
Modal abstractions for operating system kernels
Kuru, Ismail
https://researchdiscovery.drexel.edu/esploro/outputs/doctoral/Modal-abstractions-for-operating-system-kernels/991022053139804721/filesAndLinks
?index=0

Kuru, I. (2025). Modal abstractions for operating system kernels [Drexel University].
https://doi.org/10.17918/00010934
Document Version: PDF

Downloaded On 2026/01/11 09:46:10 -0500
Free to read
Open Access (License Unspecified)
Contact: libsystems@drexel.edu
Repository homepage: https://researchdiscovery.drexel.edu/

Please do not remove this page

https://researchdiscovery.drexel.edu/esploro/outputs/doctoral/Modal-abstractions-for-operating-system-kernels/991022053139804721/filesAndLinks?index=0
https://researchdiscovery.drexel.edu/esploro/outputs/doctoral/Modal-abstractions-for-operating-system-kernels/991022053139804721
https://researchdiscovery.drexel.edu/

DISSERTATION APPROVAL FORM
AND SIGNATURE PAGE

Instructions: This form must be completed by all doctoral students with a dissertation requirement.

This form MUST be included as page 1 of your thesis via electronic submission to ProQuest.

Dissertation Title: Modal Abstractions for Operating System Kernels

Author’s Name: Ismail Kuru

Submission Date: 05/08/2025

The signatures below certify that this dissertation is complete and approved by the Examining Committee.

Role: Chair Name: Colin Gordon
Title: Associate Professor
Department: Computing
Approved: Yes Date: 05/08/2025

Role: Member Name: Vasilis Gkatzelis
Title: Associate Professor
Department: Computing
Approved: Yes Date: 05/12/2025

Role: Member Name: Manolis Pountourakis
Title: Assistant Professor
Department: Computing
Approved: Yes Date: 05/12/2025

Role: Member Name: Geoffrey Mainland
Title: Associate Professor
Department: Computing
Approved: Yes Date: 05/08/2025

Role: Member Name: Lars Birkedal
Title: Professor
Institution: Aarhus University
Approved: Yes Date: 05/08/2025

Modal Abstractions for Operating System Kernels

A Thesis

Submitted to the Faculty

of

Drexel University

by

Ismail Kuru

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

March 2025

© Copyright 2025
Ismail Kuru. All Rights Reserved.

This work is licensed under the terms of the Creative Commons Attribution-ShareAlike
4.0 International license. The license is available at
http://creativecommons.org/licenses/by-sa/4.0/.

http://creativecommons.org/licenses/by-sa/4.0/

ii

DEDICATIONS

To my wife, Damla Kuru.

and

To my mom, Sevim Kuru, my dad, Bahri Kuru, my

sister, Gokcen Kuru Nardal, and the little monster

Ada Nardal.

iii

ACKNOWLEDGMENTS

It is crystal clear that this document, although I enjoy the privilege of having my name on its title

page, would not have been possible without the truly incredible amount of support that I have

received throughout my life, and especially over my long Ph.D. journey.

First and foremost, I would like to thank my advisor, Colin S. Gordon. It has been a great, long

working relationship with him, so it is extremely difficult to identify each aspect he helped me develop

as a researcher, because there are tons of them. I had everything, from technical feedback to broad

personal advice, from you. You drastically influenced whatever I am now. I consider myself extremely

lucky to have a mentor like you.

Next, I owe a huge thanks to the members of my thesis committee: Lars Birkedal, Vasilis Gkatzelis,

Geoffrey Mainland, and Emmanouil Pountourakis. The thesis defense had some delays, and I am

very grateful for their patience. Their reviews greatly improved both the structure and content of

the thesis. Some of them have already shaped the future direction of the solutions presented in the

thesis.

An early version of one of the parts in this thesis includes discussions with Matthew Parkinson when

I was interning with him during my master’s degree and my visits to Microsoft Research Cambridge,

UK. He is the one who introduced me to the separation logic via Views framework. Thank you so

much, Matthew.

I cannot skip my internship at BedRock (now BlueRock). Our whiteboard discussions wiht Gregory

Malecha were extremely valuable. Regarding the type of challenges this thesis is tackling, this

internship has become a huge source of motivation for the majority of this thesis; in fact, I started

working on most of the OS-related sections after the internship with Gregory.

iv

Iris community! I got the privilege to speak with Joseph Tassarotti and Derek Dreyer in person,

but the whole community (Ralf Jung, Robert Krebbers, and all the other extremely productive

researchers) has been putting in a huge amount of work, without which this thesis could not be

realized.

A Ph.D. is not all about completed work. There is more work that is not in this thesis, and my

precious collaborator on the unseen part of the thesis was Tom Ridge. Tom, I really enjoyed our

online meetings!

My research journey started a long time ago with doing multiple master’s degrees in computer science.

I thank Albert Cohen for introducing me to doing research, hosting me at ENS Paris multiple times,

and advising me on the Google Summer of Code GCC project. My verification journey, though,

starts with Serdar Tasiran. I owe many thanks to him for advising me on my master’s thesis which

was supported by a Microsoft Research scholarship, and bringing me to his sabbatical tour, during

which I met with Colin.

I would like to thank you for making my Drexel experience such a memorable journey. To name a

few: Sergey Matskevich, Xiao Han, Mahshid Shahmohammadian, Christopher Henson, and Amirali

Sajadi.

Doing a (!long) Ph.D. could not be possible without the spectacular Drexel CCI advising team:

Brenna Martin, Ben Schneider, and Patricia Kucker, and, I believe, many others whose names I do

not know.

The acknowledgment would be missing if I did not mention the greatest basketball players of Philly!

Drexel Gym Sunday 10 am players, I will not list all the names here; you know yourselves! Thank

you so much for making the last three years more enjoyable!

Last but far from least, I owe endless thanks to my love, Damla Kuru, for all the love, patience, and

companionship she has given me over this long journey, and to my parents, Sevim and Bahri, for all

the love and encouragement they have given me throughout my life. I cannot skip my sister, Gokcen,

and my little monster niece, Ada, for the joy they brought to my life.

v

vi

CONTENTS

List of Tables . xii

List of Figures . xiii

Abstract . xvi

I Introduction . 1

1. Introduction . 2

1.1 An Overview of OS Verification . 3

1.1.1 The Issue of Memory Virtualization in the Context of OS Verification 3

1.1.2 Contributions to Verification in the Presence of Location Virtualization 5

1.2 An Overview of Protocol Based Reasoning . 7

1.2.1 Contributions to Modularity of Protocols . 9

1.3 An Overview of Concurrent Memory Management . 10

1.3.1 Contributions to Verification of Clients using Relatively Consistent Memory Man-
agement . 11

1.4 An Overview of Modal Verification Patterns . 13

1.4.1 Contributions to Identifying the Verification Patterns via Modal Abstractions . . . 13

1.5 Reading Guideline . 14

II Modal Abstractions for Location Virtualization 16

1. Background . 17

1.1 Program Logic . 17

1.2 Background on Iris Separation Logic . 18

1.2.1 Basic SL Assertions . 18

1.2.2 Abstracting SL . 19

1.3 Modalities in Logic . 21

vii

2. Related Work . 23

2.1 Verification Effort on VMM . 23

2.2 Modal Abstractions in Systems Verification . 27

3. Semantics . 29

3.1 Overview on Machine Model . 29

3.2 Syntax . 33

3.3 Machine State . 34

3.3.1 Registers . 34

3.3.2 Memory . 35

3.3.3 Address-Translation . 36

3.4 Instructions . 40

3.4.1 Handling Instructions Based on Operand Types . 40

3.5 Giving Semantics to Instructions . 43

3.5.1 Reading To/From Virtual Memory Address . 45

3.5.2 Arithmetic Operations . 47

3.5.3 Add, Sub and Compare Instructions . 47

3.5.4 Shift, And, Or, and Xor Instructions . 48

3.5.5 Stack Operations . 49

3.5.6 Control-Flow Instructions . 51

4. Program Logic . 55

4.1 Base Points-To Assertions . 56

4.1.1 Register points-to . 56

4.1.2 Physical memory points-to . 56

4.2 A Restrictive Virtual Memory Addressing . 57

4.3 Aliasing/Sharing Physical Pages . 58

4.3.1 From A Single Address Space to Many . 61

4.4 Address-Space Management . 61

viii

4.4.1 Subtleties of Changing Address Spaces Using Modalities 62

4.5 Selected Logical Rules . 64

4.5.1 Accessing Virtual Addresses . 65

4.5.2 Updating cr3 . 66

4.5.3 Stack Operations: Push and Pop . 66

4.5.4 Control-Flow Operations: Call Return and Jump 66

4.5.5 Arithmetic & Bitwise Arithmetic Operations . 67

4.6 Soundness . 70

5. Verifying VMM Essentials . 71

5.1 Traversing Live Page Tables . 71

5.1.1 Loading Page-Table Address Value . 72

5.1.2 Identity Mappings . 73

5.1.3 Installing a New Table . 76

5.1.4 Physical-to-Virtual Conversion with P2V . 78

5.1.5 Walking Page-Table Tree: Calling pte_get_next_table for Each Level 79

5.2 Mapping a New Page . 81

5.2.1 Unmapping a Page . 83

5.3 Change of Address Space . 84

6. Implementation . 87

6.1 Numbers on pte Library . 87

6.2 Numbers on x64-Iris . 88

7. Conclusions . 89

III Modal Understanding of Modularity of State-Transition-Systems 90

1. Background . 91

1.1 A Primer on Concurrent Program Logics . 94

2. Protocols . 98

2.1 Encoding Protocols in STSes . 98

ix

2.2 Limitations of Existing STS Logics . 99

2.3 Intuition Behind “Subtyping” STSes . 100

2.3.1 Motivation . 101

3. Kripke Models, Bisimulation, and Generated Submodels 104

4. An Attempt At STS Bisimulation . 110

4.1 Definitions . 110

4.2 Simulations . 111

4.3 Guarantee in the Bisimulation . 115

4.4 Rely in the Bisimulation . 123

5. Invariants . 131

5.1 Remarks on Invariants and Interacting with STS . 132

5.2 Tolerance of Invariants . 134

5.3 Invariants against Guarantee-Step Bisimulation . 135

6. Program Logic . 137

6.1 Soundness of Invariants . 137

6.2 An STS Aware Client Specfication . 140

6.3 Proof Rules . 143

6.4 Transferring the Proof of a File Protocol Client . 144

7. Conclusion,Continuing and Future Work . 146

7.1 Continuing Work . 146

7.2 Future Work . 147

IV Modal Concurrent Memory Management . 149

1. Background . 150

2. Semantics . 156

3. Type System . 159

3.1 RCU Type System for Write Critical Section . 160

3.2 Types in Action . 165

x

3.3 Type Rules . 166

4. Evaluation . 171

4.1 Soundness . 174

4.1.1 Proof . 175

4.2 Related Work . 183

4.3 Conclusions . 186

V Modalities as Verification Patterns . 188

1. Definitions for Systems Verification Patterns . 189

1.1 Resources in Systems Software . 189

1.1.1 Virtualization . 190

1.2 Nominals . 190

1.2.1 Recapping Modal Operators in Program Specifications: Systems Perspective 190

1.2.2 Nominalization . 191

2. Contingency Decomposition of a System . 193

2.1 Decomposing a System into its Constituents Contingently 193

2.2 Resource . 193

2.3 Nominalization . 195

3. Conclusion . 197

3.1 Making It Work . 197

3.2 Conclusion . 197

Bibliography . 199

Appendix A: Assembly Implementation of Virtual Memory Management 211

A.1 Assembly Implementation of PTE Library . 211

A.2 x86 Instructions for Mapping a Page . 217

Appendix B: Complete Soundness Proof of Atoms and Structural Program
Statements . 219

B.1 Complete Constructions for Views . 219

B.2 Complete Memory Axioms . 229

xi

B.3 Soundness Proof of Atoms . 234

B.4 Soundness Proof of Structural Program Actions . 280

Appendix C: RCU BST Delete . 290

Appendix D: RCU Bag with Linked-List . 297

Appendix E: Safe Unlinking . 300

Appendix F: Types Rules for RCU Read Section . 304

xii

LIST OF TABLES

6.1 Line-of-Code Numbers for pte Verification . 87

6.2 Line-of-Code Numbers for x64-Iris Logic . 88

2.1 Modal Decomposition of Program-Logics. 193

xiii

LIST OF FIGURES

1.1 Components Showing the Contributions in Gray Boxes 5

1.1 Overview of Proof Rules for Ghost Resources 91 . 19

3.1 x86-64 page table lookups. 29

3.2 Syntax . 34

3.3 Structural Reduction Rules for x64-Iris Syntax . 34

3.4 Register Component of the State – σ.R . 35

3.5 Operational Rules for Selected mov Instructions . 46

3.6 Operational Rules for add, sub and cmp Instructions . 49

3.7 Selected Operational Rules for Bitwise Instructions . 50

3.8 Selected Operational Rules for Pop and Push Instructions 51

3.9 A Selected Operational Rule for Jump Instruction . 52

3.10 Selected Operational Rules for Call and Return Instructions 54

4.1 Virtual-Pointsto for Sharing Pages . 58

4.2 Global Address-Space Invariant with a fixed global map of address-space names m . . . 60

4.3 Other-space Modality and Its Laws . 61

4.4 Reasoning Rules for Selected AMD64 Instructions under 65

4.5 Selected Reasoning Rules for Stack Pop and Push Instructions 66

4.6 Selected Reasoning Rules for Call, Return and Jump Instructions 67

4.7 Selected Reasoning Rules for Arithmetic & Bitwise Instructions 69

5.1 Global Address-Space Invariant in Figure 4.2 extended with a ghost map bookkeeping
identity mappings . 75

2.1 File I/O protocols . 101

2.2 A File Library: writing to a file. 102

xiv

2.3 Transferring the Proof of a File Library: writing to a file. 102

3.1 Submodels of I/O protocols . 107

4.1 Legend for Bisimulation Graphs . 114

4.2 Submodels of traditional and distributed file I/O protocols with write accessibility relations.114

4.3 Submodels of the traditional and distributed file I/O protocols with write accessibility
relations. 115

4.4 Introducing Irrelavancy . 115

4.5 Guarantee Bisim without Invariants . 116

4.6 Guarantee Bisim (without Invariants) with a Fixed Starting State and a Client Token Set 118

4.7 Induction on the Rely-Steps of Guarding Condition of Guarantee Bisim (without Invariant)123

4.8 Theorem Rely Bisim . 125

4.9 Fixed Frame Tokens and Initial State in Rely Bisim . 126

4.10 Induction on Rely Bisim . 127

4.11 Rely Bisim Inductive Cases . 129

5.1 Bisimulation Relation . 131

5.2 Iris STS Library 91 simplified with later modality and invariant masks omitted 133

5.3 Tolerance of Invariants with initial state s as opened . 135

5.4 Invariants against Guarantee-Step Bisimulation . 136

6.1 Soundness of Bisimulation against Rule UpdIsl . 139

6.2 The Definition of Stsp for a Set of Program Actions in Iris HeapLang 142

7.1 Bisimulation Relation Concerned with Witheld Tokens 146

2.1 Operational semantics for RCU. 157

3.1 Subtyping rules. 162

3.2 Type rules for control-flow. 162

3.3 Type rules for write side critical section. 167

3.4 Replacing existing heap nodes with fresh ones. Type rule T-Replace. 168

4.1 Delete of a heap node with two children in BST10. 172

4.2 Type Environments . 178

xv

4.3 Composition(•) and Thread Interference Relation(R0) 180

4.4 Encoding branch conditions with assume(b) . 181

B.1 Type Environments . 221

B.2 Composition(•) and Thread Interference Relation(R0) 222

B.3 Encoding of assume(b) . 226

B.4 Ownership . 230

B.5 Reader-Writer-Iterator-Coexistence-Ownership . 230

B.6 Alias with Unique Root . 230

B.7 Iterators-Free-List . 230

B.8 Unlinked-Reachability . 231

B.9 Free-List-Reachability . 231

B.10 Writer-Unlink . 231

B.11 Fresh-Reachable . 231

B.12 Fresh-Writer . 231

B.13 Fresh-Not-Reader . 232

B.14 Fresh-Points-Iterator . 232

B.15 Writer-Not-Reader . 232

B.16 Readers-Iterator-Only . 232

B.17 Readers-In-Free-List . 233

B.18 Heap-Domain . 233

B.19 Unique-Root . 233

B.20 Unique-Reachable . 233

E.1 Safe unlinking of a heap node from a BST . 300

F.1 Type Rules for Read critical section for RCU Programming 304

xvi

ABSTRACT

Modal Abstractions for Operating System Kernels
Ismail Kuru

Advisor: Dr. Colin S. Gordon

Operating-System kernels are important pieces of the software world. They interact with the hardware
and their reliability is essential, as the rest of the software world depends on it. There are certain
aspects that make verifying kernels challenging, and this thesis captures principles dealing with three
of these aspects.

The first challenge stems from the sharing of a resource among different kernel abstractions (and
their particular instances) through an indirection mechanism employed between address (alias) and
the data (virtualization). As the first contribution of this thesis, we introduce reasoning principles
for understanding location virtualization in kernels. Location virtualization appears in multiple
components of the kernel, including memory and file resource virtualization. In this thesis, we take
virtual memory management (VMM) as our experimental setting to apply our reasoning principles.
VMM code is a critical piece of general-purpose OS kernels, but verification of this functionality is
challenging due to the complexity of the hardware interface (the page tables are updated via writes to
those memory locations, using addresses that are themselves virtualized). Prior work on verification
of VMM code has either only handled a single address space, trusted significant pieces of assembly
code, or resorted to direct reasoning over machine semantics rather than exposing a clean logical
interface. In this thesis, we introduce a modal abstraction to describe the truth of assertions relative
to a specific virtual address space: [r]P indicating that P holds in the virtual address space rooted
at r. Such modal assertions allow different address spaces to refer to each other, enabling complete
verification of instruction sequences and manipulating multiple address spaces. Using them effectively
requires working with other assertions, such as points-to assertions in our separation logic, relative to
a given address space. We therefore define virtual points-to relations, which mimic hardware address
translation, relative to a page table root.

The second challenge appears when we extend the kernel functionality. It is common for any
software to expect certain API usage to follow a protocol, and it is particularly common in OS
kernels, where the protocols are essentially the contracts for extension points. Any kernel, in one
way or another, realizes mechanisms that allow us to plug in different implementations of the same
functionality. For example, Virtual File System (VFS) enables different filesystem implementations to

xvii

coexist, or device drivers require extensions with respect to the changing device capabilities. In doing
so, these mechanisms impose certain protocols which may internally have simpler or more complex
usage protocols that are *compatible* with the official interface. This constitutes the second challenge,
as any change in the protocol brings into question whether the validity (or reliability) of the client
code is still valid or not (evolution). As the second contribution of this thesis, we want to let proofs
capture and exploit the compatibility of the client proofs against the evolution of the specifications.
To do so, we introduce a single-form logical abstraction for specifying protocols that are abstracted
as state transition systems (STS)es. STSes are an increasingly popular means of specifying and
verifying fine-grained concurrent programs. Unlike more traditional rely-guarantee-based approaches,
they allow interference to be conveniently treated as a resource, transferred between threads, or
even stored in other resources. However, existing STS systems leave the traditional Hoare-style rule
of consequence weaker than before. Code involving STSes is verified against one particular STS,
making it unusable with other similar transition systems, even when one is contained in the other.
We extend the notion of entailment for STS-based logics to incorporate a form of bisimulation (as
on Kripke structures) between STS systems into an extended rule of consequence. We show that
a specification of a file write operation preserves its validity against a file resource usage protocol
changed to handle distributed write requests.

The third challenge this thesis is concerned with is ergonomics of assertions that may be useful
for the correct usage of the constructs that are exposed as a kernel API. One of the common
constructs appearing in kernel APIs are concurrency constructs (e.g., reader-writer locks). As low-
level systems, kernels are expected to be more efficient. Thus, in them, more highly optimized sharing
mechanisms and data structures are implemented using these sharing mechanisms. As a critical piece,
memory management in lock-free data structures is promising but is a major challenge in concurrent
programming. Design techniques, including read-copy-update (RCU) and hazard pointers, provide
workable solutions and are widely used to great effect. These techniques rely on the concept of a grace
period: nodes that should be freed are placed on a deferred free list, and all threads obey a protocol
to ensure that the deallocating thread can detect when all possible readers have completed their use
of the object. This provides an approach to safe deallocation, but only when these subtle protocols
are implemented correctly. In other words, the reasoning principles for this kind of semantics must
refer to the representation of the contingent-truth referring to the consistency of the program state
with respect to a certain grace period. We present a static type system to ensure correct use of RCU
memory management: that nodes removed from a data structure are always scheduled for subsequent
deallocation, and that nodes are scheduled for deallocation at most once. As part of our soundness
proof, we give an abstract semantics for RCU memory management primitives that captures the
fundamental properties of RCU. Our type system allows us to give the first proofs of memory safety
for RCU linked list and binary search tree implementations without requiring full verification.

In conclusion, we explain a general verification approach shaped around the concept of resource
context that helps to design new modalities to verify the system code. We justify our perspective by
identifying existing systems that have used modalities for systems verification successfully, arguing
that they fit into the verification design pattern we articulate, and explaining how this approach
might apply to other systems verification challenges.

1

Part I

Introduction

2

CHAPTER 1

INTRODUCTION

The fundamental contribution of this thesis falls into the broader context of software reliability. Any

methodology in this context aims to build trust to the software, and program verification is one of

them. What makes program verification promising is the level of assurance it provides on the subject

software: once the program verification is completed on the subject software, there is a mathematical

explanation, i.e. proof, showing why the software behaves as expected, which implies the potential of

eliminating whole classes of bugs. In other words, program verification as an action of increasing

software reliability aims to obtain mathematical proof showing whether the high-level specification

describing the intended behavior of a program is met by the program.

Specification A verification system must allow for a language of assertions to enable specifying

program behavior. Verification systems either allow programs to be annotated with the relevant

assertions (e.g., loop invariants, specifications of functions in the form of pre/post conditions)

35,38, or keep the specification separate from the program source as a part of an abstract logic

16,53,54,91,100,149,153,156,157.

Proof A verification system must also provide means to obtain the witness, i.e. the proof, showing

the fact that the specification is satisfied by the program. Obtaining a mathematical proof effort

may differ according to the methodology. Well-known realizations can either fall into truth-searching

techniques 12,15,35,38,44, or truth-constructing techniques 16,53,54,91,100,149,153,156,157. Searching for

proof requires a high-level specification (e.g. pre- post-conditions, and loop invariants) that is encoded

3

into SMT formulas (SAT formulas modulo some additional theories for real numbers, integers, or

data structures such as lists, bits, and arrays). Then, the proof search is done on the optimized data

structures that hold the encoded truth. Constructing a proof, which we follow as a methodology

for the proofs in this thesis, requires building a set of reasoning principles, i.e. a program logic

16,53,54,91,100,149,153,156,157. A program logic has proof rules for each of the program actions, for

example, a proof rule dictating how a memory location can be accessed. The proof of the program

is constructed by applying the relevant proof rule to each of the program actions. In doing so, for

the sake of increasing the reliability of the proof itself, machine assistance using theorem provers

26,43,131 can be taken. All proofs except those in Part VII are constructed using a theorem prover

named Roqc. The manual effort brings the advantage of constructing advanced program logics

16,53,54,91,100,149,153,156,157, and of reasoning over more advanced programs. To speak more concretely,

for example, introducing reasoning principles for concurrent semantics or a higher-order reasoning

for the programs requires more abstract and custom-tailored logical principles, e.g., a consistent view

of concurrent threads on the program state w.r.t. a particular grace period (Part VII).

In the rest of this chapter, we claim and justify the novelties that this thesis brings on each of the

constituents, i.e., proof and specification, of program verification.

1.1 An Overview of OS Verification

Operating system kernels, as a widely used software system composed of multiple different components,

have been a well-known application ground for these verification techniques 30,71–73,93,163).

Although the prior works on OS verification provide more understanding of many challenging aspects

of complete real OS verification73,93, the proof they present in these verification efforts relies on

certain simplifications (assumptions) which we think are crucial for the validity of the proof presented.

1.1.1 The Issue of Memory Virtualization in the Context of OS Verification

One of the biggest simplifications is made on virtual-memory-address translation and management.

Virtual memory management lies at the core of modern OS kernel implementation. It is deeply

Chapter 1: Introduction 1.1 An Overview of OS Verification

4

connected with most other parts of a typical general-purpose OS kernel design, including scheduling,

hardware drivers, and the filesystem buffer cache. In writing the authoritative reference on the

internals of the Solaris kernel, McDougall and Mauro went so far as to claim that “the virtual

memory sub-system can be considered the core of a Solaris instance, and the implementation of

Solaris virtual memory affects just about every other subsystem in the operating system”119. This

makes the verification of the virtual memory management subsystem of an OS kernel critical to the

correctness of every other piece of the kernel or any software running on top of it.

Virtualization of memory addresses intuitively can be thought of as the mechanism providing more

memory resources than the computing machine has. The memory locations (addresses) seen by most

code are not, in fact, the exact location in physical memory where the data reside. The mapping

between these exposed virtual memory addresses and actual physical resources is handled by the

cooperation of hardware and OS. Ensuring virtualization memory locations establishes one of the

most important aspects of systems software design, isolation. Concretely speaking, with memory

virtualization, we can realize the separation of process memory resources: the OS manipulates

hardware functionality to ensure that any attempt by a process to access memory not explicitly

granted to it by the kernel will fail. However, establishing control over virtualized memory address

mappings has multiple challenging aspects. First, any control requires interacting with the designated

hardware subsystem (i.e., MMU’s tables) which exposes itself as an in-memory kernel data structure

that enables shared (overlapping) access to physical memory regions.

Another complicating matter is that the addresses are agnostic to the process they are used in:

they reveal no information about which address space they originate from. Keeping track of which

assertions hold in different address spaces during kernel verification is difficult: Some assertions

should hold across all address spaces, while others hold in only one, and others may hold in multiple,

but still not all.

Chapter 1: Introduction 1.1 An Overview of OS Verification

5

Machine Model
AMD64

Irisx64-Iris

pte.s

pte.c

Figure 1.1 Components Showing the Contributions in Gray Boxes

1.1.2 Contributions to Verification in the Presence of Location Virtual-

ization

A context-dependent assertion in which a fact may be true in one address space but not others

has a modal flavor. As part of this thesis, we propose modal abstractions to express the truth

for the systems (e.g., virtual memory subsystems), which allows us to label assertions true under

other, named circumstances (i.e., in another address space) with a modality indexed by a name for

that space (in our case, the root of the page tables for an address space). This offers a convenient

and powerful way to modularly isolate assertions specific to a particular address space, explicitly

state when an assertion is true across address spaces, manipulate address spaces from within other

address spaces, and reason about changes in address spaces. By exploiting the expressiveness of

our abstractions for virtual-memory management, we can treat the virtual memory reasoning more

flexibly than prior program logic techniques97,98, which could only work with a single address space

(the current address space on the CPU) because they were unable to speak directly within the logic

about other address spaces, and capture the effects of page-table updates within and across address

spaces.

New modal abstractions Some of our experiments demonstrate the suitability and flexibility of

a modal treatment of address spaces, which we briefly discuss above.

Chapter 1: Introduction 1.1 An Overview of OS Verification

6

New Foundations for understanding memory addressing We develop these ideas in the

form of a logic named x64-Iris with designated propositions (vProp) for working with virtual-address-

space-relative assertions, implemented as an embedded separation logic within the Iris90 separation

logic. The result is a separation logic that lifts several major semantic restrictions present in the few

prior logics97,98 dealing with virtual address translation. The logic we develop covers core reasoning

principles for reasoning about memory configurations and code reliant upon or manipulating those

memory configurations in the presence of in-memory page tables, the primary memory protection

mechanism across Intel/AMD’s x86-64 processors, ARM’s application class processors including

AArch64 CPUs, POWER, RISC-V, and other architectures.

Soundness against more realistic address-translation machine model The soundness of

our logic is composed of the proofs of specifications of instructions in our RISC-like fragment of

AMD64 whic themselves are in type vProp. The crux point that appears in our soundness proof is

the reflection of a realistic address translation in our model onto the proofs of instruction including

memory accesses.

Verifying a core kernel memory management code We verify simplified versions of several

critical virtual-memory-related pieces of OS functionality, including mapping pages, switching address

spaces, and converting physical addresses to virtual addresses for software page table walks (as when

mapping pages). For the experimental setting, we take our kernel’s core virtue-memory-management

unit (pte.c) which utilizes address translation (with 4 levels of page-table tree) for locating physical

pages mapping virtual addresses. We verify the assembly instructions produced by C compilers.

Our examples presented for memory-virtualization constitute the core of memory management code.

We present a concise specification, and each example either goes beyond the technical capabilities

of prior logic or revisits an example from prior work with more details (treating parts of the kernel

invariant never addressed by prior work) and fewer assumptions (e.g., verifying virtual-to-physical

conversion rather than assuming it has already occurred).

Chapter 1: Introduction 1.1 An Overview of OS Verification

7

1.2 An Overview of Protocol Based Reasoning

An important and challenging aspect of verifying computer systems is the migration of a proof

already made against a specification to a new one. Specifications, at their core, form a protocol on

the access to the state of a data structure, a subsystem of computing systems, or multiple client

machines interfering on updating a server’s shared state. When we think of a simple protocol for

handling file usage, we would expect the file to be opened before we read or write to it.

State transition systems have been used to encode these protocols as part of program logics, specifi-

cally within concurrent program logics, to specify the coordination of threads to cooperate in the

modification of shared state53,91,139,156,157. They encode an STS by giving a set of abstract states.

Each abstract state is associated with an invariant and the invariant applies to the actual program

state that corresponds to a particular abstract state.

To verify that a mutation moves the data structure along the protocol correctly, each update from

a given abstract state must modify the program state to match a permitted destination state’s

invariant, including token ownership1. For example, modeling a basic mutual exclusion lock in this

way includes two abstract states locked and unlocked, and two tokens lock and unlock. In the

locked state, the data structure’s representation includes ownership of the token unlock; unlocking

the structure (releasing the lock) requires a state update to match the invariant of unlocked, which

requires transferring the unlock token into the data structure, were a subsequent lock acquisition will

obtain it.

This class of specifications is flexible, intuitively appealing, and with a modest extension, permits

adapting the long-standing idea of specifying a system with a state machine to support concurrent

clients which induces a natural variant of rely-guarantee reasoning87: a client is limited to those

transitions enabled with the capabilities it owns, and interference from concurrent clients is limited

to at most those transitions made possible by the complement of the client’s capabilities.
1We are simplifying slightly; the knowledge of the origin and destination may be imprecise, and therefore this check

is done for each possible initial and final abstract state.

Chapter 1: Introduction 1.2 An Overview of Protocol Based Reasoning

8

Motivation for Foundational Approach to Understand the Modularity of State-Transi-

tion-Systems STSes offer a concise, high-level specification for the interactions between concurrent

clients of a data structure, subsystem, or server, and those communications’ effects on data structures.

However, modularity for STSes has not been thoroughly studied. Early systems lack modular

STSes156 beyond simple nesting (e.g., the invariant for one STS state referring to ownership of

another STS’s state), achieve limited forms of modularity as a consequence of working with im-

predicative higher-order separation logics (which offer limited forms of qualification and therefore

subsumption)149, or are limited to essentially a product construction over STSes where code verified

against one component can be used with a product containing it144 (this last is a simplification we

will revisit in detail later).

This is a problem, because real systems are full of implicit protocols, but with differences between

them that current approaches to modular STSes are ill-suited to support. Consider, for example,

the various layers of filesystem abstraction in an operating system kernel. The kernel specifies a

range of operations on files, but most application code uses only a small subset of them (opening,

reading, writing, and closing). This is especially important for cross-platform code: different kernels

offer different operations (and some offer different semantics for common operations!) so applications

code to the common (consistent) subset. Supporting such verification requires one to be able to

abstract kernel-exposed file protocols in such a way that clients can ignore certain operations and file

states. At the same time, the kernel requires the lower-level filesystem drivers to implement a range

of operations sufficient for the kernel to implement the full range of operations it dictates (even if

client programs ignore many of them). However, some operations make no sense for some filesystem.

Consider an in-memory filesystem backed by a chunk of RAM: There is no sensible notion of syncing

such a filesystem with the disk because by design it is not backed by the disk. So to verify that an

in-memory filesystem adheres to the protocol required by the kernel — which would specify separate

abstract states for synced and unsynced data — we would need to abstract the protocol obeyed by

the in-memory filesystem in such a way that it adds additional states and transitions that map onto

the ones that exist from the filesystem’s perspective. Aside from ad-hoc means, current approaches

Chapter 1: Introduction 1.2 An Overview of Protocol Based Reasoning

9

do not support the required abstractions where we relate two protocols that differ by additional

states and transitions, and a verification made against one can be adapted to the related one. Those

that support one kind use mechanisms where the sorts of permissible abstraction must be planned

for upfront.

1.2.1 Contributions to Modularity of Protocols

New foundations on STS reasoning In this thesis we introduce a single form of abstraction for

STS specifications that support both hiding states and operations (as with an application ignoring

operations the kernel permits) and fabricating states and operations. We extend and adapt the

classic notion of bisimulation (in the modal logic sense) by treating STSes essentially as a specialized

form of Kripke structure 20,102.

Linking to a program logic Then, we introduce a proof rule that permits this form of “subtyping”

on STSes to be formalized as an extension to the Iris91 formalization of protocols. Our soundness

argument for STSes, an extended version of the one in CaReSL, relies on the preservation of the

bisimulation relation we introduce for STSes against admissible logical updates on STSes which

themselves are logical assertions.

Experimenting on file protocols Finally, we show how our bisimulation rule relates to a

conventional file protocol that enforces the protocol of writing to only an opened file where updates

can be observed synchronously to a distributed file protocol that differs in propagating the write

over a network and requires explicit synchronization to observe the writes locally.

Chapter 1: Introduction 1.2 An Overview of Protocol Based Reasoning

10

1.3 An Overview of Concurrent Memory Management

Reasoning about concurrent programs is hard. We need to consider all interactions between threads

because side-effects in one thread can affect the behaviour of another thread. When we consider

non-blocking algorithms, reasoning becomes harder because interactions between threads running

non-blocking algorithms are more subtle than the ones exist in lock-based mutual exclusion. There

are logics and automated reasoning tools to address challenge in reasoning consistency of non-blocking

algorithms.

Contingency: Relatively Consistent Memory View Normally, doing a set of memory opera-

tions simultaneously or indivisibly may end up having side-affects and a partially completed set of

operations, and may result in inconsistency for the clients of the data structure.

However, there are many cases where strict consistency may be relaxed with temporal inconsistency

if clients may tolerate stale data. This is mainly done with delaying any work that is not urgent to

be performed. This relaxation brings new kind of programming pattern. Mutator processes’ accesses

to shared data are mutually exclusive via writer lock that prevents simultaneous update of a node

by more than one process. In this concurrent setting, there is a set of reader processes and a set of

updater processes with a process or set of processes to reclaim memory locations where nodes in the

free list reside. An example of delaying of work occurs in garbage collection of heap locations. It is

generally unnecessary to collect garbage heap locations immediately after it is generated,103.

Implementing Relatively Consistent Memory Management A key insight for manageable

solutions to this challenge is to recognize that just as in traditional garbage collection, the unlinked

nodes need not be reclaimed immediately, but can instead be reclaimed later after some protocol

finishes running. Hazard pointers126 are the classic example: all threads actively collaborate on

bookkeeping data structures to track who is using a certain reference. For structures with read-biased

workloads, Read-Copy-Update (RCU)120 provides an appealing alternative. The programming style

resembles a combination of reader-writer locks and lock-free programming. Multiple concurrent

Chapter 1: Introduction 1.3 An Overview of Concurrent Memory Management

11

readers perform minimal bookkeeping – often nothing they wouldn’t already do. A single writer at

a time runs in parallel with readers, performing additional work to track which readers may have

observed a node they wish to deallocate. There are now RCU implementations of many common tree

data structures10,32,48,103,121,155, and RCU plays a key role in Linux kernel memory management124.

However, RCU primitives remain non-trivial to use correctly: developers must ensure they release

each node exactly once, from exactly one thread, after ensuring other threads are finished with

the node in question. Model checking can be used to validate correctness of implementations for a

mock client3,47,95,114, but this does not guarantee correctness of arbitrary client code. Sophisticated

verification logics can prove correctness of the RCU primitives and clients63,70,89,118,153. But these

techniques require significant verification expertise to apply, and are specialized to individual data

structures or implementations. One of the important reasons of the sophistication in the logics stems

from the complexity of underlying memory reclamation model. However, Meyer and Wolff125 show

that a suitable abstraction enables separating verifying correctness of concurrent data structures

from its underlying reclamation model under the assumption of memory safety, and study proofs of

correctness assuming memory safety.

1.3.1 Contributions to Verification of Clients using Relatively Consistent

Memory Management

We propose a type system to ensure that RCU client code uses the RCU primitives safely, ensuring

memory safety for concurrent data structures using RCU memory management. We do this in a

general way, not assuming the client implements any specific data structure, only one satisfying some

basic properties (like having a tree memory footprint) common to RCU data structures. In order to

do this, we must also give a formal operational model of the RCU primitives that abstracts many

implementations, without assuming a particular implementation of the RCU primitives. We describe

our RCU semantics and type system, prove our type system sound against the model (which ensures

memory is reclaimed correctly), and show the type system in action on two important RCU data

structures.

Chapter 1: Introduction 1.3 An Overview of Concurrent Memory Management

12

Our contributions include:

• A general (abstract) operational model for RCU-based memory management

• A type system that ensures code uses RCU memory management correctly, which is signifiantly

simpler than full-blown verification logics

• Demonstration of the type system on two examples: a linked-list based bag and a binary search

tree

• A proof that the type system guarantees memory safety when using RCU primitives.

Chapter 1: Introduction 1.3 An Overview of Concurrent Memory Management

13

1.4 An Overview of Modal Verification Patterns

Low-level systems exhibit certain patterns in their designs, especially when interacting with computing

resources. Exploiting certain patterns while designing software has been an important field of study.

In this regard, we think that certain properties of modalities enable us to understand and do the

verification challenges that show certain patterns.

1.4.1 Contributions to Identifying the Verification Patterns via Modal

Abstractions

We argue how modal abstractions can be used to identify and abstract system verification challenges.

We justify our perspective by discussing prior systems that have successfully used modalities for

system verification, arguing that they fit into the verification design pattern we articulate, and

explaining how this approach might apply to other systems’ verification challenges.

Identifying System Verification Challenges We start with identifying common patterns in

system verification: virtualization, sharing, and translation.

Introducing the Concept of Resource Then we discuss the concept of resource which has

already been an essential concept in the design of systems. Inspired by the concept of resource in the

systems, we define what a resource and its context are in the modal abstractions.

Introducing the Concept of Nominals Nominalization enables identifying a resource in a

context. For example, a transaction is a context of resources of in-memory updated disk blocks.

The transaction identifier is used to associate a transaction with a disk-block to be persisted so

that, in case of a crash while persisting updated disk-blocks, the filesystem can rollback the already

persisted disk-blocks of the transaction, and reach to the previous consistent disk state. To be able

to do so, both the updated in-memory disk blocks and the transaction must refer to the transaction

identifier – strong nominalization. In another example, virtual memory references (resources) in an

address space (resource context), which can be uniquely identified with a root address (the nominal)

Chapter 1: Introduction 1.4 An Overview of Modal Verification Patterns

14

of its page-table tree, are agnostic to the address space that they are in. However, they can only

be accessed (be valid) in the address space to which they are agnostic. However, then an address

space switch happens, the virtual memory references of the previous address space must be made

inaccessible. To be able to do so, although virtual memory references do not hold any piece of

information related to their address space, we still have to associate them. We call this kind of

unilateral nominalization – weak nominalization.

Taxonomy of the Current Modal Approaches in System Verification Based on these

concepts defined, we summarize contemporary verification efforts using modal abstractions. We

choose them from different domains, for example, weak memory verification, storage persistence

27,28,40,56,57,106,154,160,162 because we would like to justify that our definitions are not domain depen-

dent.

1.5 Reading Guideline

In this section, we give the outline of the thesis to facilitate reading. Except for the first part,

which gives an overview of each of the following parts separately, each part starts with a background

knowledge section, and the accumulation of the background knowledge introduced in each part should

be assumed to be enough for reading the rest of the thesis.

Part I gives an overview of each of the parts following separately in different subsections.

Part II starts with giving background knowledge on the separation logic Iris and briefly mentions

the modal aspect of location virtualization. Then, it introduces the reasoning principles and discusses

the proofs and experiments.

Part III starts with giving background knowledge on protocol-based reasoning and discusses the

modal aspects of it. Then, it introduces the bisimulation relation in two layers: the core principles

and then the behavior invariants in the bisimulation. It discusses how the bisimulation relation

is linked and utilized in Iris and finally shows the migration of the proof of a file-write operation

Chapter 1: Introduction 1.5 Reading Guideline

15

between different protocols.

Part IV starts with explaining the concurrent memory management model, which itself exhibits

contingency on the consistency of the program state. Then, it introduces the reasoning principles

and finally discusses the application of them in the experimental setting.

Part V presents the definitions that we use to identify the verification patterns according to the

modalities used. Then, as an experimental setting, it takes the recent system verification efforts

using modal abstractions and identifies the pattern they follow based on the given definitions.

Acknowledgements Please note that a part of the machine model was implemented as an

undergraduate research project by Austin Herring. The text of Parts II and V is based on draft

papers co-authored with my advisor. The text of Part IV is based on the paper published in ESOP’19

105 and its technical report 104.

Chapter 1: Introduction 1.5 Reading Guideline

16

Part II

Modal Abstractions for Location Virtualization

17

CHAPTER 1

BACKGROUND

In this chapter, we give background knowledge on the logical principles that we use to build our

x64-Iris atop. Our reasoning principles are mainly constructed on top of program logic called

separation-logic (SL). In this thesis, we use a realization of SL called Iris. Therefore, we give a brief

background knowledge on the logical constructions we use from Iris.

1.1 Program Logic

A methodology that enables specifying and proving programs is called program logic. The validity

– soundness – of what a program logic offers is proven against a model: a machine model with a

state (e.g. heap, stack). Hoare Logic is one of the well-known, simple program logic for sequential

programs. Hoare Logic’s specification form has almost been a standard followed by other program

logic

{P} e {Q}

interpreted as “if a program expression e is run in a state satisfying P, and it terminates, then the

state obtained after e is run satisfies Q”. We call the predicate P and Q the precondition and the

postcondition respectively. To reason about larger programs, Hoare Logic offers structural proof-rules

such as sequencing (Seq) to compose specifications of different parts (e1 and e2) of the larger (e1;;e2)

Seq

{P} e1 {Q} {Q} e2 {T}

{P} e1; ; e2 {T}

18

1.2 Background on Iris Separation Logic

Separation logic (SL) 132 is a special treatment of Hoare logic with some specialized proof rules and

assertions for resources.

1.2.1 Basic SL Assertions

This special treatment starts with introducing specific assertions to speaking to resources such as

heap. The essential assertion to talk about the resources is points-to relation: p 7→ v asserts the fact

that the pointer p when dereferenced has value v.

The other crucial special treatment is separating conjuction ∗. P ∗ Q asserts that P holds on a piece

of heap that is disjoint from where Q holds.

In an intuitionistic separation logic, a heap assertion that is true in one heap is also considered to be

true in the larger one. The entailment between propositions is written P ⊢ Q, read as “P entails Q”,

which says that in any heap where P holds, Q must also hold.

Mono

P ⊢ P ′ Q′ ⊢ Q {P ′} e {Q′}

{P} e {Q}

Separating conjunction, ∗, together with the proof rule Mono, immediately exhibits the flavor of

locality we observe in the proof rule called Frame. This rule informally states that computation for a

triple {P}e{Q}, executing e in a state satisfying P does not change the state in a way that it is no

longer satisfying P .
Frame

{P} e {Q}

{P ∗ R} e {Q ∗ R}

The Simplest form of Concurrency in SL The justification we make for the validity separating

conjuction (Frame rule) not only brings the locality intuition but also opens a room for a basic

Chapter 1: Background 1.2 Background on Iris Separation Logic

19

GhostUpd
a⇝Mi

B

a : Mi
γ
⇛ ∃b ∈ B. b : Mi

γ

GhostEq

a : Mi
γ ∗ b : Mi

γ ↔ a.b : Mi
γ

Figure 1.1 Overview of Proof Rules for Ghost Resources 91

concurrency in which no sharing of resources allowed (Rule Parallel)

Parallel

{P1} e1 {Q1} {P2} e2 {Q2}

{P1 ∗ P2} e1||e2 {Q1 ∗ Q2}

However, most of the useful concurrent programs includes some sort of sharing. Unfortunately,

Parallel rule, which relies on the disjointness of resources (P 1 ∗ P 2), cannot not be used in realistic

concurrent programs.

1.2.2 Abstracting SL

SL generalization frameworks 50,91 enabled logical mechanisms to construct custom-tailored separation

logics for different verification challenges. Iris, which we use in thesis, is also an abstract SL

framework 91. Iris provides two key mechanisms to the problems we mentioned above: the concept

of custom-tailored resources on top of partial-commutative-monoids (PCM)s, and invariants for

knowledge-sharing.

Customized Assertions with Named Ghost Resources

(PCM) provides the convenient algebraic structure to construct composable resources as elements

of PCMs. These resources are logical (abstract) resources to augment the physical resources (e.g.

memory, stack, registers etc.) – no effect on the program’s physical state (execution) but help with

abstracting the effects of local state, but also additional bits for easing verification (e.g. concurrency)

in a uniformed fashion.

A ghost resource a : Mi
γ asserts the ownership of a part a of the instance named γ. In Figure

1.1, we see a set of rules for utilizing the notion of ghost resources in Iris 91. Owning "a" of ghost

Chapter 1: Background 1.2 Background on Iris Separation Logic

20

resource is called fragmental ownership. Knowing the non-conflicting composition of the picked up

operator, . in Rule GhostEq, the complete global ghost state is composed the fragmental ownerships

related to the resource. In addition to the ability of speaking on its (resource’s) structurally (by

splitting/composing), we can also concretely utilize them via asserting the change on them. Since

ghost resources are augmentable to the physical state (i.e. change on them does not affect the

physical state), one can pick an arbitrary global physical state and update the ghost resource with

view-shift operator, P ⇛ Q: admissible to update the resources (derived Rule GhostUpd in Figure

1.1) satisfying P to satisfy Q without changing the underyling physical state. The obvious utilization

of view-shift appears as an encoding of entailment (⊢ in Rule Mono) in the consequence rule Csq

Csq

P ⇛ P ′ Q′ ⇛ Q {P ′} e {Q′}

{P} e {Q}

On top of ghost resources, Iris offers authorative ghost resources. Authoritative ghost resources

allow you to distribute the fragmental ownerships of a resource, and bookkeep these fragments

within the authoritative state to make sure the soundness (validity) of accesses to the resource

is preserved. We pervasively use this style of reasoning as part of our principles for abstracting

page-table-walks in Section 4.3. Fragmental ownership of the abstract page-table-walk is given to

the virtual memory translation resources (called them virtual-pointsto relations), and we ensure the

soundness (validity) of a virtual address translation because other virtual address resources also have

fragmental ownerships which, on its own, is not enough to change the state of the resource abstracted

– i.e. physical page-table.

Protocol Style Reasoning

Although we already get the flavor of how to utilize fragmental ownership of ghost resources, it is

still not clear how they interact with the full ownership of the same ghost resource. One might have

already noticed that fragmental ownership of a ghost resource allows you to assert a local view on a

Chapter 1: Background 1.2 Background on Iris Separation Logic

21

resource. On the other hand, the authoritative ownership regulates the access to the global-view of

the resource. The core piece of assurance inherent from using the named monoids lies in its pointwise

lifting of the composition – i.e. the combined fragments exceeding the combined authoritative element

or having two authoritative elements composed cannot co-exists. Co-existence of an authoritative

element with a fragmental one is defined over the cancellativity of the monoids: the property that

asserts the ownership of the authorative elements’ capability for exchanging the owned fragmental

with one another compatible one. These two principles (pointwise lifting of the composition and

cancellativity) constitute the essence of a ghost resource as an instance of authoritative monoid91.

Invariants With Iris’s logical constructions we mentioned so far, we can only express how accesses

to resources – owned either one thread or another – can be done. Sharing a resource between multiple

parties, is realized with the logical construction called invariants 91. Invariants have the assertion

form P
n

which expresses the shared knowledge (named n) that there are resources satisfying P .

This fact (shared knowledge) is valid because it can only be constructed once each thread has an

agreement on it, i.e. all threads agree on the state of the resources satisfying P . Therefore, when a

thread would like to utilize the shared knowledge while discharging the obligation in the spec of an

atomic action (α), it first opens the invariant P
n

in its precondition, then use P just for the α as a

single program step, and, finally, for the sake of not invalidating other threads knowledge on P , it

has to be reestablished.

Inv

{P ∗ R} α {P ∗ Q}ϵ α physically atomic

P
n

⊢ {R} α {Q}ϵ⊎{n}

1.3 Modalities in Logic

Assertions of modal logic express the contingent truth. This contingency could be temporal (temporal

logics 137) which can express facts holding always or eventually; or could be about knowledge and

belief 77,81 etc. Our inspiration for our modal address-space is partially rooted in dynamic logic

Chapter 1: Background 1.3 Modalities in Logic

22

79,138 satisfaction operator: JrKP states that P holds on the resource context (i.e. address space

abstraction as a bag of virtual-to-physical address mappings) rooted at r. Although there has

been recently increasing interest in using modal operators directly as part of reasoning principles,

mostly for weak-memory pending updates 146,157, they had always been essential in incorporating

the capabilities for handling issues such as impredicativity as a logical mechanism inside a program

logics 91,100,149 or type systems 9,16,17,127.

Chapter 1: Background 1.3 Modalities in Logic

23

CHAPTER 2

RELATED WORK

2.1 Verification Effort on VMM

There has been relatively little prior work on formal verification of virtual memory. Instead, most

OS verification work has focused on minimizing reasoning about virtual memory management. The

original Verisoft project5–7,7,39,80,147 relied on custom hardware which, among other things, always

ran kernel code with virtual memory disabled, removing the circularity that is a key challenge of

verifying VMM code for real hardware: at that point page tables become a basic partial map data

structure to represent user program address translations, with an idiosyncratic format. It turns out

that subsequent OS verification work also treats page tables this way, but unsoundly given that

other projects target hardware that does run the kernel with address translation: they trust that the

particular page table manipulations do not, for example, unmap kernel code (which can crash the

machine even if done “temporarily”1).

seL493,94,145 is a formally verified L4 microkernel115,116 (and the first verified OS kernel to run on

real-world hardware), verified with a mix of refinement proofs and program logic reasoning down

to the assembly level. Because seL4 is a microkernel, most VMM functionality actually lives in

usermode and is unverified, and moreover, their hardware model omits address translation entirely

and the MMU entirely93,94. As a result, the limited page table management present in the microkernel

treats page tables as idiosyncratic tree-maps as in Verisoft, despite actually running with address

translation. This is partly mitigated by manually identifying some trusted invariants (e.g., that the
1A bug one author has personally encountered in a research kernel, though not one discussed here.

24

address range designated for the kernel is appropriately mapped) and setting up the proof to ensure

those invariants are maintained (i.e., as an extra proof obligation not required by their hardware

model).

CertiKOS30,72–74 is a microkernel intended for use as a hypervisor. The overall approach in that

body of work is many layers of refinement proofs, using a proliferation of layers with small differences

to keep most individual refinements tractable. In keeping with precursor work on the project from

the same group159, the purpose of some layers is to abstract away from virtual memory (as early

as possible). The papers on CertiKOS do not explicitly detail the VMM beyond highlighting its

existence and referencing that it performs mapping operations for user code. The work is clear,

however, that it fully trusts low-level assembly fragments such as the instruction sequence which

actually switches address spaces, rather than verifying them. Another key aspect of their approach

is that the OS is written in Clight and compiled with CompCert21,110,111. CompCert’s memory

abstraction111 assumes memory is a set of disjoint chunks of bytes with no overlap, so the lowest

levels of CertiKOS must provide a matching machine model as a layer. This prohibits virtual address

aliasing, so CertiKOS cannot support simultaneous memory-mapped (mmap) and stream-oriented

(read/write) IO to a single file, and cannot use the common kernel design choice of mapping all

physical memory into the bottom of the kernel’s address space for direct access i while the kernel

code is simultaneously mapped (and executed) at higher virtual addresses. This is not necessary

for CertiKOS’s intended primary use case (a hypervisor), but means that CertiKOS’s approach

cannot be used to support this functionality in other systems, without major surgery to CompCert.

Other work on OS verification either never progressed far enough to address VMM verification

(Verisoft XT33,34,36,38), or uses memory-safe languages to enable safe co-habitation of a single

address space by all processes (Singularity14,59,85,86, Verve163, and Tock112).

Some work has been done like ours, studying VMM verification separately from the rest of the kernel.

One important outgrowth of the seL4 project, not integrated into the main project’s proof, was work

by Kolanski and Klein which studied verification of code against a hardware model that did include

Chapter 2: Related Work 2.1 Verification Effort on VMM

25

address translation — the only work aside from ours to do so — initially in terms of basic memory97

and subsequently integrating source-level types into the interpretation98. They were the first work

to model physical and virtual points-to assertions separately, defining virtual points-to assertions in

terms of physical points-to assertions mimicking page table walks, and defining all of their assertions

as predicates on a pair of (physical) machine memory and a page table root, an approach we improve

on.

They also define their virtual points-to assertions such that a virtual points-to p 7→v a owns the

full lookup path to virtual address p. This means that given two virtual points-to assertions at the

same time, such as p 7→v a ∗ p′ 7→v b, the memory locations traversed to translate p and p′ must

be disjoint. This means the logic has a peculiar limit on how many virtual points-to assertions can

coexist in a proof. Since page tables fan out, the bottleneck is the number of entries in the root

table. For their 32-bit ARMv6 example, the top-level address is still 4Kb (4096 bytes), and each

entry (consumed entirely by a virtual points-to in their scheme) is 4 bytes, so they have a maximum

of 1024 virtual points-tos in their ARMv6 configuration. Any assertion which implies more than that

number of virtual addresses are mapped implies false in their logic. (They do formulate their logic

over an abstract model, but every architecture would incur a similar limitation.) Our definitions

make use of fractional permissions throughout; Figure 4.1’s definition of L4_L1_PointsTo elides the

specific fractions used, but it in fact asserts 1/512 ownership of the L1 entry, 1/(5122) of the L2

entry, and so on, so each entry may map the appropriate number of machine words.

As noted earlier, by collocating both the physical ownership of the page table walk as part of the

virtual points-to itself these logics preempt support for changes to page tables which do not actually

affect address translation. We address this by moving from Figure 4.1’s definition (essentially Kolanski

and Klein’s with fractional sharing of intermediate table entries) to Figure 4.1’s.

Kolanski and Klein do verify code to map in a new page by installing an L1 page table entry, akin

to our Figure 5.5. However, our logic treatment of mapping goes beyond theirs. Kolanski and Klein

must unfold machine semantics at one point in their proof of mapping correctness97 p. 27, while our

Chapter 2: Related Work 2.1 Verification Effort on VMM

26

logic permits us to conduct the proof entirely in separation logic. Their proofs also do not address

converting physical addresses of page table entries to virtual addresses that can be used to access

them. Their original low-level (pseudo-assembly) proof assumes the correct virtual address already

exists97, and their subsequent C-level proof98 axiomatizes a function akin to our ensure_L1. While

full proof of ensure_L1’s page table walk is ongoing work, we have verified that virtual-to-physical

translation can be done in our logic with appropriate kernel invariants (Section 5.1), while Kolanski

and Klein’s model may not be able to do so — because the virtual points-to owns the physical

resources associated with intermediate page table entries, it appears impossible to have a virtual

points-to for a page table entry that is part of the page table walk for another virtual address.

The other major distinction is that Kolanski and Klein have no explicit accounting for other address

spaces. Their logic does not deal with change of address space, and has no way to assert that certain

facts hold in another address space. They verify only one address space manipulation: mapping a

single unmapped page into the current address space (in both papers). We verify this, as well as a

change-of-address-space, which requires us to introduce assertions for talking about other address

spaces (we must know, for example, that the precondition of the code after the change must be true

in the other address space), and to deal with the fact that the standard frame rule for separation

logic is unsound in the presence of address space changes and address-space-contingent assertions.

Our approach in this thesis uses modalities to distinguish virtual-address-based assertions that hold

only in specific address spaces, making it possible to manipulate other address spaces, and equally

critically, to change address spaces while reasoning about correctness.

Unlike our work, Kolanski and Klein prove very useful embedding theorems stating that code that

does not modify page table entries can be verified in a VM-ignorant program logic, and that proofs in

that logic can be embedded into the VM-aware logic (essentially by interpreting “normal” points-to

relations as virtual points-to facts). While we have not proven such a result, an analagous result

should hold of our work: consider that the doubles for the mov instructions that access memory

behave just as one would expect for a VM-ignorant logic31. With our general approach to virtual

points-to assertions being inspired by Kolanski and Klein, both our approach and theirs could in

Chapter 2: Related Work 2.1 Verification Effort on VMM

27

principle be extended to account for pageable points-to assertions by adding additional disjunctions

to an extended points-to definition; embedding “regular” separation logic into such a variant is the

appropriate next step to extend reasoning to usermode programs running with a kernel that may

demand-page the program’s memory.

2.2 Modal Abstractions in Systems Verification

As noted earlier, the inspiration for our other-space modality comes from hybrid logic11,18,65,66,

where modalities are indexed by nominals which are names for specific individual states in a Kripke

model. We are aware of only two prior works combining hybrid logics with program logics specifically.

Brotherston and Villard24 demonstrated that may properties true of various separation logics are

not definable in boolean BI (BBI), and showed that a hybrid extension HyBBI allows most such

properties to be defined (e.g., the fact that separating conjunction is cancellative is unprovable in

boolean BI, but provable in HyBBI). There, nominals named resources (roughly, but not exactly,

heap fragments). Gordon67 described a use of hybrid logic in the verification of actor programs,

where nominals named the local state of individual actors (with such assertions stabilized with a

rely/guarantee approach). Beyond these, there is limited work on the interaction of hybrid logic with

substructural logics, in restricted forms that do not affect expressivity. Primarily there is a line of

work on hybrid linear logic (HyLL)49, originally used as a way to more conveniently express aspects

of transition systems in linear logic. However, HyLL’s proof rules offer no non-trivial interactions

with multiplicative connectives (every HyLL proof can in fact be embedded into regular linear

logic29, unlike Brotherston and Villard’s HyBBI, which demonstrably increases expressive power

over its base BBI.

In both HyLL and HyBBI, nominals denote worlds with monoidal structure (as worlds in Kripke

semantics for either LL or BBI necessarily have monoidal structure). Our nominals, by contrast,

do not name worlds in the same sense with respect to Iris’s CMRAs, but in fact classes of worlds,

because the names are locations (a means of selecting resources) rather than resources. A key

difference is that the use of nominals in those logics corresponds specifically to hypothetical reasoning

Chapter 2: Related Work 2.2 Modal Abstractions in Systems Verification

28

about resources (until a nominal is connected to a current resource, in which case conclusions can be

drawn about the current resource), which means the modalities themselves do not “own” resources.

Instead, assertions under our other-space modality can and do have resource footprints. Pleasantly,

we sidestep most of the metatheoretical complexity of those other substructural hybrid systems by

building our logic within a substructural metatheory (Iris).

Iris has been used to build other logics through pointwise lifting, notably logics that deal with weak

memory models41,42. Those systems build a derived logic whose lifting consists of functions from

thread-local views of events (an operationalization of the release-acquire + nonatomic portion of

the repaired C11 memory model107): there modalities ∆π(P) and ∇π(P) represent that P held

before or will hold after certain memory fence operations by thread π. The definitions of those

specific modalities existentially quantify over other views, related to the “current” view (the one

where the current thread’s assertions are evaluated), and evaluate P with respect to those other

views. This approach to parameterizing assertion semantics by a point of evaluation, and evaluating

modalized assertions at other points quanfied in the definition of a modality, is the classic notion of

modal assertions, whereas hybrid logics expose the choice of evaluation point in assertions, allowing

statements of more properties. In these weak memory examples this additional expressive power

would not be useful, because any relevant points of evaluation (thread views) are intimately tied to

memory fences performed by the program, whereas for virtual memory management the kernel must

be able to choose or construct arbitrary other address spaces.

Chapter 2: Related Work 2.2 Modal Abstractions in Systems Verification

29

CHAPTER 3

SEMANTICS

3.1 Overview on Machine Model

In typical system configurations, all memory addresses seen by programs running on modern computers

are virtualized: the address observed by a running program generally will not correspond directly to

the physical location in memory and may not even correspond to a physical location that exists in the

machine. Instead, these virtual addresses are translated to physical addresses that correspond directly

to locations in RAM. On most modern architectures, this translation is performed through cooperation

of the hardware and OS kernel: while executing an instruction that dereferences a (virtual) address,

the CPU’s memory management unit (MMU) hardware performs address translation, resulting in a

physical address used to access the cache1 and/or memory-bus.

On the x86-64 architecture, the MMU’s address translation uses a sparse hierarchical set of tables:

page tables (referring to pages of memory). As Figure 3.1 (based on Figure 5-17 of the AMD64
1Technically, for performance reasons most caches are indexed with parts of the virtual address, but tagged with

the physical data addresses, so cache lookups and address translations can proceed in parallel.

Figure 3.1 x86-64 page table lookups.

30

architecture manual82) shows, address translation proceeds by repeatedly taking designated slices

of the virtual address and indexing into a table. The final lookup in the page tables gives the base

physical address of a 4KB page of physical memory, to which the low-order bits of the accessed

virtual address are added to determine the actual physical address retrieved. On x86-64, standard

configurations use 4 levels of page tables, labelled levels 4 through 1, with lookups in the level 1 page

table resulting in the actual page of physical memory holding the requested data, and the low-order

12 bits being used to index into this page.3 The translation process or algorithm is sometimes

referred to as a page-table walk. While Figure 3.1 and most of our constants (how many levels,

which virtual address bits index which table levels) are specific to the x86-64 architecture, ARMv8

(a.k.a. aarch64), RISC-V, and PowerPC use similar hierarchical page tables for address translation.

RISC-V’s sv48 paging configuration1 §4.5 and AArch64’s 4-level paging configuration both split

64-bit virtual addresses at the same points to index into the respective tables, so most of what follows

is equally applicable to those architectures (the only difference is that page table entries place control

bits of write access, etc., in different orders).

The entries of each table are 64 bits wide, but each points to a physical address aligned to 4KB (4096

byte) boundaries, which leaves 12 bits to spare to control a validity bit (called the present bit), a

read-write bit (which permits write access through the entry if and only if it is set), and a range of

additional bits that can be used to control caching, write-through, and more. This thesis will only

consider the present bit (0).

The page tables are managed by the OS, typically by a virtual memory manager (VMM).4 Typically

each process has its own page table, which the OS registers with the CPU by storing the (page-aligned)

physical address of the root of the page table tree showing the start of the L4 table) in a specific

register (cr3) as part of switching to a new process. Using different mappings, which map only
2While x86 up through its 32-bit incarnation were due to Intel, the x86-64 architecture as a 64-bit extension to x86

was originally due to AMD. As a result, it is sometimes also referred to as the amd64 architecture.
3Technically levels 1–3 have explicit historical names, but for brevity and consistency, we simply number them,

in keeping with the newer 5th level. Our formalization only deals with 4-level page tables, but is straightforwardly
extensible to 5.

4Not to be confused with Virtual Machine Monitor. We focus on non-hypervisor scenarios, but hardware virtual-
ization extensions for both x86-64 and ARM make use of an additional set of page tables translating what a guest
considers to be its (virtualized) physical memory to actual physical memory. Our contributions should offer value in
this scenario as well.

Chapter 3: Semantics 3.1 Overview on Machine Model

31

disjoint portions of physical memory (with some exceptions in the next section) is how the OS ensures

memory isolation between processes.

If an instruction is executed that accesses a virtual address that either has no mapping or does

not have a mapping permitting the kind of access that was performed (e.g., the instruction was a

memory write, but the relevant address range was marked read-only in the relevant page table entry),

the hardware triggers a page fault, transferring control to a page fault handler registered with the

hardware by the OS, allowing it to take corrective action. If no mapping was supposed to exist, this

is a program bug (e.g., dereferencing virtual address 0 / NULL) and the faulting program should be

terminated. But this can also be used for specialized functionality and optimizations, such as paging

(saving room in physical RAM and deferring unnecessary IO by only reading program code from disk

when it is accessed, or even swapping memory that has not recently been accessed to disk, to read

back in when a page fault indicates access).

The key pieces of VMM functionality are adding a new page mapping (whether the mapped page

contains zeros, file data, or swap data), and removing an existing page mapping. While this initially

sounds like relatively modest functionality whose implementation may be complicated by hardware

subtleties, correctness of even these basic operations is actually quite intricate. Notably, updates

to the page tables are performed as writes to memory — which are themselves subject to address

translation, and finding the correct page table to update requires converting between physical and

virtual addresses. In the case of changing the mappings for the currently active set of page tables,

the OS kernel is modifying the tables involved in its own access of the tables.

