
Inductive Predicates via Least Fixpoints in
Higher-Order Separation Logic
Robbert Krebbers # Ñ

Radboud University Nijmegen, Netherlands

Luko van der Maas #

Radboud University Nijmegen, Netherlands

Enrico Tassi #Ñ

Université Côte d’Azur, Inria, France

Abstract
Inductive predicates play a key role in program verification using separation logic. There are many
methods for defining such predicates in separation logic, which all have different conditions and thus
support different classes of predicates. The most common methods are: (1) through a structurally-
recursive definition (commonly used to define representation predicates for the verification of data
structures), and (2) through step-indexing (commonly used to give a semantics of Hoare triples for
partial program correctness). A lesser-known method is to define such inductive predicates internally
in higher-order separation logic through a least fixpoint of a monotone function.

The contributions of this paper are fourfold. First, we present the folklore result (from the Iris
library) that one can define least (and greatest) fixpoints internally in separation logic by extending
the standard second-order impredicative encoding with some modalities. Second, we show that these
fixpoints are useful to define representation predicates where the mathematical and in-memory data
structures do not correspond. Third, we show that these fixpoints can be used to define Hoare triples
and weakest preconditions for total program correctness in Iris. Fourth, we present a prototype
command (akin to Rocq’s Inductive), written in Rocq-Elpi, to generate the least fixpoint and its
reasoning principles (constructors and induction principles) from a high-level specification.

2012 ACM Subject Classification Theory of computation → Programming logic

Keywords and phrases Separation Logic, Program Verification, Data Structures, Iris, Rocq prover

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.27

Supplementary Material Software (Rocq code): https://doi.org/10.5281/zenodo.15727403

Acknowledgements We thank Ralf Jung and Jacques-Henri Jourdan for early discussions about
fixpoints in Iris, Aleš Bizjak for suggesting to define weakest preconditions using a least fixpoint,
and the anonymous reviewers for their feedback. This work is supported in part by ERC grant
COCONUT (grant no. 101171349), funded by the European Union, and NWO grant FuRoRe
(OCENW.M.22.282). Views and opinions expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the European Research Council Executive
Agency. Neither the European Union nor the granting authority can be held responsible for them.

1 Introduction

Separation logic [54, 59] and its extension concurrent separation logic [52, 11] are widely
used methods for the verification of imperative and concurrent programs. A key ingredient
of separation logic is the use of representation predicates to specify data structures. Consider
the following (slightly adapted) example from the seminal paper by Reynolds [59]:

isList ℓ [] ≜ ℓ 7→ NIL isList ℓ (v :: v⃗) ≜ ∃ℓ′. ℓ 7→ CONS (ℓ′, v) ∗ isList ℓ′ v⃗

© Robbert Krebbers, Luko van der Maas, Enrico Tassi;
licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 27; pp. 27:1–27:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@robbertkrebbers.nl
https://robbertkrebbers.nl
https://orcid.org/0000-0002-1185-5237
mailto:luko.vandermaas@ru.nl
https://orcid.org/0009-0007-3915-6191
mailto:enrico.tassi@inria.fr
https://www-sop.inria.fr/members/Enrico.Tassi/
https://orcid.org/0000-0002-7783-528X
https://doi.org/10.4230/LIPIcs.ITP.2025.27
https://doi.org/10.5281/zenodo.15727403
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

The predicate isList ℓ v⃗ should be read as: the location ℓ in the heap contains a pointer-based
linked list described by the mathematical list v⃗. Importantly, isList : loc→ list val→ iProp is
not a predicate in the meta-logic (e.g., Prop in Rocq), but a predicate in separation logic
(e.g., iProp in Iris) which describes a set of heaps. The definition of isList can hence make use
of the points-to assertion ℓ 7→ v (location ℓ contains value v) and the separating conjunction
P ∗Q (propositions P and Q hold in disjoint heaps).

With separation logic frameworks in proof assistants, such as BedRock [19], CFML [15],
Charge [8], Iris [45, 37] and VST [12], one commonly defines these predicates by structural
recursion on the mathematical data type. The list predicate is defined in Rocq using Iris as:

Fixpoint is_list (l : loc) (vs : list val) : iProp :=
match vs with
| [] => l 7→ NIL
| v :: vs => ∃ l', l 7→ CONS (#l',v) ∗ is_list l' vs
end.

This method is applicable to many (tree-like) data structures and is widely used in the litera-
ture because such predicates are easy to define and use. One obtains the recursive equations
as definitional equalities, and one can perform structural induction on the mathematical list.

Problem But what if it is impossible to define the predicate by structural recursion, or
it is too cumbersome to convince the guardedness/termination checker? When working in
the meta logic, one would define the predicate inductively (Inductive in Rocq) instead of
by structural recursion (Fixpoint in Rocq)—but a priori there is no analogue for defining
inductive predicates in separation logic. Particularly, the standard Inductive command in
Rocq cannot be used because iProp is not an arity of a sort [72] (see § 6 for details).

What is lesser known is that one can define inductive predicates internally in higher-order
separation logic through a second-order impredicative encoding of least fixpoints, akin to
the folklore encoding in second-order predicate logic and linear logic [7], which in turn is
inspired by the Tarski-Knaster theorem [40, 66]. The Iris framework for separation logic in
Rocq has a small library for least fixpoints (whose first version was written by Jung [35] in
2017), but it has seen less use in practice than the Fixpoint approach. We believe that is
for at least two reasons. First, there is a lack of intuitive descriptions of applications where
the least fixpoint approach shines. Second, there is no support for making the least fixpoint
encoding usable in practice—the user is required to write an abundance of boilerplate.

We describe two applications of inductive predicates in separation logic. First, in the
context of data structure verification, we show that inductive predicates are useful to define
representation predicates if the mathematical and in-memory structure do not correspond.
Second, we show that inductive predicates in separation logic are useful to develop the meta
theory of separation logic itself. Specifically we show how to define Hoare triples and weakest
preconditions for total program correctness internally in the Iris base logic. The first author
added this construction as part of Iris in 2017 [42], and variants have been used in practice,
e.g., [28, 1, 79, 78], but the details have never been spelled out in a published paper.

To make the least fixpoint encoding practical, we present a prototype Iris Inductive
command for inductively-defined predicates in separation logic, written in Rocq-Elpi [25, 69,
71], built on top of the Iris Proof Mode (IPM) [45, 43]. Inspired by proof assistants in the
HOL family [49, 56, 33], our command transforms a high-level specification of an inductive
predicate into low-level definitions—with the crucial difference that we are working in an
embedded separation logic instead of the unrestricted meta logic of the proof assistant.

R. Krebbers, L. van der Maas, E. Tassi 27:3

Application #1: Data structure verification Consider a variation of the representation
predicate for lists, defined using our Iris Inductive command:

Iris Inductive is_del_list : loc → list val → iProp :=
| is_del_list_nil l : l 7→ NIL -∗ is_del_list l []
| is_del_list_cons l l' v vs :

l 7→ CONS (#l',v) -∗ is_del_list l' vs -∗ is_del_list l (v :: vs)
| is_del_list_del l l' vs : l 7→ DEL #l' -∗ is_del_list l' vs -∗ is_del_list l vs.

The in-memory representation contains an additional deleted node DEL. Similar to CONS,
the DEL node contains a link to the next node, but does not hold a value. Such DEL nodes
are useful in concurrent programming, where a node is first ‘marked’ as deleted and is
only removed from the list later [32], or to atomically append queues [62]. Crucially, this
representation predicate cannot be defined by structural recursion because the size of vs
does not decrease in the DEL case. An alternative, as used by Somers and Krebbers [62]
(in Iris), is to define the predicate by structural recursion on list (option A), where None
accounts for deleted nodes. However, that approach involves additional boilerplate and is
not applicable to more advanced use cases such as our program logic for total correctness.

The Iris prefix indicates that the Inductive should be processed by our Rocq-Elpi proto-
type using the following steps. 1. We define the fixpoint using a second-order impredicative
encoding by transforming the constructors into a disjunction of existentially quantified cases.
Here, we exploit Elpi’s support for HOAS [57] to perform term surgery with binders. 2. We
prove monotonicity (i.e., positivity) of the recursive argument using a goal-directed proof
search. To support a variadic notion of monotonicity, we port the notion of signatures
from Rocq’s generalized rewriting framework [63] to separation logic. 3. We generate the
constructors and induction principles, making use of monotonicity. Here, we reimplement
some of the IPM tactics in Elpi to avoid interfacing with the original IPM Ltac code. Finally,
we provide a tactic akin to Rocq’s induction that applies the induction principle.

Application #2: Total program correctness Iris employs the reductionist methodology to
develop a large fragment of its meta theory in separation logic itself [44]. At its core, Iris
features a base logic, which is a higher-order intuitionistic logic, with separating conjunction
(∗), magic wand (−∗), a customizable notion of resource ownership, and a handful of modalities.
The program logic (which includes weakest preconditions and Hoare triples) is encoded in the
base logic. This methodology ensures that the definition of the program logic is concise and
and can easily be adapted to other domains such as continuations [74], effect handlers [23],
non-interference [27, 29], randomized algorithms [67], and crash safety [13].

The standard Iris program logic is, however, limited to partial program correctness and
lacks support for total program correctness (i.e., termination). Semantically speaking this
limitation stems from the fact that the program logic is defined using step-indexing [4, 2, 5],
which is coinductive in nature. We show that through a simple modification to the definition
of the Iris program logic, we obtain a version for total correctness: we remove a modality,
and instead of the step-indexed Banach’s fixpoint, we use a least fixpoint. The key difference
w.r.t. the original Iris program logic for partial correctness is that we cannot introduce a
later modality during computation steps. Consequently we cannot use Löb induction to
reason about loops and recursive functions, and are forced to use induction on a data type
in the Rocq meta logic or an inductively-defined predicate in Iris to ensure termination.

