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Abstract. Guarded Interaction Trees are a structure and a fully formal-
ized framework for representing higher-order computations with higher-
order effects in Coq. We present an extension of Guarded Interaction Trees
to support formal reasoning about context-dependent effects. That is,
effects whose behaviors depend on the evaluation context, e.g., call/cc,
shift and reset. Using and reasoning about such effects is challenging
since certain compositionality principles no longer hold in the presence of
such effects. For example, the so-called “bind rule” in modern program log-
ics (which allows one to reason modularly about a term inside a context)
is no longer valid. The goal of our extension is to support representa-
tion and reasoning about context-dependent effects in the most painless
way possible. To that end, our extension is conservative: the reasoning
principles (and the Coq implementation) for context-independent effects
remain the same. We show that our implementation of context-dependent
effects is viable and powerful. We use it to give direct-style denotational
semantics for higher-order programming languages with call/cc and
with delimited continuations. We extend the program logic for Guarded
Interaction Trees to account for context-dependent effects, and we use
the program logic to prove that the denotational semantics is adequate
with respect to the operational semantics. This is achieved by construct-
ing logical relations between syntax and semantics inside the program
logic. Additionally, we retain the ability to combine multiple effects in a
modular way, which we demonstrate by showing type soundness for safe
interoperability of a programming language with delimited continuations
and a programming language with higher-order store.

Keywords: Coq · Iris · denotational semantics · logical relations · control
flow operators · continuations · delimited continuations

1 Introduction

Despite a lot of recent progress, representing and reasoning about programming
languages in proof assistants, such as Coq, is still considered a major challenge.
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The design space is wide and many approaches have been considered. Recently,
research on a novel point in the design space was initiated with the introduction
of Interaction Trees [33], or ITrees for short. ITrees were introduced to simplify
representation and reasoning about possibly non-terminating programs with side
effects in Coq. In a sense, ITrees provide a target for denotational semantics
of programming languages, which allows one to abstract from syntactic details
often found in models based on operational semantics. ITrees specifically allow
one to easily represent and reason about various effects and their combinations
in a modular way. A wide range of subsequent applications of ITrees (see, e.g.,
[18,35,34,25], among others) show that they indeed work very well for representing
and reasoning about first-order programs with first-order effects. As part of the
trade-offs, ITrees could not support higher-order representations and higher-order
effects. To address this challenge, Guarded Interaction Trees (or GITrees for
short) were introduced [13].

While GITrees support higher-order effects, in particular, the challenging case
of higher-order store, they are limited to effects that do not alter the control
flow of the program (more specifically, the continuation). As a consequence, one
cannot use GITrees to give direct-style denotational semantics of programming
languages with context-dependent effects such as call/cc, exceptions, or delim-
ited continuations. It is of course possible to give semantics to, e.g., call/cc using
a CPS translation, but this would require a global transformation which compli-
cates representation and reasoning, especially in combination with other effects
present. In this paper we extend GITrees to support direct-style representation
and reasoning about higher-order programs with higher-order context-dependent
effects in Coq, and evaluate its modularity.

We want to stress that our extension to context-dependent effects is not
only theoretically interesting, but also important for scalability, since many real
mainstream programming languages include context-dependent effects. Indeed,
exceptions are now a standard feature in many languages, and while other
context-dependent effects such as delimited continuations are not as widespread
in mainstream programming languages, they are present in the core calculi
used for some such languages: for example, the Glasgow Haskell Compiler core
language was recently extended with delimited continuations to support the
introduction of effect systems, which can be efficiently developed on top of
delimited continuations [16]. Moreover, effect handlers, which rely on control flow
operators, have recently been introduced in OCaml 5.0, and as a design feature
in Helium [7], Koka [21,20], and other languages. Note that these languages do
not only include forms of delimited continuations, but also other effects, which
underscores the importance of considering delimited control in combination with
other effects.

Overview of technical development and key challenges. Similarly to how ITrees
are defined as a coinductive type in Coq, GITrees are defined as a guarded
recursive type (this is to support function spaces in GITrees; in the presence of
function spaces there are negative occurrences of the recursive type and hence
one cannot simply define the type of GITrees using coinduction). Coq does not
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directly support guarded recursive types, so GITrees are defined using a fragment
of guarded type theory implemented in Coq, as part of the Iris framework [14].
To work efficiently with GITrees we make use of other Iris features like separation
logic and Iris Proof Mode [19], which we use to define custom program logics
for different (combinations of) effects. This enables us to reason about GITrees
smoothly in the Iris logic in Coq, in much the same way as one works directly in
Coq. We recall the precise definition of GITrees in Section 2.

Broadly speaking, GITrees model effects in the following way. The type of
GITrees is parameterized over a set of effectful operations. Each operation is
given meaning by a reifier function, using a form of state monad. From this, we
define the reduction relation of GITrees, which gives semantics to computations
represented by GITrees.

To support context-dependent effects, we extend (Section 3) the notion of a
reifier so that reification of effects can also depend on the context; technically,
the reifier operation becomes parameterized by a suitable GITrees continuation.
This extension allows us to give semantics to context-dependent effects, but it
comes at a price. In particular, following the change in semantics, we need to
reformulate the program logic for GITrees: in the presence of context-dependent
effects (like call/cc), the so-called “bind”-rule becomes unsound. Of course, we
do not want this reformulation to complicate reasoning about computations
that do not include context-dependent effects. To that end, we parameterize the
GITrees (and the program logic) by a flag, which allows us to recover the original
proof rules and make sure that all of the original GITrees framework still works
with our extension.

To motivate the extension to context-dependent effects, we give direct-style
denotational semantics to a higher-order programming language λcallcc with
call/cc (Section 3). Furthermore, we use the derived program logic to construct
a logical relation between the denotational and the operational semantics to
prove computational adequacy of our model.

Our main interest, however, lies in the treatment of delimited continuations. In
Section 4 we show how to represent delimited continuations as effects in GITrees,
and we use them to define a novel denotational semantics for a programming
language with shift and reset operators. We prove that our denotational
semantics is sound with respect to the operational semantics (given by an
extension of the CEK abstract machine). We additionally use the program logic
to define a logical relation, and prove computational adequacy and semantic
type soundness. We recall that semantic type soundness is interesting because
it allows one to combine syntactically well-formed programs with syntactically
ill-typed, but semantically well-behaved programs [29].

As we mentioned, it is important to consider delimited continuations not only
on their own, but in combinations with other effects. And indeed, one of the key
points of ITrees, and therefore also of GITrees, is that they support reasoning
about effecting and language interoperability by establishing a common unifying
semantic framework. In this paper, we consider (in Section 5) an example of such
interaction: we show a type-safe embedding of λdelim with delimited continuations
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into a language λembed with higher-order store. We allow λdelim expressions to be
embedded into λembed by surrounding them by simple glue code, and use a type
system to ensure type safety of the combined language. To define the semantics
of the combined language we rely on the modularity of GITrees, and combine
reifers for delimited continuations with reifiers for higher-order store. We prove
type safety of the combined language by constructing a logical relation and use
the program logic both to define the logical relation and to verify the glue code
between the two languages. The type system for the combined language naturally
requires that the embedded code is well-typed according to the type system for
λdelim and thus we can rely on the type soundness of λdelim (proved in the earlier
Section 4) when proving type safety for the combined language. At the end of
Section 5, we give an example of how to verify a more involved interaction of
effects, albeit without the type system.

Summary of Contributions. In summary, we present:

– A conservative (with respect to the old results) extension to GITrees for
representing and reasoning about context-dependent effects (Section 3).

– A sound and adequate model of a calculus with call/cc and throw, imple-
mented in a direct style (Section 3.3).

– A sound and adequate model of a calculus with delimited continuations, with
operations shift and reset, implemented in a direct style (Section 4).

– A type system for interoperability between a programming language with
delimited continuations and a programming language with higher-order store,
with a semantic type safety proof (Section 5).

All results in the paper have been formalized in Coq as a modification to the
GITrees library and the previously proved results have been ported to our
extension. We conclude and discuss related work in Section 6. Before we go on
with the main part of the paper, we recall some background material on GITrees.

2 Guarded Interaction Trees

In this section we provide an introduction to guarded interaction trees. Our
treatment is brief, and we refer the reader to the original paper for details [13].