Virtual memory concerns propagate to the OS scheduler, which deals with multiple address spaces,

so must keep track of which virtual addresses are valid (and in what way) in which address spaces.

Some virtual addresses are valid in only a single address space (e.g., a code address for a particular

user-mode process), while others are valid in all address spaces (e.g., kernel data structure pointers).

The VMM must maintain some of these assumptions on behalf of the rest of the kernel, for example

by guaranteeing that a certain range of virtual addresses (corresponding to the kernel’s code and

Chapter 3: Semantics 3.1 Overview on Machine Model

32

data) are valid in every address space.

Translation Lookaside Buffers This section explains the challenges of formal reasoning about

TLBs in more detail, including why prior verified OS work trusts the flushing operations (and we

believe this is reasonable) and why full support for TLB reasoning is a significant, challenging

problem on its own, requiring further development before being integrated with general virtual

memory reasoning.

As noted earlier, TLB flushes are required only when addresses are removed from a virtual address

space, or when changing virtual address spaces. Because this occurs in few places in the kernel (in

some, only 3 locations), fully verified kernels including seL493,94 and CertiKOS72,73 trust TLB

management. Neither of the aforementioned systems has a hardware model including a TLB, so

neither is able to verify TLB management in any form—they must trust its operation.

The only place the code itself becomes particularly challenging is in multiprocessor kernels, where

not only must the running CPU flush its TLB, but it must send an inter-processor interrupt (IPI)

to all other cores to ensure they also flush the relevant ranges of their TLBs. Currently, no formal

hardware model exists with sufficient detail to reason about IPIs in full detail. Multicore extensions

of seL4161 and CertiKOS73 also trust this functionality.

Fully grounded trust for this would require a formal model of how hardware populates ACPI tables

and formal verification of ACPI parsing code on general-purpose desktop and server machines, or a

formalized and verified parsing of flattened device trees (plus trust that a system was booted with

a correct FDT) for semi-embedded systems like single-board ARM and RISC-V machines. Either

route would also require detailed treatment of memory-mapped IO-triggering interrupts on other

CPUs. This is far beyond any formal model of computer hardware that exists today and far out of

the scope of this thesis.

Syeda and Klein151,152 are the only existing works to address formal verification of TLB management.

They extend the work of96,98,98, and therefore inherit the limitations of that work discussed elsewhere

in this paper. Aside from that, their logic primarily tracks a set of mapped addresses and a set of

Chapter 3: Semantics 3.1 Overview on Machine Model

33

cached addresses and generally preserves a global invariant (in a global Hoare logic, not a separation

logic) that the cached addresses are a subset of the mapped addresses. When this invariant is violated,

the logic provides only a Hoare-style backward assignment type rule with unconstrained assertion P ,

rather than providing structure in the logic for reasoning about how to restore the invariant. Most

technical results in the paper focus on proving transparency lemmas, that code that does not modify

page tables (kernel code outside the VMM, user code) is unaffected by its existence. The one piece of

kernel code verified is a sequence of 4 pseudo-instructions for changing address spaces, which include

only the installation of a new page table root and flushing of the old address space from the TLB.

Adapting Syeda and Klein’s global reasoning principles to a separation logic is non-trivial, even

though their approach does capture some intuition about TLB reasoning. And as noted above, in

the absence of support for significant additional hardware functionality in the hardware model, this

would be substantial work for only very limited gains in confidence compared to trusting single-core

TLB management. Thus we leave TLB management to our future work plans, where we believe it is

best addressed in tandem with substantially richer hardware models than any currently existing ones.

3.2 Syntax

Programs in our logic are instruction sequences i⃗, which are formed by prefixing an existing instruction

sequence with an additional instruction (i; i⃗): we instantiate Iris with a simple language for streams

of instructions, which are modeled in our machine model and explained in detail in the following

sections of this chapter 3.3.

The syntax of instructions is given in Figure 3.2. The structural reduction rules for syntactic elements

are shown in Figure 3.3 in which we see that single instruction prefix is where the evaluation contex’s

cursor is filled (StepContext).

Chapter 3: Semantics 3.2 Syntax

34

wn ∈ Wn

r ∈ greg
rv ∈ regval
v ::= ()
i⃗ ::= skip no-op

i; i⃗ sequencing
K ::= [] | K; i⃗

Figure 3.2 Syntax

StepSeqSkip
skip; i / σ −→ i / σ

StepContext
i / σ −→ i′ / σ′

K[i] / σ −→ K[i′] / σ′

Figure 3.3 Structural Reduction Rules for x64-Iris Syntax

3.3 Machine State

To develop our core logical ideas, we first define the physical state (σ) with the following pieces:

• CPU (σ.C)

• Physical Memory (σ.M) : memory maps σ.M : W52 ⇀fin (W12 ⇀fin W64).

• Registers (σ.R) :register maps σ.R : greg →fin regval

from which we mainly deal with the memory (σ.M) and the registers (σ.R) within the context of

logical constructions presented in this thesis.

3.3.1 Registers

Our model includes all x86-64 integer registers (including stack and instruction pointers), as well as

cr3 in type creg (for page table roots) and rflags in type freg (for flags set by comparison operations

and inspected by conditional jumps), as shown in Figure 3.4.

Chapter 3: Semantics 3.3 Machine State

35

1 Inductive greg: Type :=
2 | ir: ireg → greg
3 | sr: sreg → greg
4 | cr: creg → greg
5 | fl: freg → greg
6 | dr: dreg → greg.
7

8 (*
9 (E/R)FLAGS register.

10 Section 3.4.3 of the
11 Intel manual (pg. 77).
12 *)
13 Inductive freg: Type :=
14 | rflags .

(a) Register Constructor and Flags

1 (*
2 Integer (general-purpose) registers.
3 Section 3.4.1.1 of the Intel manual
4 (on pg. 74)
5 *)
6 Inductive ireg: Type :=
7 | rax | r8
8 | rip | r9
9 | rbx | r10

10 | rcx | r11
11 | rdx | r12
12 | rdi | r13
13 | rsi | r14
14 | rbp | r15
15 | rsp

(b) General Purpose Registers

Figure 3.4 Register Component of the State – σ.R

3.3.2 Memory

The essential data units in our model are machine words. For clarity and ease of representation, we

use machine words, wn ∈ Wn, with the subscripts showing the number of bits in a word, for memory

addresses, values, and offsets, rather than distinct location types that wrap machine words: w12 is a

12-bit word, which can be obtained, for example, by truncating away 52 bits of a 64-bit word (w64).

Throughout the explanation of operational semantics, we type the physical memory locations with

mem64 and virtual ones with vmem64 which is associated with a physical root address as shown in

Listing 3.1

1 Definition mem64 : Type := W52Map.t ((word 12 → word 64) + MemFail).

2 Inductive vmem64 :=

3 | virtmem (phys: mem64) (root: address).

4 Definition address := { w: word 64 | aligned w }.

Listing 3.1 Physical and Virtual Memory Definitions

However, as defined, it σ.M is not typed in terms of the virtual or physical memory type, i.e. it

Chapter 3: Semantics 3.3 Machine State

36

treats all memory types of memory locations as uniformly aligned addresses.

3.3.3 Address-Translation

The core aspect of our operational semantics is address-translation of virtual memory addresses. The

address translation, pictorially shown in Figure 3.1, is realized with a high-level call to the function

translate

1 (*

2 References: Intel Manual, Volume 3A - System Programming Guide Part 1

3 (September 2016) - Table 4-12 (pg. 4-19, PDF pg. 123) -

4 Table 4-13 (pg. 4-19, PDF pg. 123)

5 *)

6 Definition translate (m: mem64) (root: address) (w: address): address + mem_fault :=

7 match translate_top_level m (proj1_sig root) (proj1_sig w) with

8 | inr f ⇒ inr f

9 | inl a ⇒ inl (exist _ a I)

10 end.

Listing 3.2 Address Translation Function

with a root address vcalue root that is hold in the control register (cr3), and the virtual address to

be translated (w) including indices used for traversing page tables in the memory m (σ.M) – shown

in Listing 3.3.

Remark 1 (Non-Faulting Memory Accesses) Although our machine model encodes the cases

for memory-access faults, within the context of this thesis (e.g. inrf in Listing 3.2), we only consider

the accesses that are mapped to physical memory (e.g. the virtual address w mapped to the physical

address a in Listing 3.2).

1 (*Performs final level of address translation, starting from the PT entry

2 References: Intel Manual, Volume 3A - System Programming Guide Part 1

3 (September 2016) - pg. 4-23, PDF pg. 127 - Table 4-19 (pg. 4-27, PDF pg. 131)*)

Chapter 3: Semantics 3.3 Machine State

37

4 Definition translate_from_pte (m: mem64) (pte: word 64) (w: word 64): word 64 + mem_fault :=

5 check_fault_and_continue pte

6 (fun _ ⇒ inl (fix_for_pte (create_entry_addr pte w 3 11 three_le11

7 three_lt64 eleven_minus3plus1lt64minus3 phys_addr_is_64) w)).

8 (*Performs the fourth level of address translation, starting from the PD entry

9 References: Intel Manual, Volume 3A - System Programming Guide Part 1

10 (September 2016) - pg. 4-22, PDF pg. 126 - Table 4-18 (pg. 4-26, PDF pg. 130)*)

11 Definition translate_from_pde (m: mem64) (pde: word 64) (w: word 64): word 64 + mem_fault :=

12 check_fault_and_continue pde

13 (fun _ ⇒ translate_using_linear_addr_range m pde w 12 20

14 twelve_le20 twelve_lt64 twenty_minus12plus1lt64minus12

15 pde_entry_addr_is_64 translate_from_pte).

16 (*Performs the third level of address translation, starting at the PDP table entry

17 References: Intel Manual, Volume 3A - System Programming Guide Part 1

18 (September 2016) - pg. 4-22, PDF pg. 126 - Table 4-16 (pg. 4-25, PDF pg. 129)*)

19 Definition translate_from_pdpte (m: mem64) (pdpte: word 64) (w: word 64): word 64 + mem_fault :=

20 check_fault_and_continue pdpte

21 (fun _ ⇒ translate_using_linear_addr_range m pdpte w 21 29

22 twenty1_le29 twenty1_lt64 twenty9_minus21plus1lt64minus21

23 pde_entry_addr_is_64 translate_from_pde).

24 (*Performs the second level of address translation, starting at the PML4 table entry.

25 References: Intel Manual, Volume 3A - System Programming Guide Part 1

26 (September 2016) - pg. 4-22, PDF pg. 126 - Table 4-14 (pg. 4-23, PDF pg. 127)*)

27 Definition translate_from_pml4e (m: mem64) (pml4e: word 64) (w: word 64): word 64 + mem_fault :=

28 check_fault_and_continue pml4e

29 (fun _ ⇒ translate_using_linear_addr_range m pml4e w 30 38

30 thirty_le38 thirty_lt64 thirty8_minus30plus1lt64minus30

31 pdpt_entry_addr_is_64 translate_from_pdpte).

32 (*Performs the address translation, handling the first level `(to get the PML4 entry)

Chapter 3: Semantics 3.3 Machine State

38

33 References: Intel Manual, Volume 3A - System Programming Guide Part 1

34 (September 2016) - pg. 4-22, PDF pg. 126 - Table 4-12 (pg. 4-19, PDF pg. 123)*)

35 Definition translate_top_level (m: mem64) (cr3val: word 64) (w: word 64): word 64 + mem_fault :=

36 translate_using_linear_addr_range

37 m cr3val w 39 47 thirty9_le47 thirty9_lt64

38 forty7_minus39plus1lt64minus39 pml4_entry_addr_is_64

39 translate_from_pml4e.

Listing 3.3 Translating a virtual address (w) to map a physical page, which is pictorially shown in

Figure 3.1

The top-level call translate, when unfolded, includes a chain of calls per level of page tables to reach

the physical page address. The first call is made for level 4 to obtain the physical address of the

entry at the level, translate_top_level in Listing 3.3, with the physical address of the root of the

page-table (cr3val) and the level 4 index residing in between the bits 39-47 from the virtual address

(w). Then, the physical address of level 4 entry (plm4e) is passed to the second call of the chain

(translate_from_plm4 in Listing 3.3) to obtain the physical address of level 3 entry via the level 3

index residing in between bits 30-38 of the virtual address (w). This chain of calls ends with the final

level translation call (translate_from_pte) with the related indexing bits to the physical page address.

Load and Store From/To Memory The next two essential pieces, based on the address

translation, are loading from and storing to memory as shown in Listing 3.4. Loading a value (val in

Listing 3.4) from a virtual address (addr) first requires obtaining the physical address (phys_addr)

via address-translation and loading the value using the physical address (P.load)

1 Definition load (m: virtmem64) (addr: address): word 64 + mem_fault :=

2 match m with

3 | virtmem phys root ⇒

4 match translate phys root addr with

5 | inr fault ⇒ inr fault

Chapter 3: Semantics 3.3 Machine State

39

6 | inl phys_addr ⇒

7 match P.load (match m with | virtmem phys _ ⇒ phys end) phys_addr with

8 | inr fault ⇒ inr (phys_fault fault)

9 | inl val ⇒ inl val

10 end

11 end

12 end.

13 (* This is a probe so if we jump/call unmapped memory, we fault immediately *)

14 Definition code_probe (m: virtmem64) (addr: word 64): unit + mem_fault :=

15 match m with

16 | virtmem phys root ⇒

17 match translate_top_level phys (proj1_sig root) addr with

18 | inr fault ⇒ inr fault

19 | inl phys_addr ⇒

20 match P.probe phys phys_addr with

21 | inr fault ⇒ inr (phys_fault fault)

22 | inl val ⇒ inl tt

23 end

24 end

25 end.

26 Definition store (m: virtmem64) (addr: address) (w: word 64): virtmem64 + mem_fault :=

27 match m with

28 | virtmem phys root ⇒

29 match translate phys root addr with

30 | inr fault ⇒ inr fault

31 | inl phys_addr ⇒

32 match P.store (match m with | virtmem phys _ ⇒ phys end) phys_addr w with

33 | (_, inr fault) ⇒ inr (phys_fault fault)

34 | (mem, _) ⇒ inl (virtmem mem root)

Chapter 3: Semantics 3.3 Machine State

40

35 end

36 end

37 end.

Listing 3.4 Loading, Storing for Virtual Memory Addresses and Probing for Code Pointers

Likewise, storing a value (the argument w in store function in Listing 3.4) to a virtual address (addr)

also first requires obtaining the physical memory address (phys_addr), then storing the value (P.store)

using the physical address, and obtaining the updated memory (mem).

Queries over the existence of the virtual address mapping – probing (Q) – provide the mechanism for

ensuring the control-flow structure of the program constructed with instructions such as call, return,

and jump is mapped in the memory.

3.4 Instructions

The last piece of our constructions to explain before defining operational semantics is instructions. In

our model design, we index instructions with operation types: the constructors, which are in the type

of InstructionType_ops (e.g., mov_ops), and the form of InstructionType_OperandType_OperandType

(e.g., mov_reg64_reg64).

3.4.1 Handling Instructions Based on Operand Types

Essentially, most of the instructions do some operation over the values of source physical resources

(e.g., a register or a memory address) and update the destination resource, where the updated value

resides. Therefore, handling the updates after the operation over the resources in a more general

form and clarity, we generalize the updates to the resources with

• identifying the operand types in grouping updates to the resources (e.g., reg_reg, reg_imm in

Listing 3.5)

• parameterizing the need for overflow checks and flag updates (setflags in Listing 3.5)

Chapter 3: Semantics 3.4 Instructions

41

1 Definition reg_reg (setflags: bool)

2 (op: forall sz, WordImpl.word sz → WordImpl.word sz → WordImpl.word sz ∗ bool)

3 (regs: regset) (mem: VirtMemImpl.virtmem64) (dst: ireg) (src: ireg)

4 : regset ∗ VirtMemImpl.virtmem64 + fault_error :=

5 let '(res,b) := (op 64 (regset_get_num regs (ir dst)) (regset_get_num regs (ir src))) in

6 let regs := if setflags then apply_arith_flags regs

7 (arith_flags.res_overflow_to_flags res b) else regs in

8 sret (regset_replace regs (ir dst) (num res), mem).

9 Definition reg_imm (setflags: bool)

10 (op: forall sz, WordImpl.word sz → WordImpl.word sz → WordImpl.word sz ∗ bool)

11 (regs: regset) (mem: VirtMemImpl.virtmem64) (dst: ireg) (imm: WordImpl.word 64)

12 : regset ∗ VirtMemImpl.virtmem64 + fault_error :=

13 let '(res,b) := (op 64 (regset_get_num regs (ir dst)) imm) in

14 let regs := if setflags then apply_arith_flags regs

15 (arith_flags.res_overflow_to_flags res b) else regs in

16 sret (regset_replace regs (ir dst) (num res), mem).

17 Definition reg_mem (setflags: bool)

18 (op: forall sz, WordImpl.word sz → WordImpl.word sz → WordImpl.word sz ∗ bool)

19 (regs: regset) (mem: VirtMemImpl.virtmem64) (dst: ireg) (src: addressing_mode)

20 : regset ∗ VirtMemImpl.virtmem64 + fault_error :=

21 do val ← memory_get_by_mode mem src regs;

22 let '(res,b) := (op 64 (regset_get_num regs (ir dst)) val) in

23 let regs := if setflags then apply_arith_flags regs

24 (arith_flags.res_overflow_to_flags res b) else regs in

25 sret (regset_replace regs (ir dst) (num res), mem).

26 Definition mem_reg (setflags: bool)

27 (op: forall sz, WordImpl.word sz → WordImpl.word sz → WordImpl.word sz ∗ bool)

28 (regs: regset) (mem: VirtMemImpl.virtmem64) (dst: addressing_mode) (src: ireg)

29 : regset ∗ VirtMemImpl.virtmem64 + fault_error :=

Chapter 3: Semantics 3.4 Instructions

42

30 do val ← memory_get_by_mode mem dst regs;

31 let '(res,b) := (op 64 val (regset_get_num regs (ir src))) in

32 let regs := if setflags then apply_arith_flags regs

33 (arith_flags.res_overflow_to_flags res b) else regs in

34 do newmem ← memory_replace_by_mode mem dst res regs;

35 sret (regs, newmem).

36 Definition mem_imm (setflags: bool)

37 (op: forall sz, WordImpl.word sz → WordImpl.word sz → WordImpl.word sz ∗ bool)

38 (regs: regset) (mem: VirtMemImpl.virtmem64) (dst: addressing_mode) (imm: WordImpl.word 64)

39 : regset ∗ VirtMemImpl.virtmem64 + fault_error :=

40 do val ← memory_get_by_mode mem dst regs;

41 let '(res,b) := (op 64 val imm) in

42 let regs := if setflags then apply_arith_flags regs

43 (arith_flags.res_overflow_to_flags res b) else regs in

44 do newmem ← memory_replace_by_mode mem dst res regs;

45 sret (regs, newmem).

Listing 3.5 Handling Instructions with Register, Memory, and Immediate Value Arguments

Reg To Reg – RR Register to register operations (reg_reg) updates (regset_replace the destination

register (ir dst) with the value obtained after the application of an operation (op) on the values of the

source register’s (ir src) (regset_get_num regs (ir src) and destination’s (regset_get_num regs (ir dst).

Reg with Immediate Value – RImm Likewise, a destination register can be updated with an

immediate value.

Reg From Memory – RM While accessing a memory, we could do it by an offset to an address

or an absolute one (textsfaddress_mode). After reading a value (memory_get_by_mode) of a source

memory address (kept in src register), we can apply the operation over the current value of memory

value (memory_get_by_mode mem src regs) and a destination register’s one value, then update the

Chapter 3: Semantics 3.4 Instructions

43

destination register’s value.

Memory from Reg – MR Likewise, we can also update the value of a memory address

(mem_replace_by_mode) with a new value obtained by applying an operation over a source register

value (regset_get_num regs (ir src)) and the current value of the memory address.

3.5 Giving Semantics to Instructions

In this section, with the well-enough definitions we have so far, we can give operational semantics to

the instructions per operation type. We should emphasize that the instructions used in this thesis do

not reflect any change on the CPU component of the state (σ.C), and since our principles cannot

handle the failure (Remark 4), we ignore the faulting cases of the instructions result (instr_result and

arith_result in Listing 3.6. To use the general form (presented in Listing 3.5) for handling the effects

of instructions, we present a bridge (arith_instr) which asks for exactly what RR, RM, MR, and RImm

in Listing 3.5 need per operand type.

Notably on Listing 3.6, we should mention that, operationally, updating control (ctlarg in Figure

3.6) registers is not different than updating a general purpose register, but it is logically different,

and we discuss it in our reasoning principles. The individual instructions identify the change in the

instruction pointer (rip) as the size of instructions varies and the kind of flags to be set if asked, i.e.,

setflag is set.

1 Inductive arith_ops: Type :=

2 (* r/m64, imm32 *)

3 | arith_reg64_imm32: ireg → WordImpl.word 32 → arith_ops

4 | arith_mem64_imm32: addressing_mode → WordImpl.word 32 → arith_ops

5 (* r/m64, r64 *)

6 | arith_reg64_reg64: ireg → ireg → arith_ops

7 | arith_mem64_reg64: addressing_mode → ireg → arith_ops

8 (* r64, r/m64 *)

9 | arith_reg64_mem64: ireg → addressing_mode → arith_ops.

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

44

10 Definition arith_instr_new

11 (op: forall sz, WordImpl.word sz → WordImpl.word sz → WordImpl.word sz ∗ bool)

12 (cpu: cpu_int) (regs: regset) (mem: VirtMemImpl.virtmem64) (ops: arith_ops)

13 : arith_result :=

14 let (dstop, srcop) :=

15 match ops with

16 | arith_reg64_imm32 dst src ⇒

17 (regarg dst, immarg (WordImpl.concat (WordImpl.zero 32) src))

18 | arith_mem64_imm32 dst src ⇒

19 (memarg dst, immarg (WordImpl.concat (WordImpl.zero 32) src))

20 | arith_reg64_reg64 dst src ⇒ (regarg dst, regarg src)

21 | arith_mem64_reg64 dst src ⇒ (memarg dst, regarg src)

22 | arith_reg64_mem64 dst src ⇒ (regarg dst, memarg src)

23 end in

24 arith_instr true op cpu regs mem dstop srcop.

25 Definition instr_result: Type := (cpu_int ∗ regset ∗ VirtMemImpl.virtmem64 + fault_error).

26 Definition arith_result: Type := (cpu_int ∗ regset ∗ VirtMemImpl.virtmem64 + fault_error)

27 Definition arith_instr (setflags: bool)

28 (op: forall sz, WordImpl.word sz → WordImpl.word sz → WordImpl.word sz ∗ bool)

29 (cpu: cpu_int) (regs: regset) (mem: VirtMemImpl.virtmem64)

30 (dst: instrarg) (src: instrarg)

31 : arith_result :=

32 do result ←

33 match dst, src with

34 | (regarg dstreg), (regarg srcreg) ⇒ reg_reg setflags op regs mem dstreg srcreg

35 | (regarg dstreg), (immarg immval) ⇒ reg_imm setflags op regs mem dstreg immval

36 | (regarg dstreg), (memarg srcmem) ⇒ reg_mem setflags op regs mem dstreg srcmem

37 | (memarg dstmem), (regarg srcreg) ⇒ mem_reg setflags op regs mem dstmem srcreg

38 | (memarg dstmem), (immarg immval) ⇒ mem_imm setflags op regs mem dstmem immval

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

45

39 | (ctlarg dstctl), (regarg regval) ⇒ ctl_reg regs mem dstctl regval

40 | _, _ ⇒ inr (UD, None)

41 end;

42 let '(newregs, newmem) := result in

43 sret (cpu, newregs, newmem).

Listing 3.6 Instruction Result

3.5.1 Reading To/From Virtual Memory Address

In Figure 3.7, we see mov_instr instruction including operand type resolution (Lines 8 - 14) to

identify the assignment function shown in Listing 3.5. Our bridge to the arith_instr is move_arith in

Listing 3.7 which does not ask for any check on setflag and performs non_overflowing operations –

i.e., non-arithmetic and just assignment operation.

1 Definition move_arith := arith_instr false (non_overflowing wsecond).

2 Definition mov_instr

3 (cpu: cpu_int) (regs: regset)

4 (mem: VirtMemImpl.virtmem64) (ops: mov_ops)

5 : instr_result :=

6 let (dstop, srcop) :=

7 match ops with

8 | mov_reg64_reg64 dst src ⇒ (regarg dst, regarg src)

9 | mov_mem64_reg64 dst src ⇒ (memarg dst, regarg src)

10 | mov_reg64_mem64 dst src ⇒ (regarg dst, memarg src)

11 | mov_reg64_imm64 dst src ⇒ (regarg dst, immarg src)

12 | mov_reg64_imm32 dst src ⇒ (regarg dst,

13 immarg (WordImpl.concat (WordImpl.zero 32) src))

14 | mov_mem64_imm32 dst src ⇒ (memarg dst,

15 immarg (WordImpl.concat (WordImpl.zero 32) src))

16 end in

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

46

17 match dstop with

18 (*| selarg cs ⇒ inr (UD, None) Can't mov to code segment register *)

19 | _ ⇒

20 do result ← move_arith cpu regs mem dstop srcop;

21 let '(newcpu, newregs, newmem) := result in

22 sret (newcpu, regset_add_rip_nat newregs (mov_ops_to_length ops), newmem)

23 end.

Listing 3.7 mov Instructions

StepMovRR
ip + MovLenRR = ip′ σ.R[rip] = ip

σ.R[rdst] = vd σ.R[rsrc] = vs mov_instr(σ.C, σ.R, σ.M, reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst = vs σ′.R[rsrc] = vs σ′.R[rip] = ip′

mov rdst rsrc / σ −→ skip / σ′

StepMovRImm
ip + MovLenRM = ip′ σ.R[rip] = ip

σ.R[rdst] = vd mov_instr(σ.C, σ.R, σ.M, mov_reg64_imm64(rdst, v)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = v σ′.R[rip] = ip′

mov rdst v / σ −→ skip / σ′

StepMovRMBase
addressing_mode = base ip + MovLenRMBase = ip′ σ.R[rip] = ip σ.R[rdst] = vd

σ.M[src] = v mov_instr(σ.C, σ.R, σ.M, mov_reg64_mem64(rdst, src)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst = v] σ′.R[rip] = ip′

mov rdst src / σ −→ skip / σ′

StepMovRMOff
addressing_mode = offset ip + MovLenRMOff = ip′ σ.R[rip] = ip σ.R[rdst] = vd

σ.M[src + offset] = v mov_instr(σ.C, σ.R, σ.M, mov_reg64_mem64(rdst, src)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = v σ′.R[rip] = ip′

mov rdst src / σ −→ skip / σ′

StepMovMRBase
addressing_mode = base ip + MovLenMRBase = ip′ σ.R[rip] = ip σ.R[rsrc] = vs

σ.M[dst] = v mov_instr(σ.C, σ.R, σ.M, mov_mem64_reg64(dst, rsrc)) = (σ.C, σ′.R, σ′.M)
σ′.M[dst] = vs σ′.R[rip] = ip′

mov dst rsrc / σ −→ skip / σ′

StepMovMROff
addressing_mode = offset ip + MovLenMROffset = ip′ σ.R[rip] = ip σ.R[rsrc] = vs

σ.M[dst + offset] = v mov_instr(σ.C, σ.R, σ.M, mov_mem64_reg64(dst, rsrc)) = (σ.C, σ′.R, σ.M)
σ′.M[dst + offset] = vs σ′.R[rip] = ip′

mov dst rsrc / σ −→ skip / σ′

Figure 3.5 Operational Rules for Selected mov Instructions

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

47

Reduction Rules for mov Instructions In Figure 3.5, we see the reduction rules for each of

the mov operations types into which mov_instr resolve in Listing 3.7. In each of these rules, we

see that instruction length varies (e.g., MovLenMRBase) and the instruction pointer (rip) is set

accordingly – regset_add_rip_nat newregs (mov_ops_to_length ops) in Listing 3.7. Based on the

operand type, updates occur either on a register (rdst) or memory location (dst) from a memory (src)

or register (rsrc) source. Regarding the rules with memory accesses, we see separate rules based on

the access-mode, i.e., base or offset.

3.5.2 Arithmetic Operations

3.5.3 Add, Sub and Compare Instructions

In Listing 3.8, we see add_instr instruction, which is constructed with a constructor arith_instr_new

(Line 10 in Listing 3.6) that takes wplus_check as an operation, which sums the operand values with

an overflow check, and as we see in the constructor, setflags is set, i.e., the values of flags are to be

resolved. Likewise, for sub_instr instruction, which is also constructed with arith_instr_new, but, for

substitution, it takes wminus_check as an operation and setflag is set to have the flags to be resolved.

1 Definition add_instr (cpu: cpu_int) (regs: regset)

2 (mem: VirtMemImpl.virtmem64) (ops: arith_ops) :=

3 do result ← arith_instr_new wplus_check cpu regs mem ops;

4 let '(newcpu, newregs, newmem) := result in

5 sret (newcpu, regset_add_rip_nat newregs (add_ops_to_length ops), newmem).

6 Definition cmp_instr (cpu: cpu_int) (regs: regset)

7 (mem: VirtMemImpl.virtmem64) (ops: arith_ops) :=

8 do result ← arith_instr_new wminus_check cpu regs mem ops;

9 let '(newcpu, subregs, submem) := result in

10 (* Notice that we return the old memory on purpose! *)

11 (* We copy the flags after sub into the final regs,

12 in order to get the right flag updates from sub *)

13 let correctregs := regset_replace regs (fl rflags) (regset_get subregs (fl rflags)) in

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

48

14 sret (newcpu, regset_add_rip_nat correctregs (cmp_ops_to_length ops), mem).

Listing 3.8 Arithmetic Operations

Regarding the comparison, we model the instruction cmp_instr using the sub_instr in a slightly

different way to reflect the changes in the flags inside the register set (correctregs in Listing 3.8)

while keeping the memory intact as shown in Listing 3.8 – (newcpu, regset_add_rip_nat correctregs

(cmp_ops_to_length ops), mem).

Remark 2 (Arithmetic without Memory Access) Although we model all the memory-accessing

versions of the arithmetic instructions, within the context of this thesis, we use and consider explaining

only the non-memory-accessing versions. This makes all the arithmetic instructions (add, sub and

cmp) keep the memory intact.

Reduction Rules for add, sub, and cmp In Figure 3.6, we see the reduction rules for sub-

traction, addition, and comparison. Since setflag for these instructions is set, we see the change

in the fl rflags register. The flags we consider for the arithmetic instructions are ZF, SF, OF and

PF, and we can observe the change in them via apply_arith_flags: overflow check for sume is

arith_flags.res_overflow_to_flags (vs + vd, b).

3.5.4 Shift, And, Or, and Xor Instructions

Unlike addition, subtraction and comparison, the bitwise instructions are run with non-overflow-check,

e.g., non_overflowing wand. However, executing them still requires access to the flag register.

1 Definition shr_instr (cpu: cpu_int) (regs: regset)

2 (mem: VirtMemImpl.virtmem64)

3 (ops: shift_ops) :=

4 do result ← shift_instr wshiftrl cpu regs mem ops;

5 let '(newcpu, newregs, newmem) := result in

6 sret (newcpu, regset_add_rip_nat newregs (shr_ops_to_length ops), newmem).

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

49

StepAddRR
ip + AddLenRR = ip′ σ.R[rflags] = flags σ.R[rdst] = vd σ.R[rip] = ip

σ.R[rsrc] = vs apply_arith_flags(σ.R, arith_flags.res_overflow_to_flags(vs + vd, b))[rflags] = flags′

add_instr(σ.C, σ.R, σ.M, arith_reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vs + vd σ′.R[rsrc] = vs σ′.R[rip] = ip′ σ′.R[rflags] = flags′

add rdst rsrc / σ −→ skip / σ′

StepAddRImm
ip + AddLenRImm = ip′ σ.R[rflags] = flags σ.R[rdst] = vd

σ.R[rip] = ip apply_arith_flags(σ.R, arith_flags.res_overflow_to_flags(vs + vd, b))[rflags] = flags′

add_instr(σ.C, σ.R, σ.M, arith_reg64_imm32(rdst, v)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = v + vd σ′.R[rip] = ip′ σ′.R[rflags] = flags′

add rdst v / σ −→ skip / σ′

StepSubRR
ip + SubLenRR = ip′ σ.R[rflags] = flags σ.R[rdst] = vd σ.R[rip] = ip

σ.R[rsrc] = vs apply_arith_flags(σ.R, arith_flags.res_overflow_to_flags(vs + vd, b))[rflags] = flags′

sub_instr(σ.C, σ.R, σ.M, arith_reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vs − vd σ′.R[rsrc] = vs σ′.R[rip] = ip′ σ′.R[rflags] = flags′

sub rdst rsrc / σ −→ skip / σ′

StepSubRImm
ip + SubLenRImm = ip′ σ.R[rflags] = flags σ.R[rdst] = vd

σ.R[rip] = ip apply_arith_flags(σ.R, arith_flags.res_overflow_to_flags(vs + vd, b))[rflags] = flags′

sub_instr(σ.C, σ.R, σ.M, arith_reg64_imm32(rdst, v)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vd − v σ′.R[rip] = ip′ σ′.R[rflags] = flags′

sub rdst v / σ −→ skip / σ′

StepCmpRR
ip + CmpLenRR = ip′ σ.R[rflags] = flags σ.R[rdst] = vd σ.R[rip] = ip

σ.R[rsrc] = vs apply_arith_flags(σ.R, arith_flags.res_overflow_to_flags(vs + vd, b))[rflags] = flags′

cmp_instr(σ.C, σ.R, σ.M, arith_reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vs − vd σ′.R[rsrc] = vs σ′.R[rip] = ip′ σ′.R[rflags] = flags′

cmp rdst rsrc / σ −→ skip / σ′

Figure 3.6 Operational Rules for add, sub and cmp Instructions

Listing 3.9 Shift Left/Right Instructions

3.5.5 Stack Operations

Stack operations enable manipulating the stack pointer register rsp to be constitute local context for

execution. As we see in Listing 3.10, pushing a value (val) onto stack simply decrements the register

of the current stack pointer (rsp) by 8 bytes and writes the value into that 8 bytes decremented

memory address (memresult). On the other hand, when popping a value from the stack, the memory

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

50

StepAndRR
ip + AndLenRR = ip′ σ.R[rflags] = flags σ.R[rdst] = vd σ.R[rip] = ip

σ.R[rsrc] = vs and_instr(σ.C, σ.R, σ.M, arith_reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vs&vd σ′.R[rsrc] = vs σ′.R[rip] = ip′ σ′.R[rflags] = flags

add rdst rsrc / σ −→ skip / σ′

StepAndRImm
ip + AndLenRImm = ip′ σ.R[rflags] = flags σ.R[rdst] = vd

σ.R[rip] = ip and_instr(σ.C, σ.R, σ.M, arith_reg64_imm32(rdst, v)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = v&vd σ′.R[rip] = ip′ σ′.R[rflags] = flags

and rdst v / σ −→ skip / σ′

StepOrRR
ip + OrLenRR = ip′ σ.R[rflags] = flags σ.R[rdst] = vd

σ.R[rip] = ip σ.R[rsrc] = vs or_instr(σ.C, σ.R, σ.M, arith_reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vs||vd σ′.R[rsrc] = vs σ′.R[rip] = ip′ σ′.R[rflags] = flags

or rdst rsrc / σ −→ skip / σ′

StepOrRImm
ip + OrLenRImm = ip′ σ.R[rflags] = flags

σ.R[rdst] = vd σ.R[rip] = ip or_instr(σ.C, σ.R, σ.M, arith_reg64_imm32(rdst, v)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vd||v σ′.R[rip] = ip′ σ′.R[rflags] = flags

or rdst v / σ −→ skip / σ′

StepShlRImm
ip + ShlLenRImm = ip′ σ.R[rflags] = flags

σ.R[rdst] = vd σ.R[rip] = ip (arith_flags.res_overflow_to_flags(σ.R, vd << v, b)[rflags] = flags′

shl_instr(σ.C, σ.R, σ.M, arith_reg64_imm32(rdst, v)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vd << v σ′.R[rip] = ip′ σ′.R[rflags] = flags

shl rdst v / σ −→ skip / σ′

StepShrRImm
ip + ShrLenRImm = ip′ σ.R[rflags] = flags σ.R[rdst] = vd

σ.R[rip] = ip shr_instr(σ.C, σ.R, σ.M, arith_reg64_imm32(rdst, v)) = (σ.C, σ′.R, σ.M)
σ′.R[rdst] = vd >> v σ′.R[rip] = ip′ σ′.R[rflags] = flags

shr rdst v / σ −→ skip / σ′

Figure 3.7 Selected Operational Rules for Bitwise Instructions

address kept in the register of the stack pointer is read, and the value kept in the register of the stack

pointer is incremented by 8 bytes.

1 Definition memory_stack_push

2 (mem: VirtMemImpl.virtmem64) (regs: regset) (val: WordImpl.word 64)

3 : VirtMemImpl.virtmem64 ∗ regset + fault_error :=

4 let rspval := regset_get_num regs (ir rsp) in

5 let newrspval := VirtMemImpl.address_minus (exist _ rspval I) w8_64_aligned in

6 let memresult := memory_replace mem newrspval val in

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

51

7 let newregs := regset_replace regs (ir rsp) (num (proj1_sig newrspval)) in

8 do newmem ← memresult; sret (newmem, newregs).

9 Definition memory_stack_pop (mem: VirtMemImpl.virtmem64) (regs: regset)

10 : WordImpl.word 64 ∗ regset + fault_error :=

11 let rspval := (exist _ (regset_get_num regs (ir rsp)) I) in

12 let newrspval := VirtMemImpl.address_plus rspval w8_64_aligned in

13 let memresult := memory_get mem rspval in

14 let newregs := regset_replace regs (ir rsp) (num (proj1_sig newrspval)) in

15 do val ← memresult; sret (val, newregs).

Listing 3.10 Push and Pop To/From Memory

Reduction Rules for Stack Operations In Figure 3.8, we give the reduction rules for pushing a

register value (vs) onto the stack (StackPushR), and, reversly, reading the stack value (vs) into a

register (StepPopR).

StepPushR
ip + PushLenRR = ip′ σ.R[rsp] = maddr σ.R[rip] = ip σ.R[rsrc] = vs

σ.M[maddr− 8] = v push_instr(σ.C, σ.R, σ.M, arith_reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ′.M)
σ′.R[rsp] = maddr− 8 σ′.R[rsrc] = vs σ′.R[rip] = ip′ σ′.M[maddr− 8] = vs

push rsrc / σ −→ skip / σ′

StepPopR
ip + PopLenRR = ip′ σ.R[rsp] = maddr σ.R[rip] = ip σ.R[rsrc] = vs

σ.M[maddr] = v push_instr(σ.C, σ.R, σ.M, arith_reg64_reg64(rdst, rsrc)) = (σ.C, σ′.R, σ′.M)
σ′.R[rsp] = maddr + 8 σ′.R[rsrc] = v σ′.R[rip] = ip′ σ′.M[maddr− 8] = v

push rsrc / σ −→ skip / σ′

Figure 3.8 Selected Operational Rules for Pop and Push Instructions

3.5.6 Control-Flow Instructions

Control-flow operations change the flow of instruction execution. While doing so, the essential aspect

that the model guarantees is having the instructions inside the changed flow, which themselves live

in the memory, mapped in the memory. Up until now, the semantics of the instructions explained so

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

52

far heavily rely on load and store from Listing 3.4, unlike the control-flow instructions, which use

code_probe for checking whether code-to-be-executed is mapped or not.

Jump To an Address In Listing 3.11, we see the jump instruction implementation, which jumps

to an address from the current instruction—where the current rip shows—to an instruction with

an offset (w). To do so, memory probing—checking whether the instruction at the target address

(nextrip) is done. The existence of non-failure probing establishes the validity of the target to be

jumped.

1 Program Definition jmp_instr (cpu: cpu_int) (regs: regset)

2 (mem: VirtMemImpl.virtmem64)

3 (ops: jmp_ops): instr_result :=

4 match ops with

5 | jrel32 w ⇒ let offset := sign_extend_to w 64 le_32_64 le_1_32 in

6 let nextrip := WordImpl.wplus (regset_get_num regs (ir rip)) offset in

7 do _ ← memory_probe mem nextrip;

8 sret (cpu, regset_add_rip regs offset, mem)

9 ...

10 end.

Listing 3.11 Jump Instruction

StepJmp
σ.R[rip] = ip σ.R[flrflags] = flagl

ZFcond = flagset_includes flagl ZF Q(ip′) = () C≀⌈⌉A⊔C≀\⌈(ip, offset) = (is, es, ZF cond)
jmp_instr(σ.C, σ.R, σ.M, jrel32(offset)) = (σ.C, σ′.R, σ.M) σ′.R[flrflags] = flagl

jmpE offset / σ −→ is / σ′

Figure 3.9 A Selected Operational Rule for Jump Instruction

Reduction Rule for a Jump Instruction In Figure 3.9, we see a rule for a jump instruction

with a target address computable with an offset (offset). The next instruction pointer (σ.R[rip])

and the next instruction sequence (the value of ip′) are picked up on the condition (ZFcond). No

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

53

matter which target is picked up based on the condition, the rule has to make sure the non-failure

code probing in the target address (Q(ip′) = (), and the sequence of instructions encoded in byte

sequences in the target address (C≀⊣⌈⌉A⊔(ip’) = (is, es)).

Call and Return To/From a Function The other two control-flow instructions are call and

return. The code probing for callind in Listing 3.12 is done for the target—the value (target) held

in the target register (r). Before doing that, the address of the next instruction after call is saved

on the stack (retaddr). Conversely, ret_instr pops the return address value from the stack and then

does code probing on that address. These two instructions—relying on the stack instructions—form

consistent local execution contexts.

1 Definition call_instr

2 (cpu: cpu_int) (regs: regset)

3 (mem: VirtMemImpl.virtmem64) (ops: call_ops): instr_result :=

4 let target := match ops with

5 | callind r ⇒ regset_get_num regs (ir r)

6 ...

7 end in

8 let retaddr := wplus (regset_get_num regs (ir rip))

9 (WordImpl.from_nat 64

10 (call_ops_length ops)) in

11 do push_ret ← memory_stack_push mem regs retaddr;

12 let '(mem_with_retaddr, regs_with_rsp_update) :=

13 push_ret in

14 do _ ← memory_probe mem target;

15 sret (cpu, regset_set_rip regs_with_rsp_update

16 target, mem_with_retaddr).

17 Definition ret_instr (cpu: cpu_int) (regs: regset)

18 (mem: VirtMemImpl.virtmem64): instr_result :=

19 do pop1 ← memory_stack_pop mem regs;

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

54

20 let (rip_val, regs_with_new_rsp) := pop1 in

21 do _ ← memory_probe mem rip_val;

22 sret (cpu, regset_set_rip regs_with_new_rsp rip_val, mem).

Listing 3.12 Call and Return Instructions

StepCall
ip + CallLen = ip′ Q(vd) = ()

CodeAt(vd) = (is, es) CodeAt(ip′) = (isret, esret) σ.M.[maddr − 8] = mv σ.R.[rsp] = maddr
σ.R[rdst] = vd σ.R[rip] = ip call_instr(σ.C, σ.R, σ.M, callind(off)) = (σ.C, σ′.R, σ.M)

σ′.R[rdst] = vd σ′.R.[rsp] = maddr σ′.R[rip] = ip′

call rdst / σ −→ is / σ′

StepReturn
ip + ReturnLen = ip′ Q(ip′) = () CodeAt(ip′) = (is, es)σ.M.[maddr] = mv

σ.R.[rsp] = maddr σ.R[rip] = ip call_instr(σ.C, σ.R, σ.M, callind(off)) = (σ.C, σ′.R, σ.M)
σ′.M.[maddr] = mv σ′.R.[rsp] = maddr + 8 σ′.R[rip] = mv

ret / σ −→ is / σ′

Figure 3.10 Selected Operational Rules for Call and Return Instructions

Reduction Rules for Call and Return Instructions In addition to the code probing for

the target (Q(vd)), the rule StepCall in Listing 3.10 also requires the association of the instruc-

tion sequences and correspoinding byte encoding of these sequences for both the jumped target

(CodeAt(vd) = (is,es)) and the execution after the return (CodeAt(ip′) = (isret,esret).

Chapter 3: Semantics 3.5 Giving Semantics to Instructions

55

CHAPTER 4

PROGRAM LOGIC

We describe a program logic (a separation logic) along the lines suggested earlier, where every

assertion is relative to an address space in which it is interpreted, allowing us to define virtual

points-to assertions that make claims about memory locations in a particular address space. Virtual

addresses, and even virtual points-to assertions, are not tagged with their address spaces in any

way. Memory access in this logic is validated through the use of virtual points-to assertions in

pre-conditions, which guarantee that address translations succeed. This supports rules for updating

not only typical data in memory that happens to be subject to address translation, but manipulation

of the page tables themselves via virtual addresses (as demanded by all modern hardware), also

via virtual points-to assertions. To support specifications that deal with multiple address spaces,

our logic incorporates a hybrid-style modality [r](P) to state that an assertion is true in another

(assertion-specified) address space rather than the address space currently active in hardware, which

is not only useful for virtual memory manager invariants but critical to reasoning about change-of-

address-space. By developing this within the Iris framework, we obtain additional features (e.g.,

fractional permissions) that allow us to verify some of the most subtle and technically challenging

instruction sequences in an OS kernel (Section 5).

To support making assertions depend on a choice of address space, we work entirely in a pointwise

lifting of Iris’s base BI logic, essentially working with separation logic assertions indexed by a choice

of page table root as a W64, which we call vProp Σ:1

1Iris experts may notice our −b> resembles another variety of pointwise lifting that already exists in the main Iris
distribution 41,42. This is essentially true, but the standard formalization does not work for index types which are
indexed in the sense of Coq’s metatheory, as our word n types are.

56

1 Definition vProp Σ : bi := word 64 −b> iPropI Σ.

This is the (Coq) type of assertions in our logic. Most constructs in Iris’s base logic are defined

with respect to any BI-algebra (of Coq type bi), so automatically carry over to our derived logic.

However, we must still build up from existing Iris primitives to provide new primitives that depend

on the address space — primarily the notion of virtual points-to.

4.1 Base Points-To Assertions

We build up our context-dependent assertions from two basic types of assertions that do not care

about address spaces.

4.1.1 Register points-to

The assertion r 7→r {q} rv ensures the ownership of the register r naming the register value rv. The

fraction q with value 1 asserts the unique ownership of the register mapping, and grants update

permission on it, otherwise, any value 0 < q < 1 represents partial ownership granting readonly

permission on the mapping.

4.1.2 Physical memory points-to

The soundness proofs for our logic’s rules largely center around proving that page-table-walk accesses

as in Figure 3.1 succeed, which requires assertions dealing with physical memory locations. We have

two notions of physical points-to facts. The primitive notion closest to our machine model is captured

by an assertion pfn ∼ pageoff 7→a {q} v, where pfn (a W52 page frame number) essentially selects a

4KB page of physical memory, and pageoff (a W12) is an offset within that page. From this we can

derive a more concise physical points-to when the split is unimportant:

w 7→p {q} v △= (drop 12 w) ∼ (bottom 12 w) 7→a {q} v

Chapter 4: Program Logic 4.1 Base Points-To Assertions

57

1 Definition va 7→t {q} v : vProp Σ :=
2 ∃l4e l3e l2e l1e. ⌜ aligned va⌝∗ L4_L1_PointsTo(va l4e l3e l2e l1e paddr) ∗ paddr 7→p {q}v.
3

4 Definition L4_L1_PointsTo (maddr l4e l3e l2e l1e paddr :word 64) : vProp Σ := λ cr3val.
5 ⌜ entry_present l4e ∧ entry_present l3e ∧ entry_present l2e ∧ entry_present l1e⌝ ∗
6 (l4M52 maddr cr3val) ∼ (l4off maddr cr3val) 7→a {q1} l4e ∗
7 (l3M52 maddr l4e) ∼ (l3off maddr l4e) 7→a {q2} l3e ∗
8 (l2M52 maddr l3e) ∼ (l2off maddr l3e) 7→a {q3} l2e ∗
9 (l1M52 maddr l2e) ∼ (l1off maddr l2e) 7→a {q4} l1e ∗ ⌜ addr_L1(va,l1e) = paddr ⌝.

Listing 4.1 A Strong Virtual Points-to Relation

4.2 A Restrictive Virtual Memory Addressing

A natural definition for a virtual points-to that depends on the current address space is to require

that in order for a virtual address va to point to a value v, the assertion contains partial ownership

of the physical memory involved in the page table walk that would translate va to its backing

physical location — with locations existentially quantified since a virtual points-to should not assert

which locations are accessed in a page table walk. Figure 4.1 gives such a definition. It asserts the

existence of four page table entries, one at each translation level, and via L4_L1_PointsTo asserts from

the current cr3 value, taking the offsets from va (as in Figure 3.1) to index each level, finding the

existentially quantified entries in each level, ending with the L1 entry, whose physical page base

is added to the page offset of va to obtain the physical address — and there (addr_L1(va,l1e)) in

physical memory, is the value. Most of the definition lives directly in vProp, using the separation

logic structure lifted from Iris’s iProp.

L4_L1_PointsTo works by chaining together the entries for each level, using the sequence of table

offsets from the address being translated to index each table level, and using the physical page

address embedded in each entry.2 For example, the first level address translation to get the L4 entry

(l4e) uses the masks l4M52 with the current cr3 to get the physical address of the start of the L4 table,

and l4off with the virtual address being translated to compute the correct offset within that table.
2The fractions q1 through q4 represent the fractional ownership of each entry based on how many word-aligned

addresses might need to share the entry.

Chapter 4: Program Logic 4.2 A Restrictive Virtual Memory Addressing

58

Then at that physical location is the appropriate entry in the L4 table l4e. Subsequent levels of the

page table walk work similarly. The statement of these assertions is simplified by the use of our split

physical points-to assertions, since each level of tables is page-sized.3 This helper definition is also a

more explicit vProp, explicitly binding a value for cr3 and using it to start the translation process.

This solution is in fact very close to that of Kolanski and Klein 97 , who define a separation logic from

scratch in Isabelle/HOL, where the semantics of all assertions are functions from pairs of heaps

and page table root values to booleans.4 Our solution removes some restrictions in this definition by

further abstracting the handling of address translation.

4.3 Aliasing/Sharing Physical Pages

The virtual points-to definition shown in Figure 4.1 is too strong to specify some operations a virtual

memory manager may need to do, such as move one level of the page table to a different physical

location while preserving all virtual-to-physical mappings.5 The use of L4_L1_PointsTo in Figure

4.1’s virtual points-to definition’ stores knowledge of the page table walk’s details with ownership

of the backing physical memory. Updating any of these mappings (e.g., moving the page tables in

physical memory, as in coallescing for superpages or hugepages) would require explicitly collecting

all virtual points-to facts that traverse affected entries. It is preferable to permit the page tables

themselves to be updated independently of the virtual points-to assertions, so long as those updates

preserve the same virtual-to-physical translations.

Intuitively, the definition in Figure 4.1 is too strong because the virtual points-to assertion there

tracks too much information: when writing programs that access memory via virtual addresses, most
3We do not address superpages and hugepages in this thesis.
4This was a typical explicit construction at the time; their work significantly predates Iris.
5x86-64 hardware, like other architectures, includes a feature (which we do not formalize assertions for) to replace

an L1 page table address in an L2 entry with a pointer to a larger 2MB page (called super-pages), or replace an L2
page table address in an L3 entry with a pointer to a 1GB page (called huge-pages).

va 7→v {q} val : vProp Σ △= ∃pa. ∃δ. (λcr3val. cr3val ↪→δs δ)︸ ︷︷ ︸
Find addr. space invariant

∗ va ↪→δ
q pa︸ ︷︷ ︸

Ghost translation

∗ pa 7→p {q} val︸ ︷︷ ︸
Physical location

Figure 4.1 Virtual-Pointsto for Sharing Pages

Chapter 4: Program Logic 4.3 Aliasing/Sharing Physical Pages

59

code does not care which physical memory locations are involved in address translation: it only cares

that virtual address translation would succeed. The necessary information about the physical page

table walk must still be tracked, but can be tracked separately from the virtual points-to assertion

itself. In practice the decisions about which virtual addresses are valid rest not with code posessing a

virtual address, but with the virtual memory manager — and its invariants.

We separate the physical page-table-walk from the virtual pointsto relation, replacing it with ghost

state that merely guarantees the address translation would succeed. Iris includes a ghost map

construction which we use to track mappings from virtual addresses to the physical addresses they

translate to. The implementation details in terms of named invariants and various resource algebras

are not important to our presentation, so we treat the maps abstractly. The map includes for each

key in the map (i.e., each virtual address) a token k ↪→γ v whose ownership is required to update

that key-value pair in the ghost map named γ. The existence of such a token implies that the actual

map θ tracked by a corresponding GhostMap(γ, θ) resource indeed maps k to v. These properties are

captured by the Iris rules:6

GhostMap(γ, θ) ∗ pa ↪→γ va⇛ GhostMap(γ, θ[pa 7→ va′]) ∗ pa ↪→γ va′

GhostMap(γ, θ) ∗ pa ↪→γ va −∗ ⌜θ(pa) = Some(va)⌝

Then the virtual memory manager’s invariant ensures that for each va ↪→γ pa mapping in this map,

there are physical resources sufficient to ensure that address translation for va will resolve in the

hardware to pa via — L4_L1_PointsTo. This allows modification of the page tables themselves as

long as the changes do not invalidate overall virtual-to-physical translation. Consistency follows from

replacing the page table walk with ownership of the ghost map token for the relevant ghost map

entry, preventing the overall translation from being changed separately from the virtual points-to.
6Iris ghost maps lack established notation in the literature, but the syntax we use captures the details of

iris.base_logic.lib.ghost_map.

Chapter 4: Program Logic 4.3 Aliasing/Sharing Physical Pages

60

IASpace(θ, m) △= ASpace_Lookup(θ, m)∗∗
(va,paddr)∈θ

∃ (l4e l3e l2e, l1e, paddr). L4_L1_PointsTo(va, l4e, l3e, l2e, l1e, paddr)

where ASpace_Lookup(θ, m) △= λ cr3val. ∃γ . ⌜m !! cr3val = Some γ⌝ ∗ AbsPTableWalk(δ, θ)

Figure 4.2 Global Address-Space Invariant with a fixed global map of address-space names m

For clarity we refer to the ghost map summarizing virtual-to-physical translations by

AbsPTableWalk(δ, θ) △= GhostMap(δ, θ)

(omitting δ for brevity when only one is in scope) and keep this in a per-address-space invariant

described shortly. We then replace the physical L4_L1_PointsTo in the virtual points-to definition

with ownership of the token va ↪→δ paddr, guaranteeing that ghost map contains an mapping from

the virtual address (va) to a physical address (pa), and thus that the per-address-space invariant

contains the physical resources that guarantee the hardware resolves the translation.

We place the authorative ownership of the ghost translation APTableWalk in a per-address-space

invariant IASpace (Figure 4.2). IASpace alone allows changes to the page tables that preserve overall

virtual-to-physical translations. When combined with the fragment stored in the virtual points-to

(Figure 4.1), changes in the virtual-to-physical translations become possible.

Because our logic is the first to address the existence of multiple address spaces, the ghost map of

virtual-to-physical translations (identified by the ghost name δ in Figure 4.1 for each address space)

must be locateable from a representation of the specific address space: the current root page table

pointer stored in cr3.

Figure 4.2 describes the resources for each address space. θ is the logical map from virtual addresses

to the physical addresses they should translate to, for the current address space, corresponding to the

currently installed page tables (the ones indicated by cr3). In Figure 4.1, the existentially-quantified δ

is the ghost name for this map (again, for the current address space). m is the (full) logical map from

the various page table roots to ghost names for the per-address-space mappings like θ. It is tracked

Chapter 4: Program Logic 4.3 Aliasing/Sharing Physical Pages

61

by a ghost map named by the ghost name δs in Figure 4.1; there is only one such map in the system.

IASpace(Θ, m) is then the resources for the current address space, ensuring that the current address

space is valid (has an entry in m whose corresponding authoritative map matches Θ), and asserting

ownership of the appropriate fractional ownership of the physical page table walk for each virtual-to-

physical translation in Θ (for the current address space).

4.3.1 From A Single Address Space to Many

In principle the resources from each individual address space should be collected into a single shared

invariant, and for each memory access, a fragment of this corresponding to IASpace(Θ, m) for the

current address space should be extracted from this global resource, used to prove correctness of the

memory access, and put back. In this thesis we focus on the middle section, explicity identifying

resources for each address space. The reason for this is that in practice, this global resource is also

the place where kernel-specific assumptions, such as guaranteeing that certain virtual address range

was mapped in all address spaces, would be enforced. This thesis focuses on the reasoning principles

behind the virtual memory access, and we leave the use of this within a larger kernel to future work.

We do, however, deal with the existence of multiple address spaces in examples (Section 5).

4.4 Address-Space Management

So far, we have introduced logical abstractions for a single address space, but VMMs handle more

than one address-space, and doing so requires a way to talk about other address spaces, and means

to switch address spaces.

[r](P) : vProp Σ △= λ_, P r Fact P △= ∀ , r r′. P r ⊣⊢ P r’ Fact [r](P) Fact (r 7→r {q} rv)

Fact (w 7→p {q} v) (P ⊢ Q) ⊢ ([r](P) ⊢ [r](Q)) [r](P ∗ Q) ⊣⊢ ([r](P) ∗ [r](Q)

[r](P ∧ Q) ⊣⊢ [r](P) ∧ [r](Q) [r](P ∨ Q) ⊣⊢ [r](P) ∨ [r](Q) Fact P ⊢ [r](P) ⊣⊢ (P)

Figure 4.3 Other-space Modality and Its Laws

Chapter 4: Program Logic 4.4 Address-Space Management

62

Figure 4.3 gives the definition of our modal operator for asserting the truth of an modal (address-

space-contingent) assertion in another address space, which we call the other-space modality. The

definition itself is not particularly surprising — as our modal assertions are semantic predicates

on a page table root (physical) address, the assertion [r](P) is a modal assertion that ignores the

(implicit) current page table root and evaluates the truth P as if r were the page table root. The

novelty here is not in the details of the definition but in recognizing that this is the right way to deal

with multiple address spaces, and working out how to support the interaction of multiple address

spaces (discussed in the next section).

We can prove that this modality follows certain basic laws: that its truth is independent of the

address space in which it is considered, it distributes over various logical connectives, and it follows

the rule of consequence. We call vProp assertions whose truth is independent of the current address

space Facts; these include other-space assertions, physical memory points-tos, and register assertions.

Facts can move in and out of other-space modalities freely.

4.4.1 Subtleties of Changing Address Spaces Using Modalities

Operating systems on x86-64 change address spaces by updating cr3. Conceptually, we expect a

proof rule for such an update to take move resources in and out of modalities for the old and new

address spaces. This suggests a rule like the following, which captures the intuition of the address

space change, but is subtly unsound under common assumptions.

Broken

{P ∗ cr3 7→r r1 ∗ r 7→r r2 ∗ [r2](Q)}mov %cr3, r{[r1](P) ∗ cr3 7→r r2 ∗ r 7→r r2 ∗ Q}

This rule takes all assertions not under a modality (P), and moves them under a modality for the old

address space (which is where they were valid), while pulling assertions for the new, target address

space out of a corresponding modality. (For clarity, we also omit the address space invariants, which

must also be present.) Unfortunately, as stated, this interacts quite poorly with the traditional frame

Chapter 4: Program Logic 4.4 Address-Space Management

63

rule. If we abbreviate the pre- and post-conditions above as Pre and Post:

{Pre}mov %cr3, r{Post}
Broken

{a 7→v x ∗ Pre}mov %cr3, r{a 7→v x ∗ Post}
Frame

Notice that both the precondition and postcondition assert that a 7→v x in the current address space,

but we have no basis for concluding that address translation is preserved by the change of address

space. So this derivation clearly leads to an unsound conclusion. The essential problem is that the

frame rule is motivated by local reasoning about local updates, but a switch of address space is a

global change that may invalidate information about virtual addresses. Thus framing around cr3

updates is unsound, which has important impacts on our formal development.

Switching to Hoare doubles resolves this problem because an underappreciated subtlety of Hoare

doubles is that typically there is no primitive frame rule. Instead, each verification essentially includes

a local frame that it passes to the next instructions (think continuation-passing style), giving each

overall rule a global (rather than local) precondition. For most rules, this is not that important, but

it does permit rules that have global effects on their preconditions.

This leads to our actual rule for cr3 updates, which is almost

ChangeAddressSpace
{[r1](P) ∗ cr3 7→r r2 ∗ r 7→r r2 ∗ Q} is

{P ∗ cr3 7→r r1 ∗ r 7→r r2 ∗ [r2](Q)} mov %cr3, r; is

(Again, the actual rule in Section 4.5 includes the address space invariants.) Because the precondition

on this rule is global, we avoid issues with framing. A more typical frame rule can be recovered

from Hoare doubles in the typical way31 with the added restriction that cr3 is restored to its pre-

framing value before un-framing (in this case, the framed-out assertion is effectively stashed under

an other-space assertion for the initial address space, and pulled out as part of restoring).

Chapter 4: Program Logic 4.4 Address-Space Management

64

4.5 Selected Logical Rules

Per the discussion in Section 4.4.1, we define our logic using Hoare doubles:7

{Φ}rtv e : iProp Σ := ((cr3 7→r rtv ∗ Φ) rtv) −∗ WP e {_, True}

Our Hoare doubles {Φ}rtv e state that the expression (i.e., sequence of instructions) e are safe to

execute (will not fault) when executed with vProp precondition Φ ∗ cr3 7→r rtv. WP is Iris’s own

weakest precondition modality, unmodified90. Making rtv an explicit parameter to the double rather

than simply using register assertions directly solves a technical problem by ensuring that the page

table root used to evaluate the vProp (i.e., evaluating the assertion in the current) address space is

feasible. 8

The rest of this section describes the specifications of some selected AMD64 instructions in our logic.

These rules and others (e.g., including accessing memory at an instruction-specified offset from a

register value, which is common in most ISAs) can be found in our artifact. Each rule in Figure 4.4,

is annotated with a root (i.e., cr3) address value (rtv), under which the resources mentioned in the

specification are valid. In general, we use metavariables rs and rd to specify source and destination

registers for each instruction and prefix various register value variables with rv. We sometimes use ra

to emphasize when a register is expected to hold an address used for memory access, though the figure

also uses typical assembler conventions of specifying memory access operands by bracketing the register

holding the memory address. Standard for Hoare doubles, there is a frame resource P in each rule

for passing resources not used by the first instruction in sequence through to subsequent instructions.

Our rules include tracking each instruction’s memory address to track rip updates, which is critical

for control transfer instructions (Figures 4.6 and 4.6). Our development also includes handling of the

rflags register updates from arithmetic instructions in Figure 4.7. Most rules are otherwise standard
7This omits some low-level Iris details (stuckness, observations) that play no meaningful role in our development.
8Consider the difficulty of selecting the correct page table root value from an arbitrary opaque Φ, which may even

existentially quantify the page table root. An alternative is to require Φ to have a syntactic form where we can directly
extract the value of cr3, but this makes using Iris Proof Mode (IPM) 101 with vProps difficult; IPM works for any type
matching the signature of an Iris bi, which includes vProps, but manually guiding IPM to put an assertion in a specific
position over and over adds significant proof burden.

Chapter 4: Program Logic 4.5 Selected Logical Rules

65

WriteToRegFromVirtMem{
P ∗ IASpace ∗ IASpace ∗ rip 7→r iv + MovLen(rd, [ra])∗
rd 7→r v ∗ ra 7→r {q} vaddr ∗ vaddr 7→v,rtv v

}
rtv

is

{P ∗ IASpace ∗ rip 7→r iv ∗ rd 7→r rvd ∗ ra 7→r {q} vaddr ∗ vaddr 7→v v}rtv mov rd, [ra]; is

WriteToVirtMemFromReg
{P ∗ IASpace ∗ rip 7→r iv + MovLen(rd, [ra]) ∗ rs 7→r {q}rvs ∗ ra 7→r {q} vaddr ∗ vaddr 7→v v}rtv is

{P ∗ IASpace ∗ rip 7→r iv ∗ rs 7→r {q}rvs ∗ ra 7→r {q} vaddr ∗ vaddr 7→v rvs}rtv mov [ra], rs; is

WriteToRegCtlFromRegModal
{[rtv](P ∗ IASpace) ∗ rip 7→r iv + 4 ∗ IASpace ∗ R ∗ rs 7→r {q} rvs}rvs is

{P ∗ IASpace ∗ rip 7→r iv ∗ [rvs](R ∗ IASpace) ∗ rs 7→r {q} rvs}rtv mov cr3, rs; is

Figure 4.4 Reasoning Rules for Selected AMD64 Instructions under

(e.g., mov between registers, etc.), with Figure 4.4 showing the rules most unique to our development.

