
Data Race Freedom à la Mode
AÏNA LINN GEORGES,MPI-SWS, Germany

BENJAMIN PETERS,MPI-SWS, Germany

LAILA ELBEHEIRY,MPI-SWS, Germany

LEO WHITE, Jane Street, UK
STEPHEN DOLAN, Jane Street, UK
RICHARD A. EISENBERG, Jane Street, USA
CHRIS CASINGHINO, Jane Street, USA
FRANÇOIS POTTIER, Inria, France
DEREK DREYER,MPI-SWS, Germany

We present DRFCaml, an extension of OCaml’s type system that guarantees data race freedom for multi-

threaded OCaml programs while retaining backward compatibility with existing sequential OCaml code. We

build on recent work of Lorenzen et al., who extend OCaml with modes that keep track of locality, uniqueness,

and affinity. We introduce two new mode axes, contention and portability, which record whether data has

been shared or can be shared between multiple threads. Although this basic type-and-mode system has

limited expressive power by itself, it does let us express APIs for capsules, regions of memory whose access

is controlled by a unique ghost key, and reader-writer locks, which allow a thread to safely acquire partial

or full ownership of a key. We show that this allows complex data structures (which may involve aliasing

and mutable state) to be safely shared between threads. We formalize the complete system and establish its

soundness by building a semantic model of it in the Iris program logic on top of the Rocq proof assistant.

CCS Concepts: • Computing methodologies→ Concurrent programming languages; • Theory of
computation→ Type theory; Separation logic.

Additional Key Words and Phrases: Concurrency, data races, type systems, OCaml, separation logic, Iris, Rocq

ACM Reference Format:
Aïna Linn Georges, Benjamin Peters, Laila Elbeheiry, Leo White, Stephen Dolan, Richard A. Eisenberg, Chris

Casinghino, François Pottier, and Derek Dreyer. 2025. Data Race Freedom à la Mode. Proc. ACM Program.

Lang. 9, POPL, Article 23 (January 2025), 39 pages. https://doi.org/10.1145/3704859

1 Introduction
A central challenge of multi-threaded programming is ensuring the absence of data races, in which

one thread accesses some shared non-atomic data while another thread is simultaneously mutating

it. Data races lead programs to behave in ways that are unexpected, difficult to explain, or (in

languages like C/C++) completely undefined. Consequently, there has been a great deal of work

Authors’ Contact Information: Aïna Linn Georges, algeorges@mpi-sws.org, MPI-SWS, Saarland Informatics Campus,

Germany; Benjamin Peters, bpeters@mpi-sws.org, MPI-SWS, Saarland Informatics Campus, Germany; Laila Elbeheiry,

lelbehei@mpi-sws.org, MPI-SWS, Saarland Informatics Campus, Germany; Leo White, lwhite@janestreet.com, Jane Street,

London, UK; Stephen Dolan, sdolan@janestreet.com, Jane Street, London, UK; Richard A. Eisenberg, reisenberg@janestreet.

com, Jane Street, New York, USA; Chris Casinghino, ccasinghino@janestreet.com, Jane Street, New York, USA; François

Pottier, francois.pottier@inria.fr, Inria, France; Derek Dreyer, dreyer@mpi-sws.org, MPI-SWS, Saarland Informatics Campus,

Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART23

https://doi.org/10.1145/3704859

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0002-5951-4642
HTTPS://ORCID.ORG/0009-0008-3193-6940
HTTPS://ORCID.ORG/0009-0005-9514-1360
HTTPS://ORCID.ORG/0009-0003-7046-3035
HTTPS://ORCID.ORG/0000-0002-4609-9101
HTTPS://ORCID.ORG/0000-0002-7669-9781
HTTPS://ORCID.ORG/0009-0005-6689-9463
HTTPS://ORCID.ORG/0000-0002-4069-1235
HTTPS://ORCID.ORG/0000-0002-3884-6867
https://doi.org/10.1145/3704859
https://orcid.org/0000-0002-5951-4642
https://orcid.org/0009-0008-3193-6940
https://orcid.org/0009-0005-9514-1360
https://orcid.org/0009-0003-7046-3035
https://orcid.org/0000-0002-4609-9101
https://orcid.org/0000-0002-7669-9781
https://orcid.org/0009-0005-6689-9463
https://orcid.org/0000-0002-4069-1235
https://orcid.org/0000-0002-4069-1235
https://orcid.org/0000-0002-3884-6867
https://doi.org/10.1145/3704859


23:2 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

on static prevention of data races. Among the most promising techniques is that of the Rust

programming language, which employs a substructural (or “ownership-based”) type system to

guarantee absence of data races at compile time. In particular, it uses ownership to enforce the

discipline of aliasing XOR mutability (or AXM): data can be aliased (i.e., have multiple references to

it) or it can be mutable, but it cannot be both at the same time. This discipline in turn ensures that

if two threads can access some shared data at the same time, then neither can have mutable access

to it, thus ruling out the possibility of data races.

The increasing industry adoption of Rust is remarkable: it demonstrates the power and flexibility

of substructural/ownership type systems, and is the most widely deployed example of such a system

in practice. However, its success also comes at a cost [11, 1]: the Rust programmer must think

about ownership of data at a fine granularity, and take care of how it evolves (flow-sensitively)

throughout the program. This cost is arguably unavoidable and even desirable in the context of low-

level systems programming with manual memory management, since the same AXM discipline that

Rust uses to prevent data races also helps to prevent other dangerous anomalies (such as memory

safety violations) which have long plagued C/C++ programs. But in the context of higher-level

programming languages with automatic memory management, programmers are accustomed to

much simpler and less restrictive type systems than Rust’s—type systems which permit arbitrary

aliasing of mutable data structures without sacrificing safety. Having to adhere to Rust’s AXM

discipline throughout one’s program may seem a steep price to pay just for data race freedom.

In much the same spirit as recent work by Xu et al. [30], we therefore ask: is it possible to

guarantee absence of data races in a high-level programming language without giving up on the

“comfort” of its type system? More concretely, can we incorporate some of Rust’s core ideas into an

existing, high-level, garbage-collected programming language in such a way that

(1) the design is backward-compatible with the existing language, i.e., legacy sequential code

continues to type-check and function as is, but

(2) when writing multi-threaded programs, to ensure the absence of data races, one can employ

a lightweight form of ownership tracking when needed, in a “pay as you go” manner?

1.1 DRFCaml
In this paper, we explore the above question in the context of OCaml 5, the recent release of OCaml

supporting multi-threading. As in Java, data races in OCaml have well-defined semantics [25],

but may result in surprising (and incorrect!) behaviors.
1
To avoid these bugs, the programmer is

responsible for ensuring that programs are well-synchronized. However, as it stands, OCaml offers

no help to the programmer in checking that they have done so.

We propose DRFCaml, a type system extending OCaml’s in order to guarantee data race freedom

for multi-threaded OCaml programs while remaining backward compatible with existing OCaml

code. DRFCaml takes as its starting point recent work by Lorenzen et al. [21], which extends

OCaml’s type system with modes for tracking locality, uniqueness, and affinity of data. Lorenzen et

al. use these modes to safely support stack allocation, memory reuse, and a syntactically scoped

form of Rust-style “borrowing” for code that wishes to use these features, without requiring changes

to existing OCaml code. Their type system has been implemented and deployed at Jane Street,

where it has been widely adopted [21]. This suggests that their approach to mode inference is

backward-compatible with a large legacy code base. However, their system focuses on the sequential

fragment of OCaml.

1
The fact that Java and OCaml have weak memory models increases the range of surprising behaviors that can be caused by

data races. However, it is usually desirable to detect and rule out data races, under any memory model.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:3

let tbl = RwHashtbl.create () in

(* tbl is contended and can thus be used in a portable closure *)

let t1 = Thread.create (fun () -> RwHashtbl.add tbl 1 "string1") () in

let t2 = Thread.create (fun () -> RwHashtbl.add tbl 2 "string2";

assert(RwHashtbl.find tbl 2 = "string2")) () in ...

Fig. 1. A simple example client of RwHashtbl.

DRFCaml extends Lorenzen et al.’s mode system with additional mode axes for safe concurrent

programming, which we call contention and portability. The contention axis tracks how data can be

safely accessed in the presence of multi-threading: immutable data is always safe to access, but

mutable data can be accessed safely only if it is uncontended, i.e., guaranteed not to be accessed

simultaneously from another thread. The portability axis tracks whether values are safe to be

shared between threads, the most interesting case being closures: a closure is portable (safe to share

between threads) so long as it does not capture any uncontended references in its environment, as

such capture would indirectly cause those references to become contended.

The contention and portability modes work jointly to enforce a variant of Rust’s AXM discipline:

uncontended data can be mutated freely; but once data is shared between threads, it can no longer

be mutated. As in Rust, this discipline guarantees data race freedom, but it comes at the expense of

disallowing any sharing of mutable state across threads—a significant restriction, since some form

of shared mutable state is needed to implement communication between threads. Fortunately—also

as in Rust—the basic discipline can be safely relaxed by extending the core type system of DRFCaml

via APIs with interior mutability, i.e., APIs which allow shared data to be mutated in a carefully

controlled manner, ensuring that sufficient synchronization is used to avoid data races.

1.2 Modal APIs with Interior Mutability: Capsules and Reader-Writer Locks
In this paper, in addition to presenting the modal type system of DRFCaml, we show how to

extend its power with several interior-mutable APIs. We demonstrate the utility of these APIs on

a representative example: we take a sequential hash table, written in vanilla OCaml, and make

it thread-safe (that is, safely shareable between several threads) by protecting access to it with a

reader-writer lock, and adding a few annotations on function signatures and reference allocations.

Concretely, we present two APIs:

Capsules enable uncontended data—with arbitrary internal aliasing—to be safely shared between

threads through the use of a ghost key (or “capability”, a zero-sized value used to enforce

synchronization) whose ownership is statically tracked by the type system. If a thread has

unique ownership of the key, it can mutate the shared data stored in the capsule. If a thread

merely possesses an aliased key, it can obtain only read access to the shared data. Capsules

are inspired by the GhostCell API proposed for Rust [31] (see §7 for a comparison).

Reader-writer locks synchronize access to a resource (such as a key) using standard concurrency

primitives (e.g., compare-and-swap) under the hood. In particular, we use reader-writer locks

to safely transfer unique or shared ownership of a key between threads.