Iris and Guarded Type Theory. Guarded Interaction trees (GITrees) are defined
in Iris logic. Here we briefly touch Iris, and refer the reader to the literature on
Iris [15] and guarded type theory [8] for more in-depth details. Iris is a separation
logic framework built on top of a model of guarded type theory, the main use of
which is to solve recursive equations and define guarded recursive types, such
as the type of GITrees described below. Moreover, Iris has a specialized proof
mode [19], implemented in Coq. This allows the users of Iris to carry out formal
reasoning in separation logic as if they are proving things normally Coq, as we
have done in the formalization of this work. For this reason, in the paper we will
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τ ::= iProp | 0 | 1 | B | Nat | τ + τ | τ × τ | τ → τ | ▶τ | I | Σi∈Iτi | Πi∈Iτi | . . .

t ::= x | F (t1, . . . , tn) | abort t | () | (t, t) | πi t | λx : τ. t |
inji t | match t with inji x.t end | next(t) | fixτ | . . .

P ::= False | t =τ t | P ∨ P | P → P | ∀x : τ. P | P ∗ P | P −∗ P | □P | P | ▷P | . . .

Fig. 1. Grammar for the Iris base logic.

guarded type ITE(A) = Ret : A→ ITE(A)

| Fun : ▶(ITE(A)→ ITE(A))→ ITE(A)

| Err : Error→ ITE(A)

| Tau : ▶ITE(A)→ ITE(A)

| Vis :
∏
i∈I

(
Insi(ITE(A))× (Outsi(ITE(A))→ ▶ITE(A))

)
→ ITE(A)

Fig. 2. Guarded datatype of interaction trees.

work with Iris and its type theory informally. Still, we need to say a few things
about the foundations.

The syntax of Iris, shown in Figure 1, contains types, terms, and propositions.
The grammar is standard for higher-order logic, with the exception of the guarded
types fragment, and separation logic connectives. The type of propositions is
denoted iProp. The guarded part of guarded type theory is the “later” modality ▶.
Intuitively, we view all types as indexed by a natural number, where τn contains
elements of τ “at time” n. Then ▶τ contains elements of τ at a later time; that
is, (▶τ)n = τn−1. There is an embedding next : τ → ▶τ , and there is a guarded
fixed point combinator fixτ : (▶τ → τ) → τ , similar to the unguarded version in
PCF. We can also lift functions to ▶: given f : A → B, we have ▶f : ▶A → ▶B.

For the proposition, Iris contains the usual separation logic connectives, and
the two modalities: “later” ▷ and “persistently” □. The propositional ▷ modality
reflects the type-level later modality ▶ on the level of propositions, as justified by
the following rule: ▷(α =τ β) ⊣⊢ next(α) =▶τ next(β). The persistence modality
□P states that the proposition P is available without claiming any resources (as
it normally is the case in separation logic); crucially it makes the proposition
duplicable: □P ⊢ (□P ) ∗ (□P ). An example of a persistent proposition is the
invariant proposition P , which satisfies P ⊢ □P .

Guarded Interaction Trees. Guarded recursive datatypes are datatypes obtained
from recursive equations of the form X = F (▶X). In other words, guarded
recursive datatypes are similar to the regular datatypes you see in normal
programming languages, but every recursive occurrence of the type must be
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guarded by the ▶ modality. The datatype we are concerned with here is the type
of GITrees, shown in Figure 2. It is parameterized over two types: the ground
type A and the effect signature E (more on it below).

Guarded Interaction Trees represent computational trees in which the leaves
are of the ground type (Ret(a)), error states (Err(e)), and functions (Fun(f)).
The leaves Ret(a) and Fun(f) are also called values, and we write ITv

E(A) for
the type of ITE(A)-values.

The nodes of the computation trees are of the two kinds. The first one is a
“silent step” constructor Tau(α). It represents an unobservable internal step of the
computation. For convenience, we use the function Tick ≜ Tau◦next : ITE(A) →
ITE(A) that “delays” its argument. This function satisfies the following equation:
Tick(α) = Tick(β) ⊣⊢ ▷(α = β).

The second kind of nodes are effects given by Visi(x, k). The parameters I,
Ins and Outs are part of the effect signature E. The set I is the set of names
of operations. The arities of an operation i ∈ I are given by functors Insi and
Outsi. Let us give an example.

Consider the following signature for store effects. The signature Estate consists
of effects {write, read, alloc} with the following input/output arities:

Inswrite(X) ≜ Loc ×▶X Insread(X) ≜ Loc Insalloc(X) ≜ ▶X

Outswrite(X) ≜ 1 Outsread(X) ≜ ▶X Outsalloc(X) ≜ Loc

For example, write expect a location and a new GITree as its input, and simply
returns the unit value as an output. We write Viswrite((ℓ, α), λ_. β) for the
computation that invokes the write effect with arguments ℓ and α, waits for it
to return, and proceeds as β. Thus, the first argument for Visi is the input, and
the second one is the continuation dependent on the output. This continuation
determines the branching in (G)Itrees.

For effects like above, it is usually convenient to provide wrappers:

Alloc(α : IT, k : Loc → IT) ≜ Visalloc(next(α), next ◦ k)
Read(ℓ : Loc) ≜ Visread(ℓ, λx.x)

Write(ℓ : Loc, α : IT) ≜ Viswrite((ℓ, next(α)), λx.next(Ret(inj())))

When the signature and the return type are clear from the context, we simply
write IT and ITv for the GITrees and GITree-values.

Equational theory. GITrees come with a number of operations (defined using the
recursion principle) that are used for writing and composing computations. Here
we list some of those operations which we will be using. The function get_val(α, f :
ITv → IT) are used for sequencing computations, and its corresponding equations
are shown in Figure 3. Intuitively, get_val(α, f) first tries to compute α to a
value (a Ret(a) or a Fun(g)), and then calls f on that value. Similarly, get_fun(α :
IT, f : ▶(IT → IT) → IT) and get_ret(α : ITE(A), f : A → ITE(A)) first
compute α to a value; if that value is a function Fun(g) (resp., Ret(a)), then it
proceeds with f(g) (resp., f(a)). Otherwise it results in an runtime error.
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get_val(Ret(a), f) = f(Ret(a)) get_val(Tau(t), f) = Tau(▶get_val(t, f))

get_val(Fun(g), f) = f(Fun(g)) get_val(Tick(α), f) = Tick(get_val(α, f))

get_val(Err(e), f) = Err(e) get_val(Visi(x, k), f) = Visi(x,▶get_val(−, f) ◦ k)

Fig. 3. Example function on Guarded Interaction Trees.

r :
∏
i∈E

Insi(ITE)× State → option(Outsi(ITE)× State)

ri(x, σ) = Some(y, σ′) k y = next(β)
reify(Visi(x, k), σ) = (Tick(β), σ′)

ri(x, σ) = None
reify(Visi(x, k), σ) = (Err(RunTime), σ)

Fig. 4. Signature of reifiers and the reification function

Crucially, to work with higher-order computations, GITrees provide the “call-
by-value” application α • β satisfying the following equations:

α • Tick(β) = Tick(α • β) α • Visi(x, k) = Visi(x, λy. next(α) (▶•) k y)

Tick(α) • βv = Tick(α • βv) Visi(x, k) • βv = Visi(x, λy. k y (▶•) next(βv))

Fun(next(g)) • βv = Tick(g(βv)) α • β = Err(RunTime) in other cases

where − (▶•) − is defined as the lifting of − • − to ▶ITE(A) → ▶ITE(A) →
▶ITE(A), and βv ∈ ITv

E(A) is either Ret(a) or Fun(g).

The application function α • β simulates strict function application. It first
tries to evaluate β to a value βv. Then it tires to evaluate α to a function f . If it
succeeds, then it invokes f(βv). If at any point it fails, application results in a
runtime error.

For the often-used case of GITrees where the ground type includes natural
numbers, we use the function NatOp : (N → N → N) → IT → IT → IT which
lifts binary functions on natural numbers to binary functions on GITrees. That
is, NatOpf (α, β) first evaluate GITrees β and α to values. If those values are
natural numbers, then it computes f of those numbers and returns the result as
a GITree. Otherwise, it returns a runtime error Err(RunTime).