4.5.1 Accessing Virtual Addresses

Figure 4.4 includes two rules for accessing memory at an address stored in a register ra. Ultimately,

any memory access needs to ensure the relevant address translation would succeed, which can be

ensured by what we informally call the page-table-walk points-to collection (L4_L1_PointsTo in

Figure 4.1). WriteToRegFromVirtMem and WriteToVirtMemFromReg each use a virtual-

pointsto assertion (vaddr 7→v v), and are nearly-standard (assembly) separation logic rules for memory

accesses. However, because we split the physical resources for the page table walk from the virtual

points-to itself (in order to permit the physical page tables to be freely modified as long as they

preserve virtual-to-physical translations), the rule requires IASpace for the current address space to

be carried through. The soundness proofs for these rules extract the token (va ↪→δ
q pa) from the virtual

points-to, use that to extract the physical page-table-traversal points-to collection describing the

page table walk for the relevant address (L4_L1_PointsTo) from the invariant (IASpace), prove that

the page table walk succeeds and memory or registers are updated appropriately, before re-packing

the invariant and virtual points-to resources.

Chapter 4: Program Logic 4.5 Selected Logical Rules

66

PushReg64{
Q ∗ IASpace ∗ rip 7→r iv + PushLen ∗ rsp 7→r maddr ∗ maddr-8 7→v rdv ∗ r 7→r rdv

}
rtv

is{
P ∗ IASpace ∗ rip 7→r iv ∗ rsp 7→r maddr-8 ∗ maddr-8 7→v mv ∗ r 7→r rdv

}
rtv

push r; is

PopReg64{
Q ∗ IASpace ∗ rip 7→r iv + PopLen ∗ rsp 7→r maddr+8 ∗ maddr 7→v mv ∗ r 7→r mv

}
rtv

is{
P ∗ IASpace ∗ rip 7→r iv ∗ rsp 7→r maddr ∗ maddr 7→v mv ∗ r 7→r rdv

}
rtv

pop r; is

Figure 4.5 Selected Reasoning Rules for Stack Pop and Push Instructions

4.5.2 Updating cr3

Unlike other rules, WriteToRegCtlFromRegModal updates the root address of the address-

space determining the validity of resources, from rtv before the mov to rvs afterwards. The global

effects of this rule are reflected in moving bare assertions under an other-space modality for rtv, and

moving the new address space’s assertions out of the corresponding modality.

4.5.3 Stack Operations: Push and Pop

In Figure 4.5, we give proof rules for the stack operations. The rest of the proof rules presented,

including the stack-related ones, are simply lifting of the register and memory mappings used for

reduction rules (in Section 3.4) into the ownership assertions (points-to assertion). For the operations

pushing and popping the stack, the rules presented enforce proper value changes in the register of

the stack pointer (rsp) and at the memory address kept in the register of the stack pointer (maddr

and maddr-8).

4.5.4 Control-Flow Operations: Call Return and Jump

Regarding the specification of the control flow instructions presented in Figure 4.6, the essential piece

is the predicate lifting of assurance of instructions mapped to the memory (CodeAt and CodeAtCond

in Section 3.5.6).

Predicate PHoldsAtTarget asserts not only the fact that the loaded instruction sequence iscall can be

Chapter 4: Program Logic 4.5 Selected Logical Rules

67

Call {
Q′ ∗ IASpace ∗ rip 7→r iv + CallLen ∗ rsp 7→r maddr ∗ r 7→r off

}
rtv

is{
P ∗ IASpace ∗ rip 7→r iv ∗ rsp 7→r maddr ∗ maddr-8 7→v mv ∗ r 7→r off
PHoldsAtTarget γ iscall is Q off iv maddr

}
rtv

call r; is

Return{
Q ∗ IASpace ∗ rip 7→r mv ∗ rsp 7→r maddr-8 ∗ maddr 7→v mv

}
rvs

is{
P n ∗ IASpace ∗ rip 7→r iv ∗ rsp 7→r maddr ∗ maddr 7→v mv
PCodeAt γ is mv maddr

}
rtv

ret is

JumpE{
P n ∗ IASpace ∗ rip 7→r iv ∗ ⌜flags_set_contains flaglist ZF = false⌝ ∗ fl rflags 7→r flg flagl’ ∗ ZF 7→f 0

}
rtv

is{
P ∗ IASpace ∗ rip 7→r iv ∗ fl rflags 7→r flg flagl ∗ ZF 7→f zv ∗ PCodeAtCond γ Pn ∗ off iv flagl

}
rtv

jmp off; is

Figure 4.6 Selected Reasoning Rules for Call, Return and Jump Instructions

loaded to be executed with the resources in Q

Q −∗ WP iscall

but also the assurance of the instructions after the return from the call: a part of the Q has to be

PCodeAt in Rule Return rule. These predicates, as expected in the operational semantics as well,

also connect the instruction sequences to the byte-stream encodings through virtual byte-points-to

assertions: ip 7→b es asserting the fact that the instruction address ip points-to the first byte of the

bytes stream es when ip is the value of current instruction pointer rip when the instruction sequence

is is loaded.

For handling the flags as the assertion level, we introduce flags-points-to assertions from the flag

identifiers to the value indicating whether they are set or not

ZF 7→f 0

4.5.5 Arithmetic & Bitwise Arithmetic Operations

Other than lifting the facts in operational semantics rules in Sections 3.5.4 and 3.5.3 to their

counterparts as logical points-to assertion, proof rules for arithmetic and bitwise instructions in

Chapter 4: Program Logic 4.5 Selected Logical Rules

68

Figure 4.7 do not exhibit any additional important aspect than what we discuss about them in

Sections 3.5.4 and 3.5.3.

Chapter 4: Program Logic 4.5 Selected Logical Rules

69

ShiftLeftImm8
{P ∗ rip 7→r iv + ShlLenRImm ∗ flg rflags 7→r flagl’ ∗ r 7→r {q} rv << imm }rtv is

{P ∗ rip 7→r iv ∗ flg rflags 7→r flagl ∗ r 7→r {q} rv}rtv shl r, imm; is

ShiftRightImm8
{P ∗ rip 7→r iv + ShlLenRImm ∗ flg rflags 7→r flagl’ ∗ r 7→r {q} rv >> imm }rtv is

{P ∗ rip 7→r iv ∗ flg rflags 7→r flagl ∗ r 7→r {q} rv}rtv shr r, imm; is

OrLeftImm32
{P ∗ rip 7→r iv + ShlLenRImm ∗ flg rflags 7→r flagl’ ∗ r 7→r {q} rv||imm }rtv is

{P ∗ rip 7→r iv ∗ flg rflags 7→r flagl ∗ r 7→r {q} rv}rtv or r, imm; is

AndLeftImm32
{P ∗ rip 7→r iv + ShlLenRImm ∗ flg rflags 7→r flagl’ ∗ r 7→r {q} rv&imm }rtv is

{P ∗ rip 7→r iv ∗ flg rflags 7→r flagl ∗ r 7→r {q} rv}rtv and r, imm; is

AndLeftReg64
{P ∗ rip 7→r iv + AndLenRR ∗ flg rflags 7→r flagl’ ∗ rsrc 7→r {q} src ∗ rdst 7→r dst& src}rtv is

{P ∗ rip 7→r iv ∗ flg rflags 7→r flagl ∗ rsrc 7→r {q} src ∗ rdst 7→r dst}rtv and rsrc, rdst; is

OrLeftReg64
{P ∗ rip 7→r iv + OrLenRR ∗ flg rflags 7→r flagl’ ∗ rsrc 7→r {q} src ∗ rdst 7→r dst|| src}rtv is

{P ∗ rip 7→r iv ∗ flg rflags 7→r flagl ∗ rsrc 7→r {q} src ∗ rdst 7→r dst}rtv or rsrc, rdst; is

AddReg64Imm32
{P ∗ rip 7→r iv ∗ rd 7→r w ∗ overflow(dst + imm) = (w, b) ∗ fl rflags 7→r flg flagl}rtv is

{P ∗ rip 7→r iv ∗ rdst 7→r dst ∗ fl rflags 7→r flg flagl}rtv add rd, imm; is

AddReg64Reg64
{P ∗ rip 7→r iv ∗ overflow(dst + src) = (w, b) ∗ rdst 7→r w ∗ rsrc 7→r {q}src ∗ fl rflags 7→r flg flagl}rtv is

{P ∗ rip 7→r iv ∗ rdst 7→r rvd ∗ rsrc 7→r {q}src ∗ fl rflags 7→r flg flagl}rtv add rdst, rsrc; is

SubReg64Imm32
{P ∗ rip 7→r iv ∗ rd 7→r w ∗ overflow(dst - imm) = (w, b) ∗ fl rflags 7→r flg flagl}rtv is

{P ∗ rip 7→r iv ∗ rdst 7→r dst ∗ fl rflags 7→r flg flagl}rtv sub rd, imm; is

SubReg64Reg64
{P ∗ rip 7→r iv ∗ overflow(dst - src) = (w, b) ∗ rdst 7→r w ∗ rsrc 7→r {q}src ∗ fl rflags 7→r flg flagl}rtv is

{P ∗ rip 7→r iv ∗ rdst 7→r rvd ∗ rsrc 7→r {q}src ∗ fl rflags 7→r flg flagl}rtv sub rdst, rsrc; is

CmpReg64Reg64{
P ∗ rip 7→r iv ∗ rdst 7→r dst ∗ rsrc 7→r {q}src ∗ fl rflags 7→r flg flagl’∗{

(⌜∃p, (dst - src)) = N.pos p⌝ ∗ ∗ZF 7→f 0) ∨ (⌜(dst - src) = 0⌝ ∗ ZF 7→f 1)
} }

rtv

is{
P ∗ rip 7→r iv ∗ rdst 7→r rvd ∗ rsrc 7→r {q}src ∗ fl rflags 7→r flg flagl ∗ ZF 7→f bzf)

}
rtv

cmp rdst, rsrc; is

Figure 4.7 Selected Reasoning Rules for Arithmetic & Bitwise Instructions

Chapter 4: Program Logic 4.5 Selected Logical Rules

70

4.6 Soundness

Our rules from Figures in Section 4.5 are proven sound in Iris against an assembly-level hardware

model implementing a fragment of x86-64 including 64-bit address translation with 4-level page

tables. Our rules for control transfers (jne, call, and ret) are currently axiomatized (with completely

standard specifications31,130) because Iris’s built-in machinery does not provide convenient ways to

discard the current continuation; adaptation of others’ approaches45 is ongoing work. Our soundness

proofs for all other instructions (including, critically, all memory accesses) are axiom-free.

Chapter 4: Program Logic 4.6 Soundness

71

CHAPTER 5

VERIFYING VMM ESSENTIALS

To both validate and demonstrate the value of the modal approach to reasoning about virtual memory

management, we study several distillations of real concerns of virtual memory managers. Recall from

Section 4 that virtual points-to assertions work just like regular points-to assertions, by design. In this

section we work through two critical and challenging aspects of virtual memory management. First,

in several stages, we work up to mapping a new page in the current address space. This requires a

number of challenging substeps: dynamically traversing a page table to find the appropriate L1 entry

to update; inserting additional levels of the page table if necessary (updating the VMM invariants

along the way); converting the physical addresses found in intermediate entries into the corresponding

virtual addresses that can be used for access; installing the new mapping; and collecting sufficient

resources to form a virtual points-to assertion. Of these, only the second-to-last step (installing the

correct mapping into the current address space) has previously been formally verified with respect to

a machine model with address translation. Second, we formally verify a switch into a new address

space as part of a task switch.

5.1 Traversing Live Page Tables

We build up to the main task of mapping a new page after traversing page tables in software. The

mapping operation of Figure 5.5 assumes an operation walkpgdir which must traverse the page tables

in order to locate the address of the L1 entry to update—possibly allocating tables for levels 3, 2,

and 1 in the process, installing them into levels 4, 3, and 2, along the way. Traversing the page tables

72

is itself challenging functionality to verify: loading the current table root from cr3 is straightforward

(a mov instruction), however, this produces the physical address of cr3, not the virtual address the

kernel code would use to access that memory. This problem repeats at each level of the page table:

assuming the code has somehow read the appropriate L4 (or L3, or L2) entry, those entries again

yield physical addresses, not virtual ones.

5.1.1 Loading Page-Table Address Value

We will discuss access to the level 4 table later (Section 5.1.5). But for subsequent levels, the base

address of level n must be fetched from the appropriate entry in the level n + 1 table. This is the role

of pte_get_next_table (Figures 5.1 and 5.3): it is passed the virtual address of the page table entry in

level n + 1, and should return the virtual address of the base of the level n table indicated by that

entry. If the entry is empty (i.e., this is a sparse part of the page table representation), the code also

allocates a page for the level n table, installs it in the level n + 1 entry, and establishes appropriate

invariants. Figure 5.1 presents the initial part of the function, which performs the allocation if

necessary. Figure 5.3 (discussed in Section 5.1.4) deals with the cases where no allocation is necessary

or the allocation has already been performed by the code in this figure.

Note that none of the verification for this function assumes specific page table levels — logical

parameter v represents the level of the entry passed as an argument, and this code is used for all

three level transitions when traversing page tables (4 to 3, 3 to 2, 2 to 1). This comes into play with a

subtlety of the specification of pte_get_next_table that we will revisit several times: pte_get_next_table

’s specification assumes it is given a virtual vpte-pointsto1 granting access to the specified entry, but

its postcondition does not yield new virtual points-to assertions! Instead it merely computes the

base address of the next table, and returns adequate capabilities (discussed in Section 5.1.2) for the

caller to construct a vpte-pointsto for the next table level (if this is not an L1 entry — the caller

knows which level of the table this is for).
1A vpte-pointsto va 7→vpte,qfrac pa v is a virtual points-to granting access to virtual address va, which is known to

hold v, but additionally exposing the physical address pa that the virtual address translates to. This is commonly
used, as the name suggests, when updating PTEs, where we require assurance that we are accessing the intended PTE.
Its definition is just like the regular virtual points-to in Figure 4.1, except taking the physical address as a parameter
rather than existentially quantifying it.

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

73

Within get_next_table, after a standard function prologue, the code loads the entry entry pointed to

by the argument. This is a page table entry: a 64-bit word divided into bit-fields for the physical

address of the next table, and control bits like the valid bit, as discussed in Section 3.1.

Lines 19–21 check if the entry’s “present” bit is set. If it is zero, a new page must be allocated for

the next level of the table — which is done by the fall-through from Line 22’s conditional jump.

Otherwise the code jumps ahead to the case for the next level already existing, which is discussed in

Section 5.1.4 and Figure 5.3. First, we must discuss another refinement of the address space invariant,

establishing enough structure on the page tables themselves to allow the traversal. The code for

allocating a new level of the page table must establish this extended invariant.

5.1.2 Identity Mappings

It is typical for kernels to need to convert between physical and virtual addresses, in both directions.

Traversing the page tables in software is the simplest way to convert a virtual address to a physical

address; this is the context we are working up to. However, implementing this virtual-to-physical

(V2P) translation in this way ironically requires physical-to-virtual (P2V) translation, because the

addresses stored in page table entries are physical, but memory accesses issued by the OS code use

virtual addresses. There is no universal way to convert physical addresses to virtual — doing so relies

on the kernel maintaining careful invariants or additional data structures to enable P2V translation.

In practice, VMM operations are performance-critical for many workloads, so most kernels opt

for using invariants to make P2V conversion very fast, rather than maintaining yet another data

structure. Most kernels maintain an invariant on their page tables that the virtual address of any

page used for a page table lives at a virtual address whose value is a constant offset from the physical

address — a practice sometimes referred to as identity mapping (even though the physical-to-virtual

translation is typically not literally the identity function, but adding a non-zero constant offset).2

For this reason we extend the per-address-space invariant as in Figure 5.1, to also track which
2Some kernels do this for all physical memory on the machine, simplifying interaction with DMA devices. On

newer platforms like RISC-V, this sometimes truly is an identity mapping — x86-64 machines are forced into offsets by
backwards compatibility with bootloaders that cannot access the full memory space of the machine.

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

74

1 ;;pte_t ∗pte_get_next_table(pte_t ∗entry) {
2 ... ;; setting up the stack
3 ;; pte_t ∗next;
4
{

P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ rbp-16 7→v next ∗ r8 7→r _ ∗ rdi 7→r _ ∗ rtv ↪→δs δ
}

rtv

5
{

entry+KERNBASE 7→vpte,qfrac entry entry_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present entry_val)⌝
}

rtv

6
{
⌜entry_present(entry_val)⌝ −∗ ∀i∈0..511 table_root(entry_val.pfn) + i * 8 ↪→id v-1

}
rtv

7 mov −0x8[rbp],rdi
8
{

P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ r8 7→r _ ∗ rbp-16 7→v next ∗ rdi 7→r entry ∗ rtv ↪→δs δ
}

rtv

9
{

entry+KERNBASE 7→vpte,qfrac entry entry_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present entry_val)⌝
}

rtv

10
{
⌜entry_present(entry_val)⌝ −∗ ∀i∈0..511 table_root(entry_val.pfn) + i * 8 ↪→id v-1

}
rtv

11 mov rdi, r8
12
{

P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ r8 7→r entry ∗ rbp-16 7→v next ∗ rdi 7→r entry ∗ rtv ↪→δs δ
}

rtv

13
{

entry+KERNBASE 7→vpte,qfrac entry entry_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present entry_val)⌝
}

rtv

14
{
⌜entry_present(entry_val)⌝ −∗ ∀i∈0..511 table_root(entry_val.pfn) + i * 8 ↪→id v-1

}
rtv

15 mov [r8],rdi
16
{

P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ r8 7→r entry ∗ rbp-16 7→v next ∗ rdi 7→r entry_val ∗ rtv ↪→δs δ
}

rtv

17
{

entry+KERNBASE 7→vpte,qfrac entry entry_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present entry_val)⌝
}

rtv

18
{
⌜entry_present(entry_val)⌝ −∗ ∀i∈0..511 table_root(entry_val.pfn) + i * 8 ↪→id v-1

}
rtv

19 and 0x1,rdi
20 mov rdi,rax
21 cmp 0x0,rax ;; if (!entry−>present) {
22 jne 161 <pte_get_next_table+0xa1> ;; Jump if the present bit is not zero
23 {P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ r8 7→r entry ∗ rbp-16 7→v next ∗ rdi 7→r entry_val & 0x1}rtv
24
{

entry 7→id v ∗ rtv ↪→δs δ ∗ rax 7→r entry_val & 0x1 ∗ ⌜entry_val & 0x1 = 0x0⌝
}

rtv

25
{

entry+KERNBASE 7→vpte,qfrac entry entry_val ∗ ⌜qfrac = 1 ↔ ¬(entry_val & 0x1 = 0x1)⌝
}

rtv
26 mov rbp,rdi
27 sub 0x10, rdi ;; Store the value of rbp minus 16 bytes (address of next) into rdi
28 {P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ r8 7→r entry ∗ rbp-16 7→v next ∗ rdi 7→r rbp - 16}rtv
29
{

entry 7→id v ∗ rtv ↪→δs δ
}

rtv

30
{

entry+KERNBASE 7→vpte,qfrac entry entry_val ∗ ⌜qfrac = 1 ∧ ¬(entry_present entry_val)⌝
}

rtv
31 callq 70 <pte_initialize> ;;pte_initialize(entry);
32 {P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ r8 7→r entry}rtv
33
{

entry 7→id v ∗ rtv ↪→δs δ
}

rtv

34
{

entry+KERNBASE 7→vpte,qfrac entry entry_val ∗ ⌜qfrac = 1 ∧ ¬(entry_present entry_val)⌝
}

rtv
35 {⌜qfrac = 1 ∧ ¬(entry_present (pfn_set (entry_val nextpaddr))⌝}rtv
36 {rbp-16 7→v pfn_set(entry_val nextpaddr)}rtv

37

{
entry_present (pte_initialized (pfn_set(entryv nextpaddr))) −∗

∀i∈0 ... 511. ((table_root (pte_initialized (pfn_set(entry_val nextpaddr)))) + i * 8) ↪→id v-1

}
38 ... ;;entry value updates: entry−>pfn = nextpaddr; entry−>present = 1;
39 ... ;;now we know that entry is initialized, so we satisfy the condition to access children list
40 {P ∗ IASpaceid(θ, Ξ \ {entry}, m) ∗ rbp-8 7→v entry ∗ r8 7→r entry}rtv
41
{

entry 7→id v ∗ rtv ↪→δs δ
}

rtv

42
{

entry+KERNBASE 7→vpte,qfrac pte_initialized(pfn_set(entryv nextpaddr)) ∗ ⌜qfrac = 1 ∧ ¬(entry_present entry_val)⌝
}

rtv

43

{
rbp-16 7→v pte_initialized(pfn_set(entry_val nextpaddr))∗
rax 7→r table_root (pte_initialized (pfn_set(entry_val nextpaddr)))

}
rtv

44
{

∀i∈0 ... 511. ((table_root (pte_initialized (pfn_set(entry_val nextpaddr)))) + i * 8) ↪→id v-1
}

45 ;;}
46 ... ;; Code after conditional continued in Figure 5.3

Listing 5.1 Ensuring entry points to a valid next table, allocating if necessary.

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

75

IASpaceid(θ, Ξ, m) △= ASpace_Lookupid(θ, Ξ, m) ∗ GhostMap(id, Ξ)∗(
∗

(va,paddr)∈θ

∃ (l4e, l3e, l2e, l1e, paddr). L4_L1_PointsTo(va, l4e, l3e, l2e, l1e, paddr)

)
∗

∗
(pa,level)∈Ξ

∃ (qfrac, q, val,va). ⌜va = pa + KERNBASE level > 1⌝ ∗ va ↪→δ
q pa︸ ︷︷ ︸

Ghost translation

∗ pa 7→p {qfrac} val︸ ︷︷ ︸
Physical location

∗

⌜qfrac = 1 ↔ ¬entry_present (val)⌝︸ ︷︷ ︸
Entry validity

∗
(
⌜present_L(val, level)⌝ −∗ ∀i∈0..511. ((entry_page val) + i * 8) ↪→id level-1

)︸ ︷︷ ︸
Indexing into next level of tables

where
ASpace_Lookupid(θ, Ξ, m) △= λ cr3val. ∃γ . ⌜m !! cr3val = Some γ⌝ ∗ AbsPTableWalk(δ, θ) ∗ APVMappings(δ, Ξ)
present_L(val, level) △= entry_present(val) ∧ level > 0

Figure 5.1 Global Address-Space Invariant in Figure 4.2 extended with a ghost map bookkeeping
identity mappings

addresses we can perform a P2V conversion on by a adding a constant offset. Ξ is another ghost map,

from physical addresses to the level of the page table they represent (1–4). Only physical addresses in

Ξ can undergo P2V conversion. We describe proof of such a conversion in Section 5.1.4, but describe

the invariant here because installing a new level 3/2/1 table requires maintaining that invariant.

For each pa 7→ v ∈ Ξ, the invariant tracks a virtual points-to justifying that virtual address

pa + KERNBASE maps to physical address pa (the “Ghost translation” in Figure 5.1); fractional

ownership of the physical memory for that page table entry; and for valid entries (with the present

bit set) above L1, ghost map tokens for every entry in the table pointed to by the entry, which can be

used to repeat the process one level down. i (L1 entries point to data pages, whose physical memory

ownership resides in some virtual points-to). The assertion on Line 6 originates from the invariant

one level up, and if this code determines the valid bit is set, it can return those child tokens without

the conditional guard.

The fractional ownership of the entry’s physical memory is subtle. Recall that L4_L1_PointsTo

retains some physical ownership of each page table entry that is traversed (proportional to how

many virtual addresses share the entry). So in general the invariant cannot keep full permission

to the memory in this part of the invariant, or it would overlap the page table walk for virtual

points-to assertions. But in the case where the entry is invalid, we may need to write to it (e.g.,

to install a reference to a next-level table, as we do in Figure 5.1), which requires full permission.

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

76

Fortunately, the entry can only be in use if its valid bit is set; if the valid bit is not set we know that

no virtual points-to assertions in δ/θ have any partial ownership. Thus we use the invariant portion

annotated as “Entry validity” in Figure 5.1 to capture this: if the entry is invalid the invariant holds

full ownership of the entry, so it can be updated; while if the entry is valid, the invariant owns only a

constant non-zero fragment sufficient to read the entry, but not modify it (which would invalidate

some virtual points-to assertions):

⌜qfrac = 1 ↔ ¬entry_present (val)⌝ (*)

Thus the fractional ownership of the physical location is enough for Line 15 in Figure 5.1 to access

the entry, though in get_next_table the caller has pulled that piece of information out of the invariant

and passed it for the entry at hand. This removal appears explicitly in assertions, as the argument

to the invariant is Ξ \ {entry} (indexing by the set Ξ allows us to borrow the physical resources for

a specific page table entry out of the invariant, and later put them back). Line 22’s conditional then

determines in the fall-through case that the bit is not set, which together with other facts entails

qfrac = 1 at Line 30, and permits storing a new entry (in ellided code around Line 38)

This seemingly-simple piece of code has a highly non-trivial correctness argument, which depends

critically on detailed invariants on how access to page table entries is shared between parts of the

kernel. No prior work has engaged with this problem.

5.1.3 Installing a New Table

After obtaining the identity mapping for entry, we are able to load the entry_val into rdi, and check

the presence bit through Lines 19–21 in Figure 5.1. Accessing the presence bit and checking the

value allows us to exploit the side condition (*) when verifying the allocation path for when the

entry is invalid (Lines 26–44 in Figure 5.1). This operation is subtle: the operation requires that the

relevant table entry is readable, but the exact portion of ownership returned must be determined

by inspecting the valid bit of the value in memory — so full ownership is returned only for unused

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

77

1 {P ∗ IASpaceid(θ, Ξ, m) ∗ rbp-16 7→r _ ∗ rdi 7→r entry+KERNBASE}rtv
2 {rax 7→r _ ∗ ¬(entry_present entry_val}rtv
3
{

entry+KERNBASE 7→vpte,1 entry entryv ∗ (entry) ↪→id level
}

4 ;;void pte_initialize(pte_t ∗entry) {
5 ... ;;set up the stack
6 ;;allocate a full zeroed page for 512 8−byte entries
7 callq 81 <kalloc> ;;pte_t ∗local = kalloc();
8 mov rax,−0x10[rbp] ;; Store into 'local'
9 ;;entry−>pfn = PTE_ADDR_TO_PFN((uintptr_t) local);

10 mov −0x10[rbp],rax
11 mov −0x8[rbp],rdi
12 mov rax,[rdi]
13 {P ∗ IASpaceid(θ, Ξ, m) ∗ rbp-16 7→r _ ∗ rdi 7→r entry+KERNBASE}rtv
14
{

entry+KERNBASE 7→vpte, entry entryv ∗ (entry) ↪→id level
}

15 {rax 7→r nextpaddr ∗ ¬(entry_present entry_val)}
16 {entry+KERNBASE 7→vpte,1 entry pfn_set(entryv nextpaddr)}

17

{
rtv ↪→δs δ ∗ ⌜entry_present (pte_initialize(pfn_set(entry_val nextpaddr)),level)⌝ −∗

∀i∈0..511 table_root (pte_initialized (pfn_set (entry_val nextpaddr))) + i * 8 7→id level-1

}
rtv

18 ... ;;clean up the stack, return

Listing 5.2 Allocating a physical page

entries. When the bit is not set, that entails full ownership of the entry’s memory (qfrac = 1) and

justifies writing to that memory. Otherwise, the code jumps past the end of this listing, to the

following code at the top of Figure 5.3 (which is also the continuation of this code).

If the entry is not set, pte_initialize is called (Line 31 in Figure 5.1) for a physical page (utilizing the

page-allocator’s kalloc – currently the only axiomatized call in the the proof of pte_initialize (Line 7

in Figure 5.2).

Since we are using pte_initialize for page-table address allocation, we must relate this newly allocated

physical address to the identity mapping map Ξ — see Line 37 in Figure 5.1, where kalloc’s

specification guarantees it has returned memory from a designated memory pool that is already

mapped3 and satisfies the offset invariants. The soundness argument of this specification relies on

the fact that these freshly allocated resources are part of an entry construction that has not been

completed yet: the presence bit is set (Line 38 in Figure 5.1) after these freshly allocated resources

are incorporated to the entry construction via the page-frame portion of the PTE. In other words,
3A reasonable reader might wonder where this pool initially comes from, and how it might grow when needed.

Typically an initial mapping subject to this identity mapping constraint is set up prior to transition to 64-bit kernel
code (notably, a page table must exist before virtual memory is enabled during boot, as part of enabling it is setting a
page table root). Growing this pool later requires cooperation of physical memory range allocation and virtual memory
range allocation, typically by starting general virtual address allocation at the highest physical memory address plus
the identity mapping offset. This reserves the virtual addresses corresponding to all physical addresses plus the offset
for later use in this pool, as needed.

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

78

1 ... ;; Continued from Figure 5.1; assertions below specialized to non−allocating path for clarity
2 {P ∗ IASpaceid(θ, Ξ \ {entry}), m) ∗ rbp-8 7→v entry ∗ rcx 7→r _}rtv
3
{

entry 7→id _ ∗ rtv ↪→δs δ
}

rtv

4
{

entry+KERNBASE 7→vpte,qfrac (pte_initialized (entry_val.pfn))⌝
}

rtv
5 {rbp-16 7→v (pte_initialized (entry_val.pfn))) ∗ rax 7→r table_root (pte_initialize(entry_val.pfn))}rtv
6
{

∀i∈0 ... 511. ((table_root (pte_initialized (entry_val.pfn)))) + i * 8) ↪→id v-1
}

7 ;;uintptr_t next_virt_addr = (uintptr_t) P2V(entry.pfn«12);
8 movabs KERNBASE,rcx
9 add rcx,rax

10 {P ∗ IASpaceid(θ, Ξ \ {entry}), m) ∗ rbp-8 7→v entry ∗ rcx 7→r KERNBASE}rtv
11
{

entry 7→id _ ∗ rtv ↪→δs δ
}

rtv

12
{

entry+KERNBASE 7→vpte,qfrac (pte_initialized (entry_val.pfn))⌝
}

rtv
13 {rbp-16 7→v (pte_initialized (entry_val.pfn))) ∗ rax 7→r table_root (pte_initialize(entry_val.pfn)) + KERNBASE}rtv
14
{

∀i∈0 ... 511. ((table_root (pte_initialized (entry_val.pfn)))) + i * 8) ↪→id v-1
}

15 ...
16 ;;next = (pte_t ∗) next_virt_addr;
17 ;;clean up the stack and return next

Listing 5.3 Converting a physical address of a PTE to a virtual address (w/o instruction pointer or
flag updates).

the side condition, (*), formalizes that any access to the entry with these resources as invalid, until

the entry is revealed to shared accesses when the presence bit is set.

5.1.4 Physical-to-Virtual Conversion with P2V

Once we reach to the certain knowledge of having an entry with a frame referencing to an allocated

resource resides inside the identity mappings (which can already be known if the branch at Line 22 is

taken, or ensured by allocating and installing a new entry as just discussed for Lines 22–45), we can

utilize this knowledge to convert this frame address into an virtual address of the next page table

through, again, identity mappings – Line 57 in Figure 5.1 specified in Figure 5.3.

This actually constitutes a very critical piece of the full page table walk verification, and we have

verified the critical step for a small x86-64 kernel, which is the physical-to-virtual conversion (often

appearing as a macro P2V in C source code). In our small kernel (Line 7 in Figure 5.3), as in larger

kernels, P2V is actually just addition by the constant offset mentioned in Section 5.1.2, but the

correctness of this simple instruction is quite subtle and relies on the extended invariant (Figure 5.1)

explained in that section.

Figure 5.3 shows the verification of the end of pte_get_next_table specialized to the case where where

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

79

no allocation was necessary (i.e., the conditional on Line 21 of Figure 5.1 was taken). In this case,

the present bit being set grants access to the child tokens from Line 6 of Figure 5.1, which is then

refined to the assertion on Line 6 of Figure 5.3. The code loads rcx with the offset value KERNBASE,

which gives us the value of the virtual address (entrypfn +KERNBASE) of the base of the next level of

the page table. While we could now convert this address to a virtual points-to, this is not necessarily

the correct thing to do. The caller walkpgdir (discussed next) uses pte_get_next_table to retrieve just

the base address, because only the caller knows which entry in the subsequent table will be accessed

(it depends on the corresponding bits from the virtual address being translated). So instead we pass

back the per-address-space invariant with the identity mapping resources for entry pulled out. It is

up to the caller to determine which entry in that table must actually be accessed — by selecting the

appropriate index into the 512 ghost map tokens returned in the postcondition, and using the ghost

translation and physical location portions of the invariant to assemble a vpte-pointsto.

5.1.5 Walking Page-Table Tree: Calling pte_get_next_table for Each Level

Realizing a software page-table walk amounts to calling pte_get_next_table for each level as shown

in Figure 5.4. The special part of the specficication for a page table walk can be considered as

accumulation of memory mappings for the page-table entries visited and frame addresses for page-

tables. For example, Lines 29 and 30 in Figure 5.4 show the virtual pte-pointsto assertions for L4

and L3 entries. In the final post-condition, we expect the accumulation of these resources from each

level – Rwalk – which allows us to construct and return the path to the L1 entry in the tree to insert

a new page.

This code performs most actual physical-to-virtual conversions using the identity mapping portion

of the per-address-space invariant. walkpgdir accepts a virtual pointer to the base of the L4 table,

and the address to translate. The precondition provides knowledge that the virtual base of the

L4 is at the appropriate offset from the current cr3 value, but does not provide a virtual points-to

assertion because the function must calculate (Lines 5–11) which entry it needs access to. Instead

the precondition has 512 identity map tokens, guaranteeing that every entry on the page is subject to

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

80

1 ;;pte_t ∗walkpgdir(pte_t ∗pml4, const void ∗va) {
2 ... ;; Stack setup
3
{

P ∗ ⌜rtv+KERNBASE = pml4⌝ ∗ ∀i∈0..511(rtv + i ∗ 8) ↪→id 4 ∗ IASpaceid(θ, Ξ, m) ∗ rtv ↪→δs δ
}

rtv
4 ;;set up the stack for root address and virtual address
5 ;;pte_t ∗pml4_entry = &pml4[PML4EX(va)]; // Virtual address of L4 entry
6 mov −0x8[rbp],rsi
7 mov −0x10[rbp],rdi
8 shr 0x27,rdi ;; Shift L4 index to lowest bits
9 and 0x1ff,rdi ;; Mask to just lower 9 bits (0x1ff=511)

10 shl 0x3,rdi ;; Multiply by 8
11 add rdi,rsi ;; Add to pml4 (virtual) table base
12 mov rsi,−0x18[rbp] ;; Store to local variable pml4_entry; logical pml4_entry is physical, program variable is virtual
13
{

P ∗ IASpaceid(θ, Ξ \ {pml4_entry}, m) ∗ ∀i∈0..511\{PML4EX(va)}(rtv + i ∗ 8) ↪→id 4 ∗ rtv ↪→δs δ
}

rtv

14
{

entry_present(l4e_val) −∗ ∀i∈0..511 table_root(l4e_val)+ i * 8 ↪→id 3
}

rtv

15
{

pml4_entry+KERNBASE 7→vpte,qfrac pml4_entry l4e_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present l4e_val)⌝
}

rtv
16 ;;pte_t ∗pdp = pte_get_next_table(pml4_entry);
17 mov −0x18[rbp],rdi
18 ...
19 callq c0 <pte_get_next_table>
20 ;;save the physical next table address in rax
21
{

P ∗ IASpaceid(θ, Ξ \ {pml4_entry}, m) ∗ rtv ↪→δs δ
}

rtv

22
{

∀i∈0..511table_root(l4e_val’.pfn) + i * 8 ↪→id 3 ∗ ⌜pdp-KERNBASE = table_root(l4e_val’.pfn)⌝
}

23
{

pml4_entry+KERNBASE 7→vpte,qfrac pml4_entry l4e_val’ ∗ ⌜qfrac = 1 ↔ ¬(entry_present l4e_val)⌝
}

rtv
24 {rax 7→r table_root(l4e_val’.pfn)}rtv ;; pte_get_next_table may have allocated a new page, updating entry
25 ;;pte_t ∗pdp_entry = &pdp[PDPEX(va)]; // Virtual address of L3 entry
26 {⌜pdp + PDPEX(va)*8 = pdp_entry ∧ table_root(l4e_val’.pfn) = pdp⌝}rtv
27
{

P ∗ IASpaceid(θ, Ξ \ {pml4_entry, pdp_entry}, m) ∗ rtv ↪→δs δ
}

rtv

28
{

∀i∈0..511\{PDPEX(va)} table_root(pml4_entrypfn) + i * 8 7→id 3
}

rtv

29
{

pml4_entry+KERNBASE 7→vpte,qfrac4 pml4_entry l4e_val’ ∗ ⌜qfrac4 = 1 ↔ ¬(entry_present l4e_val’)⌝
}

rtv

30
{

pdp_entry+KERNBASE 7→vpte,qfrac3 pdp_entry l3e_val ∗ ⌜qfrac3 = 1 ↔ ¬(entry_present l3e_val)⌝
}

rtv

31
{

entry_present(l3e_val) −∗ ∀i∈0..511 table_root(pdp_entry.pfn) + i * 8 ↪→id 2
}

rtv
32 ;;pte_t ∗pd = pte_get_next_table(pdp_entry);
33 ... ;; Similar assembly to reach next level
34 ;;pte_t ∗pd_entry = &pd[PDEX(va)]; // Virtual address of L2 entry
35 ;;pte_t ∗pt = pte_get_next_table(pd_entry);
36 {Rwalk}rtv
37 ;;access and return L1 entry
38 ;;return &pt[PTEX(va)]; // Virtual address of L1 entry
39 ...
40 ;; clean up the stack

Listing 5.4 Walking page-table directory via calls to pte_get_next_table in Listing 5.1

Chapter 5: Verifying VMM Essentials 5.1 Traversing Live Page Tables

81

the identity mapping invariant. Line 11 calculates the virtual address of the relevant entry, and the

subsequent view shift pulls that entry out of the identity mapping (Ξ) and fetches its corresponding

resources as described by Figure 5.1 and Section 5.1.2. The ghost translation and physical location are

used to form the virtual pte-pointsto for the L4 entry (Line 23), with the entry validity and next-level

indexing satisfying the rest of the precondition for pte_get_next_table. pte_get_next_table then, as

described earlier, checks the valid bit in the indicated entry and either returns the (unconditional)

tokens for the L3 entry physical addresses (if valid), or allocates into the entry and returns new (also

unconditional) tokens for the L3 entry physical addresses. pte_get_next_table’s first call (Line 19)

returns the virtual address of the base of the L3 table (a page directory pointer, so PDP, in official

x86-64 terminology). Then the situation to move from that pointer to the base of the L2 is just

like the process just followed: the proof calculates the address of the relevant L3 entry, uses the

appropriate L3 identity mapping token to construct a virtual pte-pointsto to that entry, and passes

that along with additional resources pulled out of the invariant to another call to pte_get_next_table.

That call then returns the base of an L2 table, and the process repeats until the function returns the

virtual address of the relevant L1 entry. That will then be used in the next section by the caller of

walkpgdir to install a new mapping.

5.2 Mapping a New Page

One of the key tasks of a page fault handler in a general-purpose OS kernel is to map new pages into

an address space by writing into an existing page table via a call

vaspace_mappage(pte_t *pml4, void *va,uintptr_t fpaddr)

in Listing 5.5. To do so, with a given allocated fresh page (fpaddr), then we need to locate the

appropriate location for the page insertion. We call for a page table walk (via walkpgdir Lines 16-36

Listing 5.4), and update the appropriate L1 page table entry (Line 10 in Listing 5.5).

In Figure 5.5, we see an address (va) currently not mapped to a page (θ !! va = None). Mapping a

Chapter 5: Verifying VMM Essentials 5.2 Mapping a New Page

82

1 ;;complstatus_t vaspace_mappage(pte_t ∗pml4, void ∗va,uintptr_t fpaddr) {
2 ... ;;setting up the stack
3
{

P ∗ pml4 7→id _ ∗ IASpaceid(θ, Ξ, m) ∗ rtv ↪→δs δ ∗ ⌜θ !! va = None⌝
}

rtv
4 ;; pte_t ∗pte = walkpgdir(pml4, fpaddr);

5





pdp + PDPEX(va) = pdp_entry ∧ table_root(pml4_entrypfn) = pdp
pd + PDEX(va) = pd_entry ∧ table_root(pml3_entrypfn) = pd
pt + PDPEX(va) = pt_entry ∧ table_root(pml2_entrypfn) = pt
P ∗ IASpaceid(θ, Ξ \ {pml4_entry, pdp_entry, pd_entry, pt_entry}, m)
rtv ↪→δs δ
(pml4_entry) ↪→id 4 ∗ (plm3_entry) ↪→id 3 ∗ (plm2_entry) ↪→id 2
∀i∈0..511 table_root(pml4_entrypfn) + i * 8 7→id 3
∀i∈0..511 table_root(pdp_entrypfn) + i * 8 7→id 2
∀i∈0..511 table_root(pd_entrypfn) + i * 8 7→id 1
pml4_entry+KERNBASE 7→vpte,qfrac l4e_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present l4e_val)⌝
pdp_entry+KERNBASE 7→vpte,qfrac l3e_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present l3e_val)⌝
pd_entry+KERNBASE 7→vpte,qfrac l2e_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present l2e_val)⌝
pt_entry+KERNBASE 7→vpte,qfrac l1e_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present l1e_val)⌝


= Rwalk_acc


6 ;;if(pte−>present != 0) {
7 ...
8 ... ;; Copy user access bit, writethrough, etc. (not part of our semantics) into pte from perm
9
{(

Rwalk_acc_rest ∗ pt_entry+KERNBASE 7→vpte,qfrac l1e_val ∗ ⌜qfrac = 1⌝
)

= Rwalk_acc
}

10 ;;pte−>pfn = PTE_ADDR_TO_PFN(fpaddr);
11
{(

Rwalk_acc_rest ∗ pt_entry+KERNBASE 7→vpte,qfrac fpaddr ∗ ⌜qfrac = 1⌝
)}

12

13
{

pt_entrypfn 7→p addr_to_pfn(fpaddr) ∗ Rwalk_acc
}

rtv ⇛ {va 7→v,q pa ∗ P}
14 ...
15 ;;}
16

17

{ (
pt_entry+KERNBASE 7→vpte,qfrac l1e_val ∗ ⌜qfrac = 1 ↔ ¬(entry_present l1e_val)⌝

)
∨({

pt_entry+KERNBASE 7→vpte,qfrac fpaddr ∗ ⌜qfrac = 1⌝
}) }

18 ... ;; either mapped or not
19 ;;}

Listing 5.5 Specification and proof of code for mapping a new page with Rwalk_acc in Figure 5.4
expanded.

Chapter 5: Verifying VMM Essentials 5.2 Mapping a New Page

83

fresh phyiscal page to back the desired virtual page first requires ensuring the existence of a memory

location for an appropriate L1 table entry. The code uses a helper function walkpgdir (discussed

again in Section 5.1). walkpgdir’s postcondition contains virtual PTE pointsto assertions (7→vpte)

both for ensuring partial page table walk reaching the L1 entry (pt_entry in Listing 5.5) with the

justification of higher levels of the page table exist, and for allowing access to the memory of the L1

entry via virtual address.

The crucial and the only step in addition to traversing the page table in Figure 5.4 is actually

updating the L1 entry (Line 11 in Figure 5.5), via the virtual address (pt_entry+KERNBASE)

known to translate to the appropriate physical address, in our example the L1 table entry address

(addr_to_pfn(pa)).

At this point in the proof, i.e. after the traversal to obtain the sound physical path resources (Rwalk_acc

Line 36 in Listing 5.4), which contains virtual PTE points-to relations along the path to the ownership

of the L1 table entry’s backing physical memory, whose full ownership is obtained, as we do for the

allocation of the missing table entry along the path in Listing 5.4, via exploiting the knowledge of

entry-existence as shown in Line 6 Listing 5.5. If there is no entry then we can insert the allocated page

(addressed with fpadr in Listing 5.5) by updating the L1 entry to point to the fresh page. Once we insert

the fresh page, the whole path reaching the fresh page is complete, and, without violating soundness,

we can pull together the physical page-table entry assertions (reside in Rwalk_acc) that are needed

for the invariant and construct the virtual points-to assertion for the virtual address (va 7→v,q pa)

Unlike the only prior work verifying analogous code for mapping a new page97,98, our proof above

does not need to reason directly over the operational semantics, making this the first verification

we know of for mapping a virtual memory page that stays entirely at the program logic level.

5.2.1 Unmapping a Page

The reverse operation, unmapping a designated page that is currently mapped, would essentially

be the reverse of the reasoning around line 22 above: given the virtual points-to assertions for all

Chapter 5: Verifying VMM Essentials 5.2 Mapping a New Page

84

512 machine words of memory that the L1 entry would map, and information about the physical

location, full permission on the L1 entry could be obtained, allowing the construction of a full virtual

PTE pointer for it, setting to 0, and reclaiming the now-unmapped physical memory.

5.3 Change of Address Space

A critical piece of trusted code in current verified OS kernels is the assembly code to change the

current address space; current verified OS kernels currently lack effective ways to specify and reason

about this low-level operation, for reasons outlined in Section 2.

Figure 5.6 gives simplified code for a basic task switch, the heart of an OS scheduler implementation.

This is code that saves the context (registers and stack) of the running thread (here in a structure

pointed to by rdi’s value shown in Lines 5–7 and Line 11 of Figure 5.6) and restores the context of an

existing thread (from rsi shown in abbreviated Lines 14–17 and Line 22), including the corresponding

change of address space for a target thread in another process. This code assumes the System

V AMD64 ABI calling convention, where the normal registers not mentioned are caller-save, and

therefore saved on the stack of the thread that calls this code, as well as on the new stack of the

thread that is restored, thus only the callee-save registers and cr3 must be restored.4 With the

addition of a return instruction, this code would satisfy the C function signature5

1 void swtch(context_t∗ save, context_t∗ restore);

A call to this code begins executing one thread (up through Line 17) in one address space (rtv),

whose information will be saved in a structure at address old, and finishes execution executing a

different thread in a different address space (whose information is initially in new).

Because this code does not directly update the instruction pointer, it is worth explaining how this

switches threads: by switching address spaces and stacks. This is meant to be called with a return
4We are simplifying in a couple basic ways. First, we are ignoring non-integer registers (e.g., floating point, vector

registers) entirely. Second, we are ignoring that the caller-save registers should still be initialized to 0 to avoid leaking
information across processes. We focus on the core logical requirements.

5The name comes from the UNIX 6th Edition swtch function, the source of the infamous “You are not expected to
understand this” comment 117.

Chapter 5: Verifying VMM Essentials 5.3 Change of Address Space

85

1 ;; Assume the save−space is in rdi, load−space in rsi. First, save the yielding context
2 {P ∗ IASpace(θ, Ξ, m) ∗ [rtv′](IASpace(θ′, Ξ′, m′) ∗ Pother) ∗ rsi 7→r new ∗ rdi 7→r old ∗ rbx 7→r rbxv}rtv
3 {rsp 7→r rspv ∗ rbp 7→r rbpv ∗ r12 7→r r12v ∗ r13 7→r r13v ∗ r14 7→r r14v ∗ r15 7→r r15v}rtv
4 {ContextAt(old, _) ∗ ContextAt(new, [rbxv′, . . . , rtv′])}rtv
5 mov 0[rdi], rbx
6 ... ;; mov rsp, rbp, r12, r13, r14, saved to offsets 8, 16, 24, 32, and 40 from rdi
7 mov 48[rdi], r15
8 {P ∗ IASpace(θ, Ξ, m) ∗ [rtv′](IASpace(θ′, Ξ′, m′) ∗ Pother) ∗ rsi 7→r new ∗ rdi 7→r old ∗ rbx 7→r rbxv}rtv
9 {rsp 7→r rspv ∗ rbp 7→r rbpv ∗ r12 7→r r12v ∗ r13 7→r r13v ∗ r14 7→r r14v ∗ r15 7→r r15v}rtv

10 {ContextAt(old, [rbxv, . . . , rtv]) ∗ ContextAt(new, [rbxv′, . . . , rtv′])}rtv
11 mov 56[%rdi], %cr3
12 {. . . ∗ rdi+56 7→v rtv}rtv
13 ;; Restore target context
14 mov rbx, 0[rsi]
15 mov rsp, 8[rsi] ;; Switch to new stack, which may not be mapped in the current address space!
16 ... ;; load rbp, r12, r13, r14, from offsets 16, 24, 32, and 40 from rsi
17 mov r15, 48[rsi]
18 {P ∗ IASpace(θ, Ξ, m) ∗ [rtv′](IASpace(θ′, Ξ′, m′) ∗ Pother) ∗ rsi 7→r new ∗ rdi 7→r old ∗ rbx 7→r rbxv′}rtv
19 {rsp 7→r rspv′ ∗ rbp 7→r rbpv′ ∗ r12 7→r r12v′ ∗ r13 7→r r13v′ ∗ r14 7→r r14v′ ∗ r15 7→r r15v′}rtv
20 {ContextAt(old, [rbxv, . . . , rtv]) ∗ ContextAt(new, [rbxv′, . . . , rtv′])}rtv
21 ;; Switch to the new address space
22 mov cr3, 56[rsi]
23 {[rtv](P ∗ IASpace(θ, Ξ, m) ∗ ContextAt(old, [rbxv, . . . , rtv]) ∗ ContextAt(new, [rbxv′, . . . , rtv′]))}rtv
24 {IASpace(θ′, Ξ′, m′) ∗ Pother ∗ rsi 7→r new ∗ rdi 7→r old ∗ . . .}rtv′

Listing 5.6 Basic task switch code that switches address spaces.

address for the current thread stored on the current stack when called — which must be reflected

in the calling convention. In particular, the precondition of the return address on the initial stack

requires the callee-save register values at the time of the call: those stored in the first half of the

code. Likewise, part of the invariant of the stack of the second thread, the one being restored, is that

the return address on that stack requires the saved callee-save registers stored in that context to be

in registers as its precondition.

The wrinkle, and the importance of the modal treatment of assertions, is that the target thread’s

precondition is relative to its address space, not the address space of the calling thread shown as

[rtv′](IASpace(θ, Ξ, m) ∗ Pother)

in the specfication. Thus the precondition of this code, in context, would include that the initial

stack pointer (before rsp is updated) has a return address expecting the then-current callee-save

register values and suitably updated (i.e., post-return) stack in the current (initial) address space;

this would be part of P in the precondition. The specification also requires that the stack pointer

Chapter 5: Verifying VMM Essentials 5.3 Change of Address Space

86

saved in the context to restore expects the same of the saved registers and stack in the other address

space. The other-space modality plays a critical role here; Pother would contain these assumptions in

the other address space.

The postcondition is analagous to the precondition, but interpreted in the new address space: the

then-current (updated) stack would have a return address expecting the new (restored) register

values (again, in Pother), and the saved context’s invariant captures the precondition for restoring its

execution in the previous address space (as part of P).

Note that immediately after the page table switch, the points-to information about the saved and

restored contexts is guarded by a modality for the retiring address space rtv(Line 23). This is enforced

by WriteToRegCtlFromRegModal (Figure 4.4), and is sensible because there is no general

guarantee that the data structures of the previous addres space are mapped in the new address space.

The ability to transfer that points-to information out of that modality is specific to a given kernel’s

design. Kernels that map kernel memory into all address spaces would need to ensure and specify

enough specific details about memory mappings to allow a proof of an elimination rule for specific

modally-constrained points-to assertions.

Chapter 5: Verifying VMM Essentials 5.3 Change of Address Space

87

CHAPTER 6

IMPLEMENTATION

This section gives an overview of the quantification of the contributions made in this part of the

thesis, i.e., giving numbers on the gray boxes shown in Figure 1.1.

6.1 Numbers on pte Library

In this section, we would like to quantify the verification effort on the essential virtual-memory

functionality of our kernel. The mechanics of this effort start with compiling pte.c and dumping the

pte.s. Then, we manually replace the instructions with the ones we explained in the previous sections

of this part of the thesis. Please note that the numbers referring to proof efforts should be taken

approximate numbers because this is still a developping framework, and refinements in the proof

code base constantly occur.

In Table 6.1, we see the approximate numbers for the functions we verified from the page-table

library (pte_get_next_table, pte_walkpgdir, pte_initialize, and pte_map_page), an address space

switch task referring some virtual points-to resources (pte_switch_addrspace), and single instruction

w that semantically exhibit challenging proofs (pte_p2v).

Table 6.1 Line-of-Code Numbers for pte Verification

C LoC A Assembly LoC Roqc Proof LoC
pte_get_next_table 12 45 3200
pte_walkpgdir 8 44 3200
pte_p2v – 1 75
pte_switch_addrspace – 18 350
pte_map_page 7 28 1750
pte_initialize 4 20 700

88

6.2 Numbers on x64-Iris

The logical machinery that enables reasoning for pte library is x64-Iris. In Table 6.2, we give the

Roqc number of implementation lines for our machine model. Another line mentions the number of

proof lines for the instructions mentioned in this thesis. To shed a light on the number of proof lines

in the complete set of instructions excluding interrupt handling, our non-modular proof attempt,

that is, not separating the page-table-traversal into another lemma to be applied in the proof of

instructions accessing memory, ended up being at least more than 25 times of the number mentioned

in Table 6.2. As a final remark, we also give the number of lines for the definitions and lemmas for

x64-Iris which includes definitions of only VMM related constructions (e.g., address-space modality

and virtual pointsto). In other words, this number excludes the extra Iris construction that helps in

performing Iris proofs.

Table 6.2 Line-of-Code Numbers for x64-Iris Logic

Roqc LoC
Soundness of Instructions Mentioned in the Thesis 50176
VMM Related Logical Constructions 5554
Machine Model 6172

Chapter 6: Implementation 6.2 Numbers on x64-Iris

89

CHAPTER 7

CONCLUSIONS

This thesis advances the state of the art in formal verification of programs subject to address trans-

lation on hardware using virtual memory. We proposed to treat assertions about virtual memory

locations explicitly as assertions in a modal logic, where the notion of context is the choice of current

address space based on the page table root installed on the CPU. We improved the modularity of

our virtual address translation to allow page table modifications that preserve mappings without

collecting all affected virtual points-to assertions. To make specifications of code involving other

address spaces cleaner, we borrowed the idea of modalities which explicitly name the conditions under

which they are true from hybrid logics. We implemented these ideas in a derived separation logic

within Iris, and proved soundness of the rules for essential memory- and address-space-change-related

x86-64 instructions sound against a hardware model of 64-bit 4-level address translation. Finally,

we used our rules to verify the correctness of key VMM instruction sequences, including giving the

first assembly-level proof of correctness for a change of address space expressing which assertions

hold in which address space, and the first physical-to-virtual translation proof.

90

Part III

Modal Understanding of Modularity of State-Transition-Systems

91

CHAPTER 1

BACKGROUND

An important element of verifying stateful computer systems is specifying the allowed orders of

operations on a data structure, subsystem, or remote system, along with how these operations update

the state and interfere with requests from concurrent clients of the same resource. The past few years

have seen state transition systems (STSes) gain popularityfor this purpose, particularly for specifying

protocols for threads to cooperate on modification of shared state53,91,139,156,157. An STS is specified

by giving a set of abstract states, each with an invariant over the structure for that abstract state

(typically, an invariant in a rich separation logic) and a set of tokens owned by the structure in that

state, along with a transition relation specifying how the structure may evolve between abstract

states. To verify that a mutation moves the data structure along the protocol correctly, each update

from a given abstract state must modify the program state to match a permitted destination state’s

invariant, including token ownership1.

Crucially the program at the point of mutation must own any tokens required by the final abstract

state, and afterwards is considered to own any tokens previously owned by the initial state (and

not also owned by the final state). This token exchange forms the basis of permission exchange

between threads — a thread may only induce a transition if it owns the required tokens, which may

be exchanged by interacting through the data structure. For example, modeling a basic mutual

exclusion lock in this way includes two abstract states locked and unlocked, and two tokens lock

and unlock. In the locked state, the data structure’s representation includes ownership of the token
1We are simplifying slightly; the knowledge of the origin and destination may be imprecise, and therefore this check

is done for each possible initial and final abstract state.

92

unlock; unlocking the structure (releasing the lock) requires a state update to match the invariant of

unlocked, which requires transfering the unlock token into the data structure, were a subsequent

lock acquisition will obtain it.

This class of specifications is flexible, intuitively appealing, and with a modest extension, permits

adapting the long-standing idea of specifying a system with a state machine to support concurrent

clients: token ownership may be fractional (for both the client code and the auxilliary state of

the data structure itself), which induces a natural variant of rely-guarantee reasoning87: a client

is limited to those transitions enabled with the tokens it owns, and interference from concurrent

clients is limited to at most those transitions made possible by the complement of the client’s token

ownership (i.e., assuming there is a single opposing client posessing all tokens the local client does

not).

STSes offer a concise, high-level specification for the interactions between concurrent clients of a

data structure, subsystem, or server, and those communications’ effects on data structures. However,

modularity for STSes has not been thoroughly studied. Early systems lack modular STSes156

beyond simple nesting (e.g., the invariant for one STS state referring to ownership of another STS’s

state), achieve limited forms as a consequence of working with impredicative higher-order separation

logics (which offer limited forms of qualification, and therefore subsumption)150, or are limited to

essentially a product construction over STSes where code verified against one component can be

used with a product containing it144 (this last is a simplification we will revisit in detail later).

This is a problem, because real systems are rife with implicit protocols, but with differences between

them that current approaches to modular STSes are ill-suited to support. Consider, for example,

the various layers of filesystem abstraction in an operating system kernel. The kernel specifies a

range of operations on files, but most application code uses only a small subset of them (opening,

reading, writing, and closing). This is especially important for cross-platform code: different kernels

offer different operations (and some offer different semantics for common operations!) so applications

code to the common (consistent) subset. Supporting such verification requires being able to abstract

Chapter 1: Background

93

kernel-exposed file protocols in such a way that clients can ignore certain operations and file states.

At the same time, the kernel requires the lower level filesystem drivers to implement a range of

operations sufficient for the kernel to implement the full range of operations it dictates (even if client

programs ignore many of them). However, some operations make no sense for some filesystem. If we

go back to our example the in-memory filesystem backed by a chunk of RAM: there is no sensible

notion of syncing such a filesystem with the disk, because by design it is not backed by disk. So to

verify that an in-memory filesystem adheres to the protocol required by the kernel — which would

specify separate abstract states for synced and un-synced data — we would need to abstract the

protocol actually obeyed by the in-memory filesystem in such a way that it adds additional states

and transitions that map onto the ones that actually exist from the filesystem’s perspective. Aside

from ad-hoc means, current approaches do not support both kinds of abstraction, and those that

support one kind use mechanisms where the sorts of permissible abstraction must be planned for up

front.

In this thesis, we propose a single form of abstraction for STS specifications that supports both

hiding states and operations (as with an application ignoring operations the kernel permits) and

fabricating states and operations (as in fitting the in-memory filesystem’s real operations into a more

permissive driver protocol). We extend and adapt the classic notion of bisimulation (in the modal

logic sense) by treating STSes as essentially a specialized form of Kripke structure; these notions

and a proof rule that permits this form of “subtyping” on STSes are formalized as an extension to

the Iris92 formalization of protocols. We then demonstrate how this works for both concurrent data

structures and examples from standard abstraction layers in operating system kernels.

Chapter 1: Background

94

1.1 A Primer on Concurrent Program Logics

Early Concurrent Program Logics Concurrent program logics have a long history, stretching

back over 40 years now to the original Owicki-Gries logic135. Owicki and Gries were the first to

clearly articulate that one way to ensure safe composition of individual threads’ proofs was to check

that when two threads were composed in parallel, no action of one thread could violate an assumption

made in the proof of the other. This of course suffered from requiring a quadratic number of checks

(each statement of each thread must be checked against each invariant of each other thread), but

the recognition that thread actions mustn’t interfere with non-local proofs established the key idea

used in modern logics today. Jones87 introduced rely-guarantee reasoning: rather than checking each

statement against any possibly-conflicting assertion, he abstracted: each thread was checked with a

relation giving an upper bound on any individual action of any other thread (the rely) and each local

assertion was checked to be preserved by that relation (i.e., stable w.r.t. that relation). Each thread

was also checked with a guarantee: an upper bound on each individual local action. Then parallel

composition could be validated by comparing the guarantee of one thread to the rely of another.

This made checking thread-modular (to a point), and the number of checks was now again linear in

the size of the program.

Both these and other early concurrent program logics suffered from the same state modularity issues

as traditional Hoare logics: assertions were (possibly) global, making reuse across programs difficult.

Separation logic133,140 mostly solved this state modularity issue in the sequential case, and Brookes

was the first to show how to extend separation logic with threads and Hoare-style critical sections

with (spatial) invariants23.

Brookes’ Concurrent Separation Logic (CSL)23 permitted the use of separation logic for concurrent

programs, but by enforcing the strong non-interference property inherent in any lock-based data-

race-free system.

Chapter 1: Background 1.1 A Primer on Concurrent Program Logics

95

Abundance of Concurrent Program Logics Rely-guarantee offered more granular interference,

but lacked the modularity and strong reasoning about heap updates present in separation logic. So

combining them was a natural next step. Vafeiadis and Parkinson introduced a logic RGSep158,

which integrated the two. Each thread had both a local heap described by a separation logic assertion,

and knowledge of shared region described by an assertion that was stable with respect to a pair of

relational (two-state) specifications of the sorts of modifications that were possible to the shared state:

a rely and guarantee, though adapted to use separation logic to give the conditions. This approach

to retaining the local reasoning power of separation logic while permitting fine-grained concurrency

(not possible using only Hoare-style monitor locks as in the original concurrent separation logic work)

kicked off a flurry of activity on logics marrying the two. Feng et al. 61 explored a way to formulate

an RGSep-style logic as a refinement of traditional rely-guarantee reasoning. Local rely-gaurantee60

defined separating conjunction on the rely/guarantee relations themselves to decompose interference.

Generalization This first round of new logics was sometimes viewed as awkward because the

rely/guarantee relations extended Hoare triples with additional components that had to be plumbed

through all parts of the proof — even portions that were mostly thread-local. So work started to

explore embedding the elements of interference control as resources within separation logic assertions.

Deny-guarantee55 incorporated the notion of not only describing what permissions were possibly-

granted to interfering threads, but also what permissions were explicitly denied to other threads.

Concurrent abstract predicates (CAP)53 brought the notion of a first-class specification of interference

over a region of memory — where regions were explicitly identified in assertions and labeled with a

protocol describing interference — to the fore. That work also introduced the use of tokens: bits

of ghost state that could be fractionally split between threads and (ghost) state, making it more

straightforward to encode sharing or transferrence of rights (in the deny-guarantee sense) to perform

certain updates. This was later followed by an impredicative extension that significantly increased

its power149.

Following the development of CAP, explicit protocol definitions over explicit regions of memory

Chapter 1: Background 1.1 A Primer on Concurrent Program Logics

96

became a recurring theme, appearing in CaReSL156, FCSL144, Iris91, and CoLoSL139 in various

forms.

iCAP is actually a little unusual. It uses the power of it’s higher order specification logic to qualify

some hoare triples. But there’s no notion or examples of weakening a spec given a weaker interference

guarantee. It does use tokens, but the transition system (as in CAP) is implicit in the triples exported

by a module.

Tokens, State Transition Systems & Interference This thesis utilizes the logical state transi-

tion system constructions grounded in CaReSL156. Protocols in CaReSL156 are logical abstractions

with the states, transition relations enabling taking steps in between any two steps, and interpretation

function which enables what abstractly protocols conveys concretely per state. An example protocol

from CaReSL156 to govern a lock would be composed of two states: Unlocked and Locked. As

expected a lock’s state can be changed from being locked to unlock and vice versa, therefore, there

would be transition relations in both ways. Intuitively speaking, we expect at most one thread to

obtain the lock, i.e. lock state changes from Unlocked to Locked. CaReSL enables coordiantion of

threads via token ownership. Speaking concretely, for our example protocol, the protocol owns a

token called TokLock at the protocol state UnLocked, and for a thread to take a step from Unlocked

to Locked, it needs to earn (take the ownership of) the token TokLock from the protocol. Conversely,

to release a lock, i.e. to take a step from Locked state to Unlocked state,a thread needs to pay (giving

up the ownership of) the previously earned token TokLock 156. Although, we discuss it in the further

chapters of this part of the thesis, at the high-level, constitutes the foundation of token-sensitive

transition relations: a transition from a state with a set of token tokens (s,T) to one another state

with another set of tokens (s,T’) is permitted as long as the the disjoint union of the tokens owned

by the thread and the protocol-owned tokens are preserved before and after the step is taken – the law

of token conservation 156.

T
⊎

T (s) ≡ T ′
⊎

T (s)′

Chapter 1: Background 1.1 A Primer on Concurrent Program Logics

97

Based on the token-sensitive transitions, CaReSL156 identifies what permissible transitions for a

thread to take (
guar.
⊑ π transitions enabled by the thread owned tokens) and for the environment (other

threads) to take (
rely
⊑ π transitions enabled by the tokens owned by other threads).

As a final remark on the interference, we should also note that, unlike CaReSL156, Views51 asks for

the interference relation of partial commutative monoids as an input to the logic dictating how two

interference resources can be composed.