With the above APIs in hand, we can take, for example, Hashtbl, a pre-existing sequential

implementation of a hash table data type in OCaml, and transform it into a thread-safe version,

RwHashtbl. Fig. 1 shows a client of the thread-safe RwHashtbl. It creates a hash table, forks two threads,

and uses the operations of RwHashtbl to safely perform concurrent reads and writes to the hash table

without fear of data races. Crucially: (1) the implementation of RwHashtbl can reuse the original

sequential implementation of Hashtbl essentially as is (modulo annotations on reference allocations),

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:4 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

and (2) the client of RwHashtbl need not know anything about DRFCaml’s mode system except for the

fact that the type RwHashtbl.t is contended and portable (meaning that all the operations accept and

produce contended and portable values of type RwHashtbl.t), so that hash tables can be safely shared

across threads. (The implementer of RwHashtbl, on the other hand, must have a deeper understanding

of modes.)

As the Capsule and Reader-Writer Lock APIs fundamentally extend the power of the core

DRFCaml type system, their implementations require the use of unsafe escape hatches, such as

OCaml’s Obj.magic, and unsafe mode casts. To establish that these APIs are nonetheless safe and

do not allow data races, we employ a now-standard approach: we build a semantic model of the

DRFCaml type system in the Iris separation logic [19], and use this model to establish semantic

soundness of the typing rules of DRFCaml along with the Capsule and Reader-Writer Lock APIs.

This logical approach to type soundness, exemplified by the work on RustBelt [18] and documented

in a pedagogical fashion by Timany et al. [26], provides a solid foundation for DRFCaml, and lets

us imagine that its basic design can be extended with other useful APIs in the future.

1.3 Contributions
In summary, we make the following contributions:

• We present DRFCaml, an extension of a core subset of OCaml that usesmodes to statically rule

out data races without sacrificing backward compatibility or automatic memory management.

Because we build directly on the modal framework of Lorenzen et al. [21], we believe that a

design based on DRFCaml has the potential to be deployed at scale in the near future.

• We present a modal API for capsules, which allows mutable data—constructed in vanilla

OCaml with no tracking of aliasing—to be safely shared between threads by protecting it

with a key. We also present a modal API for reader-writer locks, which enables ownership of

keys to be properly synchronized between threads.

• We illustrate the power of these APIs, by showing how to use them to convert a sequential

OCaml hash table into a thread-safe one with minimal effort.

• We formalize the static and dynamic semantics of DRFCaml and the aforementioned APIs in

the Rocq (formerly Coq) proof assistant, and build a semantic model in Rocq/Iris in order to

verify the soundness of the entire system. All results in this paper have been mechanized in

Rocq (see our supplementary material [13]).

The rest of the paper is structured as follows. In §2, we give a tour of DRFCaml, as well as the

Capsule and Reader-Writer Lock APIs, by example. In §3 and §4, we present formal details of

DRFCaml and its type system. In §5 and §6, we discuss the proof of semantic soundness of the type

system and the two APIs. Finally, in §7, we provide an extensive comparison with related work.

2 A Tour of Modal Programming in DRFCaml
In DRFCaml, a mode is a tuple of several pieces of information. Each component of this tuple

concerns a specific aspect, or axis. For instance, on the locality axis, a tuple component can be either

local or global; on the uniqueness axis, a tuple component can be either unique or aliased; and
so on. In this section, we recall the three axes introduced in previous work by Lorenzen et al. [21],

namely locality (§2.1), uniqueness, and affinity (§2.2). We recall that the effect of a mode is deep but

can be stopped by an explicit modality (§2.3). Then, we reach the contributions of this paper. To

forbid data races, we introduce two new axes, namely contention and portability (§2.4). We point

out that all legacy (sequential) OCaml code remains well-typed (§2.5), and describe the mode at

which all legacy OCaml code type checks: the legacy mode. Next, we discuss the interaction of

modes and mutable references (§2.6). Then, we propose two original APIs, namely the Capsule API

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:5

(§2.7) and the Reader-Writer Lock API (§2.8), which allow multiple threads to safely access shared

mutable data structures. These APIs have special status: although the type of each operation can be

expressed using our type-and-mode system, the implementations of these operations do not satisfy

the strict rules imposed by our type-and-mode checker. Thus, to prove that these APIs are safe, we

must verify that these implementations are semantically well-typed. This is the topic of §5 and §6.

2.1 Locality Axis
The locality axis allows users to express the lifetime of a value. A mode, projected onto this axis, is

either local or global. The lifetime of a local value is restricted to the current region.
2
A global

value, on the other hand, has indefinite (permanent) lifetime. Legacy OCaml values behave like

global values. As such, the legacy mode will be global in the locality axis (see §2.5). This means

that if no annotation is given, a value is considered global by default.

The distinction between local and global is coarse-grained. Our system is less expressive than

Rust’s, which allows the lifetime of a value to be tied to a specific region (not just the current region)

via so-called lifetime variables. Our approach makes our system a simple, non-intrusive addition to

the OCaml type system. While Lorenzen et al. [21] describe how this facility allows stack allocation

of local values, our interest is that this axis allows granting temporary access to a value. For example,

consider the following program fragment:

(* Suppose f : int ref @ local -> unit *)

let x : int ref = ref 1 in let y : int ref = ref 2 in

f x; x := 42; f y; assert (!x = 42)

Here, the unknown function f takes an integer reference as a parameter, and returns nothing. In the

type of f, this parameter is annotated with local. This means that f promises to treat its parameter

as a value whose lifetime is limited to this invocation of f. In other words, f promises not to retain

access to this parameter after it returns, for example by storing it to a location that survives the

function call. In this example, thanks to this promise, one can reason that, once the call f x ends,
f has lost access to x, so the call f y cannot affect x. Therefore, the final assert statement must

succeed.

The locality feature both powers optimizations, such as stack allocation, and also helps to reason

about programs. In fact, locality plays a crucial role in our system, and is exploited in the Capsule

and Reader-Writer Lock APIs (§2.7 and 2.8).

Let us now offer two concrete examples where a function f accepts a local parameter and

attempts to let it escape. In these examples, we assume that t is an arbitrary type; t could be, say,

int ref, but its definition is irrelevant. Here is the first example:

let sm @ global : t ref = ref (...)

let f : t @ local -> unit = fun x -> sm := x

Error: value escapes its region ^

In this example, f attempts to store the value x, which it has received as a local parameter, into the

global reference sm. Since sm has a permanent lifetime, such a store would allow x to outlive this

invocation of f. Thus, the type system forbids the store instruction sm := x.

The next example displays a slightly more subtle violation of the type discipline:

let sm @ global : (unit -> t) ref = ...

let f : t @ local -> unit = fun x -> sm := (fun () -> x)

Error: value escapes its region ^

2
In short, each function body forms a region. For more details, see Lorenzen et al. [21, §6.2, §6.3].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:6 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

In this example, f tries to smuggle x through a closure: that is, it attempts to store a closure, which

captures the value x, into the global reference sm. To prevent this, the type system imposes

a restriction on closures: a closure that captures a local variable must itself be local. As a result,
the store instruction is again forbidden.

2.2 Uniqueness and Affinity Axes
The uniqueness axis supports a form of ownership reasoning. Lorenzen et al. use uniqueness to

achieve memory reuse and allow in-place updates. We need uniqueness for a different reason: our

Capsule API (§2.7) introduces a notion of keys, which serve as capabilities to access a data structure.

These keys must be unique.

A unique value is a value that has not been duplicated in the past, so the copy that we have is

the unique copy. In particular, if this value is a pointer, then we have unique access to—or ownership

of—the data structure at this address. aliased is the negation of unique: an aliased value may

have been duplicated in the past; there may exist several copies of it, so we cannot assume that

we have unique access. If no annotation is given, a value is considered aliased. This will be the
default for all legacy OCaml values.

It is worth noting that uniqueness is not required in order to mutate a reference. Unlike Rust,

we do not enforce an AXM discipline. In fact, our goal is precisely to allow a reference to become

aliased, since this enables us to type-check legacy OCaml code. Instead, we use uniqueness to

characterize a value as a capability. For example, consider this program fragment:

(* Suppose delete : key @ unique -> unit *)

let x @ unique : key = ... in delete x; delete x

Error: x cannot be treated as unique ^

The function delete expects a key, and returns nothing. Because the key is marked unique, it is
consumed by delete. Thus, the second call to delete is illegal.
The uniqueness axis provides information about the past: it tells us whether a value has been

duplicated. It does not forbid duplicating this value in the future. For example, if x is passed to a

function that expects an aliased key, x may be (implicitly) downgraded from unique to aliased
via submoding, and can no longer be used as a capability. Limiting future use of a value is the role

of the affinity axis. Along this axis, once indicates that a value must be used at most once, whereas

many allows a value to be used as many times as one wishes. The uniqueness and affinity axes

interact via a simple rule: a closure that captures a unique variable must be once. To see why this

rule is necessary, consider the following program:

(* Suppose delete : key @ unique -> unit *)

let x @ unique : key = ... in

let f = (fun () -> delete x) in List.iter f l

Error: f cannot be used multiple times ^

Each call to f() causes a call to delete x. We have just explained that, because the key x is unique,
calling delete x twice in succession is disallowed. Thus, the function f must not be called twice: it

must be once. In the above example, List.iter may call f several times, so it requires f to bemany.
As a result, this example is ill-typed.

We end this subsection with a remark on borrowing. While a unique value can be downgraded

to an aliased one, this change cannot be undone: modes can only be weakened. This is a severe

restriction: if one wishes to use a unique value several times, then its uniqueness must be given up

and cannot be recovered. To alleviate this limitation, Lorenzen et al. [21] use a form of borrowing,

a construct that transforms a possibly unique value 𝑣 into an aliased and local value during the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:7

execution of a subexpression 𝑒 , and thereafter reestablishes the value’s original mode. Their notion

of borrowing is simpler but more restricted than Rust’s, due to the coarse-grained nature of locality.

2.3 Deep Modes and Modalities
So far, we have illustrated the meaning of modes by examining simple “atomic” values, such as an

integer reference. New questions arise when one wishes to work with composite values, such as

tuples. For instance, consider the following program:

let f : int ref @ aliased -> int ref @ unique -> int ref * int ref @ ?

= fun x y -> (x, y)

The function f expects an aliased parameter x and a unique parameter y and returns the pair

(x, y). The question is: what mode should this pair carry?