Reification and reduction relation. The semantics for effects are given in terms
of reifiers. A reifier for the signature E is a tuple (State, r), where State is a
type representing the internal state needed to reify the effects, and r is a reifier
function of the type given in Figure 4. The idea is that ri uses the internal state
State to compute the output of the effect i based on its input.
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For example, for the store effects we take State to be a map from locations to
▶IT (representing the heap); and we define the following reifier functions:

rwrite((ℓ, α), σ) = Some((), σ[ℓ 7→ α]) (where ℓ ∈ σ, and None otherwise)
rread(ℓ, σ) = Some(α, σ) (where σ(ℓ) = α, and None otherwise)

ralloc(α, σ) = Some(ℓ, σ[ℓ 7→ α]) (where ℓ /∈ σ)

Given reifiers for all the effects, we define a function reify : IT × State →
IT×State (as in Figure 4) that, given (α, σ) reifies the top-level effect in α using
the state σ, and returns the reified GITree and the updated state.

The reify function is then used to give reduction semantics for GITrees. We
write (α, σ) ⇝ (β, σ′) for such a reduction step. The definition of ⇝ is given
internally in the logic:

(α, σ)⇝ (β, σ′) ≜
(
α = Tick(β) ∧ σ = σ′)

∨
(
∃i x k. α = Visi(x, k) ∧ reify(α, σ) = (Tick(β), σ′)

)
That is, either α is a “delayed” computation Tick(β), which then reduces to β; or
it is an effect that can be reified. Recall that we write Tick for the composition
Tau ◦ next.

Note that the reify function operates on the top-level effect of the GITree.
But what if the top-level constructor is not Vis, e.g. if we have an effect inside
an “evaluation context”? The role of evaluation contexts in GITrees is played by
homomorphisms, which also allow us to bubble up necessary effects to the top of
the GITree.

Definition 1 (Homomorphism). A map f : IT → IT is a homomorphism,
written f ∈ Hom, if it satisfies:

f(Err(e)) = Err(e) f(Tick(α)) = Tick(f(α)) f(Visi(x, k)) = Visi(x,▶f ◦ k)

For example, λx. α • x is a homomorphism, and so is λx. get_val(x, f). On the
other hand, λx.Visalloc(next(x), k) (for some fixed k) is not a homomorphism.

Program logic. In order to reason about GITrees, we employ the full power of the
Iris separation logic framework. The program logic operates on the propositions
of the form wp α

{
Φ
}
. This weakest precondition proposition intuitively states

that the GITree α is safe to reduce, and when it fully reduces, the resulting value
satisfies the predicate Φ. Another important predicate is has_state(σ), which
signifies ownership of the current state σ.

In Figure 5 we show the rules, on which we focus in this work. Let us describe
their meaning. The rule wp-reify allows us to symbolically execute effects in
GITrees. It is given in a general form, and is used to derive domain-specific
rules for concrete effects. Another important rule is wp-hom which allows one
to separate the reasoning about the computation from the reasoning about the
context. The reason why wp-hom is sound (this is going to be important in the
next section when we make it unsound), is because the reduction ⇝ of GITrees
satisfies the following properties which allow one disentangle a homomorphism
from the GITree it’s applied to:
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wp-reify
has_state(σ)

reify(Visi(x, k), σ) = (Tick(β), σ′)
▷
(
has_state(σ′) −∗ wp β

{
Φ
})

wp Visi(x, k)
{
Φ
} wp-hom

f ∈ Hom wp α
{
βv.wp f(βv)

{
Φ
}}

wp f(α)
{
Φ
}

Fig. 5. Selected weakest precondition rules.

Lemma 1. Let f be a homomorphism. Then,

– (α, σ)⇝ (β, σ′) implies (f(α), σ)⇝ (f(β), σ′);
– If (f(α), σ)⇝ (β′, σ′) then either α is a GITree-value, or there exists β such

that (α, σ)⇝ (β, σ′) and ▷(f(β) = β′).

Finally, as usual in Iris, the program logic satisfies an adequacy property,
which allows one to relate propositions proved in the logic to the actual semantics:

Theorem 1. Let α be an interaction tree and σ be a state such that

has_state(σ) ⊢ wp α
{
Φ
}

is derivable for some meta-level predicate Φ (containing only intuitionistic logic
connectives). Then for any β and σ′ such that (α, σ) ⇝∗ (β, σ′), one of the
following two things hold:

– (adequacy) either β ∈ ITv, and Φ(β) holds in the meta-logic;
– (safety) or there are β1 and σ1 such that (β, σ′)⇝ (β1, σ1)

In particular, safety implies that β ̸= Err(e) for any error e ∈ Error.

The role of meta-logic is played by the Coq system; thus, the adequacy theorem
allows us to relate proofs inside the program logic (Iris) to the proofs on the
level of Coq. This aspect is important in Iris and GITrees in general, but it is
orthogonal to the work that we present in this paper. See [13] for more details.

3 Context-Dependent Reification

In this section we extend reification to handle context-dependent effects, using a
language λcallcc with call/cc as a concrete example. In Section 3.1 we present
λcallcc’s syntax and operational semantics (in the usual style with evaluation
contexts). We then show why the current GITrees framework cannot be used
as a denotational model for λcallcc directly. In Section 3.2 we introduce our
generalization of reification for context-dependent effects and corresponding
extensions to the GITrees program logic. In Section 3.3 we demonstrate that our
extension works as intended: we give a denotational semantics for λcallcc, and
we show how the general program logic for GITrees specializes to a logic for
reasoning about call/cc. We prove soundness and computational adequacy of
denotational semantics using a logical relation defined within our program logic.
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types Ty ∋ τ ::= N | τ1→ τ2 | cont(τ)
expressions Expr ∋ e ::= v | x ∈ Var | e1 e2 | e1 ⊕ e2 | if e1 then e2 else e3

| call/cc (x. e) | throw e1 to e2
values Val ∋ v ::= n | rec f(x) = e | cont K
eval. cont. Ectx ∋ K ::= □ | ifK then e1 else e2 | K v | e K | e⊕K | K ⊕ v

| throw K to e | throw v to K

call/cc (x. e) 7→K e[cont K/x] K[throw v to cont K′] 7→ K′[v]
e1 7→K e2

K[e1] 7→ K[e2]

Γ, x : cont(τ) ⊢ e : τ

Γ ⊢ call/cc (x. e) : τ

Γ ⊢ e1 : τ Γ ⊢ e2 : cont(τ)

Γ ⊢ throw e1 to e2 : τ ′

Fig. 6. Syntax and fragments of type system and operational semantics of λcallcc.

3.1 Operational Semantics and Type System for λcallcc

By λcallcc we denote a simply-typed λ-calculus with natural numbers, recursive
functions, and call/cc. The relevant pieces of syntax, the type system and the
operational semantics are given in Figure 6. The type system includes natural
numbers, function types, and the type cont(τ) of continuations. The call/cc (x. e)
expression takes the current evaluation context and binds it to x in e. The
throw e to e′ expression evaluates passes the first argument (value) to the second
argument (continuation, represented as an evaluation context).

The operational semantics of λcallcc is separated into two layers. The first layer
consists of local reductions of primitive expressions (e 7→K e′), and the second
layer lifts local reductions to reductions among complete programs (K[e] 7→
K ′[e′]). The local reductions are parameterized by an evaluation context K,
which allows call/cc (x. e) to capture the evaluation context. Let us now consider
what happens if we try to give a direct-style denotational semantics of λcallcc into
GITrees. By direct we mean that we wish to give a direct interpretation of types
and expressions, rather than going through a global CPS conversion. To define
the semantics, we first need to provide an effect signature, state, and reifiers for
each effect, and then we can define the interpretation of the expressions of the
language.

The effect signature, shown in Figure 7, contains two effects callcc and
throw. Since call/cc binds a continuation, it is natural to let the input arity for
callcc be a callback (▶IT → ▶IT) → ▶IT. The output arity is simply ▶IT.

The input arity for throw signifies that throw takes as input an expression
and a continuation, which are represented respectively as ▶IT and ▶(IT → IT).
The output arity of throw is simply the empty type 0, because throw never
returns.

