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Abstract

As separation logic is a logic of resources, the way in which
resources can soundly change and be updated is a funda-
mental aspect. Such changes have typically been restricted
to certain local or frame-preserving updates. However, re-
cently we have seen separation logics where the restriction
to frame-preserving updates seems to be a hindrance to-
wards achieving the ideal program reasoning rules. In this,
paper we propose a novel nextgen modality that enables rea-
soning across generations where each generational change
can update resources in ways that are non-local and non-
frame-preserving. We implement the idea as an extension to
the Iris base logic, which enriches Iris with an entirely new
capability: the ability to make non-frame-preserving updates
to ghost state. We show that two existing Iris modalities are
special cases of the nextgen modality. Our “extension” can
thus also be seen as a generalization and simplification of
the Iris base logic. To demonstrate the utility of the nextgen
modality we use it to construct a separation logic for a pro-
gramming language with explicit stack allocation and with a
return operation that clears entire stack frames. The nextgen
modality is used to great effect in the reasoning rule for
return, where a modular and practical reasoning rule is oth-
erwise out of reach. This is the first separation logic for a
high-level programming language with stack allocation. We
sketch ideas for future work in other domains where we
think the nextgen modality can be useful.

CCS Concepts: • Theory of computation→ Separation

logic; Logic and verification.
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1 Introduction

Separation logic is a logic for reasoning about ownership over
resources. A crucial aspect of separation logic is the ability
to perform updates to resources that are frame-preserving.
As a quintessential example of a frame-preserving update,
consider the separation logic proof rule for assignment:

{ℓ ↩→ 𝑣} ℓ ← 𝑤 {ℓ ↩→ 𝑤}.

Here, the difference between the points-to assertion in the
pre- and postcondition means that the heap resource is up-
dated. The update is sound because the points-to assertion
implies exclusive ownership over the location ℓ . This ensures
that changing this part of the heap resource is guaranteed to
not interfere with any other assertions. Thus, any other as-
sertion, or frame, 𝑃 that is valid in combination with ℓ ↩→ 𝑣

(meaning that 𝑃 ∗ ℓ ↩→ 𝑣 is not false) is also valid in combi-
nation with ℓ ↩→ 𝑤 . This “locality” of the update is required
in order for the assignment rule to combine soundly with
the frame rule for Hoare triples.

In the separation logic Iris [Jung et al. 2018, 2015], which
we use in this paper, updates to resources that satisfy this
property of being sound in combination with the frame rule
are called frame-preserving updates. Such updates are local
in the sense that the changes they allow one to perform are
closely related to the resources and knowledge one owns
locally. This makes them well-suited for reasoning about
programming language features that make similarly local
changes to the physical state. For instance, writing to a refer-
ence, as above, which affects a small and precisely delineated
fragment of the physical state.

In Iris, resource updates are limited to those that are frame-
preserving. But updates that preserve the frame in this man-
ner are not a natural fit for program execution steps that are
less localized and that make sweeping changes to larger parts
of the physical state. Examples of such non-local execution
steps that can not easily be expressed as frame-preserving
updates include:
Crashes in a setting with durable storage If one wishes
to verify crash-safety in a setting with durable storage,

https://orcid.org/0000-0002-4617-4976
https://orcid.org/0000-0002-5951-4642
https://orcid.org/0000-0003-1320-0098
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1145/3703595.3705876


CPP ’25, January 20–21, 2025, Denver, CO, USA S. F. Vindum, A. L. Georges, and L. Birkedal

how the state of a machine changes at a crash can be
represented as a crash-step in the operational semantics.
At such a step many locations might be lost. For instance,
all locations residing in volatile memory are lost. This
makes the crash step non-local. Recently, we have seen
several separation logics for reasoning about crashes and
durable storage [Chajed et al. 2017, 2019, 2021; Vindum
and Birkedal 2023]. They have all had to work around
the absence of non-frame-preserving updates. To this end
Chajed et al. [2021] introduced a post-crash modality, a
variant of which was also used in Vindum and Birkedal
[2023].

Garbage collection step In a language with garbage collec-
tion, for which the operational semantics explicitly models
the action of the garbage collector, a step corresponding
to garbage collection would reclaim a potentially large
number of locations in memory. If one wishes to reason
about the garbage collection step, without having gath-
ered all the resources for all the locations that the garbage
collector might need to collect, then the update to the log-
ical resources is not frame-preserving. Indeed, in recent
work on separation logics in the presence of garbage col-
lection, this has been worked around by having the logics
maintain a global account of all the resources that could
be reclaimed by the garbage collector, for instance in the
form of an explicit correspondence between physical ad-
dresses and logical addresses [Guéneau et al. 2023; Madiot
and Pottier 2022; Moine et al. 2023]

Function call returns with stack deallocation In a lan-
guage with stack-allocated values, returning from a func-
tion invalidates the locations in the entire stack frame
corresponding to the function call. This example is ex-
plained in greater detail later, as we use it as a case study
in this paper.

There are also cases where the desire to make non-frame-
preserving updates arises without stemming from the oper-
ational semantics. For example, in the work on temporary
read-only permissions by Charguéraud and Pottier [2017].
Mediated by a read-only modality their work allows one to
go from a normal (read-write) points-to assertion, to a freely
shareable read-only points-to assertion, and then later re-
cover the full points-to assertion again. Here, the last move
from read-only back to read-write is not frame preserving:
A read-only point-to assertion is valid in a frame consisting
of itself (since it is freely duplicable) but a normal points-to
assertion is not valid in the same frame (since the normal
points-to assertion implies exclusive access to a location).
Hence, is this case the desired non-frame-preserving update
is not due to the operational semantics invalidating resources,
but instead to revert a previous resource update purely at
the logic level. Charguéraud and Pottier were able to allow
this non-frame-preserving update in their logic by explicitly

building it in to the model of the logic and proving it sound
in the model.

We hasten to emphasize that for the above examples, it is
of course not the case that creating a logic for a particular
language or verifying programs with a particular character-
istic is impossible without the ability to make non-frame-
preserving updates. By using sophisticated resources, ad-
vanced invariants, or straight-up workarounds, it is often
possible to make do without the ability to make non-frame-
preserving updates. Rather, it is the case that certain specific
desirable program rules and verification approaches are not
possible since they can not be encoded as frame-preserving
updates. One good example of this is the previously men-
tioned work by Charguéraud and Pottier on temporary read-
only permissions. It is not that their approach makes it possi-
ble to verify entirely new classes of programs as temporary
read-only points-to predicates can also be achieved with
the bookkeeping overhead of fractional permissions. Rather,
the benefit of their approach is that it is simple and elegant,
and to achieve the particular rules in their program logic,
non-frame-preserving updates are necessary.

In this paper, we present a novel modality that facilitates
making changes to resources in ways that are not frame-
preserving. The modality is called the nextgen modality
since it supports reasoning about what happens “in the next
generation,” after a non-frame-preserving update. Themodal-
ity makes it possible to change resources as described by
any (well-behaved) transformation function chosen by the
user of the logic. We develop the modality as an extension
of Iris. Usually, new features for Iris are developed within
the logic. But since Iris, at the fundamental level of its base
logic provides no means for expressing the kind of non-local
updates that we are interested in, we have to extend the base
logic itself. This is a very powerful and general extension to
the logic, which can then serve as the building block for cre-
ating more specialized constructs for individual applications.
We remark that the Iris base logic has been relatively stable
since 2017 [Krebbers et al. 2017a; Timany et al. 2018] (except
for experiments with transfinite versions of Iris [Spies et al.
2021]) and find it noteworthy that this is one of the instances
where the base logic needs changing.

Of course, we can not in a single paper develop entire
program logics for all the motivating examples above. In-
stead, we choose to focus on one of them, namely a program
logic for a language with stack-allocated values. The main
purpose of this case study is to demonstrate how to use our
nextgen modality, but it is also a contribution in its own
right. In the program logic, we use the nextgen modality to
account for the way in which returns invalidate the call stack
frame. The result is the first separation logic that supports
reasoning about a high-level language with stack allocation
and where, in the operational semantics, returning from a
function invalidates the call stack frame of the returning
function.
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In summary, the contributions of the paper are as follows:
• We extend the Iris base logic with a new modality,
the nextgen modality. This modality makes it pos-
sible to make non-frame-preserving changes to re-
sources in Iris which was previously not possible. We
have extended the Iris implementation in Coq to in-
clude the new modality and also adapted the Iris Proof
Mode [Krebbers et al. 2017b] to include support for
the nextgen modality.
• We develop a program logic for StackLang, a lan-
guage where the physical state contains a call stack
and values can be allocated on the stack. Returning
from a function clears the call stack from the returning
function from the physical state. By using the nextgen
modality in the proof rule for returns we arrive at a
proof rule that is simple and easy to use. We have for-
malized the new program logic and examples using it
in Coq in our extended version of the Iris implementa-
tion.

Our Coqmechanization is available online at https://github.
com/logsem/iris-nextgen and as an artifact accompanying
this paper [Vindum et al. 2024].

The rest of the paper proceeds as follows. In Section 2 we
give the necessary Iris background to explain our contribu-
tions, and we describe the most closely related work, the
aforementioned post-crash modality. Section 3 introduces
the basic nextgen modality, its rules in the logic, and its
model. We explain how the nextgen modality is an improve-
ment compared to the post-crashmodality and show how the
nextgen modality generalizes the persistently and the plainly
modalities in Iris. Section 4 describes the operational seman-
tics of StackLang and the program logic we construct for it.
In Section 5 we compare against related work not covered
earlier in the paper and discuss future work.