Chapter 1: Background 1.1 A Primer on Concurrent Program Logics

98

CHAPTER 2

PROTOCOLS

2.1 Encoding Protocols in STSes

The past few years have seen the rise of state transition systems (STSes) for specifying protocols

over shared state. An STS π in this context (following CaReSL’s presentation156) is given by:

1. a set of states S,

2. a map from a state set of tokens T : S → TokSet,

3. a transition relation ⇝ on states, which is then lifted to pairs of a state and token set:

(s; T)⇝ (s′; T ′) def= s⇝ s′ ∧ T (s) ⊎ T = T (s′) ⊎ T ′

4. an interpretation mapping states to state assertions ϕ : S → Prop.

Logics incorporate a notion of a region n governed by a protocol π, and an assertion that the region

is in at least particular state with a particular set of tokens owned by the current view:

s; T
n

π
≈ ∃s′. s⇝∗ s′ ∧ ϕ(s′) ∧ RegionOwned(n, T (s′)) ∧ LocalToks(T)

These regions are referred to as islands, and the locally-owned token set induces a rely and guarantee

(in the sense of rely-guarantee reasoning87) that bound interference possible from other parts of the

program, and actions available with only the given assertion. Protocol states advance according to

99

an island update rule (UpdIsl), approximately1:

UpdIsl

∀b0. b
rely
⊑ π b0 → {π.ϕ(b0) ∗ P} α {∃b′. b0

guar
⊑ π b′ ∗ π.ϕ(b′) ∗ Q} α physically atomic

{ b
n

π
∗ P} α {∃b′. b′

n

π
∗ Q}

This rule explicitly quantifies over all possible protocol states other threads (parts of the program)

may have moved the state to, and ensures that the behavior of atomic action α is valid in all such

states.

Soundness of UpdIsl in Iris While STSes were formalized with the initial release of Iris, the

rule was never actually proven sound. We present the first actual proof of this rule within Iris as a

small additional contribution of the thesis.

2.2 Limitations of Existing STS Logics

The initial formulations of logics with STSes for concurrency — both (i)CAP-style and CaReSL-style

(as retained by Iris) — lack modularity beyond simple nesting of STS-based data structures. In iCAP

(later found to be unsound) and Iris (the fix), some modularity arises from the use of a higher-order

separation logic, which permits qualifying the use of some protocols, and defining protocols in terms

of each other, but this is not due to any special handling of STSes.

One form of compositionality is the ability to compose STSes. Nanevski et al.129 and Sergey et al.144

introduced a very different style of STS, with explicit input and output channels for exchanging

state with other STSes, which in conjunction with the use of subjective auxilliary state113, permits

an expressive entanglement operation for joining two STSes into a single larger system, along with

a form of framing that permits operations defined on a given STS to operate on entanglements

containing that STS. This offers an elegant, but incomplete form of modularity: larger STSes

can be constructed and original operations reused without re-verifying, but the the granularity of
1We intentionally omit some details from the presentation above related to a later modality in the logic to internalize

step indexing in the semantics of CaReSL.

Chapter 2: Protocols 2.2 Limitations of Existing STS Logics

100

composition is fixed to entangling (implicitly) named STSes. Semantically-compatible operations

verified against syntactically unrelated STSes cannot be reused across structures.

Another take on modularity is the ability to view protocol-governed state as if governed by a smaller

protocol with fewer transitions, over a subset of the relevant state. Raad et al.139 enrich an iCAP-style

protocol logic with such a notion of modularity, allowing a thread to locally forget about actions it

does not require and state it will not modify, as long as the resulting smaller-footprint view does not

become unstable with respect to the “ground truth” protocol for a region.

Notably missing from these explorations of modularity in STS logics is a form of semantic decom-

position: the ability to use an operation that is verified against one STS with a different STS, for

which the operation is semantically compatible (under some conditions). This follows for free in

traditional rely-guarantee logics: the traditional rely-guarantee rule of consequence permits using a

more permissive rely and less permissive guarantee relation, judged semantically by checking relation

containment. Some descendants also inherit forms of this, such as Local Rely-Guarantee60’s notion

of framing on relations. Raad et al.’s work is a form of semantic decomposition, but done in a setting

that is already characterized only semantically (with CAP-style protocols).

Semantic Decomposition In this thesis, we provide a form of semantic decomposition for

protocol-based STSes.

2.3 Intuition Behind “Subtyping” STSes

We build on the notion of bisimulation between Kripke models to induce a stronger rule of consequence.

In particular, we use the restriction of an STS π to a subset of its capabilities (or to the states

reachable from a given state and token set) to induce an STS-specific form of generated submodel.

An STS-appropriate bisimulation between this submodel and another STS π′ allows the use of code

verified against π′ when the context can ensure (by framing tokens) that portions of π not modeled

by π′ remain inaccessible.

Chapter 2: Protocols 2.3 Intuition Behind “Subtyping” STSes

101

init

opened

closed

open

read, write

close

(a) Traditional file I/O protocol

init

opened to − flush

closed

open

read, sync

write

sync
read, write

close

(b) A possible distributed file I/O protocol

Figure 2.1 File I/O protocols

2.3.1 Motivation

Consider a STS for a protocol that enforces the usage of a file resource. Figure 2.1a shows a typical

model of correct usage of a file resource: it initially exists, then can be opened, used arbitrarily many

times (for reading or writing), and finally closed (once).

Figure 2.1b shows one possible protocol for a client of a distributed filesystem, where no changes

are stored until an explicit synchronization operation is invoked. For expository clarity and brevity,

we will assume there is only a single client of this remote storage system, and that changes in the

traditional protocol are immediately written to disk; both are significant simplifications compared to

real systems, but illustrate the important points.

φdistributedfile (ℓ , R)(s) ≜



match s with

to − flush ⇒ R ∗ ∃ fs. isValidDirty(fs) ∗ ℓ 7→ (fs.id, fs.status = dirty)

opened ⇒ R ∗ ∃ fs. isValid(fs) ∗ ℓ 7→ (fs.id, clean)

closed ⇒ ∃ fs. isValidClosed(fs) ∗ ℓ 7→ (fs.id, closed)


φdistributedfile associates the abstract state s with a simple concrete file state (fs ∈ N ∗ N) mentioned

in an invariant-per-state that represents the file content (e.g., isValidClean) and the fact specific to

the file’s status (e.g.,clean). Because it is connecting the physical state to an abstract one used in the

Chapter 2: Protocols 2.3 Intuition Behind “Subtyping” STSes

102

{ opened; T
n

file
} write(ℓ, data) {∃T′ . opened; T ′

n

file
}

Figure 2.2 A File Library: writing to a file.

{ opened; T
n

file
} write(ℓ, data) {∃T′ . opened; T ′

n

file
}

→

{ opened; T
n

distributedfile
} write(ℓ, data) {∃T′ . opened; T ′

n

distributedfile
}

Figure 2.3 Transferring the Proof of a File Library: writing to a file.

specification, defining the state interpretation is the first essential step to check client code follows

the specification encoded as state machines, but then we need to define the constructions and rules

defining the protocol and orchestrating accessibility to it.

φfile ℓ R s ≜


match s with

opened ⇒ R ∗ ∃ fs. isValid(fs) ∗ ℓ 7→ (fs.id, fs.status = clean ∨ dirty)

closed ⇒ ∃ fs. isValidClosed(fs) ∗ ℓ 7→ (fs.id, fs.status = closed)


which is simply φdistributedfile the state to-flush removed.

In Figure 2.2 there is a file library client code writing to a file. Suppose that the client code wants to

use a library that has a proof against the traditional STS (Figure 2.1a) which is the specification

opened; T
n

file
with state interpretation φfile , and shown as the premise of the implication in Figure

2.3. But, we want to use that library proof with a file object following the distributed file STS

(Figure 2.1b) which is the specification opened; T ′
n

distributedfile
with state interpretation φdistributedfile,

and shown as the goal of the implication in Figure 2.3. The distributed file STS forces you to sync to

disk before closing the file. As long as the library code doesn’t close the file, it’s actually safe to

use the client code with this new STS (Figure 2.1b), in other words the states opened and to-flush

are indistinguishable from the client’s perspective. Our goal is to introduce the required reasoning

principle to prove the implication in Figure 2.3 so that we can preserve the proof against the state

Chapter 2: Protocols 2.3 Intuition Behind “Subtyping” STSes

103

machine in Figure 2.1a to the state machine in Figure 2.1b.

Chapter 2: Protocols 2.3 Intuition Behind “Subtyping” STSes

104

CHAPTER 3

KRIPKE MODELS, BISIMULATION, AND GENERATED
SUBMODELS

Bisimulation is a notion of two (possibly infinite) transition systems having common structure

(behavior). It has arisen independently in multiple contexts143: computer science, modal logic, and

set theory. Each domain has its own slightly different definition, terminology and notation; here we

recall the essentials of bisimulation from modal logic, specifically bisimulation of Kripke models.

Kripke models are the most widely-used sort of structure for defining the meaning of propositions

in modal logic, corresponding to the well-known possible-world semantics proposed by Kripke102.

There a modal formula’s truth depends on the circumstances under which it is evaluated: a simple

temporal example would be that the truth of “It is raining today” depends on the particular day on

which the sentence is claimed. Thus an abstract set of worlds is chosen, a way is given of knowing

which propositions are true in which worlds, and critically a relation on worlds is used to interpret

modal operators. More formally:

Definition 1 ((Propositional) Kripke Model84) A Kripke model M is a triple (W, R, V) where

• W is a set of “worlds”

• R ⊆ W × W is a relation called the accessibility relation between worlds

• V : PropVar → P(W) gives for each propositional variable p a set of worlds V (p) where p is

considered true

In the case that there are multiple modal operators to interpret, R is replaced by a set Ri∈I of binary

105

relations on worlds, one for each modal operator. In this case, modal formulae are interpreted with

respect to a particular world w (or “state” s), and modal operators are typically interpreted as:

M, w ⊨ p ⇔ w ∈ V (p)

M, w ⊨ [m]P ⇔ ∀w′. wRmw′ ⇒ M, w′ ⊨ P

M, w ⊨ ⟨m⟩P ⇔ ∃w′. wRmw′ ⇒ M, w′ ⊨ P

The exact meaning of the accessibility relations depends on the purpose of the logic at hand. Because

we are interested in computer programs, a natural example is the propositional fragment62 of dynamic

logic138. There, the modalities are programs (whether atomic statements, or compound statements),

and the proposition [c]P represents the claim that after executing c, P will be true — which should

be true only in those worlds (program states) where executing c will in fact make P true, and so

is actually the weakest precondition operation. This can in fact be used to build up Hoare triples:

{P}C{Q} can be encoded as P ⇒ [C]Q. This is actually the approach used by Iris100 to build Hoare

triples from a weakest precondition calculus.

In general it is often the case that two different models are actually indistinguishable in the modal

logic: they are mathematically different structures, yet no formulae is true in one and false in the

other. Dynamic logic again provides a useful example: in the case of deterministic programs, it must

be that [m]P ⇔ ⟨m⟩P (since there should only be one possible result for running a program from

a given start state). Clearly this holds when for any w and m, there is exactly one w′ such that

wRmw′. However, it also holds for a broad class of intuitively similar models: those where instead of

requiring that each state have exactly one successor for each relation, we instead require that when

a world has multiple sucessor states, they have all the same successors and the same propositional

variables are true in each:

∀w, w′, w′′, m. wRmw′ ∧ wRmw′′ ⇒ (∀p. w′ ∈ V (p) ⇔ w′′ ∈ V (p)) ∧ (∀s, m′. w′Rm′s ⇔ w′′Rm′s)

This intuitive notion of two models being equivalent is captured precisely by the notion of bisimulation:

Chapter 3: Kripke Models, Bisimulation, and Generated Submodels

106

Definition 2 ((Propositional) Bisimulation of Kripke Structures) A bisimulation between

(multimodal) Kripke structures (W, Ri∈I , V) and (W ′, R′
i∈I , V ′) is a relation E ⊆ W × W ′ sat-

isfying:

• If w E w′, then w and w′ satisfy the same propositional variables.

• If w E w′ and w Rv, then there exists v′ ∈ W ′ such that v E v′ and w′ R′ v′

• If w E w′ and w′ R′ v′, then there exists v ∈ W such that v R v′ and w R v

Two models M and M′ for which a bisimulation exists are said to be bisimilar, written M ∼ M′.

The point of defining bisimilarity is to prove that two bisimilar models satisfy the same formulae,

though doing so requires a full definition of the formulae under consideration; we defer such discussion

until we are ready to prove this for a particular language.

There are many standard constructions on models that give rise to bisimulations. One common

one we will adapt is that of a generated submodel. Given a Kripke model, a generated submodel

corresponds to the portion of the model accessible from a given state.

Definition 3 (Multimodal Generated Submodel) Given a multimodal Kripke model M = (W, Ri∈I , V),

a generated submodel for a subset W ′ ⊆ W and a subset I ′ ⊆ I is (W ′, R′
i∈I′ , V ′) if ∀i ∈ I ′. R′

i =

Ri∩(W ′×W ′), ∀p. V ′(p) = V (p)∩W ′, and W ′ is RI′-closed: ∀i ∈ I ′, u ∈ W ′, v ∈ W. uRiv ⇒ v ∈ W ′.

Note the closure only applies to the subset of accessbility relations considered in the submodel.

We say a generated submodel (W ′, R′
i∈I′ , V ′) is generated by a point1 s ∈ W ′ and a subset I ′ ⊆ I if

every element of W ′ is reachable from s via some finite sequence of steps via the accessibility relations

of R′
i∈I′ (i.e., it contains only those points reachable from s via the selected subset of modalities).

To illustrate generated submodels and bisimulation, we can consider the usage protocols in Figures

2.1a and 2.1b. In fact, these figures represent multimodal Kripke models. The set W of worlds is the

set of points (labeled in boldmathfont), and the accessibility relations are given visually as labelled

edges in the graph: an edge A foo−−→ B indicates (A, B) ∈ Rfoo. An edge with multiple labels indicates
1This definition is often given in terms of a set of points rather than only the singleton, but we will not need this

for our purposes.

Chapter 3: Kripke Models, Bisimulation, and Generated Submodels

107

opened read, write

(a) Submodel of traditional I/O protocol generated
by opened

to − flush openedwrite

read, writeread

(b) Submodel of the distributed I/O protocol gen-
erated by to− flush

Figure 3.1 Submodels of I/O protocols

that pair of states is in multiple accessibility relations.

Most code making use of files actually does not care about anything but the central read/write loop

in the protocol, shown in Figure 3.1a. In most applications, the actual opening and closing of files is

isolated to a narrow part of the application, such as the setup and cleanup of a logging subsystem,

while most application code is unaware of the backing storage of a file. This subprotocol is in fact a

generated submodel, generated from opened and the read and write relations. It is bisimilar with the

original model (relating opened to itself), as is the case for all generated submodels:

Lemma 1 (Generated Submodels Bisimilarity19) Given a model M = (W, Ri∈I , V) and a

generated submodel M′ = (W ′, R′
i∈I′ , V ′) of M, M ∼ M′.

In all cases, the bisimulation between a model and its generated submodel is always given by the

identity relation on the submodel’s states.

What does this mean for files? Intuitively, it should mean that any code certified to be correct with

regard to this generated submodel is safe to use with a file obeying the full protocol of Figure 3.1a,

though this depends on the details of how programs are connected to protocols; we will explain the

technical details later, but for now note that the notion of protocol with tokens now common in

concurrent program logics like CaReSL and Iris is a suitable way to make this connection, and one

outcome of the developments later in this thesis is to make precise what this “should” actually means

and to show that it holds true in Iris.

Definition 4 (Restricted Submodel) The restricted submodel πt/U of an STS π with respect to

a state t and a set of (framed) tokens U is defined as:

• States: S ′ = {s | s ∈ π.S ∧ s →∗
π t ∧ π.T (s) ∩ U = ∅}

Chapter 3: Kripke Models, Bisimulation, and Generated Submodels

108

• Token map: T |S′ (π.T restricted to the states still in the restricted submodel).

• Transition relation →′=→ |S′

• Interpretation map φ|S′

Intuitively, the definition of the restricted submodel restricts every component of a state machine π

to only those states that are accessible (regardless of tokens) from the “current” state t and do not

interact with the removed tokens.

Concretely speaking, Figure 3.1b is a generated submodel of Figure 2.1b, generated from the state

to − flush and the same relations. As with the submodel of the traditional file I/O protocol and all

generated submodels (Lemma 1) it is bisimilar with the full protocol. But there is an additional

wrinkle here: the two generated submodels are bisimilar to each other ! The bisimulation relation in

this case relates opened in the traditional submodel with both to − flush and opened in the explicit-

synchronization submodel. So (in principle) code verified to work correctly using the traditional

subprotocol of Figure 3.1a is also safe to use with files usable with Figure 3.1b!

This is an abstraction — using client code verified against the (sub)protocol in Figure 3.1a with

files obeying the protocol of Figure 2.1b (and in one of the appropriate states) — is impossible

with most current approaches to using protocols in concurrent program logics. CaReSL156 allows

using protocols in the state invariants of “outer” protocols (e.g., using a range of smaller protcols

in an implementation of flat-combining), but our example is one where code for one protocol is

used directly against resources following a semantically-compatible (sub)protocol. FCSL144 allows a

specialized product construction to compose protocols, and then permits code verified against one

component to be used with a product containing that component, in a way resembling structural

subtyping. While it may superficially appear that the traditional subprotocol is such a building block

of the synchronizing subprotocol (both contain a read/write loop on opened), we will not require

such relationships to play a role in the definition and construction of protocols (FCSL does), and in

practice the representation invariants (not net discussed) of the to − flush and opened states may be

different, and FCSL would not permit that.

Chapter 3: Kripke Models, Bisimulation, and Generated Submodels

109

Most other work in this style does not consider this kind of subtyping at all. The one exception of a

sort would be logics with impredicative quantification (i.e., iCAP149 and Iris91), which in principle

allow a specification to quantify over all semantically-compatible inputs. However, this discards one of

the primary benefits of protocol-based specifications, replacing the appealing structural specifications

with quantification over relations with certain properties. One view of our goals is to harness this

power in terms of semantically compatible other protocols, which retains the structural flavor of

reasoning without sacrificing semantic compatibility entirely.

The rest of this part in the thesis generalizes these ideas to the protocols typically used in modern

concurrent program logics and demonstrates that doing so addresses significant issues with modular

verification in the presence of protocols. Specifically, we show how to adapt the ideas of multimodal

bisimulation and generated submodels to CaReSL/Iris91,156 style protocols that include representation

invariants and token ownership, and how this permits new kinds of abstraction that are useful in

verifying common and important software design patterns.

Chapter 3: Kripke Models, Bisimulation, and Generated Submodels

110

CHAPTER 4

AN ATTEMPT AT STS BISIMULATION

In this section, we start by defining the pieces of our morphism relation and continue by introducing

the relations that constitute our bisimulation relation which we define as a single morphism.

4.1 Definitions

Consider two state machines π and π′ consist of relations:

• (ϵT : Tok ⇀ Tok): embeds a token from one state machine to another, e.g. wa of π is embedded

in wa of π′ – wa ϵT wa.

• (ϵS : S → S): embeds a state from one state machine to another one, e.g., to-flush of π is

embedded into opened of π′ – flushed ϵS opened.

• (
guar.
⊑ π: Rel(S ∗ TokSet)) relation defined over a state and a token set such that any local step

taken from the state locally is made available w.r.t to the tokens used by the client, e.g.,

(opened, ∅)
guar.
⊑ π (flushed, ∅))

• (
rely
⊑ π: Rel(S ∗ TokSet)): relation defined over a state and a token set such that any steps taken

from the state is made available w.r.t to the token used by the environment, e.g., π′ can take

local steps with ∅ token set while π can take steps using {wa} – (opened, ∅)
rely
⊑ π′ (opened, ∅)).

Embedding of Tokens Figures 4.2a and 4.2b are two state machines as generated submodels

of traditional and network filesystems in Figures 2.1b and 2.1a with opened as their initial states

and ignoring read operation. Both have the same token set T (π) = {wa} and T (π′) = {wa}. When

111

we embed wa of π to wa of π′, we mean that the capabilities provided by wa of π should not be

distinguishable from the ones provided by wa of π′.

Embedding of States Likewise, regarding bisimilarity of states, we consider opened and to-flush

of π on the left (Figure 4.2a) bisimilar to the same state (opened) of the state machine on the right

(Figure 4.2b). Although we discuss in-depth in Chapter 5, intuitively speaking, we consider the states

to-flush and open of the state machine π that are embedded into the opened state π′ such that these

states are indistinguishable w.r.t behaviors a client can observe.

4.2 Simulations

After giving the definitions in the previous section, we introduce and explain the parts of our

simulation relation. In doing so, we use a graphical representation. We represent the token set and

state spaces with ovals separated by labels indicating the clusters of loosely positioned elements of

the type on the label per state machine. Legend 3, shown in Figure 4.1, has its labels T (π) and

T (π′) for the state machines π and π′ respectively. Legend 1 represents embedding the state s of the

state machine π into the state s′ of the state machine π′. Likewise, Legend-2 represented the lifting

of token embedding (ϵT) to relate the token set T of the state machine π to the token set of T′ of the

state machine π′ which are token sets a client must provide to take a particular transition transition

in the state machines π and π′ respectively. Legend 4 includes a full circle that represents an element

whose value is given in the instance of morphism, a hexagon which represents a placeholder for an

existentially quantified element, and an octagon which represents a placeholder for a universally

quantified element. To keep the size of Legend in Figure 4.1 reasonable, we show all the embeddings

inside clusters with known value placeholders. In Legend 5, we see hexagonal and octagonal nodes

with the label n, a natural number greater than 0 denoting the order of quantification of elements: the

quantified nodes (filled octagon and hexagon) shown in Legend 4 have the order number 0 – variables

in the logical formula that are represented with these elements quantified under the outermost (or

first) quantifier in the formula. Legend-6 represents the association of the token set T at the state s in

Chapter 4: An Attempt At STS Bisimulation 4.2 Simulations

112

the state machine π two of which constitute the transition assertion either taken as local (guarantee)

or globally (rely) step as shown in Legends 7 and 8 respectively.

Definition 5 (Rely-Surfaces) The area between T, s, and s’ in Legend 8 is called a rely-surface.

It depicts
rely∗

⊑ π which is a reflexive-transitive closure over a single (inductive) rely (
rely
⊑ π) step, whose

constructor is

∀T1,T2 . T1 ## T (s) ∪ T →

(s; T1)
guar
⊑ π (s′; T2) →

(s; T)
rely
⊑ π (s′; T)

. The first premise is what we call HGlobalBoundryDom which asserts the disjointness of interfering

tokens (T1 and T2) at a certain state from the clients’ capabilities (T) and the capabilities hold by

the state transition system (T (s)). The second premise

(s; T1)
guar
⊑ π (s′; T2)

asserts the possible interfering transition which would not violate the rely step taken between s and s′

against the client with T

(s; T)
rely
⊑ π (s′; T)

The reflexive transitive closure form of rely-surfaces is shown in Legend 14: a complete rely-surface

between x and z can be shown with the knowledge for any rely-reachable y from x, and the rest of

the surface from y to z which is required for transitive reflexive x-z surface. Regarding the proof

machinery, induction on a rely surface can be considered as induction on the reflexive transitive

closure of

∀T1,T2 . T1 ## T (s) ∪ T →

(s; T1)
guar
⊑ π (s′; T2) →

(s; T)
rely
⊑ π (s′; T)

Chapter 4: An Attempt At STS Bisimulation 4.2 Simulations

113

which would gives us, for x = s,

∀T1,T2 . T1 ## T (x) ∪ T →

(x; T1)
guar
⊑ π (y; T2) →

(x; T)
rely
⊑ π (y; T)

together with

(y; T)
rely∗

⊑ π (z; T)

For the base case of this induction, we can think of all three lines distanced by a rely step
rely
⊑ π and

rely∗

⊑ π reduced into a single line, which is depicted from top T to the state x — i.e. s′ and x are s as

shown in Legend 17 4.1.

Legend 13 and Legend 10 represent the disjointness of the token sets T1 and T2 for the different

state machines and the same state machine, respectively. Finally, Legend 9 represents the state

interpretation (Inv(ϕ)) of the state s via the interpretation ϕ, i.e., the invariant holding at the state s.

Definition 6 (Bisimulation Zone) A bisimulation zone defines which of the states are considered

to be part of the bisimulation. Speaking more concretely, we do not want closed (shown in Figure

4.2) to be considered as a part of our bisimulation reasoning. That means, with a given initial state

opened and initial client token set T = ∅, we could obtain transitions to the state closed, however, we

do not consider these transitions as part of the bisimulation, therefore, we want them to be to pruned

away as shown in Figures 4.3b and Figure 4.3a.

Definition 7 (Irrelevancy in Bisimulation) Since states like closed are outside our bisimulation

zone, they exhibit irrelavancy to our bisimulation relation. Therefore, we need to be able to introduce

this irrelevancy in the bisimulation proof. To do so, we rely on the existence of a token such as

cls and wa that is not an element of the client tokens used in the bisimulation zone (e.g. ∅ for our

naive example) — please note that wa is owned by the state machine not used in client transitions in

bisimulation zone. The goal is to distinguish transitions that involve a state outside the bisimulation

zone, e.g. closed.

Chapter 4: An Attempt At STS Bisimulation 4.2 Simulations

114

T (π) T (π
′)

S(π
′)S(π)

S(π
′)S(π)

s s′

ϵS

T (π) T (π
′)

T

ϵ
T

T ′

T s

1 2

3
4

6 11

7

8

T (π)
T1 T2

10

guar.
⊑ π

rely∗
⊑ π

T (π) S(π)

S(π) s

Inv(s)

φ

9

T
s

12 T (π)

T1 T2

13
T (π) S(π)

T (π
′)

T (π) T (π)

T T ′

S(π) S(π)

s s′

T (π)
T

S(π) s s′

R

T (π)
T

S(π)x zy

R

5 n n

14

⊢22

rely∗
⊑ π

T (π)
T

S(π)
x

17

T (π)
T

ϵS/ϵT

15

16
18
19
20
21

S(π) s

Inv(s)

φ

23
T (π)

T

Figure 4.1 Legend for Bisimulation Graphs

opened
T = {wa}

to − flush
T = {wa}

closed
T = {wa}

∅

∅∅

∅

(a) Submodel (π) of the distributed I/O protocol
generated by to− flush

opened
T = {wa}

closed
T = {wa}

∅

∅

(b) Submodel (π) of traditional I/O protocol gen-
erated by opened

Figure 4.2 Submodels of traditional and distributed file I/O protocols with write accessibility relations.

Chapter 4: An Attempt At STS Bisimulation 4.2 Simulations

115

opened
T = {wa}

to − flush
T = {wa}∅

∅∅

(a) Submodel (π) of the distributed I/O protocol
generated by to− flush

opened
T = {wa} ∅

(b) Submodel (π) of traditional I/O protocol gen-
erated by opened

Figure 4.3 Submodels of the traditional and distributed file I/O protocols with write accessibility
relations.

opened
T = {wa}

to − flush
T = {wa}

closed
T = {wa, cls}

∅

∅∅

{cls}

(a) Submodel (π) of the distributed I/O protocol
generated by to− flush

opened
T = {wa}

closed
T = {wa, cls}

∅

{cls}

(b) Submodel (π) of traditional I/O protocol gen-
erated by opened

Figure 4.4 Introducing Irrelavancy .

Tokens like cls are useful because if the proof using the bisimulation owns those tokens, then transitions

using that token can effectively be set aside soundly and not be used by the bisimulation relation.

4.3 Guarantee in the Bisimulation

One crucial aspect of our simulation relation is matching guarantee (local) steps (Theorem Guarantee

Bisim). This deals with the situation where intuitively, we want to make sure that any step – the

one between q’ and q” in Figure 4.5 –taken in the target state machine π′ has a matching step – the

one between s’ and s” in Figure 4.5 – in the source state machine π. This match-up is meaningful

because if you want to use target-verified code in source-specified settings, it needs to be the case

that everything that target code does is allowed by the source spec.

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

116

Theorem 4.3.1 (Guarantee Bisim without Invariants)

∀q′,q,T ′ . ϵT (T, T ′) → ϵS(s, q) → (q; T ′)
rely∗

⊑ π′ (q′; T ′) →

∀q′′,T ′′ . (q′; T ′)
guar.
⊑ π′ (q′′; T ′′) →

∃s′,s′′,T ′
0,T ′′

0
. (s′; T ′

0)
guar.
⊑ π (s′′; T ′′

0)∧

ϵS(s′) = q′ ∧ ϵS(s′′) = q′′ ∧ ϵT (T ′
0, T ′) ∧ ϵT (T ′′

0 , T ′′)

Proof: The proof of Theorem Guarantee Bisim without Invariants 4.3.1, as specified without the

association of invariants explained in Chapter 5, requires matching the guarantee steps in the target

machine (from q’ to q”) to the guarantee steps in the source (from s’ to s”).

T (π) T (π
′)

S(π)

S(π
′)

s

T

T ′′
0

q′

T ′
0

q
q′′

ϵS

rely∗
⊑

π′

T ′

ϵ
T

T ′′

ϵ
T

s′s′′ ϵS

guar.
⊑ π

guar.
⊑

π′

ϵS

ϵ
T

n
n + 1 n + 1

n + 1n + 1

Figure 4.5 Guarantee Bisim without Invariants

The soundness principle of matching guarantee steps relies on identifiying q’ and bisimilarity of the

matched states.

Identifying q’ Identifying q’ of the target state machine π′ (shown in Figure 4.5) is the essential

piece of reasoning in the guarantee-step matching. This step is valid against any interfering client

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

117

action taken from the fixed starting state (s) under the embedded frame token set (T’) of the client

token set (T) which is given as an input to the simulation relation. The rely-surface
rely∗

⊑ π′ in Figure

4.5 under the token set T’ ensures we only consider q’s which are rely-reachable from q against the

interference from the client with the token set T’.

Identifying the Domain of the Source Local State To Be Matched In addition to the fact

that q′ in Figure 4.5 resides in the domain of the rely-reachable states against client actions that can

be taken with T′ in Figure 4.5,

• the having T′ disjoint from from the capabilities in the destination state, T′′, (represented as

dotted-line in Figure 4.5)

• the reflection of this disjointness to the embedding capabilities in the source state machine as

dijoint T′
0 and T′′

0

• and, having both disjointness guarantee steps in the previous bullets against an interference

with T1 and T2

determine the valid domain in which the state q′ can be.

HGlobalBoundryDom : ∀T1,T2 . T1##T (q) ∪ T′

Bisimilar Matched States The goal asks us not only to prove the existence of the guarantee

step in the source state machine (
guar.
⊑ π in Figure 4.5) but also to discharge the fact that the states

from/to guarantee steps are taken must be bisimilar: s’ and s” in Figure 4.5 are bisimilar to q’ and q”

respectively via ϵS

ϵS(s′) = q′ and ϵS(s′′) = q′′

.

Fixed Initial Client Tokens & Start State Our bisimulation relation is fixed on the start state

(opened of π in Figure 4.3) from which we consider the sub-model and the client tokens (T = ∅. This

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

118

T (π) T (π
′)

S(π)

S(π
′)

opened

∅

T ′′
0

q′

T ′
0

q
q′′

ϵS

rely∗
⊑

π′

T ′

ϵ
T

T ′′

ϵ
T

s′s′′ ϵS

guar.
⊑ π

guar.
⊑

π′

ϵS

ϵ
T

n
n + 1 n + 1

n + 1n + 1

Figure 4.6 Guarantee Bisim (without Invariants) with a Fixed Starting State and a Client Token Set

turns our graph in Figure 4.5 into Figure 4.6 by substituting s of π with opened and T with ∅. From

the embedding state ϵS(s, q) and the fact that opened is the only state in π′, q is also replaced by

opened.

After the introduction of the variables and hypothesis, we have the proof context

HBaseTkembed : ϵT (∅, T ′)

HStEmbed : ϵS(opened) = opened

Hframesteps : (opened; T ′)
rely∗

⊑ π′ (q′; T ′)

Hsteptarget : (q′; T ′)
guar.
⊑ π′ (q′′; T ′′)

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

119

and the goal

∃s′,s′′,T ′
0,T ′′

0
.

Goalmatchstep : (s′; T ′
0)

guar.
⊑ π (s′′; T ′′

0)

∧GoalStembedStart : ϵS(s′) = q′)

∧GoalStembedEnd : ϵS(s′′) = q′′

∧GoalTkEmbedStart : ϵT (T ′
0, T ′)

∧GoalTkEmbedEnd : ϵT (T ′′
0 , T ′′)

Assuming token embedding (ϵT) as set equivalence (≡), the core piece of our proof is validity of q’.

We know that it is reachable from the start state, i.e., Hframesteps, against the client interference

determined by the chosen initial client token set, HBaseTkembed. However, we need to obtain more

information for the valid q’ by analyzing the rely surface in Figure 4.6 with inversion on Hframesteps

(with initial client token set T’ as ∅)

∀T1,T2 . T1 ## T (opened) ∪ ∅ →

(opened; T1)
guar
⊑ π (q′; T2) →

(opened; ∅)
rely
⊑ π (q′; ∅)

that extends the proof context with:

Hdisjframetok : T1 ## T (opened) ∪ ∅

Hrelysoundness : ((opened; T1)
guar
⊑ π (q′; T2)

Hframestep : (opened; ∅)
rely
⊑ π (q′; ∅)

Rely-Surface Intuition on the Proof Task Concretely – Induction on
rely∗

⊑ π′ As discussed,

the crux point of proof goal is to know what q’ is. This requires analyzing the rely-surface between

q and q’ shown in Figure 4.7 — i.e., Hframestep with T’ as an empty set. The surface analysis is

performed on single-relying-step reachable valid states y from x which is q which can only be opened

based on the design of π′ and HStEmbed. The identification of q’, which is known to be equal to z

by inversion on Hframesteps, should be reached from these single rely reachable y states by taking

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

120

other valid rely-steps (hypothesis Hframesteps)

Hframestepleft : (y; ∅)
rely∗

⊑ π′ (q′; T ′) where q’ = z

Intuitively speaking, the identification of q’ can be thought of as capturing the rely-surface

(Hframesteps) depicted in Figure 4.6, by single-rely-reachability (Hframestep) and the rely-surfrace

left (Hframestepsleft) depicted in Figure 4.7.

Base-Case is the reflexive case of our rely surface. This case can be the case in which the rely

step has both y and z to be opened — concretely speaking, there is no rely step taken to y on the

rely surface: there exists no Hframestep in the proof context. Because it is outside the bisimulation

zone due to being unreachable without non-withheld tokens, per Definition 6), the possible s”, either

to-flush or opened of π as the embedding states of opened of π′, requires us to pick T′′
0 as an empty

set, since at both of these possibilities the client, by the design of π, can have the empty token

set. Knowing that the initial client token set T is empty, and consequently having the hypothesis

HBaseTkembed in the proof context, we also pick T′
0 as an empty set. Picking opened for both s′ and

s′′, the proof goal becomes

Goalmatchstep : (opened; ∅)
guar.
⊑ π (opened; ∅)

∧GoalStembedStart : ϵS(opened) = opened

∧GoalStembedEnd : ϵS(opened) = q′′

∧GoalTkEmbedStart : ϵT (∅, ∅)

∧GoalTkEmbedEnd : ϵT (∅, T ′′)

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

121

Overall Proof for Base-Case Goalmatchstep requires proving

Hdisj : ∅##T (opened)

Hnextdisj : ∅##T (opened)

Hprim : opened⇝ opened

Hlocalpreserve : T (opened) ∪ ∅ ≡ T (opened) ∪ ∅

where we know

T (opened) = {wa}

in Figures 4.3a and 4.3a, and Goalmatchstep follows from GoalStembedStart and ϵS . GoalTkEmbedStart

follows from HBaseTkembed.

Inductive-Case Based on the intuition we built for the rely-surfaces relevant to this proof, the

inductive case is considered to be the construction of the rely surface in Figure 4.7 with the immediately

reachable state y to reach to the final state q’= z such that

IFrameSurface : (opened; ∅)
rely∗

⊑ π′ (z; ∅)

IHBase : x = opened

IHBaseTkembed : ϵT (∅, ∅)

IHStEmbed : ϵS(opened) = opened

IHframestep : (opened; ∅)
rely
⊑ π′ (y; ∅)

IHframesteps : (y; ∅)
rely∗

⊑ π′ (z; ∅)

IHsteptarget : (z; ∅)
guar.
⊑ π′ (q′′; T ′′)

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

122

in addition to what we know from IHframestep

IHdisj : T1##T (opened)

IHnextdisj : T2##T (y)

IHprim : opened⇝ y

IHlocalpreserve : T (opened) ∪ T1 ≡ T (y) ∪ T2

IHstep : (opened; T1)
guar
⊑ π′ (y; T2)

• Inductive-Case-Open (Figure 4.7): obtaining z as opened, and the proof goal

Goalmatchstep : (opened; ∅)
guar.
⊑ π (opened; ∅)

∧GoalStembedStart : ϵS(opened) = opened

∧GoalStembedEnd : ϵS(opened, q′′)

∧GoalTkEmbedStart : ϵT (∅, ∅)

∧GoalTkEmbedEnd : ϵT (∅, T ′′)

includes the q” on which we induce, end up having two cases: 1. q” is opened and the goal

is trivial and discussed 2. q” is closed, we need to create a contradiction by relying on the

following facts

– Any client taking a step into a state outside the bisimulation zone the bisimulation (see

Definition 6) has to utilize a set of token, e.g. {cls}, that is disjoint to the set of all tokens

that can be used by a client inside the bisimulation zone zone, T ′ = ∅ of π′ and T of π

– Although the step taken from opened to closed — IHsteptarget — requires the client token

set for to be {cls}, however, out Guarantee Bisim relation enforces it to be embedding of

the initial token set, T ′ = ∅. This creates a contradiction (see Definition 7).

Chapter 4: An Attempt At STS Bisimulation 4.3 Guarantee in the Bisimulation

123

T (π) T (π
′)

S(π)

S(π
′)

opened

∅

T ′′
0

z

T ′
0

x =
opened

q′′

ϵS

rely
⊑

π′

T ′

ϵ
T

T ′′

ϵ
T

s′s′′ ϵS

guar.
⊑ π

guar.
⊑

π′

ϵS

ϵ
T

n
n + 1 n + 1

n + 1n + 1

rely∗
⊑

π′

y

Figure 4.7 Induction on the Rely-Steps of Guarding Condition of Guarantee Bisim (without Invariant)

• Inductive-Case-Closed (Figure 4.7): obtaining z as closed

Goalmatchstep : (opened; ∅)
guar.
⊑ π (closed; ∅)

∧GoalStembedStart : ϵS(opened) = closed

∧GoalStembedEnd : ϵS(closed) = q′′

∧GoalTkEmbedStart : ϵT (∅, ∅)

∧GoalTkEmbedEnd : ϵT (∅, T ′′)

would be invalid by IFrameSurface and IHsteptarget.

□

4.4 Rely in the Bisimulation

Bisimulation relation must not drop any valid interference, and match them on the other state

machine to make sure that start-end pairs must be preserved exactly. As a result, the bisimulation

relation ensures that client specifications (both on the source and target specifications) refer to the

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

124

valid abstract states on both target and source STSes. Considering the direction from source to

target STS, for every possible state in the source rely, the postcondition of rely-moves to that state

must imply the rely-moves of the corresponding transitions in the target state state machine. It is

essential for file protocol example as we would like to have

φdistributedfile(to − flush) ⊢ φopened(opened)

preserved by the bisimulation.

Theorem Rely Bisim 4.4.1 asserts the validation of any rely steps taken in one state machine from

the perspective of the other state machine. More concretely speaking, the rely steps constructing

the rely surface between any s and s’ in Figure 4.8 must be matched by the rely surface between

any embedded state of s and s’, shown as s′
1 and s′

1, respectively, in Figure 4.8. These rely surfaces

are constructed against client interference determined by the token set defining capabilities of the

client. For example T (given as a value to the bisimulation relation instance) and T1 represent the

capabilities of the client at the states s and s1 in the state machines π and π′, respectively.

Theorem 4.4.1 (Rely Bisim)

∀s′.(s; T)
rely∗

⊑ π (s′; T) ↔ (∀s1,s′
1,T1 . ϵS(s, s1) → ϵS(s′, s′

1) → ϵT (T, T1) → (s1; T1)
rely∗

⊑ π′ (s′
1; T1)

Proof: First, we start by proving the implication from left to right.

∀s′.(s; T)
rely∗

⊑ π (s′; T) → (∀s1,s′
1,T1 . ϵS(s) = s1 → ϵS(s′) = s′

1 → ϵT (T, T1) → (s1; T1)
rely∗

⊑ π′ (s′
1; T1)

This direction requires us to show that knowing the validity of rely-steps taken from s reaching to s’

against a client interference with tokens T, which is, as we mentioned in the previous chapter, the

client token set for the initial state. This frame defines the rely surface (
rely∗

⊑ π) on the left matching

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

125

T (π) T (π
′)

S(π
′)S(π)

T

T1

s′

s

rely∗
⊑ π

rely∗
⊑

π′

s′
1s1

ϵS ϵS

T

ϵ
T

n

nn

Figure 4.8 Theorem Rely Bisim

the rely steps on the right — the steps constructing the surface
rely∗

⊑ π′ on the right.

As we know, our initial starting state, s of π, is open, and initial client token set, T, is an empty set.

With these values, our implication (shown in Figure 4.9)

∀s′.(opened; ∅)
rely∗

⊑ π (s′; ∅) → (∀s1,s′
1,T1 . ϵS(opened = s1 → ϵS(s′) = s′

1 → ϵT (∅, T1) → (s1; T1)
rely∗

⊑ π′ (s′
1; T1)

and by introducing the rely steps, we end up having the proof context with hypothesis

IHrtc : (opened; ∅)
rely∗

⊑ π (s′; ∅)

.

As we know,
rely∗

⊑ π is a reflexive-transitive closure of a single (inductive) rely (
rely
⊑ π) step

∀T1,T2 . T1 ## T (opened) ∪ T →

(opened; T1)
guar
⊑ π (s′; T2) →

(opened; T)
rely
⊑ π (s′; T)

that can be taken against the client capabilities represented by the token set T = ∅ without

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

126

T (π) T (π
′)

S(π
′)S(π)

∅

T1

s′

opened

rely∗
⊑ π

rely∗
⊑

π′

s′
1s1

ϵS
ϵS

∅
ϵ

T

n

nn

Figure 4.9 Fixed Frame Tokens and Initial State in Rely Bisim

violating any guarantee step taken by the client from the state opened with any capability —

HGlobalBoundryDom in Theorem Rely Bisim.

HGlobalBoundryDom : T1 ## T (opened) ∪ T where T = ∅

Again, we use induction to compute the rely-surface against the client with capabilities T. In Figure

4.10, we see the hypothesis Hframestep such that for any single rely-reachable valid state, y in Figure

4.10, from which we know that we can take other valid rely-steps to reach to the state, z, that is, the

source state of the guarantee step to be matched. With regard to the proof machinery, an induction

on IHrtc would change the proof state as shown in Figure 4.10: based on the knowledge of a single

rely-step taken from the initial state of the simulation, opened of π, to a state (y) from which we

know that taking the required rely-steps (the rely-surface between y and z) enables reaching from y

to z. In other words, the matching rely surface in the target state machine π′ is checked against any

rely step that builds the rely surface in the state machine π.

Base-Case be thought of as the case in which the rely step has both y and z as opened — intuitively

speaking, there is no iteration of a rely surface through a rely step taken to y. In the proof machinery,

a single reflexive transitive step (rtc_once) in the target state machine π′ at opened state with the

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

127

T (π) T (π
′)

S(π
′)S(π)

∅

T1

y

opened

rely
⊑ π

rely∗
⊑

π′

s′
1s1

ϵS
ϵS

∅
ϵ

T

n

nn

z

rely∗
⊑ π

Figure 4.10 Induction on Rely Bisim

knowledge T = ∅ and T (opened) = ∅ leaves the goal,

HBaseStembed0: ϵS(opened) = s1)

HBaseStembed1: ϵS(opened) = s′
1)

HTkembed: ϵT (∅, T1)

GoalBase: (s1; T1)
rely∗

⊑ π′ (s′
1; T1)

and applying the constructor of the inductive rely-step relation (Frame_step) with the universally

quantified tokens for the guarantee step as T1 = ∅ T2 = ∅, we end up having the premises of the

rely-step relation in the proof goal

Goal1: ∅##T (opened) ∪ ∅

Goal2: (opened; ∅)
guar
⊑ π (opened; ∅)

Inductive-Case

Hframestep: (opened; ∅)
rely
⊑ π (y; ∅)

Hframesteps: (y; ∅)
rely∗

⊑ π (z; ∅)

IIHrtc: ϵS(y) = s1 → ϵS(z) = s′
1 ∧ ϵT (∅, T1) ∧ (s1; T1)

rely∗

⊑ π′ (s′
1; T1)

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

128

and the goal

GoalInductive : ϵS(z) = s′
1 ∧ ϵT (∅, T1) ∧ (s1; T1)

rely∗

⊑ π′ (s′
1; T1)

As expected we would apply IIHrtc which leaves us with the following proof goal

Goalrtc1: ϵS(y) = s1

where we know that ϵS(s1) = x.

To do so, we need more information on the states. Inversion on Hframestep (then from the guarantee

step inside the rely-step relation) gives us

Hstep: (opened, T1)
guar.
⊑ π (y, T2)

Hdisj: T1##T (opened) ∪ ∅

Hlocaldisj: T (opened)##T1

Hprim: opened⇝ y

Hnextdisj: T (y)##T2

Hlocalpreserve: T (opened) ∪ T1 ≡ T (y) ∪ T2

we need to do inversion on the primitive step relation assumption, Hprim, which gives us a single

step taken from opened to either opened and to-flush of π, and leaves us to prove Goalrtc1 for both

y = opened and y = to-flush as shown in Figures 4.11a and 4.11b, respectively. In addition to the

cases shown in Figures 4.11a and 4.11b, we would also have the proof context for y = closed with the

frame step

Hframestep : (opened; ∅)
rely
⊑ π (y; ∅) where y = closed

such that after applying IIHrtc to the inductive goal GoalInductive we end up having each of the

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

129

(a) Rely Bisim Inductive Case opened
T (π) T (π

′)

S(π
′)S(π)

∅

T1

opened

opened

rely
⊑ π

rely∗
⊑

π′

s′
1s1

ϵS
ϵS

∅
ϵ

T

n

nn

z

rely∗
⊑ π

(b) Rely Bisim Inductive Case to-flush
T (π) T (π

′)

S(π
′)S(π)

∅

T1

to − flush

opened

rely
⊑ π

rely∗
⊑

π′

s′
1s1

ϵS
ϵS

∅
ϵ

T

n

nn

z

rely∗
⊑ π

Figure 4.11 Rely Bisim Inductive Cases

following proof obligations

GoalInductiveO : ∃s′
1
. ϵS(opened = s′

1 ∧ ϵT (∅, T1) ∧ (opened; T1)
rely∗

⊑ π′ (s′
1; T1)

GoalInductiveF : ∃s′
1
. ϵS(to − flush) = s′

1 ∧ ϵT (∅, T1) ∧ (opened; T1)
rely∗

⊑ π′ (s′
1; T1)

GoalInductiveC : ∃s′
1
. ϵS(closed) = s′

1 ∧ ϵT (∅, T1) ∧ (opened; T1)
rely∗

⊑ π′ (s′
1; T1)

These goals are trivial based on the following points:

• ϵS embeds closed of π to closed of π′

• and there is a client step from opened to closed so that we can apply framing (i.e. Frame_step)

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

130

in the goal with interferring token {cls} at source state opened and the ∅ at the destination

opened as shown in Figure 4.4b.

• For irrelevant cases in the goal such as ϵS(closed) = opened and ϵS(closed) = to − flush,

irrelevancy can be introduced (defined in Definition 7 Irrelevancy in Bisimulation) via specializing

Hlocaldisj and Hdisj with either wa or cls both of which are irrelevant to any client actions in

the bisimulation zone.

□

Chapter 4: An Attempt At STS Bisimulation 4.4 Rely in the Bisimulation

131

CHAPTER 5

INVARIANTS

In this chapter, we introduce the complete bisimulation relation is shown in Figure 5.1. On top of

the intuition we built with the proofs of Guarantee Bisim Theorem 4.3.1 and Rely Bisim Theorem

4.4.1, we introduce Guarantee (∼Guarantee) and Rely (∼Rely) laws in our bisimulation relation 5.1 which

decorate already discussed reasoning in these proofs with the the concept of invariant. The other

change in guarantee steps reasoning is that the laws of our bisimulation does not consider single

target guarantee step (
guar
⊑ π′) to be matched (discussed in Guarantee Bisim Theorem 4.3.1), but instead

it considers closure (
guar∗

⊑ π′) of target guarantee steps to be bisimulated.

M(π, π′, φ, φ′, s, T, U) =



ϵS : S(π) 7→ S(π′)
ϵT : T (π) 7→ T (π′)

∼Rely: ∀ s′. (s T)
rely∗

⊑ π (s′; T) ↔

(ϵS(s); ϵT (T))
rely∗

⊑ π′ (ϵS(s′); ϵT (T))

∼Guarantee: ∀ q′ . (ϵS(s); ϵT (T))
rely∗

⊑ π′ (ϵS(q′); ϵT (T)) →

∀ q′′, T′′ . (q′; ϵT (T))
guar∗

⊑ π′ (q′′; T′′) →

∃ s′ s′′ T0′ T0′′ . (s′; T0′)
guar∗

⊑ π (s′′; T0′′) ∧
ϵS(s′) = q′ ∧ ϵS(s′′) = q′′∧
(ϵT (T0′)) = (ϵT (T)) ∧
(ϵT (T0′)) = T′′ ∧ φ′(q′′) ⊢ φ(s′′)

∼Tolerance ∀ s′ . (s T)
rely∗

⊑ π (s′; T) ↔ φ(s′) ⊢ φ′(ϵS(s′))

Figure 5.1 Bisimulation Relation

132

5.1 Remarks on Invariants and Interacting with STS

Modern separation logics such as CaReSL 156 and Iris 91 provide logical mechanisms for accessing

and restoring invariants. To refer to an invariant, we define a function – state interpretation function

– that allows us to access the invariant associated with that state. For example, φfile as the state-

interpretation function for the state machine π in Figure 4.2a could be given for any file handle ℓ,

concrete file state fs ∈ N ∗ N describing a file’s status and identification, and file content (R : iProp Σ)

φdistributedfile (ℓ , R)(s) ≜



match s with

to − flush ⇒ R ∗ ∃ fs. isValidDirty(fs) ∗ ℓ 7→ (fs.id, fs.status = dirty)

opened ⇒ R ∗ ∃ fs. isValid(fs) ∗ ℓ 7→ (fs.id, clean)

closed ⇒ ∃ fs. isValidClosed(fs) ∗ ℓ 7→ (fs.id, closed)


φdistributedfile associates the abstract state s with a simple cocrete file state (fs) mentioned in an

invariant-per-state that represents the file content (e.g., isValidClean) and the fact specific to the

file’s status (e.g.,clean). Because it is connecting the physical state to an abstract one used in the

specification, defining the state interpretation is the first essential step to check client code follows

the specification encoded as state machines, but then we need to define the constructions and rules

defining the protocol and orchestrating accessibility to it.

Representing STS Invariants in Iris We already gave a definition for

s; T
n

π
≈ ∃s′. s⇝∗ s′ ∧ φ(s′) ∧ RegionOwned(n, T (s′)) ∧ LocalToks(T)

which asserts that an invariant holds the persistent truth per state (s ∈ S), and make it accessible

via an state interpretation function (φ Legend 19 in Figure 4.1). In this definition from CaReSL

156, token ownership of the state machine and the client are explicitly and separately mentioned

in the predicates RegionOwned and LocalToks, respectively. In Iris 91, we dismantle what s; T
π

Chapter 5: Invariants 5.1 Remarks on Invariants and Interacting with STS

133

STSAlloc
φ(s)⇛ ∃γ. φ

γ

π
∗ s; AllTokens \ T (s) γ

STSOpen

φ
γ

π
∗ s; T γ

⇛ (∃ s′. ⌜(s0, T)
rely∗

⊑ π (s′, T)⌝ ∗ φ(s) ∗ ∀sl′, T′. ⌜(s′, T)
guar.∗

⊑ π (sl′, T′)⌝ ∗ φ(sl′)⇛ sl; T′ γ
)

Figure 5.2 Iris STS Library 91 simplified with later modality and invariant masks omitted

semantically asserts in such a way that the boxed assertion

φ
γ

π
≜ ∃ s. φ(s) ∗ sts_auth(s, ∅, γ, π)

both controls the access to the invariant via holding the state machine’s authorative ownership,

sts_auth, and the invariant itself accessed for a state s via the state interpretation (φ). The

authorative ownership, as shown sts_auth(s, ∅, γ, π), is always inside the invariant (φ
γ

π
, and once

it is accessed it does not allow any other permissible steps via any capability by setting the token set

to ∅. As a, the boxed assertion definition we gave early in this part of the thesis, which considers

permissible steps by referring to the capabilities represented by T in it, is different than how Iris

encodes STS invariants.

Fragmental Tokens for Invariant Access Fragmental ownership of tokens, s; T γ (shown in

Legend 9 and 23 for rely and guaratee relations, respectively), leaves the client with capabilities that

enable borrowing the resources which are accessed in an atomic program action and represented with

φ(s) and Inv(s) respectively (shown in Legend 9 and 23 for rely and guaratee relations, respectively),

and step into a new state (for example, s′ in the definition given in Section 2.1) in which we can

restore the invariant.

We refer to invariants of a system per state; for example, a file’s dirty bit in the to − flush state is

set. To do so, we use an interpretation of a state ϕ, which is a function of a state to a proposition

representing the invariant holding on the state. Legend 9 in Figure 4.1 shows this association: s; T
π

contains an invariant (Inv) in state s represented by φ.

Chapter 5: Invariants 5.1 Remarks on Invariants and Interacting with STS

134

Rules for Allocating, Opening and Closing STS Invariants The rules shown in Figure 5.2

allow for the allocation (STSAlloc) and access (STSOpen) of resources represented with state

machine invariants. Introducing an invariant holding at the state s – φ(s) – can be done by a

view-shift in the ghost state that puts the invariant and associated authorative ownership under

φ
γ

π
and reveals all the capabilities that the state machine does not hold at the state s to the client

through fragmental ownership – s; AllTokens \ T (s) γ – under a new name γ. Accessing the invariant

inside the state machine, requires the considering client interference, s; T γ to infer the next sound

state sl at which the invariant can be restored, and into which client can take a step sl; T′ γ . As we

discuss in the previous chapter, soundness is ensured by the rely

(s0, T)
rely∗

⊑ π (s′, T)

and the guaratee

(s′, T)
guar.∗

⊑ π (sl′, T′)

relations.

5.2 Tolerance of Invariants

The first extension in our bisimulation relation in Figure 5.1 focuses on how we relate invariants of

one machine to another against a client interference to the other machine – the law of Tolerance in

Figure 5.1. In other words, with the invariant tolerance, we view the interference as occuring in the

bisimulation target, the actual resources owned in the bisimilar states (s′ and ϵS(s)′) justify the same

actions, as shown in Figure 5.3.

For every possible state in the original rely, the postcondition of rely-moves to that state must imply

the rely-moves of the corresponding transitions in the target state state machine (we already know

from above that those transitions exist – the law of Rely in Figure 5.1). To speak concretely, we

already gave the state interpretation function, φdistributedfile, for the state machine π. An expected

Chapter 5: Invariants 5.2 Tolerance of Invariants

135

T (π)
T

Inv(s′)

⊢

S(π)

s

φ

S(π
′)

Inv(ϵS (s′))

φ
′

s′

rely∗
⊑ π

ϵS

Figure 5.3 Tolerance of Invariants with initial state s as opened

interpretation function of the state machine for the traditional file protocol, π′, would be

φfile ℓ R s ≜


match s with

opened ⇒ R ∗ ∃ fs. isValid(fs) ∗ ℓ 7→ (fs.id, fs.status = clean ∨ dirty)

closed ⇒ ∃ fs. isValidClosed(fs) ∗ ℓ 7→ (fs.id, fs.status = closed)


which is simply φdistributedfile the state to-flush removed. Then, the interesting case for the proof would

be

(opened, T)
rely∗

⊑ π (to − flush, T) → φdistributedfile(to − flush) ⊢ φopened(opened)

Having isValid weaker than isValidDirty makes

φdistributedfile(to − flush) ⊢ φopened(opened)

proven.

5.3 Invariants against Guarantee-Step Bisimulation

Unlike what we discuss in Section 4.3 for Theorem Guarantee Bisim 4.3.1 where the bisimulation

relation for the guarantee steps does not consider invariants, here with the law of Guarantee in Figure

5.1, we incorporate the invariants to the bisimulation relation. We need to ensure that actions that

Chapter 5: Invariants 5.3 Invariants against Guarantee-Step Bisimulation

136

T (π) T (π
′)

S(π)

S(π
′)

s

T

T ′′
0

q′

T ′
0

q

q′′

ϵS

rely∗
⊑

π′

T ′

ϵ
T

T ′′

ϵ
T

s′s′′ ϵS

Inv(q
′′)Inv(s

′′)

guar
⊑ π

guar.
⊑

π′

ϵS

ϵ
T

n
n + 1 n + 1

n + 1n + 1

⊢

φ φ′

Figure 5.4 Invariants against Guarantee-Step Bisimulation

establish a certain postcondition for a target STS step also establish a corresponding postcondition

for a source STS step. The law of Gurantee asserts that the corresponding local steps ensures that

for every possible transition in the submodel guarantee, its postcondition implies the existence of

a corresponding transition in the original which we already discussed in depth in Section 4.3 for

Theorem Guarantee Bisim. The correspondence of the guarantee steps is valid with respect to the

starting state in the target which is determined by the rely relation considering the plausible client

interference

(q; T ′)
rely∗

⊑ π′ (q′; T ′)

in the law of Guarantee in Figure 5.1.

Regarding the invariants, the law of Guarantee asserts that the invariant holding at the post state

(shown as s′′ in Figure 5.4) is implied by the post-state on the target machine (shown as q′′ in Figure

5.4).

Chapter 5: Invariants 5.3 Invariants against Guarantee-Step Bisimulation

137

CHAPTER 6

PROGRAM LOGIC

The motivation for bisimulation in modal logic is to describe the cases where two Kripke models

are indistinguishable by any modal formula. Here, our goal is similar: two STSes in bisimulation

should be indistinguishable within the program logic: programs verifiable against one should be

verifiable against the other. This chapter introduces the logical machinery required to incorporate

the bisimulation relation explained in Chapters 5 and 4 into a program logic so that we can ensure

that a client’s correctness is indistinguishable with respect to two specifications encoded as state

machines that are bisimilar to each other via the bisimulation relation shown in Figure 5.1.

6.1 Soundness of Invariants

Before explaining how we integrate the bisimulation relation with a program logic, specifically Iris, it

is worth explaining how we take a step in the specifications encoded as STSes, i.e., Rule UpdIsl

briefly mentioned in Section 2.1.

UpdIsl

α physically atomic

∀s0 . ((s; T)
rely∗

⊑ π (s0; T)) ⊢ {φ(s0) ∗ P} α {∃s′ , T′ . (s0; T)
guar∗

⊑ π (s′; T′) ∗ φ(s′) ∗ Q}

φ
γ

π
⊢ { s; T γ ∗ P} α {∃ s′, T′. s′; T′ γ

∗ Q}

The rule UpdIsl asserts the validity of any client action α specificied with the state machine π such

that the behaviour of atomic action is allowed with respect to the client interference at the state s

with the capabilities T . The client action must comply with the precondition for any rely reachable

138

state(s0)

∀s0 . (s; T)
rely∗

⊑ π (s0; T)

and the post-condition requires the existence of guarantee reachable state (s′) from any state the

rely reachable state in the pre-condition. Then, the invariant of s′ needs to be establised.

Island Update and Validity of Bisimulation Relation The island update rule is the main

way to validate programs advancing an STS, so one way to let clients of one STS use another is to

translate their proofs, and that finding a way to translate uses of island update is one way to do that.

We prove the validity of these theorems within the bisimulation relation in Figure 5.1 against the

rule UpdIsl. In Island Update Invariance 6.1.1, we want to prove, abstractly, that any island update

performed by Rule UpdIsl in terms of the target STS (π′) is valid in terms of the original STS (π).

Intuitively, we’d like to think of an update in terms of the sub-STS as equivalent to a combination

of consequence, and island update on the original. In terms of the theorem stated, considering any

state q that embeds the initial state of bisimulation, ϵS(s) = q, if there exist states reachable via

arbitrary interference and a single step on the target machine π′, shown as q′ and q′′, respectively,

then there exists a corresponding sequence of interference plus a single step in the source machine π.

Theorem 6.1.1 (Island Update Invariance)

∀ π , π′ , φ , φ′ , s , T , U (∼: M π π′ φ φ′sT U)

∀ q′ , q′′ T′′. (ϵS(s); ϵT (T))
rely∗

⊑ π′ (q′; ϵT (T)) →

(q′; ϵT (T))
guar
⊑ π′ (q′′; ϵT (T′′))∧

∃ s′ T0. (s; T)
rely∗

⊑ π (s′; T)∧

∃ s′′ , T1. (s′; T0)
guar
⊑ π (s′′; T1) ∧ ϵS(s′′) = q′′ ∧ T1 ≡ T′′

Proof: Specializing ∼Rely and specializing the right-to-left direction of the rely law with the

assumption

(ϵS(s); ϵT (T))
rely∗

⊑ π′ (q′; ϵT (T))

Chapter 6: Program Logic 6.1 Soundness of Invariants

139

proves the goal

∃ s′ T0. (s; T)
rely∗

⊑ π (s′; T)

with required existentials.

∃ s′′ , T1. (s′; T0)
guar
⊑ π (s′′; T1)

follows from proper specialization of ∼Guarantee of M. □

T (π) T (π
′)

S(π)

S(π
′)

s

T

T1

q′

T0

q

q′′

ϵS

rely∗
⊑

π′

T ′

ϵ
T

T ′′

ϵ
T

s′s′′
ϵS

Inv(φ
′)Inv(φ)

guar
⊑ π

guar
⊑

π′

ϵS

ϵ
T

n
n + 1 n + 1

n + 1n + 1

⊢φ
φ′

rely∗
⊑ π

Figure 6.1 Soundness of Bisimulation against Rule UpdIsl

Matching rely steps abstracts the admissible client interference on each state machine (e.g. s; T γ),

i.e. the piece of specification changed by Rule UpdIsl. In fact, Theorem Island Update Invariance

6.1.1 asserts the valid transfer of rely-steps, in other words frames in the proof rules, such that once

this validity satisfied, we have the right context to transfer the proof knowledge for the local steps,

i.e. matching of the guarantee steps. Looking at the proof of Theorem Island Update Invariance 6.1.1

shown in Figure 6.1 pictorially, we see the frames – transferred rely-steps – as rely surfaces (dashed

surfaces in Figure 6.1) between s and s′ in the source state machine, and between q and q′ in the

target state machine π′ in Figure 6.1. These rely surfaces ensure the validity of corresponding local

steps taken which are shown as guarantee surfaces between s′ and s′′ in the source state machine π,

and between q′ and q′′ in the target state machine π′ whose corresponding start and end states are

Chapter 6: Program Logic 6.1 Soundness of Invariants

140

bisimulated.

6.2 An STS Aware Client Specfication

At this point, after understanding the validity of updates on the bisimulated protocols (designed as

STSes) used to specify a program action, we can utilize this understanding in transferring a known

proof for a program specified with an STS to the verification of the same program specified with

another bisimilar STS. In particular, we construct a client proof specified with the source state

machine out of the proof of the client specified with the target state machine that is bisimilar to the

source state machine.

Our approach is to first associate specifications using bisimilar state machines with a subset of

program actions in Iris HeapLang, excluding function and recursion. Since Iris relates specifications

with the program actions to the weakest-precondition

P −∗ WP e @ S ; E{{ Q }}

with the pre-condition P and the post-condition specifying the program state after executing the

program action e. Our proof rule would have the form

{ P ∗ Psttarget ∗ R } −∗ WP e @ S ; E{{ Q ∗ Qsttarget ∗ R }} ⊢

{ P ∗ Pstsource ∗ R } −∗ WP e @ S ; E{{ Q ∗ Qstsource ∗ R }}

Iris weakest-preconditions themselves are ordinary propositions, consequently, if we encode the proof

rule for transferring a proof with target state machine to a proof with source state machine in terms

of Iris weakest-preconditions, we cannot treat the proof referring to the target state machine

{ P ∗ Psttarget ∗ R } −∗ WP e @ S ; E{{ Q ∗ Qsttarget ∗ R }}

as a data to be utilized to construct the proof with the source state machine because Iris weakest-

Chapter 6: Program Logic 6.2 An STS Aware Client Specfication

141

preconditions are encoded as this implication, which cannot be directly inspected in Coq. So, with

our specifications, we need to be able to treat specifications as data structures for another proof

construction.

