-hoc

separation logic means that we automatically benefit from changes to base Iris: in fact, our logic

already supports arbitrary higher-order ghost state and invariants without any additional effort,

although these features are most easily demonstrated on concurrent programs, so we will not

discuss them further here.

Finally, the object example in section 6 demonstrates that users can benefit from Iris Proof

Mode’s tactics and automation when verifying C programs in our logic. While the full power of Iris’s

automation comes into play primarly in concurrency reasoning, its support for named premises,

persistent assertions, and Coq-style patterns is already useful in the domain of our current logic.

7.1 Coq Development
The work described in this paper is fully formalized in Coq. Our development currently uses

ORA [Krebbers et al. 2018], a fork of Iris’s logic that allows linear (i.e., non-garbage-collected)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:22 William Mansky and Ke Du

resources, but this is not fundamental: while intuitively a malloc-free language should treat memory

assertions linearly, it is well known that linearity alone is insufficient to prove absence of memory

leaks, and the approach of Iron [Bizjak et al. 2019] can be used to prove absence of memory

leaks even in an affine separation logic. Our development is structured as a branch of VST, with

our contributions focused in two folders: veric, the Verifiable C program logic, and floyd, the
automation library. We remove most of MSL, VST’s original generic formulation of separation

logic, keeping only a few standard-library lemmas and tactics, and the definition of tree shares and

their associated algebra. We also add a folder shared that generically defines the camera of shared

values from section 3.1; this folder only imports files from Iris, and could be made into a separate

repository or added to Iris in the future. In Verifiable C, we add one new file instantiating the new

camera and modify 44 of the remaining 75 files, reflecting the new definitions of coherence and

program logic assertions, and the entirely new proofs for all Hoare rules and supporting lemmas.

In Floyd, we modify 66 of 91 files, re-proving supporting lemmas and adapting tactics to the Iris

implementation of Verifiable C. As described in section 5.1.2, our development of Verifiable C is

significantly smaller than VST’s: due to the use of Iris infrastructure and tactics and the shift from

model-level to logic-level proofs, our overall veric development is ∼44k LoC, compared to ∼67k
LoC in VST. Our development of Floyd, on the other hand, is roughly the same size as VST’s.

7.2 Future Evaluation: Integrating Iris-Based Tools with VST
While we have demonstrated that our new system can verify the same programs in the same way

as VST (and in some cases slightly more easily using Iris tactics), we have not yet evaluated the

potential of our system to go beyond VST and verify new C programs in new ways. The most

immediate benefit we expect is the ability to to adapt existing Iris tools and frameworks to our

new Verifiable C. For instance, RefinedC [Sammler et al. 2021] is a refinement-and-ownership type

system for C programs with foundational semantics in Iris, allowing users to write type annotations

on C programs and semi-automatically obtain foundational correctness proofs. Reimplementing

this type system on top of our logic would be a powerful demonstration of the advantages of an

Iris-based VST, and would allow semi-automatic foundational verification of CompCert C programs.

We do not yet know how much work will be involved in translating the definitions of RefinedC’s

types from its separation logic to Verifiable C—our work has bridged the foundational gaps, but

there are still various differences in the interface and implementation of points-to assertions, values

in memory, etc., that make the translation nontrivial.

As another example, ReLoC [Frumin et al. 2021] is a system for proving contextual refinement

properties in Iris’s logic, targeted to the simple functional language HeapLang. To prove that an

implementation program 𝑒𝑖 refines a specification program 𝑒𝑠 (i.e., 𝑒𝑖 ⪯ 𝑒𝑠), ReLoC builds ghost

state that represents the state of 𝑒𝑠 in the proof of 𝑒𝑖 , and provides proof rules and tactics for relating

the steps of the two programs. By adapting the same ghost state to Verifiable C and reconstructing

the proof rules and tactics, we could build a system for proving that CompCert C programs refine

HeapLang programs, so that verification could be decomposed into a pass dealing with the details

of C and a pass dealing with the algorithm at a higher level of abstraction. Integrating the two

systems would be a good test of whether our divergences from the standard construction of an Iris

logic cause problems for other Iris-based tools.

