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Effect handlers form a powerful construct that can express complex programming abstractions. They are a

generalisation of exception handlers, but allow resumption of the continuation fromwhere the effect was raised.

Allowing continuations to be resumed at most once (one-shot) or an arbitrary number of times (multi-shot)
has far-reaching consequences. In addition to performance considerations, multi-shot effects break key rules

of reasoning and thus render certain standard transformation/optimisations unsound, especially in languages

with mutable references (such as OCaml 5). It is therefore desirable to statically track whether continuations

are used in a one-shot or multi-shot discipline, so that a compiler could use this information to efficiently

implement effect handlers and to determine what optimizations it may perform.

We address this problem by developing a type and effect system–called Affect–which uses affine types to

track the usage of continuations. A challenge is to soundly deal with advanced programming features—such

as references that store continuations and nested continuations—which are crucial to support challenging

examples from the effects literature (such as control inversion and cooperative concurrency). Another challenge
is to support generic type signatures of polymorphic effectful functions. We address these challenges by using

and extending Rust’s Cell type and Wadler’s use types. To prove soundness of Affect we model types and

judgements semantically via a logical relation in the Iris separation logic framework in Coq.

CCS Concepts: • Theory of computation→ Separation logic; Type structures; Control primitives.

Additional Key Words and Phrases: Effect handlers, Substructural types, Semantic typing, Iris, Coq

ACM Reference Format:
Orpheas van Rooij and Robbert Krebbers. 2025. Affect: An Affine Type and Effect System. Proc. ACM Program.
Lang. 9, POPL, Article 5 (January 2025), 29 pages. https://doi.org/10.1145/3704841

1 Introduction
Algebraic effects and handlers, originally devised by Plotkin, Power and Pretnar [42–44], have

received increasing attention due to their broad range of applications. Algebraic effects are an

effective tool to describe the semantics of programming languages, and together with handlers

they form a powerful programming construct that can express complex abstractions (such as state,

cooperative concurrency, backtracking, and probabilistic programming) as derived constructs [19,

32, 45]. Mainstream languages such as OCaml 5 have retrofitted effects and handlers [49], while

research-oriented languages such as Eff [9], Effekt [13], Links [22, 51], Koka [37, 38] and Frank [14]

take a more ubiquitous approach by centering their design around them.

A good way to gain an understanding of effect handlers is to compare them to exception handlers

try x ⇐ 𝑒1 in 𝑒2 unless 𝐸 ⇒ 𝜆𝑦. 𝑒3 (using the syntax of Benton and Kennedy [10]). Evaluation

begins with 𝑒1. If no exception is raised, the result of 𝑒1 is bound to x and 𝑒2 is evaluated. If an

exception 𝐸 is raised, the exception value is bound to 𝑦 and the exception branch 𝑒3 is evaluated.
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An effect handler has the form handle 𝑒1 by op 𝑦 k. 𝑒3 | ret x . 𝑒2, where 𝑒1 is an effectful

expression, whose result is finally bound to x in 𝑒2. Like throwing an exception, calling an effect

do op 𝑣 in 𝑒1 causes the handler 𝑒3 to be evaluated, with 𝑦 being bound to 𝑣 . The key difference

is the continuation k in the handler, which can be seen as a special function that continues the

evaluation of 𝑒1 from the point where the effect op was performed. The argument applied to the

continuation k is a value that will take the place of the do op 𝑣 expression, thus providing a way

for the handler to communicate with the effectful program. Let us consider a simple example:

handle_choice := 𝜆 𝑓 . handle 𝑓 () by choose () k. k false ++ k true | ret x . [x]
example

1
:= handle_choice

(
𝜆 (). let r = ref true in 𝑟 := do choose (); !𝑟

)
The effectful function example

1
allocates a reference 𝑟 , performs the effect choose and stores its

result in 𝑟 , and finally returns the value of 𝑟 . To interpret this effect, a handler handle_choice
evaluates the associated continuation k with both boolean values and collects the results in a list.

In this example the continuation k is bound to the function 𝜆𝑦. 𝑟 := 𝑦; !𝑟 and is evaluated in the

context of handle_choice (deep handler semantics [23]). Resumption of k false results in [false],
and k true results in [true], hence the final result is [false; true].

Problem. Continuations are characterised by the number of times they are resumed: one-shot
continuations allow at most one call, and multi-shot continuations allow zero or more calls. The

continuation in example
1
is multi-shot since it is resumed twice. Whether to allow continuations

to be multi-shot has far-reaching consequences related to performance and program reasoning,

especially in languages with mutable references (such as OCaml 5).

Effect handlers can be implemented in different ways, ranging from continuation passing style

(CPS) translations and evidence-passing approaches, to lower-level approaches that adopt a spe-

cialised stack structure [24, 49, 61]. In the latter, as done in OCaml, a one-shot continuation can be

resumed by directly restoring itself to the current stack without any copying. However, multi-shot

continuations require an (expensive) copy before they are resumed—otherwise it is unsound to

resume them again. Treating all continuations as multi-shot (so always copy before resumption) is

an easy way to ensure soundness, but performance will suffer. The problem is exacerbated when

one-shot continuations are captured by multi-shot ones, as that implicitly makes them multi-shot.

In addition, certain standard program transformations (and thus compiler optimisations) are

unsound in the presence of multi-shot continuations because the rules of reasoning that justify

them no longer hold [17, 52]. The key rule that is broken is that every code block entered is exited

at most once. Consider a variation of the aforementioned example:

example
2
:= handle_choice

(
𝜆 () . let r = ref true in 𝑟 := do choose () && !𝑟 ; !𝑟

)
Instead of simply updating the reference 𝑟 with the result of choose, we use the short-circuited
logical ‘and’ operation && with the previous value of 𝑟 . Notice that if we optimize this expression

by propagating the reference initialization value (as 𝑟 is not used in do choose ()) and simplify the

‘and’ operation &&, then example
2
becomes exactly example

1
:

let r = ref true in 𝑟 := do choose () && true; !𝑟 Propagate value of 𝑟

let r = ref true in 𝑟 := do choose (); !𝑟 Optimize &&

The semantics of example
1
and example

2
are different, however. In example

2
, resumption of k false

results in [false]. But since the reference 𝑟 now has value false, resumption of k true also results
in [false] due to the && with !𝑟 . Hence the final result is [false; false], which is different from

the result [false; true] of example
1
.
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For the aforementioned reasons, OCaml 5 forbidsmulti-shot continuations altogether by throwing

a run-time error when continuations are resumed more than once.

Solution. The problems with multi-shot continuations can be solved with a substructural type

system that tracks the call usage of continuations, and therefore distinguishes between effects that

are handled in a one-shot and multi-shot discipline. With the call usage information, a compiler

can represent continuations in the most efficient way (e.g., by allowing destructive resumptions for

one-shot continuations). Additionally, it can leverage the effect type information to ensure that

only sound optimisations are applied to expressions that produce multi-shot effects.

In light of this observation, we propose an affine type and effect system—called Affect—for a
language inspired by OCaml with mutable references, which distinguishes between one-shot and

multi-shot continuations by treating the former as affine functions. As part of the design of Affect,

we need to address a number of challenges that we outline below.

Challenge #1: References containing continuations. Prior research into combining ef-

fect and substructural type systems [25, 51, 55] has not investigated mutable references, while

mainstream languages such as OCaml 5 do support them. Mutable references are important for

programming patterns such as control inversion [17, 48] and the implementation of cooperative con-
currency as a library [19]. In these use cases, the situation is further complicated because references

do not merely store first-order data (such as integers or lists of these), they store continuations. For

example, the scheduler for the cooperative concurrency library uses references to keep track of the

waiting computations, which are represented as continuations.

Enforcing the one-shot discipline in the presence of references and proving any formal guarantees

about them is a non-trivial task: the key purpose of references is to share data, but naively this

means that one can use a reference to store a continuation and read it multiple times. To enable

a sound treatment of references, we take inspiration from Rust’s Cell type [47]: one can only

read a value that is treated affinely (such as a continuation) from a Cell if one “moves it out” by

replacing it with another value. Our key observation is that Cell can be integrated into a type and

effect system, and provides the necessary expressivity for aforementioned programming patterns

and libraries. To prove that our Cell-based references do not break the one-shot guarantees of

continuations, we need a different approach as discussed in ‘Challenge #3’ below.

Challenge #2: Combining one-shot and multi-shot effects. One might expect that support-

ing both one- and multi-shot effects can simply be done by having two distinct signatures and have

the type system restrict the continuations of one-shot signatures to be affine. As observed in prior

research [51, 55], this restriction is insufficient as one additionally needs a capturing conditionwhich
enforces that when calling a multi-shot effect (such as do op 𝑣 ; 𝑒), the remaining computation (𝑒)

does not capture one-shot continuations. This poses two challenges.

First, in ML-like languages such as OCaml, sequencing is not limited to the “;”/“let” operators,
but almost any operator (with arity ≥ 2) implicitly performs sequencing, and their typing rules

thus need to enforce the capturing condition. Although a fine-grained call-by-value language with

a single sequencing construct avoids the problem entirely [51], we show that two-context typing
judgements [27, 28, 58] are well-suited to formalize the capturing condition for an ML-like language.

Second, similar to the typing rules, the types of polymorphic functions need to express sub-

structural dependencies between effect and type variables to maintain the capturing condition.

Multiple approaches to bounded polymorphism in substructural type systems have been explored

in the literature, based on kinds and qualified types [2, 51, 54, 55], or generalised bang types !
𝑢
[57].

We show that the latter—which up to our knowledge has not been studied for effect handlers—is

well-suited to give generic types to common programming patterns. For example, consider the
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function for iteration over a list with elements 𝛼 . Depending on whether 𝛼 is affine or unrestricted,

different conditions arise on how often the iteration can be started or replayed. Affect can capture

these conditions in a single type signature. Our approach is based on Wadler [57]’s use types, but
extended with a novel flip-bang operator ¡ on effect signatures and rows, which enjoys rules that

are dual to the well-known bang operator ! from linear logic.

Challenge #3: Proving type soundness. Affect combines many features to statically enforce

the one-shot discipline of advanced programming patterns in an OCaml-inspired language. Partic-

ularly, Affect includes one-shot and multi-shot effects, effect rows [36–38], affine types, mutable

references (inspired by Rust’s Cell [47]), the bang and flip-bang operators, subtyping, polymor-

phism over types, rows and modes (inspired by Wadler [57]’s use types), and equi-recursive effects.

As usual when combining features, one needs to ensure they do not interact ‘badly’ with each other.

This can be guaranteed by a proof of type soundness for the whole language instead of a subset,

mechanised in a proof assistant to obtain the highest level of confidence.

To make this challenge feasible, we depart from the syntactic approach to type soundness [21, 41,

60] (a.k.a. Progress and Presevation) as used in prior work on substructural effect systems [25, 51]

and use a semantic approach that interprets types, effects and type judgements in the higher-order

separation logic Iris [29–31, 34, 53]. This approach provides a number of benefits. First, Iris provides

an abstract form of step-indexing [1, 4, 5, 20] that makes it possible to support the combination of

recursive types, impredicative polymorphism and mutable references. Second, to support effects

and handlers, we build on extensions of Iris for effect handlers by de Vilhena and Pottier [15–17],

called Hazel and Maze. Third, Iris’s machinery for impredicative invariants [50] and ghost state

is crucial to interpret our Cell-inspired references that are unrestricted but store values of affine

types. And finally, Iris provides support to mechanise all our proofs in Coq [33, 35].

Contributions and outline. We introduce Affect—a typed language with effect handlers in

the style of OCaml 5, which statically ensures that continuations of one-shot effects are resumed at

most once. After giving an overview of Affect and showcasing it on challenging examples such as

control inversion [17, 48] and cooperative concurrency [19] (§ 2), we present our contributions:

• We show how Rust’s Cell type can be integrated into a type and effect system to support

the combination of one-shot effects and mutable references (§ 3).

• We show how one-shot and multi-shot effects can be combined into a single language.

We provide concise typing rules that enforce the capturing condition using a two-context
judgement, and extend Wadler [57]’s use types with a novel flip-bang operator ¡ on effect

signatures and rows (§ 4).

• We prove type soundness of the whole Affect language using a semantic approach that

interprets types and effects as semantic objects in Iris, building on the extensions of Iris for

effect handlers by de Vilhena and Pottier [15–17] (§ 5).

We conclude the paper with related work (§ 6) and future work (§ 7). Our artifact includes a

mechanisation of our type soundness proof in the Coq proof assistant [56].

2 Overview of Affect
This section gives an overview of the Affect language. We start by demonstrating how affine types

are used to enforce a one-shot discipline of well-known one-shot effects such as exceptions and

state (§ 2.1). We then show Affect’s support for mutable references based on Rust’s Cell type (§ 2.2),
and Affect’s support for polymorphic and recursive effects (§ 2.3). In § 2.2 and 2.3 we showcase

Affect on the challenging examples of control inversion [17, 48] and cooperative concurrency [19].
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We finally show how to combine one-shot and multi-shot effects (§ 2.4), as well as illustrate mode
polymorphism by introducing Affect’s novel flip-bang operator (§ 2.5).