Contributions and outline We show that inductive predicates, defined using a standard
second-order encoding of least fixpoints in separation logic (§2), are useful assets for program

ITP 2025

27:4 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

True ∗ P ⊣⊢ P
P ∗Q ⊣⊢ Q ∗ P

(P ∗Q) ∗R ⊣⊢ P ∗ (Q ∗R)

∗-mono
P1 ⊢ Q1 P2 ⊢ Q2

P1 ∗ P2 ⊢ Q1 ∗Q2

−∗-intro
P ∗Q ⊢ R
P ⊢ Q −∗ R

−∗-elim
P ⊢ Q −∗ R
P ∗Q ⊢ R

□-dup
□P ⊣⊢ □P ∗□P

□-elim
□P ⊢ P

□-idem
□P ⊣⊢ □□P

□-mono
P ⊢ Q

□P ⊢ □Q

□-True
□True ⊣⊢ True

Figure 1 Selected laws of the Iris base logic. (We use ⊣⊢ as notation for bidirectional entailment.)

verification. Both for the verification of data structures (§ 3) and for developing the meta
theory of a program logic for total program correctness (§ 4). We present a prototype
Iris Inductive command, written in Rocq-Elpi, which given a high-level specification gener-
ates the low-level definitions (§ 5). We conclude by discussing related (§ 6) and future work
(§ 7). All our results are mechanized in the Rocq prover using the Iris framework [46]. An
extensive description of the command is in the MSc thesis of the second author [77].

Limitations 1. We consider our Iris Inductive command to be a prototype because it is
unclear how how to avoid the duplication of IPM tactics in Ltac and Elpi, and thus integrate it
into the production version of Iris (see §7). 2. While our program logic is as least as powerful
as variants of ‘traditional’ separation logic for total correctness, e.g., CFML [14, 15, 16], it is
too weak for blocking concurrency as it does not integrate the assumption of fair scheduling.
We consider reasoning about the scheduler orthogonal and leave that for future work.

2 Fixpoints in Higher-Order Separation Logic

In this section we give a brief introduction to higher-order separation logic, and describe
the folklore result of defining fixpoints using a second-order impredicative encoding. This
construction works for any higher-order predicate BI [53, 10] with a persistence modality,
i.e., a Modal BI (MoBI) [43]. For brevity’s sake, we present the construction specifically for
the Iris base logic, which is an instance of a MoBI.1 The fixpoint construction in the Iris
base logic was mechanized by Jung [35], and has been ported to MoBIs by Krebbers [41].

The Iris base logic The propositions of the Iris base logic iProp include the standard
connectives of higher-order intuitionistic logic with equality (i.e., True,False,∧,∨,⇒,∀,∃,=).
The key feature of a higher-order logic is that the domain A in ∀x : A. P and ∃x : A. P can be
any type, and can even include the type of propositions iProp (impredicativity). Particularly,
one can quantify over predicates ∀Φ : A→ iProp. P , which is crucial for the fixpoint encoding.

The Iris base logic includes the separating conjunction (∗), magic wand (−∗), and per-
sistence modality (□). Selected laws are shown in Figure 1. To obtain an intuition for
these connectives, it is useful to think of the model of separation logic, where propositions
denote ownership of resources. The Iris base logic supports user-defined (higher-order ghost)

1 (Mo)BIs have two unit elements—True for ordinary conjunction (∧) and Emp for separating conjunction
(∗)—while the Iris base logic has a singular unit element True. Similarly, (Mo)BIs have have a persistence
(⊡) and intuitionistic (□) modality, which coincide for the Iris base logic [43, §2.4].

R. Krebbers, L. van der Maas, E. Tassi 27:5

resources [39, 36, 37], but for simplicity we consider the resources to be heaps (finite maps
from locations to values). This means we have a primitive ℓ 7→ v, which holds for a heap h,
if it contains a location ℓ with value v. The separating conjunction P ∗Q holds for a heap h,
if it can be split into disjoint heaps h1 and h2 in which P and Q hold, respectively. The
magic wand P −∗ Q holds for a heap h, if for any disjoint heap h′ that satisfies P , we have
that Q holds for the disjoint union of h and h′. The separating conjunction is associative,
commutative and monotone, and has True as its unit. The laws −∗-intro and −∗-elim
express that ∗ and −∗ interact in the same way as ∧ and ⇒ (i.e., they are adjoints).

Separation logic is substructural, hence we do not have P ∗ P ⊣⊢ P . However, for some
propositions P that law does hold, particularly the persistent propositions—those that do
not assert (exclusive) ownership of resources. Simple examples of persistent propositions
are True, False and equality, but Iris features many more (e.g., invariant assertions P). To
reason about persistent propositions, Iris employs the persistence modality (□), and says
that a proposition P is persistent iff P ⊢ □P . In the heap model, □P holds for a heap h, if
P holds for the empty heap ∅. Persistent propositions are duplicable (□-dup) and the □
modality can be eliminated (□-elim). The □ modality is idempotent and monotone, and
commutes with (separating) conjunction, disjunction and quantifiers. The □ modality can
be introduced if the hypotheses are persistent, as expressed by the following derived law:

□-intro
P ⊢ Q persistent(P)

P ⊢ □Q

Fixpoints We define the least (µ) and greatest (ν) fixpoint operators, which take a pre-
fixpoint function F : (A → iProp) → (A → iProp), and return a fixpoint A → iProp. The
argument rec : A→ iProp of F corresponds to the recursive occurrence. For example, for the
list representation predicate with deleted nodes from § 1 (which cannot be defined directly by
structural recursion), we use the following pre-fixpoint function (with A ≜ loc× list val):

FisDelList rec (ℓ, v⃗) ≜ (ℓ 7→ NIL ∗ v⃗ = []) ∨
(∃ℓ′, w, w⃗. ℓ 7→ CONS (w, ℓ′) ∗ rec (ℓ′, w⃗) ∗ v⃗ = w :: w⃗) ∨
(∃ℓ′. ℓ 7→ DEL ℓ′ ∗ rec (ℓ′, v⃗))

We now define isDelList : loc → list val → iProp as λℓ, v⃗. µ FisDelList (ℓ, v⃗). A fixpoint of F is
well-defined if all occurrences of rec are in positive position, i.e., if F is monotone:

∀(Φ1, Φ2 : A→ iProp). □(∀x : A. Φ1 x −∗ Φ2 x) −∗ ∀x : A. F Φ1 x −∗ F Φ2 x

Since we work in separation logic, we use the magic wand (−∗) instead of implication (⇒).
The persistence modality (□) allows ∀x : A. Φ1 x −∗ Φ2 x to be used multiple times, which is
needed for predicates with multiple recursive occurrences (is_search_tree in § 3). To our
knowledge, dropping the modality does not give benefits if there is one recursive occurence.

▶ Theorem 1. Given a monotone pre-fixpoint function F : (A → iProp) → (A → iProp),
there exists a least fixpoint µF : A→ iProp that satisfies:

1. (Fixpoint equations) F (µF)x −∗ µF x and µF x −∗ F (µF)x, and,
2. (Iteration principle) □(∀x. F Φx −∗ Φx) −∗ ∀x. µF x −∗ Φx.

Proof. We define the least fixpoint as:

µF ≜ λx. ∀(Φ : A→ iProp). □(∀y. F Φ y −∗ Φy) −∗ Φx

ITP 2025

27:6 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

This definition is analogue to the folklore encoding in higher-order logic, but uses magic wand
(−∗) instead of implication (⇒). Similar to the definition in second-order linear logic [7],
which uses the bang operator (!), it uses Iris’s persistence modality (□).

1. Proof of F (µF)x −∗ µF x. Assume HF : F (µF)x. Now given an arbitrary predicate
Φ : A → iProp that satisfies HΦ : □(∀y. F Φ y −∗ Φy), we should prove Φx. We use
□-dup to duplicate HΦ and apply it to our goal, which means we should prove F Φx.
By monotonicity of F and the assumption HF , it suffices to prove □(∀x. µF x −∗ Φx).
As HΦ is persistent, we can use □-intro to introduce the □ in our goal. So assume
Hµ : µF x, we should prove Φx. This follows by unfolding µ in Hµ and our copy of HΦ.

2. Proof of µF x −∗ F (µF)x. Assume Hµ : µF x. We specialize Hµ with Φ = F (µF),
and apply it to our goal. It now remains to prove □(∀y. F (F (µF)) y −∗ F (µF) y). This
goal follows from monotonicity of F and Item 1 (i.e., F (µF)x −∗ µF x).

3. The iteration principle follows immediately by definition of µF . ◀

The iteration principle from Theorem 1 is often inconvenient in practice. It only gives
the induction hypothesis, but forgets that the fixpoint predicate holds for the recursive
occurrence. From the iteration principle, we derive the following induction principle:

□(∀x. F (λy. Φ y ∧ µF y)x −∗ Φx) −∗ ∀x. µF x −∗ Φx

To obtain an intuition for the iteration and induction principle, it useful to specialize them
to the isDelList predicate. After expanding FisDelList and some logical simplification we get:

□(∀ℓ. ℓ 7→ NIL −∗ Φ ℓ []) ∗
□(∀ℓ, ℓ′, w, w⃗. ℓ 7→ CONS (w, ℓ′) −∗ (Φ ℓ′ w⃗ ∧ isDelList ℓ′ w⃗) −∗ Φ ℓ (w :: w⃗)) ∗
□(∀ℓ, ℓ′, w⃗. ℓ 7→ DEL ℓ′ −∗ (Φ ℓ′ w⃗ ∧ isDelList ℓ′ w⃗) −∗ Φ ℓ w⃗)

∀ℓ, v⃗. isDelList ℓ v⃗ −∗ Φ ℓ v⃗

The part in red is only present in the induction principle. We need a conjunction (∧) instead
of separating conjunction (∗) because the latter would be unsound if Φ ℓ′ w⃗ and isDelList ℓ′ w⃗

describe overlapping resources (take Φ ℓ v⃗ ≜ isDelList ℓ v⃗ ∗ v⃗ = []). (Unlike standard inductive
types in Rocq, there is no dependent eliminator/induction principle as iProp is irrelevant.)