2 Background and Related Work

We first cover a bit of Iris background and the most closely
related work. The background material includes some as-
pects of Iris that are perhaps not part of the typical Iris user’s
repertoire of Iris features, but that, nevertheless, are impor-
tant in order to explain our contributions and situate them
in comparison to the related work.

2.1 Iris Background

A central feature of Iris is its support for user-defined ghost
state. Users of the logic can define and choose their own
resource algebras (RAs) to capture the behavior of their de-
sired ghost state. With much flexibility, one can mix and
match RAs and use many of them in the logic. For any RA 𝐴
and element 𝑎 ∈ 𝐴, the proposition 𝑎

𝛾 asserts ownership
over 𝑎 at some ghost location distinguished by a ghost name
𝛾 ∈ GName. We do not recall the full definition of what an RA
is, but it includes an associative and commutative monoidal

operation, which gives meaning to separating conjunction
and ownership, cf. the ghost-op bi-entailment in Figure 1.
As not all combinations are meaningful, a validity predicate
V : 𝐴→ Prop identifies the valid elements. The logic main-
tains the property that only valid elements can be owned, cf.
ghost-valid. A partial function called the core | − | extracts
from elements their duplicable part. That is, for every 𝑎 ∈ 𝐴,
its core |𝑎 | is the duplicable part of 𝑎, meaning in particu-
lar that |𝑎 | = |𝑎 | · |𝑎 |. The persistently modality � removes
all non-duplicable resources by applying the core operation
to all resources, cf. ghost-persistently. Elements of an RA
are ordered w.r.t. an extension order : 𝑎 ≼ 𝑏 ≜ ∃𝑐. 𝑎 · 𝑐 = 𝑏.
A resource 𝑎 can be updated to another resource 𝑏 via a
frame-preserving update denoted 𝑎 ⇝ 𝑏 and defined as:

𝑎 ⇝ 𝑏 ≜ ∀𝑐.V(𝑎 · 𝑐) ⇒ V(𝑏 · 𝑐)

This definition matches the intuition we gave in the introduc-
tion: a resource can be updated as long as it remains valid in
combination with any frame with which it was also valid be-
fore. Frame-preserving updates are internalized into the logic
through the update modality ¤|⇛ and the rule ghost-update.
Both the ability to use several RAs and the ghost own-

ership assertion 𝑎
𝛾 are not present in the Iris base logic,

but are provided by constructions that are defined within
the base logic. Instead, the Iris base logic is parameterized
over just a single “global” RA𝑀 and thus, a user of the base
logic can in fact pick only a single RA to instantiate the logic
with. In the base logic, the assertion Own (𝑎), where 𝑎 ∈ 𝑀 ,
denotes ownership over elements of the single resource RA
𝑀 .

We now recall the constructions that make it possible to
use several RAs and named ghost ownership assertions on
top of the base logic. First, one chooses a sequence of all the
RAs that are to be used in the logic:𝑀1, . . . , 𝑀𝑛 , where 𝑛 is
the number of RAs. Then, the single global resource algebra
𝑀 is chosen to be a “resource algebra of resource algebras”
in the following way:

𝑀 ≜
∏
𝑖∈𝐼

GName fin−⇀ 𝑀𝑖 (1)

This construction has two levels. The first level is a product
indexed by the number of RAs 𝐼 = {1, . . . , 𝑛}. This is such
that multiple different RAs can be used. The next level is a
finite map over ghost names. This is such that multiple inde-
pendent instances of the same RA can be used. The set𝑀 is
itself an RAwhose operation simply combines the two layers
point-wise. The familiar ghost ownership proposition is now
defined in terms of the basic ownership Own assertion:

𝑎 : 𝑀𝑖
𝛾
≜ Own (𝜆 𝑗 . if 𝑖 = 𝑗 then {𝛾 ↦→ 𝑎} else ∅)

We emphasize that the full path to a ghost location consists
of both an index 𝑖 ∈ 𝐼 and a ghost name 𝛾 . The notation for
ownership at ghost locations, however, usually leaves out

https://github.com/logsem/iris-nextgen
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ghost-op
𝑎
𝛾 ∗ 𝑏 𝛾 ⊣⊢ 𝑎 · 𝑏 𝛾

ghost-valid
𝑎
𝛾 ⊢ V(𝑎)

ghost-persistently
𝑎
𝛾 ⊢ � |𝑎 | 𝛾

ghost-update
𝑎 ⇝ 𝑏

𝑎
𝛾 ⊢ ¤|⇛ |𝑏 | 𝛾

own-op
Own (𝑎) ∗Own (𝑏) ⊣⊢ Own (𝑎 · 𝑏)

own-valid
Own (𝑎) ⊢ V(𝑎)

own-persistently
Own (𝑎) ⊢ �Own ( |𝑎 |)

Figure 1. A few of the Iris rules related to ghost state.

the 𝑖 as it can be inferred from the type of the element at the
location.
For modularity, proofs carried out in Iris do not specify

exactlywhat the sequence of available RAs should be. Instead,
they require that𝑀 has the form above, and that indices exist
in the sequence of RAs that contain the RAs necessary for the
given proof. For instance, if a proof requires an RA 𝐴 then
the proof will simply assume that there exists an 𝑖 ∈ 𝐼 such
that𝑀𝑖 = 𝐴. A proof with such a requirement can modularly
be combined with other proofs making similar constraints.
Only to obtain a closed “final” proof does one need to fully
determine𝑀 , and at this point one can do so while ensuring
that it contains all the RAs required by sub-proofs.

A program logic constructed inside of Iris usually relies on
certain global ghost names for ghost locations that contain
ghost state used by the program logic itself. We use ®𝛾 to
refer to such a collection of global ghost names. For instance,
an Iris-based program logic for a programming language
with a heap keeps ghost state for the heap at a global ghost
name. In other words, there would be a ghost name inside ®𝛾
specifically for the heap ghost state which we could write
as ®𝛾 .heap. Since points-to assertions are modeled using this
ghost state they make use of the global ghost name. Global
ghost names are usually left implicit both on paper and in
Coq, but we could write a points-to assertion like this

ℓ ↩→®𝛾 .heap 𝑣
to make explicit the ghost name it makes use of. That is,
points-to assertions are in fact parameterized over the global
ghost name that they use. Similarly, as the concrete values
of the global ghost names do not matter, proofs and the
program logic itself are parameterized over the collection of
the global ghost names. When proofs are carried out in Coq
the global ghost names are assumed as an implicit context
parameter. On paper one should imagine that there is an
implicit “∀®𝛾 .” in the beginning of proofs, making the names
®𝛾 always “in scope”.

2.2 Perennial’s Post-Crash Modality

The work most closely related to ours is the post-crash modal-
ity by Tej Chajed and Joseph Tassarotti [Chajed et al. 2022].1
They developed the modality specifically for reasoning about
1While crucial to the workings of Perennial, the post-crash modality is
unfortunately not described in any of the published papers about Perennial.

crashes in the Perennial program logic [Chajed 2022; Chajed
et al. 2021], but the idea behind their modality can also be
applied more generally to reason about the kind of non-local
resource changes we have described. We continue to use the
name post-crash modality, but emphasize that the modality
is not only applicable to reasoning about crashes.

Perennial is a program logic for proving crash-safety in a
setting with volatile memory and a durable disk. The post-
crash modality, ♦, is used to express the way in which re-
sources change due to a system crash. As an example, the
modality discards resources that correspond to the parts of
the physical state that reside in volatile memory and pre-
serves resources that correspond to the parts of the physical
state that reside on the durable disk. As mentioned in the
introduction, the change to the physical state that occurs at
a crash can not be expressed as a frame-preserving update
to the ghost state for the physical state.

The key idea of the post-crash modality is to forgo updat-
ing the existing ghost state and instead allocate new ghost
locations. That is, instead of updating a resource 𝑎 𝛾 to 𝑏

𝛾 ,
which would require there to be a frame-preserving update
𝑎 ⇝ 𝑏, a new ghost ownership assertion 𝑏

𝛾 ′ , for a new
ghost name 𝛾 ′, is allocated instead. The resources at the new
ghost locations need not be frame-preserving updates of
the earlier existing resources. Thus, this approach side-steps
the issue of not being able to make non-frame-preserving
changes to ghost state. Since the new ghost locations have
no inherent relation to the old ghost locations, some rela-
tionship between the two must be explicitly established, and
it is required that one immediately stop using the old ghost
name 𝛾 and switch to the new ghost name 𝛾 ′. At a crash,
new ghost assertions are allocated for the ghost state used
internally in the program logic. Since allocating new ghost
assertions results in new ghost names, this has the effect that
the global ghost names that the proof is parameterized over
are now obsolete as they refer to ghost locations prior to the
crash. The post-crash modality then mediates between ghost
state for the old global ghost names and ghost state for the
new global ghost names.

