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Abstract

Ensuring correctness of programs is of ever-growing importance as software increasingly handles safety-
critical functions. The surge of concurrent programs makes this task significantly more challenging. This
thesis focuses on queue algorithms, which are commonly used in a concurrent setting.
To reason formally about queues, we use the Iris program logic. After giving a brief introduction to the
logic, we use it to express three queue specifications. The most general of these is the “HOCAP-style”
specification, which supports concurrent clients and allows tracking of queue contents. We demonstrate
that this specification implies the other, simpler specifications.
The project then examines two queue algorithms: the blocking and non-blocking Michael-Scott Queues. We
give implementations for these algorithms in the programming language HeapLang. Both implementations
are proven to satisfy the HOCAP-style specification. The blocking Michael-Scott Queue is verified using
an invariant that tracks the contents of the queue and specifies the possible states of the queue data
structure. For the non-blocking Michael-Scott Queue, a notion of reachability, borrowed from existing
work, is incorporated into its invariant to show its compliance with the HOCAP-style specification. All
proofs developed in this project have been mechanised in the Coq proof assistant.
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Resumé

I forbindelse med at software overtager flere sikkerhedskritiske opgaver stiger vigtigheden af verificering
af software. Den øgede popularitet af “parallelprogrammering” gør denne verificerings-opgave markant
mere udfordrende. Dette speciale fokuser p̊a kø-algoritmer, som ofte bruges i parallelprogrammering.
Vi bruger program logikken Iris til at ræsonnere formelt omkring køer. Efter en kort introduktion til
logikken anvender vi den til at udtrykke tre specifikationer for køer. Den mest generelle af disse er
den s̊akaldte “HOCAP-style” specifikation, som tillader køen at blive brugt i parallelle sammenhænge,
samt understøtte at klienter kan holde styr p̊a køens indhold. Vi demonstrerer at køer, der overholder
HOCAP-style specifikationen, ogs̊a overholder de to andre specifikationer.
Projektet udforsker derefter to specifikke køer: den blokerende og ikke-blokerende Michael-Scott kø. Vi
giver implementeringer af køerne i programmeringssproget HeapLang. Det vises, at begge implementeringer
overholder HOCAP-style specifikationen. Verifiseringen af den blokerende Michael-Scott kø fungerer ved
brugen af en invariant, som holder styr p̊a køens indhold, og specificerer de mulige tilstande, som køren
kan være i. Invarianten for den ikke-blokerende Michael-Scott kø benytter ideen om “reachability” fra
tidligere arbejde. Alle beviser fremstillet i projektet er blevet maskine-verificeret i bevis assistenten Coq.
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Chapter 1

Introduction

Correctness of software is of ever-growing importance as more and more safety-critical functions are
entrusted to computers. As such, being able to verify the correctness of a piece of software has become
highly desirable. With the surge of multiprocessor computing, the complexity of software systems has
grown significantly. Reasoning about the correctness of concurrent programs is particularly tricky as one
must reason about all possible interactions between participating threads.

A verification technique that gives very strong correctness guarantees is that of using a program logic.
The idea is to set up a formal system that captures the semantics of a programming language, which one
can then use to derive (i.e. prove) formal descriptions of how specific expressions behave: a specification
of the program. That is, the logic allows us to write formal program specifications and prove them.
One such program logic is Iris, a concurrent separation logic that supports reasoning about concurrent
programs and how the resources these programs operate on are used by participating threads.

This project focuses on queues, a fundamental data structure in computer science that operates on the
first-in, first-out principle. Queues are widely used across many types of applications, including process
schedulers in operating systems, handling requests to web servers, and implementing the breadth-first
search algorithm. Using the aforementioned program logic, we give specifications for queue algorithms in
general. These specifications vary in generality and complexity, reflecting the difficulties of reasoning
about concurrent programs. The most general queue specification we develop is a so-called HOCAP-style
specification, which supports concurrent clients and allows them to track the contents of the queue.

In this project, we study two concrete queue implementations, namely the blocking and non-blocking
Michael-Scott Queues (M&S Queues for short). These queues demonstrate two of the most common
synchronisation mechanisms: locks, which are blocking, and atomic instructions, such as compare-and-
swap, which are non-blocking. The non-blocking M&S Queue in particular has enjoyed quite a bit of
use in practice, as many libraries include queue implementations based on or inspired by it. A notable
example is the ConcurrentLinkedQueue class in Java’s concurrent library, which is based upon it.

Previous work [Vindum and Birkedal, 2021] has shown that the non-blocking M&S Queue contextually
refines a coarse-grained queue. However, this result does not allow clients of the queue to formally verify
their own specifications using the logic.
As for the blocking M&S Queue, no prior correctness results are known to this author. The original
presentation of the queue [Michael and Scott, 1996] gave an argument for its correctness. However, we
demonstrate that the argument relies on an incorrect assumption.

This project makes the following contributions.

• Giving three different specifications for queues at different levels of generality.

• Proving that both M&S Queues meet these specifications.

• Demonstrating that the HOCAP-style specification implies the other two specifications.

• Mechanising everything presented in this report in the Coq proof assistant.

The structure of the report is as follows. We begin in Chapter 2 with an exposition of the programming
language used in the project and the program logic, Iris. Following this, in Chapter 3 we give the three
queue specifications, discuss their capabilities, and study an example queue client. We further prove
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that the HOCAP-style specification can derive the other two specifications. Chapter 4 discusses the
Two-Lock M&S Queue and gives an implementation for it in our chosen programming language. We then
proceed to prove that the implementation satisfies the three specifications in Chapter 5. In a similar way,
Chapter 6 gives our implementation of the Lock-Free M&S Queue, and Chapter 7 shows that it satisfies
the HOCAP-style specification. We finish in Chapter 8 where we give formal definitions and proofs for
essential constructs used throughout the above-mentioned chapters.
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Chapter 2

Preliminaries

This chapter covers some of the background topics that are required to understand the main parts of the
project. Specifically, Section 2.1 covers the basics of the language we use to implement the M&S Queues.
Section 2.2 gives an overview of the program logic we use to reason about the queues. Finally, Section 2.3
introduces the files containing the mechanisations of the work presented in this report.

2.1 HeapLang

This project uses “HeapLang” as the implementation language. The main reason for this choice is
that HeapLang is well supported by the program logic Iris, which we introduce in the next section.
However, HeapLang is still a quite suitable language for this project, as it has features to support faithful
implementations of the M&S Queues. In particular, HeapLang is an untyped ML-style language and
notably supports recursion, references, and concurrency. References are handled with a heap, hence the
name of the language. Only references to values can be created. The instruction ref (v) allocates a spot
on the heap containing v and returns the location, `, of the value. This location can later be read using
! ` or updated using `← v′.

Concurrency is supported by the fork {e} instruction. This instruction creates a new thread which
executes e. Threads can communicate through the heap, and to allow for synchronisation, HeapLang
supports a compare-and-swap instruction. The instruction CAS ` v v′ atomically reads `, compares the
contents with v, and if they are the same, stores v′ at `. If ` does not contain v, no change occurs.

For the basic constructs, HeapLang supports basic arithmetic on integers, comparisons, conditionals,
pairs and projections, and injections and pattern matching. Many of the other usual constructions expected
of similar languages are achieved with syntactic sugar. For instance, we define the let construction
as let x = e1 in e2 , (λx.e2) e1. Similarly, we can support sequences of instructions by defining
e1; e2 , (λx.e2) e1, but where x is fresh.

The full specification of the language can be found in Birkedal and Bizjak [2017] (Section 2 at the
time of writing).

2.2 The Iris Program Logic Framework

In this section, we give a brief introduction to Iris – the logic we use to reason about the M&S Queues. Iris
is quite expressive and supports a myriad of features and derived rules, many of which have been utilised
in this project. As such, it will be impossible to cover all facets of Iris in detail, so we limit ourselves
to giving an overview of the main aspects of Iris. If the reader desires a more thorough introduction or
wishes to see further details of the topics covered, please consult the Iris Lecture Notes [Birkedal and
Bizjak, 2017].

2.2.1 Fundamentals of Iris

Briefly put, Iris is a “Higher-Order Concurrent Separation Logic Framework”. The framework part means
that Iris is not tied to a single programming language; one may instantiate Iris with any programming
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language one sees fit. The “concurrent” part implies that Iris supports reasoning about languages with
concurrent features, such as HeapLang. In fact, HeapLang is a sort of “default” language which ships
with Iris. As such, some of the rules we present in this section will be programming language independent,
while others will adhere to the semantics of HeapLang.

A feature that makes Iris very powerful is that it is a higher order logic. This essentially means that
we may quantify over propositions and predicates. This feature of Iris is essential to this project – much
of the work done relies on this capability.

As Iris is a separation logic, we can reason about ownership of resources. Iris’s notion of resources is
very general due to resource algebras, which we explain in Section 2.2.4, but a simple example is that of
pointers. One may “own” a particular pointer, which allows one to manipulate it. We capture this with
the “points-to” predicate; the proposition ` 7→ v denotes ownership over location `, with the fact that `
points to v. It guarantees that no other threads can interact with the location. Ownership of ` 7→ v can
also be transferred to e.g. other threads, allowing them to interact with `. In general, propositions in Iris
describe the resources that one owns.

Iris has usual connectives such as ∧, ∨, and =⇒ , but with the addition of ownership, we additionally
introduce separating conjunction, written as: P ∗Q, for propositions P and Q. The proposition P ∗Q
describes the resources in P combined with the resources in Q. Since ownership of a resource can be
exclusive, it should not be freely duplicable. Hence, if we own some resources and wish to prove Q1 ∗Q2,
we must decide which resources we use to prove Q1 and which resources to prove Q2. This is captured
by the ∗I rule. This is the main difference between regular conjunction and separating conjunction. We
additionally introduce the “wand” connective, written −∗, which is similar to implication but works with
separating conjunction instead. The introduction and elimination rules for wand (−∗I and −∗E) are hence
similar to those for implication, but it takes the ownership aspect into consideration.

∗I
P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗Q2

−∗I
R ∗ P ` Q
R ` P −∗ Q

−∗E
R1 ` P −∗ Q R2 ` P

R1 ∗R2 ` Q

Ownership of resources does not have to be exclusive. For instance, if a location is never updated,
several threads should be allowed to have ownership over the points-to predicate for that location. To
this end, Iris has the persistently modality, written 2P (read as “persistently P”), which states that the
resources described by P are allowed to be duplicated (see rule persistently-dup). Duplicability is an
important capability; essential constructions in Iris rely on being duplicable, as we explore in the next
sections.
Propositions are persistent if they satisfy P ` 2P . There are many rules which state how to derive and
work with persistent propositions, but for the sake of brevity, we highlight here just two important rules:
persistently-intro and persistently-keep. The first states that any proposition we prove from only
persistent propositions are themselves persistent, and the second states that we can use resources to prove
persistent propositions without “consuming” the resources.

persistently-dup

2P a` 2P ∗ P

persistently-intro
2P ` Q
2P ` 2Q

persistently-keep
P ` 2Q

P ` 2Q ∗ P

2.2.2 Hoare Triples and Weakest Pre-Condition

The logic supports reasoning about programs via Hoare triples. A Hoare triple {P } e {v.Φ v} states that if
we own the resources described by P , then we may safely run e, and if the computation terminates with
value v, then the predicate Φ holds of v. That is, Hoare triples only show partial correctness of programs.

Specifications for functions are usually written in terms of Hoare triples – the pre-condition mentions
which resources the function requires, and the post-condition states which resources the callee gets back if
the function returns. Hoare triples are persistent (see rule persistently-Ht), which allows clients to apply
the same Hoare triple for multiple invocations of the same function. This is sensible as the Hoare triple
implies that the function only needs the resources described by the pre-condition in order to run safely; if
we can get those resources multiple times, we can, of course, also run the function multiple times.

The rules for Hoare triples depend on the language. Figure 2.1 shows some selected rules for the case
of HeapLang. Some of the rules, such as Ht-alloc, Ht-load, Ht-store, and Ht-beta show Hoare triples
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persistently-Ht

{P } e {Φ} a` 2 {P } e {Φ}

Ht-ret
w is a value

S ` {True}w {v.v = w}

Ht-bind
E is an eval. context S ` {P } e {v. Q} S ` ∀v. {Q}E[v] {w. R}

S ` {P }E[e] {w. R}

Ht-alloc

S ` {True} ref (u) {v.∃`. v = ` ∧ ` ↪→ u}

Ht-load

S ` {` ↪→ u} ! ` {v.v = u ∧ ` ↪→ u}

Ht-store

S ` {` ↪→ −} `← w {v.v = () ∧ ` ↪→ w}

Ht-beta
S ` {P } e [v/x] {u.Q}
S ` {P } (λx.e)v {u.Q}

Ht-csq

S persistent S ` P ⇒ P ′ S ` {P ′} e {v. Q′} S ` ∀u. Q′[u/v]⇒ Q[u/v]

S ` {P } e {v. Q}

Ht-frame
S ` {P } e {v.Q}

S ` {P ∗R} e {v.Q ∗R}

Figure 2.1: Selected rules for Hoare triples.

for basic constructs of the language. For example, Ht-alloc states that it is always safe to create a new
reference to some value, u, and the value returned from the creation is some location which points to u.

Other rules, such as Ht-bind, Ht-csq, and Ht-frame, show how to prove Hoare triples for more
complex expressions. The bind rule allows us to “focus” on sub-expressions, as long as they are what
will be executed next according to the semantics of the language. We must then prove a Hoare triple
for the whole expression, assuming that the sub-expression has reduced to some value. Note that the
post-condition of the Hoare triple for the sub-expression becomes the pre-condition for the Hoare triple of
the whole expression.
The rule of consequence states that we can strengthen pre-conditions and weaken post-conditions. Indeed,
if we can execute an expression with some resources, we can surely also execute it if we have more
resources available. Similarly, we can also simply decide to mention fewer of the resources available after
the function invocation.
The frame rule essentially states that resources which are not required to run the expression are not
changed by it.

Another way to reason about programs in Iris is weakest pre-condition, written wp e {v.Φ v}. The
main difference between weakest pre-conditions and Hoare triples is that the former does not mention the
required resources in a pre-condition – instead, propositions describing the required resources imply the
weakest pre-conditions. For instance, if one owns the points-to predicate for some location `, then one can
derive a weakest pre-condition for a load of `. That is, we have that ` ↪→ v ` wp ! ` {u.u = v ∗ ` ↪→ v}.

The rules for weakest pre-conditions are analogous to the rules for Hoare triples shown in 2.1, so we
do not mention them here. Indeed, we may even define the notions in terms of each other. The reason for
having both is that it is usually nicer to write specifications in terms of Hoare triples, whereas proofs of
weakest pre-conditions are more streamlined.

2.2.3 Later Modality

The presentation we have seen thus far does not allow us to tie propositions to steps in the program; we
may want to express that some proposition holds after one program step. To achieve this, Iris provides a
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later modality, written .P . The later modality is technically language independent and hence parallel to
program steps, but the way that Hoare triples and weakest pre-conditions are defined ties a single . to
a single step in the program. For instance, .(` 7→ 5) asserts that the location ` will contain the value
5 after taking one step in the program. In other words, we do not own the resource that ` points to 5
now, but we will own it after one step. In this sense, the later modality weakens propositions; owning a
resource now is stronger than owning it later (cf. rule later-weak).

We update the rules from Figure 2.1 to capture the effect that taking a step removes a later. For
instance, Ht-beta-later is similar to Ht-beta, but it strips away a later in the pre-condition to signify
that the program has taken a step (in this case by computing the function application).

The later modality has many uses in Iris, but for our presentation, the Löb induction rule, Löb, is
the most important. It states that if we want to prove some proposition P , we may assume that we
have P later. This rule is really useful when P is a Hoare triple for a recursive function. If f is some
recursive function and we want to prove the Hoare triple: {Q} f u {v.Φ v}, then Löb induction gives us an
induction hypothesis: .({Q} f u {v.Φ v}). As the later modality weakens our proposition, we cannot use
it to prove our goal, but after performing the function application using Ht-beta, the . in our induction
hypothesis is stripped away, and we get to assume {Q} f u {v.Φ v}. Hence, if we reach a recursive call
inside f , we merely have to prove Q, and then we can use our induction hypothesis to prove the recursive
call.

later-weak
Q ` P
Q ` .P

later-mono
Q ` P

.Q ` .P

Löb
Q ∧ .P ` P
Q ` P

Ht-beta-later
S ` {P } e [v/x] {u.Q}
S ` {.P } (λx.e)v {u.Q}

Ht-load

S ` {. ` ↪→ u} ! ` {v.v = u ∧ ` ↪→ u}

Ht-store

S ` {. ` ↪→ −} `← w {v.v = () ∧ ` ↪→ w}

2.2.4 Resource Algebra

Thus far, the only kind of resource we have seen is the points-to predicate. This is in itself a very useful
notion of resource, but many constructions demand other kinds of resources. Iris allows us to create our
own notion of a resource by defining a resource algebra which specifies what the resources are and how the
resources interact with each other. Indeed, even the points-to predicate is defined via a resource algebra.

Formally, “A resource algebra is a commutative semigroup M together with a subset V ⊆ M of
elements called valid, and a partial function |·| :M→M, called the core.” (Birkedal and Bizjak [2017])

That is, a resource algebra consists of a set of elements (the resources) with an associative and
commutative operation, written as a · b. The set of elements is usually called the “carrier”. Some elements
are marked as “valid” – only valid resources can be owned in Iris (cf. rule Own-valid). Ownership of a
non-valid element proves False.
The core function “extracts” duplicable parts from resources. In particular, if the core of an element a is
a itself, i.e. |a| = a, then a is freely duplicable. Hence, ownership of a is persistent.
Some resource algebras enjoy the additional property of being unital. This essentially means that the
carrier contains a unit element ε with respect to ‘·’, which is both valid and duplicable.
Finally, we note that we can create a pre-order relation for every resource algebra by defining the extension
order: a 4 b ⇐⇒ ∃c, b = a · c.

Since programs update resources, we will need some way of updating elements in a resource algebra.
We write a b to mean that a can be updated to b. Updates of elements should not be able to happen
freely; a thread updating its resources should not invalidate the resources that another thread owns. The
idea is to ensure that we can only update our resources if we do not make other resources invalid. We
call such an update a frame preserving update and define it as follows.

frame-preserving-update

a b ⇐⇒ ∀x ∈M, a · x ∈ V =⇒ b · x ∈ V.

This rule is simplified a little, but it suffices for our purposes. It requires that any resource that is valid
with a is also valid with b. This ensures us that we do not invalidate other elements as a consequence of
the update.
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Birkedal and Bizjak [2017] show many examples of basic resource algebras. However, it turns out that
a desired construction can often be realised by composing different resource algebras instead of defining
them from the ground up. In fact, in this project, the resource algebras used were exclusively constructed
from other resource algebras. Chapter 8 shows the main resource algebras used in this project.
In this report, we isolate the difficulties of creating desired constructions by postulating their existence,
and only later, in Chapter 8, showing how to realise these using specific resource algebras.

Ghost State

Until now, we have only discussed resource algebras as an isolated concept. Now, we show how resource
algebras are tied into the logic of Iris, allowing us to use them in reasoning about programs.

The first component we need is an update modality, written |VP . This modality governs where we are
allowed to update our resources, including the creation of new resources. We present the following three
rules for introducing update modalities.

upd-mono
P ` Q

|VP ` |VQ

upd-intro

P ` |VP

Ht-csq-vs

S ` P V P ′ S ` {P ′} e {v. Q′} S ` ∀u. Q′[u/v]V Q[u/v]

S ` {P } e {v. Q}

Here, the view-shift, V, is defined as P V Q = 2(P =⇒ |VQ), and states that if we own the resources
described by P , then we can derive the resources described by Q after updating our resources (for instance,
via a frame preserving update).

Iris supports reasoning about resource algebras via the notion of ghost state: for a resource algebra
M and an element a in the carrier, the assertion a

γ
denotes ownership over an instance of the resource

a. Here, γ is a ghost name – it gives a way to refer to specific instances of the resource algebra. The
following four rules demonstrate how to create, update, and reason about ghost resources in Iris.