To do so, we introduce an inductive specification definition, Stsp

Stsp

Iris WP Machinery︷ ︸︸ ︷
S E N π︸︷︷︸

STS

STS Ghost Nominal︷︸︸︷
γ φ︸︷︷︸

STS Invariant

Client State Token︷︸︸︷
s T G︸︷︷︸

STS Context

P Pst

Program︷︸︸︷
e Qst Q

which bookkeeps STS relavant specification exclusively. Concretely speaking, we can think of Stsp as

Iris weakest-precondition

P −∗ WP e @ S E {{v, Q v}}

decorated with a state machine name (π), state interpratation function (φ), a nominal for the

ownership of the token resources of the client (γ), the current state (s) and token capabilities (T)

that are used to refer to the state machine π from the client view, and most notably

• G: which is the Iris persistent predicate context made explicit on Stsp for φ
γ

π

• Pst: which is the pre-condition bookkeeping the client token ownership – s; T γ

• Qst: which is the post-condition bookkeeping the client token ownership

Explicit Bookkeeping of STS Relevant Specification We specify a subset of Iris HeapLang

program actions in Figure 6.2. Some of these rules such as the rule of consequence (Stsp_conseq), the

rule of frame (Stsp_frame and the rule for island-update (Stsp_island) requires explicit bookkeeping

of how STS related pieces of the specification (G, Pst, and Qst) should behave structurally for the

rules frame and consequence, and behaviourly against the execution of the program execution. The

rule for island update requires the knowledge

 ∀ s0 . (s, T)
rely∗

⊑ π (s0; T) −∗ (φ(s0)) ∗ P −∗

(WP e @ S ; (E\ ↑ N){{ v , Q v ∗ ∃ (s′ , T ′ . ⌜(s0; T)
guar∗

⊑ π (s′; T′)⌝ ∗ (φ(s′))}}))



Chapter 6: Program Logic 6.2 An STS Aware Client Specfication

142

Stsp (S : stuckness) (E : coPset) (N : namespace) (π: stsT) (γ: gname) φ s T :
∀ G . iProp Σ → iProp Σ → expr → iProp Σ → (val → iProp Σ) → Prop ≜

Stsp_conseq : ∀ G (P P′ : iProp Σ) (Pst Qst : iPropΣ) (Q Q′ : val → iProp Σ) e .
∀ Pst′ Qst′ . (P ⊢ P′) → (∀ v . (Q′ v ⊢ Q v)) → (Pst ⊢ Pst′) → (Qst′ ⊢ Qst) →

Stsp S E N π γ φ s T G P′ Pst′ e Qst′ Q′ →
Stsp S E N π γ φ s T G P Pst e Qst Q

Stsp_frame : ∀ G (P R : iProp Σ) (Pst Qst : iProp Σ) (Q : val → iPropΣ) e .
Stsp S E N π γ φ s T G P Pst e Qst Q →

Stsp S E N π γ φ s T G(R ∗ P) Pst e Qst (λ v , Q v ∗ R)
Stsp_write : ∀ G Pst Qst ℓ (v v′ : val) . (Pst ⊢ Qst) →

Stsp S E N π γ φ s T G (ℓ 7→ v) Pst (Store ℓ v′) Qst (λ_ , (ℓ 7→ v′))
Stsp_read : ∀ G Pst Qst ℓ (v : val), (Pst ⊢ Qst) →

Stsp S E N π γ φ s T G (ℓ 7→ v) Pst (Load ℓ) Qst (λ r , (⌜r = v⌝ ∗ ℓ 7→ v))
Stsp_alloc : ∀ G Pst Qst v . (Pst ⊢ Qst) →

Stsp S E N π γ φ s T G (⌜ ⊤ ⌝) Pst (Alloc v) Qst (λ r , (∃ ℓ . ⌜r = ℓ⌝ ∗ ℓ 7→ v))
Stsp_free : ∀ G Pst Qst ℓ v . (Pst ⊢ Qst) →

Stsp S E N π γ φ s T G (ℓ 7→ v) Pst (Free ℓ) Qst (λ r , (⌜r = () ∗ ⊤))
Stsp_xchg : ∀ G Pst Qst ℓ v v′ . (Pst ⊢ Qst) →

Stsp S E N π γ φ s T G (ℓ 7→ v′) Pst (Xchg ℓ v) Qst (λ r , (⌜r = v′⌝ ∗ ℓ 7→ v))
Stsp_cmpxchg_fail : ∀ G Pst Qst ℓ dq v′ v1 v2 .

(Pst ⊢ Qst) → v′ ̸= v1 → vals_compare_safe v′ v1 →(
Stsp S E N π γ φ sT G (ℓ 7→dq v′) Pst

(CmpXchg ℓ v1 v2)
Qst (λ r , (⌜r = (v′ , false)⌝ ∗ ℓ 7→dq v′))

)
Stsp_cmpxchg_suc : ∀ G Pst Qst ℓ v1 v2 v′ .

(Pst ⊢ Qst) → v′ = v1 → vals_compare_safe v′ v1 → StspS E N π γ φ s T G
(ℓ 7→ v′) Pst

(CmpXchg ℓ v1 v2)
Qst (λ r , (⌜r = (v′ , ⊤⌝) ∗ ℓ 7→ v2)


Stsp_island : ∀ e (P : iProp Σ) (Q : val → iProp Σ) .(

∀ s0 . (s, T)
rely∗

⊑ π (s0; T) −∗ (φ(s0)) ∗ P −∗

(WP e @ S ; (E\ ↑ N){{ v , Q v ∗ ∃ (s′ , T ′ . ⌜(s0; T)
guar∗

⊑ π (s′; T′)⌝ ∗ (φ(s′))}}))

)
→ Stsp S E N π γ φ s T φ

γ

π
e P (s; T γ) (∃ s′ T′. s′; T′ γ) Q

Figure 6.2 The Definition of Stsp for a Set of Program Actions in Iris HeapLang

on how we change the client’s view of STS in the precondition Pst ≜ (s; T γ) at the state s′ (a

locally reachable) satisfying φ. The frame and consequence rules do not only change the ordinary

pre- and post-conditions, P and Q, respectively, but also Pst and Qst structurally by weakening and

framing.

Soundness of Stsp As mentioned, Stsp is a decorated weakest precondition of Iris. In other words

Stsp can be restated in terms of Iris weakest-precondition – Theorem Stsp Soundness 6.2.1.

Chapter 6: Program Logic 6.2 An STS Aware Client Specfication

143

Theorem 6.2.1 (Stsp Soundness)

∀ S E N π γ φ s T G P Pst e Qst Q.

⌜↑ N ⊆ E⌝ −∗ ⌜Stsp S E N π γ φ s T G P Pst e Qst Q⌝ −∗

(□ G ∗ P) ∗ Pst −∗ WP e @ S ; E{{ v , Q v ∗ Qst}}

Proof: Induction on

Stsp S E N π γ φ s T G P Pst e Qst Q

leaves us to prove the weaksest precondition for each of Stsp constructors. Most cases follow directly

from the inductive hypotheses, and the interesting ones that are worth discussing would be

• Case-Consequence. Induction leaves us with the inductive hypothesis

IH : Stsp S E N π γ φ s T G P′ Pst′ e Qst′ Q′

which we can apply to the goal after application of weakest precondition weakening (wp_mono).

• Case-Island-Update. Application of Rule UpdIsl.

□

6.3 Proof Rules

At this point, we have enough logical machinery we need to construct a proof

Stsp S EN θ γ φ s T φ
γ

π
P s; T γ

e (∃ s′ , T′ . s′; T′ γ) Q

of a program (e) using a state macine – source state machine π – out of another proof for the same

program

Stsp S EN θ γ φ′ ∼ .ϵS(s) ∼ .ϵT (T) φ′
γ

θ
P ∼ .ϵS(s); ∼ .ϵT (T) γ

e (∃ s′ , T′ . s′; T′ γ) Q

Chapter 6: Program Logic 6.3 Proof Rules

144

using another state machine – target state machine θ – that is bisimlar to the source state machine.

We present a proof rule Theorem Stsp Bisim 6.3.1 which considers the proof transfer through the

bisimulation of source and target machines.

Theorem 6.3.1 (Stsp Bisim)

∀γ π θ φ φ′ N T U S E s G P e Q

(∼: M π θ φ φ′ s T U).

Stsp S E N θ γ φ′ ∼ .ϵS(s) ∼ .ϵT (T) φ′
γ

θ
P ∼ .ϵS(s); ∼ .ϵT (T) γ

e (∃ s′ , T′ . s′; T′ γ) Q →

Stsp S E N π γ φ s T φ
γ

π
P s; T γ

e (∃ s′ , T′ . s′; T′ γ) Q

Proof: We start with the proof context including the proof of the program with the target state

machine (IHθ) and, the input of knowledge needed for utilizing the bisimulation relation (BisimInput)

IHθ : Stsp S E N θ γ φ′ ∼ .ϵS(s) ∼ .ϵT (T) φ′
γ

θ
P ∼ .ϵS(s); ∼ .ϵT (T) γ

e (∃ s′ , T′ . s′; T′ γ) Q

Induction on the IHθ would leave us with the proof context with the target-proof constructed for each

of the program actions and the proof goal as the proof to be constructed for source-state machine

for the relevant case. All the cases are trivial by application of the relevant proof constructor, e.g.,

Stsp_frame in Figure 6.2. The interesting case in the proof is for the island update case follows from

applying the Stsp constructor for island update, then applying the island update invariance theorem

(Island Update Invariance 6.1.1) to transfer the assumptions from the target to the source.

□

6.4 Transferring the Proof of a File Protocol Client

Regarding the file write operation with respect to our traditional and distributed file protocols shown

in Figure 4.3. Knowing the proof of write operation writing the value vn to the file ℓ against the

Chapter 6: Program Logic 6.4 Transferring the Proof of a File Protocol Client

145

traditional file protocol

Stsp S E N γ φfile (ℓ 7→ vp) ϵS(opened) ϵT (∅) P ϵS(opened); ϵT (∅) γ

write ℓ vn

(∃ s′ , T′ . s′; T′ γ) (ℓ 7→ vn)

we can construct the proof of the same operation against the distributed file protocol

Stsp S E N γ φdistributedfile (ℓ 7→ vp) opened ∅ P opened; ∅ γ

write ℓ vn

(∃ s′ , T′ . s′; T′ γ) (ℓ 7→ vn)

by our proof rule in Stsp Bisim 6.3.1.

Chapter 6: Program Logic 6.4 Transferring the Proof of a File Protocol Client

146

CHAPTER 7

CONCLUSION,CONTINUING AND FUTURE WORK

7.1 Continuing Work

Extending the Support for Stsp This work currently goes in the direction of extending our Stsp

structure to support more HeapLang actions – light-weight Iris integration. However, we also would

like to explore more directions in Iris integration.

Continuing Work: Restricted Submodels Our intention is to exploit restricted submodel

whose definition (Definition Restricted Submodel) we mention in Section 2.3. In fact, we already made

our first attempt to give a bisimulation definition whose laws are concerned with witheld tokens in

Figure 7.1.

M(π, π′, φ, φ′, s, T, U) =



ϵS : S(π) 7→ S(π′)
ϵT : T (π) 7→ T (π′)
H : U ⊆ T

∼Rely: ∀ s′ . (s T)
rely∗

⊑ π (s′; T) ↔

(ϵS(s); ϵT (T \ U))
rely∗

⊑ π′ (ϵS(s′); ϵT (T \ U))

∼Guarantee: ∀ q′ . (ϵS(s); ϵT (T \ U))
rely∗

⊑ π′ (ϵS(q′); ϵT (T \ U)) →

∀ q′′, T′′. (q′; ϵT (T \ U))
guar∗

⊑ π′ (q′′; T′′) →

∃ s′ s′′ T0′ T0′′. (s′; T0′)
guar∗

⊑ π (s′′; T0′′) ∧
ϵS(s′) = q′ ∧ ϵS(s′′) = q′′ ∧
(ϵT (T0′ \ U)) = (ϵT (T \ U)) ∧
(ϵT (T0′ \ U)) = T′′ ∧ φ′(q′′) ⊢ φ(s′′)

∼Tolerance ∀ s′ . (s T)
rely∗

⊑ π (s′; T) ↔ φ(s′) ⊢ φ′(ϵS(s′))

Figure 7.1 Bisimulation Relation Concerned with Witheld Tokens

147

By using this bisimulation relation, we want prove the proof rule (Theorem Stsp BisimSub 7.1.1)

which considers the existence of the set of witheld tokens U. To speak concretely, assume a state

machine specifying a stack library – πstack. Restricting πstack with respect to the push token yields

an STS without any transitions corresponding to pushing — an STS for a pop-only stack. Thus the

push token can (in principle) be framed away, and the stack used with code (for example, passed to

procedures) verified against a smaller STS with less interference — one with stronger postconditions

than one verified agains the original stack STS, but requiring fewer capabilities to invoke. The

negative consequence of this is that naïvely the internal assertions of the “subtyped” code may not

be stable against the interference of the “full” STS.

Theorem 7.1.1 (Stsp BisimSub)

∀γ π θ φ φ′ N T U S E s G P e Q

(∼: M π θ φ φ′ s T U).

Stsp S EN θ γ φ′ ∼ .ϵS(s) ∼ .ϵT (T) φ′
γ

θ
P ∼ .ϵS(s); ∼ .ϵT (T) γ

e (∃ s′ , T′ . s′; T′ γ) Q →

Stsp S EN θ γ φ s T φ
γ

π
P s; T γ

e (∃ s′ , T′ . s′; T′ γ) Q

7.2 Future Work

More Experiments In the future more examples should be explored to better test the limits of

the approach or something like that.

Generalized Specifications RG-STS specifications use STSes which themselves are partial

commutative monoids (PCM). We would like to explore whether we can generalize the principles

in this thesis to a generalized concept of specification using (PCM)s. The bisimulation relation we

present in this thesis is a particular form of homomorphism, but the generalization effort requires more

exploration of the specification mapping than the bisimulation relation presented, e.g., homomorphisms

between Kripke models. Once we achieved generalization, we would be able to apply the generalized

version of the principles founded in this thesis to a wider range of programs with specifications using

Chapter 7: Conclusion,Continuing and Future Work 7.2 Future Work

148

different PCMs.

Chapter 7: Conclusion,Continuing and Future Work 7.2 Future Work

149

Part IV

Modal Concurrent Memory Management

150

CHAPTER 1

BACKGROUND

In this chapter we recall the general concepts of read-copy-update concurrency. We use the RCU

linked-list-based bag122 in Listings 1.1 and 1.2 as a running example. It includes annotations for our

type system, which will be explained in Section 3.2.

1 struct BagNode{

2 int data;

3 BagNode<rcuItr> Next;

4 }

5 BagNode<rcuRoot> head;

6 void add(int toAdd){

7 WriteBegin;

8 BagNode nw = new;

9 {nw: rcuFresh{}}

10 nw.data = toAdd;

11 {head: rcuRoot, par: undef, cur: undef}

12 BagNode<rcuItr> par,cur = head;

13 {head: rcuRoot, par: rcuItrϵ{}}

14 {cur: rcuItr ϵ {}}

15 cur = par.Next;

16 {cur: rcuItr Next {}}

151

17 {par: rcuItr ϵ {Next 7→ cur}}

18 while(cur.Next != null){

19 {cur: rcuItr (Next)k.Next {}}

20 {par: rcuItr (Next)k {Next 7→ cur}}

21 par = cur;

22 cur = par.Next;

23 {cur: rcuItr (Next)k.Next.Next {}}

24 {par: rcuItr (Next)k.Next {Next 7→ cur}}

25 }

26 {nw: rcuFresh {}}

27 {cur: rcuItr (Next)k.Next {Next 7→ null}}

28 {par: rcuItr (Next)k {Next 7→ cur}}

29 nw.Next= null;

30 {nw: rcuFresh {Next 7→ null}}

31 {cur: rcuItr (Next)k.Next {Next 7→ null}}

32 cur.Next=nw;

33 {nw: rcuItr (Next)k.Next.Next {Next 7→ null}}

34 {cur: rcuItr (Next)k.Next {Next 7→ nw}}

35 WriteEnd;

36 }

Listing 1.1 RCU client-Add: singly linked list based bag implementation.

1 void remove(int toDel){

2 WriteBegin;

3 {head: rcuRoot, par : undef, cur: undef}

4 BagNode<rcuItr> par,cur = head;

5 {head: rcuRoot, par: rcuItr ϵ {}, cur: rcuItr ϵ {}}

Chapter 1: Background

152

6 cur = par.Next;

7 {cur: rcuItr Next {}}

8 {par: rcuItr ϵ {Next 7→ cur}}

9 while(cur.Next != null&&cur.data != toDel)

10 {

11 {cur: rcuItr (Next)k.Next {}}

12 {par: rcuItr (Next)k {Next 7→ cur}}

13 par = cur;

14 cur = par.Next;

15 {cur: rcuItr (Next)k.Next.Next {}}

16 {par: rcuItr (Next)k.Next {Next 7→ cur}}

17 }

18 {nw: rcuFresh{}}

19 {par: rcuItr (Next)k {Next 7→ cur}}

20 {cur: rcuItr (Next)k.Next {}}

21 BagNode<rcuItr> curl = cur.Next;

22 {cur: rcuItr (Next)k.Next {Next 7→ curl}}

23 {curl: rcuItr (Next)k.Next.Next {}}

24 par.Next = curl;

25 {par: rcuItr (Next)k {Next 7→ curl}}

26 {cur: unlinked}

27 {cur: rcuItr (Next)k.Next {}}

28 SyncStart;

29 SyncStop;

30 {cur: freeable}

31 Free(cur);

32 {cur: undef}

Chapter 1: Background

153

33 WriteEnd;

34 }

Listing 1.2 RCU client-Remove: singly linked list based bag implementation.

As with concrete RCU implementations, we assume threads operating on a structure are either

performing read-only traversals of the structure — reader threads — or are performing an update

— writer threads — similar to the use of many-reader single-writer reader-writer locks.1 It differs,

however, in that readers may execute concurrently with the (single) writer.

This distinction, and some runtime bookkeeping associated with the read- and write-side critical

sections, allow this model to determine at modest cost when a node unlinked by the writer can safely

be reclaimed.

Figure 1.1 and Figure 1.2 gives the code for adding and removing nodes from a bag respectively. Type

checking for all code, including membership queries for bag, can be found in our technical report104

Appendix D. Algorithmically, this code is nearly the same as any sequential implementation. There

are only two differences. First, the read-side critical section in member is indicated by the use of

ReadBegin and ReadEnd; the write-side critical section is between WriteBegin and WriteEnd. Second,

rather than immediately reclaiming the memory for the unlinked node, remove calls SyncStart to

begin a grace period — a wait for reader threads that may still hold references to unlinked nodes to

finish their critical sections. SyncStop blocks execution of the writer thread until these readers exit

their read critical section (via ReadEnd). These are the essential primitives for the implementation of

an RCU data structure.

These six primitives together track a critical piece of information: which reader threads’ critical

sections overlapped the writer’s. Implementing them efficiently is challenging48, but possible. The

Linux kernel for example finds ways to reuse existing task switch mechanisms for this tracking, so

readers incur no additional overhead. The reader primitives are semantically straightforward – they
1RCU implementations supporting multiple concurrent writers exist 10, but are the minority.

Chapter 1: Background

154

atomically record the start, or completion, of a read-side critical section.

The more interesting primitives are the write-side primitives and memory reclamation. WriteBegin

performs a (semantically) standard mutual exclusion with regard to other writers, so only one writer

thread may modify the structure or the writer structures used for grace periods.

SyncStart and SyncStop implement grace periods 136: a mechanism to wait for readers to finish with

any nodes the writer may have unlinked. A grace period begins when a writer requests one, and

finishes when all reader threads active at the start of the grace period have finished their current

critical section. Any nodes a writer unlinks before a grace period are physically unlinked, but not

logically unlinked until after one grace period.

An attentive reader might already realize that our usage of logical/physical unlinking is different

than the one used in data-structures literature where typically a logical deletion (marking/unlinking)

is followed by a physical deletion (free). Because all threads are forbidden from holding an interior

reference into the data structure after leaving their critical sections, waiting for active readers to

finish their critical sections ensures they are no longer using any nodes the writer unlinked prior to

the grace period. This makes actually freeing an unlinked node after a grace period safe.

SyncStart conceptually takes a snapshot of all readers active when it is run. SyncStop then blocks until

all those threads in the snapshot have finished at least one critical section. SyncStop does not wait for

all readers to finish, and does not wait for all overlapping readers to simultaneously be out of critical

sections.

To date, every description of RCU semantics, most centered around the notion of a grace period,

has been given algorithmically, as a specific (efficient) implementation. While the implementation

aspects are essential to real use, the lack of an abstract characterization makes judging the correctness

of these implementations – or clients – difficult in general. In Section 2 we give formal abstract,

operational semantics for RCU implementations – inefficient if implemented directly, but correct

from a memory-safety and programming model perspective, and not tied to the low-level RCU

implementation details. To use these semantics or a concrete implementation correctly, client code

Chapter 1: Background

155

must ensure:

• Reader threads never modify the structure

• No thread holds an interior pointer into the RCU structure across critical sections

• Unlinked nodes are always freed by the unlinking thread after the unlinking, after a grace

period, and inside the critical section

• Nodes are freed at most once

In practice, RCU data structures typically ensure additional invariants to simplify the above, e.g.:

• The data structure is always a tree

• A writer thread unlinks or replaces only one node at a time.

and our type system in Section 3 guarantees these invariants.

Chapter 1: Background

156

CHAPTER 2

SEMANTICS

In this chapter, we outline the details of an abstract semantics for RCU implementations. It captures

the core client-visible semantics of most RCU primitives, but not the implementation details required

for efficiency124. In our semantics, shown in Figure 2.1, an abstract machine state, MState, contains:

• A stack s, of type Var × TID ⇀ Loc

• A heap, h, of type Loc × FName ⇀ Val

• A lock, l, of type TID ⊎ {unlocked}

• A root location rt of type Loc

• A read set, R, of type P(TID) and

• A bounding set, B, of type P(TID)

The lock l enforces mutual exclusion between write-side critical sections. The root location rt is

the root of an RCU data structure. We model only a single global RCU data structure, as the

generalization to multiple structures is straightforward but complicates formal development later in

the paper. The reader set R tracks the thread IDs (TIDs) of all threads currently executing a read

block. The bounding set B tracks which threads the writer is actively waiting for during a grace

period — it is empty if the writer is not waiting.

Figure 2.1 gives operational semantics for atomic actions; conditionals, loops, and sequencing all have

standard semantics, and parallel composition uses sequentially-consistent interleaving semantics.

157

α ::= skip | x.f = y | y = x | y = x.f | y = new | Free(x) | Sync Sync ∆= SyncStart;SyncStop

(RCU-WBegin) JWriteBeginK (s, h, unlocked, rt, R, B) ⇓tid(s, h, l, rt, R, B)
(RCU-WEnd) JWriteEndK (s, h, l, rt, R, B) ⇓tid(s, h, unlocked, rt, R, B)

(RCU-RBegin) JReadBeginK (s, h, tid, rt, R, B) ⇓tid(s, h, tid, rt, R ⊎ {tid}, B) tid ̸= l
(RCU-REnd) JReadEndK (s, h, tid, rt, R ⊎ {tid}, B)⇓tid(s, h, l, rt, R, B \ {tid}) tid ̸= l

(RCU-SStart) JSyncStartK (s, h, l, rt, R, ∅) ⇓tid(s, h, l, rt, R, R)
(RCU-SStop) JSyncStopK (s, h, l, rt, R, ∅) ⇓tid(s, h, l, rt, R, ∅)

(Free) JFree(x)K (s, h, l, rt, R, ∅) ⇓tid(s, h′, l, rt, R, ∅)
provided ∀f,o′ . rt ̸= s(x, tid) and o′ ̸= s(x, tid) =⇒ h(o′, f) = h′(o′, f) and ∀f . h′(o, f) = undef

(HUpdt) Jx.f=yK (s, h, l, rt, R, B)⇓tid(s, h[s(x, tid), f 7→ s(y, tid)], l, rt, R, B)
(HRead) Jy=x.fK (s, h, l, rt, R, B)⇓tid(s[(y, tid) 7→ h(s(x, tid), f)], h, l, rt, R, B)
(SUpdt) Jy=xK (s, h, l, rt, R, B)⇓tid(s[(y, tid) 7→ (x, tid)], h, l, rt, R, B)

(HAlloc) Jy=newK (s, h, l, rt, R, B)⇓tid(s, h[ℓ 7→ nullmap], l, rt, R, B)

provided rt ̸= s(y, tid) and s[(y, tid) 7→ ℓ], and h[ℓ 7→ nullmap] def= λ(o′, f). if o = o′ then skip else h(o′, f)

Figure 2.1 Operational semantics for RCU.

The first few atomic actions, for writing and reading fields, assigning among local variables, and

allocating new objects, are typical of formal semantics for heaps and mutable local variables. Free is

similarly standard. A writer thread’s critical section is bounded by WriteBegin and WriteEnd, which

acquire and release the lock that enforces mutual exclusion between writers. WriteBegin only reduces

(acquires) if the lock is unlocked.

Standard RCU APIs include a primitive synchronize_rcu() to wait for a grace period for the

current readers. We decompose this here into two actions, SyncStart and SyncStop. SyncStart initializes

the blocking set to the current set of readers — the threads that may have already observed any

nodes the writer has unlinked. SyncStop blocks until the blocking set is emptied by completing reader

threads. However, it does not wait for all readers to finish, and does not wait for all overlapping

readers to simultaneously be out of critical sections. If two reader threads A and B overlap some

SyncStart-SyncStop’s critical section, it is possible that A may exit and re-enter a read-side critical

section before B exits, and vice versa. Implementations must distinguish subsequent read-side critical

sections from earlier ones that overlapped the writer’s initial request to wait: since SyncStart is used

after a node is physically removed from the data structure and readers may not retain RCU references

across critical sections, A re-entering a fresh read-side critical section will not permit it to re-observe

the node to be freed.

Reader thread critical sections are bounded by ReadBegin and ReadEnd. ReadBegin simply records the

Chapter 2: Semantics

158

current thread’s presence as an active reader. ReadEnd removes the current thread from the set of

active readers, and also removes it (if present) from the blocking set — if a writer was waiting for a

certain reader to finish its critical section, this ensures the writer no longer waits once that reader

has finished its current read-side critical section.

Grace periods are implemented by the combination of ReadBegin, ReadEnd, SyncStart, and SyncStop.

ReadBegin ensures the set of active readers is known. When a grace period is required, SyncStart

;SyncStop; will store (in B) the active readers (which may have observed nodes before they were

unlinked), and wait for reader threads to record when they have completed their critical section (and

implicitly, dropped any references to nodes the writer wants to free) via ReadEnd.

These semantics do permit a reader in the blocking set to finish its read-side critical section and

enter a new read-side critical section before the writer wakes. In this case, the writer waits only for

the first critical section of that reader to complete, since entering the new critical section adds the

thread’s ID back to R, but not B.

Chapter 2: Semantics

159

CHAPTER 3

TYPE SYSTEM

In this chapter, we present a simple imperative programming language with two block constructs for

modeling RCU, and a type system that ensures proper (memory-safe) use of the language. The type

system ensures memory safety by enforcing these sufficient conditions:

• A heap node can only be freed if it is no longer accessible from an RCU data structure or from

local variables of other threads. To achieve this we ensure the reachability and access which

can be suitably restricted. We explain how our types support a delayed ownership transfer for

the deallocation.

• Local variables may not point inside an RCU data structure unless they are inside an RCU

read or write block.

• Heap mutations are local: each unlinks or replaces exactly one node.

• The RCU data structure remains a tree. While not a fundamental constraint of RCU, it is

a common constraint across known RCU data structures because it simplifies reasoning (by

developers or a type system) about when a node has become unreachable in the heap.

We also demonstrate that the type system is not only sound, but useful: we show how it types

list-based bag implementation122 in Listings 1.1 and 1.2. We also give type checked fragments of a

binary search tree to motivate advanced features of the type system; the full typing derivation can

be found in our technical report104 Appendix C. The BST requires type narrowing operations that

refine a type based on dynamic checks (e.g., determining which of several fields links to a node). In

160

our system, we presume all objects contain all fields, but the number of fields is finite (and in our

examples, small). This avoids additional overhead from tracking well-established aspects of the type

system — class and field types and presence, for example — and focus on checking correct use of

RCU primitives. Essentially, we assume the code our type system applies to is already type-correct

for a system like C or Java’s type system.

3.1 RCU Type System for Write Critical Section

Section 3.1 introduces RCU types and the need for subtyping. Section 3.2, shows how types describe

program states, through code for list-based bag example in Listings 1.1 and 1.2. Section 3.3 introduces

the type system itself.

RCU Types There are six types used in Write critical sections

τ ::= rcuItr ρ N | rcuFresh N | unlinked | undef | freeable | rcuRoot

rcuItr is the type given to references pointing into a shared RCU data structure. A rcuItr type can

be used in either a write region or a read region (without the additional components). It indicates

both that the reference points into the shared RCU data structure and that the heap location

referenced by rcuItr reference is reachable by following the path ρ from the root. A component N is

a set of field mappings taking the field name to local variable names. Field maps are extended when

the referent’s fields are read. The field map and path components track reachability from the root,

and local reachability between nodes. These are used to ensure the structure remains acyclic, and for

the type system to recognize exactly when unlinking can occur.

Read-side critical sections use rcuItr without path or field map components. These components are

both unnecessary for readers (who perform no updates) and would be invalidated by writer threads

anyways. Under the assumption that reader threads do not hold references across critical sections,

the read-side rules essentially only ensure the reader performs no writes, so we omit the reader critical

Chapter 3: Type System 3.1 RCU Type System for Write Critical Section

161

section type rules. They can be found in our technical report104 Appendix F.

unlinked is the type given to references to unlinked heap locations — objects previously part of

the structure, but now unreachable via the heap. A heap location referenced by an unlinked reference

may still be accessed by reader threads, which may have acquired their own references before the

node became unreachable. Newly-arrived readers, however, will be unable to gain access to these

referents.

freeable is the type given to references to an unlinked heap location that is safe to reclaim because

it is known that no concurrent readers hold references to it. Unlinked references become freeable

after a writer has waited for a full grace period.

undef is the type given to references where the content of the referenced location is inaccessible. A

local variable of type freeable becomes undef after reclaiming that variable’s referent.

rcuFresh is the type given to references to freshly allocated heap locations. Similar to rcuItr type,

it has field mappings set N . We set the field mappings in the set of an existing rcuFresh reference to

be the same as field mappings in the set of rcuItr reference when we replace the heap referenced by

rcuItr with the heap referenced by rcuFresh for memory safe replacement.

rcuRoot is the type given to the fixed reference to the root of the RCU data structure. It may not

be overwritten.

Subtyping It is sometimes necessary to use imprecise types — mostly for control flow joins. Our

type system performs these abstractions via subtyping on individual types and full contexts, as in

Figure 3.1.

Figure 3.1 includes four judgments for subtyping. The first two — ⊢ N ≺: N ′ and ⊢ ρ ≺: ρ′ —

describe relaxations of field maps and paths respectively. ⊢ N ≺: N ′ is read as “the field map N is

more precise than N ′” and similarly for paths. The third judgment ⊢ T ≺: T ′ uses path and field

map subtyping to give subtyping among rcuItr types — one rcuItr is a subtype of another if its paths

Chapter 3: Type System 3.1 RCU Type System for Write Critical Section

162

N = {f0| . . . |fn ⇀ {y} | fi ∈ FName ∧ 0 ≤ i ≤ n ∧ (y ∈ x ∨ y ∈ {null})} Nf,∅ = N \ {f ⇀ _}

N∅ = {} N (∪f⇀y) = N ∪ {f ⇀ y} N (\f⇀y) = N − {f ⇀ y}

N ([f ⇀ y]) = N where f ⇀ y ∈ N N (f ⇀ x \ y) = N \ {f ⇀ x} ∪ {f ⇀ y}

⊢ N ≺: N ′
(T-NSub3)

⊢ Nf,∅ ≺: N ([f ⇀ y])

(T-NSub4)

⊢ N∅ ≺: N

(T-NSub5)

⊢ N ≺: N

(T-NSub2)
⊢ N ([f2 ⇀ y]) ≺: N ([f1|f2 ⇀ y])

(T-NSub1)
⊢ N ([f1 ⇀ y]) ≺: N ([f1|f2 ⇀ y])

⊢ ρ ≺: ρ′ (T-PSub1)
⊢ ρ.f1 ≺: ρ.f1|f2

(T-PSub2)
⊢ ρ.f2 ≺: ρ.f1|f2

(T-PSub3)
⊢ ρ ≺: ρ

⊢ T ≺: T ′
(T-TSub2)

⊢ rcuItr ≺: rcuItr

(T-TSub)

⊢ rcuItr _ ≺: undef

(T-TSub1)
⊢ ρ ≺: ρ′ ⊢ N ≺: N ′

⊢ rcuItr ρ N ≺: rcuItr ρ′ N ′

⊢ Γ ≺: Γ′ (T-CSub1)
⊢ Γ ≺: Γ′ ⊢ T ≺: T’

⊢ Γ , x : T ≺: Γ′ , x : T’
(T-CSub)

⊢ Γ ≺: Γ

Figure 3.1 Subtyping rules.

Γ ⊢M,R C ⊣ Γ′
(T-ReIndex)

Γ ⊢ Ck ⊣ Γ[ρ.fk/ρ.fk.f]
(T-Loop1)

Γ(x) = bool Γ ⊢ C ⊣ Γ
Γ ⊢ while(x){C} ⊣ Γ

(T-Branch1)
Γ , x : rcuItr ρ N ([f1 ⇀ z]) ⊢ C1 ⊣ Γ4 Γ , x : rcuItr ρ N ([f2 ⇀ z]) ⊢ C2 ⊣ Γ4

Γ , x : rcuItr ρ N ([f1 | f2 ⇀ z]) ⊢ if(x.f1 == z) then C1 else C2 ⊣ Γ4

(T-Branch3)
Γ, x : rcuItr ρ N ([f ⇀ y \ null]) ⊢ C1 ⊣ Γ′ Γ, x : rcuItr ρ N ([f ⇀ y]) ⊢ C2 ⊣ Γ′

Γ, x : rcuItr ρ N ([f ⇀ y]) ⊢ if(x.f == null) then C1 else C2 ⊣ Γ′

(T-Loop2)
Γ, x : rcuItr ρ N ([f ⇀ _]) ⊢ C ⊣ Γ, x : rcuItr ρ′ N ([f ⇀ _])

Γ, x : rcuItr ρ N ([f ⇀ _]) ⊢ while(x.f ̸= null){C} ⊣ x : rcuItr ρ′ N ([f ⇀ null]), Γ

(T-Branch2)
Γ(x) = bool Γ ⊢ C1 ⊣ Γ′ Γ ⊢ C2 ⊣ Γ′

Γ ⊢ if(x) then C1 else C2 ⊣ Γ′

Figure 3.2 Type rules for control-flow.

and field maps are similarly more precise — and to allow rcuItr references to be “forgotten” — this is

occasionally needed to satisfy non-interference checks in the type rules. The final judgment ⊢ Γ ≺: Γ′

extends subtyping to all assumptions in a type context.

It is often necessary to abstract the contents of field maps or paths, without simply forgetting the

contents entirely. In a binary search tree, for example, it may be the case that one node is a child

of another, but which parent field points to the child depends on which branch was followed in an

earlier conditional (consider the lookup in a BST, which alternates between following left and right

children). In Figure 3.1, we see that cur aliases different fields of par – either Left or Right – in

Chapter 3: Type System 3.1 RCU Type System for Write Critical Section

163

different branches of the conditional. The types after the conditional must overapproximate this,

here as Left|Right 7→ cur in par’s field map, and a similar path disjunction in cur’s path. This is

reflected in Figure 3.1’s T-NSub1-5 and T-PSub1-2 – within each branch, each type is coerced to a

supertype to validate the control flow join.

Another type of control flow join is handling loop invariants – where paths entering the loop meet

the back-edge from the end of a loop back to the start for repetition. Because our types include

paths describing how they are reachable from the root, some abstraction is required to give loop

invariants that work for any number of iterations – in a loop traversing a linked list, the iterator

pointer would naïvely have different paths from the root on each iteration, so the exact path is not

loop invariant. However, the paths explored by a loop are regular, so we can abstract the paths by

permitting (implicitly) existentially quantified indexes on path fragments, which express the existence

of some path, without saying which path. The use of an explicit abstract repetition allows the type

system to preserve the fact that different references have common path prefixes, even after a loop.

Assertions for the add function in lines 19 and 20 of Figure 1.1 show the loop’s effects on paths of

iterator references used inside the loop, cur and par. On line 20, par’s path contains has (Next)k.

The k in the (Next)k abstracts the number of loop iterations run, implicitly assumed to be non-

negative. The trailing Next in cur’s path on line 19 – (Next)k.Next – expresses the relationship

between cur and par: par is reachable from the root by following Next k times, and cur is reachable

via one additional Next. The types of 19 and 20, however, are not the same as lines 23 and 24, so

an additional adjustment is needed for the types to become loop-invariant. Reindexing (T-ReIndex

in Figure 3.2) effectively increments an abstract loop counter, contracting (Next)k.Next to Nextk

everywhere in a type environment. This expresses the same relationship between par and cur as before

the loop, but the choice of k to make these paths accurate after each iteration would be one larger

than the choice before. Reindexing the type environment of lines 23–24 yields the type environment

of lines 19–20, making the types loop invariant. The reindexing essentially chooses a new value for the

abstract k. This is sound, because the uses of framing in the heap mutation related rules of the type

system ensure uses of any indexing variable are never separated – either all are reindexed, or none are.

Chapter 3: Type System 3.1 RCU Type System for Write Critical Section

164

1 {cur : rcuItr Left|Right {}, par : rcuItr ϵ {Left|Right 7→ cur}}

2 if(par.Left == cur){

3 {cur : rcuItr Left {}, par : rcuItr ϵ {Left 7→ cur}}

4 par = cur;

5 cur = par.Left;

6 {cur : rcuItr Left.Left {}, par : rcuItr Left {Left 7→ cur}}

7 }else{

8 {cur : rcuItr Right {}, par : rcuItr ϵ {Right 7→ cur}}

9 par = cur;

10 cur = par.Right;

11 {cur : rcuItr Right.Right {}, par : rcuItr Right {Right 7→ cur}}

12 }

13 {cur : rcuItr Left|Right.Left|Right {}, par : rcuItr Left|Right {Left|Right 7→ cur}}

Listing 3.1 Choosing fields to read.

While abstraction is required to deal with control flow joins, reasoning about whether and which

nodes are unlinked or replaced, and whether cycles are created, requires precision. Thus the type

system also includes means (Figure 3.2) to refine imprecise paths and field maps. In Figure 3.1,

we see a conditional with the condition par.Left == cur. The type system matches this condition

to the imprecise types in line 1’s typing assertion, and refines the initial type assumptions in each

branch accordingly (lines 2 and 7) based on whether execution reflects the truth or falsity of that

check. Similarly, it is sometimes required to check – and later remember – whether a field is null,

and the type system supports this.

Chapter 3: Type System 3.1 RCU Type System for Write Critical Section

165

3.2 Types in Action

The system has three forms of typing judgement: Γ ⊢ C for standard typing outside RCU critical

sections; Γ ⊢R C ⊣ Γ′ for reader critical sections, and Γ ⊢M C ⊣ Γ′ for writer critical sections. The

first two are straightforward, essentially preventing mutation of the data structure, and preventing

nesting of a writer critical section inside a reader critical section. The last, for writer critical sections,

is flow sensitive: the types of variables may differ before and after program statements. This is

required in order to reason about local assumptions at different points in the program, such as

recognizing that a certain action may unlink a node. Our presentation here focuses exclusively on

the judgment for the write-side critical sections.

Below, we explain our types through the list-based bag implementation122 from Listings 1.1 and 1.2,

highlighting how the type rules handle different parts of the code. Listings 1.1 and 1.2 are annotated

with “assertions” – local type environments – in the style of a Hoare logic proof outline. As with

Hoare proof outlines, these annotations can be used to construct a proper typing derivation.

Reading a Global RCU Root All RCU data structures have fixed roots, which we characterize

with the rcuRoot type. Each operation in Listings 1.1 and 1.2 begins by reading the root into a new

rcuItr reference used to begin traversing the structure. After each initial read (line 12 of add and line

4 of remove), the path of cur reference is the empty path (ϵ) and the field map is empty ({}), because

it is an alias to the root, and none of its field contents are known yet.

Reading an Object Field and a Variable As expected, we explore the heap of the data structure

via reading the objects’ fields. Consider line 6 of remove and its corresponding pre- and post- type

environments. Initially par’s field map is empty. After the field read, its field map is updated to

reflect that its Next field is aliased in the local variable cur. Likewise, afer the update, cur’s path is

Next (= ϵ · Next), extending the par node’s path by the field read. This introduces field aliasing

information that can subsequently be used to reason about unlinking.

Unlinking Nodes Line 24 of remove in Listing 1.2 unlinks a node. The type annotations show that

Chapter 3: Type System 3.2 Types in Action

166

before that line cur is in the structure (rcuItr), while afterwards its type is unlinked. The type system

checks that this unlink disconnects only one node: note how the types of par, cur, and curl just before

line 24 completely describe a section of the list.

Grace and Reclamation After the referent of cur is unlinked, concurrent readers traversing the

list may still hold references. So it is not safe to actually reclaim the memory until after a grace

period. Lines 28–29 of remove initiate a grace period and wait for its completion. At the type level,

this is reflected by the change of cur’s type from unlinked to freeable, reflecting the fact that the grace

period extends until any reader critical sections that might have observed the node in the structure

have completed. This matches the precondition required by our rules for calling Free, which further

changes the type of cur to undef reflecting that cur is no longer a valid reference. The type system

also ensures no local (writer) aliases exist to the freed node and understanding this enforcement is

twofold. First, the type system requires that only unlinked heap nodes can be freed. Second, framing

relations in rules related to the heap mutation ensure no local aliases still consider the node linked.

Fresh Nodes Some code must also allocate new nodes, and the type system must reason about

how they are incorporated into the shared data structure. Line 8 of the add method allocates a new

node nw, and lines 10 and 29 initialize its fields. The type system gives it a fresh type while tracking

its field contents, until line 32 inserts it into the data structure. The type system checks that nodes

previously reachable from cur remain reachable: note the field maps of cur and nw in lines 30–31 are

equal (trivially, though in general the field need not be null).

3.3 Type Rules

Figure 3.3 gives the primary type rules used in checking write-side critical section code as in Listings

1.1 and 1.2.

T-Root reads a root pointer into an rcuItr reference, and T-ReadS copies a local variable into

another. In both cases, the free variable condition ensures that updating the modified variable does

not invalidate field maps of other variables in Γ. These free variable conditions recur throughout the

Chapter 3: Type System 3.3 Type Rules

167

Γ ⊢M α ⊣ Γ′ (T-Root)
y ̸∈ FV(Γ)

Γ, r:rcuRoot, y:undef ⊢ y = r ⊣ y:rcuItr ϵ N∅, r:rcuRoot, Γ

(T-ReadS)
z ̸∈ FV(Γ)

Γ, z : _, x : rcuItr ρ N ⊢ z = x ⊣ x : rcuItr ρ N , z : rcuItr ρ N , Γ

(T-Alloc)
Γ, x:undef ⊢ x = new ⊣ x:rcuFreshN∅, Γ

(T-Free)
x:freeable ⊢ Free(x) ⊣ x:undef

(T-ReadH)
ρ.f = ρ′ z ̸∈ FV(Γ)

Γ, z : _, x:rcuItr ρN ⊢ z = x.f ⊣ x:rcuItr ρ N ([f ⇀ z]), z:rcuItr ρ′ N∅, Γ

(T-WriteFH)
z : rcuItr ρ.f _ N (f) = z f /∈ dom(N ′)

Γ, p:rcuFreshN ′, x:rcuItr ρ N ⊢M p.f = z ⊣ p:rcuFreshN ′([f ⇀ z]), x:rcuItr ρ N ([f ⇀ z]), Γ

(T-Sync)
Γ ⊢ SyncStart; SyncStop ⊣ Γ[x:freeable/x:unlinked]

(T-UnlinkH)
N (f1) = z

ρ.f1 = ρ1 ρ1.f2 = ρ2 N ′ = N ([f1 ⇀ z \ r]) ∀f∈dom(N1). f ̸= f2 =⇒ (N1(f) = null) N (f1) = z

N1(f2) = r ∀n∈Γ,m,N3,p3,f . n:rcuItr ρ3 N3([f ⇀ m]) =⇒
{

((¬MayAlias(ρ3, {ρ, ρ1, ρ2})) ∧ (m ̸∈ {z, r}))
∧(∀ρ4 ̸=ϵ. ¬MayAlias(ρ3, ρ2.ρ4))

Γ, x:rcuItr ρ N , z:rcuItr ρ1 N1, r:rcuItr ρ2 N2 ⊢ x.f1 = r ⊣ z:unlinked, x:rcuItr ρ N ′, r:rcuItr ρ1 N2, Γ

(T-Replace)
N (f) = o N ′ = N ([f ⇀ o \ n]) ρ.f = ρ1 N1 = N2 FV(Γ) ∩ {p, o, n} = ∅

∀x∈Γ,N3,ρ2,f1,y . (x:rcuItr ρ2 N3([f1 ⇀ y])) =⇒ (¬MayAlias(ρ2, {ρ, ρ1}) ∧ (y ̸= o))
Γ, p:rcuItr ρ N , o:rcuItr ρ1 N1, n:rcuFreshN2 ⊢ p.f = n ⊣ p:rcuItr ρ N ′, n:rcuItr ρ1 N2, o:unlinked, Γ

(T-Insert)
N ′ = N ([f ⇀ o \ n]) ρ.f = ρ1 ρ1.f4 = ρ2 N (f) = N1(f4) ∀f2∈dom(N1). f4 ̸= f2 =⇒ N1(f2) = null

FV(Γ) ∩ {p, o, n} = ∅ ∀x∈Γ,N3,ρ3,f1,y . (x : rcuItr ρ3 N3([f1 ⇀ y])) =⇒ (∀ρ4 ̸=ϵ. ¬MayAlias(ρ3, ρ.ρ4))
Γ, p:rcuItr ρ N , o:rcuItr ρ1 N2, n:rcuFreshN1 ⊢ p.f = n ⊣ p:rcuItr ρ N ′, n:rcuItr ρ1 N1, o:rcuItr ρ2 N2, Γ

Γ ⊢M C ⊣ Γ′ (ToRCUWrite)

NoFresh(Γ′) NoUnlinked(Γ′) NoFreeable(Γ′)
Γ, y:rcuItr_ ⊢M C ⊣ Γ′ FType(f) = RCU

Γ ⊢ RCUWrite x.f as y in {C}

Figure 3.3 Type rules for write side critical section.

type system, and we will not comment on them further. T-Alloc and T-Free allocate and reclaim

objects. These rules are relatively straightforward. T-ReadH reads a field into a local variable. As

suggested earlier, this rule updates the post-environment to reflect that the overwritten variable z

holds the same value as x.f . T-WriteFH updates a field of a fresh (thread-local) object, similarly

tracking the update in the fresh object’s field map at the type level. The remaining rules are a bit

more involved, and form the heart of the type system.

Grace Periods T-Sync gives pre- and post-environments to the compound statement SyncStart;

SyncStop implementing grace periods. As mentioned earlier, this updates the environment afterwards

Chapter 3: Type System 3.3 Type Rules

168

R H0 H1

Hf

H2

H4

pr cr

cf

crl

lm

a0 a1

l l

r

lr

l

(a) Freshly allocated heap node referenced
by cf

R H0 H1

Hf

H2

H4

pr cr

cf

crl

lm

a0 a1

l

r

lr

l

l

(b) Safe replacement of the heap node ref-
erenced by cr with the fresh heap node ref-
erenced by cf .

Figure 3.4 Replacing existing heap nodes with fresh ones. Type rule T-Replace.

to reflect that any nodes unlinked before the wait become freeable afterwards.

Unlinking T-UnlinkH type checks heap updates that remove a node from the data structure. The

rule assumes three objects x, z, and r, whose identities we will conflate with the local variable names

in the type rule. The rule checks the case where x.f1 == z and z.f2 == r initially (reflected in the

path and field map components, and a write x.f1 = r removes z from the data structure (we assume,

and ensure, the structure is a tree).

The rule must also avoid unlinking multiple nodes: this is the purpose of the first (smaller) implication:

it ensures that beyond the reference from z to r, all fields of z are null.

Finally, the rule must ensure that no types in Γ are invalidated. This could happen one of two

ways: either a field map in Γ for an alias of x duplicates the assumption that x.f1 == z (which is

changed by this write), or Γ contains a descendant of r, whose path from the root will change when

its ancestor is modified. The final assumption of T-UnlinkH (the implication) checks that for every

rcuItr reference n in Γ, it is not a path alias of x, z, or r; no entry of its field map (m) refers to r or

z (which would imply n aliased x or z initially); and its path is not an extension of r (i.e., it is not a

descendant). MayAlias is a predicate on two paths (or a path and set of paths) which is true if it

is possible that any concrete paths the arguments may abstract (e.g., via adding non-determinism

through | or abstracting iteration with indexing) could be the same. The negation of a MayAlias use

is true only when the paths are guaranteed to refer to different locations in the heap.

Replacing with a Fresh Node Replacing with a rcuFresh reference faces the same aliasing

Chapter 3: Type System 3.3 Type Rules

169

complications as direct unlinking. We illustrate these challenges in Figures 3.4a and 3.4b. Our

technical report104 also includes Figures E.1a and E.1b in Appendix E to illustrate complexities in

unlinking. The square R nodes are root nodes, and H nodes are general heap nodes. All resources

in red and green form the memory foot print of unlinking. The hollow red circular nodes – pr and

cr – point to the nodes involved in replacing H1 (referenced by cr) wih Hf (referenced by cf) in

the structure. We may have a0 and a1 which are aliases with pr and cr respectively. They are

path-aliases as they share the same path from root to the node that they reference. Edge labels l

and r are abbreviations for the Left and Right fields of a binary search tree. The dashed green Hf

denotes the freshly allocated heap node referenced by green dashed cf . The dashed green field l is

set to point to the referent of cl and the green dashed field r is set to point to the referent of the

heap node referenced by lm.

Hf initially (Figure 3.4a) is not part of the shared structure. If it was, it would violate the tree shape

requirement imposed by the type system. This is why we highlight it separately in green — its static

type would be rcuFresh. Note that we cannot duplicate a rcuFresh variable, nor read a field of an

object it points to. This restriction localizes our reasoning about the effects of replacing with a fresh

node to just one fresh reference and the object it points to. Otherwise another mechanism would

be required to ensure that once a fresh reference was linked into the heap, there were no aliases

still typed as fresh — since that would have risked linking the same reference into the heap in two

locations.

The transition from the Figure 3.4a to 3.4b illustrates the effects of the heap mutation (replacing

with a fresh node). The reasoning in the type system for replacing with a fresh node is nearly the

same as for unlinking an existing node, with one exception. In replacing with a fresh node, there

is no need to consider the paths of nodes deeper in the tree than the point of mutation. In the

unlinking case, those nodes’ static paths would become invalid. In the case of replacing with a

fresh node, those descendants’ paths are preserved. Our type rule for ensuring safe replacement

(T-Replace) prevents path aliasing (nonexistence of a0 and a1) by negating a MayAlias query and

prevents field mapping aliasing (nonexistence of any object field from any other context pointing to

Chapter 3: Type System 3.3 Type Rules

170

cr) via asserting (y ̸= o). It is important to note that objects(H4, H2) in the field mappings of the

cr whose referent is to be unlinked captured by the heap node’s field mappings referenced by cf in

rcuFresh. This is part of enforcing locality on the heap mutation and captured by assertion N = N ′

in the type rule(T-Replace).

Inserting a Fresh Node T-Insert type checks heap updates that link a fresh node into a linked

data structure. Inserting a rcuFresh reference also faces some of the aliasing complications that we

have already discussed for direct unlinking and replacing a node. Unlike the replacement case, the

path to the last heap node (the referent of o) from the root is extended by f , which risks falsifying

the paths for aliases and descendants of o. The final assumption(the implication) of T-Insert checks

for this inconsistency.

There is also another rule, T-LinkF-Null, not shown in Figure 3.3, which handles the case where

the fields of the fresh node are not object references, but instead all contain null (e.g., for appending

to the end of a linked list or inserting a leaf node in a tree).

Entering a Critical Section (Referencing inside RCU Blocks) We introduce the syntactic

sugaring RCUWrite x.f as y in {C} for write-side critical sections where the analogous syntactic

sugaring can be found for read-side critical sections in Appendix F of the technical report104.

The type system ensures unlinked and freeable references are handled linearly, as they cannot be

dropped – coerced to undef. The top-level rule ToRCUWrite in Figure 3.3 ensures unlinked

references have been freed by forbidding them in the critical section’s post-type environment. Our

technical report104 also includes the analogous rule ToRCURead for the read critical section in

Figure F.1 of Appendix F.

Preventing the reuse of rcuItr references across critical sections is subtler: the non-critical section

system is not flow-sensitive, and does not include rcuItr. Therefore, the initial environment lacks

rcuItr references, and trailing rcuItr references may not escape.

Chapter 3: Type System 3.3 Type Rules

171

CHAPTER 4

EVALUATION

We have used our type system to check correct use of RCU primitives in two RCU data structures

representative of the broader space.

Listings 1.1 and 1.2 give the type-annotated code for add and remove operations on a linked list

implementation of a bag data structure, following McKenney’s example122 respectively. Appendix D

of the technical report104 contains the code for membership checking.

We have also type checked the most challenging part of an RCU binary search tree, the deletion

(which also contains the code for a lookup). Our implementation is a slightly simplified version of

the Citrus BST10: their code supports fine-grained locking for multiple writers, while ours supports

only one writer by virtue of using our single-writer primitives. For lack of space the annotated code

is only in Appendix C of the technical report104, but it motivates some of the conditional-related

flexibility discussed in Section 3.2. The use of disjunction (Left|Right) in field maps and paths is

required to capture traversals which follow different fields at different times, such as the lookup in a

binary search tree.

The most subtle aspect of the deletion is the final step in the case the node H1 to remove has both

children. In this case, the value Hs of the left-most node of H1’s right child — the next element in

the collection order — is copied into a new freshly-allocated node as shown in Figure 4.1a, which is

then used to replace node H1 as shown in Figure 4.1c: the replacement’s fields exactly match H1’s

except for the data (T-Replace via N1 = N2) as showin in Figure 4.1b, and the parent is updated

to reference the replacement, unlinking H1. At this point, as shown in Figures 4.1c-4.1d, there are

172

R

T0T

H1

T2 H2

T4

THs

T

T6

pr

cr

lp

(a) The writer traverses subtree T0 to find
the heap node H1 with local references pr
and cr.

R

T0T

H1 Hs

T2 H2

T4

THs

T

pr

cr cf

lp

sc

T6

(b) Traverse subtree T4 starting from H2
with references lp and sc to find successor
H ′

1 of H1. Duplicating H ′
1 as a fresh heap

node before replacing H1 with the fresh one.
R

T0T

H1 Hs

T2 H2

T4

THs

T

T6

pr

cr cf

lp

sc

(c) Replace H1 with fresh successor and
synchronize with the readers.

R

T0T

Hs

T2 H2

T4

THs

T

pr

cf

lp

sc

T6

(d) Unlinks old successor referenced by sc.
R

T0T

Hs

T2 H2

T4

THs

T

pr

cf

lp

sc

T6

(e) Safe unlinking of the old successor whose
left subtree is null.

R

T0T

Hs

T2 H2

T4

T

T

T6

pr

lp

cf

(f) figure
Reclamation of the old successor.

Figure 4.1 Delete of a heap node with two children in BST10.

two nodes with value Hs in the tree (weak BST property of the Citrus10): the replacement node,

and what was the left-most node under H1’s right child. This latter (original) node for Hs must be

unlinked as shown in Figure 4.1e, which is simplified because by being left-most the left child is null,

Chapter 4: Evaluation

173

avoiding another round of replacement (T-UnlinkH via ∀f∈dom(N1). f ̸= f2 =⇒ (N1(f) = null).

The complexity in checking safety here is that once H1 is found after traversing the subtree T0 with

references

pr : rcuItr(l|r)k{l|r → cr}, cr : rcuItr(l|r)k.(l|r){}

where T0 traversal is summarized as (l|k)k, another loop is used to find Hs and its parent (since that

node will later be removed as well) after traversing the subtree T4 with references

lp : (l|r)k.(l|r).r.(l|r)m{l|r → sc}, lp : (l|r)k.(l|r).r.l.(l)m.l{}

where T4 traversal is summarized as (l|m)m.

After Hs is found, there are two local unlinking operations as shown in Figures 4.1c-4.1e, at different

depths of the tree. This is why the type system must keep separate abstract iteration counts, e.g.,

k of (l|r)k or m of (l|r)m, for traversals in loops — these indices act like multiple cursors into the

data structure, and allow the types to carry enough information to keep those changes separate and

ensure neither introduces a cycle.

To the best of our knowledge, we are the first to check such code for memory-safe use of RCU

primitives modularly, without appeal to the specific implementation of RCU primitives.

Chapter 4: Evaluation

174

4.1 Soundness

This section outlines the proof of type soundness – our full proof appears in Appendices B.1, B.2,

B.3 and B.4 of the technical report104. We prove type soundness by embedding the type system into

an abstract concurrent separation logic called the Views Framework52, which when given certain

information about proofs for a specific language (primitives and primitive typing) gives back a full

program logic including choice and iteration. As with other work taking this approach68,69, this

consists of several key steps:

1. Define runtime states and semantics for the atomic actions of the language. These are exactly

the semantics from Figure 2.1 in Section 2

2. Define a denotational interpretation J−K of the types (Figure 4.2) in terms of an instrumented

execution state – a runtime state (Section 2) with additional bookkeeping to simplify proofs.

The denotation encodes invariants specific to each type, like the fact that unlinked references

are unreachable from the heap. The instrumented execution states are also constrained by

additional global WellFormedness invariants – see Appendix B.2 of the technical report104 for

detailed formal invariants – the type system is intended to maintain, such as tree structure of

the data structure.

3. Prove a lemma – called Axiom Soundness (Lemma 3) – that the type rules for atomic actions

are sound. Specifically, that given a state in the denotation of the pre-type-environment of

a primitive type rule, the operational semantics produce a state in the denotation of the

post-type-environment. This includes preservation of global invariants.

4. Give a desugaring ↓ − ↓ of non-trivial control constructs (Figure 4.4) into the simpler non-

deterministic versions provided by Views.

The top-level soundness claim then requires proving that every valid source typing derivation

corresponds to a valid derivation in the Views logic: ∀Γ, C, Γ′, Γ ⊢M C ⊣ Γ′ ⇒ {JΓK} ↓ C ↓ {JΓ′K}.

Because the parameters given to the Views framework ensure the Views logic’s Hoare triples {−}C{−}

Chapter 4: Evaluation 4.1 Soundness

175

are sound, this proves soundness of the type rules with respect to type denotations. Because our

denotation of types encodes the property that the post-environment of any type rule accurately

characterizes which memory is linked vs. unlinked, etc., and the global invariants ensure all allocated

heap memory is reachable from the root or from some thread’s stack, this entails that our type

system prevents memory leaks.

4.1.1 Proof

This section provides more details on how the Views Framework52 is used to prove soundness, giving

the major parameters to the framework and outlining global invariants and key lemmas.

Logical State Section 2 defined what Views calls atomic actions (the primitive operations) and their

semantics of runtime machine states. The Views Framework uses a separate notion of instrumented

(logical) state over which the logic is built, related by a concretization function ⌊−⌋ taking an

instrumented state to the machine states of Section 2. Most often — including in our proof —

the logical state adds useful auxiliary state to the machine state, and the concretization is simply

projection. Thus we define our logical states LState as:

• A machine state, σ = (s, h, l, rt, R, B);

• An observation map, O, of type Loc → P(obs)

• Undefined variable map, U , of type P(Var × TID)

• Set of threads, T , of type P(TIDS)

• A to-free map(or free list), F , of type Loc ⇀ P(TID)

The thread ID set T includes the thread ID of all running threads. The free map F tracks which

reader threads may hold references to each location. It is not required for execution of code, and

for validating an implementation could be ignored, but we use it later with our type system to help

prove that memory deallocation is safe. The (per-thread) variables in the undefined variable map U

are those that should not be accessed (e.g., dangling pointers).

Chapter 4: Evaluation 4.1 Soundness

176

The remaining component, the observation map O, requires some further explanation. Each memory

allocation / object can be observed in one of the following states by a variety of threads, depending

on how it was used.

obs := iterator tid | unlinked | fresh | freeable | root

An object can be observed as part of the structure (iterator), removed but possibly accessible to

other threads, freshly allocated, safe to deallocate, or the root of the structure.

Invariants of RCU Views and Denotations of Types In this section we aim to convey the

intuition behind the predicate WellFormed which enforces global invariants on logical states, and how

it interacts with the denotations of types in key ways. WellFormed is the conjunction of a number of

more specific invariants, which we outline here. For full details, see Appendix B.2 of the technical

report104.

The Invariant for Read Traversal Reader threads access valid heap locations even during the

grace period. The validity of their heap accesses ensured by the observations they make over the

heap locations — which can only be iterator as they can only use local rcuItr references. To this end,

a Readers-Iterators-Only invariant asserts that a heap location can only be observed as iterator by the

reader threads.

Invariants on Grace-Period Our logical state (Section 4.1.1) includes some “free list” auxiliary

state tracking which readers are still accessing each unlinked node during grace periods. This must

be consistent with the bounding thread set B in the machine state. The Readers-In-Free-List invariant

asserts that all reader threads with observations of unlinked locations are in the to-free lists for those

locations. This is essentially tracking which readers are being “shown grace” for each location. The

Iterators-Free-List invariant complements this by asserting all readers with such observations are in

the bounding thread set.

The writer thread can refer to a heap location in the free list with a local reference either in type

Chapter 4: Evaluation 4.1 Soundness

177

freeable or unlinked. Once the writer unlinks a heap node, it first observes the heap node as unlinked

then freeable. The denotation of freeable is only valid following a grace period: it asserts no readers

hold aliases of the freeable reference. The denotation of unlinked permits the either the same (perhaps

no readers overlapped) or that it is in the to-free list.

Invariants on Safe Traversal against Unlinking The write-side critical section must guarantee

that no updates to the heap cause invalid memory accesses. The Writer-Unlink invariant asserts that

a heap location observed as iterator by the writer thread cannot be observed differently by other

threads. The denotation of the writer thread’s rcuItr reference, JrcuItr ρ N Ktid, asserts that following

a path from the root compatible with ρ reaches the referent, and all are observed as iterator.

Only a bounding thread may view an (unlinked) heap location in the free list as iterator. The denotation

of the reader thread’s rcuItr reference, JrcuItrKtid, requires the referent be either reachable from the root

or an unlinked reference in the to-free list. At the same time, it is essential that reader threads arriving

after a node is unlinked cannot access it. The invariants Unlinked-Reachability and Free-List-Reachability

ensure that any unlinked nodes are reachable only from other unlinked nodes, and never from the root.

Invariants on Safe Traversal against Inserting/Replacing A writer replacing an existing

node with a fresh one or inserting a single fresh node assumes the fresh (before insertion) node

is unreachable to readers before it is published/linked. The Fresh-Writes invariant asserts that a

fresh heap location can only be allocated and referenced by the writer thread. The relation between

a freshly allocated heap and the rest of the heap is established by the Fresh-Reachable invariant,

which requires that there exists no heap node pointing to the freshly allocated one. This invariant

supports the preservation of the tree structure. Fresh-Not-Reader invariant supports the safe traversal

of the reader threads via asserting that they cannot observe a heap location as fresh. Moreover, the

denotation of rcuFresh type, JrcuFresh N Ktid, enforces that fields in N point to valid heap locations

(observed as iterator by the writer thread).

Chapter 4: Evaluation 4.1 Soundness

178

J x : rcuItr ρ N Ktid =


m ∈ M (iterator tid ∈ O(s(x, tid))) ∧ (x /∈ U)

∧(∀fi∈dom(N)xi∈codom(N).

{
s(xi, tid) = h(s(x, tid), fi)
∧iterator ∈ O(s(xi, tid)))

∧(∀ρ′,ρ′′ . ρ′.ρ′′ = ρ =⇒ iterator tid ∈ O(h∗(rt, ρ′)))
∧h∗(rt, ρ) = s(x, tid) ∧ (l = tid ∧ s(x, _) /∈ dom(F)))


J x : rcuItr Ktid =

{
m ∈ M (iterator tid ∈ O(s(x, tid))) ∧ (x /∈ U)∧

(tid ∈ B) =⇒
{

(∃T ′⊆B . {s(x, tid) 7→ T ′} ∩ F ̸= ∅)∧
∧(tid ∈ T ′)

}
J x : unlinked Ktid =

{
m ∈ M (unlinked ∈ O(.s(x, tid)) ∧ l = tid ∧ x /∈ U)∧

(∃T ′⊆T . s(x, tid) 7→ T ′ ∈ F =⇒ T ′ ⊆ B ∧ tid /∈ T ′)

}
J x : freeable Ktid =

{
m ∈ M freeable ∈ O(s(x, tid)) ∧ l = tid ∧ x /∈ U∧

s(x, tid) 7→ {∅} ∈ F

}
J x : rcuFresh N Ktid =

{
m ∈ M (fresh ∈ O(s(x, tid)) ∧ x /∈ U ∧ s(x, tid) /∈ dom(F))

(∀fi∈dom(N),xi∈codom(N). s(xi, tid) = h(s(x, tid), fi)
∧iterator tid ∈ O(s(xi, tid)) ∧ s(xi, tid) /∈ dom(F))

}
Jx : undefKtid =

{
m ∈ M (x, tid) ∈ U ∧ s(x, tid) /∈ dom(F)

}
J x : rcuRootKtid =

{
m ∈ M ((rt /∈ U ∧ s(x, tid) = rt ∧ rt ∈ dom(h)∧

O(rt) ∈ root ∧ s(x, tid) /∈ dom(F))

}
provided h∗ : (Loc × Path) ⇀ Val

Figure 4.2 Type Environments

Invariants on Tree Structure Our invariants enforce the tree structure heap layouts for data

structures. Unique-Reachable invariant asserts that every heap location reachable from root can only

be reached with following an unique path. To preserve the tree structure, Unique-Root enforces

unreachability of the root from any heap location that is reachable from root itself.