Note that the input types of callcc and throw have slightly different ar-
ities. However, we can always transform f : (▶X → ▶X) into an element
of type ▶(X → X) by performing a silent step in the function’s body: f ′ ≜
next(λx.Tau(f(next(x)))). And we can always transform f : ▶(X → X) into an
element of type ▶X → ▶X using the applicative structure of the later modality.
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Inscallcc(X) ≜ ((▶X → ▶X)→ ▶X) Outscallcc(X) ≜ ▶X

Insthrow(X) ≜ ▶X ×▶(X → X) Outsthrow(X) ≜ 0

Callcc(f) ≜ Viscallcc(f, id) Throw(e, f) ≜ Visthrow(e, f, λx. abort x)

Fig. 7. Signatures and opertaions on GITrees with call/cc.

r :
∏
i∈E

Insi(ITE)× State × (Outsi(ITE)→ ▶ITE)→ option(▶ITE × State)

ri(x, σ, κ) = Some(β, σ′)

reify(Visi(x, κ), σ) = (Tau(β), σ′)

ri(x, σ, κ) = None
reify(Visi(x, κ), σ) = (Err(RunTime), σ)

Fig. 8. Type of context-dependent reifiers and the context-dependent reify function

For convenience, we will use the abbreviations Callcc(f) and Throw(e), defined
in Figure 7, for representing denotations of throw and call/cc as effects in
GITrees.

To complete all the ingredients for the denotational semantics, we need
reifiers for the callcc and throw effects. Given our operational understanding
of continuations, the natural choice for the local state type State is 1 (since we
do not have any state). However, the current reifier signature (Figure 4) poses a
problem. Reifiers, as they are now, cannot access their current continuation, which
is essential for both effects. Callcc(f) needs to pass the current continuation to f ,
while Throw must redirect control to a provided continuation instead of returning
normally. The current reifiers lacks this capability, and in the next subsection we
show how to generalize the notion of reification to context-dependent effects.

3.2 Context-dependent Reifiers

This section presents our extension to context-dependent reification, and the
limitations it imposes on the program logic. In order to allow reifiers to manage
continuations, we change the type of reifiers to accept continuations as an extra
parameter, as shown in Figure 8. Continuations for a given effect are functions
from the effect’s outputs to GITrees: Outsi(ITE) → ▶ITE . Given a set of context-
dependent reifiers, we define a context-dependent reify function, also shown
in Figure 8. As before, reify dispatches to the correct individual reifier for the
effect. Note that now it is the user’s responsibility to pass the output of an effect
to the given continuation if the control flow is not supposed to be interrupted.
For example, since the evaluation of a call/cc (x. e) expression does not modify
the control flow itself, but simply passes the current continuation to its body, the
context-dependent reifier for callcc is simply rcallcc(x, σ, κ) = Some(κ (x κ), σ).

Before we move on to discussing the consequences of this for program logic,
we would like to note that our treatment of continuation (with top-level reifiers
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wp-write
heap_ctx ▷ ℓ 7→ α

▷(ℓ 7→ β −∗
wp Ret()

{
Φ
}
)

wp Write(ℓ, β)
{
Φ
}

wp-write-ctx-dep
κ ∈ Hom

heap_ctx ▷ ℓ 7→ α
▷(ℓ 7→ β −∗

wp κ (Ret())
{
Φ
}
)

wp κ (Write(ℓ, β))
{
Φ
}

wp-reify-ctx-dep
has_state(σ)

ri(x, σ, k) = Some(next(β), σ′)
▷
(
has_state(σ′) −∗

wp β
{
Φ
})

wp Visi(x, k)
{
Φ
}

Fig. 9. Program logic in the presence of context-dependent reifiers.

dispatching them) parallels Cartwright and Felleisen’s “extensible direct mod-
els” [9], which also aimed to support extensible denotational semantics in classical
domain theory. We discuss this more in Section 6.

Program logic for GITrees in the presence of context-dependent reifiers. To
reflect the generalization to context-dependent reifiers in the program logic, we
replace the proof rule wp-reify by wp-reify-ctx-dep, shown in Figure 9. This
is, however, not the only change we need to make. In the presence of context-
dependent effects, wp-hom is not sound! (A similar observation was also made
by [27] in their development of a program logic for call/cc.) The reason is that
context-dependent reification invalidates Lemma 1. Now, since wp-hom is not
sound anymore, one might expect that we need to adapt all the other program
logic rules to include a homomorphism similarly to how the rules of [27] were
adapted to include an evaluation context. However, this is not necessary, because
our program logic is defined on denotations on which we have a non-trivial
equational theory, which can be used to reason about ‘pure’ GITrees. Only
for effectful operations, the proof rules will now have to include a surrounding
homomorphism. E.g., wp-write from [13] is generalized to wp-write-ctx-dep,
and considers ambient homomorphisms explicitly.

Our context-dependent reification extension, though simple, allows us to
build sound and adequate denotational models for languages with control-flow
operators, including λcallcc (shown in the next subsection). Moreover, our extension
is conservative, and we recover previous case studies (computational adequacy
of λrec,io and type safety for λ⊸,ref [13]) with minimal modifications; see the
accompanying Coq formalization.

3.3 Denotational Semantics of λcallcc

In this section we show that context-dependent reifiers are sufficient for providing
a sound and adequate semantic model of λcallcc. We define context-dependent
reifiers for callcc and throw, then prove that this gives a sound interpretation
w.r.t. operational semantics. To show adequacy, we define a logical relation, which
relates the denotational and operational semantics. The logical relation is defined
in the (updated) program logic for GITrees (following the approach in [13]), and
validates the utility of the program logic.
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EJxKρ = ρ(x)

EJcall/cc (x. e)Kρ = Callcc(λ(f : ▶IT→ ▶IT).EJeKρ[x 7→Fun(next(λy.Tau(f(next(y)))))])

EJthrow e1 to e2Kρ = get_val(EJe1Kρ, λx. get_fun(EJe2Kρ, λf.Throw(x, f)))

VJcont KKρ = Fun(next(λx.Tau(KJKKρ (▶•) next(x))))

KJthrow K to eKρ = λx. get_val(KJKKρ x, λy. get_fun(EJeKρ, λf.Throw(y, f)))

KJthrow v to KKρ = λx. get_val(VJvKρ, λy. get_fun(KJKKρ x, λf.Throw(y, f)))

Fig. 10. Denotational semantics of λcallcc (selected clauses).

Interpretation of λcallcc. The denotational semantics of λcallcc is shown in Figure 10
(selected clauses only; see Coq formalization for the complete definition). The
interpretation is split into three parts: EJ−K for expressions, VJ−K for values,
and KJ−K for contexts. For the interpretation of throw e1 to e2, the left-to-right
evaluation order is enforced by the functions get_val and get_fun. They first
evaluate their argument to a GITree value, and then pass it on (c.f. Figure 3).

The context-dependent reifiers for the effects callcc and throw are defined
as follows:

rcallcc(f, (), κ) = Some(κ (f κ), ()) rthrow((α, f), (), κ) = Some(f α, ())

To show that the denotational semantics is sound, we need the following
lemma that shows that interpretations of expressions in evaluation contexts are
decomposed into applications of homomorphisms.
Lemma 2. For any context K and an environment ρ, we have KJKKρ ∈
Hom. For any context K, expression e, and an environment ρ, EJK[e]Kρ =
KJKKρ(EJeKρ).
With these results at hand, we can show soundness of our interpretation:
Lemma 3. Soundness. Suppose e1 7→ e2. Then (EJe1Kρ, ()) ⇝∗ (EJe2Kρ, ()),
where () : 1 is the unique element of the unit type, representing the (lack of)
state.

Program logic for λcallcc. We now specialize the general program logic rule wp-
reify-ctx-dep using the reifiers for callcc and throw to obtain the following
program logic rules:
wp-throw

κ ∈ Hom has_state(σ)
▷(has_state(σ) −∗ wp f x

{
Φ
}
)

wp κ (Throw(next(x), next(f)))
{
Φ
}

wp-callcc
κ ∈ Hom has_state(σ)

▷(has_state(σ) −∗ wp κ (f κ)
{
Φ
}
)

wp κ (Callcc(next ◦ f))
{
Φ
}

where κ is a homomorphism representing the current evaluation context on the
level of GITrees. The reader may wonder why these rules include the has_state(σ)
predicates, since it is just ’threaded around’. The reason is that these rules also
apply when there are other effects around and the state is composed of different
substates for different effects, cf. the discussion of modularity in Section 2.
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O(α, e) ≜ has_state(()) −∗ wp α
{
β.∃v. (e 7→∗ v) ∗ JNK(β, v) ∗ has_state(())

}
O : ERel

K(R)(κ,K) ≜ □ ∀(β, v). R(β, v) −∗ O(κ β,K[v]) K : VRel→ CRel

E(R)(α, e) ≜ ∀(κ,K).K(R)(κ,K) −∗ O(κ α,K[e]) E : VRel→ ERel

JNK(α, v) ≜ ∃n : N. α = Ret(n) ∧ v = n JτK : VRel

Jτ1→ τ2K(β, v) ≜ ∃f. β = Fun(f) ∧□ ∀(α, v′). Jτ1K(α, v′) −∗ E(Jτ2K)(Fun(f) • α, v v′)

Jcont(τ)K(β, v) ≜ ∃κ K. β = Fun(next(λx.Tick(κ x))) ∧ v = cont K ∧ K(JτK)(κ,K)

JΓ K(ρ, γ) ≜ ∀(x : τ) ∈ Γ. JτK(ρ x, γ x)

Γ ⊨ e : τ ≜ □ ∀(ρ, γ). JΓ K(ρ, γ) −∗ E(JτK)(EJeKρ, e[γ])

CRel ≜ Hom × Ectx→ iProp

VRel ≜ ITv ×Val→ iProp

ERel ≜ IT× Expr→ iProp

Fig. 11. Logical relation for λcallcc.