Ghost-alloc
a ∈ V

True ` |V∃γ. a γ

Ghost-update
a b

a
γ ` |V b

γ

Own-op

a
γ ∗ b γ a` a · b γ

Own-valid

a
γ ` a ∈ V

2.2.5 Invariants

The last feature of Iris we need is that of invariants. Some resources are required by multiple threads.
However, those resources may not be persistent, hence not duplicable. To get around this, one can devise
an invariant for said resources – a proposition P that describes the resources in a way that is always

true. Then, one can assert that this proposition is an invariant, written P
N

, and since invariants are
persistent, they can be given to multiple threads. The threads may then access the resources inside the
invariant by opening it. There are three criteria when opening an invariant. Firstly, the invariant can
only be open for one program step. This is enforced by making the opening rule for invariants require
that the expression in the Hoare triple or weakest pre-condition be “atomic”. We can usually satisfy this
criterion by applying the Ht-bind rule.
The second criterion is that the invariant can only be opened once before being closed again. Iris enforces
this by attaching masks to many of the constructs presented in the previous sections. The details of
masks are not important for our presentation. Masks tell us which invariants we are allowed to open. For
instance, the invariant opening rule for weakest pre-conditions, wp-inv-open-namespace, attaches the
mask E \ N ↑ to the weakest pre-condition, signifying that we cannot use invariants in the namespace N
to prove the weakest pre-condition.
Finally, as wp-inv-open-namespace also shows, we must prove that the invariant still holds after e has
taken its one step (this is realised by having P in the post-condition). The reason is that other threads
might also rely on the invariant. Hence, we have to reinstate it immediately.

Inv-alloc

.P ` |V∅ P
N

wp-inv-open-namespace
e is an atomic expression N ↑ ⊆ E

P
N ∗

(
.P −∗ wpE\N↑ e {v. . P ∗ Φ(v)}

)
` wpE e {Φ}
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A technicality of invariants is that we only get the resources later when opening them.1 This is usually
not an issue as most of the rules for stepping through programs only require resources later (cf. Section
2.2.3). Hence, we will usually assume that we have resources available now when we open invariants. We
mention the later explicitly in the few cases where only getting the resources later is important.

2.2.6 Locks

The Two-Lock M&S Queue uses locks, so we discuss these briefly in this section. A lock has three
functions: newLock, acquire, and release. In Iris, locks protect resources; when we create a new lock, we
give it the resources it must protect. When a thread acquires the lock, the thread gets access to the
protected resources. Releasing the lock then requires that the resources are transferred back to the lock.
In our project, we use the following specification for locks from Birkedal and Bizjak [2017] (Example 8.38
at the time of writing).

∃ isLock : Val→ Prop→ GhostName→ Prop.
∃ locked : GhostName→ Prop.

2(∀P, v, γ. isLock(v, P, γ) =⇒ 2 isLock(v, P, γ))

∧ 2(∀γ. locked(γ) ∗ locked(γ) =⇒ False)

∧ ∀P. {P } newLock() {v.∃γ. isLock(v, P, γ)}
∧ ∀P, v, γ. {isLock(v, P, γ)} acquire v { .P ∗ locked(γ)}
∧ ∀P, v, γ. {isLock(v, P, γ) ∗ P ∗ locked(γ)} release v { .True}

The specification asserts the existence of two predicates: a lock predicate, “isLock”, and a lock token,
“locked”. The lock predicate describes that a value represents a lock and governs which resources the lock
protects. The specification for the newLock function states that if we own the resources described by
P , we can create a new lock by invoking newLock. The value returned by the function then represents
the lock and protects the resources described by P . The lock predicate is persistent so that we can give
the lock predicate to multiple threads, allowing them to use the specifications for acquire and release.
The specification for acquire grants us access to the resources that the lock is protecting as well as a
non-duplicable token, locked(γ). This token tells us that we are the sole owner of the lock. To release the
lock, we must give up the locked(γ) token and the resources the lock protects.

2.3 Formalisation in Coq

Iris has been mechanised in the Coq proof assistant2 – a tool to machine-check proofs of mathematical
assertions. All results in this project have been completely machine-verified in the Iris mechanisation
in Coq. Specifications in the Coq formalisation of Iris are usually written in terms of Hoare triples but
proved by first converting the Hoare triples to equivalent weakest pre-conditions, as this is usually easier
to work with. The proofs presented in this report will follow suit and give specifications using Hoare
triples but prove them assuming they are weakest pre-conditions. The proofs presented in the report thus
follow the mechanised proofs very closely, making it possible to “step through” the mechanised proofs in
tandem with reading the paper-proofs presented in this report.

One caveat is that there is somewhat of a discrepancy between Iris on paper and the Iris formalisation
in Coq. Working with the latter requires a bit deeper understanding of the model of Iris. Jung et al.
[2018] explain the underlying model of an older version of Iris, but many of the concepts discussed are
still relevant.3

Table 2.1 gives an overview of the files developed in the project and how they relate to this report.
All files related to the project are available at https://github.com/MatteP1/thesis.

1Getting the resources immediately would be unsound.
2The mechanisation can be found at https://gitlab.mpi-sws.org/iris/iris/
3For an up-to-date presentation, consult the Technical Reference at https://iris-project.org/
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File Name Relevant Sections Description

queue_specs.v Chapter 3 Queue specifications and derivations,
and an example client.queue_client.v Section 3.6

MSQ_common.v Chapters 4 - 7 Common definitions and lemmas.

twoLockMSQ_impl.v Chapter 4
Two-Lock M&S Queue implementation
and proofs of sequential, concurrent, and
HOCAP-style specifications.

twoLockMSQ_sequential_spec.v Section 5.2
twoLockMSQ_concurrent_spec.v Section 5.3
twoLockMSQ_hocap_spec.v Section 5.4

lockFreeMSQ_impl.v Chapter 6 Lock-Free M&S Queue implementation
and HOCAP-style specification proof.lockFreeMSQ_hocap_spec.v Chapter 7

lockAndCCFreeMSQ_impl.v Section 7.5 Consistency-Check-Free version of the
Lock-Free M&S Queue.lockAndCCFreeMSQ_hocap_spec.v Section 7.5

Table 2.1: Overview of Coq Files.

2.3.1 Compiling the Project

Compiling the project requires both Coq and Iris to be installed. Once installed, open a terminal and
navigate to the project folder, /thesis, which contains the _CoqProject file. Here, run make. This will
both create a Coq Makefile and run it. The project is known to compile with Coq version 8.19.0 and Iris
version 4.2.0.
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Chapter 3

Queue Specifications

3.1 Specifications for Queues

In this chapter, we discuss some possible specifications for queue data structures in general. As such, we
must make some basic assumptions about what we expect from a queue. Firstly, we adopt the convention
that a queue consists of three functions: initialize, enqueue, and dequeue. Exactly what these functions
do depends on the specific implementation of the queue, but we give some general pointers to what we
expect of them.
The initialize function should create a queue which is initially empty. The functions enqueue and dequeue
can then be invoked subsequently on said queue.
In addition to being parametrised on the queue, the enqueue function should also take a value as input.
When invoking enqueue with such a value, the function should add this value to the end of the queue.
The dequeue function attempts to dequeue an element from the queue. Since queues are allowed to be
empty, the dequeue function is assumed to return an option value. If the queue is empty, then dequeue
should return None, and otherwise, it should remove an element from the front of the queue and return
this wrapped in a Some.

Working in a concurrent setting often gets quite complicated quite fast, and proving that one’s queue
satisfies the above desirables can become rather tricky. In fact, even defining those qualities formally
can become non-trivial. As such, we give three different specifications for queues. In Section 3.2, we
give a specification that assumes the queue is run in a sequential setting. Next, in Section 3.3, we give a
specification that does allow for concurrency but gives up on some of the above qualities. Primarily, it
does not track the contents of the queue; invoking enqueue on a value does not guarantee that the value
is added to the queue. Finally, in Section 3.4, we give a specification that allows for both concurrency
and tracking of the contents of the queue.

3.2 Defining a Sequential Specification

Let us first consider a specification in the simple case where we do not allow for concurrency. In this
case, we know that only a single thread will interact with the queue at any given point in a sequential
manner. The specification we give will track the exact contents of the queue. To this end, we shall
define the abstract state of the queue, denoted xsv, as a list of HeapLang values. That is, xsv : List Val.
We adopt the convention that enqueueing an element is done by adding it to the front of the list, and
dequeueing removes the last element of the list (if such an element exists). The reason for this choice is
purely technical.

To allow queues to use whichever ghost names they like, we introduce the type “SeqQgnames” whose
purpose is to keep track of the ghost names used for a specific queue. One may think of SeqQgnames as
a set of fixed-length tuples of ghost names.

With this, we give our definition of a sequential specification for a queue.
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Definition 3.2.1 (Sequential Specification).

∃ isQueueS : Val→ List Val→ SeqQgnames→ Prop.
{True} initialize () {vq.∃G. isQueueS(vq, [], G)}

∧ ∀vq, v, xsv, G. {isQueueS(vq, xsv, G)} enqueue vq v {w. isQueueS(vq, (v :: xsv), G)}
∧ ∀vq, xsv, G. {isQueueS(vq, xsv, G)}

dequeue vq

{w. (xsv = [] ∗ w = None ∗ isQueueS(vq, xsv, G)) ∨
(∃v, xs′v. xsv = xs′v ++ [v] ∗ w = Some v ∗ isQueueS(vq, xs

′
v, G)) }

The proposition isQueueS(vq, xsv, G) captures that the value vq is a queue whose contents match that
of our abstract representation xsv, and the queue uses the ghost names described by G. Clients of a
queue satisfying this specification can then apply the three Hoare triples at invocations for initialize,
enqueue, and dequeue, which tell them how the queue changes as a result of the invocation.
Note that the isQueueS predicate is not required to be persistent. Hence, it cannot be duplicated and
given to multiple threads. Since this predicate is required to apply the Hoare triples, then only a single
thread can use the specification at a time. This is the sense in which the specification is sequential.

3.3 Defining a Concurrent Specification

As discussed in the previous section, a concurrent specification will need the queue predicate to be
duplicable to allow multiple threads to use the specification concurrently. For this specification, we denote
the queue predicate by isQueueC.

To achieve duplicability of isQueueC, we shall give up on tracking the abstract state of the queue.
The reason for doing so is the following. Consider the case where we own the queue predicate, and it
states that the abstract state of the queue is xsv. We spawn two threads and give them both the queue
predicate stating that the abstract value is xsv. Now they both invoke enqueue, one with value v and
the other with v′. This makes one thread conclude that the abstract state of the queue is v ++ xsv, and
the other that it is v′ ++ xsv, whereas, in reality, the queue contains both v and v′. This is of course not
desirable, and it is not immediately obvious how to solve this issue.

We can, however, make the queue guarantee that a given property holds of all the values in the queue.
We do this by parametrising isQueueC with a predicate, Ψ, which it will maintain holds for all elements
in the queue. In this way, when dequeueing, we at least know that if we get some value, then Ψ holds of
this value. The specification we wish to prove is as follows.

Definition 3.3.1 (Concurrent Specification).

∃ isQueueC : (Val→ Prop)→ Val→ ConcQgnames→ Prop.
∀Ψ : Val→ Prop.
∀vq, G. isQueueC(Ψ, vq, G) =⇒ 2 isQueueC(Ψ, vq, G)

∧ {True} initialize () {vq.∃G. isQueueC(Ψ, vq, G)}
∧ ∀vq, v,G. {isQueueC(Ψ, vq, G) ∗Ψ(v)} enqueue vq v {w.True}
∧ ∀vq, G. {isQueueC(Ψ, vq, G)} dequeue vq {w.w = None∨(∃v. w = Some v ∗Ψ(v))}

This specification additionally requires that isQueueC is persistent, which means that it can be
duplicated and given to multiple threads. We again use a collection of ghost names, which we here denote
ConcQgnames.

3.4 Defining a HOCAP-style Specification

In this section, we explore our most general specification: one that allows for both concurrency and
tracking of the contents of the queue. We refer to this specification as a HOCAP-style specification
– Higher Order Concurrent Abstract Predicate – since it is concurrent and parametrised by abstract
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predicates. This specification is more general than both the sequential and concurrent specifications in
the sense that they are derivable from the HOCAP-style specification. We prove this in Section 3.5.

As with the concurrent specification, we cannot simply parametrise the queue predicate (now denoted
isQueue) with the abstract state of the queue. To allow clients to keep track of the contents of the
queue, we “split” the abstract state into two parts: the authoritative view and the fragmental view. The
clients will then own the fragmental view, allowing them to keep track of the contents of the queue,
whereas the isQueue predicate will own the authoritative view. We will in particular make sure that
if one has both the fragmental and authoritative views, then these agree on the abstract state of the
queue. Further, it is only possible to update the abstract state of the queue if one possesses both the
authoritative and fragmental views. Hence, clients will have to supply the fragmental view to be able to
apply the specifications for enqueue and dequeue.

For an abstract state xsv and a ghost name γ, we shall use the notation γ Z⇒• xsv to mean that the
authoritative view of the abstract state associated with γ is xsv. Similarly, we write γ Z⇒◦ xsv to mean
that the fragmental view associated with γ is xsv.

We introduce three lemmas to help working with these predicates. They are proved in Section 8.2.
The first lemma shows that we can create fresh authoritative and fragmental views for any abstract state.
Although, the abstract state is usually empty when allocating.

Lemma 1 (Abstract State Alloc). For any abstract state xsv, we have

` |V∃γ. γ Z⇒• xsv ∗ γ Z⇒◦ xsv

The second shows that the authoritative and fragmental views of the abstract state agree.

Lemma 2 (Abstract State Agree). For a ghost name γ and abstract states xsv and xs′v, we have

γ Z⇒• xs′v ∗ γ Z⇒◦ xsv ` xsv = xs′v

The final lemma shows that if we own both the authoritative and fragmental views, we are allowed to
update them as we please.

Lemma 3 (Abstract State Update). For any ghost name γ, and abstract values xsv, xs
′
v, and xs′′v , we

have
γ Z⇒• xs′v ∗ γ Z⇒◦ xsv V γ Z⇒• xs′′v ∗ γ Z⇒◦ xs′′v

The collection of ghost names is now denoted Qgnames, but as all queues have to deal with the ghost
name keeping track of the abstract state, we require that any Qgnames contains a ghost name used for
this purpose. We shall refer to this ghost name as γAbst.

With this, we now give the HOCAP-style specification and explain the intricacies of it afterwards.

Definition 3.4.1 (HOCAP Specification).

∃ isQueue : Val→ Qgnames→ Prop.
∀vq, G. isQueue(vq, G) =⇒ 2 isQueue(vq, G)

∧ {True} initialize () {vq.∃G. isQueue(vq, G) ∗G.γAbst Z⇒◦ []}
∧ ∀vq, v,G, P,Q.

(
∀xsv. G.γAbst Z⇒• xsv ∗ P VE\N .i↑ .G.γAbst Z⇒• (v :: xsv) ∗Q

)
−∗

{isQueue(vq, G) ∗ P } enqueue vq v {w.Q}
∧ ∀vq, G, P,Q.∀xsv. G.γAbst Z⇒• xsv ∗ P VE\N .i↑ .

 (xsv = [] ∗G.γAbst Z⇒• xsv ∗Q(None))

∨
(
∃v, xs′v. xsv = xs′v ++ [v] ∗
G.γAbst Z⇒• xs′v ∗Q(Some v)

)  −∗
{isQueue(vq, G) ∗ P } dequeue vq {w.Q(w)}

As with the concurrent specification, we require that the queue predicate, isQueue, is persistent, giving
us support for concurrent clients.

Next, the specification for initialize gives clients an additional resource in the post-condition: the
ownership of the fragmental view of the empty list, G.γAbst Z⇒◦ []. As discussed above, this allows them
to keep track of the contents of the queue.
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The specifications for enqueue and dequeue have now been parametrised by two predicates: P and Q.
The clients get to pick P and Q, and the choice depends on what the client wishes to prove; P describes
those resources that the client has before enqueue or dequeue, and Q the resources it will have after.
Hence, P is in the pre-condition and Q in the post-condition of the associated Hoare triples. However,
before the client gets access to the Hoare triples for enqueue or dequeue, they must prove a view-shift.
This view-shift states how the abstract state of the queue will change as a result of running enqueue
or dequeue and further shows that P can be updated to Q. Note that the consequent of the view-shift
contains a .. This signifies that the update in the abstract state is tied to a step in the code. The mask
on the view-shift further disallows the opening of invariants in the namespace N .i. This is to allow queues
that use invariants to apply the view-shifts while their invariants are open (their invariants must, of
course, be within the namespace N .i).

It might seem a bit strange that the client has to prove that the abstract state can be updated, but
remember that the client owns the fragmental view and that both this and the authoritative view, which
is owned by the queue, are needed to update the abstract state. When proving the view-shift, clients
are not updating the abstract state of the queue; they are merely showing that they can supply the
fragmental view, allowing the abstract state to be updated. This then enables the queue to update the
authoritative view of the abstract state (using the proved view-shift) in conjunction with updating the
concrete state.

Exactly how a client supplies the fragmental view depends on what the client wants to achieve. We
will see two options when we derive the sequential and concurrent specifications from this HOCAP-style
specification in the next section.

3.5 Deriving Sequential and Concurrent Specifications

It is technically possible to derive the sequential and concurrent specifications from the HOCAP-style
specification without having proven the HOCAP-style specification for a specific queue. However, it might
be beneficial for the reader to first see how we can prove each specification directly for a specific queue,
which we show in Chapters 4 and 5, and then return to this section.

In this section, we show that we can derive the sequential and concurrent specifications from Sections
3.2 and 3.3 from the HOCAP-style specification we saw in the previous section. These derivations are
implementation-independent, so we assume that we have some functions initialize, enqueue, and dequeue
which satisfy the HOCAP-style specification of Definition 3.4.1, and we wish to prove that they also
satisfy the sequential and concurrent specifications of Definitions 3.2.1 and 3.3.1. That is, we assume
that we have a collection of ghost names, Qgnames, a persistent queue predicate, isQueue, and the three
HOCAP-style specifications for initialize, enqueue, and dequeue. Both derivations simply use Qgnames
as the collection of ghost names. Thus, we let SeqQgnames and ConcQgnames be Qgnames in the
following.

3.5.1 Deriving the Sequential Specification

Recall the sequential specification specified in Definition 3.2.1. It demands a queue predicate, isQueueS.
We here choose to define it as follows.

Definition 3.5.1 (isQueueS Predicate (Derive)).

isQueueS(vq, xsv, G) , isQueue(vq, G) ∗
G.γAbst Z⇒◦ xsv

We proceed to prove the sequential specifications for the three queue functions.

Sequential Initialise Specification

Recall the sequential specification for initialise:

{True} initialize () {vq.∃G. isQueueS(vq, [], G)}

Unfolding isQueueS, this Hoare triple follows directly from the HOCAP-style initialise specification (cf.
Definition 3.4.1).
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Sequential Enqueue Specification

The specification for enqueue states:

∀vq, v, xsv, G. {isQueueS(vq, xsv, G)} enqueue vq v {w. isQueueS(vq, (v :: xsv), G)}

So assume some vq, v, xsv, and G. Unfolding isQueueS, our goal becomes:

{isQueue(vq, G) ∗G.γAbst Z⇒◦ xsv} enqueue vq v {w. isQueue(vq, G) ∗G.γAbst Z⇒◦ (v :: xsv)}

To prove the Hoare triple, we shall use the HOCAP-style specification for enqueue. This, however, requires
us to pick P and Q and prove the resulting view-shift. We choose

P , G.γAbst Z⇒◦ xsv Q , G.γAbst Z⇒◦ (v :: xsv)

and assume some xs′v. We must then prove the view-shift:

G.γAbst Z⇒• xs′v ∗G.γAbst Z⇒◦ xsv VE\N .i↑ .G.γAbst Z⇒• (v :: xs′v) ∗G.γAbst Z⇒◦ (v :: xsv)

Assume G.γAbst Z⇒• xs′v and G.γAbst Z⇒◦ xsv. By Lemma 2, we know that xsv = xs′v. Hence, we can
apply Lemma 3 to update the authoritative and fragmental views to (v :: xsv), which exactly proves the
consequent of the view-shift.1

With this, we now get access to the following Hoare triple:

{isQueue(vq, G) ∗G.γAbst Z⇒◦ xsv} enqueue vq v {w.G.γAbst Z⇒◦ (v :: xsv)} (3.1)

The pre-condition already matches our goal, so we just have to get the post-condition to match. To do
this, we must get isQueue(vq, G) in the post-condition of 3.1, but since isQueue(vq, G) is persistent and
we have it in the pre-condition, we may also assume it in post-condition.