Assertions in the Views logic are (almost) sets of the logical states that satisfy a validity predicate

WellFormed, outlined in Section 4.1.1:

M def= {m ∈ (MState × O × U × T × F) | WellFormed(m)}

Every type environment represents a set of possible views (WellFormed logical states) consistent with

the types in the environment. We make this precise with a denotation function

J−K_ : TypeEnv → TID → P(M)

that yields the set of states corresponding to a given type environment. This is defined as the

intersection of individual variables’ types as in Figure 4.2.

Individual variables’ denotations are extended to context denotations slightly differently depending

Chapter 4: Evaluation 4.1 Soundness

179

on whether the environment is a reader or writer thread context: writer threads own the global lock,

while readers do not:

• For read-side as Jx1 : T1, . . . xn : TnKtid,R = Jx1 : T1Ktid ∩ . . . ∩ Jxn : TnKtid ∩ JRKtid where

JRKtid = {(s, h, l, rt, R, B), O, U, T, F | tid ∈ R}

• For write-side as Jx1 : T1, . . . xn : TnKtid,M = Jx1 : T1Ktid ∩ . . . ∩ Jxn : TnKtid ∩ JMKtid where

JMKtid = {(s, h, l, rt, R, B), O, U, T, F | tid = l}

Composition and Interference To support framing (weakening), the Views Framework requires

that views form a partial commutative monoid under an operation • : M −→ M −→ M, provided

as a parameter to the framework. The framework also requires an interference relation R ⊆ M × M

between views to reason about local updates to one view preserving validity of adjacent views (akin to

the small-footprint property of separation logic). Figure 4.3 defines our composition operator and the

core interference relation R0 — the actual inferference between views (between threads, or between

a local action and framed-away state) is the reflexive transitive closure of R0. Composition is mostly

straightforward point-wise union (threads’ views may overlap) of each component. Interference

bounds the interference writers and readers may inflict on each other. Notably, if a view contains the

writer thread, other threads may not modify the shared portion of the heap, or release the writer lock.

Other aspects of interference are natural restrictions like that threads may not modify each others’

local variables. WellFormed states are closed under both composition (with another WellFormed state)

and interference (R relates WellFormed states only to other WellFormed states).

Stable Environment and Views Shift The framing/weakening type rule will be translated to a

use of the frame rule in the Views Framework’s logic. There separating conjunction is simply the

existence of two composable instrumented states:

m ∈ P ∗ Q
def= ∃m′. ∃m′′. m′ ∈ P ∧ m′′ ∈ Q ∧ m ∈ m′ • m′′

In order to validate the frame rule in the Views Framework’s logic, the assertions in its logic — sets

of well-formed instrumented states — must be restricted to sets of logical states that are stable with

Chapter 4: Evaluation 4.1 Soundness

180

• def= (•σ , •O, ∪, ∪) (F1 •F F2) def= F1 ∪ F2 when dom(F1) ∩ dom(F2) = ∅

O1 •O O2(loc) def= O1(loc) ∪ O2(loc) (s1 •s s2) def= s1 ∪ s2 when dom(s1) ∩ dom(s2) = ∅

(h1 •h h2)(o, f) def=


undef if h1(o, f) = v ∧ h2(o, f) = v′ ∧ v′ ̸= v
v if h1(o, f) = v ∧ h2(o, f) = v
v if h1(o, f) = undef ∧ h2(o, f) = v
v if h1(o, f) = v ∧ h2(o, f) = undef
undef if h1(o, f) = undef ∧ h2(o, f) = undef

((s, h, l, rt, R, B), O, U, T, F)R0((s′, h′, l′, rt′, R′, B′), O′, U ′, T ′, F ′) def=

∧


l ∈ T → (h = h′ ∧ l = l′)
l ∈ T → F = F ′

∀tid, o. iterator tid ∈ O(o) → o ∈ dom(h)
∀tid, o. iterator tid ∈ O(o) → o ∈ dom(h′)
∀tid, o. root tid ∈ O(o) → o ∈ dom(h)
∀tid, o. root tid ∈ O(o) → o ∈ dom(h′)
O = O′ ∧ U = U ′ ∧ T = T ′ ∧ R = R′ ∧ rt = rt′

∀x, t ∈ T. s(x, t) = s′(x, t)


Figure 4.3 Composition(•) and Thread Interference Relation(R0)

respect to expected interference from other threads or contexts, and interference must be compatible

in some way with separating conjunction. Thus a View — the actual base assertions in the Views

logic — are then:

ViewM
def= {M ∈ P(M)|R(M) ⊆ M}

Additionally, interference must distribute over composition:

∀m1, m2, m. (m1 • m2)Rm =⇒ ∃m′
1m′

2. m1Rm′
1 ∧ m2Rm′

2 ∧ m ∈ m′
1 • m′

2

Because we use this induced Views logic to prove soundness of our type system by translation, we

must ensure any type environment denotes a valid view:

Lemma 2 (Stable Environment Denotation-M) For any closed environment Γ (i.e., ∀x ∈

dom(Γ). , FV(Γ(x)) ⊆ dom(Γ)): R(JΓKM,tid) ⊆ JΓKM,tid. Alternatively, we say that environment

denotation is stable (closed under R).

Proof: In Appendix B.1 Lemma 8 of the technical report104. □ We elide the statement of the

analogous result for the read-side critical section, available in Appendix B.1 of the technical report.

With this setup done, we we can state the connection between the Views Framework logic induced by

Chapter 4: Evaluation 4.1 Soundness

181

↓ if (x.f == y) C1 C2 ↓ tid def= z = x.f ; ((assume(z = y); C1) + (assume(z ̸= y); C2))

Jassume(S)K(s) def=
{

{s} if s ∈ S
∅ Otherwise ↓ while (e) C ↓def= (assume(e); C)∗ ; (assume(¬e));

{P } ∩ {⌈S⌉} ⊑ {Q}
{P }assume (S) {Q}

where

⌈S⌉ = {m|⌊m⌋ ∩ S ≠ ∅}

Figure 4.4 Encoding branch conditions with assume(b)

earlier parameters, and the type system from Section 3. The induced Views logic has a familiar notion

of Hoare triple — {p}C{q} where p and q are elements of ViewM — with the usual rules for non-

deterministic choice, non-deterministic iteration, sequential composition, and parallel composition,

sound given the proof obligations just described above. It is parameterized by a rule for atomic

commands that requires a specification of the triples for primitive operations, and their soundness

(an obligation we must prove). This can then be used to prove that every typing derivation embeds

to a valid derivation in the Views Logic, roughly ∀Γ, C, Γ′, tid. Γ ⊢ C ⊣ Γ′ ⇒ {JΓKtid}JCKtid{JΓ′Ktid}

once for the writer type system, once for the readers.

There are two remaining subtleties to address. First, commands C also require translation: the Views

Framework has only non-deterministic branches and loops, so the standard versions from our core

language must be encoded. The approach to this is based on a standard idea in verification, which

we show here for conditionals as shown in Figure 4.4. assume(b) is a standard idea in verification

semantics13,128, which “does nothing” (freezes) if the condition b is false, so its postcondition in the

Views logic can reflect the truth of b. assume in Figure 4.4 adapts this for the Views Framework as

in other Views-based proofs68,69, specifying sets of machine states as a predicate. We write boolean

expressions as shorthand for the set of machine states making that expression true.

Second, we have not addressed a way to encode subtyping. One might hope this corresponds to a

kind of implication, and therefore subtyping corresponds to consequence. Indeed, this is how we (and

prior work68,69) address subtyping in a Views-based proof. Views defines the notion of view shift1

(⊑) as a way to reinterpret a set of instrumented states as a new (compatible) set of instrumented
1This is the same notion present in later program logics like Iris 100, though more recent variants are more powerful.

Chapter 4: Evaluation 4.1 Soundness

182

states, offering a kind of logical consequence, used in a rule of consequence in the Views logic:

p ⊑ q
def= ∀m ∈ M. ⌊p ∗ {m}⌋ ⊆ ⌊q ∗ R({m})⌋

We are now finally ready to prove the key lemmas of the soundness proof, relating subtying to view

shifts, proving soundness of the primitive actions, and finally for the full type system. These proofs

occur once for the writer type system, and once for the reader; we show here only the (more complex)

writer obligations:

Lemma 3 (Axiom of Soundness for Atomic Commands) For each axiom, Γ1 ⊢M α ⊣ Γ2, we

show ∀m. JαK(⌊JΓ1Ktid ∗ {m}⌋) ⊆ ⌊JΓ2Ktid ∗ R({m})⌋

Proof: By case analysis on α. Details in Appendix B.1 of the techical report104. □

Lemma 4 (Context-SubTyping-M) Γ ≺: Γ′ =⇒ JΓKM,tid ⊑ JΓ′KM,tid

Proof: Induction on the subtyping derivation, then inducting on the single-type subtype relation

for the first variable in the non-empty context case. □

Lemma 5 (Views Embedding for Write-Side)

∀ Γ, C, Γ′, t. Γ ⊢M C ⊣ Γ′ ⇒

JΓKt ∩ JMKt ⊢ JCKt ⊣ JΓ′Kt ∩ JMKt

Proof: By induction on the typing derivation, appealing to Lemma 3 for primitives, Lemma 4

and consequence for subtyping, and otherwise appealing to structural rules of the Views logic and

inductive hypotheses. Full details in Appendix B.1 of the technical report104. □

The corresponding obligations and proofs for the read-side critical section type system are similar in

statement and proof approach, just for the read-side type judgments and environment denotations.

Chapter 4: Evaluation 4.1 Soundness

183

4.2 Related Work

Our type system builds on a great deal of related work on RCU implementations and models; and

general concurrent program verification (via program logics, model checking, and type systems).

Modeling RCU and Memory Models Alglave et al.4 propose a memory model to be assumed by

the platform-independent parts of the Linux kernel, regardless of the underlying hardware’s memory

model. As part of this, they give the first formalization of what it means for an RCU implementation

to be correct (previously this was difficult to state, as the guarantees in principle could vary by

underlying CPU architecture). Essentially, that reader critical sections do not span grace periods.

They prove by hand that the Linux kernel RCU implementation3 satisfies this property. According

to the fundamental requirements of RCU 123, our model in Section 2 can be considered as a valid

RCU implementation satisfying all requirements for an RCU implementation(assuming sequential

consistency) aside from one performance optimization, Read-to-Write Upgrade, which is important

in practice but not memory-safety centric – see the technical report104 for detailed discussion on

satisfying RCU requirements.

• Grace-Period and Memory-Barrier Guarantee: To reclaim a heap location, a mutator thread

must synchronize with all of the reader threads with overlapping read-side critical sections

to guarantee that none of the updates to the memory cause invalid memory accesses. The

operational semantics enforce a protocol on the mutator thread’s actions. First it unlinks a

node from the data structure; the local type for that reference becomes unlinked. Then it waits

for current reader threads to exit, after which the local type is freeable. Finally, it may safely

reclaim the memory, after which the local type is undef. The semantics prevent the writer from

reclaiming too soon by adding the heap location to the free list of the state, which is checked

dynamically by the actual free operation. We discuss the grace period and unlinking invariants

in our system in Section 4.1.1.

• Publish-Subscribe Guarantee: Fresh heap nodes cannot be observed by the reader threads

until they are published. As we see in the operational semantics, once a new heap location

Chapter 4: Evaluation 4.2 Related Work

184

is allocated it can only be referenced by a local variable of type fresh. Once published, the

local type for that reference becomes rcuItr, indicating it is now safe for the reader thread

to access it with local references in rcuItr type. We discuss the related type assertions for

inserting/replacing(Figures 3.4a-3.4b) a fresh node in Section 3.3 and the related invariants in

Section 4.1.1.

• RCU Primitives Guaranteed to Execute Unconditionally: Unconditional execution of RCU Prim-

itives are provided by the definitions in our operational semantics for our RCU primitives(e.g.

ReadBegin, ReadEnd, WriteBegin and WriteEnd) as their executions do not consider failure/retry.

• Guaranteed Read-to-Write Upgrade: This is a performance optimization which allows the reader

threads to upgrade the read-side critical section to the write-critical section by acquiring

the lock after a traversal for a data element and ensures that the upgrading-reader thread

exit the read-critical section before calling RCU synchronization. This optimization also

allows sharing the traversal code between the critical sections. Read-to-Write is an important

optimization in practice but largely orthogonal to memory-safety. Current version of our system

provides a strict separation of traverse-and-update and traverse-only intentions through the

type system(e.g. different iterator types and rules for the RCU Write/Read critical sections)

and the programming primitives. As a future work, we want to extend our system to support

this performance optimization.

To the best of our knowledge, ours is the first abstract operational model for a Linux kernel-style

RCU implementation – others are implementation-specific118 or axiomatic like Alglave et al.’s.

Tassarotti et al. model a well-known way of implementing RCU synchronization without hurting

readers’ performance, Quiescent State Based Reclamation(QSBR)48 where synchronization between the

writer thread and reader threads provided via per-thread counters. Tassarotti et al.153 uses a protocol

based program logic based on separation and ghost variables called GPS157 to verify a user-level

implementation of RCU with a singly linked list client under release-acquire semantics, which is a

weaker memory model than sequential-consistency. They require release-writes and acquire-reads

Chapter 4: Evaluation 4.2 Related Work

185

to the QSRB counters for proper synchronization in between the mutator and the reader threads.

This protocol is exactly what we enforce over the logical observations of the mutator thread: from

unlinked to freeable. Tassarotti et al.’s synchronization for linking/publishing new nodes occurs in a

similar way to ours, so we anticipate it would be possible to extend our type system in the future for

similar weak memory models.

Program Logics Fu et al.63 extend Rely-Guarantee and Separation-Logic60,61,158 with the past-

tense temporal operator to eliminate the need for using a history variable and lift the standard

separation conjunction to assert over on execution histories. Gotsman et al.70 take assertions from

temporal logic to separation logic158 to capture the essence of epoch-based memory reclamation

algorithms and have a simpler proof than what Fu et al. have63 for Michael’s non-blocking stack126

implementation under a sequentially consistent memory model.

Tassarotti et al.153 use abstract-predicates – e.g. WriterSafe – that are specialized to the singly-

linked structure in their evaluation. This means reusing their ideas for another structure, such as

a binary search tree, would require revising many of their invariants. By contrast, our types carry

similar information (our denotations are similar to their definitions), but are reusable across at

least singly-linked and tree data structures (Section 4). Their proofs of a linked list also require

managing assertions about RCU implementation resources, while these are effectively hidden in the

type denotations in our system. On the other hand, their proofs ensure full functional correctness.

Meyer and Wolff125 make a compelling argument that separating memory safety from correctness if

profitable, and we provide such a decoupled memory safety argument.

Realizing our RCU Model A direct implementation of our semantics would yield unacceptable

performance, since both entering (ReadBegin) and exiting (ReadEnd) modify shared data structures for

the bounding-threads and readers sets. A slight variation on our semantics would use a bounding set

that tracked such a snapshot of counts, and a vector of per-thread counts in place of the reader set.

Blocking grace period completion until the snapshot was strictly older than all current reader counts

would be more clearly equivalent to these implementations. Our current semantics are simpler than

Chapter 4: Evaluation 4.2 Related Work

186

this alternative, while also equivalent.

Model Checking Kokologiannakis et al.95 use model-checking to test the core of Tree RCU in

Linux kernel. Liang et al.114 use model-checking to verify the grace period guarantee of Tree RCU.

Both focus on validating a particular RCU implementation, whereas we focus on verifying memory

safety of clients independent of implementation. Desnoyers et al.48 use the SPIN model checker to

verify a user-mode implementation of RCU and this requires manual translation from C to SPIN

modeling language. In addition to being implementation-specific, they require test harness code,

validating its behavior rather than real client code.

Type Systems Howard et al.37,83 present a Haskell library called Monadic RP which provides types

and relativistic programming constructs for write/read critical sections which enforce correct usage

of relativistic programming pattern. They also have only checked a linked list. They claim handling

trees (look-up followed by update) as a future work83. Thus our work is the first type system for

ensuring correct use of RCU primitives that is known to handle more complex structures than linked

lists.

4.3 Conclusions

We presented the first type system that ensures code uses RCU memory management safely, and

which is significantly simpler than full-blown verification logics. To this end, we gave the first general

operational model for RCU-based memory management. Based on our suitable abstractions for RCU

in the operational semantics we are the first showing that decoupling the memory-safety proofs of

RCU clients from the underlying reclamation model is possible. Meyer et al.125 took similar approach

for decoupling the correctness verification of the data structures from the underlying reclamation

model under the assumption of the memory-safety for the data structures. We demonstrated the

applicability/reusability of our types on two examples: a linked-list based bag122 and a binary search

tree10. To our best knowledge, we are the first presenting the memory-safety proof for a tree client

of RCU. We managed to prove type soundness by embedding the type system into an abstract

concurrent separation logic called the Views Framework52 and encode many RCU properties as

Chapter 4: Evaluation 4.3 Conclusions

187

either type-denotations or global invariants over abstract RCU state. By doing this, we managed to

discharge these invariants once as a part of soundness proof and did not need to prove them for each

different client.

Chapter 4: Evaluation 4.3 Conclusions

188

Part V

Modalities as Verification Patterns

189

CHAPTER 1

DEFINITIONS FOR SYSTEMS VERIFICATION
PATTERNS

Although they differ in the functionality they offer, low-level systems exhibit certain patterns of

design and utilization of computing resources. In this chapter, we argue the position that modalities

should be a go-to approach when specifying and verifying low-level systems code. We explain how

the concept of a resource context helps guide the design of new modalities for verification of systems

code, and we justify our perspective by discussing prior systems that have used modalities for systems

verification successfully, arguing that they fit into the verification design pattern we articulate, and

explaining how this approach might apply to other systems verification challenges.

To explain our ideas in the general systems understanding, we briefly recap some of the background

and themes our ideas build on again,casting them in a certain way to bring out the relevance of our

philosophy.

1.1 Resources in Systems Software

Systems software, in general, interfaces with an underlying computing architecture such that any

software system at any higher level in the software stack can (at least indirectly) utilize the resources

of the machine. The last layer of software before the hardware is naturally critical to the correctness

of an overall system, as essentially all software built on top of it assumes its correctness. And because

hardware is complex and highly diverse, the implementation of those lowest layers of the software

stack is typically intricate and naturally error-prone, despite how critical its correctness is. Typically

190

systems software has, as a primary focus, the task of abstracting from hardware details to simplify

the construction of higher layers of the stack.

1.1.1 Virtualization

One of the most common forms of abstraction provided by systems software is virtualization, which

abstracts the relationship between conceptual and physical computing resources. Operating System

(OS) kernels virtualize memory locations and quantity (via virtual memory and paging46). Distributed

language runtimes may virtualize addresses, even when processes may migrate across machines88.

Filesystems virtualize locations on disk22,82,141,142. Programs built on top of the corresponding

systems software layer work logically at the level of these virtualized resources, and it makes sense to

specify the systems software directly in terms of those abstractions.

Access by Translation Accessing virtualized resources via translation is a common way to

virtualize notions of location (e.g., virtual memory addresses, inodes or object IDs instead of disk

addresses22,82,141,142). B-trees , page tables , and related structures both behave like maps, when the

corresponding physical resources exist as such just in a different location. Control over the lookup

process (e.g, handling the case of a missing translation entry) allows for additional flexibility, such

as filling holes in sparse files, or demand paging (both from disk or lazily populating anonymous

initially-zeroed mappings). Although the realization of these maps may differ from a system to

system based on the context (and sometimes hardware details), they are semantically — logically —

partial maps, worth treating as such in verification.

1.2 Nominals

1.2.1 Recapping Modal Operators in Program Specifications: Systems

Perspective

The value of modal operators in program specifications is that they permit describing something

that is true within some context(s), without needing to fully describe the context itself. Yet unlike

Chapter 1: Definitions for Systems Verification Patterns 1.2 Nominals

191

shorthands, abbreviations, or general definitions, modal operators interact with the logic in systematic

— rather than ad hoc — ways.

For example, most modal operators M have the property that if P ⇒ Q, then M(P) ⇒ M(Q). Many

modal operators distribute over conjunction, so M(P ∧ Q) ⇒ (M(P) ∧ M(Q)). So when a program

state or behaviour can be captured by a modality, this interacts nicely with the rest of the logic in

ways that simplify both specifications and proofs. Here we give a few examples of how this is true in

classic work; the next section argues that this is particularly true for systems software, because the

concepts and reasoning that arise in low-level software are naturally captured by modalities.

Although we focus on understanding the modal patterns in the program logics themselves for verifying

the client programs (Section 2.1), not in the logical machinery they implement, we think that it sheds

light on how the modal operator utilized in the machinery of the program logics shows resemblance

and can be lifted to the task of client verification.

Temporal Operators The best known class of modal logics in the systems community is un-

doubtedly temporal logics (whether LTL137, CTL58, TLA108, or others), due in part to Lamport’s

influence109 leading to its not-infrequent use in specifying distributed algorithms2,134.

1.2.2 Nominalization

Some classes of assertions benefit specifically from naming the explicit conditions where they are

true (as opposed to simply requiring them to be true somewhere or everywhere as in the most classic

modal operators). This naming generally resembles the satisfaction operator of hybrid logic 11,18:

@ιP which evaluates the truth of P at the named (Kripke model) state ι. For this reason we refer to

the general idea of naming circumstances explicitly as nominalization, even though the examples we

discuss are not necessarily actually hybrid logics.

An example utilization of state naming explicitly on the assertion appears in program logics such as

Iris90, which enables encoding of usage protocols (e.g. state transition system) resembling types-

tate64,148 as specifications. Protocol assertions are annotated with the name of the last (abstract)

Chapter 1: Definitions for Systems Verification Patterns 1.2 Nominals

192

state at which the protocol is ensured. An example more familiar to the systems community is Halpern

et al.’s history of adapting modal logics of knowledge to deal with distributed systems75,76,78. In most

of that line of work, Ka(P) indicates that the node a in the system knows or possesses knowledge

of P (for example, a Raft node may “know” a lower bound on the commit index). Alternatively, a

modality @i(P) may represent that P is true of/at the specific node i67 (e.g., that node i has stored

a certain piece of data to reliable storage). These permit capturing specific concepts relevant to the

correctness (and reasoning about correctness) of a certain class of systems, involving facts about

specific named entities in the system.

In each of these cases, the fact that these facts are described using modalities with the core modal

property P ⇒ Q, then M(P) ⇒ M(Q) means, for example, that if a process p knows that the

commit index is greater than 5 (e.g., Kp(commitIndex > 5)) no extra work is required to conclude

that the node knows it is greater than 3 (i.e., that Kp(commitIndex > 3)), because this follows from

standard properties of modal operators as described above. In contrast, if verification instead used a

custom assertion minCommitIndex(5) to represent the former knowledge, one would need to separately

provide custom reasoning to conclude minCommitIndex(3).

Chapter 1: Definitions for Systems Verification Patterns 1.2 Nominals

193

CHAPTER 2

CONTINGENCY DECOMPOSITION OF A SYSTEM

2.1 Decomposing a System into its Constituents Contingently

Table 2.1 Modal Decomposition of Program-Logics.

Resource Context Resource Elements Nominalization Context Steps

Post-Crash Modality 27,28,154 ♢ P ℓ 7→γ
n v Strong Crash Recovery

NextGen Modality 160 t
↪→ P Own (t(a)) Strong Determined Based on the

Model∗

StackRegion Modality∗ 160 ICutn

↪→ P n ℓ 7→ v Strong Alloc and Return to/from
stack

Memory-Fence Modality 40,56,57 △π and ▽π ℓ 7→ v Weak Fence Acquire and Release
Address-Space Modality 106 [r]P ℓ 7→ v Weak Address-Space Switch

Ref-Count Modality 162 @ℓ P ℓ1 7→ v Weak Allocating, Dropping and
Sharing a Reference

*The StackRegion Modality is an instance of NextGen (called the Independence Modality in 160).

Lots of existing program logics for system verifications have a common structure, which maps to

modalities with a couple extra dimensions of design. We summarize our discussion of these logics

in Table 2.1. We discuss, based on examples, common aspects of how we intuitively think about

correctness of systems code in many contexts, articulate those pieces, and call out the commonalities

across a range of systems.

2.2 Resource

Consider first the address-space abstraction in an OS kernel. An address-space of a process is

a container of virtual addresses referencing data in memory. One would expect to have points-to

assertion from separation logic to specify ownership of a memory reference pointing to some data.

But that ownership is relative to a specific address space — a specific container. We tend to think

194

directly about what is true in an address space, with the simplest piece being an association between

a virtual address and the data it points to. We call the simplest piece, in this and other examples,

the resource element:

Definition 8 (Resource Elements) The simplest atomic facts we want to work with in a particular

setting, specific to that setting.

By definition, the resource elements are specific to some limited domain or setting. For example,

knowing that a certain address points to a 32-bit signed integer representing 3 is knowledge restricted

to a certain address space. In general, we call these domains that any resource element is tied to

resource contexts:

Definition 9 (Resource Context) A resource context is an abstraction, context, or container of

resource elements of the same type, e.g., an address space of a process.

We discuss a range of examples for each of these in turn.

Table 2.1 gives additional examples of systems and their corresponding resource elements and contexts

where these elements reside, though none of the work in that table analyzes itself according to the

structure we are giving.

Except for Post-Crash-Modality, one can think of the resource contexts in the first column in Table

2.1 as containers for the corresponding resource elements in the second column.

Stack Regions When reasoning about stack frame contents, the resource element would be a

stack-memory points-to assertion (n ℓ 7→ v) indicating that a certain offset into stack region n

holds value v.

Virtual Memory For virtual memory management, a virtual-points-to ownership assertion pairing

a virtual address (ℓ) with data (v) in an address space is natural. A process’s address space with the

root address r is an abstraction that is treated as a container for virtual address mappings, ℓ 7→ v;

Chapter 2: Contingency Decomposition of a System 2.2 Resource

195

Weak-Memory When considering weak memory models, we also want points-to information

(address-value mappings).

Reference Counting When dealing with reference-counting APIs, we may care to specify reach-

ability of memory nodes (ℓ 7→ v) in a certain context defined by a shared root address. A shared

memory address ℓ can be the root of the graph that can be a container of memory nodes (ℓ1 7→ v)

that are reachable from the root ℓ.

Post-Crash The resource element of Post-Crash Modality is not obvious in Table 2.1, and needs a

bit of explanation. Perennial, based on the Iris logic, has both disk-points-to assertions d[p] 7→n v (for

a specific disk d) and in-memory points-to assertions ℓ 7→γ
n. Perennial crash-recovery logic book-keeps

resource names (can be thought of as logical variables) γ to identify which assertions (resource

elements) remain valid after a crash — these assertions are only usable while the names in γ are

valid, and a crash resets them, discarding assumptions about volatile state. A subtlety of the notion

of a resource context is that, unlike the earlier examples, the context does not need to be a literal

data structure. It can instead be (various forms of) a set of executions, as in the Post-Crash and

NextGen modalities. The Post-Crash modality ⋄ expresses that the assertion P will be true after a

crash discards all unstable storage (i.e., RAM). This was the inspiration for the NextGen modality,

which is in fact a framework for defining “after-t” modalities, where t is an transformation of the

global state.1

2.3 Nominalization

Finally, another design point is the question of whether or not resource element assertions must

explicitly track their corresponding context, or if they implicitly pick up their context from where

they are used.

Strong nominalization is the case where resource elements must explicitly include the identity of their

intended context, while weak nominalization occurs when the resource elements implicitly pick up
1The transformations are subject to some technical constraints that are unrelated to our point here.

Chapter 2: Contingency Decomposition of a System 2.3 Nominalization

196

the relevant context from how they are used. The first three modalities in Table 2.1 are strongly

nominalized, with the resource elements generally carrying identifiers of a specific modality usage.2

The last three are weakly nominalized.

This choice trades off complexity against flexibility and scoping constraints. Strongly nominalized

elements track additional specifier/prover-visible book-keeping data. But in exchange for carrying

those identifiers of their context with them, strongly nominalized elements can be used together

under any modality. For example, one can use the StackRegion modality to talk about two different

stack frames simultaneously for code which accesses multiple stack frames: n ℓ 7→ v ∗ n+1 ℓ′ 7→ v′.

Using a given strongly nominalized assertion element under different modalities for different frames

does not change its meaning.

By contrast, weakly nominalized elements are more concise, but then make talking about multiple

contexts together marginally more complex: changing which modality an assertion is used with

drastically changes its meaning. In the case of the Ref-Count modality, @ℓ(ℓ1 7→ v) says that ℓ points

to a reference count wrapping ℓ1, while placing the ℓ1 7→ v under a jump modality for a different

location entails talking about a different region of memory.

In general, use cases where code frequently manipulates small parts of multiple contexts together

should prefer strong nominalization, while use cases where usually larger portions of a single context

are at issue should prefer weak nominalization.

2The Post-Crash modality does not look like this in the presentation here; technically the definition of ⋄ quantifies
over names γ internally, dealing with sets of possible contexts.

Chapter 2: Contingency Decomposition of a System 2.3 Nominalization

197

CHAPTER 3

CONCLUSION

3.1 Making It Work

While the choice of resource elements, contexts, ambiance, and nominalization to capture the setting

and contextually-relevant pieces of information help lay out the shape of specifications based on how

we would like to think about them, there are a few more steps beyond designing the specifications.

It is necessary to work out how proof rules interact with the modalities — which program operations

or hardware primitives update machine state in a way that interacts with the modality? This could

be all or some, depending on the use case.

It is also necessary to implement the approach. This design has been most thoroughly explored with

logics embedded in proof assistants (everything in Table 2.1 uses Coq), in which case a framework like

Iris90 (used for all of our examples) will require proofs that each rule interacting with the modality

is sound, but in exchange for that work and a few supplementary definitions, modal assertions

can work naturally with existing tools for the logic99. However, it is also suitable for use with

automated techniques, for example by writing new axioms corresponding to proof rules67, though

better automation may require more work.

3.2 Conclusion

We have argued the essential patterns that help to choose the modalities when working out how

to specify different kinds of systems code based on recent successes. It also captures (a slightly

198

more organized version of) our own thinking in coming up with designs for specifying distributed

systems67, virtual memory managers106, and in ongoing work using different modalities for different

parts of a copy-on-write filesystem (e.g., for assertions true in different snapshots). So not only are

the modalities useful for conducting proofs, the pieces we have identified seem to be an effective way

of working out a specific modality for a specific use-case.

As our main conclusion and future work, we think that these essential patterns in the designs of

modal abstractions discussed constitute the fundamentals of verification patterns when working out

how to specify different kinds of systems code.

Chapter 3: Conclusion 3.2 Conclusion

199

BIBLIOGRAPHY

[1] 2021. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version
20211203. Technical Report. https://riscv.org/technical/specifications/

[2] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. 2019. WPaxos: Wide
area network flexible consensus. IEEE Transactions on Parallel and Distributed Systems 31, 1
(2019), 211–223.

[3] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial Orders for Efficient
Bounded Model Checking of Concurrent Software. In Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings.
141–157. https://doi.org/10.1007/978-3-642-39799-8_9

[4] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. 2018. Fright-
ening Small Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel. In
Proceedings of the Twenty-Third International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS ’18). ACM, New York, NY, USA,
405–418. https://doi.org/10.1145/3173162.3177156

[5] Eyad Alkassar, Mark A Hillebrand, Dirk Leinenbach, Norbert W Schirmer, and Artem Starostin.
2008. The Verisoft approach to systems verification. In Verified Software: Theories, Tools,
Experiments. Springer, 209–224.

[6] Eyad Alkassar, Wolfgang J Paul, Artem Starostin, and Alexandra Tsyban. 2010. Pervasive
verification of an OS microkernel. In Verified Software: Theories, Tools, Experiments. Springer,
71–85.

[7] Eyad Alkassar, Norbert Schirmer, and Artem Starostin. 2008. Formal pervasive verification of
a paging mechanism. In Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 109–123.

[8] AMD. 2023. AMD64 Architecture Programmer’s Manual, Volume 2: System Programming.
Revision 3.40.

[9] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007.
A Very Modal Model of a Modern, Major, General Type System. In Proceedings of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’07). ACM, New York, NY, USA, 109–122. https://doi.org/10.1145/1190216.1190235

[10] Maya Arbel and Hagit Attiya. 2014. Concurrent Updates with RCU: Search Tree As an Example.
In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing (PODC
’14). ACM, New York, NY, USA, 196–205. https://doi.org/10.1145/2611462.2611471

[11] Carlos Areces, Patrick Blackburn, and Maarten Marx. 2001. Hybrid logics: Characterization,
interpolation and complexity. The Journal of Symbolic Logic 66, 3 (2001), 977–1010.

[12] Mike Barnett, Bor-Yuh Evan Chang, Rob DeLine, and Bart Jacobs. 2005. Boogie: A Modular
Reusable Verifier for Object-Oriented Programs. In Formal Methods for Components and Objects.
Springer. https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/
krml160.pdf

https://riscv.org/technical/specifications/
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/2611462.2611471
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/krml160.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/krml160.pdf

200

[13] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
2006. Boogie: A Modular Reusable Verifier for Object-oriented Programs. In Proceedings of
the 4th International Conference on Formal Methods for Components and Objects (FMCO’05).
Springer-Verlag, Berlin, Heidelberg, 364–387. https://doi.org/10.1007/11804192_17

[14] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram Schulte, and
Herman Venter. 2011. Specification and Verification: The Spec# Experience. Commun. ACM
54, 6 (June 2011), 81–91. https://doi.org/10.1145/1953122.1953145

[15] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim
King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In Computer Aided Verification.
Springer, 171–177.

[16] Lars Birkedal and Rasmus Ejlers Møgelberg. 2013. Intensional type theory with guarded
recursive types qua fixed points on universes. In Logic in Computer Science (LICS), 2013 28th
Annual IEEE/ACM Symposium on. IEEE, 213–222. https://doi.org/10.1109/LICS.2013.
27

[17] Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian Stovring. 2011.
First steps in synthetic guarded domain theory: step-indexing in the topos of trees. In Logic in
Computer Science (LICS), 2011 26th Annual IEEE Symposium on. IEEE, 55–64.

[18] Patrick Blackburn and Jerry Seligman. 1995. Hybrid languages. Journal of Logic, Language
and Information 4, 3 (1995), 251–272.

[19] Patrick Blackburn and Johan Van Benthem. 2006. 1 Modal logic: a semantic perspective. In
Handbook of Modal Logic. Studies in Logic and Practical Reasoning, Vol. 3. Elsevier, 1–84.

[20] Patrick Blackburn, Johan FAK van Benthem, and Frank Wolter. 2006. Handbook of Modal
Logic. Vol. 3. Elsevier.

[21] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. 2006. Formal verification of a C compiler
front-end. In FM 2006: Formal Methods. Springer, 460–475.

[22] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shellenbaum. 2003. The
Zettabyte File System. In Proc. of the 2nd Usenix Conference on File and Storage Technologies
(USENIX FAST).

[23] Stephen Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR. http:
//link.springer.com/chapter/10.1007/978-3-540-28644-8_2

[24] James Brotherston and Jules Villard. 2014. Parametric completeness for separation theories.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 453–464.

[25] Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract
Separation Logic. In Proceedings of the 22Nd Annual IEEE Symposium on Logic in Computer
Science (LICS ’07). IEEE Computer Society, Washington, DC, USA, 366–378. https:
//doi.org/10.1109/LICS.2007.30

[26] Pierre Castéran and Yves Bertot. 2004. Interactive theorem proving and program development.
Coq’Art: The Calculus of inductive constructions. Springer Verlag. 470 pages.

[27] Tej Chajed. 2022. Verifying a concurrent, crash-safe file system with sequential reasoning.
Ph.D. Dissertation. Machetutes Institute of Technology, Cambridge, MA. Available at https:
//dspace.mit.edu/handle/1721.1/144578.

[28] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying
concurrent, crash-safe systems with Perennial. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP ’19). Association for Computing Machinery, New York,
NY, USA, 243–258. https://doi.org/10.1145/3341301.3359632

https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/1953122.1953145
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.1109/LICS.2013.27
http://link.springer.com/chapter/10.1007/978-3-540-28644-8_2
http://link.springer.com/chapter/10.1007/978-3-540-28644-8_2
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1109/LICS.2007.30
https://dspace.mit.edu/handle/1721.1/144578
https://dspace.mit.edu/handle/1721.1/144578
https://doi.org/10.1145/3341301.3359632

201

[29] Kaustuv Chaudhuri, Joëlle Despeyroux, Carlos Olarte, and Elaine Pimentel. 2019. Hybrid
linear logic, revisited. Mathematical Structures in Computer Science 29, 8 (2019), 1151–1176.

[30] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and Ronghui Gu.
2016. Toward Compositional Verification of Interruptible OS Kernels and Device Drivers. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’16). ACM, New York, NY, USA, 431–447. https://doi.org/10.
1145/2908080.2908101

[31] Adam Chlipala. 2013. The Bedrock Structured Programming System: Combining Generative
Metaprogramming and Hoare Logic in an Extensible Program Verifier. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming (ICFP ’13). ACM,
New York, NY, USA, 391–402. https://doi.org/10.1145/2500365.2500592

[32] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. 2012. Scalable address spaces
using RCU balanced trees. In Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2012, London, UK,
March 3-7, 2012. 199–210. https://doi.org/10.1145/2150976.2150998

[33] Ernie Coehn, Michal Moskal, Wolfram Shulte, and Stephan Tobies. 2010. Local Verification
of Global Invariants in Concurrent Programs. Technical Report MSR-TR-2010-9. Microsoft
Research.

[34] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, MichałMoskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. 2009. VCC: A Practical System for Verifying
Concurrent C. In Proceedings of the 22Nd International Conference on Theorem Proving in
Higher Order Logics (TPHOLs ’09). Springer-Verlag, Berlin, Heidelberg, 23–42. https:
//doi.org/10.1007/978-3-642-03359-9_2

[35] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. 2009. VCC: A Practical System for Verifying
Concurrent C. In Theorem Proving in Higher Order Logics (TPHOLs) (Lecture Notes in
Computer Science), Vol. 5674. Springer, 23–42. http://research.microsoft.com/apps/
pubs/default.aspx?id=117859

[36] Ernie Cohen, Wolfgang J. Paul, and Sabine Schmaltz. 2013. Theory of Multi Core Hypervisor
Verification. In SOFSEM 2013: Theory and Practice of Computer Science, 39th International
Conference on Current Trends in Theory and Practice of Computer Science, Špindlerův
Mlýn, Czech Republic, January 26-31, 2013. Proceedings. 1–27. https://doi.org/10.1007/
978-3-642-35843-2_1

[37] Ted Cooper and Jonathan Walpole. 2015. Relativistic Programming in Haskell Using Types
to Enforce a Critical Section Discipline. http://web.cecs.pdx.edu/~walpole/papers/
haskell2015.pdf

[38] Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies, and Wolfram Schulte. 2009.
VCC: Contract-based modular verification of concurrent C. In 31st International Conference
on Software Engineering-Companion Volume, 2009. ICSE-Companion 2009. IEEE, 429–430.

[39] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. 2005. On the verification of memory
management mechanisms. In Correct Hardware Design and Verification Methods. Springer,
301–316.

[40] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2019. RustBelt
meets relaxed memory. Proc. ACM Program. Lang. 4, POPL, Article 34 (Dec. 2019), 29 pages.
https://doi.org/10.1145/3371102

[41] Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt
meets relaxed memory. Proceedings of the ACM on Programming Languages 4, POPL (2020),
34:1–34:29. https://hal.inria.fr/hal-02351793/

https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1145/2500365.2500592
https://doi.org/10.1145/2150976.2150998
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
https://doi.org/10.1007/978-3-642-35843-2_1
https://doi.org/10.1007/978-3-642-35843-2_1
http://web.cecs.pdx.edu/~walpole/papers/haskell2015.pdf
http://web.cecs.pdx.edu/~walpole/papers/haskell2015.pdf
https://doi.org/10.1145/3371102
https://hal.inria.fr/hal-02351793/

202

[42] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon
Kang, and Derek Dreyer. 2022. Compass: strong and compositional library specifications in
relaxed memory separation logic. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. 792–808.

[43] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer.
2015. The Lean theorem prover (system description). In International Conference on Automated
Deduction. Springer, 378–388.

[44] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.
In Tools and Algorithms for Construction and Analysis of Systems (TACAS) (Lecture Notes
in Computer Science), Vol. 4963. Springer, 337–340. http://www.audentia-gestion.fr/
MICROSOFT/z3.pdf

[45] Paulo Emílio de Vilhena and François Pottier. 2023. Verifying an Effect-Handler-Based Define-
By-Run Reverse-Mode AD Library. Logical Methods in Computer Science Volume 19, Issue 4,
Article 5 (Oct 2023). https://doi.org/10.46298/lmcs-19(4:5)2023

[46] Peter J. Denning. 1970. Virtual Memory. ACM Comput. Surv. 2, 3 (Sept. 1970), 153–189.
https://doi.org/10.1145/356571.356573

[47] Mathieu Desnoyers, Paul E. McKenney, and Michel R. Dagenais. 2013. Multi-core Systems
Modeling for Formal Verification of Parallel Algorithms. SIGOPS Oper. Syst. Rev. 47, 2 (July
2013), 51–65. https://doi.org/10.1145/2506164.2506174

[48] Mathieu Desnoyers, Paul E. McKenney, Alan Stern, and Jonathan Walpole. 2009. User-Level
Implementations of Read-Copy Update. IEEE Transactions on Parallel and Distributed Systems
(2009). /static/publications/desnoyers-ieee-urcu-submitted.pdf

[49] Joëlle Despeyroux and Kaustuv Chaudhuri. 2014. A hybrid linear logic for constrained transition
systems. In Post-Proceedings of the 9th Intl. Conference on Types for Proofs and Programs
(TYPES 2013), Vol. 26. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 150–168.

[50] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson, and Hongseok
Yang. 2013. Views: Compositional Reasoning for Concurrent Programs. In Proceedings of the
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’13). ACM, New York, NY, USA, 287–300. https://doi.org/10.1145/2429069.
2429104

[51] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok
Yang. 2013. Views: compositional reasoning for concurrent programs. In Principles of Pro-
gramming Languages (POPL). 287–300. http://cs.au.dk/~birke/papers/views.pdf

[52] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok
Yang. 2013. Views: compositional reasoning for concurrent programs. In The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013. 287–300. https://doi.org/10.1145/2429069.2429104

[53] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew Parkinson, and Viktor
Vafeiadis. 2010. Concurrent Abstract Predicates. In ECOOP.

[54] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew Parkinson, and Viktor
Vafeiadis. 2010. Concurrent Abstract Predicates. Technical Report. University of Cambridge,
Computer Laboratory. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-777.pdf

[55] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. 2009. Deny-Guarantee
Reasoning. In ESOP.

[56] Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11 Memory Fences. In
Proceedings of the 17th International Conference on Verification, Model Checking, and Abstract

http://www.audentia-gestion.fr/MICROSOFT/z3.pdf
http://www.audentia-gestion.fr/MICROSOFT/z3.pdf
https://doi.org/10.46298/lmcs-19(4:5)2023
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/2506164.2506174
/static/publications/desnoyers-ieee-urcu-submitted.pdf
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1145/2429069.2429104
http://cs.au.dk/~birke/papers/views.pdf
https://doi.org/10.1145/2429069.2429104
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-777.pdf

203

Interpretation - Volume 9583 (VMCAI 2016). Springer-Verlag, Berlin, Heidelberg, 413–430.
https://doi.org/10.1007/978-3-662-49122-5_20

[57] Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++.
In Programming Languages and Systems: 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings. Springer-Verlag, Berlin,
Heidelberg, 448–475. https://doi.org/10.1007/978-3-662-54434-1_17

[58] E Allen Emerson and Edmund M Clarke. 1982. Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer programming 2, 3 (1982), 241–266.

[59] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R. Larus,
and Steven Levi. 2006. Language Support for Fast and Reliable Message-based Communication
in Singularity OS. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems 2006 (EuroSys ’06). ACM, New York, NY, USA, 177–190. https:
//doi.org/10.1145/1217935.1217953

[60] Xinyu Feng. 2009. Local Rely-guarantee Reasoning. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’09). ACM,
New York, NY, USA, 315–327. https://doi.org/10.1145/1480881.1480922

[61] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the Relationship Between Concurrent
Separation Logic and Assume-Guarantee Reasoning. In ESOP.

[62] Michael J. Fischer and Richard E. Ladner. 1977. Propositional Modal Logic of Programs. In
Proceedings of the Ninth Annual ACM Symposium on Theory of Computing (STOC ’77). ACM,
New York, NY, USA, 286–294. https://doi.org/10.1145/800105.803418

[63] Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic
Concurrency Using a Program Logic for History. In CONCUR 2010 - Concurrency Theory,
Paul Gastin and François Laroussinie (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
388–402.

[64] Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. 2014. Foundations of typestate-
oriented programming. ACM Transactions on Programming Languages and Systems (TOPLAS)
36, 4 (2014), 1–44.

[65] George Gargov and Valentin Goranko. 1993. Modal logic with names. Journal of Philosophical
Logic 22, 6 (1993), 607–636.

[66] Valentin Goranko. 1996. Hierarchies of modal and temporal logics with reference pointers.
Journal of Logic, Language and Information 5, 1 (1996), 1–24.

[67] Colin S Gordon. 2019. Modal assertions for actor correctness. In Proceedings of the 9th ACM
SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized
Control. 11–20.

[68] Colin S. Gordon, Michael D. Ernst, Dan Grossman, and Matthew J. Parkinson. 2017. Verifying
Invariants of Lock-free Data Structures with Rely-Guarantee and Refinement Types. ACM
Transactions on Programming Languages and Systems (TOPLAS) 39, 3 (May 2017). https:
//doi.org/10.1145/3064850 URL: http://doi.acm.org/10.1145/3064850.

[69] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
2012. Uniqueness and Reference Immutability for Safe Parallelism. In Proceedings of the
2012 ACM International Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA’12). Tucson, AZ, USA. https://doi.org/10.1145/2384616.
2384619
URL: http://dl.acm.org/citation.cfm?id=2384619.

https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1145/1480881.1480922
https://doi.org/10.1145/800105.803418
https://doi.org/10.1145/3064850
https://doi.org/10.1145/3064850
http://doi.acm.org/10.1145/3064850
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384619
http://dl.acm.org/citation.cfm?id=2384619

204

[70] Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concurrent Memory
Reclamation Algorithms with Grace. In Proceedings of the 22Nd European Conference on
Programming Languages and Systems (ESOP’13). Springer-Verlag, Berlin, Heidelberg, 249–269.
https://doi.org/10.1007/978-3-642-37036-6_15

[71] Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011. CertiKOS:
A Certified Kernel for Secure Cloud Computing. In Proceedings of the Second Asia-Pacific
Workshop on Systems (APSys ’11). ACM, New York, NY, USA, Article 3, 5 pages. https:
//doi.org/10.1145/2103799.2103803

[72] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu,
Shu-Chun Weng, Haozhong Zhang, and Yu Guo. 2015. Deep Specifications and Certified
Abstraction Layers. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA, 595–608.
https://doi.org/10.1145/2676726.2676975

[73] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. 2016. CertiKOS: An Extensible Architecture for Building Certified
Concurrent OS Kernels.. In OSDI. 653–669.

[74] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig, Vilhelm
Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananandro. 2018. Certified Concurrent
Abstraction Layers. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018). ACM, New York, NY, USA, 646–661.
https://doi.org/10.1145/3192366.3192381

[75] Joseph Y Halpern. 2017. Reasoning about uncertainty. MIT press.

[76] Joseph Y Halpern and Ronald Fagin. 1989. Modelling knowledge and action in distributed
systems. Distributed computing 3 (1989), 159–177.

[77] Joseph Y Halpern and Yoram Moses. 1985. A guide to the modal logics of knowledge and
belief: Preliminary draft. In Proceedings of the 9th international joint conference on Artificial
intelligence-Volume 1. Morgan Kaufmann Publishers Inc., 480–490.

[78] Joseph Y Halpern and Yoram Moses. 1990. Knowledge and common knowledge in a distributed
environment. Journal of the ACM (JACM) 37, 3 (1990), 549–587.

[79] David Harel. 1979. First-order dynamic logic.

[80] Mark Hillebrand. 2005. Address Spaces and Virtual Memory: Specification, Implementation,
and Correctness. Ph.D. Dissertation. PhD thesis, Saarland University, Computer Science Dept.

[81] Jaakko Hintikka. 1962. Knowledge and belief. Cornell University Press.

[82] Dave Hitz, James Lau, and Michael A Malcolm. 1994. File System Design for an NFS File
Server Appliance.. In USENIX Winter, Vol. 94.

[83] Philip W. Howard and Jonathan Walpole. 2011. A Relativistic Enhancement to Soft-
ware Transactional Memory. In Proceedings of the 3rd USENIX Conference on Hot Topic
in Parallelism (HotPar’11). USENIX Association, Berkeley, CA, USA, 15–15. http:
//dl.acm.org/citation.cfm?id=2001252.2001267

[84] George Edward Hughes and Max J Cresswell. 1996. A new introduction to modal logic.

[85] Galen Hunt, Mark Aiken, Manuel Fähndrich, Chris Hawblitzel, Orion Hodson, James Larus,
Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber. 2007. Sealing OS Processes to
Improve Dependability and Safety. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007 (EuroSys ’07). ACM, New York, NY, USA, 341–354.
https://doi.org/10.1145/1272996.1273032

https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1145/2103799.2103803
https://doi.org/10.1145/2103799.2103803
https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3192366.3192381
http://dl.acm.org/citation.cfm?id=2001252.2001267
http://dl.acm.org/citation.cfm?id=2001252.2001267
https://doi.org/10.1145/1272996.1273032

205

[86] Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the Software Stack. SIGOPS
Oper. Syst. Rev. 41, 2 (April 2007), 37–49. https://doi.org/10.1145/1243418.1243424

[87] C. B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs.
ACM Trans. Program. Lang. Syst. 5, 4 (Oct. 1983), 596–619. https://doi.org/10.1145/
69575.69577

[88] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. 1988. Fine-grained mobility in
the Emerald system. ACM Transactions on Computer Systems (TOCS) 6, 1 (1988), 109–133.

[89] Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang.
2023. Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic. Proc.
ACM Program. Lang. 7, OOPSLA2, Article 251 (Oct. 2023), 29 pages. https://doi.org/10.
1145/3622827

[90] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. 2018. Iris from the ground up: A modular foundation for higher-order concurrent
separation logic. Journal of Functional Programming 28 (2018), e20.

[91] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. 2015. Iris: Monoids and Invariants As an Orthogonal Basis for Concurrent
Reasoning. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15). ACM, New York, NY, USA, 637–650.
https://doi.org/10.1145/2676726.2676980

[92] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. 2015. Iris: Monoids and Invariants As an Orthogonal Basis for Concurrent
Reasoning. In POPL.

[93] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. 2014. Comprehensive Formal Verification of an OS Microkernel.
ACM Trans. Comput. Syst. 32, 1, Article 2 (Feb. 2014), 70 pages. https://doi.org/10.
1145/2560537

[94] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP ’09). ACM,
New York, NY, USA, 207–220. https://doi.org/10.1145/1629575.1629596

[95] Michalis Kokologiannakis and Konstantinos Sagonas. 2017. Stateless Model Checking of the
Linux Kernel’s Hierarchical Read-copy-update (Tree RCU). In Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software (SPIN 2017). ACM,
New York, NY, USA, 172–181. https://doi.org/10.1145/3092282.3092287

[96] Rafal Kolanski. 2008. A Logic for Virtual Memory. In Systems Software Verification, Ralf
Huuck, Gerwin Klein, Bastian Schlich (Ed.). Sydney, Australia, 61–77.

[97] Rafal Kolanski and Gerwin Klein. 2008. Mapped Separation Logic. In Verified Software:
Theories, Tools and Experiments, Natarajan Shankar, Jim Woodcock (Ed.). Springer, Toronto,
Canada, 15–29.

[98] Rafal Kolanski and Gerwin Klein. 2009. Types, Maps and Separation Logic. In International
Conference on Theorem Proving in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban,
M. Wenzel (Ed.). Springer, Munich, Germany, 276–292.

[99] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser,
Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A general, extensible
modal framework for interactive proofs in separation logic. Proceedings of the ACM on
Programming Languages 2, ICFP (2018), 1–30.

https://doi.org/10.1145/1243418.1243424
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/3622827
https://doi.org/10.1145/3622827
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2560537
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3092282.3092287

206

[100] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. 2017. The essence of higher-order concurrent separation logic. In European Symposium
on Programming. Springer, 696–723.

[101] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive Proofs in Higher-order
Concurrent Separation Logic. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 205–217.
https://doi.org/10.1145/3009837.3009855

[102] Saul A. Kripke. 1963. Semantical Considerations on Modal Logic. Acta Philosophica Fennica
16, 1963 (1963), 83–94.

[103] H. T. Kung and Philip L. Lehman. 1980. Concurrent Manipulation of Binary Search Trees. ACM
Trans. Database Syst. 5, 3 (Sept. 1980), 354–382. https://doi.org/10.1145/320613.320619

[104] Ismail Kuru and Colin S. Gordon. 2018. Safe Deferred Memory Reclamation with Types. CoRR
abs/1811.11853 (2018). arXiv:1811.11853 http://arxiv.org/abs/1811.11853

[105] Ismail Kuru and Colin S. Gordon. 2019. Safe Deferred Memory Reclamation with Types.
In Programming Languages and Systems - 28th European Symposium on Programming,
ESOP 2019, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings (Lecture
Notes in Computer Science), Luís Caires (Ed.), Vol. 11423. Springer, 88–116. https:
//doi.org/10.1007/978-3-030-17184-1_4

[106] Ismail Kuru and Colin S. Gordon. 2024. Modal Abstractions for Virtualizing Memory Addresses.
arXiv:cs.PL/2307.14471 https://arxiv.org/abs/2307.14471

[107] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing
sequential consistency in C/C++ 11. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 618–632.

[108] Leslie Lamport. 1994. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems (TOPLAS) 16, 3 (1994), 872–923.

[109] Leslie Lamport. 2002. Specifying systems: the TLA+ language and tools for hardware and
software engineers. (2002).

[110] Xavier Leroy. 2009. A formally verified compiler back-end. Journal of Automated Reasoning
43, 4 (2009), 363–446.

[111] Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like memory model and
its uses for verifying program transformations. Journal of Automated Reasoning 41, 1 (2008),
1–31.

[112] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto, Prabal
Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer Safely and Efficiently. In
Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 234–251.

[113] Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained
concurrency. In Principles of Programming Languages (POPL). 561–574. http://software.
imdea.org/~aleks/papers/concur/scsl4.pdf

[114] Lihao Liang, Paul E. McKenney, Daniel Kroening, and Tom Melham. 2016. Verification of the
Tree-Based Hierarchical Read-Copy Update in the Linux Kernel. CoRR abs/1610.03052 (2016).
http://arxiv.org/abs/1610.03052

[115] J. Liedtke. 1995. On Micro-kernel Construction. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (SOSP ’95). ACM, New York, NY, USA, 237–250. https:
//doi.org/10.1145/224056.224075

https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/320613.320619
http://arxiv.org/abs/1811.11853
https://doi.org/10.1007/978-3-030-17184-1_4
https://doi.org/10.1007/978-3-030-17184-1_4
https://arxiv.org/abs/2307.14471
http://software.imdea.org/~aleks/papers/concur/scsl4.pdf
http://software.imdea.org/~aleks/papers/concur/scsl4.pdf
http://arxiv.org/abs/1610.03052
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/224056.224075

207

[116] Jochen Liedtke. 1996. Toward Real Microkernels. Commun. ACM 39, 9 (Sept. 1996), 70–77.
https://doi.org/10.1145/234215.234473

[117] John Lions. 1996. Lions’ commentary on UNIX 6th edition with source code. Peer-to-Peer
Communications, Inc.

[118] M. U. Mandrykin and A. V. Khoroshilov. 2016. Towards Deductive Verification of C Programs
with Shared Data. Program. Comput. Softw. 42, 5 (Sept. 2016), 324–332. https://doi.org/
10.1134/S0361768816050054

[119] Richard McDougall and Jim Mauro. 2006. Solaris internals: Solaris 10 and OpenSolaris kernel
architecture. Pearson Education.

[120] Paul E. Mckenney. 2004. Exploiting Deferred Destruction: An Analysis of Read-copy-update
Techniques in Operating System Kernels. Ph.D. Dissertation. Oregon Health & Science University.
AAI3139819.

[121] Paul E. McKenney. 2014. N4037: Non-Transactional Implementation of Atomic Tree Move.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf

[122] Paul E. McKenney. 2015. Some Examples of Kernel-Hacker Informal Correctness Rea-
soning (Technical Report paulmck.2015.06.17a). http://www2.rdrop.com/users/paulmck/
techreports/IntroRCU.2015.06.17a.pdf

[123] Paul E. Mckenney. 2017. A Tour Through RCU’s Requirements. https://www.kernel.org/
doc/Documentation/RCU/Design/Requirements/Requirements.html

[124] Paul E. Mckenney, Jonathan Appavoo, Andi Kleen, O. Krieger, Orran Krieger, Rusty Russell,
Dipankar Sarma, and Maneesh Soni. 2001. Read-Copy Update. In In Ottawa Linux Symposium.
338–367.

[125] Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data structures from memory
reclamation for static analysis. PACMPL 3, POPL (2019), 58:1–58:31. https://dl.acm.org/
citation.cfm?id=3290371

[126] Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Trans. Parallel Distrib. Syst. 15, 6 (June 2004), 491–504. https://doi.org/10.1109/
TPDS.2004.8

[127] Rasmus Ejlers Møgelberg. 2014. A type theory for productive coprogramming via guarded
recursion. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference
on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). ACM, 71.

[128] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verifi-
cation Infrastructure for Permission-Based Reasoning. In Proceedings of the 17th Inter-
national Conference on Verification, Model Checking, and Abstract Interpretation - Vol-
ume 9583 (VMCAI 2016). Springer-Verlag New York, Inc., New York, NY, USA, 41–62.
https://doi.org/10.1007/978-3-662-49122-5_2

[129] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Commu-
nicating state transition systems for fine-grained concurrent resources. In European Symposium
on Programming. Springer, 290–310.

[130] Zhaozhong Ni, Dachuan Yu, and Zhong Shao. 2007. Using XCAP to certify realistic systems
code: Machine context management. In Theorem Proving in Higher Order Logics. Springer,
189–206.

[131] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. 2002. Isabelle/HOL: a proof assistant
for higher-order logic. Vol. 2283. Springer Science & Business Media.

https://doi.org/10.1145/234215.234473
https://doi.org/10.1134/S0361768816050054
https://doi.org/10.1134/S0361768816050054
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4037.pdf
http://www2.rdrop.com/users/paulmck/techreports/IntroRCU.2015.06.17a.pdf
http://www2.rdrop.com/users/paulmck/techreports/IntroRCU.2015.06.17a.pdf
https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://www.kernel.org/doc/Documentation/RCU/Design/Requirements/Requirements.html
https://dl.acm.org/citation.cfm?id=3290371
https://dl.acm.org/citation.cfm?id=3290371
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1007/978-3-662-49122-5_2

208

[132] Peter O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (jan 2019), 86–95. https:
//doi.org/10.1145/3211968

[133] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. 2004. Separation and Information
Hiding. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’04). ACM, New York, NY, USA, 268–280. https://doi.
org/10.1145/964001.964024

[134] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus algorithm.
In 2014 USENIX annual technical conference (USENIX ATC 14). 305–319.

[135] Susan Owicki and David Gries. 1976. An axiomatic proof technique for parallel programs I.
Acta Informatica 6, 4 (1976), 319–340. https://doi.org/10.1007/BF00268134

[136] Lai Jiangshan Paul E. McKenney, Mathieu Desnoyers and Josh Triplett. 2016. The RCU-barrier
menagerie. https://lwn.net/Articles/573497/

[137] Amir Pnueli. 1977. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science (FOCS 1977). ieee, 46–57.

[138] Vaughan R Pratt. 1976. Semantical consideration on floyo-hoare logic. In Foundations of
Computer Science, 1976., 17th Annual Symposium on. IEEE, 109–121.

[139] Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent Local Subjective
Logic. In ESOP.

[140] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS ’02).
IEEE Computer Society, Washington, DC, USA, 55–74. http://dl.acm.org/citation.cfm?
id=645683.664578

[141] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-Tree Filesystem. ACM
Trans. Storage 9, 3, Article 9 (Aug. 2013), 32 pages. https://doi.org/10.1145/2501620.
2501623

[142] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and Implementation of a
Log-structured File System. ACM Trans. Comput. Syst. 10, 1 (Feb. 1992), 26–52. https:
//doi.org/10.1145/146941.146943

[143] Davide Sangiorgi. 2009. On the Origins of Bisimulation and Coinduction. ACM Trans. Program.
Lang. Syst. 31, 4, Article 15 (May 2009), 41 pages. https://doi.org/10.1145/1516507.
1516510

[144] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized Verification of
Fine-grained Concurrent Programs. In PLDI.

[145] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Translation
Validation for a Verified OS Kernel. In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’13). ACM, New York, NY, USA,
471–482. https://doi.org/10.1145/2491956.2462183

[146] Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. 2015. A
separation Logic for Fictional Sequential Consistency. In European Symposium on Programming.
Springer, 736–761.

[147] Artem Starostin. 2010. Formal verification of demand paging. Ph.D. Dissertation. PhD thesis,
Saarland University, Computer Science Dept.

[148] Robert E Strom and Shaula Yemini. 1986. Typestate: A programming language concept for
enhancing software reliability. IEEE transactions on software engineering 1 (1986), 157–171.

https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
https://doi.org/10.1145/964001.964024
https://doi.org/10.1145/964001.964024
https://doi.org/10.1007/BF00268134
https://lwn.net/Articles/573497/
http://dl.acm.org/citation.cfm?id=645683.664578
http://dl.acm.org/citation.cfm?id=645683.664578
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1145/2491956.2462183

209

[149] Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In
European Symposium on Programming (ESOP) (Lecture Notes in Computer Science), Vol. 8410.
Springer, 149–168. http://cs.au.dk/~birke/papers/icap-conf.pdf

[150] Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In
European Symposium on Programming. Springer, 149–168.

[151] Hira Taqdees Syeda and Gerwin Klein. 2018. Program verification in the presence of cached
address translation. In Interactive Theorem Proving: 9th International Conference, ITP 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings 9. Springer, 542–559.

[152] Hira Taqdees Syeda and Gerwin Klein. 2020. Formal reasoning under cached address translation.
Journal of Automated Reasoning 64, 5 (2020), 911–945.

[153] Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying Read-copy-update
in a Logic for Weak Memory. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15). ACM, New York, NY, USA,
110–120. https://doi.org/10.1145/2737924.2737992

[154] Josep Tassarotti Tej Chajed and contributors. 2023. Post-crash modality in Perennial’s
Coq Mechanization. https://github.com/mit-pdos/perennial/blob/master/src/goose_
lang/crash_modality.v

[155] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. 2011. Resizable, Scalable, Concurrent
Hash Tables via Relativistic Programming. In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (USENIXATC’11). USENIX Association, Berkeley, CA,
USA, 11–11. http://dl.acm.org/citation.cfm?id=2002181.2002192

[156] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying Refinement and Hoare-style
Reasoning in a Logic for Higher-order Concurrency. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’13). ACM, New York, NY, USA,
377–390. https://doi.org/10.1145/2500365.2500600

[157] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating Weak Memory with
Ghosts, Protocols, and Separation. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications (OOPSLA ’14). ACM,
New York, NY, USA, 691–707. https://doi.org/10.1145/2660193.2660243

[158] Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Rely/Guarantee and Separation
Logic. In CONCUR (Lecture Notes in Computer Science), Luís Caires and Vasco T. Vasconcelos
(Eds.), Vol. 4703. Springer Berlin Heidelberg, Berlin, Heidelberg. http://www.springerlink.
com/content/m20j47mp273414gx/

[159] Alexander Vaynberg and Zhong Shao. 2012. Compositional verification of a baby virtual
memory manager. In Certified Programs and Proofs. Springer, 143–159.

[160] Simon Friis Vindum, Aïna Linn Georges, and Lars Birkedal. 2025. The Nextgen Modality:
A Modality for Non-Frame-Preserving Updates in Separation Logic. In Proceedings of the
14th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP ’25).
Association for Computing Machinery, New York, NY, USA, 83–97. https://doi.org/10.
1145/3703595.3705876

[161] Michael von Tessin. 2013. The clustered multikernel: An approach to formal verification of
multiprocessor operating-system kernels. Ph.D. Dissertation. PhD thesis, School of Computer
Science and Engineering, UNSW, Sydney, Australia, Sydney, Australia.