2.1 Enforcing a One-Shot Discipline via Affine Types
Let us consider some well-known effects from the literature:

Except 𝛼 := (throw : ∀𝛾 . 𝛼 =◦ 𝛾) Counter := (inc : N =◦ N) Choice := (choose : 1 =◦ B)

The intended semantics is that throw aborts computation by throwing an exception, inc increments

a counter by the given number and returns its previous value (inc is an instance of the state effect),

and choose non-deterministically returns a boolean. These effects can be used as follows:

example
3
: 1 ⟨Except N,Counter⟩−−−−−−−−−−−−−−−−→ N := 𝜆 (). if do inc 10 == 0 then do throw 40 else do inc 10

example
4
: 1 ⟨Counter,Choice⟩−−−−−−−−−−−−−−→ N := 𝜆 (). if do choose () then do inc 10 else do inc 20

The do keyword performs an effect. Function types
𝜌−→ are annotated with an effect row 𝜌 [36–38],

which is a list-like structure that tracks which effects are used. Effect rows only give the types of

operations, their semantics is given by a handler. For example:

handle_except : ∀𝛼. ∀𝜃 . (1 Except 𝛼 ·𝜃−−−−−−−−−⊸ 𝛼) 𝜃−→ 𝛼 :=

𝜆 𝑓 . handle 𝑓 () by throw x (k : 𝛾
𝜃−⊸ 𝛼). x | ret x . x

handle_counter : ∀𝛼. ∀𝜃 . (1 Counter·𝜃−−−−−−−−⊸ 𝛼) 𝜃−→ 𝛼 :=

𝜆 𝑓 . (handle 𝑓 () by inc 𝑛 (k : N 𝜃−⊸ N 𝜃−⊸ 𝛼). 𝜆𝑚. k𝑚 (𝑛 +𝑚) | ret x . 𝜆𝑚. x) 0

The first handler turns exceptions into an ordinary return value. The second handler threads

through the state𝑚 of the counter (which is initially 0). Both handlers take a computation 𝑓 , which

uses respectively the Except and Counter effect, and remove this effect from the row in their

return type. Similar to Koka [37, 38], the order of effects with unequal names does not matter, e.g.,
given example

3
, we can use handle_except and handle_counter in either order.

Both these handlers enjoy the one-shot discipline: they resume the continuation k zero and one

time, respectively. Affect gives continuations the affine function type 𝜃−⊸ instead of the unrestricted
function type 𝜌−→, allowing the type system to enforce at most-once usage. Hence, the following

handler for choice, which resumes the continuation k twice, is ill-typed:

handle_choice : ∀𝛼. ∀𝜃 . (1 Choice·𝜃−−−−−−−⊸ 𝛼) 𝜃−→ List 𝛼 :=

𝜆 𝑓 . handle 𝑓 () by choose () (k : B 𝜃−⊸ List 𝛼). k false ++ k true | ret x . [x]

Recall that Affect rejects this handler for a good reason—as discussed in § 1, multi-shot continuations

are less efficient and prohibit standard program optimisations. Some languages (e.g., OCaml 5)

even abort with a run-time error when a continuation is resumed multiple times. It is therefore

desirable to statically ensure the one-shot discipline, but as we will show throughout this section,

this becomes increasingly challenging when considering mutable references (§ 2.2), polymorphic

and recursive effects (§ 2.3), and a combination of one-shot and multi-shot effects (§ 2.4, Affect

supports handle_choice, provided choose is tagged as multi-shot). A key contribution of our paper

is the type soundness theorem, which ensures that Affect is doing its job:

Theorem 2.1. Every closed well-typed program is safe w.r.t. the operational semantics.

Crucial to this theorem is the notion of safety (§ 3.2). Unlike standard effect systems, safety does

not only capture that operations are called with the correct arguments and all effects are handled,

it also captures that continuations corresponding to one-shot effects are resumed at most once. The

latter is modelled in the operational semantics using a trick by de Vilhena and Pottier [17].
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2.2 Storing Continuations in References
Enforcing the one-shot discipline in the presence of references is challenging: the key purpose of

references is to share data, but we need to ensure that continuations in references are resumed at

most once to maintain type soundness (Theorem 2.1). To achieve that, we take inspiration from

Rust’s Cell type [47]: Affect’s references Ref 𝜏 correspond to &Cell<𝜏>, and are thus unrestricted.

Depending on whether 𝜏 is unrestricted or affine, different operations can be performed on Ref 𝜏 :
• The store operation (𝑒1 := 𝑒2) can be used for any type 𝜏 .

• The load operation (!𝑒) is limited to unrestricted types 𝜏 such as basic types (unit, booleans,

natural numbers) and unrestricted functions. This condition is crucial—otherwise one can

put a continuation in a reference, load it multiple times, and break the one-shot discipline.

• The replace operation (replace 𝑒1 𝑒2), which stores 𝑒2 in 𝑒1 and returns the previously stored

value of 𝑒1, can be used for any type 𝜏 .

To see references in action, we consider two interfaces to traverse a data structure—iterators and

generators (also called sequences or cascades)—and convert these into each other:

Iter 𝛼 := ∀𝜃 . (𝛼 𝜃−→ 1) 𝜃−⊸ 1 Gen 𝛼 := 1 → Option 𝛼

(Note the quantification over the effect row 𝜃 in Iter, allowing a client to use an iterator 𝑖 with an

effectful function 𝑓 , so that 𝑖 𝑓 has the same effects as 𝑓 .) It is straightforward to define iterators and

generators for lists. The function list2iter : List 𝛼 → Iter 𝛼 simply calls the function 𝑓 : 𝛼
𝜃−→ 1 on

each element of the list. The function list2gen : List 𝛼 → Gen 𝛼 stores the list in a local reference,

and returns a function 1 → Option 𝛼 (Affect’s unrestricted references are needed here). This

function checks if the list is empty and returns none. Otherwise it returns the head (as some) and
updates the local reference to the tail. Converting a generator into an iterator is also easy. The

function gen2iter : Gen 𝛼 → Iter 𝛼 is implemented by repeatedly calling the generator and calling

the iteration function on each generated element.

Converting an iterator into a generator is more challenging. To preserve the lazy behaviour (which

is necessary for infinite data structures), the conversion can be done using control inversion [17, 48],

which uses the combination of references and effect handlers. Let us first consider the simpler case

of using an iterator to retrieve the first element:

iter2first : Iter 𝛼 → Option 𝛼 :=

𝜆 𝑖. handle_except
(
𝜆 (). 𝑖 ⟨Except (Option 𝛼)⟩ (𝜆 x . do throw (some x)); none

)
We use the Except effect to throw an exception after the first iteration. The handler handle_except
discards the continuation, aborting the iteration, and returning the first value.

To implement iter2gen : Iter 𝛼 → Gen 𝛼 we use the power of effect handlers to resume the

continuation and continue the iteration. Similar to the way list2gen stores the remaining list in a

reference, we now store the continuation in a reference. The code when written in Affect is:

iter2gen : ∀𝛼. Iter 𝛼 → Gen 𝛼 :=

𝜆 𝑖. let (r : Ref (1 ⊸ Option 𝛼)) = ref (𝜆 (). none) in
𝑟 := (𝜆 (). handle 𝑖 ⟨Yield 𝛼⟩ (𝜆 x . do yield x) by

yield x (k : 1 ⊸ Option 𝛼). 𝑟 := k; some x
| ret x . none);

𝜆 () . replace 𝑟 (𝜆 (). none) ()
We use the effect Yield 𝛼 := ⟨yield : 𝛼 =◦ 1⟩. Since the local reference 𝑟 contains an affine value we

cannot simply read it but can only replace it with something else. Thus the reference 𝑟 alternates

between two states, it either has the dummy value (𝜆 (). none) or stores a meaningful computation.
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The meaningful computation at the start is (𝜆 (). handle . . .). While the generator is executing the

content of the reference 𝑟 is replaced with the dummy value, and as soon as the iteration is paused

(by a call to yield) we store the iteration’s resumption.

The version of iter2gen in Affect is only a bit more verbose than the version in OCaml 5 [48] due

to the use of replace instead of an ordinary load operation. The benefit, however, is that Affect

enforces the one-shot discipline statically through type checking, whereas OCaml 5 would abort

the program if the one-shot discipline is violated.

2.3 Polymorphic and Recursive Effects
We now present another prominent example from the literature on effect handlers, cooperative

concurrency implemented as a library [19]. This example again uses references, but brings additional

challenges w.r.t. polymorphism and recursive effects. A library for cooperative concurrency in

Affect provides the following functions:
1

async : ∀𝜃 . ∀𝛼. (1 Coop 𝜃−−−−−−⊸ !𝛼) Coop 𝜃−−−−−−→ Promise 𝜃 !𝛼

await : ∀𝜃 . ∀𝛼. Promise 𝜃 !𝛼
Coop 𝜃−−−−−−→ !𝛼

handle_coop : ∀𝜃 . ∀𝛼. (1 Coop 𝜃−−−−−−⊸ !𝛼) 𝜃−→ !𝛼

The types of these functions are quite a mouthful, so let us ignore the bang operator (!) and effect

row (𝜃 ) at first. The function async expects an argument that represents the computation that should

be performed asynchronously. The result is a promise, a structure that identifies the computation

and tracks its evaluation progress. Using await we can perform a blocking wait on a promise

to signal that we depend on the result of the asynchronous computation to continue evaluation.

The handler handle_coop takes an effectful computation and returns its result. It internally keeps

track of a queue of computations and schedules these accordingly. Similar to the handlers in § 2.1,

handle_coop removes the handled effect Coop from the effect row.

The type Promise and the effect row Coop are parameterised by the remaining effects 𝜃 . This

is necessary because promises internally store computations, whose effects we need to track. In

the implementation of the Coop library, a promise is defined as a reference to either a finished

computation, or a list of computations that depend on its result:

Promise 𝜃 𝛼 := Ref (𝛼 + List (𝛼 𝜃−⊸ 1)) Multi (Promise 𝜃 𝜏)
Finally, let us explain the curious bang operator (!). By virtue of being references, Promises are

unrestricted regardless of 𝜏 (Multi constraint), a key property needed by the library’s implementa-

tion. To maintain the one-shot discipline, we need to prevent calling async with a computation

that results in a one-shot continuation, and then use await to retrieve that continuation multiple

times. Using the bang we restrict promises to unrestricted types.

The bang !𝜏 describes values of type 𝜏 that do not capture any continuations, and its key rules are

part of the subtyping relation. The elimination rule !𝜏 <:𝜏 holds for any type 𝜏 , while the introduction
rule 𝜏 <: !𝜏 is limited to unrestricted types. The bang makes it possible to describe functions that are

polymorphic in an unrestricted type as ∀𝛼. 𝜏 , where every occurrence of 𝛼 in 𝜏 is below a bang.

To define the effect row Coop we need one more feature—recursive effect signatures:

Coop 𝜃 := 𝜇𝜃 ′. (async : ∀𝛼. (1 𝜃 ′
−−⊸ !𝛼) =◦ Promise 𝜃 !𝛼) · (await : ∀𝛼. Promise 𝜃 !𝛼 =◦ !𝛼) · 𝜃

Effect signatures in Affect are equi-recursive, giving us the equality:

Coop 𝜃 = (async : ∀𝛼. (1 Coop 𝜃−−−−−−⊸ !𝛼) =◦ Promise 𝜃 !𝛼) · (await : ∀𝛼. Promise 𝜃 !𝛼 =◦ !𝛼) · 𝜃
1
For simplicity, we omit the yield function, which gives control to the next scheduled computation. It could either be defined

as yield := 𝜆 ( ) . await (async (𝜆 ( ) . ( ) ) ) or added as a primitive.
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The input of async is a computation 1 Coop 𝜃−−−−−−⊸ !𝛼 that can perform effects Coop 𝜃 , making it

possible to have asynchronous computations that call async itself (async (𝜆 (). . . . async . . .)). The
computation passed to async can also perform effects 𝜃 , so the 𝜇𝜃 ′ binder must capture the tail 𝜃 .

Finally, we use polymorphic effect signatures (∀𝛼) for async and await to allow the user to start

asynchronous computations of different unrestricted types, instead of requiring them to all have

the same type.

We should emphasize that the operations async and await have a one-shot signature. Hence the
Affect type system ensures that the corresponding continuations are resumed at most once, while

still allowing them to be stored in the references that represent promises.

2.4 Combining One-Shot and Multi-Shot Effects
Affect combines one-shot and multi-shot effects in the same language by tagging effects with a

mode m ∈ Mode, which is either at most once (O) or zero or more times (M). Effects such as Except,
Counter and Coop are tagged O, while Choice is tagged M. A compiler could use the modes to

implement effects in an efficient (one-shot) or less efficient (multi-shot) manner.