Adequacy and logical relation. Having established soundness, we now turn our
attention to adequacy, which is usually much more complicated to prove.

Lemma 4. Adequacy. Suppose that ∅ ⊢ e : N and (EJeK∅, σ1)⇝∗ (Ret(n), σ2),
for a natural number n. Then e 7→∗ n.

To prove Lemma 4, we define a logical relation between syntax (λcallcc programs)
and semantics (GITrees denotations) using the program logic from Figure 11.
To handle control effects, we use a biorthogonal logical relation [23], adapted
from [27] for adequacy, following the Iris approach [29].

The core observational refinement O(α, e) ensures that if α reduces to a GITree
value ITv, then this value is a natural number, and e also reduces to the same
number. The evaluation context relation K(P )(κ,K) relates homomorphisms and
evaluation contexts when they map related arguments to expressions satisfying
O. The expression relation E(P )(α, e) connects related IT’s and expressions in
related evaluation contexts. Types are inductively interpreted: functions relate
if they map related arguments to related results, and continuations relate via
the context relation. For open terms, the validity judgment Γ ⊨ e : τ uses closing
substitutions, with e[γ] denoting applying a substitution γ to e.

The proof of adequacy relies on the fact that the interpretation of evaluation
contexts are homomorphisms, which allows us to use a limited version of the
bind rule:

Lemma 5. Limited bind rule. If E(P )(α, e) and K(P )(κ,K), then O(κ α,K[e]).

With this in mind we show the fundamental lemma, stating that every well-typed
expression is related to its own interpretation:

Lemma 6. Fundamental lemma. Let Γ ⊢ e : τ then Γ ⊨ e : τ .
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Γ ;α ⊢ e : τ ;β

Γ ⊢pure e : τ
types Ty ∋ τ, σ, α, β, δ, γ ::= N | τ/α→σ/β | cont(τ, α)
expressions Expr ∋ e ::= v | x | e1 e2 | e1 ⊕ e2

| if e1 then e2 else e3 | S x. e | D e | e1 @ e2
values Val ∋ v ::= n | rec f(x) = e | cont K
eval. contexts Ectx ∋ K ::= □ | K[if □ then e1 else e2] | K[v □] | K[□ e]

| K[e⊕□] | K[□⊕ v] | K[□ @ v] | K[e @ □]

Γ ⊢pure e : τ

Γ ;α ⊢ e : τ ;α

Γ, x : cont (τ, α);σ ⊢ e : σ;β

Γ ;α ⊢ S x. e : τ ;β

Γ ; τ ⊢ e : τ ;σ

Γ ⊢pure D e : σ

x : τ ∈ Γ

Γ ⊢pure x : τ

Γ, f : σ/α→ τ/β, x : σ;α ⊢ e : τ ;β

Γ ⊢pure rec f(x) = e : σ/α→ τ/β

Γ ; γ ⊢ e1 : σ/α→ τ/β; δ
Γ ;β ⊢ e2 : σ; γ

Γ ;α ⊢ e1 e2 : τ ; δ

Γ ;β ⊢ e1 : N;α Γ ;σ ⊢ e2 : τ ;β Γ ;σ ⊢ e3 : τ ;β

Γ ;σ ⊢ if e1 then e2 else e3 : τ ;α Γ ⊢pure n : N

Γ ;α ⊢ e1 : N;β Γ ;β ⊢ e2 : N;σ
Γ ;α ⊢ e1 ⊕ e2 : N;σ

Γ ;σ ⊢ e1 : cont (τ, α); δ Γ ; δ ⊢ e2 : τ ;β

Γ ;σ ⊢ e1 @ e2 : α;β

Fig. 12. Syntax and typing rules of λdelim.

Computational adequacy now follows easily from the fundamental lemma.

Proof (of Lemma 4). By Lemma 6, we have that ∅ ⊢ e : N implies that ∅ ⊨
e : N. Now, the statement follows from Theorem 1 and the assumption that
EJeK∅, σ1 ⇝∗ Ret n, σ2.

4 Modeling Delimited Continuations

In this section we scale our approach to delimited continuations, which is a
challenging example of context-dependent effects. We provide a denotational
semantics for a programming language λdelim with shift/reset, and prove its
soundness and adequacy relative to an abstract machine semantics [6]. The
semantics and proofs are more complex than for λcallcc due to the nature of
delimited continuations and associated type system. To the best of our knowledge,
this represents the first formalized sound and adequate direct-style denotational
semantics for delimited continuations.

4.1 Syntax and Operational Semantics of λdelim

The syntax and the type system of λdelim is given in Figure 12. It is similar to
λcallcc, but instead of call/cc (−. −) there are operators D e (delimit the current
evaluation context, also known as reset) and S x. e (grab the current delimited
continuation, and bind it to x in e, also known as shift).
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⟨e⟩term 7→ ⟨e, □, []⟩eval
⟨K :: mk, v⟩mcont 7→ ⟨K, v, mk⟩cont

⟨[], v⟩mcont 7→ ⟨v⟩ret
⟨□, v, mk⟩cont 7→ ⟨mk, v⟩mcont

⟨K[□ @ v], cont K′, mk⟩cont 7→ ⟨K
′, v, K :: mk⟩cont

⟨K[e @ □], v, mk⟩cont 7→ ⟨e, K[□ @ v], mk⟩eval
⟨v, K, mk⟩eval 7→ ⟨K, v, mk⟩cont

⟨e0 @ e1, K, mk⟩eval 7→ ⟨e1, K[e0 @ □], mk⟩eval
⟨D e, K, mk⟩eval 7→ ⟨e, □, K :: mk⟩eval
⟨S k. e, K, mk⟩eval 7→ ⟨e[K/k], □, mk⟩eval

metacontinuations:
Mcont ∋ mk ::= [] | K :: mk

abstract machine config.:
Config ::= ⟨e, K, mk⟩eval |

⟨K, v, mk⟩cont |
⟨mk, v⟩mcont |

⟨e⟩term |
⟨v⟩ret

Fig. 13. Operational semantics of λdelim (excerpt).

The type system follows Danvy and Filinski [10], extending simply-typed
λ-calculus with answer types α, β. The main typing judgment Γ ;α ⊢ e : τ ;β
means: under the typing context Γ , expression e can be plugged into a context
expecting a value of type τ and producing a value of type α; in that case the
resulting program will have the type β. You can think of it a computation
Γ → (τ → α) → β under the CPS translation. Thus, the type of the (delimited)
continuation corresponds to τ → α, while the type of the overall expression is
β. The pure typing judgment Γ ⊢pure e : τ indicates e does not depend on the
surrounded context, and is context-independent for any answer types. Expressions
can change their context’s answer type, as seen in the S x. e typing rule.

For example, suppose we extend the type system with booleans, B, and add
a primitive function isprime that does not modify answer types. That is ∅;α ⊢
isprime : N/β→B/β;α. The expression D ((rec f(x) = isprime (S k. x− 1)) 2) is
well-typed in this type system as a N, even though it changes the answer type
from B to N.

Answer types appear in both judgments and type constructors. Continuation
type cont (τ, α) represents contexts expecting something of the type τ and
producing something of the type α. Function type σ/α→ τ/β, in addition to the
input type σ and the output type τ , record the typing of the surrounding context
at the point of the function call. See [10] for details.