Sequential Dequeue Specification

We use a similar approach to the above in order to prove the sequential dequeue specification:

∀vq, xsv, G. {isQueueS(vq, xsv, G)}
dequeue vq

{w. (xsv = [] ∗ w = None ∗ isQueueS(vq, xsv, G)) ∨
(∃v, xs′v. xsv = xs′v ++ [v] ∗ w = Some v ∗ isQueueS(vq, xs

′
v, G)) }

So we assume some vq, xsv, G. We now instantiate the HOCAP-style dequeue specification with the
following choices:

P , G.γAbst Z⇒◦ xsv

Q(w) ,
(xsv = [] ∗ w = None ∗G.γAbst Z⇒◦ xsv) ∨
(∃v, xs′v. xsv = xs′v ++ [v] ∗ w = Some v ∗G.γAbst Z⇒◦ xs′v)

We must now prove the resulting view-shift to get the Hoare triple (note that we have not substituted in
Q for the sake of readability). So assume some xs′v. We must show:

G.γAbst Z⇒• xs′v ∗G.γAbst Z⇒◦ xsv VE\N .i↑ .

 (xs′v = [] ∗G.γAbst Z⇒• xs′v ∗Q(None))

∨
(
∃v, xs′′v . xs′v = xs′′v ++ [v] ∗
G.γAbst Z⇒• xs′′v ∗Q(Some v)

) 
By Lemma 2, xs′v must be equal to xsv. We do a case analysis on xsv. If xsv is empty, we prove the left
disjunct in the consequent of the view-shift without updating the authoritative and fragmental views. If
xsv is non-empty, i.e. xsv = xs′′v ++ [v] for some xs′′v and v, then we prove the right-side of the consequent
in the view-shift by using Lemma 3 to update the authoritative and fragmental views to the new abstract
state, xs′′v .

1The consequent technically has a ., but proving something now is stronger than proving it later.
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With this, we get access to the Hoare triple (now with Q substituted in):

{isQueue(vq, G) ∗G.γAbst Z⇒◦ xsv}
dequeue vq

{w. (xsv = [] ∗ w = None ∗G.γAbst Z⇒◦ xsv) ∨
(∃v, xs′v. xsv = xs′v ++ [v] ∗ w = Some v ∗G.γAbst Z⇒◦ xs′v) }

(3.2)

As before, the only difference between this Hoare triple and the one we must prove is that we are missing
isQueue(vq, G) in the post-condition. We can again get this from the fact that the queue predicate is
persistent.

3.5.2 Deriving the Concurrent Specification

We prove the concurrent specification of Definition 3.3.1. Remember that we need the isQueueC predicate
to be persistent. Hence, we cannot simply assert G.γAbst Z⇒◦ xsv as we did for isQueueS.2 Instead, we
put it into an invariant. The queue predicate we use thus looks as follows.

Definition 3.5.2 (isQueueC Predicate (Derive)).

isQueueC(Ψ, vq, G) , isQueue(vq, G) ∗

∃xsv. G.γAbst Z⇒◦ xsv ∗ All(xsv,Ψ)
N .c

Persistency of isQueueC follows by the persistency of isQueue and the fact that invariants are persistent.

Concurrent Initialise Specification

We have to derive the following specification:

{True} initialize () {vq.∃G. isQueueC(Ψ, vq, G)}

This specification only differs from the HOCAP-style specification for initialize in the post-condition. We
use the generalised rule of consequence, Ht-csq-vs, and show that the post-condition of the HOCAP-style
specification, i.e. ∃G. isQueue(vq, G)∗G.γAbst Z⇒◦ [], implies the post-condition above but with an update
modality, |V, in front. Both mention the queue predicates, isQueue(vq, G), so it suffices to prove the
invariant:

|V∃xsv. G.γAbst Z⇒◦ xsv ∗ All(xsv,Ψ)
N .c

We have G.γAbst Z⇒◦ [] from the HOCAP-style post-condition, and All([],Ψ) is equivalent to True. Hence,
we can deduce ∃xsv. G.γAbst Z⇒◦ xsv ∗ All(xsv,Ψ). The rule Inv-alloc shows us that we can turn this
into the above invariant, so we are done.

Concurrent Enqueue Specification

We must derive:
∀vq, v,G. {isQueueC(Ψ, vq, G) ∗Ψ(v)} enqueue vq v {w.True}

Assume some vq, v, G, and the invariant ∃xsv. G.γAbst Z⇒◦ xsv ∗ All(xsv,Ψ)
N .c

. Our goal becomes the
following Hoare triple:

{isQueue(vq, G) ∗Ψ(v)} enqueue vq v {w.True}

We specialise the HOCAP-style enqueue specification with P , Ψ(v) and Q , True. With this choice,
the Hoare triple we get after proving the view-shift exactly matches our goal. Hence, we are done if we
can prove the view-shift.

We assume some xs′v and must prove the view-shift:

G.γAbst Z⇒• xs′v ∗Ψ(v)VE\N .i↑ .G.γAbst Z⇒• (v :: xs′v) ∗ True
2As we explain in Section 8.2, no elements of the abstract state resource algebra are persistent.
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Assume G.γAbst Z⇒• xs′v and Ψ(v). We open the invariant, giving us G.γAbst Z⇒◦ xsv and All(xsv,Ψ)
for some xsv. By Lemma 2, we know that xsv = xs′v. We now update the abstract state to (v :: xsv)
using Lemma 3, obtaining G.γAbst Z⇒• (v :: xsv) and G.γAbst Z⇒◦ (v :: xsv). We use the first to prove the
consequent of the view-shift. Before we are done, we must close the invariant. We use the fragmental
part together with All(xsv,Ψ) and Ψ(v) to do this.

Concurrent Dequeue Specification

Finally, we derive the concurrent specification for dequeue.

∀vq, G. {isQueueC(Ψ, vq, G)} dequeue vq {w.w = None∨(∃v. w = Some v ∗Ψ(v))}

So we assume some vq, G, and the invariant. Our goal is now:

{isQueue(vq, G)} dequeue vq {w.w = None∨(∃v. w = Some v ∗Ψ(v))}

We make the following choices for P and Q when instantiating the specification for dequeue:

P , True Q(w) , w = None∨(∃v. w = Some v ∗Ψ(v))

Again, with this choice, the Hoare triple we get after proving the view-shift exactly matches our goal.
We assume some xs′v, and prove the view-shift (again, without substituting in Q):

G.γAbst Z⇒• xs′v ∗ TrueVE\N .i↑ .

 (xs′v = [] ∗G.γAbst Z⇒• xs′v ∗Q(None))

∨
(
∃v, xs′′v . xs′v = xs′′v ++ [v] ∗
G.γAbst Z⇒• xs′′v ∗Q(Some v)

) 
Assume G.γAbst Z⇒• xs′v. Opening the invariant, we get All(xsv,Ψ) and the fragmental part, G.γAbst Z⇒◦
xsv, for some xsv, which, by Lemma 2, we know is equal to xs′v. We proceed by case analysis on xsv. If
it is empty, we simply close the invariant again and proceed to prove the first disjunct of the consequent.
If it is not empty, then we have xsv = xs′′v ++ [v] for some xs′′v and v. We use Lemma 3 to update the
abstract state to xs′′v and split All(xsv,Ψ) into Ψ(v) and All(xs′′v ,Ψ). Using this and the fragmental
part, we close the invariant again. To finish, we prove the right disjunct of the consequent using the
authoritative part and Ψ(v).3

3.6 QueueAdd: An Example Queue Client

In this section, we look at an example queue client named “QueueAdd”. The example is somewhat
contrived but illustrates the capabilities of the HOCAP-style specification and the limitations of the
concurrent and sequential specifications.

The program is quite simple: it takes two integers, a and b, as input and creates two threads that run
in parallel. One thread enqueues a and dequeues some element, which is returned. The other thread
does the same, except it enqueues b. The result of queueAdd is then the sum of the values dequeued by
the threads: a+ b. Figure 3.1 shows the program. Here, e1 || e2 is a construct for parallel composition
introduced by Birkedal and Bizjak [2017] (Section 8.1 at the time of writing). It is syntactic sugar for
an expression that runs e1 and e2 concurrently, waits for both computations to finish, and returns the
results in a pair.

The specification for queueAdd essentially asserts that the return value is the sum of the inputs.

Definition 3.6.1 (QueueAdd Specification).

∀a, b ∈ Z. {True} queueAdd a b {v.v = a+ b}

This also implies that the program does not crash; the first case in the unwrap function never occurs.
Note first that if we had not used parallel composition and simply executed enqdeq twice in sequence,

then the sequential specification would have sufficed in proving the specification. We would always have

3Note here the importance of the . in the consequent. From the invariant, we technically only have .Ψ(v). If we did not
have the . in the consequent, we would have to prove Ψ(v) from .Ψ(v), which is not possible.
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1 unwrap w , matchw with None⇒ () () | Some v ⇒ v end
2

3 enqdeq vq c , enqueue vq c; unwrap(dequeue vq)
4

5 queueAdd a b ,
6 let vq = initialize () in
7 let p = (enqdeq vq a) || (enqdeq vq b) in
8 fst p+ snd p

Figure 3.1: Implementation of queueAdd.

the isQueueS predicate at hand to step through the enqueue and dequeue in the enqdeq function, and
this would allow us to track the exact contents. This means that we could deduce that we never invoke
dequeue when the queue is empty, and the dequeued values are exactly a and b.
However, since isQueueS is not persistent, it is not strong enough for the version using parallel composition.
The specification for parallel composition, Ht-par, states that we must decide which resources we give to
each thread. We cannot give both threads isQueueS as it is not duplicable, but both threads will need
the predicate in order to apply the specifications for enqueue and dequeue.

Ht-par
S ` {P1} e1 {v.Q1} S ` {P2} e2 {v.Q2}

S ` {P1 ∗ P2} e1 || e2 {v.∃v1v2. v = (v1, v2) ∗Q1[v1/v] ∗Q2[v2/v]}

The concurrent specification does not have this issue, as its queue predicate, isQueueC, is persistent.
However, the concurrent specification is not strong enough either, as it does not track the state of the
queue. It is paramount for correctness that the dequeue in enqdeq does not result in None; the unwrap
crashes if it does. However, the concurrent specification only tells us that the dequeue is either None or
Some v, for some value v. We have no way of proving that it must be the latter case, as we do not track
the contents of the queue.

We thus use the HOCAP-style specification, which allows us to track the contents of the queue,
enabling us to exclude the cases where the dequeues result in None. Further, we can argue about the
actual values that are dequeued; it must be either a or b. The way we realise this is by creating an
invariant that captures the five possible states of the queue, expressed by the fragmental view of the
abstract state. The invariant looks as follows.4

Definition 3.6.2 (Invariant for QueueAdd).

IQA(G,Ga, a, b) , G.γAbst Z⇒◦ [] ∗ TokD1 Ga ∗ TokD2 Ga ∨
G.γAbst Z⇒◦ [a] ∗ TokA Ga ∗ (TokD1 Ga ∨ TokD2 Ga) ∨
G.γAbst Z⇒◦ [b] ∗ TokB Ga ∗ (TokD1 Ga ∨ TokD2 Ga) ∨
G.γAbst Z⇒◦ [a; b] ∗ TokA Ga ∗ TokB Ga ∨
G.γAbst Z⇒◦ [b; a] ∗ TokB Ga ∗ TokA Ga ∨

Since invariants are persistent, we can give both the invariant and the HOCAP-style queue predicate
to both threads, which grants the threads sufficient resources to use the HOCAP-style specifications for
enqueue and dequeue when stepping through enqdeq. The invariant also mentions four tokens : TokD1 Ga,
TokD2 Ga, TokA Ga, and TokB Ga. We discuss tokens further in Section 5.3.1 and give the formal
definition in Section 8.1, but for this section, it suffices to know that new tokens can always be created,
and ownership of a token is exclusive.
The idea is then that after applying the initialize specification on line 6, we create the four tokens and
allocate invariant IQA in the first state, giving up TokD1 Ga and TokD2 Ga, but keeping TokA Ga and
TokB Ga. When applying Ht-par, we then give TokA Ga to the thread enqueueing a and TokB Ga

4The variable Ga is a collection of ghost names used in proving the queueAdd specification. It contains four ghost names
used for the four tokens.
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to the thread enqueueing b. When the threads prove the view-shift of the enqueue specification, they
open the invariant in a state that does not mention their token. They then use Lemma 3 to update the
fragmental view so as to include the value they are enqueueing. When closing the invariant, they give up
the token associated with their value in exchange for a dequeue token: either TokD1 Ga or TokD2 Ga.
Thus, when they open the invariant to prove the view-shift of the dequeue specification, they will know
that the queue is not empty, as that state mentions both dequeue tokens. Hence, they can perform the
dequeue, resulting in either Some a or Some b, and obtain the associated token (TokA Ga or TokB Ga).
Therefore, the unwrapping does not crash, and we can use their tokens to conclude that one thread must
have dequeued a and the other b, hence proving the post-condition of the queueAdd specification.
We omit further details of the proof and refer the interested reader to the formal proof in queue_client.v.

18



Chapter 4

The Two-Lock Michael-Scott Queue

In this chapter, we give an implementation of the blocking version of the M&S Queue, the Two-Lock
M&S Queue, in HeapLang. This implementation differs slightly from the original, presented by Michael
and Scott [1996], but most changes simply reflect the differences in the two languages.

4.1 Introduction

This queue uses two locks to allow for enqueues and dequeues to happen concurrently; one lock protects
the enqueue function, and another lock protects the dequeue function. The idea is to exploit the fact
that removing elements through dequeue and adding elements through enqueue are largely orthogonal
operations that do not clash with each other. Further, dequeues happen at one end of the queue and
enqueues at the other, so they often operate on separate resources. When the queue is empty and they
operate on the same resources, it becomes less clear why this approach is safe. We shall explore this case
in detail later.

The underlying data structure making up the queue is a singly-linked list. The linked list always
contains at least one element, called the head node, marking the beginning of the queue. Note that the
head node is itself not part of the queue, but all nodes following it are. The queue keeps a head pointer
(`head) which always points to the head node, and a tail pointer (`tail) which points to some node in the
linked list, denoted the tail node.

In my implementation, a node is a triple (`i in, wi, `i out) satisfying that location `i in points to the
pair (wi, `i out). Here, wi either contains the value of the node, vi, wrapped in a Some (i.e. wi = Some vi)
or it is None. The location `i out either points to None, which represents the null pointer, or to the next
node in the linked list. When we say that a location ` points to a node (`i in, wi, `i out), we mean that
` 7→ `i in. Hence, if we have two adjacent nodes, (`i in, wi, `i out) and (`i+1 in, wi+1, `i+1 out), in the linked
list, then we have the following structure: `i in 7→ (wi, `i out), `i out 7→ `i+1 in, and `i+1 in 7→ wi+1, `i+1 out.
For a given triple x = (`in, w, `out), we introduce the following notation:

in(x) = `in val(x) = w out(x) = `out

This way of defining nodes essentially means that the “in” pointer becomes a sort of identifier for the
node. That is, if we have two nodes x, x′, and they agree on the “in” pointer, in(x) = in(x′), then they
are, in fact, the same node, x = x′. We capture this property formally in Lemma 33, which can be found
in the appendix.

The reader may wonder why there is an extra, intermediary “in” pointer between the pairs of the
linked list and why the “out” pointer could not point directly to the next pair. This comes down to the
differences between HeapLang and the C-like language used in the original implementation [Michael and
Scott, 1996]. Variables in the C-like language are technically just locations, and the assignment operator
for variables simply corresponds to a store operation. In HeapLang, variables are modelled directly as
locations, which gives us an apparent extra pointer indirection compared to the original implementation.
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`1 in None `1 out None

`head `tail

Figure 4.1: Queue after initialisation.

4.2 Implementation

The queue consists of three functions: initialize, enqueue, and dequeue. Their implementation is shown
in Figure 4.4. As the name of the data structure suggests, the functions rely on two locks. To this end,
we assume that we have some lock implementation given. In the accompanying Coq mechanisation, a
“spin-lock” is used, but the only part we really care about is its specification which we discussed in Section
2.2.6.

4.2.1 Initialise

The initialize function first creates a single node – the head node – marking the start of the linked list.
It then creates two locks: the head lock, denoted hlock, protecting the head pointer, and the tail lock,
denoted tlock, protecting the tail pointer. Finally, it creates the head and tail pointers, both pointing to
the head node. The queue is then a pointer to a structure containing the head and tail pointers and the
two locks.

Figure 4.1 illustrates the structure of the queue after initialisation. Note that one of the pointers is
decorated with a square. This represents a persistent pointer; a pointer that will never be updated again.
All “in” pointers, `i in, are persistent, meaning that, once created, they will only ever point to (wi, `i out).
We use the notation ` 7→2 v (introduced by Vindum and Birkedal [2021]) to mean that ` points to v
persistently.

Note that in the original specification, a queue is a pointer to a 4-tuple (`head, `tail, hlock, tlock). Since
HeapLang does not support 4-tuples, we instead represent the queue as a pointer to a pair of pairs:
((`head, `tail), (hlock, tlock)).

4.2.2 Enqueue

To enqueue a value, we create a new node, append it to the underlying linked list, and swing the tail
pointer to this new node. These three operations are depicted in Figure 4.2.

The enqueue function takes as argument the value to be enqueued and creates a new node containing
this value (corresponding to Figure 4.2a). This creation does not interact with the underlying queue data
structure, hence why we do not acquire tlock first. After creating the new node, we must make the last
node in the linked list point to it. Since this operation interacts with the queue, we first acquire tlock.
Once we obtain the lock, we make the last node in the linked list point to our new node (Figure 4.2b).
Following this, we swing `tail to the newly inserted node (Figure 4.2c).

Figure 4.2 also illustrates when pointers become persistent; once the previous last node is updated to
point to the newly inserted node, that pointer will never be updated again, hence becoming persistent.

4.2.3 Dequeue

It is, of course, only possible to dequeue an element from the queue if the queue contains at least one
element. Hence, the first thing dequeue does is check if the queue is empty. We can detect an empty
queue by checking if the head node is the last node in the linked list. Being the last node in the linked
list corresponds to having the “out” node be None. If this is the case, then the queue is empty, and the
function returns None. Otherwise, there is a node just after the head node, which is the first node of
the queue. To dequeue it, we first read the associated value, and next, we swing the head pointer to it,
making it the new head node. Finally, we return the value we read. Since all of these operations interact
with the queue, we shall only perform them after having acquired hlock.
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`1 in w1 `1 out `2 in w2 `2 out None

`3 in w3 `3 out None`head `tail

(a) Queue after creating the new node (`3 in, w3, `3 out) to be added to the queue.

`1 in w1 `1 out `2 in w2 `2 out None

`3 in w3 `3 out None`head `tail

(b) Queue after adding the new node to the linked list.

`1 in w1 `1 out `2 in w2 `2 out None

`3 in w3 `3 out None`head `tail

(c) Queue after swinging the tail pointer to the new node.

Figure 4.2: Enqueueing an element to a queue with one element. The illustrations assume that no dequeue
is happening, hence `head stays the same.

`1 in w1 `1 out `2 in w2 `2 out `3 in w3 `3 out None

`head `tail

Figure 4.3: Dequeueing an element (w2) from a queue with two elements (w2, w3). The dotted line
represents the state before the dequeue, and the dashed line is the state after dequeueing.

Figure 4.3 illustrates running dequeue on a non-empty queue. Note that the only change is that
the head pointer is swung to the next node in the linked list. The old head node is not deleted; it just
becomes unreachable from the head pointer. In this way, the linked list only ever grows.