We therefore directly cite the Coq mechanization of Perennial where the
modality appears.
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To do this, the modality does not take an assertion of type
iProp as argument, but instead has the type

♦ : (GlobalGnames→ iProp) → iProp,

where GlobalGnames is a record of all the ghost names used
by the program logic in question (originally, Perennial). The
modality is then defined by:

J♦ 𝑃K ≜ ∀𝜎, 𝜎 ′, ®𝛾 ′ . 𝑅(𝜎, 𝜎 ′, ®𝛾, ®𝛾 ′) −∗ 𝑃 (®𝛾 ′) ∗ 𝑅(𝜎, 𝜎 ′, ®𝛾, ®𝛾 ′).
The 𝑅 above is part of the definition of the post-crash modal-
ity. It relates the global ghost names and physical state before
the crash, 𝜎 and ®𝛾 , with the physical state after the crash 𝜎 ′
and the new global ghost names ®𝛾 ′.
When used, the post-crash modality is usually given an

argument of the form 𝜆®𝛾 ′ . 𝑄 where 𝑄 has to use the ghost
names in ®𝛾 ′ for its global ghost names and not use the old
global ghost names ®𝛾 . Following this, rules for the post-crash
modality are of the form 𝑃 ⊢ ♦(𝜆®𝛾 ′ . 𝑄). When proving sound-
ness of such rules one ends up with goals of the form

𝑃 ∗ 𝑅(𝜎, 𝜎 ′, ®𝛾, ®𝛾 ′) −∗ 𝑄 (®𝛾 ′) ∗ 𝑅(𝜎, 𝜎 ′, ®𝛾, ®𝛾 ′).
For instance, to prove soundness of the rule

ℓ ↩→®𝛾 .heap 𝑣 ⊢ ♦(𝜆®𝛾 ′ . ℓ ↩→®𝛾 ′ .heap 𝑣)
for points-to assertions, one would have to prove

ℓ ↩→®𝛾 .heap 𝑣 ∗ 𝑅(𝜎, 𝜎 ′, ®𝛾, ®𝛾 ′) −∗ ℓ ↩→®𝛾 ′ .heap 𝑣 ∗ 𝑅(𝜎, 𝜎 ′, ®𝛾 ′).
The crux of the proof is to turn the “old” points-to assertion
into the “new” points-to assertion. Making this possible is
the purpose of the 𝑅 resource. It serves as a catalyst to make
this transition possible, without being consumed itself. In
our particular example with points-to assertions, 𝑅 could be
defined as

𝑅(𝜎, 𝜎 ′, ®𝛾, ®𝛾 ′) ≜ ℓ ↩→®𝛾 .heap 𝑣 ∨ ℓ ↩→®𝛾 ′ .heap 𝑣 .
Here the disjunction facilitates the “exchange” from the old
points-to predicate to the new points-to predicate. More
generally, 𝑅 is defined such that all relevant resources can
be “exchanged” from old to new in this manner.

2.3 Limitations of the Post-Crash Modality

We now describe some of the limitations and problematic
aspects of the above approach. Later on, we will show how
our new nextgen modality addresses these shortcomings.

Poor interaction with the � modality. The following
rule is not possible to prove for the post-crash modality

� ♦ 𝑃 ⊢ ♦� 𝑃 .

Unfolding the model of the post-crash modality we see that
this amounts to proving

�(∀𝜎, 𝜎 ′, ®𝛾 ′ . 𝑅(𝜎, 𝜎 ′, ®𝛾 ′) −∗ 𝑃 (®𝛾 ′) ∗ 𝑅(𝜎, 𝜎 ′, ®𝛾 ′)) ⊢
∀𝜎, 𝜎 ′, ®𝛾 ′ . 𝑅(𝜎, 𝜎 ′, ®𝛾 ′) −∗ � 𝑃 (®𝛾 ′) ∗ 𝑅(𝜎, 𝜎 ′, ®𝛾 ′)

We need to be able to show that 𝑃 holds persistently, but we
only know that a wand implying 𝑃 holds persistently. Since

we do not have 𝑅 persistently, when we apply the wand to
𝑅 we do not get 𝑃 persistently. Thus, the lemma can not be
proven.
The persistently modality plays a crucial role in Iris and

the Iris proof-mode (IPM) for Coq [Krebbers et al. 2017b].
The IPM keeps a so-called persistent context which consists
of propositions that hold under the � modality. When intro-
ducing the post-crash modality (using the iModIntro tactic)
the IPM requires the rule

𝑃 ⊢ ♦𝑄
� 𝑃 ⊢ ♦�𝑄

in order to be able to transform the persistent context. How-
ever, for reasons similar to the above, we can not prove this
rule. This makes the post-crash modality more challenging
and cumbersome to use in practice in Coq.

Invariants and the post-crash modality. A key feature
in Iris is invariants. An invariant is denoted 𝐼

𝜄 and means
that the assertion 𝐼 is an invariant that a program maintains
at every step of execution (the 𝜄 is not important for our
purposes). It is not clear how invariants that contain ghost
state, that uses global ghost names which are changed by the
post-crash modality, can work with the post-crash modality
as the invariant assertion is constant. At the very least, such
invariants would have to be parameterized by the global
collection of ghost names for the post-crash modality to be
able to update them, and, as such, details of the post-crash
modality would leak into invariants. In Section 4.2.4 we give
an example of using our nextgen modality together with
invariants, where the rules only have natural and necessary
changes compared to normal Iris invariants.

No interaction with custom ghost state. As we have
seen, the 𝑅 resource in the model of the post-crash modality
facilitates an exchange between old resources and new re-
sources. This means that knowledge of certain global ghost
names and resources are baked-in or hard-coded into the def-
inition of the post-crash modality. The implication of this is
that the reach of the modality can not extend to user-defined
ghost state. Specifically, for an RA 𝐴 and a ghost location 𝛾 ,
unknown to the definition of ♦, no rule of the form

𝑎
𝛾 ⊢ ♦ 𝑏

𝛾

where 𝑎 ≠ 𝑏, can exist. In other words, the only such rule is
the one where 𝑎 = 𝑏, meaning that the ♦ modality can have
no interaction with user-defined ghost state. This means that
it is not possible to use the post-crash modality to give logi-
cally atomic specifications for user-defined durable concur-
rent data structures under a weak consistency model (such as
the one in [Vindum and Birkedal 2023]) whose specification
relies on user-defined ghost state.

Not principled. While the post-crash modality cleverly
works around the limitations in Iris for updating ghost state,
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we find that the mechanism it uses is not as principled as
one could want. As we have shown, the workings of the
post-crash modality rely on changing otherwise globally
fixed ghost names. This can be confusing, both on paper and
in Coq. For instance, it means that two points-to assertions
that are notationally the same, can in fact be different as
they “invisibly” use two different ghost names. The post-
crash modality does not remove or otherwise invalidate old
resources; it is up to the user of the modality to carefully
apply lemmas that translate old resources, while also making
sure that no old resources are still used. In Coq the modality
relies on creating multiple instances of a type class that
contains the global ghost names. Having multiple instances
of the same type class can be considered an unidiomatic
use of type classes and relies on intricacies regarding which
instance of a type class Coq uses when multiple are in scope.

3 The Basic Nextgen Modality

In this section we introduce the basic nextgen modality. Here
the word “basic” means that the modality is a low-level ad-
dition to the Iris base logic. It is a minimal extension to Iris
that enables one to express non-frame-preserving updates.
The basic nextgen modality then facilitates the definition of
higher-level nextgen modalities for specific purposes. This
approach follows the Iris tradition of keeping the base logic
minimal and simple, while defining more complex notions
inside the logic. Technically, the nextgen modality can be
seen as a family of modalities in that it is parameterized
by a so-called generational transformation (defined below),
and we show that the nextgen modality encompasses two
existing Iris modalities, namely the persistently and the plain
modalities.
The basic nextgen modality is written ¤↬𝑡 𝑃 where 𝑃 :

iProp is an assertion and 𝑡 : 𝑀 → 𝑀 is a function on the
global RA. The dot above the symbol indicates that this is
the basic nextgen modality. We call the function 𝑡 a genera-
tional transformation or sometimes just a transformation. The
assertion ¤↬𝑡 𝑃 should be read “given a generational transfor-
mation described by 𝑡 then 𝑃 holds in the next generation”.
In order for the modality to be sensible, the generational

transformation needs to satisfy a few basic properties. When-
ever we write ¤↬𝑡 , we assume that 𝑡 ranges over functions
with these properties. The requirements for 𝑡 are given in
the following definition.

Definition 3.1 (Generational transformation). Given a re-
source algebra𝐴, a generational transformation is a function
𝑡 : 𝐴→ 𝐴 that satisfies the following conditions.

1. It is monotone with respect to the inclusion order of
the resource algebra.

∀𝑥,𝑦. 𝑥 ≼ 𝑦 ⇒ 𝑡 (𝑥) ≼ 𝑡 (𝑦)
2. It preserves validity of elements.

∀𝑥 .V(𝑥) ⇒ V(𝑡 (𝑥))

3. It is non-expansive with respect to the ordered family
of equivalences (OFE) for 𝐴.

∀𝑛, 𝑥,𝑦. 𝑥 𝑛
= 𝑦 ⇒ 𝑡 (𝑥) 𝑛= 𝑡 (𝑦)

The first two conditions should seem reasonable. The first
condition is necessary as the model of Iris uses monotone
predicates over RAs and as we see in Section 3.4 this con-
dition ensures that the meaning of ¤↬𝑡 𝑃 is monotone in
the model. The second condition is necessary as Iris main-
tains the property that the owned resources are always valid,
hence the generational transformation needs to maintain
validity. The third condition pertains to an aspect of RAs
that we have not described, namely that they contain an OFE
or a “step indexed equality” [Jung et al. 2018]. We include
the condition here for completeness and for readers who are
familiar with OFEs.