8 RELATEDWORK
8.1 Program Logics for C
There are several separation-logic-based verification tools for C programs. The most obviously

related is VST itself, which has been used to verify cryptographic functions [Beringer et al. 2015],

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:23

web servers [Zhang et al. 2021], and simple concurrent programs [Mansky et al. 2017]. Prior work

by Mansky [Mansky 2022] integrated some features of Iris into VST, which both increased the

power of the logic and highlighted the limitations of working within VST instead of moving to

Iris foundations: the system could express only limited higher-order ghost state, and the proofs of

program logic rules became more complicated with each feature added. We believe that building

up from Iris’s foundations is the more theoretically satisfying and the more practically effective

approach, and hope that our work will lead to a new version of VST that is closely integrated with

advances from the Iris community.

Other separation logic verifiers for C include VeriFast [Jacobs et al. 2011] and VerCors [Blom

and Huisman 2014]. VeriFast in particular has integrated some Iris-style reasoning for fine-grained

concurrent programs. Both systems use the common approach of reducing program correctness

to a collection of first-order proof obligations that can (often) be automatically proved by SMT

solvers, which makes them much easier to use but much less foundational: in fact, both systems

use essentially the same program logic for both C and Java, with no underlying formal semantics

for either language.

8.2 Iris Instances for Real Programming Languages
We know of four Iris instances that target some fragment of a real-world language. RustBelt [Jung

et al. 2017] is built on 𝜆Rust, a core calculus for Rust that models concurrency and lifetimes. The

Goose language used in Perennial [Chajed et al. 2019] automatically translates a subset of Go to

a similar core calculus, with the advantage that source code can actually be written in Go (but

there is still no formal connection between the translated lambda-calculus and executing Go code).

Iris-Wasm [Rao et al. 2023] is the Iris instance that comes closest to giving foundational guarantees

on real code, by connecting to WasmCert-Coq [Watt et al. 2021], a Coq translation of the official

formal specification of WebAssembly. WasmCert-Coq has an executable interpreter, so programs

verified with Iris-Wasm can actually be run.

The most directly relevant instance to our work is RefinedC [Sammler et al. 2021], which

translates C to a core calculus, Caesium, based on the Cerberus reference semantics [Lau et al. 2019].

While CompCert aims to implement C more or less according to the ISO specification, Cerberus and

Caesium aim to model C as it is used in writing systems code, which means that some operations

(especially complicated pointer arithmetic) are undefined in CompCert but defined in Caesium;

Caesium also includes some concurrency features (sequentially consistent atomic operations),

which are outside the scope of CompCert. Cerberus is a partially operational model that uses SMT

solvers to compute sets of allowed executions, which would make it difficult to connect to a verified

compiler. The connection between Caesium and Cerberus is also not formal, so Caesium programs

cannot themselves be executed. One interesting avenue unlocked by our work is to rebuild RefinedC

on top of Verifiable C, enabling semi-automatic generation of foundational correctness proofs for

CompCert C programs.

9 CONCLUSIONS AND FUTUREWORK
Iris has already been used to build expressive program logics with strong foundational guarantees

of correctness; those guarantees are even stronger when we can connect them to verified implemen-

tations of real programming languages. We have demonstrated the construction of a program logic

for CompCert C within Iris, using entirely Iris-based foundations but providing all the same surface

rules and adequacy guarantees as VST/Verifiable C. CompCert presents several challenges that

have not been addressed in prior Iris developments, including permissions in the physical memory,

nonempty unreadable ownership, and mixed nondeterminism for external function calls, all of

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

6:24 William Mansky and Ke Du

which we solve here. Our logic can be used to apply all the machinery and technical innovations of

Iris to prove correctness of sequential C programs compiled with CompCert.

One of the main benefits of an Iris-based CompCert logic is that it can be more easily integrated

with other Iris developments. Our immediate future work is to integrate some of Iris’s tools for

automation, which promise to allow foundational verification to scale to much larger programs.

The most directly relevant work is RefinedC [Sammler et al. 2021], which defines a separation-logic-

based type system for C programs, albeit a slightly different subset of C with a slightly different

semantics. RefinedC’s type system is built on top of a generic framework called Lithium, and

we should now be able to build a Lithium-based type system for Verifiable C, letting us semi-

automatically obtain correctness proofs for CompCert C programs. Language-independent proof

automation tools like Diaframe [Mulder et al. 2022] are also tempting targets for integration. Apart

from automation, the ReLoC refinement proof system [Frumin et al. 2021] allows relational proofs

in Iris, and could be useful both for proving security properties (e.g., information flow control) on

C programs, and for refining C programs to more easily verified functional programs. A logic for

CompCert C connected to the Iris ecosystem promises to vastly expand the ease of verification of

real C programs and the kinds of properties we can prove.