At first glance, one might think this simply achieved by adapting the typing rule of handlers

to ensure that the continuation is affine if the effect is one-shot, and unrestricted if the effect is

multi-shot. As observed in prior research [51, 55], this restriction alone is insufficient to maintain

type soundness (Theorem 2.1). Let us reconsider the choice effect (§ 2.1) and change =◦ into ⇒ to

make its signature multi-shot, i.e., we redefine Choice := (choose : 1 ⇒ B). Now consider:

handle_choice
(
𝜆 (). do choose (); k ()

)
Here, k is an affine function (e.g., a continuation of a one-shot effect). Since the handler of choose
(given in § 2.1) resumes its continuation twice, the function k is also resumed twice. So this program

should be rejected by the Affect type system.

The capturing condition we should enforce is as follows: when performing an effect do op 𝑒1; 𝑒2,

either the effect op is one-shot, or the effect op is multi-shot and the remainder of the computation

𝑒2 is unrestricted (i.e., 𝑒2 does not capture any affine variables). Since Affect is an ML-style func-

tional language, constructs such as application and binary arithmetic operators implicitly perform

sequencing, so their corresponding typing rules need to incorporate this condition. We leave the

design of our typing rules using a two-context typing judgement for § 4.3, and now highlight how

the combination of one-shot and multi-shot effects impacts polymorphic functions.

2.5 Mode Polymorphism
Consider a higher-order identity function𝑔 := 𝜆 𝑓 x . 𝑓 (); x that calls the function 𝑓 before returning

the argument x. We would like to give this function a polymorphic type over the effect of 𝑓 and

type of argument x. A naive attempt is as follows:

∀𝜃 . ∀𝛼. (1 𝜃−⊸ 1) → 𝛼
𝜃−⊸ 𝛼

Unfortunately, this type is unsound, as we can adapt the counterexample from § 2.4:

handle_choice
(
𝜆 (). 𝑔 (𝜆 (). do choose (); ()) k ()

)
To give a sound type to our function 𝑔 we need a similar capturing condition as we use for

sequencing: either 𝜃 solely contains one-shot effects, or 𝜃 contains a multi-shot effect and the type

𝛼 is unrestricted. These conditions can be described by the following two types:

∀𝜃 . ∀𝛼. (1 ¡𝜃−⊸ 1) → 𝛼
¡𝜃−⊸ 𝛼 ∀𝜃 . ∀𝛼. (1 𝜃−⊸ 1) → !𝛼

𝜃−⊸ !𝛼

The second type uses the pattern we have seen in § 2.3: using the bang (!) we limit the polymorphism

to unrestricted types 𝛼 . The first type uses our novel flip-bang operator (¡) on the effect row 𝜃 ,
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which limits the polymorphism to one-shot effects. The flip-bang enjoys dual rules compared to

the bang. Particularly, the introduction rule 𝜌 <: ¡𝜌 holds for any effect row 𝜌 , making it possible to

handle multi-shot effects with a one-shot handler. The elimination rule ¡𝜌 <: 𝜌 only holds for effect

rows 𝜌 that solely contain one-shot effects.

Since none of the two aforementioned types are an instance of the other, we wish to write a more

general type. Affect allows this using mode polymorphism, inspired by Wadler [57]’s use types:

∀𝜈 𝜈 ′ . ∀𝜃 . ∀𝛼. (1 ¡
𝜈 𝜃−−−→𝜈 ′ 1) → !𝜈 𝛼

¡
𝜈 𝜃−−−→𝜈 ′ !𝜈 𝛼

The meaning of the mode-indexed bang is !O 𝜏 := 𝜏 and !M 𝜏 := !𝜏 , and dually the meaning of the

mode-indexed flip-bang is ¡O 𝜌 := ¡𝜌 and ¡
M 𝜌 := 𝜌 . We let 𝜏

𝜌−→m 𝜅 be sugar for !m (𝜏 𝜌−⊸ 𝜅). Using
𝜈 ′ we state that a partial application g 𝑓 for some function 𝑓 can be used at most as much as 𝑓 can.

Finally, we circle back to the iterator example from § 2.2. In the presence of multi-shot effects,

the type of list2iter is unsound for a similar reason that the type of 𝑔 is unsound:

handle_choice
(
𝜆 (). list2iter [inl (); inr k]

(
function inl (). do choose (); () | inr k′ . k′ ()

) )
Here, k is an affine function, which is resumed twice due to the use of choose in the first iteration.

We give a correct type using mode polymorphism:

Iter 𝜈 𝛼 := ∀𝜃 . (!𝜈 𝛼
¡
𝜈 𝜃−−−→ 1) ¡

𝜈 𝜃−−−→𝜈 1 list2iter : ∀𝜈. ∀𝛼. List (!𝜈 𝛼) → Iter 𝜈 𝛼

The type Iter O 𝛼 allows the iteration to be started and resumed at most once, and its value 𝛼 can

be used at most once, while Iter M 𝛼 allows the iteration to be started and resumed multiple times,

and its value 𝛼 can also be used more than once.

3 One-Shot Affect Language
We describe Affect in stages, starting with AffectOS—a minimal language that only allows only one-

shot effects. AffectOS is still expressive enough to type the control inversion (§ 2.2) and cooperative

concurrency (§ 2.3) examples. We describe the syntax and operational semantics (§ 3.1), type

soundness statement (§ 3.2), types and type judgements (§ 3.3), and finally the subtyping (§ 3.4)

and typing (§ 3.5) rules. In § 4 we present the full Affect language with multi-shot effects.

3.1 Syntax and Operational Semantics
Affect is an OCaml-inspired call-by-value 𝜆-calculus based on the Hazel language of de Vilhena

and Pottier [16, 17]. The syntax of expressions is shown in Fig. 1. It supports booleans literals and

boolean eliminator (if 𝑒 then 𝑒 else 𝑒), mutable state in the form of ML-style references (ref 𝑒
for allocation, !𝑒 for loading, and replace 𝑒 𝑒 for replacing a reference’s contents), do op 𝑒 to call

an effect, and handle 𝑒 by op x k. 𝑒 | ret x . 𝑒 to handle an effect (the continuation k persists in

the handler, i.e., we use deep handlers [23]). Sequencing 𝑒1; 𝑒2 is sugar for let _ = 𝑒1 in 𝑒2, and the

store 𝑒1 := 𝑒2 for replace 𝑒1 𝑒2; (). The version in Coq also supports numbers, sums, products and

iso-recursive types, which we omit for brevity.

Locations ℓ , run-time effects eff op 𝑣 N , and continuation values cont ℓ N are dynamic

expressions, meaning they only play a role in the operational semantics. Users of Affect can only

use static expressions to write programs (i.e., there are no typing rules for dynamic expressions).

The operational semantics of Affect is inspired by the deep handler semantics of Kammar et al.

[32]. It distinguishes between neutral contexts N1 that do not span through handlers, and general

evaluation contexts K1 that can. The reduction relation is defined on configurations 𝑒 / 𝜎 , where
the heap 𝜎 is a finite map that associates locations ℓ with values 𝑣 . The semantics is given using a
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Expressions (dynamic constructs in gray)

𝑒 ∈ Expr ::= x | 𝜆 x . 𝑒 | 𝑒 𝑒 | let x = 𝑒 in 𝑒 |
true | false | if 𝑒 then 𝑒 else 𝑒 |
(ℓ ∈ Loc) | ref 𝑒 | !𝑒 | replace 𝑒 𝑒 |
do op 𝑒 | eff op 𝑣 K | cont ℓ K |
(handle 𝑒 by op x k. 𝑒 | ret x . 𝑒 )

Values and contexts

𝑣 ∈ Val ::= 𝜆 x . 𝑒 | true | false | ℓ | cont ℓ K

N1 ∈ NeutralCtx ::= 𝑒 [ ] | [ ] 𝑣 | let x = [ ] in 𝑒 |
if [ ] then 𝑒 else 𝑒 | ref [ ] | ![ ] |
replace 𝑒 [ ] | replace [ ] 𝑣 | do op [ ]

K1 ∈ EvalCtx ::= N1 | (handle [ ] by op x k. 𝑒 | ret x . 𝑒 )
N ∈ NeutralCtx∗ ::= [ ] | N1[N ] K ∈ EvalCtx∗ ::= [ ] | K1[K ]

Selected head reduction rules

Red-Do

do op 𝑣 / 𝜎
eff op 𝑣 [ ] / 𝜎
−−−−−−−−−−−−−→h Red-Eff

N1[eff op 𝑣 K ] / 𝜎
eff op 𝑣 N1[K ] / 𝜎
−−−−−−−−−−−−−−−−−→h Red-Cont

(cont ℓ K ) 𝑣 / 𝜎 [ℓ ↦→ false]
K [𝑣 ] / 𝜎 [ℓ ↦→ true]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→h

Red-Handler

handle (eff op 𝑣 K ) by op x k. h | ret x . r / 𝜎 ℓ ∉ Dom 𝜎

h[𝑣/x, (𝜆 x . handle (cont ℓ K ) x by op x k. h | ret x . r )/k] / 𝜎 [ℓ ↦→ false]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→h

Red-Handler-Neq

handle (eff op 𝑣 K ) by op′ x k. h | ret x . r / 𝜎 op ≠ op′

eff op 𝑣 (handle K by op′ x k. h | ret x . r ) / 𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→h

Fig. 1. Syntax and selected reduction rules of AffectOS.

head reduction →
h
, which is extended to full-program reduction → using evaluation contexts:

𝑒 / 𝜎 →
h
𝑒′ / 𝜎 ′

K [𝑒] / 𝜎 → K [𝑒′] / 𝜎 ′

Selected rules of the head reduction relation are shown in Fig. 1. The reduction rules for the

𝜆-calculus fragment, booleans and references are standard, and thus omitted.

Red-Do evaluates an effect call do op 𝑣 to the run-time effect eff op 𝑣 [], which will swallow its

surrounding context up to the enclosing handler. This is achieved using repeated applications of

Red-Eff, which transfers its surrounding neutral contextN1 to the effect expression eff op 𝑣 N1[K].
When the run-time effect reaches a handler that matches its operation op (Red-Handler), the

effect branch is taken with the effect value 𝑣 and the reified version of K as a one-shot continuation

substituted in. We use a deep handler semantics so the resumption is wrapped with the same handler.

If the operation in the handler does not match (Red-Handler-Neq), the handler is swallowed

into the captured context. We use de Vilhena and Pottier [17]’s trick to ensure that resuming a

one-shot continuation more than once results in a stuck expression: a location ℓ is associated with

continuation values cont ℓ N , and the heap is abused to track if the continuation has been resumed.

Application of a one-shot continuation (Red-Cont) is only defined when it has not been called yet

(when its location ℓ points to false).

3.2 Type Soundness
There are three guarantees that the type and effect system of Affect should enforce. Firstly, one-shot

continuations (i.e., values cont ℓ N ) should not be resumed more than once. Secondly, expressions

that are annotated as non-effectful should not produce unhandled effects, and lastly no regular

type errors such as applying true to itself can occur.

All three guarantees are modeled using the notion of expression safety. An expression is consid-

ered safe when starting from an empty heap it always leads to a configuration 𝑒′ / 𝜎 ′
that is not
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stuck, in the sense that 𝑒′ is not a value and no reduction rule applies:

safe 𝑒 := ∀𝑒′ 𝜎 ′ . 𝑒 / ∅ →∗ 𝑒′ / 𝜎 ′ =⇒ 𝑒′ ∈ Val ∨ (∃ 𝑒′′ 𝜎 ′′ . 𝑒′ / 𝜎 ′ → 𝑒′′ / 𝜎 ′′)
A call to an already resumed one-shot continuation is a stuck expression since rule Red-Do is only

defined when 𝜎 [ℓ ↦→ false]. Additionally, safety implies that no effects are left unhandled because

run-time effect expressions eff op 𝑣 N are not values and no reduction rule applies to them when

they are at the top level. Lastly, regular type errors are ruled out by the very definition of safety,

which states the expression will either reach a value or diverge.

Using this notion of safety, we define type soundness to mean that well-typed programs are safe.

More specifically, each non-effectful expression (row ⟨⟩) that is typed in the empty context is safe:

⊢ 𝑒 : ⟨⟩ : 𝜏 ⊣ =⇒ safe 𝑒

In the next subsections we introduce the types and typing judgesments of AffectOS.