One can dually encode coinductive predicates using the greatest fixpoint operator ν F ≜
λx. ∃(Φ : A→ iProp). □(∀y. Φ y −∗ F Φy) ∗ Φx. This definition is analogue to the standard
encoding in second-order logic with ∗ and □ instead of ∧. The greatest fixpoint is used in
Iris for logical atomicity [38], and a nested least/greatest fixpoint is used for termination-
preserving program refinements [28]. We focus on least fixpoints, but believe it is easy to
generalize our Rocq-Elpi prototype to generate greatest fixpoints too (see § 7).

3 Data Structure Verification

In this section we show how least fixpoints are used to define representation predicates for
data structure verification. We focus on examples where the in-memory and mathematical
structure do not correspond, and structural recursion cannot be used, or is too cumbersome.

Consider a variant of the list predicate from the induction with ‘deleted’ nodes:
Iris Inductive is_list_with_tl (tl : loc) : loc → list val → iProp :=

| is_list_with_tl_nil : tl 7→ NIL -∗ is_list_with_tl tl tl []
| is_list_with_tl_cons v vs l l' :

l 7→ CONS (v,#l') -∗ is_list_with_tl tl l' vs -∗ is_list_with_tl tl l (v :: vs)
| is_list_with_tl_del vs l l' :

l 7→ DEL #l' -∗ is_list_with_tl tl l' vs -∗ is_list_with_tl tl l vs.

R. Krebbers, L. van der Maas, E. Tassi 27:7

Similar to the example in the introduction, this representation predicate cannot be defined by
structural recursion because the size of the list vs does not decrease in is_list_with_tl_del.
Compared to the example from the introduction, we add a parameter tl for the tail pointer.
This parameter is necessary if we want to verify a constant-time ‘push back’ operation, which
inserts an element at the end using the tail pointer, instead of by traversing the list. We
define isListWithTl tl ℓ v⃗ ≜ µ (FisListWithTl tl) (ℓ, v⃗), with the following pre-fixpoint function:

FisListWithTl tl rec (ℓ, v⃗) ≜ (ℓ 7→ NIL ∗ v⃗ = [] ∗ tl = ℓ) ∨
(∃ℓ′. ℓ 7→ DEL ℓ′ ∗ rec (ℓ′, v⃗)) ∨
(∃ℓ′, w, w⃗. ℓ 7→ CONS (w, ℓ′) ∗ rec (ℓ′, w⃗) ∗ v⃗ = w :: w⃗)

We derive the constructors from the fixpoint equations. The induction principle is:
isListWithTl-ind
□(tl 7→ NIL −∗ Φ tl []) ∗
□(∀ℓ, ℓ′, v⃗. ℓ 7→ DEL ℓ′ −∗ (Φ ℓ′ v⃗ ∧ isListWithTl tl ℓ′ v⃗) −∗ Φ ℓ v⃗) ∗
□(∀ℓ, ℓ′, w, w⃗. ℓ 7→ CONS (w, ℓ′) −∗ (Φ ℓ′ w⃗ ∧ isListWithTl tl ℓ′ w⃗) −∗ Φ ℓ (w :: w⃗))

∀ℓ, v⃗. isListWithTl tl ℓ v⃗ −∗ Φ ℓ v⃗

Like Rocq’s native inductive types, the induction predicate Φ does not take the parameters
(here, the tail pointer) as its argument because these remain constant during the induction.
That is, we have Φ : loc→ list val→ iProp instead of Φ : loc→ loc→ list val→ iProp.

Consider a representation predicate for sets implemented using binary search trees (here,
⌜ ϕ ⌝ is the embedding of a Rocq proposition ϕ : Prop in Iris):

Iris Inductive is_search_tree : loc → gset Z → iProp :=
| is_search_tree_empty l :

l 7→ LEAF -∗ is_search_tree l ∅
| is_search_tree_node l n ll lr Xl Xr :

l 7→ NODE (#n, #ll, #lr) -∗ is_search_tree ll Xl -∗ is_search_tree lr Xr -∗
⌜ set_Forall (λ n', n' < n) Xl ⌝ -∗ ⌜ set_Forall (λ n', n < n') Xr ⌝ -∗
is_search_tree l ({[n]} ∪ Xl ∪ Xr)

We use the type of finite sets gset A with elements of type A from the Rocq-std++ library [73].
This predicate could in principle be defined by structural recursion on the size of the set,
but doing so would be cumbersome. Rocq’s termination checker does not know that Xl
and Xr are structurally smaller than {[n]} ∪ Xl ∪ Xr, so one needs to work around that,
e.g., by adding the size as an explicit index or through well-founded recursion. Defining the
predicate as a least fixpoint requires no such workarounds. We simply create a pre-fixpoint
function FisSearchTree following the same pattern as before. It is worth noting that to prove
monotonicity of FisSearchTree, the □ modality in the definition of monotonicity is crucial due
to the two recursive occurrences of is_search_tree in is_search_tree_node.

Parameters of Iris Inductive predicates are not restricted to first-order data. Due to
the higher-order nature of Rocq and Iris, they can even be types or predicates themselves.
For example, consider a higher-order representation predicate [15] with ‘deleted’ nodes:

Iris Inductive is_ho_list {A} (Φ : val → A → iProp) : loc → list A → iProp :=
| is_ho_list_nil l : l 7→ NIL -∗ is_ho_list Φ l []
| is_ho_list_cons v x xs l l' :

l 7→ CONS (v,#l') -∗ Φ v x -∗ is_ho_list Φ l' xs -∗ is_ho_list Φ l (x :: xs)
| is_ho_list_del xs l l' :

l 7→ DEL #l' -∗ is_ho_list Φ l' xs -∗ is_ho_list Φ l xs.
Definition is_ho_list_loc {A} (Φ : loc → A → iProp) : loc → list A → iProp :=

is_ho_list (λ v x, ∃ l : loc, ⌜ v = #l ⌝ ∗ Φ l x).

ITP 2025

27:8 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

Φv ⊢ wp v [Φ] (twp-val)
True ⊢ wp (ref v) [ℓ. ℓ 7−→ v] (twp-alloc)
ℓ 7−→ v ⊢ wp ! ℓ [w. w = v ∗ ℓ 7−→ v] (twp-load)
ℓ 7−→ v ⊢ wp (ℓ← v′) [w. w = () ∗ ℓ 7−→ v′] (twp-store)

wp e [v.wp K[v] [Φ]] ⊢ wp K[e] [Φ] (twp-bind)
(∀v. Φ v −∗ Ψ v) ∗ wp e [Φ] ⊢ wp e [Ψ] (twp-wand)

wp e[(rec f x = e)/f][v/x] [Φ] ⊢ wp (rec f x = e) v [Φ] (twp-rec)

Figure 2 Proof rules for the total weakest precondition connective.

Higher-order representation predicate make it possible to specify nested data structures, e.g.,
is_ho_list_loc (is_ho_list (=)) : loc → list (list val) → iProp expresses that a loca-
tion contains a lists of lists. (The predicate is_ho_list is more general than is_ho_list_loc
since it allows one to talk about lists with unboxed values.)

Least fixpoints provide support for predicates that are defined in a nested-recursive way.
Let us consider a representation predicate for simple rose trees:

Inductive rose_tree := Node : list rose_tree → rose_tree.
Iris Inductive is_rose_tree : loc → rose_tree → iProp :=

| is_tree_node l ts : is_ho_list_loc is_rose_tree l ts -∗ is_rose_tree l (Node ts).

The least fixpoint is well-defined because is_ho_list Φ is monotone in Φ. This monotonity
property is proved by induction, and declared as a Proper instance allowing our monotonicity
solver (§ 5.2) to use it in the monotonicity proof of FisRoseTree. We note that monotonicy is
more general than the syntactic strict positivity condition for ordinary Inductive predicates
in Rocq. If we prove that a predicate is monotone (and declare the corresponding Proper
instance), we can use it in a nested recursive fashion to define other inductive predicates.

4 Total Program Correctness

In this section we present a program logic for total program correctness, defined internally in
the Iris base logic using a least fixpoint. Before presenting the definition, we explain the proof
rules for program specifications. We conclude by comparing to the standard (step-indexed)
Iris program logic for partial correctness.

Total weakest preconditions and its proof rules At the heart of our program logic we
have the total weakest precondition connective wp e [Φ]. (We use square [Φ] and curly {Φ}
brackets to distinguish total and partial correctness weakest preconditions and Hoare triples,
respectively.) Given a postcondition Φ : val→ iProp, the connective wp e [Φ] : iProp gives the
weakest precondition under which all executions of e are terminating and safe, and all return
values v satisfy Φv. A program execution is safe if it does not get stuck in the operational
semantics, which particularly means that operators are never applied to wrong operands
(e.g., 3 + true) and no invalid memory accesses take place. Hoare triples are defined as
[P] e [Φ] ≜ □(P −∗ wp e [Φ]). The magic wand (−∗) encodes the precondition P , and the □
modality ensures that triples can be used multiple times.

The proof rules are given in Figure 2. Rule twp-val says that it suffices to prove the
postcondition if a program is already a value. Rules twp-alloc, twp-load and twp-store

R. Krebbers, L. van der Maas, E. Tassi 27:9

are the quintessential reasoning rules for mutable references. Rule twp-bind is used to reason
about an expression nested inside a (call-by-value) evaluation context K. Rule twp-wand is
used to weaken the postcondition, as well as to frame away parts of the precondition.