The operational semantics for λdelim uses a CEK machine, following [6,12,5].
Selected reduction rules appear in Figure 13 (see Coq formalization for the full
set of rules). The abstract machine operates on various configurations, which
can be of several forms. The first one is the initial configuration ⟨e⟩term, which
is just a starting state for evaluating expressions. Similarly, there is a terminal
configuration ⟨v⟩ret signifying that the program has terminated with the value v.

From the initial configuration, we go on to ⟨e, K, mk⟩eval, which signifies that
we are evaluating an expression e inside the current delimited context K, with the
metacontinuation mk (a stack of continuations based on different delimiters). It
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Insreset(X) ≜ ▶X Insshift(X) ≜ (▶X → ▶X)→ ▶X

Inspop(X) ≜ ▶X Insappcont(X) ≜ ▶X ×▶(X → X)

Outsreset(X) ≜ ▶X Outsshift(X) ≜ ▶X

Outspop(X) ≜ 0 Outsappcont(X) ≜ ▶X

rreset(e, σ, κ) = Some(e, κ :: σ) rshift(f, σ, κ) = Some(f κ, σ)

rpop(e, [],_) = Some(e, []) rpop(e, κ :: σ,_) = Some(κ e, σ)

rappcont((e, κ), σ, κ
′) = Some(κ e, κ′ :: σ) P(β) ≜ get_val(β,Pop)

Reset(e) ≜ Visreset(e, id) Shift(f) ≜ Visshift(f, id)

Appcont(e, f) ≜ Visappcont((e, f), id) Pop(e) ≜ Vispop(e, λx. abort x)

Fig. 14. Effects for λdelim.

is this configuration type which takes care of delimited control operations. The D
operator saves the current continuation on top of the metacontinuation, limiting
the scope of S x. e. The S x. e operation behaves similarly to call/cc (x. e), except
that it prevents later control operators from capturing its evaluation context.

The last two configuration types are for dealing with continuations and
metacontinuations. A configuration ⟨K, v, mk⟩cont signifies that we are trying
to plug in the value v into the context K, with the metacontinuation mk. A
configuration ⟨mk, v⟩mcont signifies that we are done with the current continuation
(ending with the value v), but we still have to unwind the continuation stack mk.

4.2 Denotational Semantics of λdelim

Our model represents delimited continuations with effects mimicking an ab-
stract machine, operating on semantic rather than syntactic components. The
effect signature and reifiers (Figure 14) define a state with a stack of continua-
tions, manipulated explicitly. The effect signature Eλdelim

includes four operators:
{reset, shift, pop, appcont}. The signature of reset simply tells us that the
corresponding effect does not directly modify its argument. The auxiliary effect
pop, which does not have an equivalent in the surface syntax, is used to enforce
unwinding of the continuation stack. As the output arity of pop signifies, it does
not return. We describe the importance of that below. The rest of the signature
is more straightforward: shift and appcont are defined exactly as callcc and
throw. The semantics of these effects, in terms of reification, is more intricate.
As we mentioned, the state for reification is State = List(▶IT → ▶IT).

In comparison with call/cc (x. e), the control operator S x. e does not nec-
essarily continue from the same continuation; hence, the corresponding reifier
passes the current continuation to the body, but does not return control back.
The reifier for reset simply saves the current continuation κ onto the stack σ. It
is then the job of the pop operation to restore the continuation from the stack.
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wp-shift
has_state(σ)

▷(has_state(σ) −∗ wp β
{
Φ
}
)

▶P(f(▶κ)) = next(β)
wp κ(Shift(f))

{
Φ
}

wp-reset
has_state(σ)

▷(has_state(▶κ :: σ) −∗ wp P(e)
{
Φ
}
)

wp κ(Reset(next(e)))
{
Φ
}

wp-pop
has_state(σ)

κ′ = κ if σ = κ :: σ′ and id otherwise
▷(has_state(tail(σ)) −∗ wp κ′(v)

{
Φ
}
)

wp P(v)
{
Φ
}

wp-appcont
has_state(σ)

▷(has_state(▶κ :: σ) −∗ wp β
{
Φ
}
)

▶κ′(e) = next(β)
wp κ(Appcont(e, κ′))

{
Φ
}

Fig. 15. Weakest precondition rules for delimited continuations.

EJD eKρ = Reset(P(EJeKρ))
EJS x. eKρ = Shift(P ◦ (λκ.EJeKρ,x 7→Fun(next(λy.Tau(κ(nexty))))))

EJe1 @ e2Kρ = get_val(EJe2Kρ, λx. get_fun(EJe1Kρ, λy.Appcont(next(x), y)))

VJcont KKρ = Fun(next(λx.Tick(P(KJKKρ x))))

KJK[□ @ v]Kρ = λx.KJKKρ(EJx @ vKρ)
MJmkKρ = map(λk.P ◦KJkKρ)mk

SJ⟨e, K, mk⟩evalKρ = (P(EJK[e]Kρ),MJmkKρ)
SJ⟨K, v, mk⟩contKρ = (P(EJK[v]Kρ),MJmkKρ)
SJ⟨mk, v⟩mcontKρ = (P(VJvKρ),MJmkKρ)
SJ⟨e⟩termKρ = (P(EJeKρ), [])
SJ⟨v⟩retKρ = (VJvKρ, [])

Fig. 16. Denotational semantics for a calculus with delimited control (selected clauses).

The reifier for shift is similar to that of callcc, except that it removes the
current continuation entirely. The reifier for appcont, in comparison with throw,
does not simply pass control, but also saves the current continuation on the stack.
This corresponds to the fact that whenever a delimited continuation is invoked,
the result is wrapped in a reset; that is done to prevent the continuation from
escaping the delimiter. As part of instantiating GITrees with these effects, we
obtain the specialized program logic rules shown in Figure 15. We will use those
rules later for defining a logical relation between the syntax and the semantics
of λdelim. As mentioned above, we will use Pop to unwind the continuation stack
and restore the continuation after finishing with a reset. This means that we
will need to insert explicit calls to Pop in the interpretation of λdelim. For these
purposes, we use an abbreviation P(β), which first evaluates β to a value, and
then executes the pop operation.
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The interpretation of λdelim uses this auxiliary function and is given in Fig-
ure 16. Similarly to the operational semantics, the interpretation is divided into
five categories. First, we have EJ−K and VJ−K for the interpretation of expres-
sions and values, which is what we need for the surface syntax. All of those
interpretations return GITrees. Note that in the interpretation of D − we insert
explicit calls to P, and similarly in the interpretation of continuations.

The other group of interpretations, KJ−K, MJ−K and SJ−K, are for interpret-
ing continuations, metacontinuations, and other configurations; these are used for
showing soundness (preservation of operational semantics by the interpretation).
The interpretation KJ−K of continuations returns a semantic continuation (a
function IT → IT). Similarly, the interpretations MJ−K (resp. SJ−K) of meta-
continuations (resp. configurations) returns a stack of semantic continuations
(resp. a semantic configuration).

We now show that our interpretation is sound w.r.t. the abstract machine
semantics. For this we prove lemmas similar to Lemma 2, and put them to use
in the soundness theorem:

Theorem 2. Soundness. Let c0, c1 ∈ Config and suppose c0 7→ c1. Then
SJc0K⇝∗ SJc1K.

4.3 Logical Relation and Adequacy

We now show that our denotational semantics is adequate with regards to the
abstract machine semantics. Specifically, we show the following result:

Theorem 3. Adequacy. Suppose ∅;N ⊢ e : N;N is a well-typed term, and that
(P(EJeK∅), [])⇝∗ (Ret(n), σ) for a natural number n and a metacontinuation σ.
Then ⟨e⟩term 7→∗ ⟨n⟩ret.