By convention [21, §2.1], modes are deep. That is, mode annotations take effect in depth: if a tuple

has mode m then it is understood that each component has mode m as well. Thus, in the above

example, the question mark cannot be replaced with unique: that would require converting x from
aliased to unique, which is forbidden. The question mark can be replaced with aliased, as it is
safe to convert y from unique to aliased. However, doing so would cause a loss of information:

the uniqueness of y would be forgotten. To circumvent this limitation, a type can be decorated

with a mode: the type 'a @@ m denotes a value of type 'a at mode m. This construct is known as

a modality.
3
Taking advantage of this feature, in the previous example, one can treat the pair as

unique, yet with the caveat that its first component is aliased. The return type and mode of f are
then ((int ref @@ aliased) * int ref) @ unique.

2.4 Contention and Portability Axes
We now reach the first contribution of this paper: we introduce two new axes, namely contention

and portability, whose purpose is to keep track of (and to restrict) the way in which mutable data is

shared between threads (immutable data can never cause a data race, and is thus unaffected by

these axes).

Many previous type systems and program logics (such as Rust and Concurrent Separation Logic

with fractional points-to assertions) prevent data races by ensuring that a value is never at the

same time mutable and aliased. However, because we want all legacy (sequential) OCaml code to

be well-typed, we do not wish to impose such a strong restriction.

Thus, we introduce a new axis, contention, with the following three modes and submoding

relation: uncontended ≤ shared ≤ contended. In short, a value is uncontended if mutable

fields within this value are accessible for reading and writing by the current thread (and inaccessible

to other threads), shared if mutable fields within this value are accessible only for reading by the

current thread (and possibly accessible for reading to other threads as well), and contended if

mutable fields within this value are not accessible at all to the current thread.

A reference can be written only if it is uncontended, and can be read only if it is shared
or uncontended. For example, the following program is ill-typed, as it attempts to update a

contended reference:

let f : int ref @ contended -> unit = fun x -> x := 42

Error: potential data race ^

3
Not every mode has a corresponding modality: for instance, the modality 'a @@ aliased exists, but the modality 'a @@

unique does not. For further details, see §4.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:8 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

While the contention axis is on the one hand prescriptive (it restricts future read and write

accesses), it is also descriptive: it expresses information about the past, namely whether a value

has been transmitted to other threads. It is natural (and in fact necessary) to introduce a dual axis,

portability, which determines whether a value may be transmitted to another thread in the future.

Along this axis, we introduce two points: a portable value can safely be transmitted to another

thread; a nonportable value cannot. The submoding relation is portable ≤ nonportable.
The contention and portability axes interact through the following rule: if a closure captures

an uncontended or shared value, then this closure must be nonportable. In the case of an

uncontended value, it is easy to see why this rule is necessary: if a closure has read-write access

to a mutable value then allowing this closure to be invoked by multiple threads would cause a data

race. In the case of a shared value, the reason is more subtle; we come back to this point shortly.

As a result of this rule, the following program is ill-typed. Because the reference x is declared
uncontended, the function f must be nonportable. Because f is nonportable, invoking f in a

new thread is forbidden.

let x @ uncontended : int ref = ref 42 in

let f @ nonportable : unit -> int = fun _ -> !x in

Thread.create f ()

^ Error: can't cross threads

If x was instead declared contended then f could be portable, but it would then be impossible

to use the reference x, thus still rejecting the program.

We now come back to the question: why cannot a portable closure refer to a shared variable

After all, one might think that multiple threads can safely read from the same reference. The reason

is illustrated by this example, which must be rejected:

let x @ uncontended : int ref = ref 42 in

let y @ shared = x in

Thread.create (fun () -> !y) ()

^ Error: can't cross threads

Here, an uncontended reference x is copied under the name y, and y is weakened to shared. As a
result, even though access to y is restricted in the child thread, the parent thread might still write

to this reference under the name x, causing a data race. An alternative solution would be to allow

downgrading uncontended to shared only if the reference is unique; then, in the above example,

an error would be detected at the second line. We do not pursue this approach because it would

complicate the submoding relation.

Thus, re-iterating what has been said above, portable closures are seriously restricted: they

cannot have any access to mutable references from their environment. In §2.7 and 2.8, we will

show how to work around this limitation by placing mutable data structures inside capsules.

2.5 Summary of Modes and the Legacy Mode
Fig. 2 offers a summary of all modes, organized along our five axes. In each axis, modes are organized

vertically along the submoding relation (≤): the strongest mode appears at the bottom, while the

weakest mode appears at the top. For instance, in the “locality” axis, the submoding relation is

global ≤ local, because a global value can safely be viewed as local (this restricts its lifetime),

whereas a local value cannot be viewed as global (that would allow it to escape its scope).

The oriented edges depict the implications that connect distinct axes. Between uniqueness and

affinity, we have the following implication: “a closure that captures a unique variable must be

once”; therefore, in the contrapositive form, “the free variables of amany closure must be aliased”.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:9

local

global

aliased

unique

once

many

contended

shared

uncontended

nonportable

portable

Locality UniquenessAffinity ContentionPortability

≤ ≤≤

≤
≤

≤

Fig. 2. The full collection of modes.

Between contention and portability, the implications are: “a closure that captures an uncontended
or shared variable must be nonportable” and “the free variables of a portable closure must be

contended”.
Along each axis, we have shown only the points that exist on this axis. A mode is a 5-tuple of

one point along each axis. Naturally, we do not require users to systematically annotate their code

with 5-tuples; that would be heavy. Instead, along each axis, we fix a default point, and we allow a

component of a 5-tuple to be omitted when it is the default point along its axis.

We choose the default points in such a way that the 5-tuple of the five default points is the legacy

mode, that is, the mode at which all legacy OCaml code
4
can be type-checked. The legacy mode is

defined as follows: legacy ≜ (global,many, aliased,nonportable,uncontended).
The mode annotation “.” denotes the legacy mode. Furthermore, we use the following syntactic

sugar: if the declaration of a type t is followed by, for example, default portable contended then,

for values of this type only, the default points on their respective axes become portable and

contended. This convention is used in the Capsule and Reader-Writer Lock APIs (Figures 3 and 4).

2.6 Modes and References
Let us now outline more precisely howmodes andmutable references interact. This aspect is entirely

new: the type system of Lorenzen et al. [21] did not include mutable references at all. References

can also be used to model OCaml’s mutable fields. Two questions arise: what restrictions do modes

impose on references? And what is the relation between the mode of a reference and the mode of

its contents?

Our answer to the first question is guided by soundness constraints. As we have seen earlier

in §2.4, the contention axis restricts the ways in which a reference may be used: a uncontended
reference can read and written, and a contended reference cannot be used at all. The other axes

do not restrict when references can be used.

Our answer to the second question is guided mainly by ergonomic considerations. References

must be backwards compatible, that is, the value stored inside of a reference at legacy mode must

itself be at legacy mode. However, we want a somewhat more flexible design. For example, we

want to be able to track the portability of values inside of references. This comes up when storing

closures in references, and even more so when we discuss the Capsule API (§2.7). In particular, the

latter use case requires the portability of a reference to match the portability of its contents. That is,

while nonportable references can contain nonportable values (and, thanks to modalities or to

4
OCaml up to version 4.x offers a limited form of concurrency, where only one OCaml thread and several C threads can run

concurrently; the main application of this feature is asynchronous input/output. True shared-memory concurrency was

introduced in OCaml 5. By “legacy code”, we refer to the existing body of sequential OCaml code.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:10 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

module Key : sig

type 'k t default portable contended (* the abstract type of keys *)

type packed = Key : 'k t -> packed (* an existential type of keys *)

val create : unit -> packed @ unique (* key & capsule creation *)

end

module Data : sig

type ('a,'k) t default portable contended (* data of type 'a protected by key 'k *)

val create :

(unit @ . -> 'a @ .) @ local once portable ->

('a, 'k) t @ .

val destroy :

'k Key.t @ unique ->

('a, 'k) t @ . ->

'a @ .

val both :

('a, 'k) t @ . -> ('b, 'k) t @ . -> ('a * 'b, 'k) t @ .

val map :

'k Key.t @ unique ->

('a @ . -> 'b @ .) @ local once portable ->

('a, 'k) t @ . ->

'k Key.t * ('b, 'k) t @@ aliased @ unique

val extract :

'k Key.t @ unique ->

('a @ . -> 'b @ portable contended) @ local once portable ->

('a, 'k) t @ . ->

'k Key.t * 'b @@ aliased @ unique portable contended

val map_shared :

'k Key.t @ local ->

('a @ portable shared -> 'b @ .) @ once portable ->

('a @@ portable, 'k) t @ . ->

('b, 'k) t @ .

val extract_shared :

'k Key.t @ local ->

('a @ portable shared -> 'b @ portable contended) @ once portable ->

('a @@ portable, 'k) t @ . ->

'b @ portable contended

end

Fig. 3. The Capsule API.

mode weakening, also portable values), we wish to restrict portable references to contain only

portable values.

A naive implementation of this would be to let the mode of the reference itself serve also as the

mode of the contents. This is unfortunately unsound, because mode weakening, applied to the

reference, would then also apply to its contents. That would effectively give us covariant references,

which are unsound.

Instead, we introduce two separate types of references, namely nonportable and portable
references. The annotation carried by a reference’s type determines the portability of its contents.

Our typing rules for references are formally presented in §4.4. There, we also describe atomic

references, which our type system also supports.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:11

2.7 The Capsule API
We now reach a second key contribution of this paper, namely the Capsule API. The type system

presented so far does not allow accessingmutable data frommultiple threads at all, since contended
references are inaccessible. This API allows a value (or, more generally, a data structure) to become

protected by a unique key. Unique ownership of the key enables mutation of the contents of the

capsule without fear of data races: if the key becomes aliased, then the contents of the capsule

become read-only.

The Capsule API is presented in its entirety in Fig. 3.
5
It consists of two modules, Key and Data.

These modules declare two abstract types, 'k Key.t and ('a, 'k) Data.t.

• A value of type 'k Key.t is a key. At runtime, such a value is irrelevant; it is a unit value. At

type-checking time, the type variable 'k serves as a type-level name for this key. The type

Key.packed, an existential type, hides the name 'k.

• A value of type ('a, 'k) Data.t represents encapsulated data of type 'a that is protected

by the key 'k. This type does not involve an indirection: a value of type ('a, 'k) Data.t is

represented at runtime in the same way as a value of type 'a.

In summary, a capsule is a conceptual boundary, and there is a one-to-one correspondence between

keys and capsules: the capsule associated with a key 'k is just the collection of all encapsulated

data that are protected by this key.

By default, the types 'k Key.t and ('a, 'k) Data.t are portable and contended. In other words,

keys and encapsulated data are safe to share and access across multiple threads. This makes sense,

given that ensuring thread safety is the entire raison d’être of capsules!