What might be surprising is the fact that the rule twp-rec for recursive functions
talks about a single unfolding, and lacks a loop variant/measure to reason about recursive
calls. Similar to CFML [14] we can reason about recursive programs through induction
at the meta-level (using Rocq’s induction). But there is another option—we can perform
induction on an inductive predicate defined as a least fixpoint in separation logic. Consider
[isListWithTl tl ℓ v⃗ ∗ i < length v⃗] lookup ℓ i [w. w = v⃗i ∗ isListWithTl tl ℓ v⃗]. The function
lookup ℓ i traverses the list and returns the value at index i, skipping ‘deleted’ nodes. It is
futile to perform (meta-level) induction on i or v⃗ since there might be an arbitrary number of
‘deleted’ nodes that should be skipped. Instead we perform induction on isListWithTl tl ℓ v⃗.
Note that we truly need induction instead of iteration. When making a recursive call, we use
the induction hypothesis (first conjunct in isListWithTl-ind), and when we reach the desired
value, we use isListWithTl tl ℓ′ v⃗′ (second conjunct) to prove the postcondition.

Definition of the total weakest precondition Similar to the standard Iris weakest precon-
dition connective, we define our total weakest precondition connective as a derived form in
the Iris base logic (for brevity’s sake, we omit concurrency and Iris’s invariant masks):

wp e [Φ] ≜


|⇛ Φe if e ∈ val

∀h. S h −∗ |⇛ red(e, h) ∗
∀e2, h2.

(
(e, h) −→ (e2, h2)

)
−∗ |⇛S h2 ∗ wp e2 [Φ]

if e /∈ val

This definition has a solution as a least fixpoint because the recursive occurrence appears in
positive position. This definition is quite a mouthful, so let us at first ignore Iris’s update
modality (|⇛) and state interpretation (S). In the base case (e ∈ val), the definition simply
requires the postcondition Φ to hold. The inductive case (e /∈ val) has a safety and preservation
part. The safety part requires that e is not stuck (red(e, h) ≜ ∃e′, h′. (e, h) −→ (e′, h′)). The
preservation part requires that for any step (e, h) −→ (e2, h2) in the operational semantics, the
weakest precondition holds recursively for e2. The least fixpoint guarantees that derivations
of wp e [Φ] are finite, and therefore that e terminates—without explicit step counting. The
state interpretation S h [37, §7.4] links the heap h used in the operational semantics to the
points-to assertion ℓ 7→ v. The update modality (|⇛) is used to support Iris’s ghost state.

The proof rules from Figure 2 are proved as lemmas in separation logic. For twp-bind
and twp-wand we perform induction on the least fixpoint in the premise. To ensure that
the total weakest precondition is doing its job, we prove adequacy, which given a closed proof
(i.e., precondition True), allows us to obtain strong normalization at the meta-level.

▶ Theorem 2 (Adequacy). If [True] e [Φ], then (e, h) is strongly normalizing for any heap h.

Comparison to the partial weakest precondition Our total weakest precondition is almost
identical to the Iris weakest precondition for partial correctness (written {Φ} instead of [Φ]):

wp e {Φ} ≜


|⇛ Φe if e ∈ val

∀h. S h −∗ |⇛ red(e, h) ∗
▷ ∀e2, h2.

(
(e, h) −→ (e2, h2)

)
−∗ |⇛S h2 ∗ wp e2 {Φ}

if e /∈ val

The sole difference is the later modality (▷) [51] in the recursive case (marked in red), which
is part of the support for step-indexing [4, 2, 5] by the Iris base logic. While the presence of

ITP 2025

27:10 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

the modality might appear innocent, it has major consequences. To understand that, we
should explain the semantics of step-indexing. The semantics of Iris propositions is indexed
by a natural number n, called the step-index. The proposition ▷P is defined to hold at step n
iff P holds at step n− 1, and ▷P holds vacuously at step 0. Since each recursive occurrence
of the weakest precondition is below a later modality, this means that wp e {Φ} holds at
step-index n if the program is safe for n steps of computation. In other words, the presence
of the later modality brings us to the realm of partial program correctness.

Now let us review the consequences to the proof rules. Since the weakest precondition
connective contains a later modality, that modality also shows up in the proof rules for
program operations that perform a computation step, e.g., recursive functions calls:

wp-rec
▷ (wp e[(rec f x = e)/f][v/x] {Φ}) ⊢ wp (rec f x = e) v {Φ}

▷-intro
P ⊢ ▷P

Löb
(▷P ⇒ P) ⊢ P

The ▷ modality makes wp-rec stronger since we can always introduce the ▷ using ▷-intro. It
also means we can trivially verify looping programs, e.g., we can prove wp diverge () {False}
with diverge ≜ rec f x = f x. This is done using Löb induction, which corresponds to
induction on the step-index, i.e., the number of remaining computation steps.

Another difference is that Iris defines its partial weakest precondition connective using
Banach’s fixpoint [37, §5.6], which is a step-indexed fixpoint operator that has no restrictions
on positivity, but requires recursion to be guarded by a later modality. Since guarded fixpoints
are unique [37, Thm 4] and the definition of the weakest precondition does not involve a
negative occurrence, one could use the least and Banach fixpoint interchangeably to define
the partial weakest precondition. Based on that observation, Vistrup et al. [79] extended
our total weakest precondition connective with a parameter that determines whether a later
modality is emitted, and thereby provide a uniform treatment of partial and total correctness.

Invariants and concurrency Like the Iris weakest precondition, we extend our total weakest
precondition with Iris’s mask-changing update modality and a threadpool semantics to
support invariants and concurrency, but these extensions come with some limitations.

First, since no later modality is emitted for computation steps, the opening of invariants
P is limited to timeless propositions [37, §5.7], i.e., propositions P that do not include

nested invariants or weakest preconditions. This restriction is needed for adequacy. If we allow
unrestricted Iris invariants (that can be opened without a later modality), we could prove a
total Hoare triple for Landin’s Knot [47], which is clearly not terminating. That is, given
landin ≜ let r = ref (λx. x) in r ← (λx. ! r ()); ! r (), we could prove [True] landin [True]
using the invariant ∃f. r 7→ f ∗□ wp f () [True] .

Second, our total weakest precondition enforces a very strong notion of termination in the
context of concurrency: wp e [Φ] says that e terminates for any scheduler. This means that
we inherently cannot verify blocking programs. For example, fork {while (! r = 0); } ; r ← 1
does not terminate if the scheduler only picks the forked-off thread. Program logics for total
correctness of concurrency thus integrate an assumption of fair scheduling [68, 48, 24, 75].

Despite these limitations, we should emphasize that our logic is at least as strong as
‘traditional’ separation logic for total correctness of sequential programs, e.g., CFML [14, 15,
16]. That means, we have all the proof rules of sequential separation logic, but additionally
support a limited form of ghost state, invariant assertions and concurrency. Additionally,
we obtain a smooth integration between partial and total correctness: we have wp e [Φ] ⊢
wp e {Φ}, i.e., total correctness implies partial correctness. It is an open question how to
define an fully-fledged Iris-like logic for total correctness (see § 6).

R. Krebbers, L. van der Maas, E. Tassi 27:11

5 Prototype Command and Tactic in Rocq-Elpi

In this section we discuss our Rocq-Elpi prototype for transforming high-level Iris Inductive
specifications into an encoding using a least fixpoint. We show how to generate the pre-
fixpoint function and least fixpoint definition (§ 5.1), specify and prove monotonicity of
variadic (pre-fixpoint) functions (§ 5.2), port the IPM tactics to Rocq-Elpi as needed to
generate the constructors and induction principles (§ 5.3), and our iInduction tactic (§ 5.4).
We conclude with a short evaluation of our implementation (§ 5.5).

5.1 Generating the Fixpoint
Inductive specifications are at the core of Rocq, and their user-facing syntax is well known
among all Rocq users. As shown in § 3, our Iris Inductive command takes advantage of
that very same syntax, allowing the user to declare inductive predicates in separation logic
similarly to native inductive predicates in Rocq. The keyword Iris is the invocation of the
Rocq-Elpi command, while its argument spans from the Inductive keyword to the end of the
text. Taken alone, the argument of Iris is a syntactically valid inductive specification, but it
would be immediately rejected by Rocq because the types of the constructors are expected
to be implications in the Rocq meta logic and not magic wands in Iris.

Rocq-Elpi commands can receive arguments as raw syntax trees, i.e., after Rocq has parsed
them, unfolded notations and performed lexical analysis to identify bound variables, and
resolved free variables to (existing) global identifiers. A Rocq-Elpi command can elaborate
these syntax trees into proper declarations and submit them to the Rocq type checker for
validation. For example, the inductive specification is_list_with_tl from § 3 is transformed
into the following pre-fixpoint function:

Definition is_list_with_tl_pre (tl : loc) := (* parameters *)
λ (rec : loc → list val → iProp), (* fixpoint *)

λ (l : loc) (vs : list val), (* fixpoint arguments *)
tl 7→ NIL ∗ ⌜vs = []⌝ ∗ ⌜l = tl⌝ (* nil *)

∨ (∃ (v : val) (vs' : list val) (l' : loc), (* cons *)
l 7→ CONS (v, #l') ∗ rec l' vs ∗ ⌜vs = v :: vs'⌝)

∨ ∃ (l' : loc), l 7→ DEL #l' ∗ rec l' vs. (* del *)

This definition closely follows the definition of FisListWithTl in § 3, but is in curried form. Note
that the parameter tl appears before the rec argument, similar to FisListWithTl.

This definition is generated by applying a number of transformation steps. 1. In each
inductive constructor type we replace the top-level wands with separating conjunctions, and
we transform the binders of the constructors into existential quantifiers in Iris. 2. We combine
all constructors with disjunctions. 3. We wrap the entire disjunction into a function that takes
the parameters (tl), the recursive argument (rec) and the indices (l and vs). 4. We replace all
recursive occurrences of is_list_with_tl with rec. 5. We turn the right-most use of rec into
a series of equalities on its argument. Note that the transformations do not necessarily create
sensible intermediary terms. Particularly, the meaning of the recursive occurrence in Steps 1–4
is context dependent. The right-most recursive occurrence is a placeholder for the equalities on
the variables, which are only generated in Step 5. In that step, we take good care to minimize
the number of existential quantifiers and equalities by substituting trivial equalities instead of
adding them. Consider the constructor is_list_with_tl_del, for which we would naively gen-
erate ∃ vs' l'' l', l'' 7→ DEL #l' ∗ rec l' vs' ∗ ⌜ l = l'' ⌝ ∗ ⌜ vs = vs' ⌝. In Step 5
we do not add the quantifiers l'' and vs', and substitute the trivial equalities.