We prove adequacy using a logical relation. It relates expressions to their inter-
pretations and also connects syntactic and semantic configurations. The logical
relation is shown in Figure 17. It is again a form of biorthogonal logical relation,
with the main focus being the observational refinement O: two configurations
are related if they reduce to the same natural number. This coincides with what
we want to show in Theorem 3. To facilitate this we then lift O to the levels of
metacontinuations, continuations and expressions. The relation M(P ), where
P : VRel is a relation on values, states that two metacontinuations are related
if, whenever we plug in P -related values, the resulting configurations become O-
related. Both M and O are then used to define the relation between semantic and
syntactic continuations. The relation K(Q,P ), where P,Q : VRel are relations on
values, states that two continuations are related if, whenever we plug them into
Q-related metacontinuations with P -related values, the resulting configurations
become O-related. Finally, we use K,M, and O to define the relation between
GITrees and λdelim terms. The relation E(P,Q,R), where P,Q,R : VRel are
relations on values, states that β is related to e if, whenever we plug them into
(P,Q)-related continuations and an R-related metacontinuation, the resulting
configurations become O-related.
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SynConf ≜ Expr× Ectx×Mcont

SemConf ≜ IT×Hom × List(Hom)

ConfRel ≜ SemConf × SynConf → iProp

MRel ≜ list Hom ×Mcont → iProp

CRel ≜ Hom × Ectx→ iProp

ERel ≜ IT× Expr→ iProp

VRel ≜ ITv ×Val→ iProp
O : ConfRel

M : VRel→ MRel

K : VRel→ VRel→ CRel

E : VRel→ VRel→ VRel→ ERel

JτK : VRel

O
(
(α, κ, σ), (e,K,mk)

)
≜

has_state(σ) −∗
wpP(κ α)

{
β. ∃v. (⟨e, K, mk⟩eval 7→

∗ ⟨v⟩ret)
∗(β, v) ∈ JNK ∗ has_state([])

}
M(P )(σ,mk) ≜ ∀(α, v). P (α, v) −∗ O((α, ı, σ), (v,□,mk))

K(Q,P )(κ,K) ≜
□ ∀(α, v).Q(α, v) −∗ ∀(σ,mk).M(P )(σ,mk) −∗
O((α, κ, σ), (v,K,mk))

E(P,Q,R)(β, e) ≜
∀(κ,K).K(P,Q)(κ,K) −∗ ∀(σ,mk).M(R)(σ,mk) −∗
O((β, κ, σ), (e,K,mk))

JNK(β, v) ≜ ∃n ∈ N. β = Ret(n) ∧ v = n

Jτ/α→σ/βK(θ, v) ≜ ∃F. θ = Fun(F ) ∧□ ∀(η, w). JτK(η, w) −∗
E(JσK, JαK, JβK)(θ • η, v w)

Jcont(τ, α)K(β, v) ≜ ∃κ K. β = Fun(next(λx.Tick((P ◦ κ) x))) ∧ v = cont K∧
K(JτK, JαK)(κ,K)

JΓ K(ρ, γ) ≜ ∀(x : τ ∈ Γ ).□ ∀Φ. E(JτK, Φ, Φ)(ρ(x), γ(x))

Γ ⊨pure e : τ ≜ □ ∀(ρ, γ). JΓ K(ρ, γ) −∗ ∀Φ. E(JτK, Φ, Φ)(EJeKρ, e[γ])

Γ ;α ⊨ e : τ ;β ≜ □ ∀(ρ, γ). JΓ K(ρ, γ) −∗ E(JτK, JαK, JβK)(EJeKρ, e[γ])

Fig. 17. Logical relation for λdelim.

The relations E and K are used to give semantics JτK to types. The idea is
that E(JτK, JαK, JβK) relates terms ∅;α ⊢ e : τ ;β to their semantic counterparts.
This is then used, as expected for logical relations, for defining the logical relation
for function types and for open terms. The relation JΓ K(ρ, γ) relates the semantic
environment ρ : Var → IT to the syntactic substitution γ : Var → Expr; they are
related if they map the same variables to related GITrees/expressions. Then we
say that an expression e is semantically valid, Γ ;α ⊢ e : τ ;β, if its interpretation
EJeKρ is related to e[γ] under related substitutions ρ, γ. Note that if we ignore
the answer types we can see that the logical relation exhibits a lot of similarities
to the logical relation we gave in Section 3.3, and follows the same roadmap.

For this logical relation we obtain the fundamental property, which we will
use for the proof of adequacy.

Lemma 7. Fundamental lemma. Let Γ ;α ⊢ e : τ ;β then Γ ;α ⊨ e : τ ;β; and if
Γ ⊢pure e : τ then Γ ⊨pure e : τ .
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types Ty ∋ τ ::= N | 1 | τ→σ | ref(τ)
expressions Expr ∋ e ::= x | () | e1 e2 | e1 ⊕ e2 | n | λx. e

| ℓ | ref(e) | ! e | e1 ← e2 | embed e

∅ ⊢pure e : N
Γ ⊢ embed e : N

Fig. 18. Syntax and the new typing rule of the λembed.

Proof (of Theorem 3). Note that the empty (meta)continuation is related to its
denotation: K(P, P )(id,□) and M(P )([], []) hold for any relation P .

With this, we instantiate ∅;N |= e : N;N (that we get from Lemma 7) with
the empty continuation/metacontinuation, and get the observational refinement
between e and EJeK. ⊓⊔

This completes our treatment of denotational semantics of λdelim. The next
section examines interoperability of delimited continuations and other effects.

5 Modeling Interoperability Between Languages

A key advantage of using (G)Itrees for semantics is that they can provide a
common framework for multi-language interaction. This section presents a case
study on the interaction between the languages λembed (with higher-order store
effects) and λdelim (with delimited continuations). Specifically, we allow embedding
closed λdelim programs into λembed, and equip λembed with a type system that
guarantees safe interoperability

The embedding we provide is restrictive, preventing programs with delimited
continuations from accessing outer-language continuations. We leave developing
a more permissive type system for future work. At the end of the section we give
an example of how to verify a more involved interaction of effects, albeit without
the type system.

In this section we reuse the semantics of λdelim from the previous section
and higher-order store effects from Section 2. For λdelim, we reuse the semantics
from the previous section and higher-order store reifiers from [13] In this section,
we use magenta to explicitly highlight programs written in λdelim, and for the
interpretation functions of the denotational model of λdelim.

Language λembed. λembed is a λ-calculus with base types N and 1, references types
ref(τ) and function types τ →σ, with syntax given in Figure 18. Additionally, it
includes a construct embed e for embedding λdelim programs. The typing rules
are all standard, except for the new typing rule for the embedding.

The idea behind the rule is that we can embed an expression from λdelim if it
is a “pure” expression that can evaluate to a natural number. The use of pure
typing judgment for the embedded program ensures that it does not to alter
the answer type. This means that we can treat an embedded expression as a
“complete” program, that does not require outer continuation delimiters, even
though it may rely on delimited continuations internally. Those restrictions are
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EJ−K : Expr→ (Var→ IT)→ IT

EJembed eKρ = Reset(next(EJeK∅))
EJxKρ = ρ(x)

EJℓKρ = Ret(ℓ)

EJref(e)Kρ = get_val(EJeKρ, λx.Alloc(x,Ret))
EJ! eKρ = get_val(EJeKρ, λx.Read(x))
EJe1 ← e2Kρ = get_val(EJe2Kρ, λx.

get_ret(EJe1Kρ, λy.Write(y, x)))

Fig. 19. Denotational semantics of λembed (selected clauses).

VRel ≜ ITv → iProp

ERel ≜ IT→ iProp
O : VRel→ ERel

O(P )(β) ≜ clwp β
{
x. P x ∗ has_state([])

}
E : VRel→ ERel

E(P )(β) ≜ heap_ctx −∗ has_state([]) −∗
O(P )(β)

JτK : VRel

J1K(β) ≜ β = ()

JNK(β) ≜ ∃n. β = Ret(n)

Jτ→σK(β) ≜ ∃F. β = Fun(F ) ∧
□ ∀β. JτK(β) −∗
E(JσK)(Fun(F ) • β)

Jref(τ)K(β) ≜ ∃ℓ. β = Ret(ℓ) ∧
∃ν. ℓ 7→ ν ∗ JτK(ν)

JΓ K(ρ) ≜ ∀(x : τ ∈ Γ ).□ E(JτK)(γ x) Γ ⊨ e : τ ≜ ∀ρ. JΓ K(ρ) −∗ E(JτK)(EJeKρ)

Fig. 20. Logical relation for λembed.

crucial for the type safety of the embedding. The typing guarantees that e does
not expect any additional delimiters, but it does not, by itself guarantee that any
continuations in e escape the embedding boundary. To prevent that we enforce
the continuation delimiter along the embedding boundary in the interpretation
of embedded expressions.