4.2.4 Observations on the Two-Lock Michael-Scott Queue

Now that we have seen the implementation, we point out the following noteworthy observations about
the behaviour of the queue.

1. The tail node is always either the last or second last node in the linked list.

2. All but the last pointer in the linked list (the pointer to None) never change.

3. Nodes in the linked list are never deleted. Hence, the linked list only ever grows.

4. The tail can lag one node behind the head.

5. At any given time, the queue is in one of four states:

(a) No threads are interacting with the queue (Static).

(b) A thread is enqueueing (Enqueue).

(c) A thread is dequeueing (Dequeue).
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1 initialize ,
2 let node = ref (None, ref (None)) in
3 letH lock = newLock() in
4 let T lock = newLock() in
5 ref ((ref (node), ref (node)), (H lock, T lock))
6

7 enqueue Q value ,
8 let node = ref (Some value, ref (None)) in
9 acquire(snd(snd(!Q)));

10 snd(!(!(snd(fst(!Q)))))← node;
11 snd(fst(!Q))← node;
12 release(snd(snd(!Q)))
13

14 dequeue Q ,
15 acquire(fst(snd(!Q)));
16 let node = !(fst(fst(!Q))) in
17 let new head = !(snd(!node)) in
18 if new head = None then
19 release(fst(snd(!Q)));
20 None
21 else
22 let value = fst(!new head) in
23 fst(fst(!Q))← new head;
24 release(fst(snd(!Q)));
25 value

Figure 4.4: Implementation of the Two-Lock M&S Queue in HeapLang.
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`1 in w1 `1 out None

`2 in w2 `2 out None`head `tail

(a) The queue is initially empty, and an enqueueing thread has created a node (`2 in, w2, `2 out) that it wishes to
append to the linked list.

`1 in w1 `1 out None

`2 in w3 `2 out None`head `tail

(b) The thread executes line 10, adding the created node to the linked list.

`1 in w1 `1 out None

`2 in w2 `2 out None`head `tail

(c) Before the thread executes line 11 to swing the tail pointer `tail, another thread dequeues the node that was
just enqueued, which swings the head pointer, `head to it. The tail is now lagging behind.

Figure 4.5: Illustrations of a scenario that makes the head lag behind the tail.

(d) A thread is enqueueing and a thread is dequeueing (Both).

Observation 1 captures the fact that, while enqueueing, a new node is first added to the linked list,
and then later, the tail pointer is updated to point to the newly added node. Since only one thread can
enqueue a node at a time (due to the lock), the tail pointer will only ever point to the last or second last
node. In a sequential setting, the tail will always appear to point to the last node, as no one can interact
with the queue while the tail points to the second last.

Insight 2 means that we can mark all pointers in the queue, except the pointer to None, as persistent.
In the original implementation [Michael and Scott, 1996], nodes are freed after being dequeued.

However, since our language, HeapLang, is a garbage-collected language, we do not explicitly free the
nodes. This leads to observation 3. From our perspective, the linked list only grows.

Observation 4 might seem a little surprising, and indeed, it stands in contrast to property 5 in Michael
and Scott [1996], which states “Tail always points to a node in the linked list, because it never lags behind
Head, so it can never point to a deleted node.”. I also did not realise this possibility until a proof attempt
using a model that “forgot” old nodes led to an unprovable case (see Section 5.3.4). The situation can
occur when the queue is empty and a thread performs an incomplete enqueue; it attaches the new node
to the end, but before it can swing the tail to this new node, another thread performs a dequeue, which
dequeues this new node, swinging the head to it. The tail is now lagging one node behind the head.
Figure 4.5 illustrates such a program trace.

It is not possible for the tail to lag more than one node behind the head as for this to happen, more
nodes must be enqueued, requiring the current enqueue to finish. However, finishing the enqueue will
update the tail and bring it up to speed with the head.

Fortunately, this is not an issue for safety, but a consequence of this possibility is that when modelling
the queue in the next chapter, we must remember at least one “old” node, as the tail might be pointing to
this node. For the sake of simplicity in the model, the choice is made to remember an arbitrary amount
of old nodes, which is represented by the list xsold.

Observation 5 is a simple consequence of the implementation using two locks.
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Chapter 5

Proving Specifications for the
Two-Lock Michael-Scott Queue

5.1 Introduction

In this chapter, we show that the Two-Lock M&S Queue satisfies the three queue specifications introduced
in Chapter 3. Section 3.5 of said chapter showed us that we get the sequential and concurrent specifications
essentially for free, granted we can prove that the Two-Lock M&S Queue satisfies the HOCAP-style
specification. However, for instructive purposes, we will in this chapter give the sequential and concurrent
specifications directly, as the proof of the HOCAP-style specification can get somewhat overwhelming.

In Section 5.2, we prove that the Two-Lock M&S Queue satisfies the sequential specification. This
also introduces some of the basic predicates we use for the queue. Next, in Section 5.3, we prove the
concurrent specification, which introduces some more complexities, such as an invariant, and shows us
how we can work with concurrent programs. Finally, in Section 5.4, we show how to modify the proof of
the concurrent specification to prove the HOCAP-style specification.

5.2 Sequential Specification

5.2.1 Sequential Queue Predicate

Since the queue uses two locks, we need to keep track of two ghost names – one for each lock (cf.
Section 2.2.6). Thus, we let SeqQgnames be the set of pairs containing ghost names. For an element
G ∈ SeqQgnames, the first element of the pair, written G.γHlock, contains the ghost name for the head
lock, and the second element, G.γTlock, the ghost name for the tail lock.

To prove the specification, we must give a specific isQueueS predicate. With the points we discussed
in Section 4.2.4 in mind, we give our definition of the queue predicate for the sequential specification and
explain it afterwards.

Definition 5.2.1 (Two-Lock M&S Queue - isQueueS Predicate).

isQueueS(vq, xsv, G) ,∃`queue, `head, `tail ∈ Loc. ∃hlock, tlock ∈ Val.

vq = `queue ∗ `queue 7→2 ((`head, `tail), (hlock, tlock)) ∗
∃xsqueue ∈ List (Loc×Val× Loc). ∃xhead, xtail ∈ (Loc×Val× Loc).

projVal(xsqueue) = wrapSome(xsv) ∗
isLL(xsqueue ++ [xhead]) ∗
`head 7→ in(xhead) ∗
`tail 7→ in(xtail) ∗ isLast(xtail, (xsqueue ++ [xhead])) ∗
isLock(G.γHlock, hlock,True) ∗
isLock(G.γTlock, tlock,True)
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This isQueueS predicate states that the value vq is a location, which persistently points to the structure
containing the head and tail pointers and the two locks. It also relates the abstract state xsv to the
concrete state by stating that if you strip away the locations in xsqueue (using projVal; see Appendix
A.1.4) and wrap the values in the abstract state xsv in Some (using wrapSome; see Appendix A.1.5),
then the lists become equal.

Next, the predicate specifies the concrete state. There is some head node, denoted xhead, which the
head pointer points to. This head node and the nodes in xsqueue form the underlying linked list (specified
using the isLL predicate below). There is also a tail node, which is the last node in the linked list, and
the tail pointer points to this node. The proposition isLast(x, xs) simply asserts the existence of some
xs′, so that xs = x :: xs′ (defined formally in Appendix A.1.2).

Next, we have the isLock predicate for our two locks. Since we are in a sequential setting, the locks
are superfluous. Hence, they simply protect True.

The isLL predicate essentially creates the structure seen in the examples of Section 4.2. It is defined
in two steps. Firstly, we create all the persistent pointers in the linked list using the isLL chain predicate.
Note that this, in effect, makes isLL chain(xs) persistent for all xs.

Definition 5.2.2 (Linked List Chain Predicate).

isLL chain([]) ,True
isLL chain([x]) , in(x) 7→2 (val(x), out(x))

isLL chain(x :: x′ :: xs) , in(x) 7→2 (val(x), out(x)) ∗ out(x′) 7→2 in(x) ∗ isLL chain(x′ :: xs)

Then, to define isLL, we add that the last node in the linked list points to None.

Definition 5.2.3 (Linked List Predicate).

isLL([]) ,True
isLL(x :: xs) , out(x) 7→ None ∗ isLL chain(x :: xs)

For instance, if we wanted to capture the linked list in Figure 4.2c, we would use the following list:
xs = [(`3 in, w3, `3 out); (`2 in, w2, `2 out); (`1 in, w1, `1 out)]. The proposition isLL(xs) then expands to
`3 out 7→ None ∗ isLL chain(xs), and isLL chain(xs) expands to

`3 in 7→2 (w3, `3 out) ∗ `2 out 7→2 `3 in ∗
`2 in 7→2 (w2, `2 out) ∗ `1 out 7→2 `2 in ∗
`1 in 7→2 (w1, `1 out)

Note how this matches the structure of the linked list in Figure 4.2c.
The isLL predicate turns out to be quite fundamental in describing both the Two-Lock M&S Queue

and the Lock-Free M&S Queue, and we shall generally have such a predicate for both of these when we
prove that they satisfy the specifications. These proofs require us to manipulate specific isLL propositions
quite a bit in conjunction with the queue changing – Appendix A.2 shows the specific lemmas we use,
but the proof outlines do not mention the lemmas explicitly.

5.2.2 Proof Outline

Initialise

Lemma 4 (Two-Lock M&S Queue Sequential Specification - Initialise).

{True} initialize () {vq.∃G. isQueueS(vq, [], G)}

Proof. Proving the initialize specification amounts to stepping through the code, giving us the required
resources, and then using these to create an instance of isQueueS with the obtained resources. To begin
with, we step through line 2 which creates the first node x1 = (`1 in,None, `1 out) with `1 out 7→ None and
`1 in 7→ (None, `1 out). We can then update the latter points-to proposition to become persistent, giving
us `1 in 7→2 (None, `1 out). Next, on lines 3 and 4, we create the two locks. We use the specification
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for newLock for each of its invocations. Both times, we specify that the lock should protect True. This
gives us two ghost names, γHlock, γTlock, which we collect in a SeqQgnames pair, G. Finally, we step
through the allocations of the head, tail, and queue pointers on line 5. This gives us locations `head, `tail,
and `queue, such that both `head and `tail point to node x1, and such that `queue points to the structure
containing the head and tail pointers and the two locks. This last points-to predicate we update to
become persistent. With this, we now have all the resources needed to prove the post-condition. Proving
this consists of a sequence of framing away the resources we obtained and instantiating existentials with
the values we got above. Most noteworthy, we pick the empty list for xsqueue, and node x1 for xhead and
xtail.

Enqueue

Lemma 5 (Two-Lock M&S Queue Sequential Specification - Enqueue).

∀vq, v, xsv, G. {isQueueS(vq, xsv, G)} enqueue vq v {w. isQueueS(vq, (v :: xsv), G)}

Proof. We assume the pre-condition isQueueS(vq, xsv, G) which tells us that vq is some location `queue,
and, in particular, we have following:

`queue 7→2 ((`head, `tail), (hlock, tlock)) (5.1)

projVal(xsqueue) = wrapSome(xsv) (5.2)

out(xtail) 7→ None ∗ isLL chain(xsqueue ++ [xhead]) (5.3)

`tail 7→ in(xtail) ∗ isLast(xtail, (xsqueue ++ [xhead])) (5.4)

isLock(G.γTlock, tlock,True) (5.5)

We proceed to step into the enqueue function. Firstly, on line 8, we create a new node xnew, with
val(xnew) = Some v and out(xnew) 7→ None. Next, on line 9, we acquire the tail lock. We step through
the dereference and the projections using 5.1. To acquire the lock, we use the acquire specification with
5.5. This gives us locked(Qg.γTlock) and True.

Line 10 adds node xnew to the linked list. We first use 5.1 to step to the dereference of `tail. From
5.4, we know the dereference results in in(xtail). Because xtail is in the linked list, we can use 5.3 to
conclude that xtail is a node, and hence we can perform the load and the projection to get to the final
store operation: out(xtail)← in(xnew). Using the points-to proposition from 5.3, we perform the store,
which in turn gives us out(xtail) 7→ in(xnew). We make this persistent and combine it with the isLL chain
proposition from 5.3 to conclude isLL(xnew :: xsqueue ++ [xhead]).

The next line (line 11) swings the tail pointer to xnew. The propositions in 5.1 and 5.4 give us all the
required resources to step through the code and perform the store. Afterwards, we get `tail 7→ in(xnew).

Finally, we reach line 12 where we release the lock. We use the specification for release, giving up
locked(Qg.γTlock). The only thing left is to prove the post-condition: isQueueS(vq, (v :: xsv), G). For the
existentials, we pick xnew :: xsqueue as the queue, and as the tail node, we choose xnew. The remaining
choices are similar to those we got from the pre-condition. With these choices, the remaining proof
obligations become straightforward; we already have the required pointers and the isLL proposition. The
relationship between the abstract and concrete states follows from val(xnew) = Some v and 5.2.

Dequeue

Lemma 6 (Two-Lock M&S Queue Sequential Specification - Dequeue).

∀vq, xsv, G. {isQueueS(vq, xsv, G)}
dequeue vq

{w. (xsv = [] ∗ w = None ∗ isQueueS(vq, xsv, G)) ∨
(∃v, xs′v. xsv = xs′v ++ [v] ∗ w = Some v ∗ isQueueS(vq, xs

′
v, G)) }

Proof. We assume the pre-condition isQueueS(vq, xsv, G) which gives us that vq is some location `queue
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and the following propositions.

`queue 7→2 ((`head, `tail), (hlock, tlock)) (5.6)

projVal(xsqueue) = wrapSome(xsv) (5.7)

out(xtail) 7→ None ∗ isLL chain(xsqueue ++ [xhead]) (5.8)

`head 7→ in(xhead) ∗ (5.9)

isLock(G.γHlock, hlock,True) (5.10)

We perform the function application and step into the function. We first do the superfluous acquire on
line 15 using the acquire specification and 5.10. This gives us locked(G.γHlock).
Next, we step to line 16, where we dereference the head node. We perform the loads and projections
using 5.6 and 5.9, which tells us that the node variable becomes in(xhead). From 5.8, we know that xhead
is in the linked list, hence it must be a node.
We step to line 17, which finds out what xhead points to. As xhead is a node, we can step to the load:
!(out(xhead)). The result of this load is either None or another node xhead next, depending on whether
xsqueue is empty. Thus, we consider both cases.

Case xsqueue is empty: In this case, 5.8 simply asserts isLL[xhead], which, by definition, tells us that
xhead 7→ None. Hence, the “if” on line 18 takes the “then” branch, so we step to line 19. Here, we
release the lock, giving up locked(G.γHlock), and return None on the following line. What remains
is to prove the post-condition with w = None. We can easily do this by proving the first disjunction.
From 5.7 with the fact that xsqueue = [] we can conclude that xsv is empty, and since we have not
modified the queue, we can prove isQueueS(vq, xsv, G) using the same resources we got from the
pre-condition.

Case xsqueue is not empty: In this case, we can conclude that there must be some node xhead next,
which is the first node in xsqueue. That is,

xsqueue = xs′queue ++ [xhead next] (5.11)

We can thus use the isLL predicate to conclude that xhead must point to xhead next. Hence, the
“else” branch is taken, so we step to line 22. Since xhead next is part of the linked list, it must be a
node, allowing us to extract its value val(xhead next) in the first line of the else branch.
We step to line 23, which swings the head pointer, `head, to xhead next. We perform these steps
using 5.6 and 5.9, which then gives us `head 7→ in(xhead next).
Finally, we release the lock on line 24, giving up locked(G.γHlock) and return the value: val(xhead next).
We must now prove the post-condition with w = val(xhead next). This time, we choose to prove the
second disjunct. From 5.7 and 5.11, we can deduce the following:

xsv = xs′v ++ [v] (5.12)

projVal(xs′queue) = wrapSome(xs′v) (5.13)

val(xhead next) = Some v (5.14)

The equalities of 5.12 and 5.14 prove the first part of the post-condition. What remains is to show
isQueueS(vq, xs

′
v, G). For the existentials, we pick xs′queue as the queue and xhead next as the head

node. The rest are similar to the variables we got from the pre-condition. With these choices, we
can prove the predicate using the resources we have established.

5.3 Concurrent Specification

5.3.1 Concurrent Queue Predicate

For the concurrent specification, we need to allow for multiple threads to access the queue resources
to perform the queue operations, as showcased in the sequential case. The concurrent specification

27



enforces this possibility by asserting that the queue predicate, isQueueC, is persistent, hence duplicable.
The resources needed by the queue, however, are not persistent. The solution is to collect the required
resources in an invariant which is persistent and can hence be given to multiple threads. The invariant
we define here additionally describes the concrete state of the queue. In the proofs of the queue functions,
we shall then access the required resources through the invariant. We now present the invariant and
explain it afterwards.

Definition 5.3.1 (Two-Lock M&S Queue Concurrent Invariant).

ITLC(Ψ, `head, `tail, G) ,

∃xsv. All(xsv,Ψ) ∗ (abstract state)

∃xs, xsqueue, xsold, xhead, xtail. (concrete state)

xs = xsqueue ++ [xhead] ++ xsold ∗
isLL(xs) ∗
projVal(xsqueue) = wrapSome(xsv) ∗
(

`head 7→ in(xhead) ∗ `tail 7→ in(xtail) ∗ isLast(xtail, xs) ∗ (Static)

TokNE G ∗ TokND G ∗ TokUpdated G

∨

`head 7→ in(xhead) ∗ `tail 7→
1
2 in(xtail) ∗ (Enqueue)

(isLast(xtail, xs) ∗ TokBefore G ∨ isSndLast(xtail, xs) ∗ TokAfter G) ∗
TokE G ∗ TokND G

∨

`head 7→
1
2 in(xhead) ∗ `tail 7→ in(xtail) ∗ isLast(xtail, xs) ∗ (Dequeue)

TokNE G ∗ TokD G ∗ TokUpdated G

∨

`head 7→
1
2 in(xhead) ∗ `tail 7→

1
2 in(xtail) ∗ (Both)

(isLast(xtail, xs) ∗ TokBefore G ∨ isSndLast(xtail, xs) ∗ TokAfter G) ∗
TokE G ∗ TokD G

)

In contrast to the sequential specification, the abstract state is now existentially quantified, hence the
exact contents of the queue are not tracked. Instead, we have added the proposition All(xsv,Ψ), which
states that all values in xsv (i.e. the values currently in the queue) satisfy the predicate Ψ (see Appendix
A.1.6 for formal definition). This will allow us to conclude that dequeued values satisfy Ψ.
The concrete state of the queue is still reflected in the abstract state by projecting out the values of the
nodes (via projVal) and wrapping the values in the queue in Some (via wrapSome). Another difference is
that we now also keep track of an arbitrary number of “old” nodes – nodes that are behind the head
node, xhead. This inclusion is due to observation 4 from the previous chapter.
As before, we also assert that the concrete state forms a linked list, as described by the isLL predicate.
The final part of the invariant describes the four possible states of the queue, as described in observation
5. Since the resources used by the queue are inside an invariant, and enqueueing/dequeueing threads need
to access the resources of the queue multiple times (as shown in the sequential specification), then we will
have to open and close the invariant multiple times. Each time we open the invariant, the existentially
quantified variables will not be the same as those from earlier accesses of the invariant (as they are
existentially quantified). Thus, the threads must be able to “match up” variables from previous accesses
to later accesses. The way we achieve this is by allowing threads to keep a fraction of the points-to
predicate that it is using. For instance, an enqueueing thread will have to access the points-to predicate
concerning `tail multiple times, and in between accesses of the invariant, it can get to keep half of the
points-to predicate. Thus, when it opens the invariant later, it will have `tail 7→

1
2 in(xtail) from an earlier

access, and it will obtain the existence of some new x′tail, such that `tail 7→
1
2 in(x′tail). Combining the two
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points-to predicates allows us to conclude that in(xtail) = in(x′tail) and using Lemma 33 we can further
conclude xtail = x′tail. In this way, we can match up variables from earlier accesses to variables in later
accesses.
In the Static state where no thread is interacting with the queue, the queue owns all the points-to
predicates concerning the head and tail.
In the Enqueue state, the enqueueing thread owns half of the tail pointer, and we distinguish between
two cases, as discussed in observation 1: either the enqueueing thread has yet to add the new node to the
linked list and xtail is still the last node, or the new node has been added, but the tail pointer has not
been updated, meaning that xtail is the second last node (isSndLast is defined similarly to isLast; see
Appendix A.1.3).
In the Dequeue state, the dequeueing thread owns half of the head pointer, and the tail is as in the
Static state.
Finally, the Both state is essentially a combination of the Enqueue and Dequeue states.