ITP 2025

27:12 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

The implementation of these elaboration steps takes great advantage of Elpi’s automatic
handling of binders using HOAS [57] and the natural support for open recursion provided by
its rule-based nature. In particular term replacement, as in Step 5, can be easily implemented
atop of a pre-defined (deep) copy function by adding, at run-time, ad-hoc rules for the terms
to be replaced. For example, to turn UglyTerm into NiceTerm by replacing all occurrences of
l'' with l, one can just write “copy {{ l'' }} {{ l }} => copy UglyTerm NiceTerm”. Last,
Rocq-Elpi allows us to generate incomplete syntax trees, i.e., containing Rocq’s placeholders
for implicit arguments, as long as the missing information can be reconstructed by the Rocq
elaborator, which we call at judicious moments.

The next step is to define the inductive predicate by constructing the least fixpoint of
the pre-fixpoint function. In § 2 we used the least fixpoint operator µF , which takes a unary
pre-fixpoint function F : (A→ iProp)→ (A→ iProp). To avoid (un)currying, we generate a
specialized version for the given arity in our Rocq-Elpi implementation. For instance:

Definition is_list_with_tl (tl l : loc) (vs : list val) :=
∀ Φ : loc → list val → iProp,

□ (∀ l' vs', is_list_with_tl_pre tl Φ l' vs' -∗ Φ l' vs') -∗ Φ l vs.

The generated definition closely follows the unary version in § 2, but expands the predicate Φ
to the given arity. Generalizing specialized versions has another benefit. For technical reasons
due to step-indexing, Iris requires higher-order predicates, i.e., predicates with predicates as
their arguments (such as our total weakest precondition), to be morphisms in the category
of OFEs [37, §4.2], denoted -n> in Rocq. Our prototype recognizes these morphisms, e.g.,

Iris Inductive twp : expr → (val -d> iProp Σ) -n> iProp Σ := ..

Here, it generates a fixpoint definition in which the quantified predicate is also a morphism:

Definition twp (e : expr) (Ψ : val → iProp Σ) : iProp Σ :=
∀ Φ : expr → (val -d> iProp Σ) -n> iProp Σ,

□ (∀ e' Ψ', twp_pre Φ e' Ψ' -∗ Φ e' Ψ') -∗ Φ e Ψ.

5.2 Variadic Monotonicity
The fixpoint µF only satisfies the desired properties (fixpoint equations and iteration/in-
duction) if the pre-fixpoint function F is monotone. To express that a variadic (uncurried)
pre-fixpoint function is monotone, and to enable a goal-directed proof search, we develop a
variadic notion of monotonicity by porting the notion of signatures from Rocq’s generalized
rewriting framework [63] to separation logic. To each function f : A we assign a signature
SA : A→ A→ iProp (using iProp instead of Prop compared to Rocq’s generalized rewriting).
A function f is monotone iff SA f f , i.e., if f is a proper element of SA, denoted Proper SA f .
The signature SA of f : A is defined using combinators that follow the structure of A:2

SA =⇒ SB ≜ λf g : A→ B. ∀x, y. SA x y −∗ SB (f x) (g y) (=)A ≜ λx y : A. x = y

□SA ≜ λx y : A. □ (SA x y) flip SA ≜ λx y : A. SA y x

(−∗) ≜ λP Q : iProp. P −∗ Q

Some example signatures for the separation logic connectives are as follows:

2 Rocq’s generalized rewriting framework and our actual Rocq implementation feature the signature
pointwiseA SB ≜ λf g : A → B. ∀x. SB (f x) (g x), which is logically equivalent to (=)A =⇒ SB , and is
often used to obtain simpler proofs.

R. Krebbers, L. van der Maas, E. Tassi 27:13

Type Signature
∗ iProp → iProp → iProp (−∗) =⇒ (−∗) =⇒ (−∗)
−∗ iProp → iProp → iProp flip (−∗) =⇒ (−∗) =⇒ (−∗)
□ iProp → iProp □ (−∗) =⇒ (−∗)
∃ (A → iProp) → iProp

(
(=)A =⇒ (−∗)

)
=⇒ (−∗)

We use flip to express that −∗ is antitone in its first argument. To understand the signature
of the existential, it is useful to expand the combinators, then we see that ∃ is a proper
element iff ∀Φ Ψ. (∀x y. x = y −∗ Φx −∗ Ψ y) −∗ (∃x. Φx) −∗ (∃x. Ψx). A variadic pre-
fixpoint function of type (A1 → · · · → An → iProp)→ A1 → · · · → An → iProp has signature:
□

(
(=)A1 =⇒ · · · =⇒ (=)An =⇒ (−∗)

)
=⇒ (=)A1 =⇒ · · · =⇒ (=)An =⇒ (−∗). Similar

to Rocq’s generalized rewriting framework, we use type classes [64] to register proper elements,
which makes it possible for users to add custom monotonicity rules.3

Once we have assigned a signature SA to a pre-fixpoint function f : A we should construct
a proof of Proper SA f . We construct this proof in a goal-directed fashion by traversing the
syntax tree of f . For each node g : B in the syntax tree of f , we identify the appropriate
signature SB and apply the proof of Proper SB g. Suppose we have to solve □ (· · ·) ⊢
(· · · ∗ · · ·) −∗ (· · · ∗ · · ·). We use type classes to search for a signature whose rightmost symbol
is −∗, and which has ∗ as its proper element, and find Proper ((−∗) =⇒ (−∗) =⇒ (−∗)) (∗).

The strategy of the proof search consists of two steps: normalization and application. We
start with normalization, which introduces universal quantifiers, magic wands and modalities.
We then perform an application, which tries in given order: 1. If the left- and right-hand side
of the top-level relation are equal, we are done. 2. If the goal follows from a hypothesis (in
the IPM context), we are done. 3. Otherwise, search for an applicable signature and proper
proof and apply it. Perform normalization and continue until all subgoals are closed.

5.3 Reimplementing IPM tactics in Rocq-Elpi
The monotonicity properties, as well as the constructors and induction principles, are lemmas
in separation logic (iProp) instead of lemmas in the Rocq meta logic (Prop). The (automatic)
construction of proofs in separation logic is much harder than its counterpart in plain Rocq.
For example, proving an implication ϕ⇒ ψ with ϕ, ψ : Prop is easy—we simply introduce ϕ
into the Rocq context and construct a proof of ψ. In Rocq-Elpi this means we generate the
proof term λi : ϕ. proof-of-ψ, where we construct proof-of-ψ with i : ϕ in its context.

Constructing a proof of P −∗ Q with P,Q : iProp is much more challenging. Since P is a
separation logic proposition, we cannot introduce it into the Rocq context, and likewise a
λ is not a proof term of P −∗ Q. Instead we need to use the proof rules of separation logic
from Figure 1, such as −∗-intro. Using these proof rules directly is tedious as we have to
manipulate an entailment P ⊢ Q where the context P has an arbitrary structure.

To make it feasible to construct proofs in separation logic, the Iris Proof Mode (IPM)
represents a separation logic goal as a structured judgment Π; Σ ⊩ Q ≜ □(

∧
Π)∧ (∗Σ) ⊢ Q,

where Π is the persistent context and Σ is the spatial context. Contexts are association lists,
mapping hypothesis names to separation logic propositions. IPM provides notations so that
separation logic goals are rendered in a human-readable way, and provides i-variants of most
Rocq tactics, e.g., iIntros, iDestruct and iExists. At their core, these tactics are derived
rules for the ⊩ judgment, represented as lemmas in Rocq. For instance, for iIntros we have:

3 We use type classes instead of an Elpi database because they allow users to define the property and hint
using a single Instance command. There is ongoing work to unify type classes and Elpi databases [26].

ITP 2025

27:14 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

Π; Σ, (i : P) ⊩ Q i /∈ Π; Σ
Π; Σ ⊩ (P −∗ Q)

Lemma tac_wand_intro ∆ i P Q R :
FromWand R P Q → (* means R ⊢ P -∗ Q *)
match envs_app false (Esnoc Enil i P) ∆ with
| None => False
| Some ∆' => envs_entails ∆' Q
end →
envs_entails ∆ R.

We let ∆ = Π; Σ in the lemma. The lemma is derived from −∗-intro and rules to reassociate
∧, ∗, and □. The IPM tactic iIntros is an Ltac1 wrapper that applies tac_wand_intro and
performs some processing to reduce the goal and generate error messages. (Similar to Rocq’s
intros, the full iIntros and our Rocq-Elpi port support an introduction pattern instead of a
single identifier as its argument. We omit details about introduction patterns.)

(Interactive) proofs in IPM are constructed by chaining tactics written in Ltac1, but
this works poorly when generating IPM proofs using Rocq-Elpi because the Ltac1 bridge is
brittle.4 Instead, we reimplement the Ltac wrappers of many IPM tactics in Rocq-Elpi to
enable convenient chaining of IPM tactics in Rocq-Elpi functions.

To enable the incremental construction of proofs, Rocq terms contain typed holes that
represent the open goals. A tactic makes progress by refining a hole in a term, and when
it generates new holes, these correspond to new subgoals. Holes are a primitive notion in
Rocq-Elpi. The Rocq-Elpi runtime manages their eventual assignment and compatibility with
the hole type, and thus relieves the tactic programmer of this burden. Moreover, Rocq-Elpi
provides quotations and anti-quotations to build terms using Rocq’s syntax: A Rocq term is
enclosed in double curly braces, while lp: allows escaping back to Elpi.