The function Key.create creates a fresh key, whose type and mode are Key.packed @ unique. Open-

ing this existential package gives rise to a fresh, abstract key name 'k; then, the new key has

type and mode 'k Key.t @ unique. Because there is a one-to-one correspondence between keys and

capsules, one can think of Key.create as also creating a new capsule, which is initially empty and is

associated with the key 'k.

A capsule is populated by applying Data.create to a constructor function f of type unit -> 'a.

The result of this function, a value of type 'a, becomes protected by the key 'k: in other words, it

becomes encapsulated by the capsule. As a witness for this fact, Data.create returns the same value

at type ('a, 'k) Data.t. A capsule may be populated in several steps: Data.create can be applied

several times to the same type-level key 'k.

Crucially, the constructor function f that is passed to Data.create must be portable.6 This

guarantees that f cannot access any pre-existing mutable data (§2.4). So, if f returns a mutable data

structure, then this data structure must be freshly allocated. In other words, the data that enters

the capsule must be “self-contained”. The purpose of this restriction is to ensure that any mutable

data entering the capsule is properly encapsulated by it (i.e., only accessible via the capsule)—were

this not so, an external alias of the capsule’s mutable data could be used to incur a data race.

The Capsule API offers several ways to access and mutate a capsule: (1) Data.destroy (2) Data.map,

and (3) Data.extract require a unique key, while (4) Data.map_shared and (5) Data.extract_shared

do not. Therefore, the last two functions can be applied to an aliased key. Two elements of the

same capsule can be accessed simultaneously by joining them using Data.both.

A unique key grants full (read-write) access to the data inside a capsule. In Data.destroy, the key

and capsule are destroyed, and the data in the capsule is converted back to its original type 'a. In

Data.map and Data.extract, the data in the capsule is temporarily made accessible to a user-supplied

5
For readability, we omit the modes of the API functions themselves, all of which are portable.

6
The constructor function is also marked local and once, which means that Data.create promises to not leak this function

and to invoke it at most once.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:12 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

function f whose OCaml type is 'a -> 'b. This function must be portable, guaranteeing that it

does not have access to any mutable state (beside its argument of type 'a) and thus cannot leak its

argument.

(1) In Data.map, the function f : 'a -> 'b is applied to the data in the capsule, and its result enters

the capsule, so a value of type ('b, 'k) Data.t is eventually returned, together with the key,

which is still unique.

(2) In Data.extract, the function f : 'a -> 'b is applied to the data in the capsule, and its result

leaves the capsule, so a value of type 'b is returned together with the unique key. Unlike

for Data.map, the result of f here must be portable; this prevents f from returning a closure

whose environment contains pointers to mutable capsule data, which could subsequently

lead to a data race if that closure were applied. The value of type 'b that is eventually returned

by Data.extract is therefore also portable, and must be viewed by the caller of Data.extract

as contended, so that any mutable capsule data that might be exposed through this value

cannot be accessed by the caller.

In contrast with a unique key, an aliased key grants only read access to the data inside a cap-

sule. Thus, in Data.map_shared and Data.extract_shared, which accept an aliased key, the function f

receives read-only access to the data of type 'a. This is expressed via a new mode, shared, which
lies between uncontended and contended on the contention axis (Fig. 2). Like uncontended
references, shared references can be read. Like contended references, they cannot be written. In

Data.map_shared and Data.extract_shared, because the data can be read by several threads concur-

rently, we must require it to be portable. This is expressed by requiring the encapsulated data to

have type ('a @@ portable, 'k) t.7

A critical point about both Data.map_shared and Data.extract_shared is that they can only be

applied to a local key. Thus, they promise to merely temporarily borrow this aliased key. As we

will see in the next section, this is essential to ensure that the temporary nature of the read-only

access granted by a reader-writer lock is respected.

As with Data.map, Data.map_shared only accepts portable callback functions. As a result, it is not

possible to simultaneously access the shared parts of two different capsules. Indeed, it is generally

unsound to hold any combination of uncontended and shared references to two different capsules

at once. For example, consider the following snippet:

let d3 = Data.extract_shared key1 (fun a => Data.map_shared key2 (fun b => a @@ shared) d2) d1

Error: this value is contended but expected to be shared ^

Here, a value (e.g., a reference) a from the capsule d1 (governed by key1) becomes aliased by another

capsule (the result d3, governed by key2). This could subsequently lead to a data race because one

could use key1 to mutably access d1 while d3 is concurrently being accessed via key2. Thus, it is

important that the above code is disallowed, which it is: the innermost portable closure cannot
refer to the value a as shared, only as contended.

2.8 The Reader-Writer Lock API
We have seen how capsules associate data structures to keys, and how both unique and aliased

keys are used to safely mediate concurrent access to the data within the capsules. However, we

have yet to see how the keys themselves are shared across threads. In this section, we present a

Reader-Writer Lock API, which we can use to safely share access to keys.

7
This requirement can be a bit inconvenient, as it implies that the user must plan ahead and place a @@ portable modality

at the root of the data. In the future, this inconvenience might be relieved, to some extent, by allowing this modality to

commute with other type constructors.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:13

module RwKeyLock : sig

type 'k t default portable contended

val create :

'k Capsule.Key.t @ unique ->

'k t @ .

val unique_protect :

'k t @ . ->

('k Capsule.Key.t @ unique -> ('k Capsule.Key.t * 'b) @ unique portable contended)

@ once portable ->

'b @ unique portable contended

val shared_protect :

'k t @ . ->

('k Capsule.Key.t @ local -> 'b @ portable contended) @ once portable ->

'b @ portable contended

end

Fig. 4. The Reader-Writer Lock API.

module RwHashtbl = struct

type t = Table :

{ table : (((int, string) Hashtbl.t) @@ portable,'k) Capsule.Data.t;

lock : 'k RwKeyLock.t } -> t

default portable contended

let create () : t =

let key = Capsule.Key.create () in

let table = Capsule.Data.create (fun () -> box (Hashtbl.create ()) in

let lock = RwKeyLock.create key in

Table { table; lock }

let add (Table { table; lock }) (k : int) (v : string) : unit =

RwKeyLock.unique_protect lock (fun key ->

unbox (Capsule.Data.extract key (fun table -> Hashtbl.add (unbox table) k v) table))

let find (Table { table; lock }) (k : int) : string =

RwKeyLock.shared_protect lock (fun key ->

Capsule.Data.extract_shared key (fun table -> Hashtbl.find table k) table)

end

Fig. 5. A thread-safe hash table. We omit legacy @ . mode annotations.

Fig. 4 presents a Reader-Writer Lock API designed specifically for keys. The Reader-Writer Lock

is a typical many-readers single-writer lock: only one thread may gain unique access to the key

(via unique_protect), whereas multiple threads may concurrently gain aliased access to the key (via

shared_protect).

The readers gain only local access to the key: this ensures that the key is not captured and stored
for later use, outside the callback function of shared_protect.

To display the versatility of the Capsule and Reader-Writer Lock APIs, we present a simple client

that uses capsules to share hash tables across threads (Fig. 5). This client implements a module for

concurrent hash tables, where hash tables are encapsulated in a capsule, and reader-writer locks

are used to grant access to the associated key. A new key is created upon allocation; then, the hash

table constructor is called within a capsule, which requires Hashtbl.create to be portable. Since

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:14 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

we allow many readers to call RwHashtable.find, the hash table itself must be portable as well, and

Hashtbl.find must accept a shared argument.

These stronger mode requirements mean that we cannot reuse OCaml’s existing Hashtbl module

completely as is (as the legacy mode is too weak). But we also do not have to change its imple-

mentation in any substantive way—we merely have to annotate it to indicate: (1) that many of its

functions (including Hashtbl.create) are in fact portable; (2) that Hashtbl.find is well-typed with a

shared argument (because it only reads from its argument); and (3) that the references it uses in

the definition of the data type Hashtbl.t should be portable, so that Hashtbl.t is portable.
Finally, the key is protected by a reader-writer lock. Subsequent operations over the hash table

are then performed via the reader-writer lock operations RwKeyLock.unique_protect and RwKeyLock.

shared_protect. In both cases, note that the operation passed to the RwKeyLock is handled via closures

around the hash table capsules. These closures are portable since the capsules are themselves

contended and portable. The above example is type-checked in our modal type system, and

allows safe concurrent access to OCaml’s existing hash tables.

2.9 Limitations of the Capsule API
While capsules can be used to build thread-safe versions of many data types, they are not a panacea.

In particular, consider modules that use static mutable state—i.e., mutable state that is “hidden” in

the sense that it is not part of the representation of the abstract data type, but is instead implicitly

shared between the operations of the module via the environments of their closures. A public

operation that has access to this “static” state cannot be portable, and therefore cannot be invoked
by the callbacks that are passed to the capsule and reader-writer lock operations. This limitation is

fundamental and intentional: a module with static mutable state could actually cause data races if

its operations were invoked concurrently!

Another unavoidable limitation is the need to annotate existing OCaml libraries with portable
and shared modes, as we saw with the Hashtbl module. While this limitation is mostly a matter

of adding annotations to module signatures and relevant reference allocations, it may still be a

challenge to consider all uses of each function in a module signature, where one might need multiple

versions of the same signature for each mode use case. We believe this limitation can likely be

overcome by introducing a notion of mode polymorphism.

Finally, there are other limitations of capsules that we believe are not fundamental and could be

lifted in future work. We foresee the following improvements to the Capsule API:

• We believe an operation Data.project_shared : 'k Key.t @ . -> ('a @@ portable, 'k) t @ . ->

'a @ portable shared would be sound. It would enable a shared alias to be extracted from

encapsulated data, given a global and aliased key.

• The operations Data.map_shared and Data.extract_shared require callbacks that are global
instead of local, as opposed to the other functions on Data. We think that they can, in fact,

also be local, thus allowing the callbacks to reuse the same key, or even a different local and
aliased one, to another capsule in a nested call to Data.*_shared.

• Similarly, we believe that the callback arguments in the Reader-Writer Lock API could also

be local, which would reap similar benefits as above. To be more concrete, it would allow

programs such as the following, which is currently rejected:

RwKeyLock.shared_protect lock1

(fun key1 => RwKeyLock.shared_protect lock2

(fun key2 => let x = Capsule.Data.extract key2 fun1 in

let y = Capsule.Data.extract key1 fun2 in ...))