To track which state the queue is in, we use tokens. Importantly, tokens are non-duplicable, and
owning two of the same token allows us to deduce False. Thus, if we own a particular token, then, upon
opening the invariant, we can rule out certain states simply because they mention the token we own. To
distinguish between different tokens, we use ghost names. Each token is associated with a ghost name, γ,
and we write Token(γ) for said token. We refer to Section 8.1 for a presentation of the resource algebra
used to define tokens. The following two lemmas show us that we can create new tokens and that they
are exclusive, as explained above.

Lemma 7 (Token Alloc). ` |V∃γ. Token(γ)

Lemma 8 (Token Exclusive). For any ghost name γ, owning Token(γ) twice proves False. Formally,

Token(γ) ∗ Token(γ) ` False

We use several tokens, each associated with its own ghost name. We collect these new ghost names
in ConcQgnames, which then contains the ghost names for the two locks and the ghost names for the
tokens.
We introduce some notation to refer to specific tokens related to a tuple G. For example, if we wish to
refer to the token associated with G.γE , we write TokE G, which projects out γE , and asserts ownership
of the token associated with it. That is, TokE G = Token(G.γE). We proceed to explain the meaning of
each of the tokens used in the invariant.

• TokNE G represents that no threads are enqueueing.

• TokE G represents that a thread is enqueueing.

• TokND G represents that no threads are dequeueing.

• TokD G represents that a thread is dequeueing.

• TokBefore G represents that an enqueueing thread has not yet added the new node to the linked
list.

• TokAfter G represents that an enqueueing thread has added the new node to the linked list but
not yet swung the tail.

• TokUpdated G is defined as TokBefore G∗ TokAfter G, and represents that the queue is up-to-date.

We note that the concurrent specification for the Two-Lock M&S Queue can be proven using queue
invariant 5.3.1 directly, and the proof outline below also uses this. However, a simpler (but arguably less
intuitive) queue invariant was discovered. This simpler invariant is equivalent to 5.3.1 and has the benefit
of being easier to work with in the mechanised proofs. Thus, in the mechanised proofs, we always rewrite
to the simpler invariant when opening the invariant. We define it as follows.
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Definition 5.3.2 (Simplified Two-Lock M&S Queue Invariant).

I′TLC(Ψ, `head, `tail, G) ,

∃xsv. All(xsv,Ψ) ∗ (abstract state)

∃xs, xsqueue, xsold, xhead, xtail. (concrete state)

xs = xsqueue ++ [xhead] ++ xsold ∗
isLL(xs) ∗
projVal(xsqueue) = wrapSome(xsv) ∗

((`head 7→ in(xhead) ∗ TokND G) ∨ (`head 7→
1
2 in(xhead) ∗ TokD G)) ∗

(

(`tail 7→ in(xtail) ∗ isLast(xtail, xs) ∗ TokNE G ∗ TokUpdated G) ∨
(

`tail 7→
1
2 in(xtail) ∗ TokE G ∗

((isLast(xtail, xs) ∗ TokBefore G) ∨ (isSndLast(xtail, xs) ∗ TokAfter G))

)

)

As is evident, it contains the same propositions as the original invariant, but simply in a different
structure. This structure allows for more linear reasoning; the common propositions between the different
queue states are now “grouped” together.

With this, we now give our definition of the queue predicate, isQueueC. In the below, we let N be
some namespace.

Definition 5.3.3 (Two-Lock M&S Queue - isQueueC Predicate).

isQueueC(Ψ, vq, G) ,∃`queue, `head, `tail ∈ Loc. ∃hlock, tlock ∈ Val.

vq = `queue ∗ `queue 7→2 ((`head, `tail), (hlock, tlock)) ∗

ITLC(Ψ, `head, `tail, G)
N .queue ∗

isLock(G.γHlock, hlock,TokD G) ∗
isLock(G.γTlock, tlock,TokE G).

In contrast to our definition of isQueueS, the locks now protect TokE G and TokD G. The idea
is that when an enqueueing thread obtains tlock, it will obtain the TokE G token, which allows it to
conclude that the queue state is either Static or Dequeue. Similarly for a dequeueing thread.

5.3.2 Linearisation Points

An important notion for concurrent algorithms is linearisability [Herlihy and Wing, 1990]. Linearisability
is a non-blocking property1 that helps reason about which behaviours are possible. Both versions of the
M&S Queue are linearisable, which rules out undesired behaviours.

One way to characterise linearisability is through the concept of linearisation points. We say that
a function (such as enqueue or dequeue) is linearisable if, for all invocations of the function, there is a
specific point in time between the invocation and the response where the effect of the function appears to
take place; before that point, the effect has not taken place, and nothing needs to be done afterwards to
complete the effect. We call such a point a linearisation point.

For example, enqueue has a single linearisation point at the instruction that appends the newly created
node to the linked list (the store on line 10). At exactly that point, the effect of enqueue takes place.
The dequeue function is slightly more complicated as it has multiple linearisation points. If the queue is
empty when we read the head node’s out pointer on line 17, then at that read, the dequeue function is
guaranteed to return None, interpreting the queue as empty. In this case, the dequeue does not change

1Other properties, such as serialisability, inherently require implementations to be blocking. Linearisability does not
require this, but linearisable algorithms can of course still be blocking.
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the queue but merely observes it, and the observation happens exactly at the read of the head node’s out
pointer, making it the linearisation point.
On the other hand, if the queue was not empty at that point, then the linearisation point is when we
swing the head pointer at line 23. At that very store operation, the effect of dequeue occurs.

Linearisation points are closely tied to updates of the abstract state of the queue. The abstract state
of the queue changes only at linearisation points. This is consistent with the notion that the effects of the
function take effect at the linearisation points – updates to the abstract state happen atomically, as we
would intuitively want them to. This link to the abstract state becomes even more prevalent when we
prove HOCAP-style specifications in Sections 5.4 and 7.4.

5.3.3 Proof Outline

Firstly, we must show that isQueueC is persistent. This follows from the fact that invariants are persistent,
the isLock predicates are persistent, persistent points-to predicates are persistent, and persistency is
preserved by ∗ and quantifications.

The proofs of the three specifications largely have the same structure as the sequential counterparts.
The major difference is that we do not have access to the resources all the time; we must get them from
the invariant. Further, we also have to keep track of which state we are in. For the proof outlines below,
these points are the main focus.

Initialise

Lemma 9 (Two-Lock M&S Queue Concurrent Specification - Initialise).

{True} initialize () {vq.∃G. isQueueC(Ψ, vq, G)}

Proof. We first step through line 2, giving us the head node of the linked list. Following this, we must
create the two locks. As the locks had to protect tokens, we must first create these. To create the two
tokens, we use Lemma 7 twice, which gives us two ghost names, one for each of the tokens. We put
the ghost names into a tuple G and write TokE G and TokD G for the two ghost resources created
by the lemma. We then use the newLock specification to step through the code and create the locks,
giving up the two tokens. Next, we step to line 5 and create the `queue, `head, and `tail pointers with
`queue 7→ ((`head, `tail), (hlock, tlock)). We make this persistent.
All that remains then is to prove the post-condition: the isQueueC predicate. We have both the points-to
predicate of `queue and the two isLock predicates (from the newLock specification). So all that remains is
the invariant.
We create ITLC in the Static state, most of which is analogous to the sequential specification. However,
we also need to supply the tokens required by the Static state. Thus, we allocate the four tokens
TokNE G, TokND G, TokBefore G, and TokAfter G, again using Lemma 7. We combine TokBefore G
and TokAfter G to get TokUpdated G, and we now have all the tokens we need to create ITLC in the
Static state. To create the invariant from ITLC, we use the Inv-alloc rule.

Enqueue

Lemma 10 (Two-Lock M&S Queue Concurrent Specification - Enqueue).

∀vq, v,G. {isQueueC(Ψ, vq, G) ∗Ψ(v)} enqueue vq v {w.True}

Proof. We assume the pre-condition, which tells us that vq is a location `queue, and we have:

Ψ(v) (5.15)

`queue 7→2 ((`head, `tail), (hlock, tlock)) (5.16)

ITLC(Ψ, `head, `tail, G)
N .queue

(5.17)

isLock(G.γTlock, tlock,TokE G) (5.18)

We perform the function application and step into enqueue to line 8. We create the new node as before,
giving us xnew, with val(xnew) = Some v and out(xnew) 7→ None.
On line 9, we then use the acquire specification with 5.18 to acquire locked(G.γTlock) and TokE G.
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Following this, we step to line 10. Using 5.16 we can step to the load of `tail. This is where we meet
our first challenge; in order to perform the load, we must open the invariant to access the points-to
predicate regarding `tail.
As invariants can only be opened if the expression being considered is atomic, we use a bind rule (similar
to Ht-bind) to “focus” on the load of `tail. We proceed to open the invariant, and since we have TokE G,
we know that the queue is in state Static or Dequeue. In any case, we get that `tail 7→ in(xtail), for
some xtail which is the last node in the linked list. As xtail is in the linked list, we further deduce that it
is a node.
We can now perform the load of `tail, which results in in(xtail). We must now close the invariant. We

split up the points-to predicate `tail 7→ in(xtail) in two, which leaves us with two of `tail 7→
1
2 in(xtail). We

keep one of them and use the other to close the invariant in the before case of state Enqueue or Both,
depending on which state we opened the invariant into. By doing this, we give up TokE G, but we gain
TokNE G and TokAfter G.
As xtail was a node we can step to out(xtail)← in(xnew). However, the points-to predicate concerning
out(xtail) is not persistent and is hence inside the invariant. We thus have to open the invariant again.
Since we have TokNE G and TokAfter G, we know that we are in the before case of either state Enqueue
or Both.
The invariant hence gives us `tail 7→

1
2 in(x′tail) for some x′tail. However, since we kept `tail 7→

1
2 in(xtail), we

can combine these, allowing us to conclude that in(xtail) = in(x′tail). As both xtail and xtail are nodes, we
apply Lemma 33 to conclude xtail = x′tail. This now gives us out(xtail) 7→ None, allowing us to perform
the store. Thus, xnew is added to the linked list, and this is a linearisation point. As such, we must
update the abstract state to reflect the change. We do this by closing the invariant with (v :: xsv) as
the abstract state, where xsv is the abstract state we got when we opened the invariant. Note that we
have Ψ(v) (from 5.15), hence we are able to conclude All((v :: xsv),Ψ). For the concrete state, we pick
xnew :: xs, where xs is the concrete state we got when we opened the invariant. We close the invariant in
the after case of either state Enqueue or Both, giving up TokAfter G and obtaining TokBefore G.

We step to line 11, which swings the tail pointer to xnew. Using 5.16, we step to `tail ← in(xnew).
However, to perform this store operation, we must first know that `tail points to something. This resource
is inside the invariant, so we open the invariant one last time. Due to having TokNE G and TokBefore G,
we know that we are in the after case of state Enqueue or Both. This time we get `tail 7→

1
2 in(x′′tail) for

some x′′tail, where x′′tail is the second last node in the linked list. Hence, there is some other node x′new,
which is the last node, with x′′tail pointing to it. As before, we use our half of the points-to predicate of

`tail (i.e. `tail 7→
1
2 in(xtail)) to get that x′′tail = xtail. Since xtail points to xnew, and x′′tail points to x′new,

we can further conclude that xnew = x′new. Thus, we can perform the store, which now gives us that `tail
points to xnew – the last node in the linked list. With this, we can close the invariant in state Static or
Dequeue, giving up TokNE G and TokUpdated G, and getting TokE G.
Finally, on line 12, we release the lock which we can do since we have TokE G and locked(G.γTlock). The
post-condition merely asserts True, so there is nothing left to prove.

Dequeue

Lemma 11 (Two-Lock M&S Queue Concurrent Specification - Dequeue).

∀vq, G. {isQueueC(Ψ, vq, G)} dequeue vq {w.w = None∨(∃v. w = Some v ∗Ψ(v))}

Proof. As usual, we assume the pre-condition, giving us that vq is a location `queue with

`queue 7→2 ((`head, `tail), (hlock, tlock)) (5.19)

ITLC(Ψ, `head, `tail, G)
N .queue

(5.20)

isLock(G.γHlock, hlock,True) (5.21)

We do the function application and step into dequeue. First, on line 15, we acquire the lock, which gives
us locked(G.γHlock) and TokD G.

Next, we step to line 16, and using 5.19, we get to !(`head). To perform this load, we must open
the invariant. We open it in state Static or Enqueue (as we have TokD G), which gives us `head 7→
in(xhead) for some xhead. The isLL predicate further tells us that xhead is a node: in(xhead) 7→2

32



(val(xhead), out(xhead)). We perform the load and take half of the points-to predicate: `head 7→
1
2 in(xhead).

We use the other half to close the invariant in state Dequeue or Both, giving up TokD G but obtaining
TokND G.

We proceed to line 17, which finds out what xhead is pointing to. As xhead is a node we can step to
!(out(xhead)). To perform this dereference, we must open the invariant. As we own TokND G, the queue

must be in state Dequeue or Both. In any case, we get that there is some x′head with `head 7→
1
2 in(x′head).

Using the fractional points-to predicate we kept from earlier and Lemma 33, we can conclude that
x′head = xhead. We now perform a case analysis on the contents of the queue: xsqueue, similarly to the
sequential proof.

Case xsqueue is empty: In this case, we use the isLL predicate to conclude out(xhead) 7→ None. The
expression !(out(xhead)) hence resolves to None. At this point, we know dequeue will decide that the
queue is empty, so this is a linearisation point. We close the invariant in state Static or Enqueue,
giving up TokND G and obtaining TokD G.
As new head was set to None, the “if” on line 18 takes the “then” branch, so we step to line 19. We
release the lock, giving up TokD G and locked(G.γHlock), and return None. We must now prove
the post-condition with w = None. We easily prove the first disjunct.

Case xsqueue is not empty: As in the sequential proof, we conclude that xhead points to xhead next for
some xhead next. That is, we have the following:

out(xhead) 7→2 in(xhead next) (5.22)

in(xhead next) 7→2 (val(xhead next), out(xhead next)) (5.23)

We perform the dereference, which resolves to in(xhead next). We close the invariant in Dequeue or

Both, meaning we still have TokND G and `head 7→
1
2 in(xhead).

This time, the “if” takes the else branch, so we step to line 22. Using 5.23, we conclude that the
return value is val(xhead next).
Next, we step to line 23, which swings the head pointer to xhead next. Using 5.19, we step to
`head ← in(xhead next). Performing this store requires a points-to proposition for `head. Hence,
we open the invariant in state Dequeue or Both (since we have TokND G), which gives us the
following:

All(xsv,Ψ) (5.24)

xs = xsqueue ++ [x′′head] ++ xsold (5.25)

isLL(xs) (5.26)

projVal(xsqueue) = wrapSome(xsv) (5.27)

`head 7→
1
2 in(x′′head) (5.28)

for some xs, xsqueue, x
′′
head, xsold, and xsv. We combine 5.28 with our half of the points-to predicate

to conclude `head 7→ in(xhead) and use Lemma 33 to conclude x′′head = xhead.
We can now perform the store, swinging the head pointer to xhead next, which gives us `head 7→
in(xhead next). This is a linearisation point, so we must update the abstract state xsv, which we got
from the invariant opening.
From 5.22 and 5.26, we can deduce that xsqueue is not empty (as otherwise, we would have
xhead 7→ None which contradicts with 5.22), and in fact, its first element must be xhead next. That
is,

xsqueue = xs′queue ++ [xhead next] (5.29)

Combining this with 5.27 allows us to give a similar conclusion to the sequential proof: there exists
xs′v and v such that:

xsv = xs′v ++ [v] (5.30)

projVal(xs′queue) = wrapSome(xs′v) (5.31)

val(xhead next) = Some v (5.32)
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By 5.24 and 5.30, we deduce All(xs′v,Ψ) and Ψ(v). We are now finally ready to close the invariant.
We use xs′v for the abstract state, giving up All(xs′v,Ψ), but allowing us to keep Ψ(v). For
the concrete state, we use the same xs. Note that by combining 5.25 and 5.29, we have that
xs = xs′queue ++ [xhead next]++ (xhead :: xsold), which allows us to pick xs′queue as the queue, xhead next

as the head node, and (xhead :: xsold) as the old nodes. Since xs has not changed, we prove the
isLL predicate using 5.26, and the relationship between xs′v and xs′queue follows from 5.31.
Finally, we set the state of the queue to Static or Enqueue, giving up TokND G and `head 7→
in(xhead next), and obtaining TokD G.

We step to line 24 and release the lock by giving up TokD G and locked(G.γHlock). Lastly,
we return the dequeued value: val(xhead next), meaning we must prove the post-condition with
w = val(xhead next). Recall that we got to keep Ψ(v), so using 5.32, we can prove the right disjunct.

5.3.4 Discussing the need for Old Nodes

As mentioned in the observations, it is possible for the tail to lag one node behind the head. This insight
led to including the old nodes of the queue in the queue invariant: xsold. This addition manifests at the
end of the proof of dequeue. When we open the invariant to swing `head to xhead next, we get that the
entire linked list is xs. After performing the store, we can then close the invariant with the same xs that
we opened the queue to, just written differently to signify that xhead is now “old”, and xhead next is the
new head node. Because of this, we can supply the same predicate concerning the location of xtail in the
linked list that we got when we opened the invariant to prove either the Static state or the Enqueue
state.

Had we not included xsold and essentially just “forgotten” old nodes, we could not have done this. Say
we defined xs as xs = xsqueue ++ [xhead] instead. Then, when we have to close the invariant, we cannot
supply xs, which we got when we opened the invariant. Our only choice (due to the fact that `head must
point to xhead next) is to close the invariant with xs′ = xsqueue = xs′queue ++ [xhead next]. However, clearly
xs′ 6= xs, so we cannot supply the same predicate concerning the location of xtail that we got when opening
the invariant, since this predicate talks about xs, not xs′. Now, if we opened the invariant in the state
Dequeue, then we could conclude isLast(xtail, xs

′) from isLast(xtail, xs), due to the relationship between
xs and xs′, and still be able to close the invariant. However, if we opened the invariant in state Both,
then we would need to assert isSndLast(xtail, xs

′) from isSndLast(xtail, xs). This is however not provable
since isSndLast(xtail, xs) allows for the case where xs′queue is empty. In this case, xs′ = [xhead next] which
makes it impossible to prove isSndLast(xtail, xs

′), as it is impossible to be the second last element in a
list of size one.

5.4 HOCAP-Style Specification

5.4.1 Introduction

When proving the concurrent specification in the previous section, we were quite careful with tracking
the state of the queue and, to some extent, even its contents. The contents may have been existentially
quantified, but by saving half a pointer, we could match up the contents of the queue between invariant
openings. Given this precision in the proof, it should be no surprise that proving the HOCAP-style
specification will be very similar. This section hence focuses on the parts where the proof of the
HOCAP-style specification differs from that of the concurrent specification.

5.4.2 HOCAP-Style Queue Predicate

Our definition of the queue predicate, isQueue, is almost the same as isQueueC. First and foremost, the
collection of ghost names, Qgnames, now contains the additional ghost name γAbst, as required. For the
queue invariant, the differences are that we no longer take the predicate Ψ, and we assert G.γAbst Z⇒• xsv
instead of All(xsv,Ψ). That is, our queue invariant for the HOCAP-style specification now looks as
follows.
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Definition 5.4.1 (Two-Lock M&S Queue HOCAP Invariant).