The Elpi type igoal of Iris goals bundles a goal envs_entails ∆ R with a proof term. Rocq-
Elpi tactics are (logic programming) rules that take an Iris goal (whose proof term is a hole) as
input, and produce new Iris subgoal(s) as output. The tactic eiIntro-ident ID GOAL SUBGOAL
for wand introduction takes a GOAL of type envs_entails ∆ (P -∗ Q), and generates a SUBGOAL
of type envs_entails ∆' Q, where P has been inserted with name ID in ∆':

pred eiIntro-ident i:ident, i:igoal, o:igoal. % takes an id and a goal to a subgoal
eiIntro-ident ID GOAL (igoal IType IProof) :-

ident->term ID T, % data conversion
(@no-tc! ==> % refine H disabling TC resolution

refine-igoal-with {{ tac_wand_intro _ lp:T _ _ _ lp:FromWand lp:IProof }} GOAL),
tc-solve-term FromWand, !, % run TC resolution on FromWand
coq.typecheck IProof IType' ok, % inspect subgoal
pm-reduce IType' IType, % normalize subgoal
std.assert! (not (IType = {{ False }})) "eiIntro: not fresh".

We convert the Elpi representation of the name ID into a Rocq representation. We then
use the helper refine-igoal-with to refine the Iris goal GOAL with the lemma tac_wand_intro.
(We disable the implicit type class resolution performed by unification through @no-tc! ==>,
so we can control how FromWand is resolved ourselves.) We use the helper pm-reduce to reduce
functions that manipulate IPM contexts such as envs_app. Finally, we use std.assert! to
test that the new subgoal is not False (which happens if the name ID is not fresh).

With the reimplemention of IPM tactics at hand, the generation of a proof (e.g., of the
monotonicity property, constructors, or induction principle) boils down to chaining these

4 Since Ltac tactics can change the Rocq context arbitrarily, this makes interfacing inherently hard. After
execution of an Ltac1 tactic, the current Ltac1 bridge assumes the worst case and adds the entire Ltac
context to the Elpi context. This makes chaining tactics inefficient and inconvenient.

R. Krebbers, L. van der Maas, E. Tassi 27:15

tactics. Compared to Ltac, we explicitly pass around the goals and subgoals as arguments,
instead of making use of tacticals to compose tactics.

5.4 The iInduction Tactic
Rocq’s induction tactic receives a term (of an inductive type in Rocq), finds the corresponding
induction principle and applies it. Our prototype iInduction tactic performs the same job
for inductive predicates defined using Iris Inductive. To find the induction principle, we let
the Iris Inductive command store information in an Elpi database, which can be queried
by the iInduction tactic. An Elpi database is a collection of rules (in the logic programming
sense) that can be programmatically extended or queried. Our database is declared as:
Elpi Db induction.db lp:{{

pred inductive-ind o:gref, o:gref.
(* more predicate signatures *)

}}.

The omitted predicates store additional information, such as the number of parameters and
constructors. A rule inductive-ind I P associates the induction principle P (of the Elpi type
gref representing global Rocq names) to the inductive predicate I. For example, by invoking
the command Iris Inductive is_list_with_tl ... (§ 3), the following entry is added to the
database (omitting fully qualified names):
inductive-ind (const "is_list_with_tl") (const "is_list_with_tl_ind").

The iInduction tactic applies the induction principle with the correct parameters. This
information is obtained by querying the database. Subsequently, iInduction introduces
the separating conjunctions/modalities/quantifiers to generate separate subgoals for each
inductive case. This step uses a database query to obtain the number of constructors.

5.5 Evaluation
The total size of our Iris Inductive command and iInduction tactic consists of 345 lines of
code (LOC) in Rocq and 1761 LOC in Elpi. Detailed line counts are as follows:

Category LOC Rocq LOC Elpi
Library with Elpi utilities 0 100
Generation of pre-fixpoint function and fixpoint definition (§ 5.1) 24 243
Reimplementation of IPM tactics (§ 5.3) 154 874
Signatures and Proper search (§ 5.2) 134 86
Generation of constructors and induction principles (§ 5.3) 0 411
iInduction tactic (§ 5.4) 33 47

We have not reimplemented all IPM tactics, only the relevant parts of the tactics needed to
implement our command and tactic, e.g., iIntros, iModIntro, iClear, iPoseProof, iDestruct,
iSpecialize and iApply. Our reimplementation works for any Modal BI (MoBI) instead of
just the Iris base logic, and supports Iris’s introduction patterns, for which we reimplemented
the parser and evaluator. (Since our reimplementation of IPM is partial, it is impossible to
provide a meaningful comparison of the LOC between the Elpi and Ltac versions.)

To evaluate our prototype we reimplemented the total weakest precondition (originally
defined through a manual least fixpoint encoding by the first author in 2017 [42]) using our
Iris Inductive command. We used the constructors and iInduction tactic to derive the
proof rules. Since the signature of the total weakest precondition and its proof rules are not
changed, no changes are needed for Iris users who already use the total weakest precondition.

ITP 2025

27:16 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

6 Related Work

The representation of (co)inductive data types and predicates received plenty of attention in
the literature. The history is too rich to survey, but we see there are roughly two approaches:
add (co)inductives as a primitive construct (as done in Rocq [22]) or encode them (as done in
the HOL family [49, 31, 56, 33, 9, 76]). In this paper we use an encoding, but there are some
key differences to prior work. First, we work in an embedded logic, instead of the native logic
of the proof assistant. We thus cannot use the native tactics for introduction and elimination
of the logical connectives and have to manage the proof context ourselves (with help of the
Iris Proof Mode [45]). Second, we work in separation logic, which is a substructural logic
with restrictions on the number of times each hypothesis can be used. We are not aware
of a prior implementation of inductive types or predicates in a proof assistant based on
substructural logic. Third, we only focus on predicates, not data types, so there is no notion
of computation. For data types we rely on the machinery provided by Rocq.

The steps performed by our Iris Inductive command have some similarity with those per-
formed by the automation of Harrison [33] for HOL. Particularly, Harrison already emphasizes
the importance of a variadic notion of monotonicity, and allows users to add monotonicity
rules. We achieve these goals through signatures [63] and Rocq’s type classes [64].

In early versions of Rocq (v4.10) based on the Calculus of Constructions (CoC) [21],
inductive types (and predicates) were represented using a second-order encoding [58]. Follow-
ing the work on the Calculus of Inductive Constructions (CIC) [22, 55], inductive types were
added as a primitive to remedy the lack of dependent induction principles and discrimination
of constructors (e.g., 0 ̸= 1 not being provable). Since we only consider inductive predicates
and iProp is irrelevant, these issues of the second-order encoding are not applicable to us.
Compared to native inductive predicates in Rocq, we use a semantic condition (extensible
through Proper instances) instead of a syntactic check. We require mere positivity instead of
strict positivity (but are not aware of real-life uses cases of the former).

As discussed throughout this paper, there are multiple ways of defining (co)inductive
predicates in separation logic, which all have different conditions and thus support different
classes of predicates. With structural recursion, the size of the recursive argument should be
decreasing. With Banach’s fixpoint, recursive occurrences should be below a later modality
(i.e., the pre-fixpoint function should be contractive). With least/greatest fixpoints, recursive
occurrences should be positive (i.e., the pre-fixpoint function should be monotone). Yet
another approach has been used in the literature: if the type of separation logic propositions
is ‘simple enough’, one can use the native Inductive command of the proof assistant. For
instance, when using simple heap predicates, i.e., heapProp := heap → Prop, Rocq accepts the
definition Inductive is_list : loc → list val → heapProp because it unfolds heapProp and
simply considers the predicate to have the heap as an additional index (formally, heapProp
is an arity of sort Prop [72]). Up to our knowledge, this technique dates back to Appel [3]
in 2006, who used it to define the list predicate. More recently, this technique has been
used to define typing rules internally in separation logic, using Agda [60] and Rocq [34].
Without automation like our Iris Inductive command, this technique avoids a tedious
manual encoding. However, it is not applicable to Iris, whose type of propositions iProp is a
Σ-type that bundles a predicate with some properties (and is thus not an arity of sort Prop).

Other separation logics for total correctness have been developed. CFML [14, 15, 16]
(in Rocq) uses standard heap predicates and defines Hoare triples/weakest preconditions in
terms of a big-step operational semantics. Due to the use of a big-step operational semantics,
non-determinism is not supported, but this is remedied by later work on Omnisemantics [17].

R. Krebbers, L. van der Maas, E. Tassi 27:17

Compared to CFML, our logic for total correctness is defined in Iris, and therefore inherits a
limited form of the Iris mechanisms for ghost state, invariant assertions and concurrency.

It is an open question how to define a fully-fledged Iris-like logic for total correctness.
Time credits [6] (mechanized and extended by Mevel et al. [50] in Iris) provide a mechanism
to prove bounded termination using separation logic. The logic is extended with a resource
$n, which gives the permission to perform n computation steps. The Hoare triple {$n} e {Φ}
means that e terminates in at most n steps. Compared to our total weakest preconditions,
time credits require program specifications to mention explicit step counts. This makes it
possible to establish (amortized) complexity bounds [18]. Spies et al. [65] observe that the
explicit counting of steps limits compositionality of termination proofs, and thus generalize
time credits $n from n being a natural number to an ordinal number. The trade-offs between
transfinite time credits and our weakest preconditions remain to be investigated. We use
vanilla Iris, whereas Spies et al. use Transfinite Iris, a variant of Iris with transfinite/ordinal
step-indexing that violates some of Iris’s commuting rules for the later modality [65, §7].

One can also prove termination using separation logic by showing a refinement with a
source program [68, 28] or a labeled transition system (LTS) [75], and then use another
method to prove termination of the source program/LTS. Finally, there exist specialized
logics for proving termination of blocking concurrent programs (i.e., with busy loops) [48, 24].
These logics are however first-order and are not mechanized in a proof assistant.