[162] Andrew Wagner, Zachary Eisbach, and Amal Ahmed. 2024. Realistic Realizability: Specifying
ABIs You Can Count On. Proc. ACM Program. Lang. 8, OOPSLA2, Article 315 (Oct. 2024),
30 pages. https://doi.org/10.1145/3689755

http://cs.au.dk/~birke/papers/icap-conf.pdf
https://doi.org/10.1145/2737924.2737992
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
http://dl.acm.org/citation.cfm?id=2002181.2002192
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.1145/2660193.2660243
http://www.springerlink.com/content/m20j47mp273414gx/
http://www.springerlink.com/content/m20j47mp273414gx/
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1145/3689755

210

[163] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction: Automated Verification
of a Type-safe Operating System. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA,
99–110. https://doi.org/10.1145/1806596.1806610

https://doi.org/10.1145/1806596.1806610

211

APPENDIX A

ASSEMBLY IMPLEMENTATION OF VIRTUAL MEMORY
MANAGEMENT

A.1 Assembly Implementation of PTE Library

1 pte.o: file format elf64−x86−64

2

3

4 Disassembly of section .text:

5

6 0000000000000000 <pte_init>:

7

8 #include "kalloc.h"

9 #include "lib.h"

10 #include "x86.h"

11

12 0000000000000070 <pte_initialize>:

13 }

14

15 void pte_initialize(pte_t ∗entry) {

16 70: 55 push %rbp

17 71: 48 89 e5 mov %rsp,%rbp

18 74: 48 83 ec 10 sub $0x10,%rsp

19 78: 48 89 7d f8 mov %rdi,−0x8(%rbp)

20

21 // Allocate a full page for 512 8−byte entries

22 pte_t ∗local = kalloc();

212

23 7c: e8 00 00 00 00 callq 81 <pte_initialize+0x11> 7d: R_X86_64_PLT32 kalloc−0x4

24 81: 48 89 45 f0 mov %rax,−0x10(%rbp)

25

26 // Clear the entire table. Ensures present (and reserved, etc.) bits are 0

27 //memset(local, 0, PAGE_SIZE);

28 entry−>pfn = PTE_ADDR_TO_PFN((uintptr_t) local);

29 85: 48 8b 45 f0 mov −0x10(%rbp),%rax

30 89: 48 c1 e8 0c shr $0xc,%rax

31 8d: 48 8b 7d f8 mov −0x8(%rbp),%rdi

32 91: 48 8b 0f mov (%rdi),%rcx

33 94: 48 ba ff ff ff ff ff 00 00 00 movabs $0xffffffffff,%rdx

34 9e: 48 21 d0 and %rdx,%rax

35 a1: 48 c1 e0 0c shl $0xc,%rax

36 a5: 48 ba ff 0f 00 00 00 00 f0 ff movabs $0xfff0000000000fff,%rdx

37 af: 48 21 d1 and %rdx,%rcx

38 b2: 48 09 c1 or %rax,%rcx

39 b5: 48 89 0f mov %rcx,(%rdi)

40

41 return;

42 b8: 48 83 c4 10 add $0x10,%rsp

43 bc: 5d pop %rbp

44 bd: c3 retq

45 be: 66 90 xchg %ax,%ax

46

47 00000000000000c0 <pte_uninit>:

48 }

49

50 00000000000000e0 <pte_get_next_table_succ>:

51 ∗ @param entry − the entry from which to get the next level of tables

52 ∗ @param alloc − if non−zero, if the next table is not present, allocates it

53 ∗ @return − pointer to the next page table level or, if not present and alloc

54 ∗ is not set or memory is not sufficient, NULL

55 ∗/

56 pte_t ∗pte_get_next_table_succ(pte_t ∗entry) {

213

57 e0: 55 push %rbp

58 e1: 48 89 e5 mov %rsp,%rbp

59 e4: 48 83 ec 20 sub $0x20,%rsp

60 e8: 48 89 7d f8 mov %rdi,−0x8(%rbp)

61 pte_t ∗next;

62

63

64 // If not already present, try to allocate

65 if (!entry−>present) {

66 ec: 48 8b 7d f8 mov −0x8(%rbp),%rdi

67 f0: 48 8b 3f mov (%rdi),%rdi

68 f3: 48 83 e7 01 and $0x1,%rdi

69 f7: 40 88 f8 mov %dil,%al

70 fa: 3c 00 cmp $0x0,%al

71 fc: 0f 85 3f 00 00 00 jne 141 <pte_get_next_table_succ+0x61>

72 // If it shouldn't be or cannot be allocated, indicate failure

73 pte_initialize(entry);

74 102: 48 8b 7d f8 mov −0x8(%rbp),%rdi

75 106: e8 65 ff ff ff callq 70 <pte_initialize>

76

77 // Update the entry to indicate that a new table has now been allocated.

78 // Make it writable and user−accesible − if necessary, the lowest level

79 // of page table can fix these access rights. Indicate the ∗physical∗

80 // address of the newly allocated structure in pfn.

81 entry−>writable = 1;

82 10b: 48 8b 7d f8 mov −0x8(%rbp),%rdi

83 10f: 48 8b 07 mov (%rdi),%rax

84 112: 48 83 e0 fd and $0xfffffffffffffffd,%rax

85 116: 48 83 c8 02 or $0x2,%rax

86 11a: 48 89 07 mov %rax,(%rdi)

87 entry−>user_acc = 1;

88 11d: 48 8b 45 f8 mov −0x8(%rbp),%rax

89 121: 48 8b 38 mov (%rax),%rdi

90 124: 48 83 e7 fb and $0xfffffffffffffffb,%rdi

214

91 128: 48 83 cf 04 or $0x4,%rdi

92 12c: 48 89 38 mov %rdi,(%rax)

93 // entry−>pfn = PTE_ADDR_TO_PFN((uintptr_t) next);

94 entry−>present = 1;

95 12f: 48 8b 45 f8 mov −0x8(%rbp),%rax

96 133: 48 8b 38 mov (%rax),%rdi

97 136: 48 83 e7 fe and $0xfffffffffffffffe,%rdi

98 13a: 48 83 cf 01 or $0x1,%rdi

99 13e: 48 89 38 mov %rdi,(%rax)

100 }

101 uintptr_t next_phys_addr = PTE_PFN_TO_ADDR(entry−>pfn);

102 141: 48 8b 45 f8 mov −0x8(%rbp),%rax

103 145: 48 8b 00 mov (%rax),%rax

104 148: 48 c1 e8 0c shr $0xc,%rax

105 14c: 48 b9 ff ff ff ff ff 00 00 00 movabs $0xffffffffff,%rcx

106 156: 48 21 c8 and %rcx,%rax

107 159: 48 c1 e0 0c shl $0xc,%rax

108 15d: 48 89 45 e8 mov %rax,−0x18(%rbp)

109 uintptr_t next_virt_addr = (uintptr_t) P2V(next_phys_addr);

110 161: 48 8b 45 e8 mov −0x18(%rbp),%rax

111 165: 48 b9 00 00 00 00 00 00 00 00 movabs $0x0,%rcx 167: R_X86_64_64 KERN_BASE

112 16f: 48 01 c8 add %rcx,%rax

113 172: 48 89 45 e0 mov %rax,−0x20(%rbp)

114 next = (pte_t ∗) next_virt_addr;

115 176: 48 8b 45 e0 mov −0x20(%rbp),%rax

116 17a: 48 89 45 f0 mov %rax,−0x10(%rbp)

117

118 return next;

119 17e: 48 8b 45 f0 mov −0x10(%rbp),%rax

120 182: 48 83 c4 20 add $0x20,%rsp

121 186: 5d pop %rbp

122 187: c3 retq

123 188: 0f 1f 84 00 00 00 00 00 nopl 0x0(%rax,%rax,1)

124

215

125 0000000000000190 <walkpgdir>:

126 }

127

128 return next;

129 }

130

131

132 00000000000003e0 <walkpgdir_succ>:

133 pte_t ∗walkpgdir_succ(pte_t ∗pml4, const void ∗va) {

134 3e0: 55 push %rbp

135 3e1: 48 89 e5 mov %rsp,%rbp

136 3e4: 48 83 ec 40 sub $0x40,%rsp

137 3e8: 48 89 7d f8 mov %rdi,−0x8(%rbp)

138 3ec: 48 89 75 f0 mov %rsi,−0x10(%rbp)

139 pte_t ∗pml4_entry = &pml4[PML4EX(va)];

140 3f0: 48 8b 75 f8 mov −0x8(%rbp),%rsi

141 3f4: 48 8b 7d f0 mov −0x10(%rbp),%rdi

142 3f8: 48 c1 ef 27 shr $0x27,%rdi

143 3fc: 48 81 e7 ff 01 00 00 and $0x1ff,%rdi

144 403: 48 c1 e7 03 shl $0x3,%rdi

145 407: 48 01 fe add %rdi,%rsi

146 40a: 48 89 75 e8 mov %rsi,−0x18(%rbp)

147

148 pte_t ∗pdp = pte_get_next_table_succ(pml4_entry);

149 40e: 48 8b 7d e8 mov −0x18(%rbp),%rdi

150 412: e8 a9 fc ff ff callq c0 <pte_get_next_table_succ>

151 417: 48 89 45 e0 mov %rax,−0x20(%rbp)

152

153 pte_t ∗pdp_entry = &pdp[PDPEX(va)];

154 41b: 48 8b 45 e0 mov −0x20(%rbp),%rax

155 41f: 48 8b 75 f0 mov −0x10(%rbp),%rsi

156 423: 48 c1 ee 1e shr $0x1e,%rsi

157 427: 48 81 e6 ff 01 00 00 and $0x1ff,%rsi

158 42e: 48 c1 e6 03 shl $0x3,%rsi

216

159 432: 48 01 f0 add %rsi,%rax

160 435: 48 89 45 d8 mov %rax,−0x28(%rbp)

161

162 pte_t ∗pd = pte_get_next_table_succ(pdp_entry);

163 439: 48 8b 7d d8 mov −0x28(%rbp),%rdi

164 43d: e8 7e fc ff ff callq c0 <pte_get_next_table_succ>

165 442: 48 89 45 d0 mov %rax,−0x30(%rbp)

166

167 pte_t ∗pd_entry = &pd[PDEX(va)];

168 446: 48 8b 45 d0 mov −0x30(%rbp),%rax

169 44a: 48 8b 75 f0 mov −0x10(%rbp),%rsi

170 44e: 48 c1 ee 15 shr $0x15,%rsi

171 452: 48 81 e6 ff 01 00 00 and $0x1ff,%rsi

172 459: 48 c1 e6 03 shl $0x3,%rsi

173 45d: 48 01 f0 add %rsi,%rax

174 460: 48 89 45 c8 mov %rax,−0x38(%rbp)

175

176 pte_t ∗pt = pte_get_next_table_succ(pd_entry);

177 464: 48 8b 7d c8 mov −0x38(%rbp),%rdi

178 468: e8 53 fc ff ff callq c0 <pte_get_next_table_succ>

179 46d: 48 89 45 c0 mov %rax,−0x40(%rbp)

180

181 return &pt[PTEX(va)];

182 471: 48 8b 45 c0 mov −0x40(%rbp),%rax

183 475: 48 8b 75 f0 mov −0x10(%rbp),%rsi

184 479: 48 c1 ee 0c shr $0xc,%rsi

185 47d: 48 81 e6 ff 01 00 00 and $0x1ff,%rsi

186 484: 48 c1 e6 03 shl $0x3,%rsi

187 488: 48 01 f0 add %rsi,%rax

188 48b: 48 83 c4 40 add $0x40,%rsp

189 48f: 5d pop %rbp

190 490: c3 retq

191 491: 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:0x0(%rax,%rax,1)

192 49b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

217

193

194 }

A.2 x86 Instructions for Mapping a Page

1 00000000000003f0 <vaspace_mapapage>:

2

3 void vaspace_mapapage(

4 pte_t ∗pml4,

5 void ∗va,

6 uintptr_t pa

7) {

8 3f0: 55 push %rbp

9 3f1: 48 89 e5 mov %rsp,%rbp

10 3f4: 48 83 ec 30 sub $0x30,%rsp

11 3f8: 48 89 7d f8 mov %rdi,−0x8(%rbp)

12 3fc: 48 89 75 f0 mov %rsi,−0x10(%rbp)

13 400: 48 89 55 e8 mov %rdx,−0x18(%rbp)

14 char ∗a;

15 pte_t ∗pte;

16

17 a = (char ∗) PGROUNDUP((uintptr_t)va);

18 404: 48 8b 55 f0 mov −0x10(%rbp),%rdx

19 408: 48 81 c2 00 10 00 00 add $0x1000,%rdx

20 40f: 48 83 ea 01 sub $0x1,%rdx

21 413: 48 81 e2 00 f0 ff ff and $0xfffffffffffff000,%rdx

22 41a: 48 89 55 e0 mov %rdx,−0x20(%rbp)

23

24 pte = walkpgdir_succ(pml4, a);

25 41e: 48 8b 7d f8 mov −0x8(%rbp),%rdi

26 422: 48 8b 75 e0 mov −0x20(%rbp),%rsi

27 426: b0 00 mov $0x0,%al

28 428: e8 00 00 00 00 callq 42d <vaspace_mapapage+0x3d> 429: R_X86_64_PLT32 walkpgdir_succ−0x4

218

29 42d: 48 63 d0 movslq %eax,%rdx

30 430: 48 89 55 d8 mov %rdx,−0x28(%rbp)

31 pte−>pfn = PTE_ADDR_TO_PFN(pa);

32 434: 48 8b 55 e8 mov −0x18(%rbp),%rdx

33 438: 48 c1 ea 0c shr $0xc,%rdx

34 43c: 48 8b 75 d8 mov −0x28(%rbp),%rsi

35 440: 48 8b 3e mov (%rsi),%rdi

36 443: 48 b9 ff ff ff ff ff 00 00 00 movabs $0xffffffffff,%rcx

37 44d: 48 21 ca and %rcx,%rdx

38 450: 48 c1 e2 0c shl $0xc,%rdx

39 454: 48 b9 ff 0f 00 00 00 00 f0 ff movabs $0xfff0000000000fff,%rcx

40 45e: 48 21 cf and %rcx,%rdi

41 461: 48 09 d7 or %rdx,%rdi

42 464: 48 89 3e mov %rdi,(%rsi)

43

44 return;

45 467: 48 83 c4 30 add $0x30,%rsp

46 46b: 5d pop %rbp

47 46c: c3 retq

48 46d: 0f 1f 00 nopl (%rax)

49

50 00000000000004a0 <kvm_init>:

51

52 success:

53 return error;

54 }

219

APPENDIX B

COMPLETE SOUNDNESS PROOF OF ATOMS AND
STRUCTURAL PROGRAM STATEMENTS

B.1 Complete Constructions for Views

To prove soundness we use the Views Framework52. The Views Framework takes a set of parameters

satisfying some properties, and produces a soundness proof for a static reasoning system for a larger

programming language. Among other parameters, the most notable are the choice of machine state,

semantics for atomic actions (e.g., field writes, or WriteBegin), and proofs that the reasoning (in our

case, type rules) for the atomic actions are sound (in a way chosen by the framework). The other

critical pieces are a choice for a partial view of machine states — usually an extended machine state

with meta-information — and a relation constraining how other parts of the program can interfere

with a view (e.g., modifying a value in the heap, but not changing its type). Our type system will be

related to the views by giving a denotation of type environments in terms of views, and then proving

that for each atomic action shown in 2.1 in Section 2 and type rule in Figures 3.3 Section 3.2 and F.1

Appendix F, given a view in the denotation of the initial type environment of the rule, running the

semantics for that action yields a local view in the denotation of the output type environment of the

rule. The following works through this in more detail. We define logical states, LState to be

• A machine state, σ = (s, h, l, rt, R, B);

• An observation map, O, of type Loc → P(obs)

• Undefined variable map, U , of type P(Var × TID)

220

• Set of threads, T , of type P(TIDS)

• A to-free map(or free list), F , of type Loc ⇀ P(TID)

The free map F tracks which reader threads may hold references to each location. It is not required

for execution of code, and for validating an implementation could be ignored, but we use it later

with our type system to help prove that memory deallocation is safe.

Each memory region can be observed in one of the following type states within a snapshot taken at

any time

obs := iterator tid | unlinked | fresh | freeable | root

We are interested in RCU typed of heap domain which we define as:

RCU = {o | ftype(f) = RCU ∧ ∃o′. h(o′, f) = o}

A thread’s (or scope’s) view of memory is a subset of the instrumented(logical states), which satisfy

certain well-formedness criteria relating the physical state and the additional meta-data (O, U , T

and F)

M def= {m ∈ (MState × O × U × T × F) | WellFormed(m)}

We do our reasoning for soundness over instrumented states and define an erasure relation

⌊−⌋ : MState =⇒ LState

that projects instrumented states to the common components with MState.

Every type environment represents a set of possible views (well-formed logical states) consistent with

the types in the environment. We make this precise with a denotation function

J−K_ : TypeEnv → TID → P(M)

221

J x : rcuItr ρ N Ktid =


m ∈ M (iterator tid ∈ O(s(x, tid))) ∧ (x /∈ U)

∧(∀fi∈dom(N)xi∈codom(N).

{
s(xi, tid) = h(s(x, tid), fi)
∧iterator ∈ O(s(xi, tid)))

∧(∀ρ′,ρ′′ . ρ′.ρ′′ = ρ =⇒ iterator tid ∈ O(h∗(rt, ρ′)))
∧h∗(rt, ρ) = s(x, tid) ∧ (l = tid ∧ s(x, _) /∈ dom(F)))


J x : rcuItr Ktid =

{
m ∈ M (iterator tid ∈ O(s(x, tid))) ∧ (x /∈ U)∧

(tid ∈ B) =⇒
{

(∃T ′⊆B . {s(x, tid) 7→ T ′} ∩ F ̸= ∅)∧
∧(tid ∈ T ′)

}
J x : unlinked Ktid =

{
m ∈ M (unlinked ∈ O(.s(x, tid)) ∧ l = tid ∧ x /∈ U)∧

(∃T ′⊆T . s(x, tid) 7→ T ′ ∈ F =⇒ T ′ ⊆ B ∧ tid /∈ T ′)

}
J x : freeable Ktid =

{
m ∈ M freeable ∈ O(s(x, tid)) ∧ l = tid ∧ x /∈ U∧

s(x, tid) 7→ {∅} ∈ F

}
J x : rcuFresh N Ktid =

{
m ∈ M (fresh ∈ O(s(x, tid)) ∧ x /∈ U ∧ s(x, tid) /∈ dom(F))

(∀fi∈dom(N),xi∈codom(N). s(xi, tid) = h(s(x, tid), fi)
∧iterator tid ∈ O(s(xi, tid)) ∧ s(xi, tid) /∈ dom(F))

}
Jx : undefKtid =

{
m ∈ M (x, tid) ∈ U ∧ s(x, tid) /∈ dom(F)

}
J x : rcuRootKtid =

{
m ∈ M ((rt /∈ U ∧ s(x, tid) = rt ∧ rt ∈ dom(h)∧

O(rt) ∈ root ∧ s(x, tid) /∈ dom(F))

}
provided h∗ : (Loc × Path) ⇀ Val

Figure B.1 Type Environments

that yields the set of states corresponding to a given type environment. This is defined in terms of

denotation of individual variable assertions

J− : −K− : Var → Type → TID → P(M)

The latter is given in Figure B.1. To define the former, we first need to state what it means to

combine logical machine states.

Composition of instrumented states is an operation

• : M −→ M −→ M

that is commutative and associative, and defined component-wise in terms of composing physical

states, observation maps, undefined sets, and thread sets as shown in Figure B.2 An important

property of composition is that it preserves validity of logical states:

Lemma 6 (Well Formed Composition) Any successful composition of two well-formed logical

222

• = (•σ, •O, ∪, ∪) O1 •O O2(loc) def= O1(loc) ∪ O2(loc) (s1 •s s2) def= s1 ∪ s2 when dom(s1) ∩ dom(s2) = ∅
(F1 •F F2) def= F1 ∪ F2 when dom(F1) ∩ dom(F2) = ∅

(h1 •h h2)(o, f) def=


undef if h1(o, f) = v ∧ h2(o, f) = v′ ∧ v′ ̸= v
v if h1(o, f) = v ∧ h2(o, f) = v
v if h1(o, f) = undef ∧ h2(o, f) = v
v if h1(o, f) = v ∧ h2(o, f) = undef
undef if h1(o, f) = undef ∧ h2(o, f) = undef

((s, h, l, rt, R, B), O, U, T, F)R0((s′, h′, l′, rt′, R′, B′), O′, U ′, T ′, F ′) def=

∧


l ∈ T → (h = h′ ∧ l = l′)
l ∈ T → F = F ′

∀tid, o. iterator tid ∈ O(o) → o ∈ dom(h)
∀tid, o. iterator tid ∈ O(o) → o ∈ dom(h′)
∀tid, o. root tid ∈ O(o) → o ∈ dom(h)
∀tid, o. root tid ∈ O(o) → o ∈ dom(h′)
O = O′ ∧ U = U ′ ∧ T = T ′ ∧ R = R′ ∧ rt = rt′

∀x, t ∈ T. s(x, t) = s′(x, t)


Figure B.2 Composition(•) and Thread Interference Relation(R0)

states is well-formed:

∀x,y,z. WellFormed(x) =⇒ WellFormed(y) =⇒ x • y = z =⇒ WellFormed(z)

Proof: By assumption, we know that Wellformed(x) and Wellformed(y) hold. We need to show that

composition of two well-formed states preserves well-formedness which is to show that for all z such that

x•y = z, Wellformed(z) holds. Both x and y have components ((sx, hx, lx, rtx, Rx, Bx), Ox, Ux, Tx, Fx)

and ((sy, hy, ly, rty, Ry, By), Oy, Uy, Ty, Fy), respectively. •s operator over stacks sx and sy enforces

dom(sx) ∩ dom(sy) = ∅ which enables to make sure that wellformed mappings in sx does not violate

wellformed mappings in sy when we union these mappings for sz. Same argument applies for •F

operator over Fx and Fy. Disjoint unions of wellformed Rx with wellformed Ry and wellformed

Bx with wellformed By preserves wellformedness in composition as it is disjoint union of different

wellformed elements of sets. Wellformed unions of Ox with Oy, Ux with Uy and Tx with Ty preserve

wellformedness. When we compose hx(s(x, tid), f) and hy(s(x, l), f), it is easy to show that we

preserve wellformedness if both threads agree on the heap location. Otherwise, if the heap location is

undefined for one thread but a value for the other thread then composition considers the value. If a

heap location is undefined for both threads then this heap location is also undefined for the location.

All the cases for heap composition still preserves the wellformedness from the assumption that x and

y are wellformed. □ We define separation on elements of type contexts

223

• For read-side as Jx1 : T1, . . . xn : TnKtid,R = Jx1 : T1Ktid ∩ . . . ∩ Jxn : TnKtid ∩ JRKtid where

JRKtid = {(s, h, l, rt, R, B), O, U, T, F | tid ∈ R}

• For write-side as Jx1 : T1, . . . xn : TnKtid,M = Jx1 : T1Ktid ∩ . . . ∩ Jxn : TnKtid ∩ JMKtid where

JMKtid = {(s, h, l, rt, R, B), O, U, T, F | tid = l}

• Jx1 : T1, . . . xn : TnKtid,O = Jx1 : T1Ktid∩. . .∩Jxn : TnKtid∩JOKtid where JOKtid = {(s, h, l, rt, R, B), O, U, T, F |

tid ̸= l ∧ tid /∈ R}.

Partial separating conjunction then simply requires the existence of two states that compose:

m ∈ P ∗ Q
def= ∃m′. ∃m′′. m′ ∈ P ∧ m′′ ∈ Q ∧ m ∈ m′ • m′′

Different threads’ views of the state may overlap (e.g., on shared heap locations, or the reader thread

set), but one thread may modify that shared state. The Views Framework restricts its reasoning to

subsets of the logical views that are stable with respect to expected interference from other threads

or contexts. We define the interference as (the transitive reflexive closure of) a binary relation R on

M, and a View in the formal framework is then:

ViewM
def= {M ∈ P(M)|R(M) ⊆ M}

Thread interference relation

R ⊆ M × M

defines permissible interference on an instrumented state. The relation must distribute over composi-

tion:

∀m1, m2, m. (m1 • m2)Rm =⇒ ∃m′
1m′

2. m1Rm′
1 ∧ m2Rm′

2 ∧ m ∈ m′
1 • m′

2

where R is transitive-reflexive closure of R0 shown at Figure B.2. R0 (and therefore R) also

“preserves” validity:

Lemma 7 (Valid R0 Interference) For any m and m′, if WellFormed(m) and mR0m′, then

224

WellFormed(m′).

Proof: By assumption, we know that m = (s, h, l, rt, R, B), O, U, T, F) is wellformed. We also

know that m′ = (s′, h′, l′, rt′, R′, B′), O′, U ′, T ′, F ′) is related to m via R0. By assumptions in R0

and semantics, we know that O,R,T and U which means that these components do not have any

effect on wellformedness of the m. In addition, change on stack, s, does not affect the wellformedness

as

∀x, t ∈ T. s(x, t) = s′(x, t)

Moreover, from semantics we know that l and h can only be changed by writer thread and from R0

l ∈ T → (h = h′ ∧ l = l′)

l ∈ T → F = F ′

and by assumptions from the lemma(WellFormed(m).RINFL) we can conclude that F ,l and h do

not have effect on wellformedness of the m. □

Lemma 8 (Stable Environment Denotation-M) For any closed environment Γ (i.e., ∀x ∈

dom(Γ). , FV(Γ(x)) ⊆ dom(Γ)):

R(JΓKM,tid) ⊆ JΓKM,tid

Alternatively, we say that environment denotation is stable (closed under R).

Proof: By induction on the structure of Γ. The empty case holds trivially. In the other case where

Γ = Γ′, x : T , we have by the inductive hypothesis that

JΓ′KM,tid

is stable, and must show that

JΓ′KM,tid ∩ Jx : τKtid

225

is as well. This latter case proceeds by case analysis on T .

We know that O, U , T , R, s and rt are preserved by R0. By unfolding the type environment in the

assumption we know that tid = l. So we can derive conclusion for preservation of F and h and l by

l ∈ T → (h = h′ ∧ l = l′)

l ∈ T → F = F ′

Cases in which denotations, Jx : T K, touching these R0 preserved maps are trivial to show.

Case 1 - unlinked, undef, rcuFresh N and freeable trivial.

Case 2 - rcuItr ρ N : All the facts we know so far from R0, tid = l and additional fact we know from

R0:

∀tid, o. iterator tid ∈ O(o) → o ∈ dom(h)

∀tid, o. iterator tid ∈ O(o) → o ∈ dom(h′)

prove this case.

Case 3 - root: All the facts we know so far from R0, tid = l and additional fact we know from R0:

∀tid, o. root tid ∈ O(o) → o ∈ dom(h)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′)

prove this case.

□

Lemma 9 (Stable Environment Denotation-R) For any closed environment Γ (i.e., ∀x ∈

dom(Γ). , FV(Γ(x)) ⊆ dom(Γ)):

R(JΓKR,tid) ⊆ JΓKR,tid

226

Jif (x.f == y) C1 C2Ktid
def= z = x.f ; ((assume(z = y); C1) + (assume(z ̸= y); C2)) Jassume(S)K(s) def=

{
{s} if s ∈ S
∅ Otherwise

Jwhile (e) CK
def= (assume(e); C)∗ ; (assume(¬e));

{P } ∩ {⌈S⌉} ⊑ {Q}
{P }assume (b) {Q}

where ⌈S⌉ = {m|⌊m⌋ ∩ S ≠ ∅}

Figure B.3 Encoding of assume(b)

Alternatively, we say that environment denotation is stable (closed under R).

Proof: Proof is similar to one for Lemma 8 where there is only one simple case, Jx : rcuItrK. □

The Views Framework defines a program logic (Hoare logic) with judgments of the form {p}C{q} for

views p and q and commands C. Commands include atomic actions, and soundness of such judgments

for atomic actions is a parameter to the framework. The framework itself provides for soundness of

rules for sequencing, fork-join parallelism, and other general rules. To prove type soundness for our

system, we define a denotation of type judgments in terms of the Views logic, and show that every

valid typing derivation translates to a valid derivation in the Views logic:

∀Γ, C, Γ′, tid. Γ ⊢M,R C ⊣ Γ′ ⇒ {JΓKtid}JCKtid{JΓ′Ktid}

The antecedent of the implication is a type judgment(shown in Figure 3.3 Section 3.3, Figure 3.2

Section 3.1 and Figure F.1 Appendix F) and the conclusion is a judgment in the Views logic. The

environments are translated to views (ViewM) as previously described. Commands C also require

translation, because the Views logic is defined for a language with non-deterministic branches and

loops, so the standard versions from our core language must be encoded. The approach to this is

based on a standard idea in verification, which we show here for conditionals as shown in Figure B.3.

assume(b) is a standard construct in verification semantics13 128, which “does nothing” (freezes) if

the condition b is false, so its postcondition in the Views logic can reflect the truth of b. This is also

the approach used in previous applications of the Views Framework68,69.

The framework also describes a useful concept called the view shift operator ⊆, that describes a

way to reinterpret a set of instrumented states as a new set of instrumented states. This operator

enables us to define an abstract notion of executing a small step of the program. We express the

227

step from p to q with action α ensuring that the operation interpretation of the action satisfies

the specification:p ⊑ q
def= ∀m ∈ M. ⌊p ∗ {m}⌋ ⊆ ⌊q ∗ R({m})⌋. Because the Views framework

handles soundness for the structural rules (sequencing, parallel composition, etc.), there are really

only three types of proof obligations for us to prove. First, we must prove that the non-trivial

command translations (i.e., for conditionals and while loops) embed correctly in the Views logic,

which is straightforward. Second, we must show that for our environment subtyping, if Γ <: Γ′, then

JΓK ⊑ JΓ′K. And finally, we must prove that each atomic action’s type rule corresponds to a valid

semantic judgment in the Views Framework:

∀m. JαK(⌊JΓ1Ktid ∗ {m}⌋) ⊆ ⌊JΓ2Ktid ∗ R({m})⌋

The use of ∗ validates the frame rule and makes this obligation akin to an interference-tolerant

version of the small footprint property from traditional separation logics25,140.

Lemma 10 (Axiom of Soundness for Atoms) For each axiom, Γ1 ⊢RMO α ⊣ Γ2, we must show

∀m. JαK(⌊JΓ1Ktid ∗ {m}⌋) ⊆ ⌊JΓ2Ktid ∗ R({m})⌋

Proof: By case analysis on the atomic action α followed by inversion on typing derivation. All the

cases proved as different lemmas in Section B.3. □

Type soundness proceeds according to the requirements of the Views Framework, primarily embedding

each type judgment into the Views logic:

Lemma 11 (Views Embedding for Read-Side)

∀Γ, C, Γ′, t. Γ ⊢R C ⊣ Γ′ ⇒ JΓKt ∩ JRKt ⊢ JCKt ⊣ JΓ′Kt ∩ JRKt

Proof: Proof is similar to the one for Lemma 12 except the denotation for type system definition is

JRKt = {{((s, h, l, rt, R, B), O, U, T, F)|t ∈ R} which shrinks down the set of all logical states to the

228

one that can only be defined by types(rcuItr) in read type system. □

Lemma 12 (Views Embedding for Write-Side)

∀Γ, C, Γ′, t. Γ ⊢M C ⊣ Γ′ ⇒ JΓKt ∩ JMKt ⊢ JCKt ⊣ JΓ′Kt ∩ JMKt

Proof: Induction on derivation of Γ ⊢M C ⊣ Γ′ and then inducting on the type of first element

of the environment. For the nonempty case, Γ′′, x : T we do case analysis on T . Type environment

for write-side actions includes only: rcuItr ρ N , undef, rcuFresh, unlinked and freeable. Denotations

of these types include the constraint t = l and other constraints specific to the type’s denotation.

The set of logical state defined by the denotation of the type is subset of intersection of the

set of logical states defined by JMKt ∩ Jx : T Kt which shrinks down the logical states defined by

JMKt = {((s, h, l, rt, R, B), O, U, T, F)|t = l} to the set of logical states defined by denotation Jx : T Kt.

□ Because the intersection of the environment denotation with the denotations for the different

critical sections remains a valid view, the Views Framework provides most of this proof for free, given

corresponding lemmas for the atomic actions α:

∀α, Γ1, Γ2. Γ1 ⊢R α ⊣ Γ2 ⇒

∀m. JαK(⌊JΓ1KR,tid ∗ {m}⌋) ⊆ ⌊JΓ2KR,tid ∗ R({m})⌋

∀α, Γ1, Γ2. Γ1 ⊢M α ⊣ Γ2 ⇒

∀m. JαK(⌊JΓ1KM,tid ∗ {m}⌋) ⊆ ⌊JΓ2KM,tid ∗ R({m})⌋

α ranges over any atomic command, such as a field access or variable assignment.

Denoting a type environment JΓKM,tid, unfolding the definition one step, is merely JΓKtid ∩ JMKtid. In

the type system for write-side critical sections, this introduces extra boilerplate reasoning to prove

that each action preserves lock ownership. To simplify later cases of the proof, we first prove this

convenient lemma.

Lemma 13 (Write-Side Critical Section Lifting) For each α whose semantics does not affect

229

the write lock, if

∀m. JαK(⌊JΓ1Ktid ∗ {m}⌋) ⊆ ⌊JΓ2Ktid ∗ R({m})⌋

then

∀m. JαK(⌊JΓ1KM,tid ∗ {m}⌋) ⊆ ⌊JΓ2KM,tid ∗ R({m})⌋

Proof: Each of these shared actions α preserves the lock component of the physical state, the

only component constrained by J−KM,tid beyond J−Ktid. For the read case, we must prove from the

assumed subset relationship that for an aritrary m:

JαK(⌊JΓ1Ktid ∩ JMKtid ∗ {m}⌋) ⊆ ⌊JΓ2Ktid ∩ JMKtid ∗ R({m})⌋

By assumption, transitivity of ⊆, and the semantics for the possible αs, the left side of this containment

is already a subset of

⌊JΓ2Ktid ∗ R({m})⌋

What remains is to show that the intersection with JMKtid is preserved by the atomic action. This

follows from the fact that none of the possible αs modifies the global lock. □

B.2 Complete Memory Axioms

1. Ownership invariant in Figure B.4 invariant asserts that none of the heap nodes can be observed

as undefined by any of those threads.

2. Reader-Writer-Iterators-CoExistence invariant in Figure B.5 asserts that if a heap location is

not undefined then all reader threads and the writer thread can observe the heap location as

iterator or the writer thread can observe heap as fresh, unlinked or freeable.

3. Alias-With-Root invariant in Figure B.6 asserts that the unique root location can only be

aliased with thread local references through which the unique root location is observed as

iterator.

230

OW(σ, O, U, T, F) =



∀o,o′f,f ′ . σ.h(o, f) = v ∧ σ.h(o′, f ′) = v
∧v ∈ OID ∧ FType(f) = RCU =⇒

o = o′ ∧ f = f ′

∨unlinked ∈ O(o)
∨unlinked ∈ O(o′)
∨freeable ∈ O(o)
∨freeable ∈ O(o′)
∨fresh ∈ O(o))
∨fresh ∈ O(o′)

Figure B.4 Ownership

RWOW(σ, O, U, T, F) =


∀x, tid, o. σ.s(x, tid) = o ∧ (x, tid) /∈ U =⇒

iterator tid ∈ O(o)
∨(σ.l = tid ∧ (unlinked ∈ O(o))
∨(σ.l = tid ∧ freeable ∈ O(o)))
∨(σ.l = tid ∧ fresh ∈ O(o))

Figure B.5 Reader-Writer-Iterator-Coexistence-Ownership

AWRT(σ, O, U, T, F) = {(∀y,tid. h∗(σ.rt, ϵ) = s(y, tid) =⇒ iterator tid ∈ O(s(y, tid)))

Figure B.6 Alias with Unique Root

4. Iterators-Free-List invariant in Figure B.7 asserts that if a heap location is observed as iterator

and it is the free list then the observer thread is in the set of bounding threads.

IFL(σ, O, U, T, F) = {∀tid, o. iterator tid ∈ O(o) ∧ ∀T ′⊆T . σ.F ([o 7→ T ′]) =⇒ tid ∈ T ′

Figure B.7 Iterators-Free-List

5. Unlinked-Reachability invariant in Figure B.8 asserts that if a heap node is observed as unlinked

then all heap locations from which you can reach to the unlinked one are also unlinked or in the

free list.

6. Free-List-Reachability invariant in Figure B.9 asserts that if a heap location is in the free list

then all heap locations from which you can reach to the one in the free list are also in the free

list.

231

ULKR(σ, O, U, T, F) =


∀o. unlinked ∈ O(o) =⇒ ∀o′, f ′. σ.h(o′, f ′) = o =⇒{

unlinked ∈ O(o′)∨
freeable ∈ O(o′)

Figure B.8 Unlinked-Reachability

FLR(σ, O, U, T, F) =

 ∀o. F ([o 7→ T]) =⇒{
∀o′, f ′. σ.h(o′, f ′) = o =⇒{

∃T ′⊆T . F ([o′ 7→ T ′])

Figure B.9 Free-List-Reachability

7. Writer-Unlink invariant in Figure B.10 asserts that the writer thread cannot observe a heap

location as unlinked.

WULK(σ, O, U, T, F) =
{

∀o. iterator σ.l ∈ O(o) =⇒ unlinked /∈ O(o) ∧ freeable /∈ O(o) ∧ undef /∈ O(o)

Figure B.10 Writer-Unlink

8. Fresh-Reachable invariant in Figure B.11 asserts that there exists no heap location that can

reach to a freshly allocated heap location together with fact on nonexistence of aliases to it.

FR(σ, O, U, T, F) =
∀tid,x,o. (σ.s(x, tid) = o ∧ fresh ∈ O(o)) =⇒{

(∀y,o′,f ′,tid′ .(h(o′, f ′) ̸= o) ∨ (s(y, tid) ̸= o
∨(tid′ ̸= tid =⇒ s(y, tid′) ̸= o))

}

Figure B.11 Fresh-Reachable

9. Fresh-Writer invariant in Figure B.12 asserts that heap allocation can be done only by writer

thread.

WF(σ, O, U, T, F) = ∀tid,x,o. (σ.s(x, tid) = o ∧ fresh ∈ O(o)) =⇒ tid = σ.l

Figure B.12 Fresh-Writer

232

10. Fresh-Not-Reader invariant in Figure B.13 asserts that a heap location allocated freshly cannot

be observed as unlinked or iterator.

FNR(σ, O, U, T, F) = ∀o. (fresh ∈ O(o)) =⇒ (∀x,tid. iterator tid /∈ O(o)) ∧ unlinked /∈ O(o)

Figure B.13 Fresh-Not-Reader

11. Fresh-Points-Iterator invariant in Figure B.14 states that any field of fresh allocated object can

only be set to point heap node which can be observed as iterator (not unlinked or freeable). This

invariant captures the fact N = N ′ asserted in the type rule for fresh node linking(T-Replace).

FPI(σ, O, U, T, F) = ∀o. (fresh ∈ O(o) ∧ ∃f,o′ . h(o, f) = o′) =⇒ (∀tid. iterator tid ∈ O(o′))

Figure B.14 Fresh-Points-Iterator

12. Writer-Not-Reader invariant in Figure B.15 asserts that a writer thread identifier can not be a

reader thread identifier.

WNR(σ, O, U, T, F) =
{

σ.l /∈ σ.R

Figure B.15 Writer-Not-Reader

13. Readers-Iterator-Only invariant in the Figure B.16 asserts that a reader threads can only make

iterator observation on a heap location.

RITR(σ, O, U, T, F) =
{

∀tid∈σ.R,o. iterator tid ∈ O(o)

Figure B.16 Readers-Iterator-Only

14. Readers-In-Free-List invariant in Figure B.17 asserts that for any mapping from a location to a

set of threads in the free list we know the fact that this set of threads is a subset of bounding

233

threads(which itself is subset of reader threads).

RINFL(σ, O, U, T, F) =
{

∀o. F ([o 7→ T]) =⇒ T ⊆ σ.B

Figure B.17 Readers-In-Free-List

15. Heap-Domain invariant in the Figure B.18 defines the domain of the heap.

HD(σ, O, U, T, F) = ∀o,f ′,o′ . σ.h(o, f) = o′ =⇒ o′ ∈ dom(σ.h)

Figure B.18 Heap-Domain

16. Unique-Root invariant in Figure B.19 asserts that a heap location which is observed as root

has no incoming edges from any nodes in the domain of the heap and all nodes accessible from

root is is observed as iterator. This invariant is part of enforcement for acyclicity.

UNQRT(σ, O, U, T, F) =
{

∀ρ ̸=ϵ. iterator tid ∈ O(h∗(σ.rt, ρ)
∧¬(∃f ′ . σ.rt = h(h∗(σ.rt, ρ), f ′))

}

Figure B.19 Unique-Root

17. Unique-Reachable invariant in Figure B.20 asserts that every node is reachable from root node

with an unique path. This invariant is a part of acyclicity(tree structure) enforcement on the

heap layout of the data structure.

UNQR(σ, O, U, T, F) =
{

∀ρ,ρ′ . h∗(σ.rt, ρ) ̸= h∗(σ.rt, ρ′) =⇒ ρ ̸= ρ′

Figure B.20 Unique-Reachable

Each of these memory invariants captures different aspects of validity of the memory under RCU

setting, WellFormed(σ, O, U, T, F), is defined as conjunction of all memory axioms.

234

B.3 Soundness Proof of Atoms

In this section, we do proofs to show the soundness of each type rule for each atomic actions.

Lemma 14 (Unlink)

Jx.f1 := rK(⌊JΓ, x : rcuItr ρ N ([f1 ⇀ z]), z : rcuItr ρ′ N ′([f2 ⇀ r]), r : rcuItr ρ′′ N ′′KM,tid ∗ {m}⌋) ⊆

⌊JΓ, x : rcuItr ρ N (f1 ⇀ z \ r), z : unlinked, r : rcuItr ρ′ N ′′K ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓ, x : rcuItr ρ N , z : rcuItr ρ′ N ′,

r : rcuItr ρ′′ N ′′KM,tid ∗ {m}
(B.1)

WellFormed(σ, O, U, T, F) (B.2)

From assumptions in the type rule of T-UnlinkH we assume that

ρ.f1 = ρ′ and ρ′.f2 = ρ′′ and N (f1) = z and N ′(f2) = r (B.3)

∀f∈dom(N ′). f ̸= f2 =⇒ N ′(f) = null (B.4)

∀n∈Γ,m,N ′′′,p′′′,f . n : rcuItr ρ′′′ N ′′′([f ⇀ m]) =⇒
((¬MayAlias(ρ′′′, {ρ, ρ′, ρ′′}))

∧(m ̸∈ {z, r}))

∧(∀ρ′′′′ ̸=ϵ. ¬MayAlias(ρ′′′, ρ′′.ρ′′′′))

(B.5)

235

We split the composition in B.1 as

(σ1, O1, U1, T1, F1) ∈JΓ, x : rcuItr ρ N , z : rcuItr ρ′ N ′,

r : rcuItr ρ′′ N ′′KM,tid

(B.6)

(σ2, O2, U2, T2, F2) = m (B.7)

σ1 •s σ2 = σ (B.8)

O1 •O O2 = O (B.9)

U1 ∪ U2 = U (B.10)

T1 ∪ T2 = T (B.11)

F1 ⊎ F2 = F (B.12)

WellFormed(σ1, O1, U1, T1, F1) (B.13)

WellFormed(σ2, O2, U2, T2, F2) (B.14)

236

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) ∈ JΓ, x : rcuItr ρ N ([f1 ⇀ r]), z : unlinked, r : rcuItr ρ′ N ′′KM,tid

(B.15)

(B.16)

N (f1) = r (B.17)

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) ∈ R({m}) (B.18)

σ′
1 •s σ′

2 = σ′ (B.19)

O′
1 •O O′

2 = O′ (B.20)

U ′
1 ∪ U ′

2 = U ′ (B.21)

T ′
1 ∪ T ′

2 = T ′ (B.22)

F ′
1 ⊎ F ′

2 = F ′ (B.23)

WellFormed(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) (B.24)

WellFormed(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) (B.25)

We also know from operational semantics that the machine state has changed as

σ′
1 = σ1[h(s(x, tid), f1) 7→ s(r, tid)] (B.26)

and B.26 is determined by operational semantics.

The only change in the observation map is on s(y, tid) from iterator tid to unliked

O′
1 = O1(s(y, tid))[iterator tid 7→ unlinked] (B.27)

B.28 follows from B.1

T1 = {tid} and tid = σ.l (B.28)

237

σ′
1 is determined by operational semantics. The undefined map, free list and T1 need not change so we

can pick U ′
1 as U1, T ′

1 as T1 and F ′
1 as F1. Assuming B.6 and choices on maps makes (σ′

1, O′
1, U ′

1, T ′
1, F ′

1)

in denotation

JΓ, x : rcuItr ρ N ([f ⇀ r]), z : unlinked, r : rcuItr ρ′ N ′′KM,tid

In the rest of the proof, we prove B.24, B.25 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) and

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2). To prove B.24, we need to show that each of the memory axioms in Section B.2

holds for the state (σ′, O′
1, U ′

1, T ′
1, F ′

1).

Let ox be σ.s(x, tid), oy be σ.s(y, tid) and oz be σ.s(z, tid).

Case 4 - UNQR B.29 and B.30 follow from framing assumption(B.3-B.5), denotations of the

precondition(B.6) and B.13.UNQR

ρ ̸= ρ′ ̸= ρ′′ (B.29)

and

ox ̸= oy ̸= oz (B.30)

where ox, oy and oz are equal to σ.h∗(σ.rt, ρ), σ.h∗(σ.rt, ρ, f1) and σ.h∗(σ.rt, ρ.f1.f2) respectively and

they(ox, oy, oz and ρ, ρ′) are unique.

We must prove

h′∗(σ.rt, ρ) ̸= h′∗(σ.rt, ρ.f1) =⇒ ρ ̸= ρ.f1 (B.31)

to show that uniqueness is preserved.

We know from operational semantics that root has not changed so

σ.rt = σ′.rt

238

From denotations (B.15) we know that all heap locations reached by following ρ and ρ.f1 are

observed as iterator tid including the final reached heap locations(iterator tid ∈ O′
1(σ′.h∗(σ.rt, ρ)) and

iterator tid ∈ O′
1(σ′.h∗(σ.rt, ρ.f1))). B.17 is determined directly by operational semantics.

unlinked ∈ O′
1(oy) follows from B.27 and B.26 which makes path ρ.f1.f2 invalid(from denotation(B.15),

all heap locations reaching to O′
1(or) from root(σ.rt) are observed as iterator tid so this proves that

unlinked ∈ O′
1(oy)) cannot be observed on the path to the or which implies that f2 cannot be part of

the path and uniqueness of the paths to ox and or is preserved. So we conclude B.32 and B.33

ρ ̸= ρ′ (B.32)

ox ̸= oy ̸= oz (B.33)

from which B.31 follows.

Case 5 - OW By B.13.OW, B.26, B.27.

Case 6 - RWOW By B.13.RWOW, B.26 and B.27.

Case 7 - IFL By B.13.WULK, B.13.RINFL, B.13.IFL, B.27 and choice of F ′
1.

Case 8 - FLR By choice of F ′
1 and B.13.

Case 9 - WULK By B.15, B.27 and B.28.

Case 10 - WF, FPI and FR Trivial.

Case 11 - AWRT By B.15.

Case 12 - HD By B.24.OW(proved), B.13.HD and B.26.

Case 13 - WNR By B.13.WNR, B.26, B.27 and B.28.

Case 14 - RINFL By B.15, B.13.RINFL, choice of F ′
1 and B.26.

239

Case 15 - ULKR We must prove B.34

∀o′,f ′ . σ′.h(o′, f ′) = oy =⇒ unlinked ∈ O′
1(o′)

∨ (freeable ∈ O′
1(o′))

(B.34)

which follows from B.15, B.13.OW, operational semantics(B.26) and B.27. If o′ were observed as

iterator then that would conflict with B.24.UNQR.

Case 16 - UNQRT: By B.13.UNQRT, B.27 and B.26.

To prove B.18 we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.35)

l ∈ T2 → F2 = F ′
2 (B.36)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.37)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.38)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R = σ′

2.R ∧ σ2.rt = σ′
2.rt (B.39)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.40)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.41)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.42)

To prove all relations (B.35-B.40) we assume B.28 which is to assume T2 as subset of reader threads.

Let σ′
2 be σ2. O2 need not change so we pick O′

2 as O2. Since T2 is subset of reader threads, we pick

T2 as T ′
2. We pick F ′

2 as F2.

B.35 and B.36 follow from B.28 and choice of F ′
2. B.41, B.42 and B.39 are determined by choice of

240

σ′
2, operational semantic and choices made on maps related to the assertions.

By assuming B.14 we show B.25. B.37 and B.38 follow trivially. B.40 follows from choice of σ′
2, B.26

and B.28.

To prove B.20 consider two cases: O′
1 ∩ O′

2 = ∅ and O′
1 ∩ O′

2 ̸= ∅. The first case is trivial. The second

case is where we consider

iterator tid ∈ O′
2(oy)

We also know from B.27 that

unliked ∈ O′
1(oy)

Both together with B.9 and B.15 proves B.20.

To show B.19 we consider two cases: σ′
1.h ∩ σ′

2.h = ∅ and σ′
1.h ∩ σ′

2.h ̸= ∅. First is trivial. Second

follows from B.24.OW-HD and B.25.OW-HD. B.21, B.22 and B.23 are trivial by choices on related

maps and semantics of composition operations on them. All compositions shown let us to derive

conclusion for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). □

Lemma 15 (Replace)

Jp.f := nK(⌊JΓ, p : rcuItr ρ N , r : rcuItr ρ′ N ′ , n : rcuFresh N ′′KM,tid ∗ {m}⌋) ⊆

⌊JΓ , p : rcuItr ρ N ([f ⇀ r \ n]) , n : rcuItr ρ′ N ′′ , r : unlinkedK ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓ, p : rcuItr ρ N , r : rcuItr ρ′ N ′ , n : rcuFresh N ′′KM,tid ∗ {m} (B.43)

WellFormed(σ, O, U, T, F) (B.44)

241

From assumptions in the type rule of T-Replace we assume that

FV(Γ) ∩ {p, r, n} = ∅ (B.45)

ρ.f = ρ′ and N (f) = r (B.46)

N ′ = N ′′ (B.47)

∀x∈Γ,N ′′′,ρ′′,f ′,y. (x : rcuItr ρ′′ N ′′′([f ′ ⇀ y])) =⇒ (¬MayAlias(ρ′′, {ρ, ρ′}) ∧ (y ̸= o)) (B.48)

We split the composition in B.43 as

(σ1, O1, U1, T1, F1) ∈JΓ, p : rcuItr ρ N , r : rcuItr ρ′ N ′ , n : rcuFresh N ′′KM,tid
(B.49)

(σ2, O2, U2, T2, F2) = m (B.50)

O1 •O O2 = O (B.51)

σ1 •s σ2 = σ (B.52)

U1 ∪ U2 = U (B.53)

T1 ∪ T2 = T (B.54)

F1 ⊎ F2 = F (B.55)

WellFormed(σ1, O1, U1, T1, F1) (B.56)

WellFormed(σ2, O2, U2, T2, F2) (B.57)

242

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) ∈ Jp : rcuItr ρ N , n : rcuItr ρ′ N ′′ , r : unlinked , ΓKM,tid

(B.58)

N (f) = n (B.59)

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) ∈ R({m}) (B.60)

O′
1 •O O′

2 = O′ (B.61)

σ′
1 •s σ′

2 = σ′ (B.62)

U ′
1 ∪ U ′

2 = U ′ (B.63)

T ′
1 ∪ T ′

2 = T ′ (B.64)

F ′
1 ⊎ F ′

2 = F ′ (B.65)

WellFormed(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) (B.66)

WellFormed(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) (B.67)

We also know from operational semantics that the machine state has changed as

σ′
1 = σ1[h(s(p, tid), f) 7→ s(n, tid)] (B.68)

B.59 is determined directly from operational semantics.

We know that changes in observation map are

O′
1 = O1(s(r, tid))[iterator tid 7→ unlinked] (B.69)

and

O′
1 = O1(s(n, tid))[fresh 7→ iterator tid] (B.70)

243

B.71 follows from B.43

T1 = {tid} and tid = σ.l (B.71)

Let T ′
1 be T1, F ′

1 be F1 and σ′
1 be determined by operational semantics. The undefined map need

not change so we can pick U ′
1 as U1. Assuming B.49 and choices on maps makes (σ′

1, O′
1, U ′

1, T ′
1) in

denotation

Jp : rcuItr ρ N (f ⇀ r \ n) , n : rcuItr ρ′ N ′′ , r : unlinked , ΓKM,tid

In the rest of the proof, we prove B.66, B.67 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) and

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2). To prove B.66, we need to show that each of the memory axioms in Section B.2

holds for the state (σ′, O′
1, U ′

1, T ′
1, F ′

1).

Case 17 - UNQR Let op be σ.s(p, tid), or be σ.s(r, tid) and on be σ.s(n, tid). B.71 and B.73

follow from framing assumption(B.45-B.48), denotations of the precondition(B.49), B.13.FR and

B.56.UNQR

ρ ̸= ρ.f ̸= ∀N ′([fi⇀xi]). ρ.f.fi (B.72)

and

op ̸= or ̸= on ̸= oi where oi = h(or, fi) (B.73)

where op, or are σ.h∗(σ.rt, ρ), σ.h∗(σ.rt, ρ.f) respectively and they(heap locations in B.73 and paths

in B.72) are unique(From B.56.FR, we assume that there exists no field alias/path alias to heap

location freshly allocated on).

We must prove

ρ ̸= ρ.f ̸= ρ.f.fi ⇐⇒ σ′.h∗(σ.rt, ρ) ̸= σ′.h∗(σ.rt, ρ.f)) ̸= σ′.h∗(σ.rt, ρ.f.fi)) (B.74)

244

We know from operational semantics that root has not changed so

σ.rt = σ′.rt

From denotations (B.58) we know that all heap locations reached by following ρ and ρ.f are observed

as iteartor tid including the final reached heap locations(iterator tid ∈ O′
1(σ′.h∗(σ.rt, ρ)), iterator tid ∈

O′
1(σ′.h∗(σ.rt, ρ.f)) and iterator tid ∈ O′

1(σ′.h∗(σ.rt, ρ.f.fi))). The preservation of uniqueness follows

from B.69, B.70, B.68 and B.56.FR.

from which we conclude B.75 and B.76

ρ ̸= ρ.f ̸= ρ.f.fi (B.75)

op ̸= on ̸= or (B.76)

from which B.74 follows.

Case 18 - OW By B.56.OW, B.68, B.69 and B.70.

Case 19 - RWOW By B.56.RWOW, B.68, B.69 and B.70

Case 20 - AWRT Trivial.

Case 21 - IFL By B.56.WULK, B.69, B.70 choice of F ′
1 and operational semantics.

Case 22 - FLR By choice of F ′
1 and B.56.

Case 23 - FPI By B.58.

Case 24 - WULK Determined by operational semantics By B.56.WULK, B.69, B.70 and opera-

tional semantics.

Case 25 - WF and FR Trivial.

245

Case 26 - HD

Case 27 - WNR By B.71 and operational semantics.

Case 28 - RINFL Determined by operational semantics(B.68) and B.56.RINFL.

Case 29 - ULKR We must prove

∀o′,f ′ . σ′.h(o′, f ′) = or =⇒ unlinked ∈ O′
1(o′)

freeable ∈ O′
1(o′)

(B.77)

which follows from B.58, B.56.OW and determined by operational semantics(B.68), B.69, B.70. If

o′ were observed as iterator then that would conflict with B.66.UNQR.

Case 30 - UNQRT By B.56.UNQRT, B.69, B.70 and B.68.

To prove B.60, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.78)

l ∈ T2 → F2 = F ′
2 (B.79)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.80)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.81)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R = σ′

2.R ∧ σ2.rt = σ′
2.rt (B.82)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.83)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.84)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.85)

246

To prove all relations (B.78-B.83) we assume B.71 which is to assume T2 as subset of reader threads.

Let σ′
2 be σ2, F ′

2 be F2. O2 need not change so we pick O′
2 as O2. Since T2 is subset of reader threads,

we pick T2 as T ′
2. By assuming B.57 we show B.67. B.80 and B.81 follow trivially. B.83 follows from

choice of σ′
2, B.68 and B.71.

B.78 and B.79 follow from B.71 and choice of F ′
2. B.82, B.84 and B.85 are determined by choice of

σ′
2, operational semantics and choices made on maps related to the assertions.

To prove B.61 consider two cases: O′
1 ∩ O′

2 = ∅ and O′
1 ∩ O′

2 ̸= ∅. The first case is trivial. The second

case is where we consider B.86 and B.87

iterator tid ∈ O′
2(or) (B.86)

From B.69 we know that

unliked ∈ O′
1(or)

Both together with B.51 and B.58 proves B.61.

For case B.87

fresh ∈ O2(on) (B.87)

From B.70 we know that

iterator tid ∈ O′
1(on)

Both together with B.51 and B.58 proves B.61.

To show B.62 we consider two cases: σ′
1 ∩ σ′

2 = ∅ and σ′
1 ∩ σ′

2 ̸= ∅. First is trivial. Second follows

from B.66.OW-HD and B.67.OW-HD. B.63, B.65 and B.64 are trivial by choices on related maps

and semantics of the composition operators for these maps. All compositions shown let us to derive

conclusion for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). □

247

Lemma 16 (Insert)

Jp.f := nK(⌊JΓ, p : rcuItr ρ N , r : rcuItr ρ1 N2 , n : rcuFresh N1KM,tid ∗ {m}⌋) ⊆

⌊JΓ , p : rcuItr ρ N ([f ⇀ r \ n]) , n : rcuItr ρ1 N1 , r : rcuItr ρ2 N2K ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓ, p : rcuItr ρ N , r : rcuItr ρ1 N2 , n : rcuFresh N1KM,tid ∗ {m} (B.88)

WellFormed(σ, O, U, T, F) (B.89)

From assumptions in the type rule of T-Insert we assume that

FV(Γ) ∩ {p, r, n} = ∅ (B.90)

ρ.f = ρ1 and ρ.f4 = ρ2 and N (f) = r (B.91)

N (f) = N1(f4) and ∀f2∈dom(N1). f4 ̸= f2 =⇒ N1(f2) = null (B.92)

∀x∈Γ,N3,ρ3,f1,y. (x : rcuItr ρ3 N3([f1 ⇀ y])) =⇒ (∀ρ4 ̸=ϵ. ¬MayAlias(ρ3, ρ.ρ4)) (B.93)

248

We split the composition in B.88 as

(σ1, O1, U1, T1, F1) ∈JΓ, p : rcuItr ρ N , r : rcuItr ρ1 N2 , n : rcuFresh N1KM,tid
(B.94)

(σ2, O2, U2, T2, F2) = m (B.95)

O1 •O O2 = O (B.96)

σ1 •s σ2 = σ (B.97)

U1 ∪ U2 = U (B.98)

T1 ∪ T2 = T (B.99)

F1 ⊎ F2 = F (B.100)

WellFormed(σ1, O1, U1, T1, F1) (B.101)

WellFormed(σ2, O2, U2, T2, F2) (B.102)

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) ∈ Jp : rcuItr ρ N ([f ⇀ r \ n]) , n : rcuItr ρ1 N1 , r : rcuItr ρ2 N2 , ΓKM,tid

(B.103)

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) ∈ R({m}) (B.104)

O′
1 •O O′

2 = O′ (B.105)

σ′
1 •s σ′

2 = σ′ (B.106)

U ′
1 ∪ U ′

2 = U ′ (B.107)

T ′
1 ∪ T ′

2 = T ′ (B.108)

F ′
1 ⊎ F ′

2 = F ′ (B.109)

WellFormed(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) (B.110)

WellFormed(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) (B.111)

249

We also know from operational semantics that the machine state has changed as

σ′
1 = σ1[h(s(p, tid), f) 7→ s(n, tid)] (B.112)

We know that changes in observation map are

O′
1 = O1(s(n, tid))[fresh 7→ iterator tid] (B.113)

B.114 follows from B.88

T1 = {tid} and tid = σ.l (B.114)

Let T ′
1 be T1, F ′

1 be F1 and σ′
1 be determined by operational semantics. The undefined map need

not change so we can pick U ′
1 as U1. Assuming B.94 and choices on maps makes (σ′

1, O′
1, U ′

1, T ′
1) in

denotation

Jp : rcuItr ρ N (f ⇀ r \ n) , n : rcuItr ρ1 N1 , r : rcuItr ρ2 N2 , ΓKM,tid

In the rest of the proof, we prove B.110, B.111 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) and

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2). To prove B.110, we need to show that each of the memory axioms in Section B.2

holds for the state (σ′, O′
1, U ′

1, T ′
1, F ′

1).

Proofs for OW, RWOW, AWRT, IFL, WULK, FLR, FPI, WF, FR, HD, WNR, RINFL and

ULKR. The proof of UNQR is similar to the ones we did for Lemma 15 and Lemma 14 with a

simpler fact to prove: we assume framing conditions B.90-B.93 together with the B.101.UNQR and

B.101.FR which makes B.110UNQR trivial.

To prove B.104, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

250

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.115)

l ∈ T2 → F2 = F ′
2 (B.116)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.117)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.118)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R = σ′

2.R ∧ σ2.rt = σ′
2.rt (B.119)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.120)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.121)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.122)

To prove all relations (B.78-B.83) we assume B.114 which is to assume T2 as subset of reader threads.

Let σ′
2 be σ2, F ′

2 be F2. O2 need not change so we pick O′
2 as O2. Since T2 is subset of reader threads,

we pick T2 as T ′
2. By assuming B.102 we show B.111. B.117 and B.118 follow trivially. B.120 follows

from choice of σ′
2 and B.114.

B.115 and B.116 follow from B.114 and choice of F ′
2. B.119, B.121 and B.122 are determined by

choice of σ′
2, operational semantics and choices made on maps related to the assertions.

B.105 follows from assumptions B.113, B.96 and choice of O′
2 as O2.

To show B.106 we consider two cases: σ′
1 ∩ σ′

2 = ∅ and σ′
1 ∩ σ′

2 ̸= ∅. First is trivial. Second follows

from B.110.OW-HD and B.111.OW-HD. B.107, B.109 and B.108 are trivial by choices on related

maps and semantics of the composition operators for these maps. All compositions shown let us to

derive conclusion for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). □

251

Lemma 17 (ReadStack)

Jz := xK(⌊JΓ , z : _ , x : rcuItr ρ N KM,tid ∗ {m}⌋) ⊆

⌊JΓ , x : rcuItr ρ N , z : rcuItr ρ N K ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓ , z : _ , x : rcuItr ρ N KM,tid ∗ {m} (B.123)

WellFormed(σ, O, U, T, F) (B.124)

From the assumption in the type rule of T-ReadS we assume that

FV(Γ) ∩ {z} = ∅ (B.125)

We split the composition in B.123 as

(σ, O1, U1, T1, F1) ∈JΓ , z : _ , x : rcuItr ρ N KM,tid
(B.126)

(σ, O2, U2, T2, F2) = m (B.127)

σ1 • σ2 = σ (B.128)

O1 •O O2 = O (B.129)

U1 ∪ U2 = U (B.130)

T1 ∪ T2 = T (B.131)

F1 ⊎ F2 = F (B.132)

WellFormed(σ1, O1, U1, T1, F1) (B.133)

WellFormed(σ2, O2, U2, T2, F2) (B.134)

252

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′, O′
1, U ′

1, T ′
1, F ′

1) ∈ JΓ , x : rcuItr ρ N , z : rcuItr ρ N KM,tid
(B.135)

(σ′, O′
2, U ′

2, T ′
2, F ′

2) ∈ R({m}) (B.136)

σ′
1 • σ′

2 = σ′ (B.137)

O′
1 •O O′

2 = O′ (B.138)

U ′
1 ∪ U ′

2 = U ′ (B.139)

T ′
1 ∪ T ′

2 = T ′ (B.140)

F ′
1 ⊎ F ′

2 = F ′ (B.141)

WellFormed(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) (B.142)

WellFormed(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) (B.143)

Let s(x, tid) be ox. We also know from operational semantics that the machine state has changed as

σ′ = σ[s(z, tid) 7→ ox] (B.144)

We know that there exists no change in the observation of heap locations

O′
1 = O1 (B.145)

B.146 follows from B.123

T1 = {tid} and tid = σ.l (B.146)

σ′
1 is determined by operational semantics. The undefined map, T1 and free list need not change

so we can pick U ′
1 as U1, T ′

1 as T1 and F ′
1 as F1. Assuming B.126 and choices on maps makes

253

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) in denotation

JΓ , x : rcuItr ρ N , z : rcuItr ρ N KM,tid

In the rest of the proof, we prove B.142, B.143 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) and

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2). B.142 follows from B.133 trivially.