ITLH(`head, `tail, G) ,

∃xsv. G.γAbst Z⇒• xsv ∗ (abstract state)

∃xs, xsqueue, xsold, xhead, xtail. (concrete state)

xs = xsqueue ++ [xhead] ++ xsold ∗
isLL(xs) ∗
projVal(xsqueue) = wrapSome(xsv) ∗
(

`head 7→ in(xhead) ∗ `tail 7→ in(xtail) ∗ isLast(xtail, xs) ∗ (Static)

TokNE G ∗ TokND G ∗ TokUpdated G

∨

`head 7→ in(xhead) ∗ `tail 7→
1
2 in(xtail) ∗ (Enqueue)

(isLast(xtail, xs) ∗ TokBefore G ∨ isSndLast(xtail, xs) ∗ TokAfter G) ∗
TokE G ∗ TokND G

∨

`head 7→
1
2 in(xhead) ∗ `tail 7→ in(xtail) ∗ isLast(xtail, xs) ∗ (Dequeue)

TokNE G ∗ TokD G ∗ TokUpdated G

∨

`head 7→
1
2 in(xhead) ∗ `tail 7→

1
2 in(xtail) ∗ (Both)

(isLast(xtail, xs) ∗ TokBefore G ∨ isSndLast(xtail, xs) ∗ TokAfter G) ∗
TokE G ∗ TokD G

)

For the queue predicate, the only real difference is that we no longer take the predicate Ψ. That is,
our queue predicate is the following.

Definition 5.4.2 (Two-Lock M&S Queue - isQueue Predicate (HOCAP)).

isQueue(vq, G) ,∃`queue, `head, `tail ∈ Loc. ∃hlock, tlock ∈ Val.

vq = `queue ∗ `queue 7→2 ((`head, `tail), (hlock, tlock)) ∗

ITLH(`head, `tail, G)
N .queue ∗

isLock(G.γHlock, hlock,TokD G) ∗
isLock(G.γTlock, tlock,TokE G).

5.4.3 Proof Sketch

The HOCAP-style proofs are largely similar to their concurrent counterparts. However, instead of having
to handle the Ψ predicate, we must now work with the authoritative and fragmental views of the abstract
state. For initialise, we must additionally get ownership of the authoritative and fragmental views of the
empty abstract state, and for enqueue and dequeue, the only real changes happen at the linearisation
points. We sketch these challenges below.

Initialise

Lemma 12 (Two-Lock M&S Queue HOCAP Specification - Initialise).

{True} initialize () {vq.∃G. isQueue(vq, G) ∗G.γAbst Z⇒◦ []}

As discussed, we must obtain G.γAbst Z⇒• [] ∗G.γAbst Z⇒◦ [], for some ghost name G.γAbst. We achieve
this by applying Lemma 1 instantiated with the empty state: []. We use G.γAbst Z⇒• [] to establish the
queue invariant, and G.γAbst Z⇒◦ [] to prove the post-condition.
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Enqueue

Lemma 13 (Two-Lock M&S Queue HOCAP Specification - Enqueue).

∀vq, v,G, P,Q.
(
∀xsv. G.γAbst Z⇒• xsv ∗ P VE\N .i↑ .G.γAbst Z⇒• (v :: xsv) ∗Q

)
−∗

{isQueue(vq, G) ∗ P } enqueue vq v {w.Q}

We start by assuming the view-shift, which allows us to update P to Q and G.γAbst Z⇒• xsv to
G.γAbst Z⇒• (v :: xsv), for any xsv. The only real change from the previous proof happens the second
time we open the invariant; the first and third times, the abstract state does not change, hence we simply
frame away the newly added authoritative view and continue as we did before. The second time we open
the invariant is on line 10, around the expression that adds the newly created node, xnew, to the linked
list. When opening the invariant, we now get G.γAbst Z⇒• xsv. As before, we also get all the resources to
match up variables and step through the code, updating the concrete state. To close the invariant, we
must make the same choice of abstract state as we did previously: (v :: xsv). This requires us to obtain
G.γAbst Z⇒• (v :: xsv). However, since we have G.γAbst Z⇒• xsv and P (from the pre-condition), we can
apply the view-shift to obtain it, along with Q. This then allows us to close the invariant, and the proof
proceeds as previously. At the end, we must now additionally prove the post-condition Q, but this is no
issue as we obtained that from the view-shift.

Dequeue

Lemma 14 (Two-Lock M&S Queue HOCAP Specification - Dequeue).

∀vq, G, P,Q.∀xsv. G.γAbst Z⇒• xsv ∗ P VE\N .i↑ .

 (xsv = [] ∗G.γAbst Z⇒• xsv ∗Q(None))

∨
(
∃v, xs′v. xsv = xs′v ++ [v] ∗
G.γAbst Z⇒• xs′v ∗Q(Some v)

)  −∗
{isQueue(vq, G) ∗ P } dequeue vq {w.Q(w)}

We assume the view-shift and proceed as in the concurrent proof until we get to the second invariant
opening. This invariant opening is on line 17 around the expression that reads the head node’s out pointer.
It is here that we figure out whether the queue is empty by doing a case analysis on xsqueue. We open
the invariant and do the same case analysis here.

Case xsqueue is empty: In the case that the queue is empty, the abstract state of the queue does not
change. We thus apply the view-shift (we have P from the pre-condition and G.γAbst Z⇒• xsv
from the invariant), which gives us the consequent of the view-shift. The right disjunct states that
the abstract state, xsv, is non-empty, but since the abstract state is reflected in xsqueue, which is
empty, then we know that the right disjunct is impossible. Hence, we may assume the left disjunct.
That is, xsv = [] ∗ G.γAbst Z⇒• xsv ∗ Q(None). We now proceed as before, this time giving up
G.γAbst Z⇒• xsv to close the invariant. After stepping through the code, we are left with proving
the post-condition: Q(None), which we got from the view-shift.

Case xsqueue is not empty: If the queue is not empty, then we do not apply the view-shift (as the
abstract state does not change within this invariant opening) and simply continue as we did
previously. The next time we open the invariant is on line 23, around the expression that swings
`head to xhead next. It is this store operation that updates the abstract state of the queue, so it is
within this invariant opening that we apply the view-shift (again, we have P from the pre-condition
and G.γAbst Z⇒• xsv from the invariant). As we did previously, we deduce that the current xsqueue
is non-empty, and since xsv is reflected in xsqueue, then we can conclude that the first disjunct is
impossible, so the view-shift gives us ∃v, xs′v. xsv = xs′v ++ [v] ∗ G.γAbst Z⇒• xs′v ∗Q(Some v). As
before, we conclude that Some v is the return value (through the reflection between xsqueue and
xsv), and proceed to close the invariant, this time giving up G.γAbst Z⇒• xs′v. Stepping through the
code, we end up having to prove the post-condition Q(Some v), which we got from the view-shift.
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Chapter 6

The Lock-Free Michael-Scott Queue

6.1 Introduction

In this chapter, we study the non-blocking version of the M&S Queue, the Lock-Free M&S Queue. As
with the two-lock version, the original implementation can be found in Michael and Scott [1996]. As
the name “Lock-Free” suggests, the implementation does not rely on locks to achieve correct behaviour.
Instead, it uses the atomic operation CAS, which we discussed in Section 2.1.

6.2 Implementation

The implementation shares many commonalities with the two-lock variant. Most importantly, the
underlying queue is still a linked list. The major differences are how we manipulate the linked list and
the head and tail pointers. The code is shown in Figure 6.1.

6.2.1 Initialise

As the implementation does not use locks, the queue data structure is now just a pointer to a pair
consisting of the head and tail pointers. Other than this, the function behaves as the two-lock variant,
creating the initial head node and the head and tail pointers.

6.2.2 Enqueue

Enqueueing a node consists of the same two steps as before: add the newly created node to the linked
list and swing the tail pointer. In this way, Figures 4.2a, 4.2b, and 4.2c still accurately reflect the state
changes that the queue goes through during an enqueue. However, one big difference is that swinging the
tail pointer to the newly inserted node is not necessarily done by the thread that enqueued it. We discuss
this below.
Since other threads can work on the linked list at the same time, we must do some extra checks when
enqueueing a new node. Firstly, we must ensure that the tail pointer is actually pointing to the last node.
We ensure this on line 11. If it is not, then another enqueueing thread has added a new node to the
linked list but has yet to swing the tail pointer. So instead of waiting for it, we help it by trying to swing
the tail pointer for it. Afterwards, we try to enqueue our node again.
Secondly, before we can add the node, we must ensure that no thread has performed an enqueue while we
have been working so that we do not overwrite another thread’s enqueue. This is ensured with the CAS
instruction on line 12 – it adds the new node to the linked list only if our tail node is still the last, and
hence points to None. After adding the node, we attempt to swing the tail pointer to it. This may fail,
but that simply means that another thread has already swung it for us. Finally, we have an additional
consistency check on line 10. We discuss the purpose of this extra check in Section 7.5.
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6.2.3 Dequeue

Fundamentally, a dequeue operation still consists of swinging the head pointer to the next node in the
linked list. The original authors decided that the tail pointer should not lag behind the head pointer,
hence dequeue also accesses the tail node and ensures it will not lag behind as a result of the dequeue.
On line 26, we check whether the head and tail nodes are the same. If this is the case, the queue is either
empty or the tail pointer is lagging behind. We distinguish between these two cases on line 27. If the tail
node is indeed lagging behind, then some thread has enqueued a node but not yet swung the tail pointer,
so we help it by swinging the pointer.
If the head and tail nodes are not the same, then it must be safe to dequeue, which we attempt in the
else block on line 31.

6.2.4 Prophecies

Notice that the load on line 24 is a possible linearisation point – if the load resolves to None (i.e. the
queue is empty) and the consistency check on the following line passes, the dequeue will conclude the
queue is empty and return None. That is, the point where we “read” the state of the queue is the load
on line 24, but we only conclude that the queue is empty if the consistency check on the following line
succeeds. So when we are at the load while proving compliance with the HOCAP-style specification, we
need to know whether the consistency check passes; if it does, we should apply the view-shift, and if it
does not, we should not apply it. This is somewhat of a conundrum, as this requires us to reason about a
future computation.

To solve this issue, we use a prophecy variable. Prophecies are a part of Iris [Jung et al., 2020] and
allow us to reason about the result of future expressions. They are only used in the logic and do not alter
the semantics of the code. On line 23 in dequeue, we create one such prophecy variable, which is then
“resolved” on line 25. The prophecy variable allows us to reason about the result of the expression inside
the Resolve statement. In other words, we can reason about the consistency check already at the load on
line 24, allowing us to make the correct choice. We will see exactly how this works when we prove the
specification for the Lock-Free M&S Queue in Chapter 7.

38



1 initialize ,
2 let node = ref (None, ref (None)) in
3 ref (ref (node), ref (node))
4

5 enqueue Q value ,
6 let node = ref (Some value, ref (None)) in
7 (rec loop =
8 let tail = !(snd(!Q)) in
9 let next = !(snd(! tail)) in

10 if tail = !(snd(!Q)) then
11 if next = None then
12 if CAS (snd(! tail)) next node then
13 CAS (snd(!Q)) tail node
14 else loop ()
15 else CAS (snd(!Q)) tail next; loop ()
16 else loop ()
17 ) ()
18

19 dequeue Q ,
20 (rec loop =
21 let head = !(fst(!Q)) in
22 let tail = !(snd(!Q)) in
23 let p = newproph in
24 let next = !(snd(!head)) in
25 if head = Resolve(!(fst(!Q)), p, ()) then
26 if head = tail then
27 if next = None then
28 None
29 else
30 CAS(snd(!Q)) tail next; loop ()
31 else
32 let value = fst(!next) in
33 if CAS (fst(!Q)) head next then
34 value
35 else loop ()
36 else loop ()
37 )()

Figure 6.1: Implementation of the Lock-Free M&S Queue in HeapLang.
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Chapter 7

Proving HOCAP-style Specification
for the Lock-Free Michael-Scott
Queue

7.1 Introduction

In this chapter, we prove that the Lock-Free M&S Queue satisfies the HOCAP-style specification given in
Section 3.4. As we showed in Section 3.5, the sequential and concurrent specifications can be derived from
the HOCAP-style specification without referring to the actual implementation. Thus, in this chapter, we
focus only on proving the HOCAP-style specification and rely on the derivations to prove the concurrent
and sequential specifications.

Section 7.2 introduces the notion of Reachability, which we use in the proofs. In Sections 7.3 and 7.4,
we prove that the Lock-Free M&S Queue satisfies the HOCAP-style specification. Finally, in Section 7.5,
we discuss a simplification to the Lock-Free M&S Queue algorithm and its implications.

7.2 Reachability

An important aspect in the correctness of the Lock-Free M&S Queue is which nodes a particular node
can reach through the linked list (i.e. by following the chain of pointers), and how the head and tail
pointers change during the lifetime of the queue.

Firstly, the underlying linked list still only ever grows, and it does so only at the end. Hence, the set
of nodes that a given node can reach only ever grows. Further, all nodes can always reach the last node
in the linked list.

Secondly, the correctness of the queue relies on the fact that the head and tail pointers are only ever
swung towards the end of the linked list. That is, if a node can reach, say, the tail node at one point
during the program, then it can reach any future tail node.

Thirdly, whereas it was possible for the tail node to lag behind the head node in the two-lock version,
it is not possible in the lock-free version. Indeed, if such a scenario could happen, dequeue could crash!
Consider the scenario where the head node is the last node in the linked list (hence, the queue is empty),
and the tail is lagging behind the head. If someone invokes dequeue, the check on line 26, which is
supposed to detect an empty queue or a lagging tail, results in false, and hence, incorrectly, takes the
“else” branch, which assumes that there is something to dequeue. But since the queue is empty, then next
– the node after head – is None, and when we try to dereference next on line 32, we will crash. Therefore,
our invariant must ensure that the tail never lags behind the head.

To capture these properties, we introduce two notions of reachability, concrete reachability and abstract
reachability, which we introduce in the following sections. This way of modelling the queue was originally
introduced by Vindum and Birkedal [2021]. The presentation here borrows the same ideas but differs
in the sense that it is node-oriented instead of location-oriented. Moreover, we prove some additional
properties of reachability which allows us to simplify the queue invariant slightly.
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7.2.1 Concrete Reachability

We say that a node xn in a linked list can concretely reach a node xm when, if we start traversing
succeeding nodes (by following the out and in pointers starting from xn), we will eventually get to xm. If
this is the case, we write xn ; xm. We allow for traversing zero nodes to reach xm, which essentially
means that all nodes can reach themselves. Formally, we define concrete reachability as an inductive
predicate.

Definition 7.2.1 (Concrete Reachability). Given two nodes, xn and xm, we say that xn concretely
reaches xm if they satisfy the following inductive predicate.

xn ; xm , in(xn) 7→2 (val(xn), out(xn)) ∗ (xn = xm ∨ ∃xp. out(xn) 7→2 in(xp) ∗ xp ; xm)

This definition firstly states that xn is a node: in(xn) 7→2 (val(xn), out(xn)). Secondly, xn is either
the node to be reached, xm, or it has a succeeding node, xp, which can reach xm. Note that the points-to
propositions are all persistent, which mimics the fact that the linked list is only ever changed by appending
new nodes to the end. This in turn makes concrete reachability a persistent predicate.

We proceed to prove some useful lemmas about concrete reachability.

Lemma 15 (Reach Reflexive). For a node xn, we have: xn ; xn ∗−∗ in(xn) 7→2 (val(xn), out(xn)).

Proof. The −∗ direction follows directly by the definition. To prove the ∗− direction, it suffices to show
(xn = xn ∨ ∃xp. out(xn) 7→2 in(xp) ∗ xp ; xn). Clearly, this follows as the left disjunction holds.

Lemma 16 (Reach Transitive). For nodes xn, xm, and xo, we have: xn ; xm −∗ xm ; xo −∗ xn ; xo.

Proof. We proceed by induction in xn ; xm.

B.C. In the base case, xn = xm. We get to assume that xm ; xo, and must prove xn ; xo. Since
xn = xm, we are done.

I.C. In the inductive case, we assume that xn is a node that points to some xp, which satisfies
xm ; xo −∗ xp ; xo. Assuming xm ; xo, we must prove xn ; xo.
To prove xn ; xo, we must first show that xn is a node, which we have already established. Next,
we must show that either xn = xo, or xn steps to some x′p which can reach xo. We prove the second
case by choosing our xp for x′p. Thus, we have to show xp ; xo. This follows by the induction
hypothesis together with our assumption that xm ; xo.

Lemma 17 (Reach From is Node). For any xn and xm, if xn ; xm, then xn is a node. That is, it
satisfies: in(xn) 7→2 (val(xn), out(xn)).

Proof. This follows immediately from the definition of concrete reachability.

Lemma 18 (Reach To is Node). Similarly, for any xn and xm, if xn ; xm then xm is a node:
in(xm) 7→2 (val(xm), out(xm)).

Proof. We proceed by induction in xn ; xm. The base case follows by Lemma 17 above. In the
inductive case, we assume that xn points to some xp, which reaches xm. Our induction hypothesis is
in(xm) 7→2 (val(xm), out(xm)), which is also our proof obligation, so we are done.

Lemma 19 (Reach Last). For any nodes xn and xm, we have the following:

xn ; xm −∗ out(xn) 7→ None −∗ xn = xm ∗ out(xn) 7→ None

Proof. Assuming xn ; xm and out(xn) 7→ None, we must prove that xn = xm and out(xn) 7→ None.
By xn ; xm, we know that either xn = xm, or xn points to some xp and xp ; xm. The first case
immediately gives us everything we need to prove both goals. If we are in the second case, then we know
that out(xn) 7→2 in(xp). But by our initial assumption, out(xn) 7→ None. This is clearly a contradiction
as in(xp) is a location.
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7.2.2 Abstract Reachability

As discussed, we wish to capture that if a node can reach either the head or tail node at one point during
the program, then it can reach any future head or tail node. To this end, we introduce the notion of
abstract reachability. The idea is to introduce ghost variables that can “point” to nodes in the linked list,
just as the head and tail pointers do. We shall write γ � x to mean that the ghost variable γ abstractly
points to the node x. We shall construct the abstract points-to predicate so that we can update γ � x
to γ � y only if x can concretely reach y, i.e. x; y. This additional restriction compared to the normal
points-to predicate is what allows us to capture the property described above. We write x 99K γ to mean
that the node x can abstractly reach the ghost variable γ. The idea is that if we have established x 99K γ,
then no matter what node γ abstractly points to, for instance, γ � y, we can conclude x ; y. This
means that if we update γ � y in the future to, say γ� z, then we can conclude that x; z.

We refer to Section 8.3 for the definition of the resource algebra we use to formally define abstract
points-to and abstract reachability. For our purposes, we only need to know the following four lemmas to
work with the predicates in the proofs. These lemmas are proved in Section 8.3.

Firstly, if we have a node, we may allocate some ghost variable γ which points to it and assert that
the node can reach γ.

Lemma 20 (Abs Reach Alloc). For all nodes x, we have

x; xV (∃γ. γ� x ∗ x 99K γ)

The second lemma allows us to get a concrete reachability predicate out of an abstract one. If a ghost
name γm currently points abstractly to some node xm, then any node that can abstractly reach γm can
also concretely reach xm.

Lemma 21 (Abs Reach Concr). For nodes xn and xm, and ghost names γm, we have

xn 99K γm ∗ γm� xm −∗ xn ; xm ∗ γm� xm

We can also go the other way and get an abstract reachability predicate out of a concrete one. If
a ghost variable γm points abstractly to some node xm, and a node xn can concretely reach xm, then
we may deduce that xn can abstractly reach γm, meaning that xn can reach any node that γm will ever
point to in the future.

Lemma 22 (Abs Reach Abs). For nodes xn and xm, and ghost names γm, we have

xn ; xm ∗ γm� xm V xn 99K γm ∗ γm� xm

The final lemma allows us to update abstract pointers. As discussed above, we require that whatever
node we update the pointer to is a successor of the current node. That is, if a ghost variable γm currently
points to xm, then we must show that xm can reach xo before we can update γm to point abstractly to
xo. After the update, we additionally get that xo can abstractly reach γm.