In the current API, since key1 is local, it can’t be used in the innermost global closure.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:15

𝑙 ∈ Locality ::= local | global
𝑜 ∈ Affinity ::= once | many
𝑢 ∈ Uniqueness ::= aliased | unique
𝑝 ∈ Portability ::= nonportable | portable
𝑐 ∈ Contention ::= contended | shared |

uncontended

𝜋 ∈ThreadId ℓ ∈ Loc 𝜄 ∈ Fid 𝑛 ∈ N
𝑎 ∈ Addr ::= ℓ | (𝜋, 𝑛)
𝜔 ∈ Order ::= NA{1,2} | AT
st ∈ LockSt ::= wr | r𝑛

𝑚 ∈ Mode ≜ Locality × Affinity × Uniqueness × Portability × Contention
𝑣 ∈ Value ::= () | 𝑧 | true | false | 𝑎 | 𝜆 (𝜄,𝑎) 𝑓 𝑥, 𝑒 | (𝑣, 𝑣) | inl(𝑣) | inr(𝑣)
𝑒 ∈ Expression ::=

𝑣 | 𝑥 | let 𝑥 := 𝑒 in 𝑒 | (𝑒; 𝑒) | 𝜆𝑙 𝑓 𝑥, 𝑒 | 𝑒 (𝑒) | if 𝑒 then 𝑒 else 𝑒 | 𝑒 ⊕ 𝑒 | ⊕(𝑒) |
case 𝑒 {inl 𝑥 → 𝑒; inr 𝑥 → 𝑒} | inl(𝑒) | inr(𝑒) | (𝑒, 𝑒) | unpair 𝑒 as (𝑥,𝑦) in 𝑒 |
alloc𝑙 | !𝜔𝑒 | 𝑒 ←𝜔 𝑒 | cmpXchg(𝑒, 𝑒, 𝑒) | xchg(𝑒, 𝑒) | faa(𝑒, 𝑒) | fork(𝑒) |
borrow 𝑥 := 𝑒 for 𝑦 := 𝑒 in 𝑒 | box(𝑒) | unbox(𝑒) | region(𝑒) | end𝑛 (𝑒)

Fig. 6. DRFCamlLang syntax.

3 DRFCamlLang
In §2 we presented the modes through examples written in OCaml. In this section, we present

the language used to formalize the modal type system, namely an OCaml-like 𝜆-calculus called

DRFCamlLang. DRFCamlLang is a typical 𝜆-calculus with recursive functions, higher-order store,

and multi-threading. Its distinguishing feature is a store made up of two components: a heap, which

behaves like the OCaml heap, and (for each thread) a stack of values. The stacks keep track of the

lifetimes of stack-allocated values.

Fig. 6 describes the values and expressions of DRFCamlLang. Values include the unit value,

integers, Booleans, 𝜆-abstractions, and addresses. Since the store separates the heap and one stack

per thread, an address is either a heap location ℓ or a stack location (𝜋, 𝑛), where 𝜋 is a thread

identifier and 𝑛 is an offset into this thread’s stack. A 𝜆-abstraction is labeled with an address

𝑎, which can be regarded as its physical address, and may be a heap address or a stack address,

and with a function-id 𝜄, which can be regarded as its logical address. Whereas, due to the stack

allocation discipline, physical addresses can be reused, logical addresses are never reused.

Expressions include control constructs (conditionals and sequencing), unary and binary opera-

tions (collectively denoted ⊕), pairs and sums, and function application. On top of this, DRFCaml-

Lang offers a number of operations to allocate, read and write mutable references. There is just one

kind of reference, but we distinguish non-atomic and atomic accesses. A fresh mutable reference

is allocated by alloc𝑙 , where 𝑙 determines whether the reference is allocated in the heap (global)
or on the stack (local). Closures are also allocated, so the expression 𝜆𝑙 𝑓 𝑥, 𝑒 (binding both the

function 𝑓 itself and its argument 𝑥 ) is tagged with a locality 𝑙 . Loads and stores are annotated with

an order 𝜔 , which determines whether the operation is non-atomic or atomic (at). A non-atomic

operation is further split into two parts: na1 and na2. The former flags the location as “currently

being read from or written to”, and the latter applies the relevant operation and resets the flag. Both

parts check whether a location’s flag is compatible with the current operation. Thus, the program

gets stuck whenever a non-atomic store occurs at the same time as another non-atomic access.
8

The three operations cmpXchg (conditional swap), xchg (unconditional swap), and faa (fetch and

add) are atomic. Finally, DRFCamlLang introduces several new operations: borrow, which lets a

8
This method for modeling data races was also employed by Jung et al. [18] and is described in detail in Jung’s thesis [17].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:16 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

unique value become locally aliased; box and unbox, which introduce and eliminate modalities;

region, which creates a new stack region; and end𝑛 , which destroys all stack locations at and above

index 𝑛.

The semantics of DRFCamlLang is defined as a stateful small-step operational semantics, where

the state consists of three components (ℎ, 𝑠, fs):
ℎ ∈ Heap ≜ Loc ↩→ LockSt × (Fid + Value)
𝑠 ∈ Stacks ≜ ThreadId ↩→ list (LockSt × (Fid + Value))
fs ∈ Funcs ≜ Pfin (Fid)

The heap ℎ is a finite map from locations to “memory slots”, which are pairs of a lock state and

either a function-id or a value. The lock state is used to track a thread’s non-atomic access to

some location: state wr denotes a write access; state r𝑛 denotes 𝑛 concurrent read accesses. The

collection of stacks 𝑠 is a finite map from thread-ids to stacks, where each stack is a list of memory

slots. Finally, the function set fs is a finite set of all the previously allocated function-ids.

A single step is denoted by (ℎ, 𝑠, fs, 𝑒) ⇝𝜋 (ℎ′, 𝑠′, 𝑒′, efs), where 𝜋 is the thread-id at which the

expression 𝑒 is executed, and efs — a list of thread-id and expression pairs, which we will refer to as

a thread pool — is the list of threads spawned by 𝑒 . We use (ℎ, 𝑠, fs, tp) ⇝ (ℎ′, 𝑠′, fs′, tp′) to denote

a step within a thread pool tp. By lack of space, we omit the small-step reduction rules. A selection

of these rules is given in our technical appendix [13, §A]. The following paragraphs summarize the

non-standard aspects of this semantics.

Fork and allocations. Each thread has its own stack. fork allocates a new stack and a fresh

thread-id. A local allocation pushes a new memory slot onto the current thread’s stack.

Stack regions. A stack is not explicitly decomposed into stack frames or regions. Instead, the

region operation implicitly creates a new region, just by reading the current stack size 𝑛; later,

this region is destroyed by truncating the stack at size 𝑛. More precisely, the expression region(e)
reduces in three stages, as follows. First, region(e) reduces to end𝑛 (𝑒), where 𝑛 is the current size of

the current thread’s stack. Second, end𝑛 ( []) is an evaluation context, so the expression 𝑒 is allowed

to reduce, in zero, one or more steps, to a value 𝑣 . Finally, end𝑛 (𝑣) deallocates all stack locations at

and above the cutoff 𝑛, and reduces to 𝑣 .

Atomic and non-atomic memory accesses; data races. Following standard practice, we distinguish

atomic and non-atomic memory accesses. This distinction is necessary because it plays a role in the

definition of a data race. By definition, a data race is a situation where two threads attempt to access

the same location, at least one access is a write, and at least one access is non-atomic. Furthermore,

following an established practice [18, 20], we build a data race detector into the dynamic semantics

of DRFCamlLang. In other words, we set up the semantics in such a way that a data race can cause

a crash, so that crash-freedom of well-typed programs implies data race freedom.

Our data race detector works as follows. First, every memory slot is equipped with a lock state,

which is checked and updated by all memory access operations. Second, a non-atomic memory

access is executed in two steps, whereas an atomic access is executed in just one step. In between

the two steps of a non-atomic memory access, the memory slot is locked, so an independent attempt

to access this memory slot causes a crash, unless both accesses are read accesses.

In summary, this operational semantics has the property that “if a machine configuration has

a data race, then it can reduce to a configurationwhere at least one thread is stuck”. As a consequence,

we obtain the following (machine-checked) theorem:

Theorem 3.1 (No Crash Implies No Race). Let (𝜎, tp) be a well-formed machine configuration,

where 𝜎 is the store and tp is the thread pool. If, in every configuration (𝜎 ′, tp′) reachable from (𝜎, tp),

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:17

every thread either is a value or is able to step, then, in every configuration (𝜎 ′, tp′) reachable from
(𝜎, tp), there is no data race.

Program logic. In §5, we will present a semantic model of DRFCaml and its type system. This

model is defined in the Iris logic [19], and is built on top of a program logic for DRFCaml. We

define the program logic in terms of Iris’s weakest preconditions, adjusted to work on languages

where the thread-id’s are visible at the level of the operational semantics (similar adjustments have

been made by e.g., Kaiser et al. [20], where thread-id’s were paired with expressions; we pair them

with steps in the operational semantics instead). Weakest precondition statements are denoted

by wp 𝑒 {Φ}𝜋 , and intuitively express that the expression 𝑒 may execute in thread 𝜋 , that it does

not get stuck, and if it reduces to a value 𝑣 then Φ(𝑣) holds. This intuition is formally proved in

an adequacy theorem, which relates weakest preconditions to a pure statement in the meta-logic.

Given this adequacy statement, we can prove the following corollary about weakest preconditions:

Corollary 3.1. If ⊢ wp 𝑒 {Φ}𝜋 then executing the closed program 𝑒 (with an initially empty heap

and stack, and with thread identifier 𝜋 ) cannot cause a data race.