3.1 Rules

Figure 2 shows a selection of rules for the basic nextgen
modality. The first rule, bng-own is the nextgen modality’s
raison d’être. It states that the transformation 𝑡 is applied to
owned ghost state. As we are at the level of the base logic this
rule concerns the Own assertion and not ghost locations.
The following rules in the figure state that the nextgen

modality is monotone (bng-mono), commutes with conjunc-
tion (bng-conj), disjunction (bng-disj), the latermodality (bng-
later), exist (bng-exists), and forall (bng-forall). Together
these rules ensures that the basic nextgen modality is well-
behaved and convenient to work with. However, not all rules
of this form that we would want hold without making fur-
ther requirements on the transformation. If we look at the
next rule bng-sep, we see that it states an additional demand
on 𝑡 . In Definition 3.1 we defined the essential properties
that a transformation must possess in order to work at all.
In practice, useful transformations satisfy more properties
than those, and in those cases more rules are sound. For the
rule bng-sep the requirement is that the transformation com-
mutes with the monoid operation of the RA. If this is the case,
then two assertions under a nextgen modality can be com-
bined under one nextgen modality. The same is the case for
the two rules bng-pers and bng-idemp. If the transformation
commutes with the core of the RA (when it is defined) then
the modality commutes with the persistently modality. And,
if the transformation is idempotent then so is the modality
(bng-trans holds for all transformations though). In all of
these cases, the rule for the nextgen modality quite directly
reflects the property of the transformation.
Note that bng-sep only holds in one direction. We em-

phasize that the direction that does hold is the important
direction. For instance, this direction is used by the Iris proof
mode when introducing the modality.
Since the nextgen modality modifies resources, it has no

effect on propositions that do not rely on resources. In Iris,
such propositions are described with the plainly modality
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bng-own
Own (𝑎) ⊢ ¤↬𝑡 Own (𝑡 (𝑎))

bng-mono
𝑃 ⊢ 𝑄

¤↬𝑡 𝑃 ⊢ ¤↬𝑡 𝑄

bng-conj
¤↬𝑡 𝑃 ∧ ¤↬𝑡 𝑄 ⊣⊢ ¤↬𝑡 (𝑃 ∧𝑄)

bng-disj
¤↬𝑡 𝑃 ∨ ¤↬𝑡 𝑄 ⊣⊢ ¤↬𝑡 (𝑃 ∨𝑄)

bng-later
⊲ ¤↬𝑡 𝑃 ⊣⊢ ¤↬𝑡 ⊲ 𝑃

bng-exists
¤↬𝑡 ∃𝑥 . 𝑃 ⊣⊢ ∃𝑥 . ¤↬𝑡 𝑃

bng-forall
¤↬𝑡 ∀𝑥 . 𝑃 ⊣⊢ ∀𝑥 . ¤↬𝑡 𝑃

bng-sep
∀𝑥,𝑦. 𝑡 (𝑥 · 𝑦) = 𝑡 (𝑥) · 𝑡 (𝑦)
¤↬𝑡 𝑃 ∗ ¤↬𝑡 𝑄 ⊢ ¤↬𝑡 (𝑃 ∗𝑄)

bng-pers
∀𝑥 . 𝑡 ( |𝑥 |) = |𝑡 (𝑥) |
� ¤↬𝑡 𝑃 ⊣⊢ ¤↬𝑡 � 𝑃

bng-trans
¤↬𝑡1 ¤↬𝑡2 𝑃 ⊣⊢ ¤↬𝑡2◦𝑡1 𝑃

bng-idemp
∀𝑥 . 𝑡 (𝑡 (𝑥)) = 𝑡 (𝑥)
¤↬𝑡 ¤↬𝑡 𝑃 ⊢ ¤↬𝑡 𝑃

bng-plainly
¤↬𝑡 ■ 𝑃 ⊣⊢ ■ 𝑃

Figure 2. Rules for the basic nextgen modality.

■ 𝑃 , which means that 𝑃 holds without using any resources.
The rule bng-plainly states that the nextgen modality has no
effect in the presence of the plainly modality. If we rephrase
this lemma a bit we get what we call the soundness rule for
the nextgen modality:

bng-sound
⊢ ¤↬𝑡 𝑃 plain(𝑃)

⊢ 𝑃
This states that if an assertion 𝑃 is plain (meaning that 𝑃 ⊢
■ 𝑃 ) and can be derived under the nextgen modality, then the
basic nextgen modality can be eliminated. A consequence of
this rule is that results shown under the nextgen modality
also has meaning outside of the nextgen modality, which is
crucial when one wishes to prove an overall soundness or
adequacy result for a program logic that makes use of the
basic nextgen modality.

Just as important as the rules that do hold, is the one that
does not. The following frame rule is not sound

𝑄 ∗ ¤↬𝑡 𝑃 ⊬ ¤↬𝑡 (𝑄 ∗ 𝑃).
If 𝑄 holds in the current generation and 𝑃 holds in the next
generation then it is not necessarily sensible to move 𝑄
unchanged into the next generation. The equivalent rule for
the update modality holds and is crucial for that modality’s
purpose. For the nextgen modality the opposite is the case:
invalidating the frame rule is clearly necessary to arrive at a
modality that can express non-frame-preserving changes to
ghost state. Another rule that, quite naturally, is not sound
is commutativity between the basic nextgen modality and
the update modality:

¤↬𝑡 ¤|⇛𝑃 ̸⊣⊢ ¤|⇛ ¤↬𝑡 𝑃 .

As we explain in Section 4.2.1 this has an impact on the way
adequacy is proven for program logics that use the nextgen
modality.

3.2 Comparison to the Post-Crash Modality

In a nutshell, the difference between the post-crash modal-
ity and the nextgen modality is that where the post-crash

modality works around the limitation that Iris does not allow
for non-frame-preserving updates, the nextgen modality ad-
dresses the problem head-on by lifting the limitation through
an extension of the Iris base logic. Thence the nextgen modal-
ity addresses the limitations we identified for the post-crash
modality. In particular, since the nextgen modality modifies
existing resources, it does not rely on changing ghost names
and hence it does not incur the problems associated with
that. We are able to prove all the expected rules, including
bng-pers that does not hold for the post-crash modality.

3.3 Special Cases of the Basic Nextgen Modality

We now show that the persistently and the plainly modalities
are special cases of the basic nextgen modality and thus our
“extension” of the Iris base logic is perhaps better referred to
as a “generalization and simplification” of the Iris base logic.
The persistently modality can be defined by taking the

transformation to be the persistent core of the global RA:

¤↬ |− | 𝑃 ⊣⊢ � 𝑃 (2)

and the plainly modality can be defined by taking the trans-
formation to be the constant function that returns the unit
element of the global RA.

¤↬𝜆𝑎.𝜀 𝑃 ⊣⊢ ■ 𝑃 (3)

The equivalences (2) and (3) are both easy to prove us-
ing the semantics of the basic nextgen modality, which we
present in the following section.

3.4 Model

We now explain the semantics of the basic nextgen modality
in the model of Iris.
To simplify the presentation and to focus on the inter-

esting parts, we pretend that the semantic domain of Iris
propositions is simply monotone predicates over resources:

JiPropK ≜ 𝑀
mon−−−→ Prop.

The gap between this simplified definition and the full model
of Iris is largely orthogonal to the semantics of the nextgen
modality. We ignore the recursive domain equation arising
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from higher-order ghost state and step indices for the later
modality. The benefit is that this simplifies the presentation
and makes it easier to understand for readers who are not
familiar with the particularities of the model of Iris, but who
might be familiar with the more widely used predicates-over-
resources model of separation logic. Our mechanization of
the nextgen modality in Coq, of course, uses the “full” model
of Iris, and we refer readers interested in all the details to
the accompanying Coq formalization.
The model of the nextgen modality is exactly what one

would expect from its behavior in the logic:

J ¤↬𝑡 𝑃K ≜ 𝜆𝑥. J𝑃K(𝑡 (𝑥))
In order for this definition to be well-defined it must be
monotone.

Lemma 3.2. If 𝑥 ≼ 𝑦 then J𝑃K(𝑡 (𝑥)) implies J𝑃K(𝑡 (𝑦)).

Proof. Since J𝑃K is monotone it suffices to show that 𝑡 (𝑥) ≼
𝑡 (𝑦). This follows from condition 1 of Definition 3.1. □

With this model all the rules that we have seen are sound.

3.5 Generational Resource Algebras

When using the nextgen modality with particular resources,
one usually picks the type of resources and the transforma-
tions for it in unison. We use the term generational RA to
mean an RA together with transformation function over it or
a set of such functions. For many of the existing RAs in Iris
there are obvious transformation functions that one could
use with them. As an example, for the well known authori-
tative RA Auth(𝐴) and a transformation 𝑡 : 𝐴→ 𝐴, there is
a transformation 𝑡A that applies 𝑡 to both the authoritative
element and fragments such that

𝑡𝐴 (•𝑎) ≜ •(𝑡𝐴 (𝑎)) 𝑡𝐴 (◦𝑏) ≜ ◦(𝑡𝐴 (𝑏)) .
This transformation is part of the generational RA that we
use in Section 4.
Just like Iris contains a library of RA constructions that

one can combine for concrete proofs, one can imagine a
similar library of constructions for generational RAs. Our
Coq mechanization contains a few such building blocks.