Lemma 23 (Abs Reach Advance). For nodes xm and xo, and ghost names γm, we have

γm� xm ∗ xm ; xo V γm� xo ∗ xo 99K γm

7.3 HOCAP-style Queue Predicate

For the HOCAP-style specification that we prove, we let the collection of ghost names, Qgnames, be the
set of 4-tuples of ghost names. Firstly, it contains the mandatory γAbst whose purpose is the same as
before – to keep track of the abstract state of the queue. Additionally, it contains γHead, γTail, and γLast,
which will abstractly point to the head, tail, and last node, respectively.

Since the queue predicate is required to be persistent and multiple threads need to access shared
resources of the queue, we need an invariant. The invariant we define has some commonalities with the
invariant we used for the two-lock variant, but it incorporates the differences we discussed earlier in the
chapter. In particular, it is important for the correctness of the queue that the tail does not lag behind
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the head. As such, our invariant does not allow for this behaviour. This has the extra implication that
the head node is always the oldest node, meaning that we do not need to keep track of older nodes, xsold.

Unlike the two-lock variant, we assert the existence of an additional node xlast, which invariantly is
the last (most recently added) node in the linked list. This helps us reason about where the head and
tail nodes are located; enqueue distinguishes between the cases where the tail is last and not last, and
similarly for dequeue and head.
In this way, xhead is the first node, xlast is the last node, and xtail either lies somewhere in between, is one
of them, or, in case the queue is empty, is both of them. To enforce this structure, we use our abstract
reachability predicate from the previous section.
We proceed to define the invariant.

Definition 7.3.1 (Lock-Free M&S Queue Invariant).

ILFH(`head, `tail, G) ,

∃xsv. G.γAbst Z⇒• xsv ∗ (abstract state)

∃xs, xsqueue, xhead, xtailxlast. (concrete state)

xs = xsqueue ++ [xhead] ∗
isLL(xs) ∗
isLast(xlast, xs) ∗
projVal(xsqueue) = wrapSome(xsv) ∗
`head 7→ in(xhead) ∗
`tail 7→ in(xtail) ∗
G.γHead� xhead ∗ xhead 99K G.γTail ∗
G.γTail� xtail ∗ xtail 99K G.γLast ∗
G.γLast� xlast

The isQueue predicate is now quite simple: it states that the value representing the queue is a location
which points persistently to a pair of locations, the head and tail pointers, which satisfy the invariant we
defined above.

Definition 7.3.2 (Lock-Free M&S Queue - isQueue Predicate).

isQueue(vq, G) ,∃`queue, `head, `tail ∈ Loc.

vq = `queue ∗ `queue 7→2 (`head, `tail) ∗

ILFH(`head, `tail, G)
N .queue

7.4 Proof Outline

We instantiate the specification with our definition of isQueue (7.3.2). By the definition of isQueue, we
easily show that isQueue is persistent. What remains to be shown are the specifications for initialize,
enqueue, and dequeue. Both enqueue and dequeue have code that attempts to swing the tail pointer
forward (for enqueue, lines 13 and 15, and for dequeue, line 30). These all behave similarly, so we
additionally prove a specification for swinging the tail.

Initialise

Lemma 24 (Lock-Free M&S Queue Specification - Initialise).

{True} initialize () {vq.∃G. isQueue(vq, G) ∗G.γAbst Z⇒◦ []}

Proof. We first step through line 2 which creates a new node: x1 = (`1 in,None, `1 out), with `1 out 7→ None
and `1 in 7→ (None, `1 out), the latter of which we make persistent. Next, we step through line 3 which
gives us some locations `head, `tail, and `queue, with `head 7→ in(x1) and `tail 7→ in(x1), and finally
`queue 7→ (`head, `tail).
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As we did for the two-lock version, we apply Lemma 1 to allocate an empty abstract queue, giving us
some ghost name γAbst that we put into a tuple, G, and the resources G.γAbst Z⇒• [] ∗G.γAbst Z⇒◦ []. To
allocate the invariant, we must additionally obtain abstract reach propositions. Since x1 is a node, we
may use Lemma 15 to conclude x1 ; x1. We can now use Lemma 20 three times, giving us ghost names
γHead, γTail, γLast which we put into G, and the resources

G.γHead� x1 ∗G.γTail� x1 ∗ x1 99K G.γTail ∗G.γLast� x1 ∗ x1 99K G.γLast

We now have all the resources needed to allocate the invariant with the head, tail, and last node being x1.
With the invariant allocated, proving the post-condition becomes straightforward.

Swing Tail

The specification we wish to prove is the following.

Lemma 25 (Swing Tail).

∀`head, `tail, xtail, xnewtail, G. { ILFH(`head, `tail, G)
N .queue ∗ xtail ; xnewtail ∗ xnewtail 99K G.γLast}

CAS `tail in(xtail) in(xnewtail)

{w.w = true ∨ w = false}

Proof. The rule for CAS demands that we have a points-to predicate for `tail. This is available inside the
invariant, so we proceed to open it. This tells us that there is some x′tail so that `tail 7→ in(x′tail). We
consider both cases of the CAS.

Case CAS succeeds. It must then have been the case that in(x′tail) = in(xtail). Since we have xtail ;
xnewtail, we know that xtail is a node (Lemma 17). From the invariant, we additionally got that
G.γTail � x′tail and xhead 99K G.γTail, which by Lemma 21 means that xhead ; x′tail. We can
thus also conclude that x′tail is a node (Lemma 18). So since both xtail and x′tail are nodes,
and in(x′tail) = in(xtail), Lemma 33 tells us that xtail = x′tail. In other words, we have that
G.γTail� xtail.
Since the CAS succeeded, we now have that `tail 7→ in(xnewtail). Since the invariant demands that
G.γTail and `tail agree on the node they point to, we must update G.γTail � xtail to G.γTail �
xnewtail. We can do this using Lemma 23 as we assumed xtail ; xnewtail. With this, we can close
the invariant again, using xnewtail as the tail node.
The CAS evaluates to true which we use to prove the first disjunct of the post-condition.

Case CAS fails. Since the CAS failed, nothing was updated, and we can close the invariant again with
the same resources we got out of it. The CAS evaluates to false, hence we can prove the second
disjunct in the post-condition.

Enqueue

Lemma 26 (Lock-Free M&S Queue Specification - Enqueue).

∀vq, v,G, P,Q.
(
∀xsv. G.γAbst Z⇒• xsv ∗ P VE\N .i↑ .G.γAbst Z⇒• (v :: xsv) ∗Q

)
−∗

{isQueue(vq, G) ∗ P } enqueue vq v {w.Q}

Proof. We assume the view-shift and proceed to prove the Hoare triple. By definition of isQueue, we
know that vq is a location `queue and there are locations `head and `tail so that

`queue 7→2 (`head, `tail) ∗ ILFH(`head, `tail, G)
N .queue

(7.1)

We first step through line 6 which creates a new node xnew, so that

in(xnew) 7→2 (Some v, out(xnew)) (7.2)

out(xnew) 7→ None (7.3)
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The next line is the beginning of the looping function. We proceed by Löb induction, which allows us to
assume the Hoare triple we wish to prove later. This means that, if we reach a recursive call, we will have
the Hoare triple that we must prove – the later is immediately stripped away when we apply () and “step
into” the recursive function.
Line 8 first dereferences to the tail pointer `tail using the resources in 7.1. We open the invariant to
obtain the points-to predicate concerning `tail. We get that `tail points to some xtail. Using the resources
from the invariant, we may conclude the following persistent information:

xtail 99K G.γLast (7.4)

in(xtail) 7→2 (val(xtail), out(xtail)) (7.5)

The first part is directly from the invariant, and the second we may derive using Lemmas 21 and 18. We
perform the load and close the invariant.
The next line (line 9) finds out what xtail points to. Using 7.5 we step to !(out(xtail)). The points-to
predicate required to perform this dereference is owned by the invariant (as it might be non-persistent),
so we open the invariant again. We get that there is some xlast, with G.γLast� xlast. From this, 7.4, and
Lemma 21 we conclude xtail ; xlast. This gives us two cases to consider: either xtail is xlast (meaning
that xtail is not lagging behind), or it points to some node xtail next which can reach xlast (meaning that
xtail is lagging behind).

Case xtail = xlast. Since we had isLast(xlast, xs), we know that xtail is the last node in the linked list,
hence it points to None. We perform the load which sets next to None and close the invariant.
We proceed to the consistency check on line 10. As before, the points-to predicate for `tail is in
the invariant, so we open it. We get `tail 7→ in(x′tail), for some x′tail. Using this, we perform the
deference and close the invariant. The branch taken now depends on whether x′tail is consistent with
xtail. In case they are not, we take the “else” branch on line 16, which simply consists of a recursive
call to the looping function. We are done by the induction hypothesis (from the Löb induction).
If they are consistent, we take the “then” branch and step to line 11. Here, we check whether next is
None. We already know this is the case, so we proceed to line 12. This consists of a CAS instruction
which attempts to add xnew to the linked list. The CAS succeeds if and only if `tail still points to
None. We open the invariant to gain access to the relevant points-to predicate. Similarly to what
we did earlier, we apply Lemma 21 to conclude xtail ; x′last, where x′last is the current last node of
the linked list (according to the invariant). As before, we perform case analysis on xtail ; x′last.

Case xtail = x′last. We now know that xtail is still the last node in the linked list, hence out(xtail) 7→
None, and the CAS succeeds. This instruction makes xtail point to xnew, which essentially
adds it to the linked list. Thus, the value in xnew becomes enqueued. In other words, this is a
linearisation point, so we must apply the view-shift. We instantiate the view-shift with the
abstract state of the queue xsv from the invariant opening and supply G.γAbst Z⇒• xsv from
the invariant and the P from the pre-condition. We hence get G.γAbst Z⇒• (v :: xsv) and Q.
When closing the invariant, we use (v :: xsv) for the abstract state, (xnew :: xs) for the concrete
state, xnew :: xsqueue for the queue, and we take xnew to be the last node. The head and tail
nodes remain the same. This means we give up G.γAbst Z⇒• (v :: xsv), which we got from
the view-shift, and the points-to predicate 7.3 (used to assert isLL(xnew :: xs)). The only
thing left to prove is G.γLast � xnew. From the invariant opening, we have G.γLast � xtail.
Since xtail ; xnew, we may apply Lemma 23 to update the abstract points-to resource to
G.γLast� xnew and additionally obtain xnew 99K G.γLast. With this, we can close the invariant
and step to line 13. This line attempts to swing the tail, so we apply our swing-tail lemma
(Lemma 25) by supplying our invariant, xtail ; xnew, and xnew 99K G.γLast. This tells us that
the CAS is safe, and it either succeeds or fails. The resulting value is the returned value of the
enqueue function, but since the post-condition is simply Q, which we own, we are done.

Case out(xtail) 7→2 in(xtail next) ∗xtail next ; xlast. Since xtail does not point to None, the CAS fails.
We close the invariant and step to line 14. We finish by applying the induction hypothesis.

Case out(xtail) 7→2 in(xtail next) ∗ xtail next ; xlast. Using this, we perform the load, which sets next
to in(xtail next). Before closing the invariant, we apply Lemma 22 with xtail next ; xlast and
G.γLast � xlast to obtain xtail next 99K G.γLast. We now proceed to close the invariant. Next, we
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reach the consistency check. We handle it similarly to the previous case: open the invariant, get
some x′tail, close the invariant, and, in case of inconsistency, apply the induction hypothesis. If the
nodes are consistent, we step to line 11. This time, the check fails as next is in(xtail next) which is
not None. Hence, we step to line 15 and attempt to swing the tail pointer. We here apply Lemma
25 which we can do as we own the invariant, xtail ; xtail next, and xtail next 99K G.γLast. We step
through to the recursive call and finish by applying the induction hypothesis.

Dequeue

Lemma 27 (Lock-Free M&S Queue Specification - Dequeue).

∀vq, G, P,Q.∀xsv. G.γAbst Z⇒• xsv ∗ P VE\N .i↑ .

 (xsv = [] ∗G.γAbst Z⇒• xsv ∗Q(None))

∨
(
∃v, xs′v. xsv = xs′v ++ [v] ∗
G.γAbst Z⇒• xs′v ∗Q(Some v)

)  −∗
{isQueue(vq, G) ∗ P } dequeue vq {w.Q(w)}

Proof. We assume the view-shift and must prove the Hoare triple. As before, we know from isQueue that
the queue, vq, is a location, `queue, and there are locations `head and `tail so that

`queue 7→2 (`head, `tail) ∗ ILFH(`head, `tail, G)
N .queue

(7.6)

The body of dequeue is the loop, so we immediately apply Löb induction. We step through the function
application and into the looping function to line 21. This line dereferences `head, so we open the invariant
to access the associated points-to predicate. We obtain that `head points to some xhead, meaning the load
results to in(xhead). We also derive the following information:

in(xhead) 7→2 (val(xhead), out(xhead)) (7.7)

xhead 99K G.γHead (7.8)

xhead 99K G.γTail (7.9)

xhead 99K G.γLast (7.10)

From the abstract points-to predicates from the invariant and Lemma 21, we get that xhead ; xtail, so
by Lemma 17, we know that xhead is a node. This shows 7.7. By reflexivity of reach (Lemma 15), we
additionally know that xhead ; xhead. Lemma 22 then gives us 7.8 and 7.9.
Lastly, we use Lemma 21 to deduce that xtail ; xlast. By transitivity of reach (Lemma 16) we have that
xhead ; xlast, which we use with Lemma 22 to get 7.10.
We now close the invariant and step to line 22, which attempts to read `tail. We open the invariant, which
tells us that `tail points to some xtail (not necessarily the same as the previous invariant opening) and
perform the load. From the abstract points-to and reach predicates from the invariant together with 7.9
and Lemmas 21, 18, and 22 we get the following:

in(xtail) 7→2 (val(xtail), out(xtail)) (7.11)

xhead ; xtail (7.12)

xtail 99K G.γTail (7.13)

(7.14)

We close the invariant and step to line 23. This line creates our prophecy variable, p, which will be
resolved on line 25. This allows us to reason about the result of the consistency check: we will later show
that the expression associated with p (i.e. !(fst(!Q))) evaluates to some value vp, but we can already now
case on whether vp will be equal to in(xhead) – the left-hand side of the equality check on line 25.

Case in(xhead) = vp. We continue to line 24, which finds out what xhead points to. As xhead could be the
last node in the linked list, we do not have the relevant points-to predicate. We therefore open the
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invariant. We get the three nodes x′head, x′tail, and xlast. Specifically, xlast is the last node in the
linked list, and

G.γLast� xlast (7.15)

Combining this with 7.10 and Lemma 21 we conclude xhead ; xlast. This gives us two cases to
consider: either xhead = xlast or xhead points to some xhead next, which reaches xlast.

Case xhead = xlast. This corresponds to the queue being empty, which we derive below.
As xlast is the last node, we have that out(xhead) 7→ None. Hence, the load resolves to None.
Using the abstract points-to predicates from the invariant together with 7.8, 7.9, and Lemma
21 we get xhead ; x′head and xhead ; x′tail. We can now apply Lemma 19 three times to
conclude xhead = x′head = x′tail = xtail. Since x′head points to None, then xsqueue has to be
empty (if it was not, we could deduce that x′head pointed to a node). This also implies that
the abstract state of the queue xsv, is empty, xsv = [].
Because the load resolved to None, then the variable next in the code is None, and since we
are in the case where the consistency check passes, and since we have derived that xhead = xtail,
we know that dequeue will return None. In other words, this is a linearisation point.
Since xsv = [], then our abstract state predicate from the invariant states G.γAbst Z⇒• []. We
thus instantiate the view-shift with [] and supply the P from the pre-condition. As xsv = [],
we can conclude that the first disjunct must be true (the second contains a contradiction), so
we get Q(None) and G.γAbst Z⇒• []. As we have not changed any resources, we can close the
invariant again.
We reach the consistency check on line 25. By 7.6, we know that !(fst(!Q)) steps to !(`head),
but to resolve the prophecy, we must first show what !(`head) evaluates to. This resource
is inside the invariant, so we open it. We get that `head 7→ in(x′′head) for some node x′′head.
We close the invariant and resolve the prophecy: !(fst(!Q)) evaluated to in(x′′head). In other
words, vp = in(x′′head), and therefore in(xhead) = in(x′′head). Since the remaining if statement
on line 25 compares in(xhead) to in(x′′head), we take the “then” branch and step to line 26.
Since xhead = xtail and next was set to None, we step to line 28 which returns None. The
post-condition thus requires us to prove Q(None), which we already have.

Case out(xhead) 7→2 in(xhead next) ∗ xhead next ; xlast. This means that the queue is not empty, and
there is an element to be dequeued: the value in xhead next. The load resolves to in(xhead next),
and the program variable next is set to this. Using Lemmas 17 and 22 with 7.15 we get

in(xhead next) 7→2 (val(xhead next), out(xhead next)) (7.16)

xhead next 99K G.γLast (7.17)

We close the invariant and step to the consistency check on line 25. We handle this similarly
to the previous case and conclude that the consistency check succeeds, taking us to line 26 in
the “then” branch. This line ensures that the dequeue will not make the tail node lag behind
the head node. We can simply consider both cases of the check.
The case where the “if” succeeds takes us to the CAS on line 30, which attempts to swing the
tail and try dequeueing again. We handle the CAS with our swing-tail lemma (Lemma 25)
and the recursive call by the induction hypothesis.
If the “if” fails, then the tail node will not lag behind as a result of the dequeue, so we step to
the else block on line 31 which attempts to dequeue. We first read the value out of xhead next

on line 32. Next, we attempt to swing the head pointer on line 33. The rule for CAS demands
a points-to predicate for `head, so we open the invariant which gives us fresh nodes x′head, x′tail,
and x′last, so that `head 7→ in(x′head). The success of the CAS depends on whether in(x′head)
equals in(xhead). If they are not equal, the CAS fails and nothing is updated. We can thus
close the invariant, step to the recursive call on line 35, and apply the induction hypothesis.
So for the remainder, we assume they are equal and the CAS succeeds. Since the CAS moved
the head pointer to xhead next, the queue data structure got updated, so this is a linearisation
point.
Using the abstract points-to and reachability propositions from the invariant together with
Lemmas 21 and 17, we may deduce that x′head is a node. As we already know that xhead
is a node (from 7.7), Lemma 33 tells us that the nodes are equal: xhead = x′head. From the
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invariant (specifically isLL(xs)), we know that x′head points to the first element of xsqueue.
But since xhead = x′head, this element must be our xhead next. In other words, xsqueue =
xs′queue ++ [xhead next], for some xs′queue. This means that when we apply the view-shift (giving
up P and G.γAbst Z⇒• xsv as usual), only the second case of the resulting disjunct is possible:
xsv cannot be empty as xsqueue is not. We therefore get that there are some xs′v and v so that

xsv = xs′v ++ [v] (7.18)

G.γAbst Z⇒• xs′v (7.19)

Q(Some v) (7.20)

Since xsv is reflected in xsqueue (according to the invariant), we may additionally conclude
that xs′v is reflected in xs′queue and Some v = val(xhead next).
To close the invariant, we must update some of our resources. Since we now have `head 7→
in(xhead next), we must pick xhead next for the head node. But currently G.γHead� xhead. So
we use Lemma 23 to advance the pointer, and we get G.γHead� xhead next.
We are now required to show that xhead next 99K G.γTail. Since xhead ; xtail, and xhead 6= xtail,
then it must be the case that xhead next ; xtail. Lemma 21 with 7.13 now tells us that xtail can
reach the current tail node, x′tail. By transitivity (Lemma 16), we get xhead next ; x′tail, and
hence by Lemma 22, we get the desired xhead next 99K G.γTail. We now own all the resources
required to close the invariant.
As the CAS succeed, we step to line 34 which simply returns val(xhead next). Thus, we must
prove the post-condition Q(val(xhead next)). We can do this since we still own 7.20 and deduced
that Some v = val(xhead next).