Proof. Apply Theorem 3.1 followed by adequacy of the weakest precondition. □

4 Modal Type System
The DRFCamlLang types comprise the unit, Boolean, and integer types, sums and products, function

types, and modalities (§4.3), as well as non-atomic and atomic references (§4.4):

𝜏 ∈ Type ::= 1 | B | Z | 𝜏 + 𝜏 | 𝜏 × 𝜏 | 𝜏 @𝑚 → 𝜏 @𝑚 | □𝜂𝜏 | ref𝑝 (𝜏) | atomic(𝜏)

Our typing judgments Γ ⊢ 𝑒 : 𝜏 @𝑚 are annotated with a mode𝑚. A context is a list of variables

which are either disabled 𝑥 : − or annotated with a type and mode:

Γ ∈ Context ::= ∅ | Γ, 𝑥 : − | Γ, 𝑥 : 𝜏 @𝑚

An order on each mode axis is defined as in Fig. 2; it is then lifted pointwise to modes𝑚. We lift

our ordering on modes to contexts, and permit weakening modes in both conclusion and context:

∅ ≤ ∅
Γ1 ≤ Γ2

Γ1, 𝑥 : 𝜏 @𝑚 ≤ Γ2, 𝑥 : −
Γ1 ≤ Γ2 𝑚1 ≤𝑚2

Γ1, 𝑥 : 𝜏 @𝑚1 ≤ Γ2, 𝑥 : 𝜏 @𝑚2

Γ2 ≤ Γ1 Γ1 ⊢ 𝑒 : 𝜏 @𝑚1 𝑚1 ≤𝑚2

Γ2 ⊢ 𝑒 : 𝜏 @𝑚2

Sub

All typing rules can be found in our technical appendix [13, §C]. Units, Booleans, and integers

can be typed at any mode. Most typing rules are standard, up to simple mode annotations and

context joining (§4.1). For example, the rule for products is defined as follows:

Γ1 ⊢ 𝑒1 : 𝜏1 @𝑚 Γ2 ⊢ 𝑒2 : 𝜏2 @𝑚

Γ1 + Γ2 ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 @𝑚
Pair

Here, the contexts that type the two components are joined, as denoted by Γ1 + Γ2. Each component

must be well-typed at the mode of the product, namely𝑚. Only closures and fork (§4.2), modalities

(§4.3), and references (§4.4) interact with modes in interesting ways (Fig. 7).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:18 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

NonRecLam

Γ,�(l2 ,o2 ,p2 ) , 𝑥 : 𝜏 @𝑚 ⊢ 𝑒 : 𝜏 ′ @𝑚′

Γ ⊢ 𝜆𝑙2_ 𝑥, 𝑒 : (𝜏 @𝑚 → 𝜏 ′ @𝑚′) @ (𝑙2, 𝑜2, 𝑢2, 𝑝2, 𝑐2)

Fork

Γ,�(global,𝑜,portable) ⊢ 𝑒 : 𝜏1 @𝑚1

Γ ⊢ fork(𝑒) : 1@𝑚2

Box

Γ ⊢ 𝑒 : 𝜏 @ 𝜂 (𝑚)
Γ ⊢ box(𝑒) : □𝜂𝜏 @𝑚

Unbox

Γ ⊢ 𝑒 : □𝜂𝜏 @𝑚

Γ ⊢ unbox(𝑒) : 𝜏 @ 𝜂 (𝑚)

NaAlloc

Γ ⊢ 𝑒 : 𝜏 @ (𝑙,many, 𝑢, 𝑝,uncontended)
Γ ⊢ alloc𝑙 (𝑒) : ref𝑝 (𝜏) @ (𝑙, 𝑜,𝑢′, 𝑝, 𝑐)

NaLoad

Γ ⊢ 𝑒 : ref𝑝 (𝜏) @ (𝑙, 𝑜 ′, 𝑢′, 𝑝′, 𝑐) 𝑐 ≠ contended

Γ ⊢ !NA𝑒 : 𝜏 @ (𝑙, 𝑜, aliased, 𝑝, 𝑐)

AtStore

Γ1 ⊢ 𝑒1 : atomic(𝜏) @𝑚1

Γ2 ⊢ 𝑒2 : 𝜏 @ (global,many, 𝑢, portable, 𝑐)
Γ1 + Γ2 ⊢ 𝑒1 ←AT 𝑒2 : 1@𝑚2

AtAlloc

Γ ⊢ 𝑒 : 𝜏 @ (global,many, 𝑢, portable, 𝑐)
Γ ⊢ allocglobal (𝑒) : atomic(𝜏) @ (𝑙, 𝑜,𝑢′, 𝑝, 𝑐′)

AtLoad

Γ ⊢ 𝑒 : atomic(𝜏) @𝑚

Γ ⊢ !AT𝑒 : 𝜏 @ (𝑙, 𝑜, aliased, 𝑝, contended)

NaStore

Γ1 ⊢ 𝑒1 : ref𝑝 (𝜏) @ (𝑙 ′, 𝑜 ′, 𝑢′, 𝑝′,uncontended)
Γ2 ⊢ 𝑒2 : 𝜏 @ (global,many, 𝑢, 𝑝,uncontended)

Γ1 + Γ2 ⊢ 𝑒1 ←NA 𝑒2 : 1@𝑚2

Fig. 7. Selected typing rules for closures, fork, modalities, and references.

4.1 Context Joining
Following Lorenzen et al. [21], the type system enforces the following two rules: (1) if a variable is

marked once (as opposed to many) then it is used at most once; (2) if a variable is used several

times then it is marked aliased (as opposed to unique). This is achieved via a partial context

joining operation Γ1 + Γ2, which is defined as follows (technically, Γ1 + Γ2 := Γ is a relation, since in

the last case there are multiple possible Γ’s that match the right-hand side of the definition):

∅ + ∅ ≔ ∅
(Γ1, 𝑥 : −) + (Γ2, 𝑥 : −) ≔ (Γ1 + Γ2), 𝑥 : −

(Γ1, 𝑥 : 𝜏 @ 𝜇) + (Γ2, 𝑥 : −) ≔ (Γ1 + Γ2), 𝑥 : 𝜏 @ 𝜇

(Γ1, 𝑥 : −) + (Γ2, 𝑥 : 𝜏 @ 𝜇) ≔ (Γ1 + Γ2), 𝑥 : 𝜏 @ 𝜇

(Γ1, 𝑥 : 𝜏 @ (𝑙, 𝑜1, aliased, 𝑝, 𝑐))
+ (Γ2, 𝑥 : 𝜏 @ (𝑙, 𝑜2, aliased, 𝑝, 𝑐)) ≔ (Γ1 + Γ2), 𝑥 : 𝜏 @ (𝑙,many, 𝑢, 𝑝, 𝑐)

When a variable 𝑥 : 𝜏 @𝑚 is used in multiple expressions, 𝑥 is only available to them as aliased
and is required to bemany in the ambient context. As a result, a unique variable becomes aliased
if used in both branches of a context join, and once variables are never duplicated. Meanwhile, the

portability and contention axes introduce no complication; by virtue of the Sub typing rule, the

context join operation takes the meet operation (greatest lower bound) for these axes.

4.2 Closures, Locks, and Fork
The type system restricts which variables may be referred to inside a 𝜆-abstraction. For instance,

global (many, portable) closures must not capture local (once, nonportable) variables. Analo-
gously, amany closure must not capture unique variables, as a unique reference could become

aliased if the closure were copied. Instead, a unique variable must be weakened to aliased before

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:19

being captured by amany closure. A similar interaction occurs between portability and contention:

An uncontended or shared binding captured by a portable closure becomes contended.
Again following Lorenzen et al. [21], this is formalized using an operation on contexts, known

as a lock �(l,o,p) . It is used in the typing rule for 𝜆-abstractions (NonRecLam in Fig. 7): Typing a

𝜆-abstraction at mode (𝑙, 𝑜,𝑢, 𝑝, 𝑐) introduces a lock �(l,o,p) on the context. The mode of a variable

𝑦 ∈ Γ, viewed from inside the 𝜆-abstraction, is not necessarily the same as the mode of this variable

viewed from the outside; the lock might change the uniqueness and contention modes of bindings.

Bindings might also be disabled entirely. The lock operation is defined as follows:

∅,�(𝑙2,𝑜2,𝑝2 ) ≔ ∅
Γ, 𝑥 : −,�(𝑙2,𝑜2,𝑝2 ) ≔ Γ,�(𝑙2,𝑜2,𝑝2 ) , 𝑥 : −

Γ, 𝑥 : 𝜏 @ (𝑙1, 𝑜1, 𝑢1, 𝑝1, 𝑐1),�(𝑙2,𝑜2,𝑝2 ) ≔


Γ,�(𝑙2,𝑜2,𝑝2 ) , 𝑥 : (𝑙1, 𝑜1, 𝑢1 ∨ 𝑜†

2
, 𝑝1, 𝑐1 ∨ 𝑝†

2
)

if 𝑙1 ≤ 𝑙2, 𝑜1 ≤ 𝑜2, and 𝑝1 ≤ 𝑝2

Γ,�(𝑙2,𝑜2,𝑝2 ) , 𝑥 : − otherwise

To explain this definition, we introduce the following example. Say we are typing a closure, and

introduce a lock at mode (local,many,nonportable) to the context which contains a variable 𝑥

at mode (global,many,unique,nonportable,uncontended). The variable remains accessible

after taking the lock because global ≤ local, many ≤ many, and nonportable ≤ nonportable.
However, the uniqueness mode of 𝑥 within the closure must change: it must only be accessible at

mode aliased. To formalize this, we define a dagger operation † that relates affinity and portability

modes to their corresponding dual uniqueness and contention modes:

once† ≔ unique

many† ≔ aliased

nonportable† ≔ uncontended

portable† ≔ contended

Thus, after applying the lock, 𝑥 will be typed at uniqueness mode unique∨many† = aliased and

contention mode uncontended ∨ nonportable† = uncontended.
The construct fork(𝑒) is analogous to Thread.create (fun () -> e) () in OCaml. Its typing rule

ensures that the closure 𝜆().𝑒 is global and portable. This is enforced using the�(global,𝑜,portable)
lock in the Fork typing rule.

4.3 Boxes and Modalities
A modality 𝜂 can be interpreted as a function from modes to modes, which maps the mode of a

box to the mode of its contents. Thus, in the rules Box and Unbox, the mode of the contents of

the box is determined by 𝜂 (𝑚) where𝑚 is the mode of the boxed value. DRFCaml supports the

following modalities, corresponding to the global, many, aliased, portable, contended, and
shared modes, respectively:

𝐺 (𝑙, 𝑜,𝑢, 𝑝, 𝑐) ≔ (global, 𝑜, aliased, 𝑝, 𝑐)
𝑀 (𝑙, 𝑜,𝑢, 𝑝, 𝑐) ≔ (𝑙,many, 𝑢, 𝑝, 𝑐)
𝐴(𝑙, 𝑜,𝑢, 𝑝, 𝑐) ≔ (𝑙, 𝑜, aliased, 𝑝, 𝑐)

𝑃 (𝑙, 𝑜,𝑢, 𝑝, 𝑐) ≔ (𝑙, 𝑜,𝑢, portable, 𝑐)
𝐶 (𝑙, 𝑜,𝑢, 𝑝, 𝑐) ≔ (𝑙, 𝑜,𝑢, 𝑝, contended)
𝑆 (𝑙, 𝑜,𝑢, 𝑝, 𝑐) ≔ (𝑙, 𝑜,𝑢, 𝑝, 𝑐 ∨ shared)

To improve readability, we use the notation 'a @@ global to denote the □𝐺'a type, 'a @@ many to

denote □𝑀'a , and so on. The 𝐺 modality is somewhat special, as it requires its contents to be

not only global, but also aliased. This interaction between locality and uniqueness is required to

ensure that borrowing is sound [21, §2.6].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:20 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

Not every mode has a corresponding modality: for instance, it would not make sense to have a

local modality 𝐿(𝑙, 𝑜,𝑢, 𝑝, 𝑐) := (local, 𝑜,𝑢, 𝑝, 𝑐), because it would allow a reference from the heap

to the stack, breaking the lifetime guarantees of local:

let x @ local : int ref = ref 0

let y @ global : (int ref @@ local) ref = ref (box x)

More generally, local state cannot be nested inside of global state. Similarly, a many value

cannot contain anything once, an aliased value cannot contain anything unique, etc. This is also
why the 𝑆 modality only takes a join instead of setting the mode to shared: if we defined it as

𝑆 (𝑙, 𝑜,𝑢, 𝑝, 𝑐) := (𝑙, 𝑜,𝑢, 𝑝, shared), it would be possible to nest shared inside of contended state,

and then to leak it to other threads; see §2.4 for why this would be unsound.