3.3 Types and Type Judgements
The types, signatures and rows of AffectOS are defined as follows:

𝜏, 𝜅, 𝜄 ∈ Type ::= 𝛼 | B | !𝜏 | ∀𝛼. 𝜏 | ∀𝜃 . 𝜏 | 𝜏 𝜌−⊸ 𝜏 | Ref 𝜏
𝜎, �̂� ∈ Signature ::= ∀®𝛼. 𝜏 =◦ 𝜅

𝜌, 𝜌 ∈ Row ::= 𝜃 | ⟨⟩ | (op : 𝜎) · 𝜌 | 𝜇𝜃 . 𝜌
Types are either type variables 𝛼 that range over a countably infinite set, boolean types B, bang
types !𝜏 that denote unrestricted types, type and row polymorphic types ∀𝛼. 𝜏 and ∀𝜃 . 𝜏 , affine

function types 𝜏
𝜌−⊸ 𝜏 , or reference types Ref 𝜏 . Function types are tagged with an effect row 𝜌

to track their effects. Unrestricted functions 𝜏
𝜌−→ 𝜅 are defined as !(𝜏 𝜌−⊸ 𝜅). We drop the empty

row ⟨⟩ from non-effectful functions, i.e., we write 𝜏 ⊸ 𝜅 and 𝜏 → 𝜅.

Effect signatures ∀®𝛼. 𝜏 =◦ 𝜅 give the type specification of effect operators. They can be polymor-

phic over type variables ®𝛼 , which are instantiated at the effect call site.

Effect rows group multiple effect signatures together into a list-like structure (⟨⟩ is the empty

row, (op : 𝜎) · 𝜌 is the cons row). Similar to Koka [36–38], the order of effects in a row is irrelevant

up to distinct operations. Thus the effect row ⟨op : 𝜎, op : 𝜎 ′⟩ that has two effects with the same

operation op is distinguished from its reversed version ⟨op : 𝜎 ′, op : 𝜎⟩. Rows can be polymorphic

over a single row variable that can only appear at the end. Effect rows that end with a row variable

are referred to as open, whereas closed rows end with the empty row. We often use list notations

such as ⟨op : 𝜎⟩ and ⟨op : 𝜎, op′ : 𝜎 ′⟩ for closed effect rows.

The equi-recursive row 𝜇𝜃 . 𝜌 allows the effect row 𝜌 to reference itself via the 𝜃 variable. To

ensure effect rows are finite, there is a well-formedness restriction, which states that the recursive

binder 𝜃 should only be used in the effect signatures present in 𝜌 . Effect rows that utilise the

recursive 𝜃 binder in the spine of the effect row such as 𝜇𝜃 . 𝜃 and 𝜇𝜃 . (op : 𝜎) · 𝜃 are ill-formed.

Typing judgements Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2 take two typing contexts, where Γ1 and Γ2 are called
initial and final, respectively. Contexts are multisets, i.e., the multiplicity is relevant, but the order is

not. As opposed to the more conventional two-context algorithmic typing judgments where Γ2 only
tracks the variables that have not been used [58], in Affect the final context tracks which variables

from Γ1 can be used after evaluation of 𝑒 . In the case that 𝑒 produces an effect, the final context

gives the possible variables from Γ1 that can be captured in the continuation. This key property is

essential when we incorporate multi-shot effects as it allows us to enforce the capturing condition
which restricts affine values from being captured in multi-shot continuations § 4.

To make the system substructural we restrict Contraction to variables with unrestricted types,

i.e., that can be used more than once (captured by theMulti constraint, defined in § 3.4).Weakening
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holds for all types because affine (instead of linear) usage of resources is enforced. Contraction and

weakening can also be performed on the final context Γ2 using similar rules as those above.

Contraction

x : 𝜅, x : 𝜅, Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2 Multi𝜅

x : 𝜅, Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

Weakening

Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

x : 𝜅, Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

One-shot effects in AffectOS are affine instead of linear, i.e., their continuations should be resumed

atmost once instead of exactly once. Affine effects are necessary to supportExcept from § 2.1 (whose

continuation is not resumed) without the need to explicitly ‘discontinue’/‘free’ the continuation.

3.4 Subtyping of Types, Signatures and Rows
The rules for the subtyping relations <: on types, signatures and rows are shown in Figure 2. We

omit the standard rules for reflexivity and transitivity. We use <:> to denote that subtyping applies

both ways. Function types follow a standard subtyping rule which is contravariant in the argument

and covariant in the result (Fun), while effect signatures instead are covariant on argument types

and contravariant on result types (Sig).

Introduction of bang types !𝜏 can only happen to types that are globally treated as unrestricted

through rules Bang-Intro-Bool, Bang-Intro-Ref and Bang-Idemp. TheMulti constraint repre-
sents unrestricted types and is defined accordingly as:

Multi𝜏 := 𝜏 <: !𝜏

Similar to Rust’s &Cell<𝜏>, reference types Ref 𝜏 are treated unrestrictedly regardless of the

inner type 𝜏 . This allows us to store one-shot continuations in references allowing them to be

shared between different expressions, a crucial property for the examples in § 2.2 and 2.3.

Rules Bang-AllT-Comm and Bang-AllR-Comm show that bang types commute with polymor-

phic types. Type polymorphic types can also be subtyped pointwise via Type-Forall by requiring

that the subtyping holds for any 𝛼 (𝛼 is free in 𝜏 <:𝜅 and we assume the Barendregt [7] variable

convention). Row polymorphic types can also be subtyped in the same way via Row-Forall.

Subtyping on rows can extend the empty row ⟨⟩ via Nil, and subtype a cons row component

wise via Cons. The ordering of operations is irrelevant for two distinct operations as witnessed by

Swap. Row extension can only happen for closed rows to ensure that the order of duplicate effects

is respected. The equi-recursive nature of effect rows allows unfolding and folding through the

subtyping rules (Unfold and Fold).

3.5 Typing Rules
Figure 3 shows selected typing rules of AffectOS. We introduce a single context value typing
judgement Γ1 ⊢𝑣 𝑒 : 𝜏 to represent well-typed values which are also well-typed expressions as

witnessed by ValTyped. Observe that we can simply forward the final context in ValTyped, since

Γ2 gives the variables available after evaluation of 𝑒 and values are not evaluated. Through this

judgement we restrict polymorphism to values, akin to the value restriction [59]. For instance, to

introduce an effect polymorphic type, RowIntro requires a value typing judgement which must

eventually lead to an abstraction via Abs. The bang type introduction rule BangIntro also requires

a value typing judgement since a full promotion rule that is applied to any expression is unsound.

Rule Sub utilises the subtyping relations on types, effect rows and contexts. The subtyping

relation on contexts, Γ′ <: Γ, extends the relation on types component wise, by requiring every

variable x : 𝜏 ∈ Γ to have a corresponding x : 𝜏 ′ ∈ Γ′ such that 𝜏 ′ <:𝜏 . The typing judgement is

contravariant on the initial context and covariant on the final one.
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𝜏 <:𝜅 𝜎 <: �̂� 𝜌 <: 𝜌
Fun

𝜏 <:𝜏 ′ 𝜌 <: 𝜌 𝜅′ <:𝜅

𝜏 ′
𝜌−⊸ 𝜅′ <:𝜏 𝜌−⊸ 𝜅

Sig

𝜏 ′ <:𝜏 𝜅 <:𝜅′

∀®𝛼. 𝜏 ′ =◦ 𝜅′ <:∀®𝛼. 𝜏 =◦ 𝜅

Bang-Intro-Bool

B <: !B
Bang-Intro-Ref

Ref 𝜏 <: !(Ref 𝜏)
Bang-Idemp

!𝜏 <:>!!𝜏
Bang-Elim

!𝜏 <:𝜏

Bang-Comp

𝜏 <:𝜅

!𝜏 <: !𝜅

Bang-AllT-Comm

!∀𝛼. 𝜏 <:>∀𝛼. !𝜏
Bang-AllR-Comm

!∀𝜃 . 𝜏 <:>∀𝜃 . !𝜏

Type-Forall

𝜏 <:𝜅

∀𝛼. 𝜏 <:∀𝛼. 𝜅

Row-Forall

𝜏 <:𝜅

∀𝜃 . 𝜏 <:∀𝜃 . 𝜅

Nil

⟨⟩ <: 𝜌

Cons

𝜎 ′ <:𝜎 𝜌 <: 𝜌

(op : 𝜎 ′) · 𝜌 <: (op : 𝜎) · 𝜌

Swap

op ≠ op′

(op : 𝜎) · (op′ : 𝜎 ′) · 𝜌 <: (op′ : 𝜎 ′) · (op : 𝜎) · 𝜌

Unfold

𝜇𝜃 . 𝜌 <: 𝜌 [𝜇𝜃 . 𝜌/𝜃 ]
Fold

𝜌 [𝜇𝜃 . 𝜌/𝜃 ] <: 𝜇𝜃 . 𝜌

Fig. 2. Subtyping rules of AffectOS.

The call-by-value evaluation strategy of Affect means that variables are substituted with values

and so variable expressions are non-effectful (Var). Affine variables in the context must be used

at most once, and thus x does not appear in the final context. When 𝜏 is unrestricted, we can use

Contraction to allow more uses of x.
The typing rule for the function type Abs requires that the body is typed with an empty final

context since any final context that is available after evaluation of 𝑒 would not be available at 𝜆 x . 𝑒
(we do not evaluate under abstractions).

Rule App shows the typing of applications. The expressions 𝑒1 and 𝑒2 must conform to the same

effect row 𝜌 as the function type. This is not a limitation since Sub can be applied to subtype

compatible rows into 𝜌 . The initial context Γ1 is also threaded between sub-derivations according

to the (right to left) evaluation order. The Let rule follows a similar pattern.

In IfElse all sub-derivations must adhere to the same effect row just as in App, and the context

is passed along according to the evaluation order. Since only one of the two expressions 𝑒2 and 𝑒3
will be evaluated, the context Γ2 can be shared between them.

Rules RowIntro and RowElim introduce and eliminate effect polymorphic types. RowIntro

requires the expression 𝑒 to be well-typed with type 𝜏 for all 𝜃 (row variable 𝜃 is free in 𝜏). The

typing rules for type polymorphism follow a similar principle and are omitted.

Reference allocation has a standard typing rule Alloc with the context and effect row depending

on the inner expression. The Read rule is for reading from a reference and requires the inner type

𝜏 to be unrestricted, similar to Cell::get in Rust. Rule Replace has as resulting type 𝜏 which

represents the previous value stored in the reference, similar to Cell::replace in Rust.

The Do rule describes the typing of an effect call. The type of the argument passed to the effect

call must be 𝜏 . The effect handler can only respond with values of type 𝜅 , which will take the place

of the do op 𝑒 expression. The signature is polymorphic over type variables ®𝛼 , and so the argument
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Γ1 ⊢𝑣 𝑒 : 𝜏 Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

ValTyped

Γ1 ⊢𝑣 𝑒 : 𝜏

Γ1; Γ2 ⊢ 𝑒 : ⟨⟩ : 𝜏 ⊣ Γ2

Sub

Γ′
1
⊢ 𝑒 : 𝜌 : 𝜅 ⊣ Γ′

2
Γ1 <: Γ′1 Γ′

2
<: Γ2 𝜌 <: 𝜌 𝜅 <:𝜏

Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

BangIntro

Multi Γ1 Γ1 ⊢𝑣 𝑒 : 𝜏

Γ1 ⊢𝑣 𝑒 : !𝜏

Var

x : 𝜏, Γ ⊢ x : ⟨⟩ : 𝜏 ⊣ Γ

Abs

x : 𝜏, Γ1 ⊢ 𝑒 : 𝜌 : 𝜅 ⊣
Γ1 ⊢𝑣 𝜆 x . 𝑒 : 𝜏

𝜌−⊸ 𝜅

App

Γ1 ⊢ 𝑒2 : 𝜌 : 𝜏 ⊣ Γ2
Γ2 ⊢ 𝑒1 : 𝜌 : 𝜏

𝜌−⊸ 𝜅 ⊣ Γ3

Γ1 ⊢ 𝑒1 𝑒2 : 𝜌 : 𝜅 ⊣ Γ3

Let

Γ1 ⊢ 𝑒1 : 𝜌 : 𝜏 ⊣ Γ2
x : 𝜏, Γ2 ⊢ 𝑒2 : 𝜌 : 𝜅 ⊣ Γ3

Γ1 ⊢ let x = 𝑒1 in 𝑒2 : 𝜌 : 𝜅 ⊣ Γ3

IfElse

Γ1 ⊢ 𝑒1 : 𝜌 : B ⊣ Γ2
Γ2 ⊢ 𝑒2 : 𝜌 : 𝜏 ⊣ Γ3 Γ2 ⊢ 𝑒3 : 𝜌 : 𝜏 ⊣ Γ3

Γ1 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜌 : 𝜏 ⊣ Γ3

RowIntro

Γ1 ⊢𝑣 𝑒 : 𝜏

Γ1 ⊢𝑣 𝑒 : ∀𝜃 . 𝜏

RowElim

Γ1 ⊢ 𝑒 : 𝜌 : ∀𝜃 . 𝜏 ⊣ Γ2

Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 [𝜌/𝜃 ] ⊣ Γ2

Alloc

Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

Γ1 ⊢ ref 𝑒 : 𝜌 : Ref 𝜏 ⊣ Γ2

Read

Multi𝜏
Γ1 ⊢ 𝑒 : 𝜌 : Ref 𝜏 ⊣ Γ2

Γ1 ⊢ !𝑒 : 𝜌 : 𝜏 ⊣ Γ2

Replace

Γ1 ⊢ 𝑒2 : 𝜌 : 𝜏 ⊣ Γ2
Γ2 ⊢ 𝑒1 : 𝜌 : Ref 𝜏 ⊣ Γ3

Γ1 ⊢ replace 𝑒1 𝑒2 : 𝜌 : 𝜏 ⊣ Γ3

Do

𝜎 = ∀®𝛼. 𝜄 =◦ 𝜅 𝜌 = (op : 𝜎) · 𝜌
Γ1 ⊢ 𝑒 : 𝜌 : 𝜄 [®𝜏/®𝛼] ⊣ Γ2

Γ1 ⊢ do op 𝑒 : 𝜌 : 𝜅 [®𝜏/®𝛼] ⊣ Γ2

Handler

𝜎 = ∀®𝛼. 𝜄 =◦ 𝜅 𝜌 = (op : 𝜎) · 𝜌 Multi Γ
Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

x : 𝜄, k : 𝜅
𝜌−⊸ 𝜏 ′, Γ ⊢ h : 𝜌 : 𝜏 ′ ⊣ Γ

x : 𝜏, Γ2; Γ ⊢ r : 𝜌 : 𝜏 ′ ⊣ Γ

Γ1; Γ ⊢ handle 𝑒 by op x k. h | ret x . r : 𝜌 : 𝜏 ′ ⊣ Γ

Fig. 3. Selected typing rules of AffectOS.

and result type can depend on both of these variables. At the effect call site, the type variables ®𝛼
are instantiated with concrete types ®𝜏 .