3.6 A Transformation for Ghost Locations

So far, we have seen the basic nextgen modality that applies
a transformation to owned elements of the global RA. As
described in Section 2.1, Iris is usually instantiated with a
global RA of a particular shape. To arrive at higher-level
nextgen modalities, the first step is to use transformation
functions that preserve this shape:

TM ≜
∏
𝑖∈𝐼

GName fin−⇀ (𝑀𝑖 → 𝑀𝑖 )

This definition is equal to the global RA in Equation (1) except
that the type of the “leafs” is changed from𝑀𝑖 to𝑀𝑖 → 𝑀𝑖 .
From a map of transformations tm ∈ TM, we can construct

a transformation on the global RA in the natural way by
applying the appropriate transformations.
For any tm ∈ TM, we then obtain the following rules for

the basic nextgen modality and ownership of an 𝑎 : 𝑀𝑖 at a
ghost location 𝛾 .

𝛾 ∈ dom(tm(𝑖))
𝑎
𝛾 ⊢ ¤↬𝑡tm tm(𝑖, 𝛾) (𝑎) 𝛾

𝛾 ∉ dom(tm(𝑖))
𝑎
𝛾 ⊢ ¤↬𝑡tm 𝑎

𝛾

This construction provides the foundation for building higher-
level nextgen modalities.
A simpler variant of this construction is one where the

map has the form
∏
𝑖∈𝐼 (𝑀𝑖 → 𝑀𝑖 ). That is, where the trans-

formation is given only per type of RA and not per type
of RA and ghost name. Which variant to use depends on
the circumstances; in the next section we see an example of
using the simpler one.

3.7 Mechanization in Coq

Asmentioned earlier we havemechanized the nextgenmodal-
ity in Coq. The development contains the definition of the
basic nextgen modality and its rules. Through type class in-
stances the nextgen modality is integrated into the Iris Proof
Mode such that it works as seamlessly as existing modalities.
Despite the nextgen modality being an extension to the

base logic, we do not need to fork or modify the existing Iris
Coq development. Due to the way Iris is mechanized one
can define new constructs in terms of the model as long as
the semantic domain is unchanged.

The mechanization also contains a number of generational
transformations for common RAs and the transformation
for ghost locations from the previous section.

4 Case Study of the Nextgen Modality

The basic nextgen modality lays the foundation for express-
ing non-frame-preserving updates. However, thus far, we
have left out how a concrete instance of a nextgen modality
is defined. In this section, we present a case study of the
nextgen modality: a program logic for a language, called
StackLang, whose operational semantics exhibits non-local
changes to its physical state. We first present StackLang,
and then we give a concrete definition of a nextgen modal-
ity, by defining the right generational transform function 𝑡 .
Finally, we use the nextgen modality to define a program
logic for StackLang.

StackLang is a language with a high-level representation
of a call stack, where stack frames (henceforth referred to as
stack regions) are pushed upon function calls, and popped
upon function returns. Stack region locations are referenced
via special stack references, which are indexed by a region
offset. These stack references are temporary, and have a life-
time inherently linked to their stack region. Expressing stack
allocation at a higher level thus allows programmers to allo-
cate temporary data without having to manage it, which has
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advantages both in languages with explicit memory man-
agement, and in languages where memory is managed by a
garbage collector (for example, Lorenzen et al. use a locality
mode to express stack allocation, in order to reduce garbage
collection triggers).
Furthermore, StackLang supports a version of call/cc,

where continuations enclose a specific stack region, and
whose invocation pop all stack regions above it.

A sound program logic for StackLang must thus account
for the deallocation of stack regions. A naïve approach may
simply require the program logic rule for function returns
to depend on the relevant ghost state in the precondition.
Such a rule would define a precondition containing all ghost
state fragments that would get deallocated by the return
expression. Unfortunately, this approach counteracts the
benefits of local reasoning typically granted by separation
logic, and would make it especially difficult to describe mod-
ular specifications of continuations. Instead, our goal will
be to construct a program logic with a rule for function re-
turns that does not directly depend on fragments from the
stack region. Thus, while other approaches exist, we seek a
program logic that does not require a lot of bookkeeping, or
any instrumentation of the language itself.

4.1 Syntax and Semantics of StackLang

Figure 3 defines the syntax of StackLang values, expres-
sions, and evaluation contexts. Values include continuations,
i.e., suspended evaluation contexts labelled with an index 𝑖 ,
specifying which stack region the continuation belongs to.

Similarly, we label function closures 𝜆𝜇 𝑘, 𝑥 .𝑒 and locations
ℓ𝜇 with a locality tag 𝜇, which specifies their lifetime. A heap
tag means the function or location has a permanent lifetime,
while a stack(𝑖) tag means the function or location has the
same lifetime as stack region 𝑖 . The index 𝑖 in locality stack(𝑖)
is relative to the top of the stack. For instance, ℓstack(0) refers
to a stack-allocated location in the topmost stack region.
Likewise, a continuation with index 𝑖 refers to the 𝑖 th stack
region from the top, and invoking it will thus deallocate the
𝑖 most recent regions.

New locations are allocated using halloc(𝑒), which allo-
cates locationswith a heap tag, and salloc(𝑒), which allocates
locations with a stack(0) tag. The remaining values and ex-
pressions are defined as in a typical lambda calculus with
references, where 𝑥 is a variable, 𝑛 stands for any natural
number, and ⊕ is shorthand for binary operators. Finally,
evaluation contexts define a left-to-right and call-by-value
evaluation strategy.
The small-step operational semantics of StackLang is

defined using two step relations. Each relation is defined over
configurations (ℎ, 𝑠, 𝑒), where ℎ is the heap, 𝑠 is an ordered
list of stack regions, and 𝑒 is an expression. The head of the
stack describes the state of the topmost stack region, and
function calls appends a new empty region to the head of

the list, while function returns remove a specified number
of regions from the list. We refer to the heap and stack pair
(ℎ, 𝑠) as the store.
The first step relation→𝐾 defines steps taken under some

evaluation context 𝐾 . Figure 4 shows two example steps;
stack allocation, and function calls. Stack allocation allocates
a fresh location ℓ in the topmost stack region, and returns
ℓstack(0) . Function calls push an empty region to the stack,
and reduce to a return expression surrounding the body of
the function. Note that since the locality of locations, closures
and continuations is relative, parameters and return values
are shifted to accurately reflect their new relative position.2
The second step relation → is built on top of →𝐾 , and

defines the operational semantics of StackLang:
ctx-bind
(ℎ, 𝑠, 𝑒) →𝐾 (ℎ′, 𝑠′, 𝑒′)

(ℎ, 𝑠, 𝐾 [𝑒]) → (ℎ′, 𝑠′, 𝐾 [𝑒′])

ctx-ret
𝑖 ≤ length(𝑠) shift (𝑣,−𝑖) = 𝑣 ′

(ℎ, 𝑠, return(cont𝑖 (𝐾)) (𝑣)) → (ℎ, pop𝑖 (𝑠), 𝐾 [𝑣 ′])

The step for return(cont𝑖 (𝐾)) (𝑣) shifts 𝑣 by −𝑖 , pops the
top 𝑖 regions from 𝑠 , and is considered stuck whenever the
continuation points to a stack region that does not exist.

4.2 A Program Logic for StackLang

The first step towards a program logic for StackLang is to
interpret the store in terms of Iris predicates. To that end, we
define three resource algebras, which allow us to model the
following three separation logic predicates with associated
intuitive meanings:

ℓ ↦→ 𝑣 heap location ℓ points to value 𝑣
𝑘 ℓ ↦→ 𝑣 stack location ℓ of region index 𝑘 points to 𝑣
𝑚 the stack is currently made up of𝑚 regions

The most pertinent resource algebra is that of the stack: a
ghost map, gmapView (N× Location) Value, mapping stack
region indices and location pairs to values.
Next, we define a nextgen modality that deallocates the

relevant stack resources, while leaving unrelated resources
intact. We use the construction outlined in Section 3.6 to
build a map of transformations, which together form a trans-
formation on the global state. We only define a non-trivial
transformation function for the stack resource algebra; for all
other resource algebras we use the identity transformation.