For readers familiar with monadic vs. comonadic modalities, it may be helpful to think of 𝐺 ,

𝑀 , and 𝑃 as being comonadic, and 𝐴, 𝐶 , and 𝑆 as monadic. This characterization is not precise,

but it provides a useful intuition: the quasi-comonadic modalities are the ones that strengthen

their underlying type (e.g., 'a @@ portable provides a stronger guarantee than 'a), whereas the

quasi-monadic modalities weaken it. Correspondingly, the “polarity” of our modalities coincides

with their quasi-(co)monadicity: The quasi-comonadic 𝐺 ,𝑀 , and 𝑃 modalities correspond to the

bottom mode of their axes, whereas the quasi-monadic 𝐴 and 𝐶 modalities correspond to the top

mode of their axes. Lastly, the modalities of the three axes that apply to closures and locks (namely,

𝐺 ,𝑀 , and 𝑃 ) are precisely the quasi-comonadic ones.

4.4 References
The typing rules for non-atomic references ref𝑝 (𝜏) are shown in Fig. 7. We distinguish between

portable references refportable (𝜏) and nonportable references refnonportable (𝜏) (see also §2.6).

This annotation influences the mode of the value that is stored inside the reference.

A newly allocated reference is many, unique, and uncontended; The typing rule NaAlloc

allows arbitrary 𝑜,𝑢, 𝑐 , but many, unique, and uncontended are the best choices. Its locality

reflects whether it is allocated in the heap or on the stack. Its portability matches the portability of

the reference type.

Contention influences how a reference can be used. An uncontended reference can be read and

written; a shared reference can only be read (NaStore); and a contended reference cannot be

accessed at all (NaLoad, NaStore). There are no other restrictions on the use of references.

The relation between the mode of a reference and the mode of its contents is more complex:

each axis has its own rules.

On the affinity and uniqueness axes, the rules are as follows. The contents of a reference are

always many and aliased, regardless of the mode of the reference itself. Thus, when a reference

is allocated or written, the value that one wishes to store is required to be many and aliased.
Conversely, when a reference is read, the resulting value is guaranteed to be many and aliased.
On the portability axis, we distinguish two types of references. The contents of a portable

reference are portable; the contents of a nonportable reference are nonportable.
On the locality axis, the rule is: a reference and its contents have the same locality. Allocating

a reference at locality 𝑙 requires a value of locality 𝑙 , and reading a reference at locality 𝑙 yields

a value of locality 𝑙 . Unfortunately, we cannot allow writing a local value into a local reference,
because the local mode does not provide sufficiently precise lifetime information. So, the typing

rule NaStore only allows writing a global value to a reference (of arbitrary locality).

On the contention axis, the rule is: a reference and its contents have the same contention.

Thus, reading an uncontended or shared reference yields a value with the same contention;

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:21

writing a reference (which must be uncontended) and allocating a reference (which initially is

uncontended) both require an uncontended value.

There is a separate type of atomic references atomic(𝜏) that permit only atomic operations,

including compare-and-exchange (cmpXchg), fetch-and-add (faa), atomic loads (!
sc𝑒), and atomic

stores (𝑒1 ←sc 𝑒2). The typing rules of these atomic operations—some of which are shown in

Fig. 7—are simpler. Atomic references are always allocated on the heap, so they are initially global.
They can be safely shared between threads: that is, they are portable. They can be accessed even

if they are contended. The contents of an atomic reference are always global, many, aliased,
portable, and contended. This is very restrictive, but necessary: Atomic references, by design,

can be used to transfer values across threads, so those values must also be safe to share across

threads, that is, portable and contended.

5 Semantic Type Soundness
The type system of DRFCaml guarantees data race freedom by ensuring that mutable data is

never accessed simultaneously by different threads. However, this is too restrictive to allow for the

implementation of APIs such as the Capsule API, which fundamentally depend on the ability to

carefully mutate shared state. To implement such APIs, we must therefore utilize unsafe escape

hatches (such as Obj.magic) to circumvent the restrictions of the DRFCaml type system.

To verify the implementation of the Capsule API despite its use of unsafe features, we follow

the “logical approach to type soundness” adopted by RustBelt [18] and advocated by Timany et al.

[26]. This approach involves defining a notion of semantic typing, which we show is “compatible”

with the typing rules of DRFCaml, and then manually verifying the safety of the Capsule module

by proving it to be semantically well-typed according to this notion. To do this, we interpret each

type in DRFCaml as a predicate in the program logic that we have defined for DRFCaml (§3). To

a first approximation, a predicate can be thought of as a set of values, so this is a natural way of

explaining the semantics of types. It is more than that, however, since Iris’s predicates can also

describe notions of unique ownership, shared ownership, invariants that all threads agree to obey,

etc., thus offering a rich, high-level language in which to express our semantic model.

5.1 Overview of the Model
We start off with an overview of the semantic model, which consists of a logical relation defined in

the Iris logic, comprising a value relation ⟦𝜏⟧ and an expression relation E⟦𝜏⟧. These give a semantic

interpretation of a type 𝜏 , which can be a standard syntactic type, giving rise to a standard type

interpretation, or an abstract type defined by some API, giving rise to a bespoke type interpretation.

We use ghost state and Iris invariants to capture the various features expressed by the modes.

In particular, our goal is to express (1) the temporary lifetime of local values, (2) the isolation

guarantees of portable functions, (3) the read-only restriction of shared references, and (4) the

duplicability of aliased references.

The first three properties are expressed by parameterizing the relations by three sets, εmut, εro
and Δ, and the fourth property is expressed by using features of the Iris logic (Iris invariants and

the persistence modality □). The signature of the logical relation is thus as follows: ⟦𝜏⟧εmut,εro,Δ
𝑚

where εmut reflects the set of aliased non-atomic references that are accessible for reading and writing,

εro reflects the set of aliased non-atomic references that are accessible for reading only, and Δ reflects

the set of locals that are accessible for reading and writing.

Here, we use the word “accessible” to mean that there is permission to access; we do not use it as a

synonym for “reachable”. We write “a local” to refer to an entity whose lifetime is lexical: at present,

a local is either a stack-allocated value or a borrow. (In our operational semantics, borrowing a

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:22 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

global value creates a local copy of it, whose lifetime is limited.) We use the word “reflects”, as

opposed to “is”, because these are not exactly sets; the reality is more complex, but we lack space

to provide more detail.

The value relation is also parameterized with a mode𝑚, which determines how to interpret some

type 𝜏 . For example, a reference at mode uncontended and a reference at mode contended will

receive different interpretations.

Crucially, none of these parameters are fixed forever. For example, when a unique reference

is downgraded to aliased, the set of accessible read-write references grows; yet this should not

cause any previously well-typed values to become ill-typed. Furthermore, the mode at which a

type is interpreted may dictate that the interpretation be independent of a particular parameter. For

example, the interpretation of a function type at mode portable does not depend on the current

sets of accessible (non-atomic) references since portable functions cannot access these references

anyway; thus, when these sets grow or shrink, all existing portable functions remain well-typed.

These observations give rise to a collection of monotonicity requirements, or core conditions, which

every semantic type must satisfy. Below, we highlight three of these core conditions; our Rocq

formalization includes a total of ten.

Definition 5.1 (Excerpt of the Core Conditions of the Logical Relation).

(1) if (ε′mut, ε
′
ro) ⊒ (εmut, εro) then ⟦𝜏⟧εmut,εro,Δ

𝑚 (𝑣) −∗ ⟦𝜏⟧ε
′
mut,ε

′
ro,Δ

𝑚 (𝑣),
where (ε′mut, ε

′
ro) ⊒ (εmut, εro) ≜ ε′mut ⊇ εmut ∧ ε′mut ∪ ε′ro ⊇ εro

(2) if𝑚.𝑝 = portable and𝑚.𝑐 = contended then ⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣) −∗ ⟦𝜏⟧ε

′
mut,ε

′
ro,Δ

𝑚 (𝑣).
(3) if𝑚 ≤𝑚′ then resources over εmut ∗ ⟦𝜏⟧εmut,εro,Δ

𝑚 (𝑣) ≡−∗⊤
∃ ε′mut . εmut ⊆ ε′mut ∗ resources over ε′mut ∗ ⟦𝜏⟧

ε′mut,εro,Δ
𝑚′ (𝑣)

Item 1 is a simple monotonicity requirement: enlarging the sets of accessible read-write and

read-only references, or allowing read-write access to previously read-only references, does not

invalidate any existing values. Item 2 is more atypical: it states that the interpretation of a type

at mode portable and contended is insensitive to the sets of accessible references. This reflects

and combines two facts: (1) a portable function cannot access any references; (2) a contended
reference cannot be accessed. Therefore, regardless of its type, the well-typedness of a portable and
contended value does not depend at all on any reference. Finally, Item 3 reflects mode weakening:

if a value is well-typed at mode𝑚 then it is also well-typed at a weaker mode𝑚′.9 This statement is

formulated in a way that allows εmut to grow. The reason for this is that, when a unique reference

is turned into an aliased reference, εmut must grow, since one more aliased reference becomes

accessible. We write “resources over εmut” to gloss over a number of ghost resources that must evolve

together with εmut.

5.2 The Logical Relation
In this section, we present the expression relation E⟦𝜏⟧ and part of the definition of the value

relation ⟦𝜏⟧. These are shown in Fig. 8. For presentation purposes, we keep the explanation at a

high level and refer to the Rocq mechanization for the full definition.