Rocq-Elpi [69, 71] has been used to implement commands similar to our Iris Inductive
command. Hierarchy Builder [20] takes advantage of raw syntax trees to use the familiar
Record syntax to describe algebraic interfaces. The derive code synthesis framework [70, 30]
can automatically prove monotonicity properties for containers specifications akin to our
pre-fixpoint functions, but does so in an ad-hoc way rather than by composing proofs using
signatures. The Algebra Tactics framework [61] provides ring, field, lra, nra and psatz
tactics for the Mathematical Components library, via a sophisticated term pre-processing.
None of the aforementioned frameworks stress the Rocq-Elpi tactic API or the Ltac1 bridge,
since they provide leaf tactics (that close the goal), whereas our IPM tactics generate subgoals.

7 Conclusions and Future Work

We showed that inductive predicates, encoded internally using a least fixpoint in higher-order
separation logic, are useful assets for program verification. Our prototype Iris Inductive
command provides a first step towards making this encoding practical, but future work
remains to be done. We could add Iris CoInductive (greatest fixpoint), for which we can
reuse the generation of the pre-fixpoint function and monotonicy proofs, but have to write a
dual version of the generation of the variadic fixpoint and coinduction principle. Low-hanging
fruit includes support for improved error messages and better automation for monotonicity
proofs (e.g., to declare nested inductive predicates without manual Proper instances).

More fundamentally, one should investigate what is the best way to provide both Ltac1
and Rocq-Elpi interfaces for tactics (such as IPM). While Ltac1 is considered legacy by the
Rocq developers (no improvements, but also no breaking changes), IPM cannot drop Ltac1
support as it remains the primary language for end-users to write Rocq proofs interactively
(i.e., the commands between Proof and Qed). One could improve the bridge for calling Ltac1
from Elpi, or rewrite IPM in Elpi and provide Ltac1 wrappers. We hope our work constitutes
a valuable case study for the Rocq-Elpi and IPM teams to investigate these options.

ITP 2025

27:18 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

References
1 Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Odder-

shede Gregersen, Joseph Tassarotti, and Lars Birkedal. Error credits: Resourceful reasoning
about error bounds for higher-order probabilistic programs. PACMPL, 8(ICFP):284–316, 2024.
doi:10.1145/3674635.

2 Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University, 2004.
3 Andrew W. Appel. Tactics for separation logic, 2006. Unpublished manuscript. URL:

http://www.cs.princeton.edu/~appel/papers/septacs.pdf.
4 Andrew W. Appel and David A. McAllester. An indexed model of recursive types for

foundational proof-carrying code. TOPLAS, 23(5):657–683, 2001. doi:10.1145/504709.
504712.

5 Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A
very modal model of a modern, major, general type system. In Martin Hofmann and Matthias
Felleisen, editors, POPL, pages 109–122, 2007. doi:10.1145/1190216.1190235.

6 Robert Atkey. Amortised resource analysis with separation logic. LMCS, 7(2), 2011. doi:
10.2168/LMCS-7(2:17)2011.

7 David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In LPAR, volume
4790 of LNCS, pages 92–106, 2007. doi:10.1007/978-3-540-75560-9_9.

8 Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge! - A framework for
higher-order separation logic in Coq. In ITP, volume 7406 of LNCS, pages 315–331, 2012.
doi:10.1007/978-3-642-32347-8_21.

9 Stefan Berghofer and Markus Wenzel. Inductive datatypes in HOL - lessons learned in
formal-logic engineering. In TPHOLs, volume 1690 of LNCS, pages 19–36, 1999. doi:
10.1007/3-540-48256-3_3.

10 Bodil Biering, Lars Birkedal, and Noah Torp-Smith. BI-hyperdoctrines, higher-order separation
logic, and abstraction. TOPLAS, 29(5):24, 2007. doi:10.1145/1275497.1275499.

11 Stephen Brookes. A semantics for concurrent separation logic. TCS, 375(1-3):227–270, 2007.
doi:10.1016/J.TCS.2006.12.034.

12 Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel.
VST-Floyd: A separation logic tool to verify correctness of C programs. JAR, 61(1-4):367–422,
2018. doi:10.1007/S10817-018-9457-5.

13 Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying
concurrent, crash-safe systems with perennial. In SOSP, pages 243–258, 2019. doi:
10.1145/3341301.3359632.

14 Arthur Charguéraud. Program verification through characteristic formulae. In ICFP, pages
321–332, 2010. doi:10.1145/1863543.1863590.

15 Arthur Charguéraud. Higher-order representation predicates in separation logic. In CPP,
pages 3–14, 2016. doi:10.1145/2854065.2854068.

16 Arthur Charguéraud. Separation logic for sequential programs (functional pearl). PACMPL,
4(ICFP):116:1–116:34, 2020. doi:10.1145/3408998.

17 Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and Samuel Gruetter. Omnisemantics:
Smooth handling of nondeterminism. TOPLAS, 45(1):5:1–5:43, 2023. doi:10.1145/3579834.

18 Arthur Charguéraud and François Pottier. Verifying the correctness and amortized complexity
of a union-find implementation in separation logic with time credits. JAR, 62(3):331–365,
2019. doi:10.1007/S10817-017-9431-7.

19 Adam Chlipala. The Bedrock structured programming system: Combining generative metapro-
gramming and Hoare logic in an extensible program verifier. In ICFP, pages 391–402, 2013.
doi:10.1145/2500365.2500592.

20 Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy Builder: Algebraic hierarchies
made easy in Coq with Elpi (system description). In FSCD, volume 167 of LIPIcs, pages
34:1–34:21, 2020. doi:10.4230/LIPICS.FSCD.2020.34.

https://doi.org/10.1145/3674635
http://www.cs.princeton.edu/~appel/papers/septacs.pdf
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.2168/LMCS-7(2:17)2011
https://doi.org/10.2168/LMCS-7(2:17)2011
https://doi.org/10.1007/978-3-540-75560-9_9
https://doi.org/10.1007/978-3-642-32347-8_21
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1145/1275497.1275499
https://doi.org/10.1016/J.TCS.2006.12.034
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/1863543.1863590
https://doi.org/10.1145/2854065.2854068
https://doi.org/10.1145/3408998
https://doi.org/10.1145/3579834
https://doi.org/10.1007/S10817-017-9431-7
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.4230/LIPICS.FSCD.2020.34

R. Krebbers, L. van der Maas, E. Tassi 27:19

21 Thierry Coquand and Gérard P. Huet. The Calculus of Constructions. I&C, 76(2/3):95–120,
1988. doi:10.1016/0890-5401(88)90005-3.

22 Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In COLOG-88,
pages 50–66, 1990. doi:10.1007/3-540-52335-9_47.

23 Paulo Emílio de Vilhena and François Pottier. A separation logic for effect handlers. PACMPL,
5(POPL):1–28, 2021. doi:10.1145/3434314.

24 Emanuele D’Osualdo, Julian Sutherland, Azadeh Farzan, and Philippa Gardner. TaDA Live:
Compositional reasoning for termination of fine-grained concurrent programs. TOPLAS,
43(4):16:1–16:134, 2021. doi:10.1145/3477082.

25 Cvetan Dunchev, Ferruccio Guidi, Claudio Sacerdoti Coen, and Enrico Tassi. ELPI: fast,
embeddable, λprolog interpreter. In LPAR, volume 9450 of LNCS, pages 460–468, 2015.
doi:10.1007/978-3-662-48899-7_32.

26 David Fissore and Enrico Tassi. A new type-class solver for Coq in Elpi. In Coq Workshop,
2023. URL: https://inria.hal.science/hal-04467855.

27 Dan Frumin, Robbert Krebbers, and Lars Birkedal. Compositional non-interference for fine-
grained concurrent programs. In S&P, pages 1416–1433, 2021. doi:10.1109/SP40001.2021.
00003.

28 Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers,
Jeehoon Kang, and Derek Dreyer. Simuliris: A separation logic framework for verifying
concurrent program optimizations. PACMPL, 6(POPL):1–31, 2022. doi:10.1145/3498689.

29 Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal. Mechanized
logical relations for termination-insensitive noninterference. PACMPL, 5(POPL):1–29, 2021.
doi:10.1145/3434291.

30 Benjamin Grégoire, Jean-Christophe Léchenet, and Enrico Tassi. Practical and sound equality
tests, automatically: Deriving eqType instances for Jasmin’s data types with Coq-Elpi. In
CPP, pages 167–181, 2023. doi:10.1145/3573105.3575683.

31 Elsa L. Gunter. A broader class of trees for recursive type definitions for HOL. In HUG,
volume 780 of LNCS, pages 141–154, 1993. doi:10.1007/3-540-57826-9_131.

32 Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC, volume
2180 of LNCS, pages 300–314, 2001. doi:10.1007/3-540-45414-4_21.

33 John Harrison. Inductive definitions: Automation and application. In TPHOL, volume 971 of
LNCS, pages 200–213, 1995. doi:10.1007/3-540-60275-5_66.

34 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Connectivity graphs: a method
for proving deadlock freedom based on separation logic. PACMPL, 6(POPL):1–33, 2022.
doi:10.1145/3498662.

35 Ralf Jung. Iris Merge Request 60: “Implement greatest fixed point inside the logic”, 2017.
URL: https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/60.

36 Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. In
ICFP, pages 256–269, 2016. doi:10.1145/2951913.2951943.

37 Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer. Iris from the ground up: A modular foundation for higher-order concurrent separation
logic. JFP, 28:e20, 2018. doi:10.1017/S0956796818000151.

38 Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany,
Derek Dreyer, and Bart Jacobs. The future is ours: Prophecy variables in separation logic.
PACMPL, 4(POPL):45:1–45:32, 2020. doi:10.1145/3371113.