For the stack resource algebra, we define a family of trans-
formations, SCut𝑛 , where 𝑛 is a region index. Intuitively,
SCut𝑛 filters out all the elements with an index of at least
𝑛. Concretely, SCut𝑛 (𝑚) = 𝑚′ where dom(𝑚′) ⊆ dom(𝑚)

2Shifting values is handled by shift (𝑣, 𝑖 ) , a partial function that shifts any
stack location or continuation by the integer 𝑖 . If the shift would put an
index below zero, it fails, i.e., it is undefined.
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Index 𝑖 ≜ N

LocalityTag 𝜇 ::= heap | stack(𝑖)
Value 𝑣 ::= true | false | 𝑛 | () | 𝜆𝜇 𝑘, 𝑥 .𝑒 | ℓ𝜇 | cont𝑖 (𝐾) | (𝑣, 𝑣)
Expression 𝑒 ::= 𝑥 | true | false | 𝑛 | () | 𝜆𝜇 𝑘, 𝑥 .𝑒 | ℓ𝜇 | cont𝑖 (𝐾) | 𝑒 ⊕ 𝑒 | (𝑒, 𝑒) | 𝜋{1,2}𝑒 | 𝑒 (𝑒) | return(𝑒) (𝑒) |

let 𝑥 := 𝑒 in 𝑒 | if 𝑒 then 𝑒 else 𝑒 | salloc(𝑒) | halloc(𝑒) | !𝑒 | 𝑒 ← 𝑒

Evaluation 𝐾 ::= · | 𝐾 ⊕ 𝑒 | 𝑣 ⊕ 𝐾 | (𝐾, 𝑒) | (𝑣, 𝐾) | 𝜋{1,2}𝐾 |
Context 𝐾 (𝑒) | 𝑣 (𝐾) | return(𝐾) (𝑒) | return(𝑣) (𝐾) | let 𝑥 := 𝐾 in 𝑒 | let 𝑥 := 𝑣 in 𝐾 | if 𝐾 then 𝑒 else 𝑒 |

salloc(𝐾) | halloc(𝐾) |!𝐾 | 𝐾 ← 𝑒 | 𝑣 ← 𝐾

Figure 3. StackLang syntax

𝑠 [0] = 𝑓 ℓ ∉ dom(𝑓 ) 𝑠′ = 𝑠 [0 := 𝑓 ⊎ {ℓ ↦→ 𝑣}]
(ℎ, 𝑠, salloc(𝑣)) →𝐾 (ℎ, 𝑠′, ℓstack(0) )

shift (𝑣, 1) = 𝑣 ′ 𝑘 = cont1 (𝐾)
(ℎ, 𝑠, (𝜆heap 𝑓 , 𝑥 .𝑒) (𝑣)) →𝐾 (ℎ, ∅ ++ 𝑠, return(𝑘) (𝑒 [𝑘/𝑓 ] [𝑣 ′/𝑥]))

Figure 4. StackLang inner step relation, excerpt

and ∀(𝑘, ℓ) ∈ dom(𝑚), (𝑘 < 𝑛 ∧𝑚′ (𝑘, ℓ) = 𝑚(𝑘, ℓ)) ∨ (𝑘 ≥
𝑛 ∧ (𝑘, ℓ) ∉ dom(𝑚′)).

We denote the combined transformation function on the
global resource algebra by ICut𝑛 . In detail:

ICut𝑛 = 𝑇 tm{𝑖:=SCut𝑛 }

where 𝑖 ∈ 𝐼 is the globally scoped ID of the stack resource
algebra. By picking ICut𝑛 as the generational transformation
function, we can then define a nextgen modality for stack
region deallocation:

¤↬𝑛 ≜ ¤↬ICut𝑛

and using the definition of ICut𝑛 , we prove the following
rules:

cut-heap-intro
ℓ ↦→ 𝑣 ⊢ ¤↬𝑛 ℓ ↦→ 𝑣

cut-stack-intro
𝑘 < 𝑛

𝑘 ℓ ↦→ 𝑣 ⊢ ¤↬𝑛
𝑘 ℓ ↦→ 𝑣

cut-stack-intro-emp
𝑘 ≥ 𝑛

𝑘 ℓ ↦→ 𝑣 ⊢ ¤↬𝑛 ⊤
cut-size-intro
𝑚 ⊢ ¤↬𝑛 𝑚

Note that the introduction rule for the stack points-to pred-
icate requires that the resources points to a stack region
below the cut 𝑛. If the region is at or above 𝑛, the fragment is
deallocated, as expressed by the trivial rule cut-stack-intro-
emp.

4.2.1 Weakest precondition. We define a program logic
for StackLang by using a variant of Iris weakest precondi-
tions, denoted wp 𝑒 {Φ}𝑛 , where 𝑛 is a region index. The key
idea behind 𝑛 is that it dictates a lower bound to the nextgen
modalities triggered by the weakest precondition.

The definition is similar to the one used in Iris for a single-
threaded language: If 𝑒 is a value, then the postcondition
Φ holds for that value (under a fancy update modality). If
𝑒 is not a value, then given any state 𝜎 satisfying the state

interpretation (the authoritative view of the resource alge-
bras used for the physical state), the expression 𝑒 must be
reducible, and for any configuration it steps to, we have the
semantic interpretation of the new state, and a weakest pre-
condition of the new expression. In the special case where
the expression is a function call return, the state interpreta-
tion and weakest precondition of the reduced expression is
guarded by a nextgen modality, reflecting that a stack deallo-
cation has occurred. Additionally, the cutoff of that nextgen
modality is guaranteed to be greater than or equal to the
lower bound 𝑛. In section 4.2.2 we will see why it is useful
to maintain such a lower bound.3
Since we are using a new definition of Iris weakest pre-

conditions, it is important to prove that it is sound. To this
end, we prove the following adequacy theorem.4

Theorem 4.1 (Adequacy of the nextgen weakest precondi-
tion). Let Φ be a first-order pure predicate. Assume:

⊢ wp 𝑒 {Φ}𝑛 and (𝜎, 𝑒) → (𝜎2, 𝑒2),

then the following two facts hold:

1. either (𝜎2, 𝑒2) is reducible, or 𝑒2 is a value
2. if 𝑒2 is a value, then Φ(𝑒2) holds

The proof, which can be found in the accompanying Coq
formalization, is more intricate than the standard Iris one
since the nextgen modality does not commute with the fancy
update modality. An interesting line of future work is to
investigate alternative strategies for proving adequacy, such
as the one employed in Transfinite Iris [Spies et al. 2021],
and for Later Credits [Spies et al. 2022].

3Here we present a version of the weakest precondition definition that is
tailored specifically to StackLang. In the Coq mechanization, we define a
version that parametrizes over an arbitrary programming language.
4Here again tailored to StackLang, but proved for a general single-threaded
language in the Coq mechanization, without support for later credits.
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wp 𝑒 {Φ}𝑛 ≜



|⇛⊤Φ(𝑒) if 𝑒 is a value

∀𝜎, stateInterp(𝜎) −∗ |⇛⊤ ∅ e is reducible
∧ ⊲∀𝑒2, 𝜎2, (𝜎, 𝑒) → (𝜎2, 𝑒2) −∗ |⇛∅ ⊤𝑛 ≤ StackLength(𝜎) − 𝑖 ∗

( ¤↬StackLength(𝜎 )−𝑖 stateInterp(𝜎2)) ∗ ( ¤↬StackLength(𝜎 )−𝑖 wp 𝑒2 {Φ}𝑛)

if 𝑒 = 𝐾 [return(cont𝑖 (𝐾 ′)) (𝑣)]

∀𝜎, stateInterp(𝜎) −∗ |⇛⊤ ∅ e is reducible
∧ ⊲∀𝑒2, 𝜎2, (𝜎, 𝑒) → (𝜎2, 𝑒2) −∗ |⇛∅ ⊤ stateInterp(𝜎2) ∗ wp 𝑒2 {Φ}𝑛

otherwise

Figure 5.Weakest Precondition

4.2.2 The frame rule and the independence modality.

Since the nextgen modality is, by design, not frame preserv-
ing, one major consequence of including it in the weakest
precondition is that we lose the frame rule. This is necessary
to prevent the following clearly unsound implication:

1 ℓ ↦→ 𝑣 ∗ wp return(cont1 (·)) (42) {⊤}1
⊢ wp return(cont1 (·)) (42) { 1 ℓ ↦→ 𝑣}1

However, losing the frame rule altogether seems much too
restrictive. There are, after all, many resources which ought
not to be affected by any occurrence of the nextgen modality.
For example, it should be possible to use the frame rule
for heap resources, or stack resources that reside below the
chosen cutoff.
To that end, we define a new independence modality, de-

noted �↬𝑛 , and use it to express that a proposition is safe
to frame away. Intuitively, the independence modality ex-
presses that a proposition is independent of any nextgen
modality at or above some lower bound 𝑛. Formally, it is
defined as follows:

�↬𝑛 𝑃 ≜ 𝑃 ∧ ∀𝑛′ ≥ 𝑛, ¤↬𝑛′ 𝑃

This modality gives rise to the following rules:
ind-intro
∀𝑛′, 𝑛 ≤ 𝑛′ ⇒ 𝑃 ⊢ ¤↬𝑛′ 𝑃

𝑃 ⊢ �↬𝑛 𝑃

cut-ind-intro
𝑛 ≤ 𝑛′

�↬𝑛 𝑃 ⊢ ¤↬𝑛′ �↬𝑛 𝑃

ind-elim
�↬𝑛 𝑃 ⊢ 𝑃

ind-weaken
𝑛 ≤ 𝑛′

�↬𝑛 𝑃 ⊢ �↬𝑛′ 𝑃

ind-heap-intro
ℓ ↦→ 𝑣 ⊢ �↬𝑛 ℓ ↦→ 𝑣

ind-stack-intro
𝑘 ℓ ↦→ 𝑣 ⊢ �↬𝑘+1

𝑘 ℓ ↦→ 𝑣

ind-size-intro
𝑚 ⊢ �↬𝑛 𝑚

Using the independence modality, we prove the following
frame rule:

Wp-Frame
�↬𝑛 𝑅 wp 𝑒 {Φ}𝑛
wp 𝑒 {𝜆𝑣,Φ(𝑣) ∗ 𝑅}𝑛

As with the definition of weakest precondition, we here
present a version of the independence modality tailored to
StackLang. In the Coq mechanization we implement a gen-
eralized definition of the independence modality, together
with proof support for the modality and the new frame rule.