To prove B.136, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.147)

l ∈ T2 → F2 = F ′
2 (B.148)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.149)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.150)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R2 = σ′

2.R2 ∧ σ2.rt = σ′
2.rt (B.151)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.152)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.153)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.154)

To prove all relations (B.147-B.152) we assume B.146 which is to assume T2 as subset of reader

threads. Let σ′
2 be σ2. O2 need not change so we pick O′

2 as O2. We pick F ′
2 as F2. Since T2 is

subset of reader threads, we pick T2 as T ′
2. By assuming B.134 we show B.143. B.149, B.150, B.153

and B.154 follow trivially. B.152 follows from choice of σ′
2 and B.144(determined by operational

semantics).

B.147 and B.148 follow from B.146 and choice of F ′
2. B.151, B.153 and B.154 are determined by

254

choice of σ′
2, operational semantics and choices made on maps related to the assertions.

B.138-B.141 are trivial by choices on related maps and semantics of the composition operators for

these maps. B.137 follows trivially from B.128. All compositions shown let us to derive conclusion

for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2) trivial. □

Lemma 18 (ReadHeap)

Jz := x.fK(⌊JΓ , z : _ , x : rcuItr ρ N KM,tid ∗ {m}⌋) ⊆

⌊JΓ , x : rcuItr ρ N [f 7→ z] , z : rcuItr ρ′ N∅K ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓ , z : rcuItr _ , x : rcuItr ρ N KM,tid ∗ {m} (B.155)

WellFormed(σ, O, U, T, F) (B.156)

From the assumption in the type rule of T-ReadH we assume that

FV(Γ) ∩ {z} = ∅ (B.157)

ρ.f = ρ′ (B.158)

(B.159)

255

We split the composition in B.155 as

(σ1, O1, U1, T1, F1) ∈JΓ , z : rcuItr _ , x : rcuItr ρ N KM,tid
(B.160)

(σ2, O2, U2, T2, F2) = m (B.161)

σ1 • σ2 = σ (B.162)

O1 •O O2 = O (B.163)

U1 ∪ U2 = U (B.164)

T1 ∪ T2 = T (B.165)

F1 ⊎ F2 = F (B.166)

WellFormed(σ1, O1, U1, T1) (B.167)

WellFormed(σ2, O2, U2, T2) (B.168)

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′, O′
1, U ′

1, T ′
1, F1) ∈ JΓ , x : rcuItr ρ N [f 7→ z] , z : rcuItr ρ′ N∅KM,tid

(B.169)

N (f) = z (B.170)

(σ′, O′
2, U ′

2, T ′
2, F2) ∈ R({m}) (B.171)

σ′
1 • σ′

2 = σ′ (B.172)

O′
1 •O O′

2 = O′ (B.173)

U ′
1 ∪ U ′

2 = U ′ (B.174)

T ′
1 ∪ T ′

2 = T ′ (B.175)

F ′
1 ⊎ F ′

2 = F ′ (B.176)

WellFormed(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) (B.177)

WellFormed(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) (B.178)

256

Let h(s(z, tid), f) be oz. We also know from operational semantics that the machine state has

changed as

σ′
1 = σ1[s(x, tid) 7→ oz] (B.179)

B.170 is determined directly from operational semantics.

We know that there exists no change in the observation of heap locations

O′
1 = O1 (B.180)

B.181 follows from B.155

T1 = {tid} and tid = σ.l (B.181)

σ′
1 is determined by operational semantics. The undefined map, free list and T1 need not change

so we can pick U ′
1 as U1, F ′

1 as F1 and T ′
1 and T1. Assuming B.160 and choices on maps makes

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) in denotation

JΓ , x : rcuItr ρ N [f 7→ z] , z : rcuItr ρ′ N∅KM,tid

In the rest of the proof, we prove B.177, B.178 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) and

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2).

To prove B.171, we need to show that each of the memory axioms in Section B.2 holds for the state

(σ′, O′
1, U ′

1, T ′
1, F ′

1).

Case 31 - UNQR By B.179, B.167.UNQR and σ.rt = σ.rt′.

Case 32 - OW By B.179, B.180 and B.167.OW

Case 33 - RWOW By B.179, B.180 and B.167.RWOW

257

Case 34 - AWRT Trivial.

Case 35 - IFL By B.169, B.167.WULK, B.180, choice of F ′
1 and operational semantics.

Case 36 - FLR By operational semantics(B.179), choice for F ′
1 and B.167.

Case 37 - WULK By B.167.WULK, B.180 and operational semantics(σ.l = σ.l′).

Case 38 - WF, FNR, FPI and FR Trivial.

Case 39 - HD

Case 40 - WNR By B.181 and operational semantics(σ.l = σ.l′).

Case 41 - RINFL By operational semantics(B.179) bounding threads have not changed. We choose

F ′
1 as F1. These two together with B.167 shows RINFL.

Case 42 - ULKR Trivial.

Case 43 - UNQRT By B.167.UNQRT, B.180 and B.179.

To prove B.171, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

258

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.182)

l ∈ T2 → F2 = F ′
2 (B.183)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.184)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.185)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R2 = σ′

2.R2 ∧ σ2.rt = σ′
2.rt (B.186)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.187)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.188)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.189)

To prove all relations (B.182-B.187) we assume B.181 which is to assume T2 as subset of reader

threads. Let σ′
2 be σ2 and F ′

2 be F2. O2 need not change so we pick O′
2 as O2. Since T2 is subset

of reader threads, we pick T2 as T ′
2. By assuming B.168 we show B.178. B.184 and B.185 follows

trivially. B.187 follows from choice of σ′
2 and B.179(determined by operational semantics).

B.182 and B.183 follow from B.181 and choice of F ′
2.B.186, B.188 and B.189 are determined by choice

of σ′
2, operational semantics and choices made on maps related to the assertions.

B.173-B.176 are trivial by choices on related maps and semantics of the composition operators for

these maps. B.172 follows trivially from B.162. All compositions shown let us to derive conclusion

for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). □

Lemma 19 (WriteFreshField)

Jp.f := zK(⌊JΓ, p : rcuFresh N ′
f,∅, x : rcuItr ρ N KM,tid ∗ {m}⌋) ⊆

⌊JΓ , p : rcuFresh N (∪f⇀z) , x : rcuItr ρ N ([f ⇀ z])K ∗ R({m})⌋

259

Proof: We assume

(σ, O, U, T, F) ∈JΓ, p : rcuFresh N ′
f,∅, x : rcuItr ρ N KM,tid ∗ {m} (B.190)

WellFormed(σ, O, U, T, F) (B.191)

From the assumption in the type rule of T-WriteFH we assume that

z : rcuItr ρ.f _ and N (f) = z and f /∈ dom(N ′) (B.192)

We split the composition in B.190 as

(σ, O1, U1, T1, F1) ∈JΓ, p : rcuFresh N ′
f,∅, x : rcuItr ρ N KM,tid

(B.193)

(σ, O2, U2, T2, F2) = m (B.194)

σ1 • σ2 = σ (B.195)

O1 •O O2 = O (B.196)

U1 ∪ U2 = U (B.197)

T1 ∪ T2 = T (B.198)

F1 ⊎ F2 = F (B.199)

WellFormed(σ1, O1, U1, T1, F1) (B.200)

WellFormed(σ2, O2, U2, T2, F2) (B.201)

260

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′, O′
1, U ′

1, T ′
1, F ′

1) ∈ JΓ , p : rcuFresh N (∪f⇀z) , x : rcuItr ρ N ([f ⇀ z])KM,tid
(B.202)

N (f) = z ∧ N ′(f) = z (B.203)

(σ′, O′
2, U ′

2, T ′
2, F ′

2) ∈ R({m}) (B.204)

σ′
1 • σ′

2 = σ′ (B.205)

O′
1 •O O′

2 = O′ (B.206)

U ′
1 ∪ U ′

2 = U ′ (B.207)

T ′
1 ∪ T ′

2 = T ′ (B.208)

F ′
1 ⊎ F ′

2 = F ′ (B.209)

WellFormed(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) (B.210)

WellFormed(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) (B.211)

We also know from operational semantics that the machine state has changed as

σ′ = σ[h(s(p, tid), f) 7→ s(z, tid)] (B.212)

There exists no change in the observation of heap locations

O′
1 = O1 (B.213)

B.214 follows from B.190

T1 = {tid} and tid = σ.l (B.214)

σ′
1 is determined by operational semantics. The undefined map, free list, T1 need not change so we

261

can pick U ′
1 as U1, T ′

1 as T1 and F ′
1 as F1. Assuming B.193 and choices on maps makes (σ′

1, O′
1, U ′

1, T ′
1)

in denotation

JΓ , p : rcuFresh N (∪f⇀z) , x : rcuItr ρ N ([f ⇀ z])KM,tid

In the rest of the proof, we prove B.210 and B.211 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1)

and (σ′
2, O′

2, U ′
2, T ′

2, F ′
2). To prove B.210, we need to show that each of the memory axioms in Section

B.2 holds for the state (σ′, O′
1, U ′

1, T ′
1, F ′

1).

Case 44 - UNQR By B.200.UNQR, B.210.FR(proved) and σ.rt = σ.rt′.

Case 45 - OW By B.212,B.213 and B.200.OW

Case 46 - RWOW By B.212, B.213 and B.200.RWOW

Case 47 - AWRT Trivial.

Case 48 - IFL By B.200.WULK, B.213, choice of F ′
1 and operational semantics.

Case 49 - FLR By operational semantics(B.212), choice of F ′
1 and B.200.

Case 50 - WULK By B.200.WULK, B.213 and operational semantics(σ.l = σ.l′).

Case 51 - WF By B.200.WF, B.214, B.213 and operational semantics(B.212).

Case 52 - FR By B.200.FR, B.214, B.213 and operational semantics(B.212).

Case 53 - FNR By B.200.FNR, B.214, B.213 and operational semantics(B.212).

Case 54 - FPI By B.200.FPI, B.193 and B.192

Case 55 - HD

Case 56 - WNR By B.214 and operational semantics(σ.l = σ.l′).

Case 57 - RINFL By operational semantics(B.212 - bounding threads have not changed), choice of

F ′
1 and B.200.

Case 58 - ULKR Trivial.

262

Case 59 - UNQRT By B.200.UNQRT, B.213 and B.212.

To prove B.204, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.215)

l ∈ T2 → F2 = F ′
2 (B.216)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.217)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.218)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R = σ′

2.R ∧ σ2.rt = σ′
2.rt (B.219)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.220)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.221)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.222)

To prove all relations (B.215-B.220) we assume B.214 which is to assume T2 as subset of reader

threads and B.201. Let σ′
2 be σ2 and F ′

2 be F2. O2 need not change so we pick O′
2 as O2. Since T2 is

subset of reader threads, we pick T2 as T ′
2. By assuming B.201 we show B.211. B.217 and B.218

follows trivially. B.220 follows from choice of σ′
2 and B.212(determined by operational semantics).

B.215 and B.216 follow from B.214 and choice of F ′
2. B.219 are determined by operational semantics,

choice of σ′
2 and choices made on maps related to the assertions.

B.207-B.209 are trivial by choices on related maps and semantics of the composition operators for

these maps. B.221 and B.222 follow from choice of σ′
2.

O′
1 • O′

2 follows from B.196, B.213 and choice of O2.

We assume σ1.h • σ2.h. We know from B.192 that f /∈ dom(N ′). From B.202, B.210-B.211.FNR,

263

B.210-B.211.RITR and B.210-B.211.WNR we show σ′
1.h • σ′

2.h (with choices for other maps

in the machine state we show B.172). All compositions shown let us to derive conclusion for

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). □

Lemma 20 (Sycn)

JSyncStart; SyncStopK(⌊JΓKM,tid ∗ {m}⌋) ⊆

⌊JΓ[x : freeable/x : unlinked]K ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓKM,tid ∗ {m} (B.223)

WellFormed(σ, O, U, T, F) (B.224)

We split the composition in B.223 as

(σ, O1, U1, T1, F1) ∈JΓKM,tid
(B.225)

(σ, O2, U2, T2, F2) = m (B.226)

σ1 • σ2 = σ (B.227)

O1 •O O2 = O (B.228)

U1 ∪ U2 = U (B.229)

T1 ∪ T2 = T (B.230)

F1 ⊎ F2 = F (B.231)

WellFormed(σ, O1, U1, T1, F1) (B.232)

WellFormed(σ, O2, U2, T2, F2) (B.233)

264

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2
, F ′

1, F ′
2 such that

(σ′, O′
1, U ′

1, T ′
1, F ′

1) ∈ JΓ[x : freeable/x : unlinked]KM,tid
(B.234)

(σ′, O′
2, U ′

2, T ′
2, F ′

2) ∈ R({m}) (B.235)

σ′
1 • σ′

2 = σ′ (B.236)

O′
1 •O O′

2 = O′ (B.237)

U ′
1 ∪ U ′

2 = U ′ (B.238)

T ′
1 ∪ T ′

2 = T ′ (B.239)

(B.240)

F ′
1 ⊎ F ′

2 = F ′ (B.241)

WellFormed(σ′, O′
1, U ′

1, T ′
1, F ′

1) (B.242)

WellFormed(σ′, O′
2, U ′

2, T ′
2, F ′

2) (B.243)

We also know from operational semantics that SyncStart changes

σ′
1.B = σ1.B[∅ 7→ R] (B.244)

Then SyncStop changes it to ∅ so there exists no change in B after SyncStart;SyncStop. So there is no

change in machine state.

σ′
1 = σ1 (B.245)

There exists no change in the observation of heap locations

O′
1 = O1(∀x∈Γ. s(x, tid))[unlinked 7→ freeable] (B.246)

265

and we pick free list to be

F ′
1 = F1(∀x:unlinked∈Γ,T ⊆R. s(x, tid)[T 7→ {∅}]) (B.247)

B.248 follows from B.223

T1 = {tid} and tid = σ.l (B.248)

Let T ′
1 be T1 and σ′

1(not changed) be determined by operational semantics. The undefined map need

not change so we can pick U ′
1 as U1. Assuming B.225 and choices on maps makes (σ′

1, O′
1, U ′

1, T ′
1, F ′

1)

in denotation

JΓ[x : freeable/x : unlinked]KM,tid

In the rest of the proof, we prove B.242 and B.243 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1)

and (σ′
2, O′

2, U ′
2, T ′

2, F ′
2). To prove B.242, we need to show that each of the memory axioms in Section

B.2 holds for the state (σ′, O′
1, U ′

1, T ′
1, F ′

1) which is trivial by assuming B.232. We also know B.234(as

we showed the support of state to the denotation).

To prove B.235, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

266

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.249)

l ∈ T2 → F2 = F ′
2 (B.250)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.251)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.252)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R = σ′

2.R ∧ σ2.rt = σ′
2.rt (B.253)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.254)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.255)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.256)

To prove all relations (B.249-B.254) we assume B.248 which is to assume T2 as subset of reader

threads and B.233. Let σ′
2 be σ2. O2 need not change so we pick O′

2 as O2. Since T2 is subset

of reader threads, we pick T2 as T ′
2. By assuming B.233 we show B.243. B.251 and B.252 follows

trivially. B.254 follows from choice of σ′
2 and B.245(determined by operational semantics).

B.249 and B.250 follow from B.248. B.253 are determined by choice of σ′
2 and operational semantics

and choices made on maps related to the assertions.

B.238-B.241 follow from B.228-B.231 trivially by choices on maps of logical state and semantics of

composition operators. B.236 follow from B.227, B.245-B.248 and choice of σ′
2. All compositions

shown let us to derive conclusion for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2) . □

Lemma 21 (Alloc)

Jx := newK(⌊JΓ , x : undef KM,tid ∗ {m}⌋) ⊆

⌊JΓ , x : rcuFresh N∅K ∗ R({m})⌋

267

Proof: We assume

(σ, O, U, T, F) ∈JΓ , x : undef KM,tid ∗ {m}⌋) (B.257)

WellFormed(σ, O, U, T, F) (B.258)

We split the composition in B.257 as

(σ, O1, U1, T1, F1) ∈JΓ , x : undef KM,tid
(B.259)

(σ, O2, U2, T2, F2) = m (B.260)

σ1 • σ2 = σ (B.261)

O1 •O O2 = O (B.262)

U1 ∪ U2 = U (B.263)

T1 ∪ T2 = T (B.264)

F1 ⊎ F2 = F (B.265)

WellFormed(σ, O1, U1, T1, F1) (B.266)

WellFormed(σ, O2, U2, T2, F2) (B.267)

268

We must show ∃O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′, O′
1, U ′

1, T ′
1, F ′

1) ∈ JΓ , x : rcuFresh N∅K (B.268)

(σ′, O′
2, U ′

2, T ′
2, F ′

2) ∈ R({m}) (B.269)

σ′
1 • σ′

2 = σ′ (B.270)

O′
1 •O O′

2 = O′ (B.271)

U ′
1 ∪ U ′

2 = U ′ (B.272)

T ′
1 ∪ T ′

2 = T ′ (B.273)

F ′
1 ⊎ F ′

2 = F ′ (B.274)

WellFormed(σ′, O′
1, U ′

1, T ′
1) (B.275)

WellFormed(σ′, O′
2, U ′

2, T ′
2) (B.276)

From operational semantics we know that s(y, tid) is ℓ. We also know from operational semantics

that the machine state has changed as

σ′ = σ[h(ℓ) 7→ nullmap] (B.277)

There exists no change in the observation of heap locations

O′
1 = O1(ℓ)[undef 7→ fresh] (B.278)

B.279 follows from B.257

T1 = {tid} and tid = σ.l (B.279)

Let T ′
1 to be T1. Undefined map and free list need not change so we can pick U ′

1 as U1 and F ′
1 as F1

269

and show(B.268) that (σ′, O′
1, U ′

1, T ′
1, F ′

1) is in denotation of

JΓ , x : rcuFresh N∅K

In the rest of the proof, we prove B.275, B.276 and (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) and (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). To

prove B.275, we need to show that each of the memory axioms in Section B.2 holds for the state

(σ′, O′
1, U ′

1, T ′
1, F ′

1).

Case 60 - UNQR Determined by B.268 and operational semantics(ℓ is fresh-unique).

Case 61 - RWOW, OW By B.268

Case 62 - AWRT Determined by operational semantics(ℓ is fresh-unique).

Case 63 - IFL, ULKR, WULK, RINFL, UNQRT Trivial.

Case 64 - FLR determined by operational semantics and B.268.

Case 65 - WF By B.279, B.268 and B.278.

Case 66 - FR Determined by operational semantics(ℓ is fresh-unique).

Case 67 - FNR By B.268 and operational semantics(ℓ is fresh-unique).

Case 68 - FPI By B.268 and Nf,∅.

Case 69 - HD

Case 70 - WNR By B.279.

To prove B.269, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

270

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.280)

l ∈ T2 → F2 = F ′
2 (B.281)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.282)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.283)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R = σ′

2.R ∧ σ2.rt = σ′
2.rt (B.284)

∀x, t ∈ T. σ2.s(x, t) = σ′
2.s(x, t) (B.285)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.286)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.287)

To prove all relations (B.280-B.287) we assume B.279 which is to assume T2 as subset of reader

threads and B.267. Let σ′
2 be σ2. F2 and O2 need not change so we pick O′

2 as O2 and F ′
2 as F2.

Since T2 is subset of reader threads, we pick T2 as T ′
2. By assuming B.267 and choices on maps we

show B.276. B.282 and B.283 follow trivially. B.285 follows from choice of σ′
2 and B.277(determined

by operational semantics). B.271-B.274 follow from B.262-B.265, semantics of compositions operators

and choices made for maps of the logical state.

B.280 and B.281 follow from B.279 and choice on F ′
2. B.284 are determined by operational semantics,

operational semantics and choices made on maps related to the assertion.

σ′
1.h ∩ σ′

2.h = ∅ is determined by operational semantics(ℓ is unique and fresh). So, B.270 follows from

B.261 and choice of σ′
2. All compositions shown let us to derive conclusion for (σ′

1, O′
1, U ′

1, T ′
1, F ′

1) •

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2). □

Lemma 22 (Free)

JFree(x)K(⌊Jx : freeableKM,tid ∗ {m}⌋) ⊆

⌊Jx : undefK ∗ R({m})⌋

271

Proof: We assume

(σ, O, U, T, F) ∈Jx : freeable KM,tid ∗ {m}⌋) (B.288)

WellFormed(σ, O, U, T, F) (B.289)

We split the composition in B.288 as

(σ, O1, U1, T1, F1) ∈Jx : freeableKM,tid
(B.290)

(σ, O2, U2, T2, F2) = m (B.291)

σ1 • σ2 = σ (B.292)

O1 •O O2 = O (B.293)

U1 ∪ U2 = U (B.294)

T1 ∪ T2 = T (B.295)

F1 ⊎ F2 = F (B.296)

WellFormed(σ, O1, U1, T1, F1) (B.297)

WellFormed(σ, O2, U2, T2, F2) (B.298)

272

We must show ∃O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′, O′
1, U ′

1, T ′
1, F ′

1) ∈ Jx : undefK (B.299)

(σ′, O′
2, U ′

2, T ′
2, F ′

2) ∈ R({m}) (B.300)

σ′
1 • σ′

2 = σ′ (B.301)

O′
1 •O O′

2 = O′ (B.302)

U ′
1 ∪ U ′

2 = U ′ (B.303)

T ′
1 ∪ T ′

2 = T ′ (B.304)

F ′
1 ⊎ F ′

2 = F ′ (B.305)

WellFormed(σ′, O′
1, U ′

1, T ′
1, F ′

1) (B.306)

WellFormed(σ′, O′
2, U ′

2, T ′
2, F ′

2) (B.307)

From operational semantics we know that

∀f,o′ . rt ̸= s(x, tid) ∧ o′ ̸= s(x, tid) =⇒ h(o′, f) = h′(o′, f) ∧ ∀f . h′(o, f) = undef (B.308)

O′
1 = O1(s(x, tid))[freeable 7→ undef] (B.309)

F ′
1 = F1 \ {s(x, tid) 7→ {∅}} (B.310)

273

U ′
1 = U1 ∪ {(x, tid)} (B.311)

B.312 follows from B.288

T1 = {tid} and tid = σ.l (B.312)

Let T ′
1 to be T1. All B.308-B.311 show(B.299) that (σ′, O′

1, U ′
1, T ′

1, F ′
1) is in denotation of

Jx : undefK

In the rest of the proof, we prove B.306, B.307 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) and

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2).. To prove B.306, we need to show that each of the memory axioms in Section

B.2 holds for the state (σ′, O′
1, U ′

1, T ′
1, F ′

1) and it it trivial by B.308-B.311 and B.299.

To prove B.300, we need to show interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

274

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.313)

l ∈ T2 → F2 = F ′
2 (B.314)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.315)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.316)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.R = σ′

2.R ∧ σ2.rt = σ′
2.rt (B.317)

∀x, t ∈ T. σ2.s(x, t) = σ′
2.s(x, t) (B.318)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.319)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.320)

To prove all relations (B.313-B.320) we assume B.312 which is to assume T2 as subset of reader

threads and B.267. Let σ′
2 be σ2. F2 and O2 need not change so we pick O′

2 as O2 and F ′
2 as F2.

Since T2 is subset of reader threads, we pick T2 as T ′
2. By assuming B.267 and choices on maps we

show B.307. B.315 and B.316 follow trivially. B.318 follows from choice of σ′
2 and B.308(determined

by operational semantics). B.302-B.305 follow from B.294-B.296, semantics of composition operators

and choices on related maps.

B.313 and B.314 follow from B.312 and choice on F ′
2. B.317 are determined by operational semantics,

choice of σ′
2 and choices made on maps related to the assertion.

Composition for heap for case σ′
1.h ∩ σ′

2.h = ∅ is trivial. σ′
1.h ∩ σ′

2.h ̸= ∅ is determined by semantics

of heap composition operator •h(v has precedence over undef) and this makes showing B.302

straightforward. Since other machine components do not change(determined by operational semantics),

B.301 follows from B.292, B.308 and choice of σ′
2. All compositions shown let us to derive conclusion

for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). □

275

Lemma 23 (RReadStack)

Jz := xK(⌊JΓ , z : rcuItr , x : rcuItrKR,tid ∗ {m}⌋) ⊆

⌊JΓ , x : rcuItr , z : rcuItrK ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓ , Γ , z : rcuItr , x : rcuItrKR,tid ∗ {m} (B.321)

WellFormed(σ, O, U, T, F) (B.322)

We split the composition in B.321 as

(σ1, O1, U1, T1, F1) ∈JΓ , Γ , z : rcuItr , x : rcuItrKR,tid
(B.323)

(σ, O2, U2, T2, F2) = m (B.324)

O1 •O O2 = O (B.325)

σ1 • σ2 = σ (B.326)

U1 ∪ U2 = U (B.327)

T1 ∪ T2 = T (B.328)

F1 ⊎ F2 = F (B.329)

WellFormed(σ, O1, U1, T1, F1) (B.330)

WellFormed(σ, O2, U2, T2, F2) (B.331)

276

We must show ∃O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′, O′
1, U ′

1, T ′
1, F ′

1) ∈ JΓ , x : rcuItr , z : rcuItrKR,tid
(B.332)

(σ′, O′
2, U ′

2, T ′
2, F ′

2) ∈ R({m}) (B.333)

O′
1 •O O′

2 = O′ (B.334)

σ′
1 • σ′

2 = σ′ (B.335)

U ′
1 ∪ U ′

2 = U ′ (B.336)

T ′
1 ∪ T ′

2 = T ′ (B.337)

F ′
1 ⊎ F ′

2 = F ′ (B.338)

WellFormed(σ′, O′
1, U ′

1, T ′
1, F ′

1) (B.339)

WellFormed(σ′, O′
2, U ′

2, T ′
2, F ′

2) (B.340)

We also know from operational semantics that the machine state has changed as

σ′
1 = σ1 (B.341)

There exists no change in the observation of heap locations

O′
1 = O1 (B.342)

B.343 follows from B.321

T1 ⊆ R (B.343)

Let T ′
1 be T1 and σ′

1 be determined by operational semantics as σ1. The undefined map and free list

need not change so we can pick U ′
1 as U1 and F ′

1 as F1. Assuming B.323 and choices on maps makes

277

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) in denotation

JΓ , x : rcuItr , z : rcuItrKR,tid

In the rest of the proof, we prove B.339, B.340B.24, B.25 and show the composition of (σ′
1, O′

1, U ′
1, T ′

1, F ′
1)

and (σ′
2, O′

2, U ′
2, T ′

2, F ′
2). To prove B.339, we need to show that each of the memory axioms in Section

B.2 holds for the state (σ′, O′
1, U ′

1, T ′
1, F ′

1) which is trivial by assuming B.330 and knowing B.343,

B.342 and components of the state determined by operational semantics.

To prove B.340, we need to show that WellFormedness is preserved under interference relation

(σ, O2, U2, T2, F2)R(σ′, O′
2, U ′

2, T ′
2, F ′

2)

which by definition means that we must show

σ2.l ∈ T2 → (σ2.h = σ′
2.h ∧ σ2.l = σ′

2.l) (B.344)

l ∈ T2 → F2 = F ′
2 (B.345)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ2.h) (B.346)

∀tid, o. iterator tid ∈ O2(o) → o ∈ dom(σ′
2.h) (B.347)

O2 = O′
2 ∧ U2 = U ′

2 ∧ T2 = T ′
2 ∧ σ2.B = σ′

2.B ∧ σ2.rt = σ′
2.rt (B.348)

∀x, t ∈ T2. σ2.s(x, t) = σ′
2.s(x, t) (B.349)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h) (B.350)

∀tid, o. root tid ∈ O(o) → o ∈ dom(h′) (B.351)

σ2, O2, U2 and T2 need not change so that we choose σ′
2 to be σ′

2, O′
2 to be O2, U ′

2 to U2 and T ′
2 to

be T2. Let F ′
2 be F2. These choices make proving B.344-B.351 trivial and B.334-B.337 follow from

assumptions B.325-B.329, choices made for related maps and semantics of composition operations.

All compositions shown let us derive conclusion for (σ′
1, O′

1, U ′
1, T ′

1, F ′
1) • (σ′

2, O′
2, U ′

2, T ′
2, F ′

2). □

278

Lemma 24 (RReadHeap)

Jz := x.fK(⌊JΓ , z : rcuItr , x : rcuItrKR,tid ∗ {m}⌋) ⊆

⌊JΓ , x : rcuItr , z : rcuItrK ∗ R({m})⌋

Proof: We assume

(σ, O, U, T, F) ∈JΓ , z : rcuItr , x : rcuItrKR,tid ∗ {m}⌋) (B.352)

WellFormed(σ, O, U, T, F) (B.353)

We split the composition in B.352 as

(σ1, O1, U1, T1, F1) ∈JΓ , z : rcuItr , x : rcuItrKR,tid
(B.354)

(σ2, O2, U2, T2, F2) = m (B.355)

σ1 • σ2 = σ (B.356)

O1 •O O2 = O (B.357)

U1 ∪ U2 = U (B.358)

T1 ∪ T2 = T (B.359)

F1 ⊎ F2 = F (B.360)

WellFormed(σ1, O1, U1, T1, F1) (B.361)

WellFormed(σ2, O2, U2, T2, F2) (B.362)

279

We must show ∃σ′
1,σ′

2,O′
1,O′

2,U ′
1,U ′

2,T ′
1,T ′

2,F ′
1,F ′

2
such that

(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) ∈ ⌊JΓ , x : rcuItr , z : rcuItrK (B.363)

(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) ∈ R({m}) (B.364)

σ′
1 • σ′

2 = σ′ (B.365)

O′
1 •O O′

2 = O′ (B.366)

U ′
1 ∪ U ′

2 = U ′ (B.367)

T ′
1 ∪ T ′

2 = T ′ (B.368)

WellFormed(σ′
1, O′

1, U ′
1, T ′

1, F ′
1) (B.369)

WellFormed(σ′
2, O′

2, U ′
2, T ′

2, F ′
2) (B.370)

Let h(s(x, tid), f) be ox. We also know from operational semantics that the machine state has

changed as

σ′
1 = σ1[s(z, tid) 7→ ox] (B.371)

There exists no change in the observation of heap locations

O′
1 = O1 (B.372)

B.373 follows from B.352

T1 ⊆ R (B.373)

Proof is similar to Lemma 23. □

280

B.4 Soundness Proof of Structural Program Actions

In this section, we introduce soundness Theorem B.4.1 for structural rules of the type system. We

consider the cases of the induction on derivation of Γ ⊢ C ⊣ Γ for all type systems,R, M .

Although we have proofs for read-side structural rules, we only present proofs for write-side structural

type rules in this section as read-side rules are simple versions of write-side rules and proofs for them

are trivial and already captured by proofs for write-side structural rools.

Theorem B.4.1 (Type System Soundness)

∀Γ,Γ′,C . Γ ⊢ C ⊣ Γ′ =⇒ JΓ ⊢ C ⊣ Γ′K

Proof: Induction on derivation of Γ ⊢M C ⊣ Γ.

Case 71 -M: consequence where C has the form Γ ⊢M C ⊣ Γ′′′. We know

Γ′ ⊢M C ⊣ Γ′′ (B.374)

Γ ≺: Γ′ (B.375)

Γ′′ ≺: Γ′′′ (B.376)

{JΓ′KM,tid}C{JΓ′′KM,tid} (B.377)

We need to show

{JΓKM,tid}C{JΓ′′′KM,tid} (B.378)

The ≺: relation translated to entailment relation in Views Logic. The relation is established over the

action judgement for identity label/transition

281

From B.375 and Lemma 25 we know

JΓKM,tid ⊑ JΓ′KM,tid (B.379)

From B.376 and 25 we know

JΓ′′KM,tid ⊑ JΓ′′′KM,tid (B.380)

By using B.379, B.380 and B.377 as antecedentes of Views Logic’s consequence rule, we conclude

B.378.

Case 72 -M: where C is sequence statement. C has the form C1; C2. Our goal is to prove

{JΓKM,tid} ⊢M C1; C2 ⊣ {JΓ′′KM,tid} (B.381)

We know

Γ ⊢M C1 ⊣ Γ′ (B.382)

Γ′ ⊢M C2 ⊣ Γ′′ (B.383)

{JΓKM,tid}C1{JΓ′KM,tid} (B.384)

{JΓ′KM,tid}C2{JΓ′′KM,tid} (B.385)

By using B.384 and B.385 as the antecedents for the Views sequencing rule, we can derive the

conclusion for B.381.

Case 73 -M: where C is loop statement. C has the form while (x) {C}.

282

Γ ⊢M C ⊣ Γ (B.386)

Γ(x) = bool (B.387)

{JΓKM,tid}C{JΓKM,tid} (B.388)

Our goal is to prove

{JΓKM,tid} (assume (x) ; C)∗ ; assume(¬x){JΓKM,tid} (B.389)

We prove B.389 by from the consequence rule, based on the proofs of the following B.390 and B.391

{JΓKM,tid} (assume (x) ; C)∗ {JΓKM,tid} (B.390)

{JΓKM,tid}assume (¬x) {JΓKM,tid} (B.391)

The poof of B.390 follows from Views Logic’s proof rule for assume construct by using

{JΓKM,tid}assume (x) {JΓKM,tid}

as antecedent. We can use this antecedent together with the antecedent we know from B.388

{JΓKM,tid}C{JΓKM,tid}

as antecedents to the Views Logic’s proof rule for sequencing. Then we use the antecedent

{JΓKM,tid}assume (x) ; C{JΓKM,tid}

283

to the proof rule for nondeterministic looping.

The proof of B.391 follows from Views Logic’s proof rule for assume construct by using the

{JΓKM,tid}assume (¬x) {JΓKM,tid}

as the antecedent.

Case 74 -M: where C is a loop statement. C has the form while(x.f ̸= null){C} Proof is similar

to the one for T-Loop1.

Case 75 -M: case where C is branch statement. C has the form if (e) then{C1}else{C2}.

Γ, x : rcuItr ρ N ([f1 ⇀ z]) ⊢M C1 ⊣ Γ′ (B.392)

Γ, x : rcuItr ρ N ([f2 ⇀ z]) ⊢M C2 ⊣ Γ′ (B.393)

{JΓ, x : rcuItr ρ N ([f1 ⇀ z])KM,tid}C1{JΓ′KM,tid} (B.394)

{JΓ, x : rcuItr ρ N ([f2 ⇀ z])KM,tid}C2{JΓ′KM,tid} (B.395)

Our goal is to prove

{JΓ, x : rcuItr ρ N ([f1|f2 ⇀ z])KM,tid}

y = x.f1; (assume (z = y) ; C1) + (assume (y ̸= z) ; C2)

{JΓ′KM,tid}

(B.396)

where the desugared form includes a fresh variable y. We use fresh variables just for desugaring and

they are not included in any type context. We proveB.396 from the consequence rule of Views Logic

284

based on the proofs of the following B.397 and B.398

{JΓ, x : rcuItr ρ N ([f1|f2 ⇀ z])KM,tid}

(assume (z = y) ; C1) + (assume (y ̸= z) ; C2)

{JΓ′KM,tid}

(B.397)

and

{JΓ, x : rcuItr ρ N [f1|f2 ⇀ z]KM,tid}

y = x.f1

{JΓ, x : rcuItr ρ N ([f1|f2 ⇀ z])JM,tid∩Jx : rcuItr ρ N ([f1 ⇀ y])KM,tid}

(B.398)

B.398 is trivial from the fact that y is a fresh variable and it is not included in any type context and

just used for desugaring.

We prove B.397 from the branch rule of Views Logic based on the proofs of the following B.399 and

B.400

{JΓ, x : rcuItr ρ N ([f1|f2 ⇀ z])KM,tid∩

Jx : rcuItr ρ N ([f1 ⇀ y])KM,tid}

(assume (z = y) ; C1)

{JΓ′KM,tid}

(B.399)

and

{JΓ, x : rcuItr ρ N ([f1|f2 ⇀ z])KM,tid∩

Jx : rcuItr ρ N ([f1 ⇀ y])KM,tid}

(assume (z ̸= y) ; C2)

JΓ′KM,tid}

(B.400)

285

We show B.399 from Views Logic’s proof rule for the assume construct by using

{JΓ, x : rcuItr ρ N ([f1|f2 ⇀ z])KM,tid∩

Jx : rcuItr ρ N ([f1 ⇀ y])KM,tid}

assume (y = z)

{JΓ, x : rcuItr ρ N ([f1 ⇀ z])KM,tid}

as the antecedent. We can use this antecedent together with

{JΓ, x : rcuItrρN ([f1 ⇀ z])KM,tid}C1{JΓ′KM,tid}

as antecedents to the View’s Logic’s proof rule for sequencing.

We show B.400 from Views Logic’s proof rule for the assume construct by using

{JΓ, x : rcuItr ρ N ([f1|f2 ⇀ z])∩

x : rcuItr ρ N ([f1 ⇀ y])KM,tid}

assume(x ̸= y)

{JΓ, x : rcuItr ρ N ([f2 ⇀ z])KM,tid}

as the antecedent. We can use this antecedent together with

{JΓ, x : rcuItrρN ([f2 ⇀ z])KM,tid}C2{JΓ′KM,tid}

as antecedents to the Views Logic’s proof rule for sequencing.

Case 76 -M: case where C is branch statement. C has the form if(x.f == null)then{C1}else{C2}.

Proof is similar to one for T-Branch1.

286

Case 77 -O: parallel where C has the form Γ1, Γ2 ⊢O C1||C2 ⊣ Γ′
1, Γ′

2 We know

Γ1 ⊢ C1 ⊣ Γ′
1 (B.401)

Γ2 ⊢ C2 ⊣ Γ′
2 (B.402)

{JΓ1K}C1{JΓ′
1K} (B.403)

{JΓ2K}C2{JΓ′
2K} (B.404)

We need to show

{JΓ1, Γ2K}C1||C2{JΓ′
1, Γ′

2K} (B.405)

By using B.403 and B.404 as antecedents to Views Logic’s parallel rule, we can draw conclusion for

B.406

{JΓ1K ∗ JΓ2K}C1||C2{JΓ′
1K ∗ JΓ′

2K} (B.406)

Showing B.405 requires showing

JΓ1, Γ2K ⊑ JΓ1K ∗ JΓ2K (B.407)

JΓ′
1K ∗ JΓ′

2K ⊑ JΓ′
1, Γ′

2K (B.408)

By using B.407 and B.408(trivial to show as "," and "*" for denotation of type contexts are both

semantically equivalent to ∩) as antecedents to Views Logic’s consequence rule, we can conclude

B.405.

287

Case 78 -M where C has form RCUWrite x.f as y in C which desugars into

WriteBegin; x.f := y; C; WriteEnd

We assume from the rule ToRCUWrite

Γ, y : rcuItr _ ⊢M C ⊣ Γ′ (B.409)

FType(f) = RCU (B.410)

NoFresh(Γ′) (B.411)

NoFreeable(Γ′) (B.412)

NoUnlinked(Γ′) (B.413)

{JΓ , y : rcuItr _KM,tid}C{JΓ′KM,tid} (B.414)

Our goal is to prove

{JΓKM,tid}WriteBegin; C; WriteEnd{JΓ′KM,tid} (B.415)

Any case of C does not change the state(no heap update) by assumptions B.411-B.413 therefore B.415

follows from assumptions B.409-B.414 trivially.

□

Lemma 25 (Context-SubTyping-M)

Γ ≺: Γ′ =⇒ JΓKM,tid ⊑ JΓ′KM,tid

Proof: Induction on the subtyping derivation. Then inducting on the first entry in the non-empty

context(empty case is trivial) which follows from 27. □

288

Lemma 26 (Context-SubTyping-R)

Γ ≺: Γ′ =⇒ JΓKR,tid ⊑ JΓ′KR,tid

Proof: Induction on the subtyping derivation. Then inducting on the first entry in the non-empty

context(empty case is trivial) which follows from 28. □

Lemma 27 (Singleton-SubTyping-M)

x : T ≺: x : T ′ =⇒ Jx : T KM,tid ⊑ Jx : T ′KR,tid

Proof: Proof by case analysis on structure of T ′ and T . Important case includes the subtyping

relation is defined over components of rcuItr type. T ′ including approximation on the path component

ρ.f1 ≺: ρ.f1|f2

together with the approximation on the field map

N ([f1 ⇀ _]) ≺: N ([f1|f2 ⇀ _])

lead to subset inclusion in between a set of states defined by denotation of the x : T ′ the set of states

defined by denotation of the x : T (which is also obvious for T-Sub). Reflexive relations and relations

capturing base cases in subtyping are trivial to show. □

Lemma 28 (Singleton-SubTyping-R)

x : T ≺: x : T ′ =⇒ Jx : T KM,tid ⊑ Jx : T ′KM,tid

289

Proof: Proof is similar to 27 with a single trivial reflexive derivation relation (T-TSub2)

rcuItr ≺: rcuItr

□

290

291

APPENDIX C

RCU BST DELETE

void delete(int data) {

W riteBegin;

// Find data in the tree. Root is never empty and its value is unique id

BinaryT reeNode current, parent = root;

{parent : rcuItr ϵ {}}

current = parent.Right;

{parent : rcuItr ϵ {Right 7→ current}}

{current : rcuItr Right {}}

while (current! = null&¤t.data! = data)

{{
parent : rcuItr (Left|Right)k {(Left|Right) 7→ current}

}{
current : rcuItr (Left|Right)k.(Left|Right) {}

}
if (current.data > data)

{

//if data exists it’s in the left subtree

parent = current;{
parent : rcuItr (Left|Right)k {}

}{
current : rcuItr (Left|Right)k {}

}
current = parent.Left;{

parent : rcuItr (Left|Right)k {Left 7→ current}
}{

current : rcuItr (Left|Right)k.Left {}
}

}

else if (current.data < data)

{

//if data exists it’s in the right subtree

parent = current;{
parent : rcuItr (Left|Right)k {}

}{
current : rcuItr (Left|right)k {}

}
current = current.Right;{

parent : rcuItr (Left|Right)k {Right 7→ current}
}{

current : rcuItr (Left|Right)k.Right {}
}

}

}

292

{
parent : rcuItr (Left|Right)k {(Left|Right) 7→ current}

}{
current : rcuItr (Left|Right)k.(Left|Right) {}

}
// At this point, we’ve found the node to remove

BinaryT reeNode lmP arent = current.Right;

BinaryT reeNode currentL = current.Left;{
current : rcuItr(Left|Right)k.(Left|Right){Left 7→ currentL, Right 7→ lmP arent}

}{
currentL : rcuItr (Left|Right)k.(Left|Right).Left {}

}{
lmP arent : rcuItr Left|Right)k.(Left|Right).Right {}

}
// We now need to "rethread" the tree

// CASE 1: If current has no right child, then current’s left child becomes the node pointed to by the parent

if (current.Right == null)

{{
parent : rcuItr (Left|Right)k {(Left|Right) 7→ current}

}{
current : rcuItr (Left|Right)k.(Left|Right) {Left 7→ currentL, Right 7→ null}

}{
currentL : rcuItr (Left|Right)k.(Left|Right).Left {}

}
if (parent.Left == current)

// parent.Value is greater than current.Value

// so make current’s left child a left child of parent{
parent : rcuItr (Left|Right)k {Left 7→ current}

}{
current : rcuItr (Left|Right)k.Left {Left 7→ currentL, Right 7→ null}

}{
currentL : rcuItr (Left|Right)k.Left.Left {}

}
parent.Left = currentL;{

parent : rcuItr (Left|Right)k {Left 7→ current}
}

{current : unlinked}{
currentL : rcuItr (Left|Right)k.Left {}

}
else

// parent.Value is less than current.Value

// so make current’s left child a right child of parent{
parent : rcuItr (Left|Right)k {Right 7→ current}

}{
current : rcuItr (Left|Right)k.Right {Left 7→ currentL, Right 7→ null}

}{
currentL : rcuItr (Left|Right)k.Right.Left {}

}
parent.Right = currentL;{

parent : rcuItr (Left|Right)k {Right 7→ current}
}{

currentL : rcuItr (Left|Right)k.Right {}
}

{current : unlinked}

SyncStart; SyncStop;

{current : freeable}

F ree(current);

{current : undef}

}

293

// CASE 2: If current’s right child has no left child, then current’s right child

// replaces current in the tree

else if (current.Left == null)

{{
parent : rcuItr (Left|Right)k {(Left|Right) 7→ current}

}{
current : rcuItr (Left|Right)k.(Left|Right) {Left 7→ null, Right 7→ lmP arent}

}{
currentL : rcuItr (Left|Right)k.(Left|Right).Left {}

}{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right {}

}
if (parent.Left == current){

parent : rcuItr (Left|Right)k {Left 7→ current}
}{

current : rcuItr (Left|Right)k.Left {Left 7→ null, Right 7→ lmP arent}
}{

lmP arent : rcuItr (Left|Right)k.Left.Right {}
}

// parent.Value is greater than current.Value

// so make current’s right child a left child of parent

parent.Left = lmP arent;{
parent : rcuItr (Left|Right)k {Left 7→ lmP arent}

}
{current : unlinked}{

lmP arent : rcuItr (Left|Right)k.Left {}
}

else{
parent : rcuItr (Left|Right)k {Right 7→ current}

}{
current : rcuItr (Left|Right)k.Right {Left 7→ null, Right 7→ lmP arent}

}{
lmP arent : rcuItr (Left|Right)k.Right.Right {}

}
// parent.Value is less than current.Value

// so make current’s right child a right child of parent

parent.Right = lmP arent;{
parent : rcuItr (Left|Right)k {Right 7→ lmP arent}

}{
lmP arent : rcuItr (Left|Right)k.Right {}

}
{current : unlinked}

SyncStart; SyncStop;

{current : freeable}

F ree(current);

{current : undef}

}

294

// CASE 3: If current’s right child has a left child, replace current with current’s

// right child’s left-most descendent

else

{{
parent : rcuItr (Left|Right)k {(Left|Right) 7→ current}

}{
current : rcuItr (Left|Right)k.(Left|Right) {Right 7→ lmP arent, Left 7→ currentL}

}{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right {}

}{
currentL : rcuItr (Left|Right)k.(Left|Right).Left {}

}
// We first need to find the right node’s left-most child

BinaryT reeNode currentF = new;

{currentF : rcuF resh}

currentF.Right = lmP arent;

{currentF : rcuF resh {Right 7→ lmP arent}}

currentF.Left = currentL;

{currentF : rcuF resh {Right 7→ lmP arent, Left 7→ currentL}}

BinaryT reeNode leftmost = lmP arent.Left;{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right {Left 7→ leftmost}

}{
leftmost : rcuItr (Left|Right)k.(Left|Right).Right.Left {}

}
if (lmP arent.Left == null){{

lmP arent : rcuItr (Left|Right)k.(Left|Right).Right {Left 7→ null}
}

currentF.data = lmP arent.data;

if (parent.Left == current){{
parent : rcuItr (Left|Right)k {Left 7→ current}

}{
current : rcuItr (Left|Right)k.Left {Right 7→ lmP arent, Left 7→ currentL}

}
{currentF : rcuF resh {Right 7→ lmP arent, Left 7→ currentL}}

//current’s right child a left child of parent

parent.Left = currentF ;{
parent : rcuItr (Left|Right)k {Left 7→ currentF }

}
{current : unlinked}{

currentF : rcuItr (Left|Right)k.Left {Right 7→ lmP arent, Left 7→ currentL}
}

SyncStart; SyncStop;

{current : freeable}

F ree(current);

{current : undef}

}

295

else{{
parent : rcuItr (Left|Right)k {Right 7→ current}

}{
current : rcuItr (Left|Right)k.Right {Right 7→ lmP arent, Left 7→ currentL}

}
{currentF : rcuF resh {Right 7→ lmP arent, Left 7→ currentL}}

//current’s right child a right child of parent

parent.Right = currentF ;{
parent : rcuItr (Left|Right)k {Right 7→ currentF }

}
{current : unlinked}{

currentF : rcuItr (Left|Right)k.Right {Right 7→ lmP arent, Left 7→ currentL}
}

SyncStart; SyncStop;

{current : freeable}

F ree(current);

{current : undef}

}

} else{{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right {Left 7→ leftmost}

}{
leftmost : rcuItr (Left|Right)k.(Left|Right).Right.Left {}

}
while (leftmost.Left! = null)

{{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l {Left 7→ leftmost}

}{
leftmost : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left {}

}
lmP arent = leftmost;{

lmP arent : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left {}
}{

leftmost : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left {}
}

leftmost = lmP arent.Left;{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left {Left 7→ leftmost}

}{
leftmost : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left.Left {}

}
}

currentF.data = leftmost.data;

if (parent.Left == current){{
parent : rcuItr (Left|Right)k {Left 7→ current}

}{
current : rcuItr (Left|Right)k.Left {Right 7→ lmP arent, Left 7→ currentL}

}
{currentF : rcuF resh {Right 7→ lmP arent, Left 7→ currentL}}

//current’s right child a left child of parent

parent.Left = currentF ;{
parent : rcuItr (Left|Right)k {Left 7→ currentF }

}
{current : unlinked}{

currentF : rcuItr (Left|Right)k.Left {Right 7→ lmP arent, Left 7→ currentL}
}

296

SyncStart; SyncStop;

{current : freeable}

F ree(current);

{current : undef}

}

else{{
parent : rcuItr (Left|Right)k {Right 7→ current}

}{
current : rcuItr (Left|Right)k.Right {Right 7→ lmP arent, Left 7→ currentL}

}
{currentF : rcuF resh {Right 7→ lmP arent, Left 7→ currentL}}

//current’s right child a right child of parent

parent.Right = currentF ;{
parent : rcuItr (Left|Right)k {Right 7→ currentF }

}
{current : unlinked}{

currentF : rcuItr (Left|Right)k.Right {Right 7→ lmP arent, Left 7→ currentL}
}

SyncStart; SyncStop;

{current : freeable}

F ree(current);

{current : undef}

}{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l {Left 7→ leftmost}

}{
leftmost : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left {Left 7→ null}

}
BinaryT reeNode leftmostR = leftmost.Right;{

leftmost : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left

{
Left 7→ null,

Right 7→ leftmostR

}}
{

lmP arent : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l {Left 7→ leftmost}
}{

leftmostR : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left.Right {}
}

// the parent’s left subtree becomes the leftmost’s right subtree

lmP arent.Left = leftmostR;

{leftmost : unlinked}{
lmP arent : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l {Left 7→ leftmostR}

}{
leftmostR : rcuItr (Left|Right)k.(Left|Right).Right.Left(Left)l.Left {}

}
SyncStart; SyncStop;

{leftmost : freeable}

F ree(leftmost);

{leftmost : undef}

}

}

W riteEnd;

}

297

APPENDIX D

RCU BAG WITH LINKED-LIST

BagNode head;

int member (int toRead) {

ReadBegin;

int result = 0;

{parent : undef, head : rcuRoot}

BagNode parent = head;

{parent : rcuItr}

{current : _}

current = parent.Next;

{current : rcuItr, parent : rcuItr}

{current : rcuItr}

while(current.data ! = toRead&¤t.Next ̸= null){

{parent : rcuItr}

{current : rcuItr}

parent = current;

current = parent.Next;

{parent : rcuItr}

{current : rcuItr}

}

{parent : rcuItr}

{current : rcuItr}

result = current.data;

ReadEnd;

return result;

}

298

void remove (int toDel) {

W riteBegin;

BagNode current, parent = head;

current = parent.Next;

{current : rcuItr Next {}}

{parent : rcuItr ϵ {Next 7→ current}}

while (current.Next! = null&¤t.data ̸= toDel) {{
parent : rcuItr (Next)k {Next 7→ current}

}{
current : rcuItr Next.(Next)k.Next {}

}
parent = current;{

current : rcuItr Next.(Next)k.Next {}
}{

parent : rcuItr Next.(Next)k.Next {}
}

current = parent.Next;{
parent : rcuItr Next.(Next)k.Next {Next 7→ current}

}{
current : rcuItr Next.(Next)k.Next.Next {}

}
}

//We don’t need to be precise on whether next of current is null or not{
parent : rcuItr Next.(Next)k.Next {Next 7→ current}

}{
current : rcuItr Next.(Next)k.Next.Next.Next {Next 7→ null}

}
BagNode currentL = current.Next;{

parent : rcuItr Next.(Next)k.Next {Next 7→ itr}
}{

currentL : rcuItr Next.(Next)k.Next.Next.Next {}
}{

current : rcuItr Next.(Next)k.Next.Next {Next 7→ currentL}
}

current.Next = currentL;{
parent : rcuItr Next.(Next)k.Next {Next 7→ itrN}

}{
currentL : rcuItr Next.(Next)k.Next.Next {}

}
{current : unlnked}

SyncStart;

SyncStop;

{current : freeable}

F ree(current);

{current : undef}

W riteEnd;

}

299

void add(inttoAdd){

W riteBegin;

BagNode nw = new;

nw.data = toAdd;

{nw : rcuF resh {}}

BagNode current, parent = head;

parent.Next = current;

{current : rcuItr Next {}}

{parent : rcuItr ϵ {Next 7→ current}}

while (current.Next! = null) {{
parent : rcuItr (Next)k {Next 7→ current}

}{
current : rcuItr Next.(Next)k.Next {}

}
parent = current;

current = parent.Next;{
parent : rcuItr (Next)k.Next {Next 7→ current}

}{
current : rcuItr Next.(Next)k.Next.Next {}

}
}{

parent : rcuItr (Next)k.Next {Next 7→ current}
}{

current : rcuItr Next.(Next)k.Next.Next {Next 7→ null}
}

nw.next = null;

{nw : rcuF resh {Next 7→ null}}

current.Next = nw{
parent : rcuItr (Next)k.Next {Next 7→ nw}

}{
current : rcuItr (Next)k.Next.Next {Next 7→ nw}

}{
nw : rcuItr Next.(Next)k.Next.Next.Next {Next 7→ null}

}
W riteEnd;

}

300

APPENDIX E

SAFE UNLINKING

R H0 H1 H2 H3

H4 H5

pr cr crl

a1 a2

a3

a4 a5

l l l l

l l
r

(a) Framing before unlinking the heap node
pointed by current-cr.

R H0 H1 H2 H3

H4 H5

pr cr crl

a1 a2

a3

a4 a5

l l

l

l

l l
r

(b) Safe unlinking of the heap node pointed
by current-cr via Framing

Figure E.1 Safe unlinking of a heap node from a BST

Preserving invariants of a data structure against possible mutations under RCU semantics is challenging.

Unlinking a heap node is one way of mutating the heap. To understand the importance of the locality

on the possible effects of the mutation, we illustrate a setting for unlinking a heap in Figures E.1a

and E.1b. The square nodes filled with R – a root node – and H – a heap node – are heap nodes.

The hollow nodes are stack pointers to the square heap nodes. All resources in red form the memory

foot print of unlinking. The hollow red nodes – pr, cr and crl – point to the red square heap nodes

which are involved in unlinking of the heap node pointed by cr. We have a1, a2 and a3 which are

aliases with parent-pr, current-cr and currenL-crl respectively. We call them the path-aliases as

they share the same path from root to the node that they reference. The red filled circle depicts

null, l field which depicts Left and r depicts Right field.

The type rule for unlinking must assert the "proper linkage" in between the heap nodes involved in

301

the action of unlinking. We see the proper linkage relation between in Figure E.1a as red l links

between H1, H2 and H3 which are referenced by pr, cr and crl respectively. Our type rule for

unlinking(T-UnlinkH) asserts that x (parent), y (current) and z (currentL) pointers are linked

with field mappings N ([f1 ⇀ z]) (Left 7→ current) of x, N1([f2 ⇀ r]) (Left 7→ currentL) of y. In

accordance with the field mappings, the type rule also asserts that x has the path ρ ((Left)k), y has

the path ρ.f1 ((Left)k.Left) and z has the path ρ.f1.f2 ((Left)k.Left.Left).

Being able to localize the effects of the mutation is important in a sense that it prevents unexpected

side effects of the mutation. So, sharing through aliases to the resources under mutation, e.g. aliasing

to parent, current and currentL, needs to be handled carefully. Aliasing can occur via either

through object fields – via field mappings – or stack pointers – via path components. We see path

aliases, a1, a2 and a3, illustrated with dashed nodes and arrows to the heap nodes in Figures E.1a

and E.1b. They are depicted as dashed because they are not safe resources to use when unlinking so

they are framed-out by the type system via

(¬MayAlias(ρ3, {ρ, ρ1, ρ2}))

which ensures the non-existence of the path-aliases to any of x, z and r in the rule which corresponds

to pr, cr and crl respectively.

Any heap node reached from root by following a path(ρ3) deeper than the path reaching to the last

heap node(crl) in the footprint cannot be pointed by any of the heap nodes(pr, cr and crl) in the

footprint. We require this restriction to prevent inconsistency on path components of references, ρ3,

referring to heap nodes deeper than memory footprint

(∀ρ4 ̸=ϵ. ¬MayAlias(ρ3, ρ2.ρ4))

The reason for framing-out these dashed path aliases is obvious when we look at the changes from

the Figure E.1a to Figure E.1b. For example, a1 points to H1 which has object field Left-l pointing

302

to H2 which is also pointed by current as depicted in the Figure E.1a. When we look at Figure

E.1b, we see that l of H1 is pointing to H3 but a1 still points to H1. This change invalidates the

field mapping Left 7→ current of a1 in the rcuItr type.

One another safety achieved with framing shows up in a setting where current and a2 are aliases.

In the Figure E.1a, both current and a2 are in the rcuItr type and point to H2. After the unlinking

occurs, the type of current becomes unlinked although a2 is still in the rcuItr type. Framing out

a2 prevents the inconsistency in its type under the unlinking operation.

One interesting and not obvious inconsistency issue shows up due to the aliasing between a3 and

currentL-crl. Before the unlinking occurs, both currentL and a3 have the same path components.

After the unlinking, the path of currentL-crl gets shortened as the path to heap node it points,

H3, changes to (Left)k.Left . However, the path component of a3 would not change so the path

component of a3 in the rcuItr would become inconsistent with the actual path reaching to H3.

In addition to path-aliasing, there can also be aliasing via field-mappings which we call field-aliasing.

We see field aliasing examples in Figures E.1a and E.1b: pr and a1 are field aliases with Left − l

from H0 points to H1, cr and a2 are field aliases with Left − l from H4 points to H2 and crl and

a3 are field aliases with Left − l from H5 points to H3. We do not discuss the problems that can

occur due to the field-aliasing as they are same with the ones due to path-aliasing. What we focus

on is how the type rule prevents field-aliases. The type rule asserts ∧(m ̸∈ {z, r}) to make sure that

there exists no object field from any other context pointing either to the variable points the heap

node that is mutation(unlinking) – current-cr – or to the variable which points to the new Left of

parent after unlinking – currentL-crl. We should also note that it is expected to have object fields

in other contexts to point to pr as they are not in the effect zone of unlinking. For example, we see

the object field l points from H0 to H1 in Figures E.1a and E.1b.

Once we unlink the heap node, it cannot be accessed by the new coming reader threads the ones

that are currently reading this node cannot access to the rest of the heap. We illustrate this with

dashed red cr, H2 and object fields in Figure E.1b.

303

Being aware of how much of the heap is under mutation is important, e.g. a whole subtree or a single

node. Our type system ensures that there can be only just one heap node unlinked at a time by

atomic field update action. To be able to ensure this, in addition to the proper linkage enforcement,

the rule also asserts that all other object fields which are not under mutation must either not exists

or point to null via

∀f∈dom(N1). f ̸= f2 =⇒ (N1(f) = null)

304

APPENDIX F

TYPES RULES FOR RCU READ SECTION

Γ ⊢R α ⊣ Γ′

(T-ReadS)

z /∈ FV(Γ)
Γ , z : _ , x : rcuItr ⊢ z = x ⊣ x : rcuItr , z : rcuItr , Γ

(T-Root)

y /∈ FV(Γ)
Γ , r : rcuRoot , y : undef ⊢ y = r ⊣ y : rcuItr , r : rcuRoot , Γ

(T-ReadH)

z /∈ FV(Γ)
Γ , z : _ , x : rcuItr N ⊢ z = x.f ⊣ x : rcuItr , z : rcuItr , Γ

Γ ⊢R C ⊣ Γ′

(ToRCURead)

Γ , y : rcuItr ⊢R s̄ ⊣ Γ′ FType(f) = RCU
Γ ⊢ RCURead x.f as y in {s̄}

Γ ⊢M,R C ⊣ Γ′

(T-Branch2)

Γ(x) = bool Γ ⊢ C1 ⊣ Γ′ Γ ⊢ C2 ⊣ Γ′

Γ ⊢ if(x) then C1 else C2 ⊣ Γ′

(T-Seq)

Γ1 ⊢ C1 ⊣ Γ2 Γ2 ⊢ C2 ⊣ Γ3

Γ1 ⊢ C1 ; C2 ⊣ Γ3

(T-Par)

Γ1 ⊢R C1 ⊣ Γ′
1 Γ2 ⊢M,R C2 ⊣ Γ′

2

Γ1, Γ2 ⊢ C1||C2 ⊣ Γ′
1 , Γ′

2

(T-Exchange)

Γ, y : T ′, x : T, Γ′ ⊢ C ⊣ Γ′′

Γ, x : T, y : T ′, Γ′ ⊢ C ⊣ Γ′′

(T-Conseq)

Γ ≺: Γ′ Γ′ ⊢ C ⊣ Γ′′ Γ′′ ≺: Γ′′′

Γ ⊢ C ⊣ Γ′′′

(T-Skip)

Γ ⊢ skip ⊣ Γ

Figure F.1 Type Rules for Read critical section for RCU Programming

	Front Matter
	Title Page
	Copyright Page
	Dedications
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract

	Main Matter
	Introduction
	Introduction
	An Overview of OS Verification
	The Issue of Memory Virtualization in the Context of OS Verification
	Contributions to Verification in the Presence of Location Virtualization

	An Overview of Protocol Based Reasoning
	Contributions to Modularity of Protocols

	An Overview of Concurrent Memory Management
	Contributions to Verification of Clients using Relatively Consistent Memory Management

	An Overview of Modal Verification Patterns
	Contributions to Identifying the Verification Patterns via Modal Abstractions

	Reading Guideline

	Modal Abstractions for Location Virtualization
	Background
	Program Logic
	Background on Iris Separation Logic
	Basic SL Assertions
	Abstracting SL

	Modalities in Logic

	Related Work
	Verification Effort on VMM
	Modal Abstractions in Systems Verification

	Semantics
	Overview on Machine Model
	Syntax
	Machine State
	Registers
	Memory
	Address-Translation

	Instructions
	Handling Instructions Based on Operand Types

	Giving Semantics to Instructions
	Reading To/From Virtual Memory Address
	Arithmetic Operations
	Add, Sub and Compare Instructions
	Shift, And, Or, and Xor Instructions
	Stack Operations
	Control-Flow Instructions

	Program Logic
	Base Points-To Assertions
	Register points-to
	Physical memory points-to

	A Restrictive Virtual Memory Addressing
	Aliasing/Sharing Physical Pages
	From A Single Address Space to Many

	Address-Space Management
	Subtleties of Changing Address Spaces Using Modalities

	Selected Logical Rules
	Accessing Virtual Addresses
	Updating cr3
	Stack Operations: Push and Pop
	Control-Flow Operations: Call Return and Jump
	Arithmetic & Bitwise Arithmetic Operations

	Soundness

	Verifying VMM Essentials
	Traversing Live Page Tables
	Loading Page-Table Address Value
	Identity Mappings
	Installing a New Table
	Physical-to-Virtual Conversion with P2V
	Walking Page-Table Tree: Calling pte_get_next_table for Each Level

	Mapping a New Page
	Unmapping a Page

	Change of Address Space

	Implementation
	Numbers on pte Library
	Numbers on x64-Iris

	Conclusions

	Modal Understanding of Modularity of State-Transition-Systems
	Background
	A Primer on Concurrent Program Logics

	Protocols
	Encoding Protocols in STSes
	Limitations of Existing STS Logics
	Intuition Behind ``Subtyping'' STSes
	Motivation

	Kripke Models, Bisimulation, and Generated Submodels
	An Attempt At STS Bisimulation
	Definitions
	Simulations
	Guarantee in the Bisimulation
	Rely in the Bisimulation

	Invariants
	Remarks on Invariants and Interacting with STS
	Tolerance of Invariants
	Invariants against Guarantee-Step Bisimulation

	Program Logic
	Soundness of Invariants
	An STS Aware Client Specfication
	Proof Rules
	Transferring the Proof of a File Protocol Client

	Conclusion,Continuing and Future Work
	Continuing Work
	Future Work

	Modal Concurrent Memory Management
	Background
	Semantics
	Type System
	RCU Type System for Write Critical Section
	Types in Action
	Type Rules

	Evaluation
	Soundness
	Proof

	Related Work
	Conclusions

	Modalities as Verification Patterns
	Definitions for Systems Verification Patterns
	Resources in Systems Software
	Virtualization

	Nominals
	Recapping Modal Operators in Program Specifications: Systems Perspective
	Nominalization

	Contingency Decomposition of a System
	Decomposing a System into its Constituents Contingently
	Resource
	Nominalization

	Conclusion
	Making It Work
	Conclusion

	Back Matter
	Bibliography
	Assembly Implementation of Virtual Memory Management
	Assembly Implementation of PTE Library
	x86 Instructions for Mapping a Page

	Complete Soundness Proof of Atoms and Structural Program Statements
	Complete Constructions for Views
	Complete Memory Axioms
	Soundness Proof of Atoms
	Soundness Proof of Structural Program Actions

	RCU BST Delete
	RCU Bag with Linked-List
	Safe Unlinking
	Types Rules for RCU Read Section