Denotational model of λembed. For denotational semantics of λembed, we start
by defining reifiers for the effect signature, which includes higher-order store
operations (allocating, reading, and storing references) as Estate, and effects
related to delimited continuations (Eλdelim

). Then the combined effect signature is
Eλdelim

× Estate, and thus we also let State ≜ Statedelim × Statestate, and reifiers
are defined component-wise. Figure 19 shows the key parts of the denotational
semantics. For most of the syntactic constructs we give the standard interpretation.
For embed e we use the interpretation EJ−K for λdelim from Section 4.2, and
explicitly wrap the resulting GITree in a Reset. This continuation delimiter acts
as a sort of glue code to protect the rest of the program from being captured by
control operators from the embedded λdelim program.

To show type safety of λembed, we construct a logical relation (shown in
Figure 20), which is similar to the other logical relations we considered in this
paper, mainly different in the observation relation O. Given that the type system
for λembed effectively prevents expressions of λdelim to access contexts from λembed,
we refine the observation relation to get access to a version of the wp-hom rule
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for expression interpretations of well-typed programs of λembed, which we do not
have in general, as discussed in Section 3.

Instead of the standard weakest precondition wp, we utilize a context-local
weakest precondition clwpre which bakes-in the bind rules [27].

Definition 2. Context-local weakest precondition (clwp) is defined as follows:
clwp α

{
Φ
}
≜ ∀κ (Ψ : ITv → iProp). (∀v. Φ v −∗ wp (κ v)

{
Ψ
}
) → wp (κ α)

{
Ψ
}

Note that clwp always implies wp and validates a form of the bind rule:

clwp α
{
β. clwp (κ β)

{
Φ
}}

⊢ clwp (κ α)
{
Φ
}

for any homomorphism κ. We use the clwp in the definition of observational
refinement in the model. Observational refinement asserts that if the evaluation
of a top-level expression of λembed starts with an empty continuation stack, then
the evaluation does not introduce new elements into the continuation stack. By
using clwp we get a semantical bind lemma, which can be seen as a version of
wp-hom for semantically valid expressions of λembed.

Lemma 8. Semantical bind. E(λx : ITv. E(P )(κ x))(β) implies E(P )(κ β) for
any homomorphism κ.

As before, we obtain fundamental lemma and denotational type soundness.

Lemma 9. Fundamental lemma. Let Γ ⊢ e : τ then Γ ⊨ e : τ .

Lemma 10. Denotational type soundness. Let ∅ ⊢ e : τ and (EJeK∅, [])⇝∗ (α, σ),
then (∃β σ′. (α, σ)⇝ (β, σ′)) ∨ (α ∈ ITv).

Unrestricted interaction of delimited continuations and higher-order state. Even
though the type system we considered here is restrictive, we can still reason
about unrestricted interactions of events in the “untyped” setting. Here we
show an example of such an unrestricted interaction, and demonstrate how to
reason about context-dependent and context-independent effects at the same
time. While this kind of interactions is forbidden by our type system, we can
still write and prove meaningful specifications for such programs. Consider the
program in Figure 21, written in GITrees directly. The function prog utilizes
both delimited continuations and state. It takes a reference y as its argument
and begins by allocating the value 1 in the store at reference x. Then it captures
the continuation get_ret(y, (λl.Let p = NatOp+(Read(l), . . . ) inWrite(l, p))) as k.
Invoking the continuation k with a number n increments the current value of y
by n. The program then invokes this continuation twice. First with the original
value of x. Then, with an incremented value of x. Since the starting value of x
is 1, the reference y is incremented first by 1 and then by 2. We capture this
behavior in the specification for prog stated in Figure 21.

It is important to note that this program features a bidirectional interaction
between state and continuations. Specifically, the body of Shift involves state
operations, while the result of Shift is subsequently used to increment a value in
the heap. As we have seen, while this type of interaction is not allowed in the
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prog ≜ Fun(next(λy.
Letx = Alloc(Ret(1)) in
Letn = Shift(λk.next(

Appcont′(Read(x), k) ;
Letm =

NatOp+(Read(x),Ret(1)) inWrite(x,m) ;
Appcont′(Read(x), k)))
in get_ret(y, (λl.Let p =

NatOp+(Read(l), n) inWrite(l, p)))))

Initial offset value
Capture continuation as k
First call to k with the init. value of x
x := x+ 1;

Second call to k with updated x

y := y + n;

where Appcont′(x, y) ≜ Appcont(next(x), next(Tau ◦ y ◦ next))

heap_ctx has_state(σ) y 7→ Ret(n)

wp (Reset(next(prog • Ret(y))))
{
y 7→ Ret(n+ 3) ∗ has_state(σ)

}
Fig. 21. Example program with delimited continuations and state and its specification.

type system, we can still reason about them in program logic. We stipulate that
our proposed type system could potentially be extended to support embedding
“pure” functions, allowing for bi-directional interaction between the two languages.
We believe that such an extension would require implementing answer-type
polymorphism, following the approach of Asai and Kameyama [2].

6 Discussion and Related Work

We conclude the paper by discussing related work and future directions.
This paper extends GITrees to handle context-dependent effects, which allows

us to model higher-order languages with control operators like call/cc (x. e)
and S x. e. We showed this extension supports interoperability between lan-
guages with different context-dependent effects, while preserving reasoning about
context-independent effects. Our approach leverages the native support for higher-
order functions and effects in GITrees. This differs from the first-order effect
representation of effects in ITrees [33], which would require explicitly first-order
representation of functions and continuations, if we want to model first-class
continuation. Such model would mix syntactic and semantic concerns, which is
part of what we are trying to avoid by working with (G)ITrees.

Another difference with ITrees is our approach to reasoning. While ITrees
use bisimulation-based equational theory, we follow GITrees in using tailored
program logics and defining refinements. Our logic are expressive enough to define
logical relations and carry out computational adequacy proofs. In future work, it
would be interesting to develop techniques for reasoning about weaker notions of
equality than the basic equational theory that GITrees comes equipped with, see
the more extensive discussion of this point in [13].

The “classical” domain theory remains an important source of inspiration
and ideas for our development, and we want to mention some of the related
work along those lines. Cartwright and Felleisen [9] introduced a framework of
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extensible direct models for constructing modular denotational semantics of pro-
gramming languages. Their framework centers on an abstract notion of resources
for representing effects (such as store or continuations) and a central admin
function that manages these resources. Each language extension defines both the
types (domains) of additional values and resources, and specifies the actions that
the admin function can perform on these resources. Building on this framework,
Sitaram and Felleisen [26] demonstrated that such models can provide direct-style
fully abstract semantics for control operators. Their approach interprets effects,
including continuations, by delegating them to a top-level handler. Our work
adopts several key ideas from this line of research but reformulates them in the
context of GITrees rather than classical domain theory. In our framework, effect
signatures define resources, reifiers specify actions, and the reduction relation
serves as the central authority dispatching the effects. The transition to GITrees
enables us to formalize the extensibility of this approach in a practical manner,
and it allows us to develop program logics where “resources” (as above) become
resources in separation logic.

Compared to other programming languages paradigms and effects, type
systems and logical relations for delimited continuations have not been studied
as comprehensively. The original type system for shift/reset is due to Danvy
and Filinski [10], where they employ answer-type modification. Materzok and
Biernacki [22] generalized this type system to account for more involved control
operators shift0/reset0; an alternative substructural type system for these
operators was designed by Kiselyov and Shan [17]. Dyvbig, Peyton Jones, and
Sabry [11] provide a typed monadic account of CPS for delimited continuations
with dynamic prompt generation. Asai and Kameyama [2] present a polymorphic
variant of the Danvy and Filinski’s type system.

Biernacka and Biernacki [5] prove termination for a language with S x. e and
D e (but without recursion) using logical relations based on abstract machine
semantics. The shape of their logical relation is similar to our logical relation
used for showing adequacy in that they also have relations for configurations,
metacontinuations, etc. Asai [1] uses type-directed logical relations to verify a
direct-style specializer (partial evaluator) for a language with S x. e and D e,
proving correctness against evaluation-context based operational semantics. In
contrast with those works, we define our logical relations on denotations, using
the semantics of GITrees and the derived program logics.

In our interoperability example (Section 5) we showed type safety of a com-
bined language, with respect to denotational semantics. In future work we would
like to examine other properties: for example, that λdelim expressions cannot dis-
rupt λembed’s control flow, perhaps establishing some form of well-bracketedness
using ideas from [28].

We would also like to study other context-dependent effects like exceptions,
handlers, and algebraic effects [24,4,32,30,3]. In particular, it would be interesting
to give a denotational semantics to a language with handlers, derive program
logic proof rules for it, and compare the resulting program logic to the one in
[31].
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