4.2.3 Program logic rules. Using the new definition of
weakest precondition we prove soundness of proof rules
for each reduction step. In this subsection, we will focus on
the rules for stack allocation and function returns. We refer
to the Coq mechanization for the full program logic. Since
invoking a continuation discards the current surrounding
evaluation context, the typical bind-rule for Iris weakest
preconditions does not hold for StackLang expressions.
For reasoning about programs that do not use non-local

flow — for which the bind rule holds — we follow [Timany
and Birkedal 2019] and define a derived notion of weakest
preconditions called the context-local weakest precondition:

clwp 𝑒 {Φ}𝑛 ≜ ∀𝐾 Ψ, (�↬𝑛 ∀𝑣,Φ(𝑣) −∗ wp 𝐾 [𝑣] {Ψ}𝑛)
−∗ wp 𝐾 [𝑒] {Ψ}𝑛

Note the use of the independence modality to express that
the continuation cannot depend on stack locations above the
cutoff 𝑛.

We then prove the following rule for stack allocation:
ClSalloc
⊲(∀ℓ, 𝑚 ∗ 𝑚 − 1 ℓ ↦→ 𝑣 −∗ clwp ℓstack(0) {Φ}𝑛)

𝑚 0 < 𝑚

clwp salloc(𝑣) {Φ}𝑛
The rule for stack allocation allocates a new stack points-to
predicate, whose region index is determined using the stack
size resource.
Since function returns use non-local flow, we define its

program logic rule using the base weakest precondition.
Return
⊲( 𝑚 − 𝑖 −∗ ¤↬(𝑚−𝑖 ) wp 𝐾 ′ [shift (𝑣,−𝑖)] {Φ}𝑛)

𝑚 𝑖 ≤ 𝑚 𝑛 ≤ 𝑚 − 𝑖
wp 𝐾 [return(cont𝑖 (𝐾 ′)) (𝑣)] {Φ}𝑛

The rule for functions returns must not only decrease the
stack size resource, it must somehow handle the deallocation
of a number of stack regions, which may now be non-empty.
In other words, the rule for return is only sound if it handles
the deallocation of all stack points-to predicates associated
to popped regions. Luckily, this is exactly expressed by the
nextgen modality for stack region deallocation! As a result, it
suffices to guard the continuing weakest precondition with
¤↬(𝑚−𝑖 ) , which states that the next weakest precondition
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cannot depend on any points-to predicates for stack locations
above𝑚 − 𝑖 . Finally, since the weakest precondition imposes
a lower bound 𝑛 to occurrences of a nextgen modality, the
rule requires a side condition to guarantee that 𝑛 ≤ 𝑚 − 𝑖 .

4.2.4 Custom ghost state and invariants. Thus far, we
have presented the StackLang nextgen modality with re-
spect to the StackLang ghost state. However, we have yet
to show how to take advantage of the full expressive power
of the Iris logic. Notably, we have not yet discussed how to
use custom ghost state or invariants.

Since we have defined the ¤↬𝑛 modality to apply the iden-
tity transformation on any non-stack resource, any custom
ghost state can easily introduce the modality. In contrast,
more interesting questions arise when we consider the in-
teraction between the nextgen modality and Iris invariants.
Since an Iris invariant is guaranteed to hold at every step of
a program’s execution, how can it enclose stack allocated
resources that might disappear at function returns? Clearly,
it would not be sound for such invariants to outlive the
stack values they correspond to. One possible sound solu-
tion would be to only allow invariants that do not enclose
any stack points-to predicates. However, such a limitation
would disallow interesting use-cases of Iris invariants, such
as defining a temporary invariant that holds until a region
has ended.
The ideal solution would be invariants that can contain

stack points-to predicates and whose lifetime matches that
of the enclosed resources. This is precisely what we achieve
in the following variant of Iris invariants, defined using the
independence modality presented in Section 4.2.2.
Our variant of Iris invariants, denoted 𝑃

N,𝑛 , is parame-
terized by a region index 𝑛. One can think of the index as the
lifetime of the invariant. Invariants are allocated as follows:

inv-alloc
𝑃 ⊢ �↬𝑛 𝑃 ⊲ 𝑃

|⇛E 𝑃
N,𝑛

When allocating an invariant for 𝑛, one must prove that the
body of the invariant is unaffected by any nextgen modality
that discards stack regions at or above 𝑛. This condition is
precisely expressed by the independence modality.
The interaction between invariants and the nextgen and

independence modalities now depends on the lifetime of the
invariant:

cut-inv-intro
𝑛 ≤ 𝑛′

𝑃
N,𝑛 ⊢ ¤↬𝑛′ 𝑃

N,𝑛
ind-inv-intro
𝑃
N,𝑛 ⊢ �↬𝑛 𝑃

N,𝑛

With this new invariant construction, it is possible to allocate
invariants that enclose stack points-to predicates, and prove
specifications of programs thatmay depend on them. As such,
not only can we define invariants that are not impacted by
¤↬𝑛 , we can also define invariants that may themselves be
deallocated by a particular instance of ¤↬𝑛 . The invariants

exist for as long as it would be sound for them to do so, and
are removed by the nextgen modality accordingly. This new
definition of invariants displays the flexibility of the nextgen
modality, which allows us to define arbitrary transforma-
tions over ghost state, including the ghost state of invariants
themselves.
We leave out the technical details of the definition of

the new invariants, and refer to the Coq mechanization for
those.5 The key idea is to apply a transformation to invari-
ants, which mimics the transformation function for stack
points-to predicates, by indexing invariants by stack regions.
The requirements over 𝑃 when allocating invariants is car-
ried over to the definition of the so-called world satisfaction
relation, which is the internal Iris definition which tracks and
stores all invariants, and then used to prove the soundness
of the nextgen introduction rules for invariants.

5 Related and Future Work

As mentioned, the post-crash modality from Perennial is the
work most closely related to the nextgen modality. We have
already compared the two earlier in Section 3. To the best of
our knowledge there is no other work that gives a general
mechanism for performing non-frame-preserving updates
in separation logic.
We think that there is much exciting future work to be

done, and hope that we have just scratched the surface of
the usefulness of the nextgen modality. Exploring the moti-
vating examples that we sketched in the introduction is one
possible avenue for future work. We are currently explor-
ing the application of the nextgen modality to a concurrent
setting with crashes and durable storage, and our current
results seem very promising. One interesting challenge in
this setting is that under a weak persistency model, crashes
are non-deterministic and there is thus not a fixed transfor-
mation that can be applied to ghost state at a crash.

We also think our nextgen modality can be used as a foun-
dation to implement temporary read-only points-to predi-
cates in Iris in the style of [Charguéraud and Pottier 2017].
Our initial investigation into this seems to indicate that defin-
ing the resources for this and the nextgen modality itself is
quite straightforward. However, defining a weakest precon-
dition that validates the expected proof rules seems quite
tricky. In particular, the “framed sequencing rule” of op. cit. is
non-trivial to prove for a weakest precondition that contains
a nextgen modality. We think solving this hurdle is very
exciting future work, as read-only point-to predicates bring
many benefits that Iris users are currently missing.

5The technical details behind the definition of nextgen invariants are slightly
more involved and include additional ghost state to remember the lifetime
n, and a transformation over this ghost state that alters it in lockstep with
SCut𝑛 . We have also generalized it to work with any arbitrary indexing
type and order.
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Turning to work related to our program logic for Stack-
Lang, we first remark that the program logic rules for Stack-
Lang make explicit use of evaluation contexts because re-
turns may discard the current evaluation context. This style
of proof rules is inspired by Timany and Birkedal’s work on
a program logic for programs with continuations [Timany
and Birkedal 2019].
We are not aware of previous separation logics that ex-

plicitly account for deallocation of stack frames. The most
closely related work is the work of Timany et al. [2018] for
reasoning about encapsulation of local state in a sequential
programming language with a state monad and a Haskell-
style polymorphically-typed runST construct. Timany et al.
define a logical relation of the type system with runST in
Iris and use it to show that runST encapsulates computa-
tions with local state and that such computations use re-
gions allocated in a stack-like manner. A key point of op. cit.
is that the operational semantics of the language is a stan-
dard operational semantics with a global heap, capturing
how the language would be implemented in reality, whereas
the logical relation allows one to reason as if regions were
stack-allocated physically. This is achieved by a clever use
of ghost state, which tracks the virtual stack of regions and
connects it to the physical memory. To account for virtual
deallocation of regions (popping the virtual stack of regions),
Timany et al. essentially mark regions as dead in the ghost
state and a key step in their proof of soundness of the logical
relations model of the type system is then to show that the
type system guarantees that one does not try to access a
region that is dead. Thus, Timany et al. manage to account
for virtual deallocation using only frame-preserving updates,
but it comes at the expense of having a global ghost resource
that is threaded around in the reasoning, rather than having
more modular local points-to predicates, and it is not clear
how this approach would scale to a concurrent language,
since it does not seem possible to share the global ghost
resource among several threads. In contrast, the nextgen
modality allows for more modular local reasoning and scales
to concurrent languages (cf. our current explorations of the
nextgen modality to a concurrent setting with crashes and
durable storage mentioned above).
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A Appendix

A.1 Operational Semantics

Figure 6 displays a larger selection of the step relation→𝐾 .

A.2 Program Logic Rules Excerpt

Figure 7 displays a selection of program logic rules for the
base weakest precondition.

A.3 Example

The following program displays various features of Stack-
Lang.