39 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
In POPL, pages 637–650, 2015. doi:10.1145/2676726.2676980.

40 Bronisław Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise
de Mathématique, 6:133–134, 1928.

41 Robbert Krebbers. Iris commit 1e8054db: “Port fixpoints to BIs”, 2017. URL: https:
//gitlab.mpi-sws.org/iris/iris/-/commit/1e8054db.

ITP 2025

https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1145/3434314
https://doi.org/10.1145/3477082
https://doi.org/10.1007/978-3-662-48899-7_32
https://inria.hal.science/hal-04467855
https://doi.org/10.1109/SP40001.2021.00003
https://doi.org/10.1109/SP40001.2021.00003
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3434291
https://doi.org/10.1145/3573105.3575683
https://doi.org/10.1007/3-540-57826-9_131
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1007/3-540-60275-5_66
https://doi.org/10.1145/3498662
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/60
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://gitlab.mpi-sws.org/iris/iris/-/commit/1e8054db
https://gitlab.mpi-sws.org/iris/iris/-/commit/1e8054db

27:20 Inductive Predicates via Least Fixpoints in Higher-Order Separation Logic

42 Robbert Krebbers. Iris Merge Request: “Weakest preconditions for total program correctness”,
2017. URL: https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/65.

43 Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser,
Amin Timany, Arthur Charguéraud, and Derek Dreyer. MoSeL: A general, extensible modal
framework for interactive proofs in separation logic. PACMPL, 2(ICFP):77:1–77:30, 2018.
doi:10.1145/3236772.

44 Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The essence of higher-order concurrent separation logic. In ESOP, volume 10201 of
LNCS, pages 696–723, 2017. doi:10.1007/978-3-662-54434-1_26.

45 Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order
concurrent separation logic. In POPL, pages 205–217, 2017. doi:10.1145/3009837.3009855.

46 Robbert Krebbers, Luko van der Maas, and Enrico Tassi. Rocq development of “Inductive
predicates via least fixpoints in higher-order separation logic”, 2025. doi:10.5281/zenodo.
15727403.

47 Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6(4):308–
320, 1964. doi:10.1093/COMJNL/6.4.308.

48 Hongjin Liang and Xinyu Feng. Progress of concurrent objects with partial methods. PACMPL,
2(POPL):20:1–20:31, 2018. doi:10.1145/3158108.

49 Thomas F. Melham. A package for inductive relation definitions in HOL. In TPHOL, pages
350–357, 1991.

50 Glen Mével, Jacques-Henri Jourdan, and François Pottier. Time credits and time receipts in Iris.
In ESOP, volume 11423 of LNCS, pages 3–29, 2019. doi:10.1007/978-3-030-17184-1_1.

51 Hiroshi Nakano. A modality for recursion. In LICS, pages 255–266, 2000. doi:10.1109/LICS.
2000.855774.

52 Peter W. O’Hearn. Resources, concurrency, and local reasoning. TCS, 375(1-3):271–307, 2007.
doi:10.1016/J.TCS.2006.12.035.

53 Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bull. Symb. Log.,
5(2):215–244, 1999. doi:10.2307/421090.

54 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In CSL, volume 2142 of LNCS, pages 1–19, 2001. doi:10.1007/
3-540-44802-0_1.

55 Christine Paulin-Mohring. Inductive definitions in the system Coq - rules and properties. In
TLCA, volume 664 of LNCS, pages 328–345, 1993. doi:10.1007/BFB0037116.

56 Lawrence C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In
CADE, volume 814 of LNCS, pages 148–161, 1994. doi:10.1007/3-540-58156-1_11.

57 Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In PLDI, pages 199–208,
1988. doi:10.1145/53990.54010.

58 Frank Pfenning and Christine Paulin-Mohring. Inductively defined types in the Calculus of
Constructions. In MFPS, volume 442 of LNCS, pages 209–228, 1989. doi:10.1007/BFB0040259.

59 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
pages 55–74, 2002. doi:10.1109/LICS.2002.1029817.

60 Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-typed
definitional interpreters for linear, session-typed languages. In CPP, pages 284–298, 2020.
doi:10.1145/3372885.3373818.

61 Kazuhiko Sakaguchi. Reflexive tactics for algebra, revisited. In ITP, volume 237 of LIPIcs,
pages 29:1–29:22, 2022. doi:10.4230/LIPICS.ITP.2022.29.

62 Thomas Somers and Robbert Krebbers. Verified lock-free session channels with linking.
PACMPL, 8(OOPSLA2):588–617, 2024. doi:10.1145/3689732.

63 Matthieu Sozeau. A new look at generalized rewriting in type theory. JFR, 2(1):41–62, 2009.
doi:10.6092/ISSN.1972-5787/1574.

64 Matthieu Sozeau and Nicolas Oury. First-class type classes. In TPHOLs, volume 5170 of
LNCS, pages 278–293, 2008. doi:10.1007/978-3-540-71067-7_23.

https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/65
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.5281/zenodo.15727403
https://doi.org/10.5281/zenodo.15727403
https://doi.org/10.1093/COMJNL/6.4.308
https://doi.org/10.1145/3158108
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/J.TCS.2006.12.035
https://doi.org/10.2307/421090
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/BFB0037116
https://doi.org/10.1007/3-540-58156-1_11
https://doi.org/10.1145/53990.54010
https://doi.org/10.1007/BFB0040259
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.4230/LIPICS.ITP.2022.29
https://doi.org/10.1145/3689732
https://doi.org/10.6092/ISSN.1972-5787/1574
https://doi.org/10.1007/978-3-540-71067-7_23

R. Krebbers, L. van der Maas, E. Tassi 27:21

65 Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek
Dreyer, and Lars Birkedal. Transfinite Iris: Resolving an existential dilemma of step-indexed
separation logic. In PLDI, pages 80–95, 2021. doi:10.1145/3453483.3454031.

66 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 2:285–309, 1955. doi:10.2140/pjm.1955.5.285.

67 Joseph Tassarotti and Robert Harper. A separation logic for concurrent randomized programs.
PACMPL, 3(POPL):64:1–64:30, 2019. doi:10.1145/3290377.

68 Joseph Tassarotti, Ralf Jung, and Robert Harper. A higher-order logic for concurrent
termination-preserving refinement. In ESOP, volume 10201 of LNCS, pages 909–936, 2017.
doi:10.1007/978-3-662-54434-1_34.

69 Enrico Tassi. Elpi: An extension language for Coq (metaprogramming Coq in the Elpi λProlog
dialect). In CoqPL, 2018. URL: https://inria.hal.science/hal-01637063.

70 Enrico Tassi. Deriving proved equality tests in Coq-Elpi: Stronger induction principles for
containers in Coq. In ITP, volume 141 of LIPIcs, pages 29:1–29:18, 2019. doi:10.4230/
LIPICS.ITP.2019.29.

71 Enrico Tassi. Elpi: Rule-based meta-language for Rocq. In CoqPL, 2025. URL: https:
//inria.hal.science/hal-04990628.

72 The Rocq Prover development team. Rocq 9.0.0 reference manual, section inductive types and
recursive functions, 2026. URL: https://rocq-prover.org/doc/V9.0.0/refman/language/
core/inductive.html.

73 The std++ developers and contributors. Rocq-std++: An extended "Standard Library" for
Rocq, 2024. URL: https://gitlab.mpi-sws.org/iris/stdpp/.

74 Amin Timany and Lars Birkedal. Mechanized relational verification of concurrent programs
with continuations. PACMPL, 3(ICFP):105:1–105:28, 2019. doi:10.1145/3341709.

75 Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Jonas Kastberg Hinrichsen,
Léon Gondelman, Abel Nieto, and Lars Birkedal. Trillium: Higher-order concurrent and
distributed separation logic for intensional refinement. PACMPL, 8(POPL):241–272, 2024.
doi:10.1145/3632851.

76 Dmitriy Traytel, Andrei Popescu, and Jasmin Christian Blanchette. Foundational, composi-
tional (co)datatypes for higher-order logic: Category theory applied to theorem proving. In
LICS, pages 596–605, 2012. doi:10.1109/LICS.2012.75.

77 Luko van der Maas. Extending the Iris Proof Mode with inductive predicates using Elpi.
Master’s thesis, Radboud University Nijmegen, 2024. doi:10.5281/zenodo.15727560.

78 Orpheas van Rooij and Robbert Krebbers. Affect: An affine type and effect system. PACMPL,
9(POPL):126–154, 2025. doi:10.1145/3704841.

79 Max Vistrup, Michael Sammler, and Ralf Jung. Program logics à la carte. PACMPL,
9(POPL):300–331, 2025. doi:10.1145/3704847.

ITP 2025

https://doi.org/10.1145/3453483.3454031
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1145/3290377
https://doi.org/10.1007/978-3-662-54434-1_34
https://inria.hal.science/hal-01637063
https://doi.org/10.4230/LIPICS.ITP.2019.29
https://doi.org/10.4230/LIPICS.ITP.2019.29
https://inria.hal.science/hal-04990628
https://inria.hal.science/hal-04990628
https://rocq-prover.org/doc/V9.0.0/refman/language/core/inductive.html
https://rocq-prover.org/doc/V9.0.0/refman/language/core/inductive.html
https://gitlab.mpi-sws.org/iris/stdpp/
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3632851
https://doi.org/10.1109/LICS.2012.75
https://doi.org/10.5281/zenodo.15727560
https://doi.org/10.1145/3704841
https://doi.org/10.1145/3704847

	1 Introduction
	2 Fixpoints in Higher-Order Separation Logic
	3 Data Structure Verification
	4 Total Program Correctness
	5 Prototype Command and Tactic in Rocq-Elpi
	5.1 Generating the Fixpoint
	5.2 Variadic Monotonicity
	5.3 Reimplementing IPM tactics in Rocq-Elpi
	5.4 The iInduction Tactic
	5.5 Evaluation

	6 Related Work
	7 Conclusions and Future Work