We are also interested in the possibility of comparing the VST and Iris approaches to proof

automation head-to-head. In VST, the resources available at each point in a program are treated as

a “soup” that is automatically searched and modified by symbolic execution tactics, but is difficult

for the user to interact with directly. Iris, on the other hand, maintains separation logic premises

in a “context” similar to Coq’s context of hypotheses, with names for each individual assertion

and tactics for manipulating them using those names. Our system allows users to enter Iris Proof

Mode and name and manipulate assertions in individual entailments, but still uses VST’s top-level

symbolic execution, so the Iris context is lost between steps. We would also like to develop an

Iris-style tactic interface for our logic, based on existing Iris instances’ wp tactics, where we maintain

a separating context across symbolic execution steps. This would be a more familiar interface

for Iris users, and would also take better advantage of Iris’s support for persistent assertions,

hypothesis manipulation, etc., but possibly at the cost of VST’s sophisticated automation for finding

and modifying assertions via symbolic execution—for instance, when executing a struct field access,

VST can often automatically find the points-to assertion for the struct and modify precisely the

piece of it corresponding to the field being accessed. Once we can use both sets of tactics side by

side over the same logic, we can directly compare them and figure out where each might benefit

from the other’s techniques.

9.1 Towards a Concurrent Separation Logic for CompCert C
As mentioned in the introduction, while Iris separation logics are naturally concurrent, CompCert’s

semantics are strictly sequential. This means that while we could easily write a concurrent version

of the separation logic presented here, it would be quite difficult to prove or even state its adequacy

theorem—we would find it hard to precisely define what guarantees we get from verifying a

concurrent C program. In fact, even the semantics of concurrent C programs is currently unclear:

there are extensions of CompCert with specific concurrency models [Ševčík et al. 2013], and

VST has an extension for well-synchronized lock-based concurrency [Cuellar et al. 2020], but

neither one captures the general concurrency model of the C language. The latter framework is

also both extremely complicated (involving 5 different layers of semantics and modifications to

internal CompCert proofs) and unfinished: several discrepancies between CompCert and the various

semantic layers have not been resolved, and the Coq development has been very difficult to maintain.

We have begun work on reconstructing VST’s concurrent extension, aiming to prove adequacy

against the same concurrent extension of CompCert, and expect to again obtain simpler proofs by

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

An Iris Instance for Verifying CompCert C Programs 6:25

working within the logic and taking advantage of Iris features; but in the long run, we believe that

a cleaner and more generic approach is needed. Writing a concurrent separation logic for a lifted

version of a sequential programming language is an interesting problem in general, and we are

currently investigating techniques such as CASCompCert [Jiang et al. 2019] and DimSum [Sammler

et al. 2023] that may allow cleaner decomposition of the various components of the proof.

ACKNOWLEDGMENTS
With thanks to Ralf Jung and Robbert Krebbers for in-depth discussions on CompCert algebras; to

Andrew Appel, Lennart Beringer, Shengyi Wang, and Steve Zdancewic for comments on an earlier

draft; and to the anonymous POPL reviewers for their feedback.

DATA AVAILABILITY STATEMENT
The artifact for this paper is available online [Anonymous 2023]. VST is on GitHub at https:

//github.com/PrincetonUniversity/VST/; at the time of publication, the work described is on the

vst_on_iris branch.

REFERENCES
Anonymous. 2023. VST on Iris. https://doi.org/10.5281/zenodo.8423866

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart, Sandrine Blazy, and

Xavier Leroy. 2014. Program Logics for Certified Compilers. Cambridge University Press. http://www.cambridge.or

g/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certif ied-

compilers?format=HB

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and AndrewW. Appel. 2015. Verified Correctness and Security of OpenSSL

HMAC. In Proceedings of the 24th USENIX Conference on Security Symposium (Washington, D.C.) (SEC’15). USENIX
Association, USA, 207–221.

Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: Managing Obligations in Higher-Order

Concurrent Separation Logic. Proc. ACM Program. Lang. 3, POPL, Article 65 (jan 2019), 30 pages. https://doi.org/10.1145/

3290378

Stefan Blom and Marieke Huisman. 2014. The VerCors Tool for Verification of Concurrent Programs. In FM (Lecture Notes
in Computer Science, Vol. 8442). Springer, 127–131. https://link.springer.com/chapter/10.1007/978-3-319-06410-9_9

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and AndrewW. Appel. 2018. VST-Floyd: A Separation Logic

Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1–4 (jun 2018), 367–422. https://doi.org/10.1007/s10817-

018-9457-5

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying Concurrent, Crash-Safe Systems

with Perennial. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada)
(SOSP ’19). Association for Computing Machinery, New York, NY, USA, 243–258. https://doi.org/10.1145/3341301.3359632

The Coq Development Team. 2023. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.8161141

Santiago Cuellar, Nick Giannarakis, Jean-Marie Madiot, William Mansky, Lennart Beringer, Qinxiang Cao, and Andrew

Appel. 2020. Compiler Correctness for Concurrency: from concurrent separation logic to shared-memory assembly language.
Technical Report. Princeton University.

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2019. RustBelt Meets Relaxed Memory. Proc.
ACM Program. Lang. 4, POPL, Article 34 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371102

Robert Dockins, Aquinas Hobor, and AndrewW. Appel. 2009. A Fresh Look at Separation Algebras and Share Accounting. In

Programming Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16, 2009. Proceedings.
161–177. https://doi.org/10.1007/978-3-642-10672-9_13

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/10.46298/lmcs-17(3:9)2021

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. 2007. Local Reasoning for Storable Locks

and Threads. In Proceedings of the 5th Asian Conference on Programming Languages and Systems (Singapore) (APLAS’07).
Springer-Verlag, Berlin, Heidelberg, 19–37.

Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer. 2023. Melocoton: A

Program Logic for Verified Interoperability Between OCaml and C. (May 2023). unpublished draft.

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle Semantics for Concurrent Separation Logic.

In Proceedings of the Theory and Practice of Software, 17th European Conference on Programming Languages and Systems

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

https://github.com/PrincetonUniversity/VST/
https://github.com/PrincetonUniversity/VST/
https://doi.org/10.5281/zenodo.8423866
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
https://doi.org/10.1145/3290378
https://doi.org/10.1145/3290378
https://link.springer.com/chapter/10.1007/978-3-319-06410-9_9
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1145/3371102
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.46298/lmcs-17(3:9)2021

6:26 William Mansky and Ke Du

(Budapest, Hungary) (ESOP’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 353–367. http://dl.acm.org/citation.cfm?

id=1792878.1792914

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods, Mihaela Bobaru, Klaus Havelund,

Gerard J. Holzmann, and Rajeev Joshi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 41–55.

Hanru Jiang, Hongjin Liang, Siyang Xiao, Junpeng Zha, and Xinyu Feng. 2019. Towards Certified Separate Compilation

for Concurrent Programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 111–125.

https://doi.org/10.1145/3314221.3314595

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of the

Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (dec 2017), 34 pages. https://doi.org/10.114

5/3158154

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for

Computing Machinery, New York, NY, USA, 637–650. https://doi.org/10.1145/2676726.2676980

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Mem-

ory: Reasoning About Release-Acquire Consistency in Iris. In ECOOP’17: 31st European Conference on Object-Oriented
Programming (LIPIcs, Vol. 74). 17:1–17:29.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve

Zdancewic. 2019. From C to Interaction Trees: Specifying, Verifying, and Testing a Networked Server. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs (Cascais, Portugal) (CPP 2019). ACM,

New York, NY, USA, 234–248. https://doi.org/10.1145/3293880.3294106

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.