(∅, [∅], (𝜆heap 𝑘, 𝑥 .!𝑥+!(salloc(41))) (halloc(1))) (4)

→({ℓ1 ↦→ 1}, [∅], (𝜆heap 𝑘, 𝑥 .!𝑥+!(salloc(41))) (ℓheap1 )) (5)

→({ℓ1 ↦→ 1}, [∅; ∅], return(cont1 (·)) (!ℓheap1 +!salloc(41)))
(6)

→({ℓ1 ↦→ 1}, [∅; ∅], return(cont1 (·)) (1+!salloc(41))) (7)

→({ℓ1 ↦→ 1}, [{ℓ2 ↦→ 41}; ∅], return(cont1 (·)) (1+!ℓstack(0)2 ))
(8)

→({ℓ1 ↦→ 1}, [{ℓ2 ↦→ 41}; ∅], return(cont1 (·)) (1 + 41)) (9)

→({ℓ1 ↦→ 1}, [{ℓ2 ↦→ 41}; ∅], return(cont1 (·)) (42)) (10)
→({ℓ1 ↦→ 1}, [∅], 42) (11)

Note how the function call appends an empty region to the
head of the stack (line 6), which gets subsequently popped
when the function returns (line 10). We will use this exam-
ple in Section 4.2 when introducing the program logic for
StackLang.
Let’s use these rules to prove a specification of the previ-

ously presented example program. The program starts exe-
cuting in a configuration with a stack of size 1. Our goal is
to show the following specification:

1 ⊢ wp (𝜆heap 𝑘, 𝑥 .!𝑥+!(salloc(41))) (halloc(1)) {𝜆𝑣, 𝑣 = 42}
we prove the specification by applying the program logic
rules given in fig. 7. The first expression to execute is
halloc(1). We thus begin by applying the rule for heap allo-
cation Halloc, and the new goal becomes:

1 ⊢ ⊲ (ℓ1 ↦→ 1 −∗
wp (𝜆heap 𝑘, 𝑥 .!𝑥+!(salloc(41))) (ℓheap) {𝜆𝑣, 𝑣 = 42})

We introduce the new points-to predicate into the context.
Next, we apply the rules for call, stack allocation, load and
binary operations to reach the following context and goal:

2 ∗ ℓ1 ↦→ 1 ∗ 1 ℓ2 ↦→ 41 ⊢
wp return(cont1 (·)) (42) {𝜆𝑣, 𝑣 = 42}

At this point, we must apply the rule for return. Since the
continuation has offset 1, this will decrease the stack by
1. After applying the rule for return, we are left with the
following goal:

1 ∗ ℓ1 ↦→ 1 ∗ 1 ℓ2 ↦→ 41 ⊢ ¤↬1 wp 42 {𝜆𝑣, 𝑣 = 42}
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(ℎ, 𝑠, let 𝑥 := 𝑣 in 𝑒) →𝐾 (ℎ, 𝑠, 𝑒 [𝑣/𝑥]) (ℎ, 𝑠, 𝜋1 (𝑒1, 𝑒2)) →𝐾 (ℎ, 𝑠, 𝑒1) (ℎ, 𝑠, 𝜋2 (𝑒1, 𝑒2)) →𝐾 (ℎ, 𝑠, 𝑒2)
𝑣1 ⊕ 𝑣2 = 𝑣

(ℎ, 𝑠, 𝑣1 ⊕ 𝑣2) →𝐾 (ℎ, 𝑠, 𝑣)

(ℎ, 𝑠, if true then 𝑒1 else 𝑒2) →𝐾 (ℎ, 𝑠, 𝑒1) (ℎ, 𝑠, if false then 𝑒1 else 𝑒2) →𝐾 (ℎ, 𝑠, 𝑒2)
heap ⊑ 𝑣 ℓ ∉ dom(ℎ)

(ℎ, 𝑠, halloc(𝑣)) →𝐾 (ℎ ⊎ {ℓ ↦→ 𝑣}, 𝑠, ℓheap)

𝑠 [0] = 𝑓 ℓ ∉ dom(𝑓 ) 𝑠′ = 𝑠 [0 := 𝑓 ⊎ {ℓ ↦→ 𝑣}]
(ℎ, 𝑠, salloc(𝑣)) →𝐾 (ℎ, 𝑠′, ℓstack(0) )

𝑠 [𝑖] (ℓ) = 𝑣 shift (𝑣, 𝑖) = 𝑣 ′

(ℎ, 𝑠, !ℓstack(𝑖 ) ) →𝐾 (ℎ, 𝑠, 𝑣 ′)
ℎ(ℓ) = 𝑣

(ℎ, 𝑠, !ℓheap) →𝐾 (ℎ, 𝑠, 𝑣)

heap ⊑ 𝑣 ℓ ∈ dom(ℎ)
(ℎ, 𝑠, ℓheap ← 𝑣) →𝐾 (ℎ ⊎ ℓ ↦→ 𝑣, 𝑠, ())

stack(𝑖) ⊑ 𝑣 𝑠 [𝑖] = 𝑓 ℓ ∈ dom(𝑓 ) shift (𝑣,−𝑖) = 𝑣 ′ 𝑠′ = 𝑠 [𝑖 := 𝑓 ⊎ {ℓ ↦→ 𝑣 ′}]
(ℎ, 𝑠, ℓstack(𝑖 ) ← 𝑣) →𝐾 (ℎ, 𝑠′, ())

shift (𝑣, 1) = 𝑣 ′ 𝑘 = cont1 (𝐾)
(ℎ, 𝑠, (𝜆heap 𝑓 , 𝑥 .𝑒) (𝑣)) →𝐾 (ℎ, ∅ ++ 𝑠, return(𝑘) (𝑒 [𝑘/𝑓 ] [𝑣 ′/𝑥]))

shift (𝑣, 1) = 𝑣 ′ shift (𝑒, 𝑖 + 1) = 𝑒′

(ℎ, 𝑠, (𝜆stack(𝑖 ) 𝑘, 𝑥 .𝑒) (𝑣)) →𝐾 (ℎ, ∅ ++ 𝑠, return(cont1 (𝐾)) (𝑒′ [cont1 (𝐾)/𝑘] [𝑣 ′/𝑥]))

Figure 6. StackLang inner step relation

Stk-Load
⊲( 𝑛 ℓ ↦→ 𝑣 ∗ 𝑚 −∗ wp 𝐾 [shift (𝑣, 𝑖)] {Φ}𝑛) 𝑛 ℓ ↦→ 𝑣 𝑚 𝑛 =𝑚 − 𝑖 − 1

wp 𝐾 [!ℓstack(𝑖 ) ] {Φ}𝑛

Heap-Load
⊲(ℓ ↦→ 𝑣 −∗ wp 𝐾 [𝑣] {Φ}𝑛) ℓ ↦→ 𝑣

wp 𝐾 [!ℓheap] {Φ}𝑛

Salloc
⊲( 𝑚 ∗ 𝑚 − 1 ℓ ↦→ 𝑣 −∗ wp 𝐾 [ℓstack(0) ] {Φ}𝑛) 𝑚 0 < 𝑚

wp 𝐾 [salloc(𝑣)] {Φ}𝑛

Halloc
⊲(ℓ ↦→ 𝑣 −∗ wp 𝐾 [ℓheap] {Φ}𝑛)

wp 𝐾 [halloc(𝑣)] {Φ}𝑛

Call-Global
⊲( 𝑚 + 1 −∗ wp 𝐾 [return(cont1 (𝐾)) (𝑒 [cont1 (𝐾)/𝑘] [shift (𝑣, 1)/𝑥])] {Φ}𝑛) 𝑚

wp 𝐾 [𝜆heap 𝑘, 𝑥 .𝑒 (𝑣)] {Φ}𝑛

Return
⊲( 𝑚 − 𝑖 −∗ ¤↬(𝑚−𝑖 ) wp 𝐾 ′ [shift (𝑣,−𝑖)] {Φ}𝑛) 𝑚 𝑖 ≤ 𝑚 𝑛 ≤ 𝑚 − 𝑖

wp 𝐾 [return(cont𝑖 (𝐾 ′)) (𝑣)] {Φ}𝑛

Figure 7. Excerpt of the Program Logic Rules for StackLang

Crucially, the new goal is guarded by the ¤↬1 modality. The
only way to introduce it is by applying monotonicity of the
nextgen modality (bng-mono). Therefore, the next step is
to introduce ¤↬1 in front of all the relevant predicates in
the context, and discard those which don’t have such an
introduction rule. We can apply cut-heap-intro and cut-size-
intro and introduce the modality in front of the heap points-
to predicate and the stack size resource. However, we can’t
apply the introduction rule for the stack points-to predicate
(cut-stack-intro), since the region index of 1 ℓ2 ↦→ 41 is not
stricly smaller than 1. In fact, the whole purpose of ¤↬1 is
exactly to deallocate such points-to predicates. As such, we

discard it, and apply bng-sep to get the following goal:

¤↬1 ( 1 ∗ ℓ1 ↦→ 1) ⊢ ¤↬1 wp 42 {𝜆𝑣, 𝑣 = 42}

We can then finally conclude by applying monotonicity, and
prove the post-condition.

While the above proof sketch manually applies the intro-
duction rule for the nextgen modality, the rule for commut-
ing over separation conjuction, and monotonicity; each of
these steps are automated when using our mechanization
in Coq. Due to the integration of the nextgen modality with
the Iris Proof Mode, described in Section 3.7, introducing
the nextgen modality is handled by a single tactic, leading
to a seamless experience when using the program logic for
StackLang in Coq.
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