The Handler rule specifies that the overall effect row 𝜌 and result type 𝜏 ′ must match with that

of the branches. To type the effect branch, the effect call value x is required to have type 𝜄, and the

continuation k must have argument type 𝜅 due to the effect signature being ∀®𝛼. 𝜄 =◦ 𝜅 . Additionally,
h needs to be well-typed for any instantiation of type variables ®𝛼 , which is expressed by letting ®𝛼
be free and distinct from all other type variables. The initial context is split into Γ1 and Γ with Γ1
forwarded to expression 𝑒 and Γ towards the branches h and r of the effect handler. The expression
𝑒 evaluates first, and when a value is reached the return branch r takes over, which explains the

presence of Γ2 in its initial context. The effect branch h on the other hand can only access the Γ
context and not Γ2. At the moment when the effect branch h takes control, the expression 𝑒 has not

finished executing and thus the context Γ2 is not yet available. The effect branch h can be called

multiple times when more than one effect call occurs in 𝑒 . This forces us to require the context Γ to

be unrestricted, which is captured by the Multi Γ constraint that requires every variable in Γ to
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satisfyMulti. The handler also reinstates itself in the continuation, and as a result the continuation

inherits the return type and effect row of the handler.

4 Combined One-Shot and Multi-Shot Affect Language
Multi-shot effects, i.e., effects that have their continuation resumed more than once, offer additional

expressive power over their one-shot counterparts, making it possible to express among others

backtracking and probabilistic programming [25, 32, 45]. It is beneficial for a language to support

both kinds of effects, but done in a controlled manner where the type system distinguishes them by

tracking how continuations are called. This way we can get the additional expressivity of multi-shot

effects, and at the same time keep the performance benefits of one-shot effects.

In this section we extend Affect with multi-shot effects. A key requirement that the extended

type system must address is the capturing condition, which forbids substructural resources such as

one-shot continuations from being captured in multi-shot continuations. Failure to do so can break

the one-shot discipline of one-shot effects (and thus type soundness) as we will show. Furthermore,

inspired by Wadler [57]’s use types, we introduce mode polymorphism, and generalise bang types

to express the relationship between substructural types and multi-shot effects at the type level.

We describe the extended syntax and operational semantics (§ 4.1), types and subtyping relation

(§ 4.2), typing rules (§ 4.3), and finally mode polymorphism (§ 4.4).

4.1 Syntax and Operational Semantics
We generalise the one-shot handlers from § 3.1 by tagging them with amode m ∈ Mode, which says

that the corresponding continuation should be resumed at most once (O) or zero or more times (M):

m ∈ Mode ::= 𝜈 | O | M
𝑒 ∈ Expr ::= . . . | (handlem 𝑒 by op x k. 𝑒 | ret x . 𝑒)

K1 ∈ EvalCtx ::= . . . | (handlem [] by op x k. 𝑒 | ret x . 𝑒)
We anticipate the introduction of mode polymorphism, so modes m also include mode variables 𝜈 .

However handlers can only use O and M because the operational semantics of Affect is defined on

untyped expressions.

The reduction rule for one-shot handlers is identical to the rule Red-Handler of AffectOS. For

multi-shot handlers, we do not track operationally if their continuations are resumed, so cont ℓ N
values are not used. Instead we directly reify the context K captured by the effect call as an

abstraction that is substituted into the variable k, allowing k to be resumed multiple times:

Red-Handler-MS

handleM (eff op 𝑣 K) by op x k. h | ret x . r / 𝜎
h[𝑣/x, (𝜆 x . handleM K [x] by op x k. h | ret x . r)/k] / 𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

h

4.2 Types and Subtyping
Selected subtyping rules are shown in Fig. 4. We extend types, signatures and rows from § 3.3 as:

𝜏, 𝜅, 𝜄 ∈ Type ::= . . . | !m 𝜏 | ∀𝜈. 𝜏
𝜎, �̂� ∈ Signature ::= ¡m 𝜎 | ∀®𝛼. 𝜏 ⇒ 𝜅

𝜌, 𝜌 ∈ Row ::= . . . | ¡m 𝜌

Similar to Wadler [57], generalised bang types !m 𝜏 are tagged with a mode with the property that

!M 𝜏 represents unrestricted types just as !𝜏 does, and !O 𝜏 is equivalent to 𝜏 (GBangO-Intro). We

use !𝜏 as sugar for !M 𝜏 . Modes are ordered O <:M (Mode-O,Mode-M), and the relation extends to

bang types (GBang-Comp). Mode polymorphic types ∀𝜈. 𝜏 enable abstraction over modes.
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Mode-O

O <:m
Mode-M

m <:M

SigM

𝜏 ′ <:𝜏 𝜅 <:𝜅′

∀®𝛼. 𝜏 ′ ⇒ 𝜅′ <:∀®𝛼. 𝜏 ⇒ 𝜅

GBang-Intro-Bool

B <: !m B
GBang-Intro-Ref

Ref 𝜏 <: !m (Ref 𝜏)
GBangO-Intro

𝜏 <: !O 𝜏
GBang-Idemp

!m 𝜏 <:>!m !m 𝜏

GBang-Elim

!m 𝜏 <:𝜏

GBang-Comm

!m !m′ 𝜏 <: !m′ !m 𝜏

GBang-Comp

m′ <:m 𝜏 <:𝜅

!m 𝜏 <: !m′ 𝜅

GBang-AllT-Comm

!m ∀𝛼. 𝜏 <:>∀𝛼. !m 𝜏

GBang-AllR-Comm

!m ∀𝜃 . 𝜏 <:>∀𝜃 . !m 𝜏

FBang-Elim-Nil

¡m ⟨⟩ <: ⟨⟩
FBang-Dist-Cons

¡m ((op : 𝜎) · 𝜌) <: (op : ¡m 𝜎) · ¡m 𝜌

FBang-Elim-Rec

¡m 𝜌 <: 𝜌
¡m (𝜇𝜃 . 𝜌) <: 𝜇𝜃 . 𝜌

FBangM-Elim

¡
M 𝜌 <: 𝜌

FBang-Intro

𝜌 <: ¡m 𝜌

FBang-Idemp

¡m ¡m 𝜌 <:>¡m 𝜌

FBang-Comp

m′ <:m 𝜌 <: 𝜌
¡m 𝜌 <: ¡m′ 𝜌

FBang-Comm

¡m ¡m′ 𝜌 <: ¡m′ ¡m 𝜌

Fig. 4. Selected subtyping rules of Affect.

The new flip-bang signature ¡m 𝜎 is used to represent one-shot effects in a similar manner to

how bang types represent unrestricted types in ordinary linear type systems. In our combined

one-shot and multi-shot language, effect signatures ∀®𝛼. 𝜏 ⇒ 𝜅 are by default multi-shot. Hence,

one-shot signatures ∀®𝛼. 𝜏 =◦ 𝜅 are sugar for ¡O (∀®𝛼. 𝜏 ⇒ 𝜅) (we also use (∀®𝛼. 𝜏 ⇒m 𝜅) to denote

¡m (∀®𝛼. 𝜏 ⇒ 𝜅)). Effect rows also have a flip-bang row ¡m 𝜌 to represent multiple one-shot effects.

Flip-bang signatures ¡m 𝜎 and rows ¡m 𝜌 are dual to bang types !m 𝜏 . That is, while inhabitants of

type !M 𝜏 can be used multiple times, the continuation of an effect ¡O 𝜎 must be used at most once.

This duality in conjunction with mode polymorphic types ∀𝜈. 𝜏 is used to capture the relations

between the substructurality of polymorphic types and effects, see § 4.4.

The duality between bang and flip-bang is further illustrated in the subtyping relation. Elimination

of flip-bang rows is restricted (FBang-Elim-Nil, FBang-Dist-Cons and FBang-Elim-Rec), unless

the mode is M (FBangM-Elim). However, as opposed to bang types, flip-bang can be introduced

to any row (FBang-Intro). Note that the flip-bang signature ¡m 𝜎 enjoys identical FBangM-Elim,

FBang-Intro, FBang-Idemp, FBang-Comp, and FBang-Comm rules.

Just as with theMulti𝜏 constraint, its dual Once 𝜌 constraint is defined accordingly to identify

effect rows that can only be handled by one-shot handlers:

Once 𝜌 := ¡𝜌 <: 𝜌

4.3 Typing Rules
The typing rules from AffectOS in § 3.5 need to be adapted to soundly track the interplay between

one-shot and multi-shot effects. The type system additionally needs to enforce the capturing
condition, which says that substructural resources are not captured in multi-shot continuations.

The rules Do and Handler from AffectOS need to be generalised to allow multi-shot effects, and

rules App and Replace need to be modified since they are unsound in the combined one-shot and

multi-shot language. On the other hand, Let, IfElse, RowIntro, RowElim, Alloc and Read do

not need to be changed. We can directly sequence their sub-derivations as specified by the typing
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rules in Fig. 3, even in the presence of multi-shot effects due to how two-context judgements are

interpreted. The final context contains exactly the variables from the initial that can be used after

evaluation which means that when an expression performs a multi-shot effect, the final context

only has variables of unrestricted types. For instance, in Let if 𝑒1 performs a multi-shot effect,

variables in Γ2 will be of unrestricted types which coincidentally are also the variables that can be

captured in the continuation.

To present counterexamples for the rules that need to be changed, we assume that (k : 1 ⊸ 1)
is a one-shot continuation. We can bring such a k into the context by wrapping a computation in:

let (k : 1 ⊸ 1) = let (r : Ref (1 ⊸ 1)) = ref (𝜆 (). ()) in
(handleO (do op ()) by op () k′ . 𝑟 := k′ | ret x . x);
replace 𝑟 (𝜆 (). ())

in . . .

Here, we use Eff := (op : 1 =◦ 1). We utilise a reference 𝑟 to extract the continuation from the effect

branch of a one-shot handler. The call to replace extracts the continuation from the reference. Note

that we use replace instead of an ordinary load since we are dealing with a one-shot continuation.

Similar to the pattern in iter2gen (§ 2.2), we employ a dummy value (𝜆 (). ()).

Performing and handling an effect. Figure 5 shows that DoGen is now defined on a flip-bang

signature ¡m (∀®𝛼. 𝜄 ⇒ 𝜅) and introduces a substructurality constraint m ⪯ Γ2. For the one-shot case,
the typing rule is identical to AffectOS as the constraint O ⪯ Γ2 is trivially satisfied (ModeSub-O).

However for the multi-shot case, the final context Γ2 must consist of only variables with unrestricted

types (ModeSub-M). Recall from § 2.4 that this is needed to rule out unsafe expressions such as

handle_choice (𝜆 (). do choose (); k ()). The relation m ⪯ Γ2 ensures that k cannot appear in the

final context of the do choose () expression, and as a result is ill-typed.

HandlerGen rule generalises the function type of continuations k compared to the Handler

rule in AffectOS. One-shot handlers (with mode m as O) require one-shot signatures and the contin-

uation k must be used affinely, as !O (𝜅 𝜌−⊸ 𝜏 ′) is equivalent to 𝜅 𝜌−⊸ 𝜏 ′. Multi-shot handlers (with

mode m as M) allow the continuation k of the effect to be used more than once. This is reflected in

the typing rule by giving k the unrestricted function type when m is M.