Proc. ACM Program. Lang. 2, ICFP, Article 77 (July 2018), 30 pages. https://doi.org/10.1145/3236772

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In Programming Languages and Systems
- 29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science,
Vol. 12075), Peter Müller (Ed.). Springer, 336–365. https://doi.org/10.1007/978-3-030-44914-8_13

Stella Lau, Victor B. F. Gomes, KayvanMemarian, Jean Pichon-Pharabod, and Peter Sewell. 2019. Cerberus-BMC: A Principled

Reference Semantics and Exploration Tool for Concurrent and Sequential C. In Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 387–397. https://doi.org/10.1007/978-3-030-25540-4_22

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115. http://gallium.inria.fr

/~xleroy/publi/compcert-CACM.pdf

Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.
Research report RR-7987. INRIA. http://hal.inria.fr/hal-00703441

William Mansky. 2022. Bringing Iris into the Verified Software Toolchain. CoRR abs/2207.06574 (2022). https://doi.org/10.4

8550/ARXIV.2207.06574

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A Verified Messaging System. Proc. ACM Program. Lang. 1,
OOPSLA, Article 87 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133911

William Mansky, Wolf Honoré, and Andrew W. Appel. 2020. Connecting Higher-Order Separation Logic to a First-Order

Outside World. In Programming Languages and Systems, Peter Müller (Ed.). Springer International Publishing, Cham,

428–455.

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: Automated Verification of Fine-Grained Concurrent

Programs in Iris. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and
Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New York, NY, USA, 809–824.

https://doi.org/10.1145/3519939.3523432

Xiaojia Rao, Aïna Linn Georges, Maxime Legoupil, Conrad Watt, Jean Pichon-Pharabod, Philippa Gardner, and Lars Birkedal.

2023. Iris-Wasm: Robust and Modular Verification of WebAssembly Programs. Proc. ACM Program. Lang. 7, PLDI, Article
151 (jun 2023), 25 pages. https://doi.org/10.1145/3591265

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

http://dl.acm.org/citation.cfm?id=1792878.1792914
http://dl.acm.org/citation.cfm?id=1792878.1792914
https://doi.org/10.1145/3314221.3314595
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-25540-4_22
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-CACM.pdf
http://hal.inria.fr/hal-00703441
https://doi.org/10.48550/ARXIV.2207.06574
https://doi.org/10.48550/ARXIV.2207.06574
https://doi.org/10.1145/3133911
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3591265

An Iris Instance for Verifying CompCert C Programs 6:27

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:

Automating the Foundational Verification of C Code with Refined Ownership Types. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 158–174. https://doi.org/10.1145/3453483.3454036

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer.

2023. DimSum: A Decentralized Approach to Multi-Language Semantics and Verification. Proc. ACM Program. Lang. 7,
POPL, Article 27 (jan 2023), 31 pages. https://doi.org/10.1145/3571220

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021.

Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation Logic. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021).
Association for Computing Machinery, New York, NY, USA, 80–95. https://doi.org/10.1145/3453483.3454031

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022. Later

Credits: Resourceful Reasoning for the Later Modality. Proc. ACM Program. Lang. 6, ICFP, Article 100 (aug 2022), 29 pages.
https://doi.org/10.1145/3547631

Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A

Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3, Article 22 (Jun 2013), 50 pages. https://doi.org/10.1

145/2487241.2487248

Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. 2021. Two Mechanisations of

WebAssembly 1.0. In FM 2021 - Formal Methods. Beijing, China, 1–19. https://hal.science/hal-03353748

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-Yao Xia, Lennart Beringer, William Mansky, Benjamin

Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In 12th
International Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

32:1–32:19. https://doi.org/10.4230/LIPIcs.ITP.2021.32

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 6. Publication date: January 2024.

https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3547631
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://hal.science/hal-03353748
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	Abstract
	1 Introduction
	2 Background
	2.1 Iris
	2.2 The Verified Software Toolchain

	3 A Resource Algebra for CompCert Memory
	3.1 The Camera of Shared Values
	3.2 Coherence between Logical Heaps and CompCert Memory
	3.3 Locks and Function Pointers

	4 Safety and Adequacy
	4.1 Weakest Preconditions
	4.2 Adequacy

	5 Building the Program Logic
	5.1 Proving the Rules of Verifiable C
	5.2 Initial State and Whole-Program Correctness

	6 Verifying C Programs
	7 Evaluation
	7.1 Coq Development
	7.2 Future Evaluation: Integrating Iris-Based Tools with VST

	8 Related Work
	8.1 Program Logics for C
	8.2 Iris Instances for Real Programming Languages

	9 Conclusions and Future Work
	9.1 Towards a Concurrent Separation Logic for CompCert C

	Acknowledgments
	References