Case in(xhead) 6= vp. We step to line 24 which finds out what xhead points to. To access the relevant
points-to predicate, we open the invariant. Importantly, we get that there is some last node of the
linked list, xlast, with G.γLast� xlast. By combining this with 7.10 and Lemma 21 we deduce that
xhead ; xlast which means that either xhead is the last node, and hence out(xhead) 7→ None, or
there is some other node xhead next and out(xhead) 7→2 xhead next. This shows that the load is safe.
The actual value that the load resolves to is unimportant, as it will not be used in this case. We
thus perform the load, close the invariant and step to line 25.
By 7.6, we know that !(fst(!Q)) steps to !(`head), so to resolve the prophecy, we show what !(`head)
evaluates to. We open the invariant, which gives us that `head 7→ in(x′head) for some node x′head.
We close the invariant again and resolve the prophecy: !(fst(!Q)) evaluated to in(x′head). That is,
vp = in(x′head), and therefore in(xhead) 6= in(x′head). We hence take the “else” branch and step to
line 36. This consists of a recursive call to the loop function, and we are done by the induction
hypothesis.

7.5 Discussion

Vindum and Birkedal [2021] showed that a version of the Lock-Free M&S Queue with the consistency
checks is contextually equivalent to a version without consistency checks. In the original presentation
[Michael and Scott, 1996], the implementation language is assumed to not have a garbage collector. This
means that the ABA problem is an issue; if a node is freed by a dequeue and afterwards, a new node
is allocated at the same location with the same value through an enqueue, it will look as though it is
the exact same node. This can cause inconsistencies for threads that read the original node, go to sleep,
and continue after the new allocation. To fix the issue, the authors added modification counters to their
pointers, which means that the pointer to the newly allocated node will have a higher counter, and we
can hence tell that it is not the same node as the original. The essence of the consistency checks is to
ensure that previously read nodes are the exact same nodes as before by ensuring that the counter is the
same. We do this check after reading any “next” nodes to ensure that they are indeed the next of the
node we originally read – the original node and its next node are consistent.

However, the language used in Vindum and Birkedal [2021] and this project, HeapLang, is a garbage-
collected language. This means that we do not need to worry about freeing nodes, and the ABA problem
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does not occur. In other words, when we read the “next” of a node, we can be certain that it is the next
of the node we originally read – no one could have freed it in a dequeue and subsequently allocated a
similar-looking node in an enqueue. This then means that the consistency checks are no longer needed.

Indeed, in the Coq formalisations, we prove the HOCAP-style specification for an implementation
that does not have the consistency checks. As an additional benefit, removing the consistency check
means that in dequeue, we know already when we read the “next” of the head node on line 24 whether
the dequeue will conclude that the queue is empty, and hence whether the load is a linearisation point.
The prophecy variable is thus not needed, which further simplifies the proof of the specification.
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Chapter 8

On the Resource Algebras Used

8.1 Tokens

Tokens are defined using the exclusive resource algebra on the singleton set: Ex(). This resource algebra
has only one valid element, which we here denote by T , and combining two elements gives the non-valid
element ⊥. The definition of tokens is then quite simple.

Definition 8.1.1 (Token). Token(γ) = T
γ

We can always create new tokens, which just gives us ownership of T with a fresh ghost name, γ.

Lemma 7 (Token Alloc). ` |V∃γ. Token(γ)

Proof. This follows directly from rule Ghost-alloc and the fact that T is valid.

Importantly, if we own a particular token, we know that no one else can own the same token. Formally,
we write this as:

Lemma 8 (Token Exclusive). For any ghost name γ, owning Token(γ) twice proves False. Formally,

Token(γ) ∗ Token(γ) ` False

Proof. By Own-op, we get ownership of T · T γ
. By the exclusive RA, this is equivalent to ⊥ γ

. By rule
Own-valid, we must have that ⊥ ∈ V. This is a contradiction as ⊥ is a non-valid element.

8.2 Abstract State

We use the resource algebra Auth((Frac×Ag(List Val))?) to define the abstract state predicate. The
abstract state is List Val. It is wrapped in the agreement RA, Ag, which ensures that, if one owns two
elements, they agree on the abstract state. The fractional RA, Frac, denotes how much of the fragmental
view is owned; the fragmental view can be split up, which is handled by the clients. We collect Frac and
Ag(List Val) in the product RA, whose elements are then pairs of fractions and abstract states. The
option RA, ?, makes the product RA unital, which is required by the Auth construction. Here, Auth is
the authoritative resource algebra. It gives us the authoritative and fragmental views and, together with
the fractional RA, governs that they can only be updated in unison.
We note that the core of the fractional RA is always undefined, which means that the core of Auth((Frac×
Ag(List Val))?) is also undefined. Hence, no elements of the RA can be persistent – not even the fragmental
ones.

With this, we may now define γ Z⇒• xsv and γ Z⇒◦ xsv formally and prove the three lemmas we
postulated of them in Section 3.4.

Definition 8.2.1 (Authoritative Abstract State). γ Z⇒• xsv , • (1, ag xsv)
γ

Definition 8.2.2 (Fragmental Abstract State). γ Z⇒◦ xsv , ◦ (1, ag xsv)
γ
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Lemma 1 (Abstract State Alloc). For any abstract state xsv, we have

` |V∃γ. γ Z⇒• xsv ∗ γ Z⇒◦ xsv

Proof. By Own-op, it suffices to show |V∃γ. • (1, ag xsv) · ◦ (1, ag xsv)
γ
. This follows by Ghost-alloc

if we can show that the element is valid. That is, • (1, ag xsv) · ◦ (1, ag xsv) ∈ V . However, this follows by
the definitions of the involved resource algebras.

Lemma 2 (Abstract State Agree). For a ghost name γ and abstract states xsv and xs′v, we have

γ Z⇒• xs′v ∗ γ Z⇒◦ xsv ` xsv = xs′v

Proof. Since we own both γ Z⇒• xsv and γ Z⇒◦ xs′v, and they have the same ghost name, we can use
rules Own-op and Own-valid to conclude that the element • (1, ag xsv) · ◦ (1, ag xs′v) is valid. By the
authoritative RA and the product RA, this means that ag xs′v 4 ag xsv. By definition of the agreement
RA, this means that xs′v = xsv, which is what we wanted.

Lemma 3 (Abstract State Update). For any ghost name γ, and abstract values xsv, xs
′
v, and xs′′v , we

have
γ Z⇒• xs′v ∗ γ Z⇒◦ xsv V γ Z⇒• xs′′v ∗ γ Z⇒◦ xs′′v

Proof. This time, we use rule Own-op to conclude • (1, ag xsv) · ◦ (1, ag xs′v)
γ
. Further, by Own-op, it

suffices to prove |V• (1, ag xs′′v) · ◦ (1, ag xs′′v)
γ
. We do this by applying the Ghost-update rule, which

requires us to prove • (1, ag xsv) · ◦ (1, ag xs′v)  • (1, ag xs′′v) · ◦ (1, ag xs′′v). Firstly, by the product,
fractional, and agreement RA, the element (1, ag xs′′v) is valid, so the product of the authoritative and
fragmental parts of it is also valid. Next, note that we own the entire fraction of the fragmental element.
Hence, there can be no other valid fragments. It hence follows that we can do the frame preserving
update.

8.3 Abstract Points-to and Reachability

To define the abstract points-to predicate and the abstract reach predicate, we create the following
resource algebra: Auth(P(Node)), where Node , (Loc×Val)× Loc. Here, the resource algebra P(Node)
denotes the set of subsets of Node, with union as the operation. The empty set is the unit element,
meaning that P(Node) is unital. We may now define abstract reach and abstract points-to as follows.

Definition 8.3.1 (Abstract Reach). x 99K γ , ◦ {x} γ

Definition 8.3.2 (Abstract Points-to). γ � x , ∃s. • s γ ∗ ∗xm∈s xm ; x

One should think of sets s ∈ P(Node) as specifying which nodes can abstractly reach a certain ghost

variable. Due to how the authoritative resource algebra works, the assertion ◦ {x} γ essentially states
that x is one of the nodes that can reach the node that γ points to. This is because, when combining a
fragmental element s and authoritative element t, we get that the fragmental element is “smaller” than
the authoritative, s 4 t. In this case, “smaller” amounts to “subset”. Hence, ◦ {x} γ means that whatever
the authoritative set is, it contains the node x.

The authoritative set is existentially quantified as it can change over time, but whatever it is, we assert
that all the nodes it contains can concretely reach the node that the ghost name is currently pointing
to. This choice of definitions enables us to prove the properties we desired of abstract reachability in
Section 7.2. We proceed to prove the four essential lemmas on abstract points-to and reachability that
we postulated in said section.

Lemma 20 (Abs Reach Alloc). For all nodes x, we have

x; xV (∃γ. γ� x ∗ x 99K γ)
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Proof. We assume x; x and must show |V∃γ′. γ′� x ∗ x 99K γ′. By definition of the authoritative RA,

the element • {x} · ◦ {x} is valid. Hence, by the Ghost-alloc rule, we may get |V∃γ. • {x} · ◦ {x} γ . By
the upd-mono rule, we may strip away the update modality on the goal and the previous assertion. Thus,
we must prove ∃γ′. γ′ � x ∗ x 99K γ′, and we have that ∃γ. • {x} · ◦ {x} γ . We use γ as the witness in
the goal, meaning we must prove γ � x ∗ x 99K γ. We can split the ownership of the authoritative and
fragmental parts up using rule Own-op, giving us • {x} γ and ◦ {x} γ . The latter assertion is equivalent
to x 99K γ, which matches the second obligation in the goal. To prove the first obligation, we must give
some set as witness and show that all nodes in the set can reach x. We choose {x} as the witness and
must then prove that x; x, which we assumed in the beginning.

Lemma 21 (Abs Reach Concr). For nodes xn and xm, and ghost names γm, we have

xn 99K γm ∗ γm� xm −∗ xn ; xm ∗ γm� xm

Proof. Assuming xn 99K γm and γm � xm, we must show xn ; xm without “consuming” γm � xm.
From γm � xm we can deduce that there is some set s so that • s γm and ∗x′∈s x

′ ; xm. Since we

own both • s γm and ◦ {xn}
γm

(from xn 99K γm), we may conclude that their product is valid, which in

our instantiation of the authoritative RA equates to xn ∈ s. Note that this does not consume • s γm as
that assertion is persistent. This allows us to frame away the second part of the goal, γm� xm, using
• s γm and ∗x′∈s x

′ ; xm. As the latter of these assertions is persistent, we still own it. Thus, from
that assertion and by xn ∈ s, we can deduce that xn ; xm, which is what we had to prove.

Lemma 22 (Abs Reach Abs). For nodes xn and xm, and ghost names γm, we have

xn ; xm ∗ γm� xm V xn 99K γm ∗ γm� xm

Proof. Assuming xn ; xm and γm � xm we must conclude |Vxn 99K γm. From γm � xm we know

that there is some set s so that • s γm and ∗x′∈s x
′ ; xm. There are now two cases to consider: either

xn ∈ s or xn /∈ s.

xn ∈ s By the definition of our authoritative RA, if a set y is a subset of s, then we may update our ghost
resources to obtain ownership of the fragment y. In our case, since xn ∈ s, we may update our
resources to additionally get ◦ {xn}

γm
, which is exactly what we wanted. Since we still have • s γm ,

we can also prove γm� xm.

xn /∈ s In this case, we may update • s γm so that the set also includes xn. The reason we may do this is
because, according to the P(Node) RA, we may update a set X to Y , as long as X ⊆ Y . Thus, we

can update our resource to get • {xn} ∪ s
γm

. As in the previous case, we can further get ◦ {xn}
γm

out of this, which we use to frame away the goal xn 99K γm.
To prove γm � xm, we use the set {xn} ∪ s, and immediately frame away the authoritative
part, which we owned. We are left with having to prove ∗x′∈{xn}∪s x

′ ; xm. However, by

∗x′∈s x
′ ; xm and our assumption that xn ; xm, we can easily conclude this.

Lemma 23 (Abs Reach Advance). For nodes xm and xo, and ghost names γm, we have

γm� xm ∗ xm ; xo V γm� xo ∗ xo 99K γm

Proof. Assuming γm � xm and xm ; xo we must prove |Vγm � xo ∗ xo 99K γm. From γm � xm,

we get some set s so that • s γm and ∗x′∈s x
′ ; xm. As we did in the proof of Lemma 22, we update

• s γm so that the set additionally contains xo. Thus, we get • {xo} ∪ s
γm

. From this, we may extract

ownership of the fragmental part: ◦ {xo}
γm

, which we use to prove the second part of the goal.
We are thus left with proving γm � xo. We use {xo} ∪ s as witness for the authoritative set and
immediately frame away the ownership assertion of the authoritative part. We are left with proving∗x′∈{xo}∪s x

′ ; xo. We already know that ∗x′∈s x
′ ; xm and xm ; xo. Thus, by transitivity of reach

(Lemma 16), we may conclude ∗x′∈∪s x
′ ; xo. Thus, we are done if we can prove that xo ; xo, which

by Lemma 15 amount to showing that xo is a node. However, since xm ; xo, then, by Lemma 18, we
know that this is the case.
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Chapter 9

Conclusion and Future Work

In this project, we gave three queue specifications expressed in the Iris program logic. The sequential
specification allows clients to track the contents of the queue, but the queue cannot be used concurrently.
The concurrent specification allows for concurrency, but there is no functionality for tracking the queue
contents. The final and most general specification – the HOCAP-style specification – can not only be used
by concurrent clients, but it also allows clients to track the queue contents. This functionality was made
possible by introducing suitable predicates which track the queue contents. In particular, we introduced
two “views” of the abstract state of the queue, xsv: the authoritative view γ Z⇒• xsv, and the fragmental
view γ Z⇒◦ xsv. The authoritative view is owned by the queue, and the fragmental view is owned by
clients. The construction of the predicates enforces that the views agree on the state of the queue and
ensures they can only be updated in unison. This gives clients a way to track the contents of the queue.
We furthermore demonstrated that the sequential and concurrent specifications are derivable from the
HOCAP-style specification. That is, a queue satisfying the HOCAP-style specification also satisfies the
other two.
The differences between the specifications were illustrated by the queue client QueueAdd. This program
proved the HOCAP-style specification useful by exposing the limitations of the sequential and concurrent
specifications.

We gave an implementation of the Two-Lock M&S Queue in HeapLang, which essentially consists of
a linked list, making up the elements of the queue, and a head and tail pointer, pointing to nodes in the
linked list. The head pointer marks the start of the queue and is used in dequeueing. The tail pointer is
near the end of the queue and is used for enqueueing new values. We demonstrated the possibility of
the tail lagging behind the head – a situation thought to be impossible. However, even with this, we
were able to show that the queue adheres to all three specifications. Most notably, proving it satisfies the
HOCAP-style specification was done by establishing a queue invariant, which identified the four possible
states the queue could be in and what the ownership of the queue resources looked like in each of the
four states. The proof then showed how instructions in the code changed the state of the queue and
which queue resources participating threads were allowed to own in each state. In particular, we used the
fact that we can split points-to predicates to allow e.g. an enqueueing thread to own `head 7→

1
2 in(xhead)

while enqueueing. This assures the thread that the head pointer cannot be updated while it is working
on enqueueing its value.
The invariant further maintained the relationship between the concrete state of the queue, represented
by the underlying linked list, and the abstract state of the queue, represented by the aforementioned
predicate, γ Z⇒• xsv. This allowed us to show how the queue functions, enqueue and dequeue, affect the
contents of the queue, which in turn gives clients a way to track the contents of the queue.
Having the queue resources in an invariant allows us to support concurrent clients, as invariants are
duplicable in Iris, which means that the invariant and its resources can be shared between threads.

Similarly, we gave an implementation of the Lock-Free M&S Queue in HeapLang and proved its
compliance with the HOCAP-style specification. Unlike the Two-Lock M&S Queue, the Lock-Free M&S
Queue does rely on the fact that the tail does not lag behind the head. It further relies on the fact that
the head and tail only ever move towards the end of the linked list. The queue invariant we created for
the Lock-Free M&S Queue thus incorporated these two characteristics. We used the notion of reachability
introduced by Vindum and Birkedal [2021] to describe the properties formally. The concrete reachability
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predicate, x ; x′, denotes that node x precedes node x′ in the linked list making up the queue. The
abstract points-to predicate, γ � x, allows us to keep track of the location of specific types of nodes, such
as the head node, the tail node, and the last node, which can change during the queue’s lifetime. Together
with the abstract reachability predicate, x 99K γ, we could conclude that if a node could concretely reach,
say, the head node, then it could concretely reach any future head node. The abstract points-to and
reachability predicates that we put into the invariant then allowed us to conclude that the head can
always concretely reach the tail.
Similarly to the queue invariant for the Two-Lock M&S Queue, this queue invariant also maintained a
relationship between the concrete and abstract states of the queue, which enabled accurate tracking of
the queue contents.

For future work, we first note that it might be possible to simplify the queue invariant of the Lock-Free
M&S Queue by removing the isLL predicate and replacing it with xlast 7→ None. I postulate that the
remaining, persistent points-to predicates mentioned by the isLL predicate are derivable from the abstract
points-to and reachability predicates present in the invariant.

Next, the two queues studied in this project are somewhat related, so to test the generality of the
HOCAP-style specification, future work could study other queue implementations and attempt to prove
their adherence to the specification. Similarly, only a somewhat simple client of queues satisfying the
HOCAP-style specification was studied. The client was mostly a proof of concept, illustrating the
capabilities of the HOCAP-style specification. Studying more interesting and realistic queue clients would
manifest the generality of the specification or illustrate possible shortcomings.

Finally, this project has only focused on the basic queue data structure. However, other interesting and
useful queue data structures exist, such as priority queues and double-ended queues. The specifications
given in this project do not support these types of queues. Hence, future work could focus on designing
specifications for these types of queues.
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Appendix A

Common Definitions and Lemmas

A.1 Lists and Nodes

Definition A.1.1 (First in Queue). isFirst(x, xs) , ∃xsrest. xs = xsrest ++ [x]

Definition A.1.2 (Last in Queue). isLast(x, xs) , ∃xsrest. xs = x :: xsrest

Definition A.1.3 (Second Last in Queue). isSndLast(x, xs) , ∃xlast, xsrest. xs = xlast :: x :: xsrest

Lemma 28 (Adding/Removing Non-Last). ∀x, y, xs, ys.
isLast(x, (xs ++ [y] ++ ys)) ⇐⇒ isLast(x, (xs ++ [y]))

Lemma 29 (List Destruction Equality). ∀xs1, x1, xs2, x2.
xs1 ++ [x1] = xs2 ++ [x2] =⇒ xs1 = xs2 ∧ x1 = x2

Definition A.1.4 (Value Projection).

projVal([]) , []

projVal(x :: xs) , val(x) :: projVal(xs)

Lemma 30 (Value Projection Split). ∀xs1, xs2.
projVal(xs1 ++ xs2) = projVal(xs1) ++ projVal(xs2)

Definition A.1.5 (Wrap Some).

wrapSome([]) , []

wrapSome(x :: xs) , Somex :: wrapSome(xs)

Lemma 31 (Wrap Some Split). ∀xs1, xs2.
wrapSome(xs1 ++ xs2) = wrapSome(xs1) ++ wrapSome(xs2)

Definition A.1.6 (The “All” Predicate).

All([],Ψ) , True
All(x :: xs,Ψ) , Ψ(x) ∗ All(xs)

Lemma 32 (All Split). ∀xs1, xs2,Ψ.
All(xs1 ++ xs2,Ψ) ∗−∗ All(xs1,Ψ) ++All(xs2,Ψ)

Lemma 33 (Node Equality).

∀x, y.
in(x) = in(y) −∗
in(x) 7→2 (val(x), out(x)) −∗
in(y) 7→2 (val(y), out(y)) −∗
x = y
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A.2 Results About the isLL Predicate

Lemma 34 (Extract Chain from isLL). ∀xs. isLL(xs) −∗ isLL(xs) ∗ isLL chain(xs)

Lemma 35 (isLL chain Nodes). ∀xs1, x, xs2.
isLL chain(xs1 ++ [x] ++ xs2) −∗ in(x) 7→2 (val(x), out(x))

Lemma 36 (isLL chain Split). ∀xs, ys.
isLL chain(xs ++ ys) −∗ isLL chain(xs) ∗ isLL chain(ys)

Lemma 37 (isLL Split). ∀xs, ys.
isLL(xs ++ ys) −∗ isLL(xs) ∗ isLL chain(ys)
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