Application typing. The substructurality restriction via the DoGen rule alone is insufficient

to ensure that variables captured by multi-shot effects are of unrestricted types. To see why, let

us slightly tweak the previous counterexample to handle_choice (𝜆 (). (𝜆 (). do choose ()) (); k ())
which encloses the effect call in an abstraction and calls it directly afterwards. The semantics is the

same as before, so k is called twice. The restriction inDoGen does not rule out this program because

the body of an abstraction is typed with the portion of the context that is accessed (ValTyped

followed by Abs). Hence, the abstraction 𝜆 (). do choose () is typed with the empty context and the

relation M ⪯ ∅ is trivially satisfied. To address this, the rule AppGen requires via the substructurality

relation 𝜌 ⪯ Γ3 that when the application produces multi-shot effects all variables used afterwards

are of unrestricted types. The condition 𝜌 ⪯ Γ3 generalises the substructurality relation m ⪯ Γ to

effect rows, and states that Γ3 is unrestricted when 𝜌 contains at least one multi-shot effect.

We also need to restrict the argument type of the function using 𝜌 ⪯ 𝜏 . Consider the application

(do choose (); 𝜆 x . x ()) k that calls choose and returns an evaluator function that is called with the

one-shot continuation k. We can again break the one-shot guarantee of k by installing handle_choice
to it. The final context Γ3 in the application of (do choose (); 𝜆 x . x ()) with k is empty, and so the

previous substructurality constraint is trivially satisfied. The substructurality constraint 𝜌 ⪯ 𝜏 is

needed to require unrestricted argument types when 𝜌 contains a multi-shot effect.
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m ⪯ 𝜏 m ⪯ Γ

ModeSub-O

O ⪯ 𝜏

ModeSub-M

Multi𝜏

M ⪯ 𝜏

ModeSub-Nil

m ⪯ ∅

ModeSub-Cons

m ⪯ 𝜏 m ⪯ Γ

m ⪯ x : 𝜏, Γ

𝜌 ⪯ 𝜏 𝜌 ⪯ Γ

RowSub-Once

Once 𝜌

𝜌 ⪯ 𝜏

RowSub-Multi

Multi𝜏

𝜌 ⪯ 𝜏

RowSub-Nil

𝜌 ⪯ ∅

RowSub-Cons

𝜌 ⪯ 𝜏 𝜌 ⪯ Γ

𝜌 ⪯ x : 𝜏, Γ

Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

DoGen

m ⪯ Γ2
𝜎 = ¡m (∀®𝛼. 𝜄 ⇒ 𝜅) 𝜌 = (op : 𝜎) · 𝜌

Γ1 ⊢ 𝑒 : 𝜌 : 𝜄 [®𝜏/®𝛼] ⊣ Γ2

Γ1 ⊢ do op 𝑒 : 𝜌 : 𝜅 [®𝜏/®𝛼] ⊣ Γ2

HandlerGen

𝜎 = ¡m (∀®𝛼. 𝜄 ⇒ 𝜅) 𝜌 = (op : 𝜎) · 𝜌 Multi Γ
Γ1 ⊢ 𝑒 : 𝜌 : 𝜏 ⊣ Γ2

x : 𝜄, k : !m (𝜅 𝜌−⊸ 𝜏 ′), Γ ⊢ h : 𝜌 : 𝜏 ′ ⊣ Γ
x : 𝜏, Γ2; Γ ⊢ r : 𝜌 : 𝜏 ′ ⊣ Γ

Γ1; Γ ⊢ handlem 𝑒 by op x k. h | ret x . r : 𝜌 : 𝜏 ′ ⊣ Γ

AppGen

𝜌 <: 𝜌 𝜌 ⪯ 𝜏 𝜌 ⪯ Γ3
Γ1 ⊢ 𝑒2 : 𝜌 : 𝜏 ⊣ Γ2

Γ2 ⊢ 𝑒1 : 𝜌 : 𝜏
𝜌−⊸ 𝜅 ⊣ Γ3

Γ1 ⊢ 𝑒1 𝑒2 : 𝜌 : 𝜅 ⊣ Γ3

ReplaceGen

𝜌 <: 𝜌 𝜌 ⪯ 𝜏

Γ1 ⊢ 𝑒2 : 𝜌 : 𝜏 ⊣ Γ2
Γ2 ⊢ 𝑒1 : 𝜌 : Ref 𝜏 ⊣ Γ3

Γ1 ⊢ replace 𝑒1 𝑒2 : 𝜌 : 𝜏 ⊣ Γ3

Fig. 5. Selected typing rules of Affect. (Changes compared to AffectOS are displayed in gray.)

To make the AppGen rule less restrictive, instead of specifying the substructurality constraint

on the overall row 𝜌 , it is defined on the compatible row 𝜌 . This way, 𝜏 can be substructural when

𝜌 does not contain multi-shot effects even if 𝜌 does (𝜌 <: 𝜌 requires that all effects in 𝜌 are in 𝜌 but

not the other way around).

Replace typing. Replace needs to be adapted similarly to AppGen. When 𝑒1 produces a multi-

shot effect, the evaluation of 𝑒2 will be captured in the continuation and so 𝜏 must be unrestricted.

4.4 Mode Polymorphism
Polymorphism is more subtle in the combined one-shot and multi-shot language compared to

AffectOS due to the substructurality relations between quantified effect rows and the resources

captured in their continuations. Polymorphism over modes as well as generalised bang and flip-

bangs allow us to express these relationships at the type level.

To illustrate this, reconsider the higher-order identity function g := 𝜆 𝑓 x . 𝑓 (); x from § 2.4. We

want to capture two requirements: (1) a partial application g 𝑓 with some function 𝑓 could be used

at most as much as 𝑓 , and (2) the type of x has to be unrestricted when 𝑓 produces multi-shot effects.

The type signature that expresses both requirements is (recall, 𝜏
𝜌−→m 𝜅 is sugar for !m (𝜏 𝜌−⊸ 𝜅)):

∀𝜈 𝜈 ′ 𝜃 𝛼. (1 ¡
𝜈 𝜃−−−→𝜈 ′ 1) → !𝜈 𝛼

¡
𝜈 𝜃−−−→𝜈 ′ !𝜈 𝛼
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Mode polymorphism on 𝜈 ′ achieves (1), and the duality between ¡
𝜈 𝜃 and !𝜈 𝛼 achieves (2).

Two new rules are added that allow us to work with generalised bang types and flip-bang rows:

ModeSub-MBang

m ⪯ !m 𝜏

RowSub-FMBang

¡m 𝜌 ⪯ !m 𝜏

The rule ModeSub-MBang allows us to frame variables of type !m 𝜏 when performing an m effect

via DoGen. Similarly, RowSub-FMBang allows us to frame variables of type !m 𝜏 in AppGen when

m-restricted rows are performed.

Note that mode quantification and bang/flip-bangs are not powerful enough to capture all forms

of bounded quantification. A stacking of bang types !m !m′ 𝜏 says that 𝜏 is unrestricted if any one of

the two modes is M. Currently, we cannot express the dual requirement that both modes need to

be M for 𝜏 to be unrestricted. While the expressiveness of Affect is sufficient to give generic types

to common programming patterns (such as iterators, see § 2.5), it might be useful to equip Affect

with join ⊔ and meet ⊓ operations on modes to make it possible to express this dual requirement.

5 Semantic Typing
Recall from § 3.2 that type soundness ensures that well-typed programs are safe, which particularly

means they obey the one-shot discipline and leave no effects unhandled:

⊢ 𝑒 : ⟨⟩ : 𝜏 ⊣ =⇒ safe 𝑒

In this section we prove that Affect enjoys type soundness using the logical approach to semantic

typing in the Iris logic [29–31, 34, 53]. We begin with an introduction to semantic typing (§ 5.1),

followed by a brief explanation of the AffectLogic program logic that we use (§ 5.2), and lastly give

the semantic definition of the type system into AffectLogic (§ 5.3).

5.1 What is Semantic Typing
Semantic typing is an approach to proving type soundness that interprets types and typing judge-

ments into a semantic domain such as a higher-order logic [1, 4]. It contrasts with the syntactical

approach to type soundness, which relies on the Progress and Preservation theorems [21, 41, 60].

The central idea of semantic typing is building a logical relation defined recursively over the objects

in the language such as types. We take the logical approach to semantic typing [5, 20, 53], where

our semantic domain is the Iris-based AffectLogic program logic that allows us to abstractly reason

about effectful programs. Typing judgements become propositions in the logic and types become

predicates over values. Effect signatures and effect rows are represented as higher-order predicates

in the style of de Vilhena and Pottier [17]’s protocols. The main theorems are:

⊢ 𝑒 : ⟨⟩ : 𝜏 ⊣ Fundamental

============⇒ ⊨ 𝑒 : ⟨⟩ : 𝜏

⊨ Adeqacy

=========⇒ safe 𝑒

A semantic type judgement Γ1 ⊨ 𝑒 : 𝜌 : 𝜏

⊨Γ2 states that 𝑒 is safe, performs effects according to

the semantic effect row 𝜌 , and its resulting value (if it terminates) satisfies 𝜏 . Safety follows directly

from the definition of the typing judgement in terms of the program logic (Adeqacy arrow). The

fundamental theorem (Fundamental arrow) relates the syntactic type judgement to the semantic

one by interpreting syntactic objects semantically, and by showing that each syntactic typing rule

has a semantic version. In the semantic world, semantic typing rules are lemmas that we prove.

Throughout this section we avoid referring to syntactic type, signature and effect row expressions.

Inspired by Appel and Felty [3] and Jung et al. [28], we adopt a purely semantic viewpoint where

these notions are really objects in the logic. We do not define the (straightforward) translation from

syntactic to semantic expressions, which is also the approach taken in our Coq development.
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5.2 Program Logic
To reason about effectful programs we define AffectLogic, a separation logic suited for proving

safety and partial program correctness. AffectLogic is derived from the Hazel and Maze program

logics of de Vilhena and Pottier [15–17], which support solely one-shot and solely multi-shot

(unnamed) effects, respectively. AffectLogic introduces effect rows and combines one- and multi-

shot effects successfully with only little extra overhead in complexity. Hazel and Maze, and thus

AffectLogic, are defined on top of Iris [29–31, 34, 53]: a higher-order, separation logic framework

with Coq support for machine-checked proofs [33, 35]. A snippet of the AffectLogic syntax is:

𝑃,𝑄, 𝑅 ∈ iProp := True | False | 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | ℓ ↦→ 𝑣 | ∀ x . 𝑃 | ∃ x . 𝑃

| 2 𝑃 | ⊲ 𝑃 | 𝑃
N | ewpE 𝑒 𝜌 {𝛷} | . . .

Propositions iProp in the logic are resource aware (they can assert ownership of locations ℓ) and

are step-indexed over the computation steps to enable recursive reasoning [1, 4]. Apart from the

usual propositional logic connectives (which are omitted) there are a number of features that are

essential to our work. First, there are the usual connectives of separation logic [40], which make it

possible to model affine types. The separating conjunction (𝑃 ∗𝑄) asserts that resources referenced

by 𝑃 and 𝑄 are distinct. The magic wand 𝑃 −∗ 𝑄 says that 𝑄 holds provided additional resources 𝑃

are provided. The points-to connective ℓ ↦→ 𝑣 asserts ownership of location ℓ with value 𝑣 .

Impredicative higher-order quantification ∀ x . 𝑃 and ∃ x . 𝑃 is used to model polymorphic types.

The persistence modality 2 𝑃 , which implies that 𝑃 is duplicable, allows us to model bang types. The

later modality ⊲ 𝑃 , which expresses that 𝑃 holds after one step of computation, allows us to support

recursive types and effects. The invariant assertion 𝑃
N
allow us to share resources, and is crucial

to model mutable references. Finally, to model the typing judgements we use the extended weakest
precondition ewpE 𝑒 𝜌 {𝛷}, which states that 𝑒 is safe, performs effects according to semantic row 𝜌

and if it terminates, its evaluation satisfies predicate𝛷 . The mask E in weakest preconditions is

needed to track open invariants and thus ensure soundness of the logic. For the sake of clarity, we

will drop the mask from hereafter, as it is mostly an administrative detail. We also use the notation

ewp 𝑒 {𝛷} for non-effectful expressions instead of ewp 𝑒 ⟨⟩{𝛷}.
Specifications have the form 𝑃 ⊢ 𝑄 , where logical entailment is used to denote that 𝑄 follows

from 𝑃 . Intuitively, propositions 𝑃 and𝑄 can be thought as predicates over heaps, and entailment as

requiring that for any heap 𝜎 , 𝑃 𝜎 implies𝑄 𝜎 . Using entailment and extended weakest preconditions

we can recover Hoare triples that track the effects as {𝑃 } 𝑒 𝜌 {𝛷} := 𝑃 ⊢ ewp 𝑒 𝜌 {𝛷}. We now present

some features of AffectLogic, Hazel, Maze and Iris in more detail.

Persistence modality. The persistence modality (2) asserts non-exclusive ownership of a

proposition. Iris, the underlying logic of AffectLogic, is an affine logic and the persistence modality

is used to represent unrestricted propositions. Its main proof rules are 2 𝑃 ⊢ 2 𝑃 ∗2 𝑃 , which allows

us to duplicate a proposition; 2 𝑃 ⊢ 𝑃 for elimination; and 𝑃
N ⊢ 2 𝑃

N
, which states that invariants

are persistent and thus, when an invariant is established it becomes shareable knowledge.

Invariants. Impredicative invariants [50] 𝑃
N
allow us to place invariants 𝑃 on the state of

resources. Once an invariant 𝑃
N
is allocated, the proposition 𝑃 will hold in all future steps. To

ensure the 𝑃 remains to hold, we can only obtain ownership of 𝑃 for the duration of individual

atomic steps of execution—called opening the invariant. The N superscript denotes the invariant’s

namespace, which is used to track opened invariants and is necessary for soundness of the logic.

Proof rules. Figure 6 shows selected rules of AffectLogic. The rule EWP-Val expects a non-

effectful extended weakest precondition since values do not produce effects. The rule EWP-Pure

takes a single pure step in the execution by requiring that after one step (due to later modality) the
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𝛷 𝑣 ⊢ ewp 𝑣 {𝛷} (EWP-Val)

(𝑒1 →pure 𝑒2) ∗ ⊲ (ewp 𝑒2 𝜌 {𝛷}) ⊢ ewp 𝑒1 𝜌 {𝛷} (EWP-Pure)

ℓ ↦→ w ⊢ ewp !ℓ {𝑣 . 𝑣 = w ∗ ℓ ↦→ w} (EWP-Load)

ℓ ↦→ u ⊢ ewp (replace ℓ w) {𝑣 . 𝑣 = u ∗ ℓ ↦→ w} (EWP-Replace)

ewp 𝑒
𝜌
{𝑣 . ewp N [𝑣] 𝜌 {𝛷}} ⊢ ewp N [𝑒] 𝜌 {𝛷} (EWP-Bind)

𝜌 mono in𝑅 ∗ 𝑅 ∗ ewp 𝑒 𝜌 {𝛷} ⊢ ewp 𝑒 𝜌 {𝑣 . 𝛷 𝑣 ∗ 𝑅} (EWP-Frame)

𝜌 op 𝑣 𝛷 ⊢ ewp (do op 𝑣) 𝜌 {𝛷} (EWP-Do)

Fig. 6. Selected proof rules of AffectLogic.

resulting weakest precondition for 𝑒2 holds. The rules EWP-Load and EWP-Replace are standard

proof rules for reading and replacing from a reference respectively. The rule EWP-Bind enables

modular reasoning, and it is notably restricted to neutral contexts N instead of arbitrary contexts K .
Neutral contexts ensure that no intermediary handlers are captured in N , and thus 𝑒 must indeed

perform effects according to row 𝜌 [17]. Framing through the weakest precondition requires that

row 𝜌 is monotonic in the proposition 𝑅 to be framed.

Before we explain the monotonicity property, let us first look into how semantic signatures and

rows are represented in the logic. Semantic signatures 𝜎 capture the communication behaviour of a

handlee and handler such as the values they can exchange and the transfer of resource ownership.

They are represented as morphisms from effect values and continuation predicates to propositions,

and correspond to persistently monotonic protocols in the Maze logic. Semantic rows 𝜌 group

signatures together and are morphisms from operations to signatures:

𝜎 ∈ Sig := Val → (Val → iProp) → iProp

𝜌 ∈ Row := Operation → Sig

To perform an effect, EWP-Do requires a proof of 𝜌 op 𝑣 𝛷 , where op is the effect to be performed, 𝑣

is the effect value, and𝛷 is the postcondition of the weakest precondition. Crucially, the postcondi-

tion𝛷 can be seen as a predicate which ensures that plugging the handler’s response to the current

context is safe. For instance, to prove ewp ref (do op ()) 𝜌 {𝛷} for some row 𝜌 and postcondition𝛷 ,

we first apply EWP-Bind which gives ewp do op ()
𝜌
{𝑣 . ewp ref 𝑣 𝜌 {𝛷}} followed by EWP-Do

that requires 𝜌 op () (𝜆 𝑣. ewp ref 𝑣 𝜌 {𝛷}). Thus the continuation predicate that is passed to row 𝜌

is a predicate that proves safety for the rest of the computation.

As a result, EWP-Frame is only sound in the presence of effects 𝜌 if we can extend the continuation

predicate that is passed to the effect row with proposition 𝑅. This exact requirement is captured by

the predicate 𝜌 mono in𝑅:

𝜌 mono in𝑅 := 2 (∀ op 𝑣 𝛷. 𝜌 op 𝑣 𝛷 −∗ 𝑅 −∗ 𝜌 op 𝑣 (𝜆w. 𝛷 w ∗ 𝑅))

EWP-Handle is used to verify handlers for effectful expressions 𝑒 that perform effects op with

signature ∀®𝛼. 𝜏 ⇒m 𝜅 (a more general version of EWP-Handle similar to de Vilhena [15] can be
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found in our Coq development [56]):

EWP-Handle

ewp 𝑒 (op:∀ ®𝛼. 𝜏⇒m𝜅 ) ·𝜌 {𝛷} ∗
2 (∀ 𝑣 . 𝛷 𝑣 −∗ ewp r [𝑣/x] 𝜌 {𝛷 ′}) ∗

2 (∀ 𝑣x 𝑣k . (∃ ®𝛼. 𝜏 𝑣x ∗ 2m (∀w. 𝜅 w −∗ ewp 𝑣k w 𝜌 {𝛷 ′})) −∗ ewp h[𝑣x/x, 𝑣k/k] 𝜌 {𝛷 ′})
ewp (handlem 𝑒 by op x k. h | ret x . r) 𝜌 {𝛷 ′}

The weakest preconditions for the handler’s branches are persistent since we are using deep handler

semantics which leads to the branches being used more than once. Verification of the return branch

amounts to showing that r [𝑣/x] is safe and satisfies 𝛷 ′
for all values 𝑣 that satisfy 𝛷 since by

assumption, if 𝑒 evaluates to a value it will satisfy𝛷 . The effect branch requires h[𝑣x/x, 𝑣k/k] to be

safe and satisfy𝛷 ′
for any values 𝑣x and 𝑣k that satisfy the signature. Value 𝑣x represents the effect

call value which is assumed to satisfy 𝜏 for some type variables ®𝛼 and the continuation value 𝑣k is

assumed to be callable with any values w that satisfy 𝜅. Multi-shot signatures allow the weakest

precondition for 𝑣k to be persistent and thus allow k to be called more than once in the effect

branch. We refer the reader to de Vilhena [15] for a thorough discussion on the handler proof rule.

Adequacy theorem. Similar to Iris, AffectLogic enjoys the following adequacy theorem: For
any postcondition𝛷 and closed expression 𝑒 , if True ⊢ ewp 𝑒 {𝛷} is derivable, then 𝑒 is safe.
The adequacy theorem proves soundness of the program logic. It states that extended weakest

preconditions proved under an arbitrary heap imply expression safety. Recall that safety guarantees

that one-shot continuations are called at most once, no effects are left unhandled and the expression

either diverges or reaches a value. The theorem follows from the definition of extended weakest

preconditions which for reasons of brevity we choose not to present. We refer the interested reader

to de Vilhena [15] for a thorough explanation.

5.3 Semantic Definitions
The semantic interpretation of the Affect type system is shown in Figure 7.

Judgements. The judgement Γ1 ⊨ 𝑒 : 𝜌 : 𝜏

⊨Γ2 is a proposition defined using the extended

weakest precondition of AffectLogic. It requires that for any parallel substitution 𝛾 (i.e., finite
mapping of variables to values) that satisfies the initial context Γ1, expression 𝑒 [𝛾] is safe to execute,
performs only effects of row 𝜌 and the resulting value is of type 𝜏 . Additionally, the final context Γ2
must also be satisfied for the same variable map 𝛾 after evaluation of 𝑒 . The fact that proposition

Γ2 |= 𝛾 appears in the postcondition is what allows us to use the variables in Γ2 after evaluation
of 𝑒 . The interpretation of the two-context judgement is similar to that of Jung et al. [28] for Rust,

and that of Hinrichsen et al. [27] for session types.

Inspired by de Vilhena and Pottier [18], the value typing judgement Γ ⊨𝑣 𝑒 : 𝜏 is defined using

pwp, a version of ewp restricted to pure (no mutable state) and non-effectful expressions. Compared

to ewp, pwp enjoys 2 (pwp 𝑒{𝛷}) ⊢ pwp 𝑒{𝑣 . 2 (𝛷 𝑣)} and (∀ x . pwp 𝑒{𝛷}) ⊢ pwp 𝑒{𝑣 . ∀ x . 𝛷 𝑣},
which allow us to prove BangIntro and RowIntro, respectively.

Types. Types are predicates in the Iris logic. The definitions are mostly standard and are adapted

to incorporate effects. We refer the reader to Timany et al. [53] for a more thorough discussion on

this logical approach to typing, but we note that contrary to Timany et al. [53] we take a direct

semantic approach and avoid interpreting syntactic expressions as they do (in the spirit of Appel

and Felty [3] and Jung et al. [28]).

The boolean type is satisfied for boolean values. The bang type !m 𝜏 is directly defined using the

persistence modality. The 2m𝑃 simplifies to 𝑃 when m is O and 2 𝑃 for m being M. Polymorphic
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Semantic judgements

Γ |= 𝛾 :=∗(x,𝜏 ) ∈Γ .𝜏 (𝛾 (x))
Γ1 ⊨ 𝑒 : 𝜌 : 𝜏

⊨Γ2 :=2 (∀𝛾 . Γ1 |= 𝛾 −∗ ewp 𝑒 [𝛾] 𝜌 {𝑣 . 𝜏 𝑣 ∗ Γ2 |= 𝛾})
Γ ⊨𝑣 𝑒 : 𝜏 :=2 (∀𝛾 . Γ |= 𝛾 −∗ pwp 𝑒 [𝛾]{𝜏})

Semantic types, signatures and rows

𝜏, 𝜅 ∈ Ty :=Val → iProp 𝜎 ∈ Sig :=Val → (Val → iProp) → iProp
B :=𝜆 𝑣. 𝑣 ∈ B ∀®𝛼. 𝜏 ⇒ 𝜅 :=𝜆 𝑣 𝛷. ∃ ®𝛼. 𝜏 𝑣 ∗ 2 (∀w. 𝜅 w −∗ 𝛷 w)

!m 𝜏 :=𝜆 𝑣. 2m (𝜏 𝑣) ¡m 𝜎 :=𝜆 𝑣 𝛷. ∃𝛷 ′ . 𝜎 𝑣 𝛷 ′∗
2m (∀w. 𝛷 ′ w −∗ 𝛷 w)

∀𝛼. 𝜏 :=𝜆 𝑣. ∀𝛼 : Ty. 𝜏 𝑣 𝜌 ∈ Row :=Operation → Sig
∀𝜃 . 𝜏 :=𝜆 𝑣. ∀𝜃 : Row. 𝜏 𝑣 ⟨⟩ :=𝜆 op 𝑣 𝛷. False

𝜏
𝜌−⊸ 𝜅 :=𝜆 𝑣. ∀w. 𝜏 w −∗ ewp 𝑣 w 𝜌 {𝜅} (op : 𝜎) · 𝜌 :=𝜆 op′ 𝑣 𝛷.

{
⊲ (𝜎 𝑣 𝛷) op = op′

𝜌 op′ 𝑣 𝛷 op ≠ op′

Ref 𝜏 :=𝜆 𝑣. (𝑣 ∈ Loc) ∗ ∃w. 𝑣 ↦→ w ∗ 𝜏 w
Nℓ 𝜇𝜃 . 𝜌 :=fix (𝜃 : Row). 𝜌

¡m 𝜌 :=𝜆 op 𝑣 𝛷. ∃𝛷 ′ . 𝜌 op 𝑣 𝛷 ′∗
2m (∀w. 𝛷 ′ w −∗ 𝛷 w)

Semantic relations
𝜏 <:𝜅 :=2 (∀ 𝑣 . 𝜏 𝑣 −∗ 𝜅 𝑣) m ⪯ 𝜏 :=2 (∀ 𝑣 . 𝜏 𝑣 −∗ 2m (𝜏 𝑣))
𝜎 <: �̂� :=2 (∀ 𝑣 𝛷. 𝜎 𝑣 𝛷 −∗ �̂� 𝑣 𝛷) m ⪯ Γ :=2 (∀𝛾 . Γ |= 𝑣 −∗ 2m (Γ |= 𝛾))
𝜌 <: 𝜌 :=∀ op. 𝜌 op <: 𝜌 op 𝜌 ⪯ 𝜏 :=∀ 𝑣 . 𝜌 mono in𝜏 𝑣
Γ <: Γ′ :=2 (∀𝛾 . Γ |= 𝛾 −∗ Γ′ |= 𝛾) 𝜌 ⪯ Γ :=∀𝛾 . 𝜌 mono in (Γ |= 𝛾)

Fig. 7. Definition of semantic judgements, types, signatures, rows and relations of Affect.

types ∀𝛼. 𝜏 are defined using higher-order quantification in the logic. Function types 𝜏
𝜌−⊸ 𝜅 require

applications where the argument satisfies 𝜏 to be safe, perform effects 𝜌 and finally the resulting

value to satisfy 𝜅 . Reference types utilise the points-to connective to state that the location is defined

and points to a value that satisfies the inner type 𝜏 . The points-to connective and proposition 𝜏 w
are stored behind an invariantNℓ . This ensures that location ℓ will always point to a value of type 𝜏

in all future computation steps under the restrictions on opening and closing of invariants. Most

importantly, invariants allow us to treat reference types as unrestricted.

Signatures. When calling an effect, the handlee needs to show (∀®𝛼. 𝜏 ⇒ 𝜅) 𝑣 𝛷 for some effect

value 𝑣 and continuation predicate𝛷 . Since the instantiation of type variables ®𝛼 happens by the

handlee at the effect call site, the universal quantification on the signature level is transformed to an

existential quantification on the logic level. The effect value must also satisfy argument type 𝜏 and

the continuation predicate must be satisfiable for all values that satisfy 𝜅. Signatures are assumed

multi-shot by default and thus the continuation predicate applied to appropriate values must be

persistent. (Recall, one-shot signatures are defined using flip-bang.)

Flip-bang signatures ¡O 𝜎 are monotonic in all propositions (satisfy ∀𝑅. (𝜆 _. 𝜎)mono in𝑅).,
allowing us to frame arbitrary resources to the continuation predicate and as a result the effect in

𝜎 can capture substructural resources from its context. Note that ¡M 𝜎 is logically equivalent to 𝜎 .

Rows. Semantic rows are morphisms from operations to signatures. Calling an effect op with

value 𝑣 translates to showing ewp do op 𝑣 𝜌 {𝛷} for some postcondition𝛷 , which in turn requires

𝜌 op 𝑣 𝛷 . The ⟨⟩ row, which represents the absence of effects, is thus defined as False. To call the
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effect op with value 𝑣 in the presence of row op : 𝜎 · 𝜌 resorts to showing ⊲(𝜎 𝑣 𝛷). The later

modality ⊲ guards the recursive occurrence of the row in signature 𝜎 , which is what allows us to

take its fixpoint in 𝜇𝜃 . 𝜌 . When the effect operation to be called does not match (case op ≠ op′), the
tail of the row is used. Flip-bang rows follow the same semantics as flip-bang signatures.

Relations. The subtyping relations between types, signatures and rows are defined pointwise

and context subtyping firstly interprets the context into a proposition Γ |= 𝛾 .

The substructurality relation m ⪯ 𝜏 that ensures 𝜏 is unrestricted when m is M is lifted to the

logic using persistent propositions. The generalisation to contextsm ⪯ Γ follows a similar approach

by firstly interpreting the context into a proposition using Γ |= 𝛾 .

The substructurality relations 𝜌 ⪯ 𝜏 and 𝜌 ⪯ Γ used in typing rules AppGen and ReplaceGen

ensure that the continuation of an effect can be extended with resources of type 𝜏 or variables

specified by Γ. The monotonicity property captures this exact requirement.

6 Related Work
Substructural Type Systems. Many substructural type systems have been devised that restrict

the contraction or weakening rules from logic. A key challenge of substructural type systems is to

enable smooth integration between unrestricted and substructural types.

Traditionally, linear logics are equipped with the bang !𝐴 proposition, and in this spirit, many

substructural type systems adopt this approach [26, 57]. Unrestricted values are represented by

bang types and through elimination rules we can freely cast them as substructural. Wadler [57]

equips bang types with a use attribute !
𝑢𝜏 , an idea we borrow and generalise by introducing its

dual flip-bang for signatures and rows. Alternatively, types are qualified with a usage (or linearity)

attribute at the kind level [2, 39, 51, 54, 55]. To express structural restrictions on these types,

polymorphism over qualifiers and inequalities between qualifiers are used. Other approaches exist

that attach linearities solely on function arrows [6, 11].

We have opted to use generalised bang/flip-bangs, but could have equally taken a constraint-

based approach. For instance, we can imagine a typing of g (from § 2.5) that lifts the substructurality

relation 𝜌 ⪯ 𝜏 to the type level:

∀𝜈. ∀𝜃 . ∀𝛼. 𝜃 ⪯ 𝛼 ⇒ (1 𝜃−→𝜈 1) → 𝛼
𝜃−→𝜈 𝛼

This typing captures both requirements regarding the partial application of g and the substruc-

turality relation between 𝜃 and 𝛼 . Indeed, Tang et al. [51] take a similar constraint-based approach

and the type they give for g is almost identical to the type above. Tov and Pucella [54] take also a

kind-and-qualifier based approach, but instead of introducing inequalities at the type level, they

use meet and join operations on the qualifiers. As mentioned in § 4.4, introducing join and meet

operation on modes would address the current limitations of bounded quantification in Affect.

The choice for bounded polymorphism is orthogonal to the other purposes of the paper. On the

one hand, a constraint-based approach may be more intuitive than the one that uses bang/flip-bangs

(! and ¡). On the other hand, bang/flip-bangs enjoy nice dualities and the encodings of one-shot

signatures and are interesting from a theoretical perspective. We conjecture that the two approaches

have the same expressiveness power if we introduce meet and join operations to Affect, but a

detailed comparison between the two approaches is left for future work.

Substructural type and effect systems. Tov and Pucella [55] investigate the interaction

of substructural types with control effects. They develop 𝜆URAL (C ), which extends the 𝜆URAL

calculus [2] with control effects in a generic way. To ensure the usage guarantees of substructural

types are not broken, their type system treats affinely continuations that capture affine values. To

achieve this, they utilise substructurality relations in the typing rules similarly to Affect by tracking
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what is captured in a continuation. However, due to the use of standard single-context judgements,

substructurality relations are more pervasive in their system compared to Affect as they appear in

most typing rules. Furthermore, instantiating 𝜆URAL (C ) with algebraic effects and handlers is a

non-trivial task due to the sophisticated effect systems they require.

Hillerström et al. [25] devise an affine type system for a language with effects handlers that only

allows one-shot effects. Their main focus is comparing the asymptotic speedup gained in terms of

run-time complexity when multi-shot effects instead of just one-shot effects are used. We instead

focus on devising a type and effect system for a more expressive language with mutable state and

multi-shot continuations, and investigate the interplay between the two.

Tang et al. [51] combine linear types with multi-shot effects in a way closer to this paper. To

ensure linearity, they devise a linear type and effect system that distinguishes between one-shot

and multi-shot effects. Their approach relies on two dual notions of linearity: value linearity which

governs how variables from the context are used, and control-flow linearity which tracks how many

times control can enter a code block. Thus value linearity corresponds to restricting the Contraction

rule and Weakening rule, whereas control-flow linearity corresponds to the capturing condition of

Affect. Similar to Affect, their system supports effect polymorphism. A crucial difference is that

their system enjoys principal types (by incorporating qualified types that allow specification of

linear dependencies between types and effects), which can be completely inferred algorithmically.

The motivation for our work differs: we devise an (affine) type and effect system for an OCaml-

like language that has higher-order references in the style of ML. To the best of our knowledge,

extending Tang et al.’s system with references in the style of Affect is challenging due to their

syntactic type soundness approach. Our semantic approach to type soundness is well-suited to

modelling unrestricted references (that can store one-shot continuations) through the support of

impredicative invariants in Iris, as well as for modelling equi-recursive rows through step-indexing,

and for mechanising all results in Coq via Iris’s infrastructure.

Effect rows and effect polymorphism. There are multiple approaches to support effect

polymorphism in row-based effect systems. The Links programming language adopts a Rémy

[46]-style row polymorphism approach where duplicate operations cannot appear in the same

row [22, 25, 51]. To ensure collisions do not occur during instantiation of effect polymorphic types,

they take a kind-based approach which associates rows with sets of forbidden operations.

Affect borrows its effect rows from the Koka language [38], which in turn, are in the style of

scoped labels [36]. Contrary to the Links language, Koka and thus Affect, allow duplicate operations.

This simplifies the effect system since it does not need to ensure that effect rows contain unique

effects albeit with some loss of expressiveness of effect polymorphic functions. Biernacki et al. [12]

additionally employ a lifting construct that addresses Koka’s loss of expressivity.

Tes [18], an unrestricted type and effect system built for an OCaml-like language takes an

alternative approach where effect rows carry a disjointness hypothesis, which ensures that functions

annotated with rows that have duplicate effects are not callable. Furthermore, they use dynamically

allocated effect labels to guard against accidental handling.

Effect subtyping. Multiple algebraic effect systems support effect subtyping, such as core Eff

[8], and 𝜆H/L of Biernacki et al. [12], Tes of de Vilhena and Pottier [18], and the 𝑄◦
eff calculus of

Tang et al. [51]. Our effect subtyping relation is similar to that of Biernacki et al. [12] with the

addition that we incorporate subtyping between the substructurality of types and effects.

Recursive effects. Recursive effects have been incorporated to calculi such as core Eff of Bauer

and Pretnar [8], 𝜆H/L of Biernacki et al. [12], and 𝜆 		 of Zhang andMyers [62]. All three approaches

differ with the recursive effects of Affect in that their effect rows only contain operations and
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their accompanied signatures live in a separate effect context. In Affect, effect signatures are

incorporated into rows and via the use of an explicit recursive row 𝜇𝜃 . 𝜌 . This makes it possible to

specify recursive effects and their type specification in a unified way.

Semantic typing for effect handlers. The logical approach to semantic typing in Iris has been

employed to prove soundness of many type systems [53]. Our work is influenced by that of Jung

et al. [28] for Rust, and that of Hinrichsen et al. [27] for session types—particularly the semantics

of the two-context judgements. Up to our knowledge, the semantic approach has not been applied

to the combination of effect handlers and substructural types.

de Vilhena and Pottier [18] develop Tes, an unrestricted type system that introduces an alternative

approach to address effect collisions (see discussion “Effect rows and effect polymorphism” above).

To prove type soundness, they semantically interpret their type and effect system by building a

unary logical relation using a variation of the Iris-based Maze program logic [15]. We also build a

(unary) step-indexed logical relation to prove type soundness based on a program logic derived

from Maze, but our semantic definitions differ since we consider a substructural type system and

use effect rows inspired by Koka [38].

Biernacki et al. [12] present a calculus with effect handlers and one of their contributions is a

binary, step-indexed logical relation, that allows reasoning about contextual equivalence of effectful

programs. Their work is also mechanised in the Coq proof assistant, but does not use Iris. By virtue

of taking a semantic approach and building a binary logical relation they also prove type soundness

as a corollary. Zhang and Myers [62] present the 𝜆 		 calculus that supports effect handlers in an

abstraction-safe manner. They too build a logical relation inspired by Biernacki et al. [12] to prove

via context equivalence that abstraction-safe guarantees are satisfied.

Our contribution differs from the former two approaches in that we consider a language with

mutable state. As a result, in our case propositions are resource-aware step-indexed propositions

that can account for the heap as well as setting invariants on its state. Iris’s support of impredicative

invariants [50] is essential to treat reference types in an unrestricted way.

7 Conclusion and Future Work
We presented Affect—an affine type and effect system for an OCaml-inspired language with effect

handlers and mutable state that distinguishes between effects that are one-shot or multi-shot. The

one-shot language AffectOS (§ 3) could serve as an initial more realistic extension to OCaml 5 with a

proper effect system that statically ensures one-shot usage of continuations (guaranteed by the type

soundness theorem) and avoids OCaml’s dynamic multi-shot usage errors. The full Affect language

with multi-shot effects (§ 4) might enable OCaml to safely and efficiently support multi-shot effects.

Future work remains to investigate the interaction with other OCaml features (such as modules,

GADTs), investigate a linear (instead of affine) version of Affect with a ‘discontinue’ operation for

unused continuations, and investigate how to make mode polymorphism and bang/flip-bang types

practical through principal typing and (partial) type inference.

One could implement a (prototype) compiler that utilises the usage information of continuations

in the way that is intended and advocated in this work. Such a compiler can be formally verified,

i.e., that the compiled executable behaves exactly as described by the semantics of the source Affect

program. To achieve this, our unary logical relation could be extended to a binary one that can

prove soundness of optimisations for expressions that make use of one-shot and multi-shot effects.

Another direction is to investigate destructive reads for references that allow storing affine

content while themselves being unrestricted (and avoid using the cumbersome replace pattern), a

comparison of expressivity of constraint-based versus bang/flip-bang approaches, and to investigate

deep handler typing rules that allow the return branch to capture affine resources.
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