As described above, the expression relation is parameterized by the sets εmut, εro and Δ, and the

mode𝑚. It is also parameterized by a thread-id 𝜋 , a stack size 𝑛, and a fraction 𝑞. The thread-id 𝜋

indicates which thread the expression is running in; the stack size 𝑛 indicates the current size of

𝜋 ’s stack; and the fraction 𝑞 governs access to read-only references.

9
The funny implication ≡−∗⊤ is an Iris ghost update. It lets us allocate new ghost state and invariants.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:23

E⟦𝜏⟧εmut,εro,Δ
𝜋,𝑛,𝑞,𝑚 (𝑒) ≜ wp 𝑒


𝑣 .

∃𝑛′ Δ′ ε′mut . 𝑛 ≤ 𝑛′ ∧ Δ ⊆ Δ′ ∧ εmut ⊆ ε′mut

∗ ⟦𝜏⟧ε
′
mut,εro,Δ

′
𝑚 (𝑣)

∗ L(𝜋, 𝑛′, ε′mut, εro,Δ
′)

∗ Mem(ε′mut, εro, 𝑞)
∗ collectFrames(𝑛, 𝑛′, 𝜋,Δ,Δ′)

𝜋

⟦1⟧−,−,−− (𝑣) ≜ 𝑣 = () ⟦B⟧−,−,−− (𝑣) ≜ ∃𝑏. 𝑣 = 𝑏 ⟦Z⟧−,−,−− (𝑣) ≜ ∃𝑧. 𝑣 = 𝑧

⟦𝜏1 + 𝜏2⟧εmut,εro,Δ
𝑚 (𝑣) ≜ (∃𝑣1 . 𝑣 = inl(𝑣1) ∗ ⟦𝜏1⟧εmut,εro,Δ

𝑚 (𝑣1)) ∨
(∃𝑣2 . 𝑣 = inr(𝑣2) ∗ ⟦𝜏2⟧εmut,εro,Δ

𝑚 (𝑣2))
⟦𝜏1 × 𝜏2⟧εmut,εro,Δ

𝑚 (𝑣) ≜ ∃𝑣1 𝑣2 . 𝑣 = (𝑣1, 𝑣2) ∗ ⟦𝜏1⟧εmut,εro,Δ
𝑚 (𝑣1) ∗ ⟦𝜏2⟧εmut,εro,Δ

𝑚 (𝑣2)
⟦□𝜂𝜏⟧εmut,εro,Δ

𝑚 (𝑣) ≜ ⟦𝜏⟧εmut,εro,Δ
𝜂 (𝑚) (𝑣)

⟦𝜏1 @𝑚1 → 𝜏2 @𝑚2⟧εmut,εro,Δ
𝑚 (𝑣) ≜ 𝑣 = 𝜆 . . . ∗ ∀𝜋 ε′mut ε

′
ro Δ

′ 𝑞.

(ε′mut, ε
′
ro) ⊒𝑚.𝑝 (εmut, εro) → Δ′ ⊒𝑚.𝑙,𝑚.𝑝 Δ → □𝑚.𝑜 ∀𝑛 𝑣1 .{
⟦𝜏1⟧

ε′mut,ε
′
ro,Δ
′

𝑚1
(𝑣1) ∗

L(𝜋, 𝑛, ε′mut, ε
′
ro,Δ

′) ∗Mem(ε′mut, ε
′
ro, 𝑞)

}
−∗ E⟦𝜏2⟧

ε′mut,ε
′
ro,Δ
′

𝜋,𝑛,𝑞,𝑚2
(𝑣 (𝑣1))

where

Δ′ ⊒𝑙,𝑝 Δ ≜


Δ ⊆ Δ′ if 𝑙 = local ∧ 𝑝 = nonportable
atomic(Δ) ⊆ Δ′ if 𝑙 = local ∧ 𝑝 = portable
⊤ otherwise

(ε′mut, ε
′
ro) ⊒𝑝 (εmut, εro) ≜

{
ε′mut ⊇ εmut ∧ ε′mut ∪ ε′ro ⊇ εro if 𝑝 = portable
⊤ otherwise

Fig. 8. A selection of standard interpretations, where □𝑚.𝑜 is □ when𝑚.𝑜 =many and nothing otherwise.

The expression relation is defined in terms of the weakest precondition described in §3, where

the postcondition guarantees that the final value satisfies the value relation ⟦𝜏⟧, at some extended

ε′mut and Δ′. Additionally, the postcondition returns three key propositions: L(𝜋, 𝑛′, ε′mut, εro,Δ
′),

Mem(ε′mut, εro, 𝑞) and collectFrames(𝑛, 𝑛′, 𝜋,Δ,Δ′). Very roughly:

• L(𝜋, 𝑛, εmut, εro,Δ) grants full access to the locals in Δ.
• Mem(εmut, εro, 𝑞) grants full access to the read-write references in εmut and partial access (at

fraction 𝑞) to the read-only references in εro.
• collectFrames(𝑛, 𝑛′, 𝜋,Δ,Δ′) grants permission to reclaim all of 𝜋 ’s stack locations in the

interval [𝑛, 𝑛′), and guarantees that this does not break the well-typedness of any surviving

value. In other words, it guarantees that local (stack-allocated) references do not escape.

We now turn to the value relation ⟦𝜏⟧, which gives a semantic interpretation of types 𝜏 as

predicates on closed values. The semantic interpretation of the basic types—namely unit, Booleans

and integers—is straightforward: it is completely independent of the mode parameter𝑚.

The semantic interpretation of a compound type—that is, a sum or a product—consists of an

appropriate combination of the interpretations of its components. The same mode parameter𝑚

is used in the semantic interpretation of the components, thus expressing that the modes are

(by default) deep. In contrast, in the semantic interpretation of the modality type □𝜂
, the mode

parameter𝑚 is changed to 𝜂 (𝑚) (§4.3) in the semantic interpretation of the contents.

Next, we describe the more involved semantic interpretation of function types 𝜏1 @ 𝑚1 →
𝜏2 @𝑚2, which are inhabited by closures. First, we quantify over a thread-id 𝜋 , a view ε′mut and ε

′
ro,

a locals context Δ′, and a fraction 𝑞. These represent the possible state at the time the closure is

called.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:24 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

Crucially, the possible choices for this state depend on the mode𝑚. For example, if a closure is

local, then it may enclose local values, and must therefore be applied to a superset of the current Δ.
On the other hand, if a closure is global, then it can be applied to any Δ′, since it cannot depend
on Δ at all. A similar principle appears in Dreyer et al. [9], where a distinction between public

and private future worlds is used to distinguish functions and continuations. An analogous kind

of reasoning applies to portable closures, which can be applied to arbitrary sets (ε′mut, ε
′
ro) of

accessible references, as opposed to nonportable closures, which must be applied to future worlds

(ε′mut, ε
′
ro) ⊒ (εmut, εro) of the current state. Finally, an interesting interaction occurs for portable

and local closures. A priori, a local closure ought to depend on the locals context Δ. However,
since it is also portable, we know that it does not depend on non-atomic references. As such,

it may only depend on those parts of Δ not related to non-atomic references. We model this by

extracting the relevant parts of Δ using the atomic(Δ) operation (here left abstract).

Once the future state has been suitably constrained, we use the affinity of 𝑚 to determine

whether this function may be called at most once or many times. In the latter case, the semantic

interpretation of the function type must be persistent (i.e., freely duplicable)—this constraint is

expressed via Iris’s persistence modality □.
The final part of the assertion states that 𝑣 is a valid (well-typed) closure if, for every valid

(well-typed) actual argument 𝑣1, and for every stack size 𝑛, given the access permissions expressed

by L andMem, the function application 𝑣 (𝑣1) is safe and produces a valid (well-typed) result.

We omit here a detailed explanation of the interpretation of references. In broad strokes, to

model atomic references, we use Iris invariants; this is standard. To model non-atomic references,

we use custom-made “fractional invariants”: they are a simplified variant of RustBelt’s fractured

borrows [18], without support for RustBelt’s lifetime logic. In order to open a fractional invari-

ant, an auxiliary resource is needed. This auxiliary resource is exactly what can be found in

Mem(εmut, εro, 𝑞). The semantic interpretation of references must therefore depend on either εmut
(in the case of an uncontended value) or εro (in the case of a shared value).

5.3 Semantic Typing
In §5.2, we outlined the standard semantic interpretation of DRFCaml types as predicates over

closed terms. From this we derive the following definition of semantic typing for open terms:

Γ ⊨ 𝑒 : 𝜏 @𝑚 ≜ □∀𝜋 𝑛 εmut εro 𝑞 Δ 𝛾,G⟦Γ⟧εmut,εro,Δ (𝛾) −∗
L(𝜋, 𝑛, εmut, εro,Δ) −∗ Mem(εmut, εro, 𝑞) −∗ E⟦𝜏⟧εmut,εro,Δ

𝜋,𝑛,𝑞,𝑚 (𝛾 (𝑒))
In this definition, the context interpretation G⟦Γ⟧εmut,εro,Δ (𝛾) asserts that every value in the simul-

taneous substitution 𝛾 satisfies the semantic interpretation of the corresponding type in Γ, at the
parameters εmut, εro and Δ.
With semantic typing now defined, we prove the following key soundness theorems. First and

foremost, we prove that semantic typing is compatible with every inference rule of the type system.

Theorem 5.1 (Compatibility). Each inference rule of the syntactic type system is also a valid

implication of semantic typing judgments. For example:

Γ1 ⊨ 𝑒1 : 𝜏1 @𝑚 −∗ Γ2 ⊨ 𝑒2 : 𝜏2 @𝑚 −∗ Γ1 + Γ2 ⊨ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 @𝑚

An immediate corollary of the above theorem is the following Fundamental Theorem:

Theorem 5.2 (Fundamental Theorem of Logical Relations).

If Γ ⊢ 𝑒 : 𝜏 @𝑚, then Γ ⊨ 𝑒 : 𝜏 @𝑚.

The fundamental theorem establishes that our semantic typing definition is sound with respect to

the syntactic type system.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:25

Finally, we have the following theorem, which states that semantic typing guarantees the absence

of data races:

Theorem 5.3 (Semantically Typed Expressions are Data Race Free). If [] ⊨ 𝑒 : 𝜏 @𝑚, then

executing the closed program 𝑒 (with an initially empty heap and stack) is safe and cannot cause a

data race.

Proof. The proof instantiates the semantic typing definition to an empty memory and locals

context, applies adequacy of the weakest precondition (from the metatheory of the program logic)

to prove that 𝑒 is safe, and applies Corollary 3.1 to prove that 𝑒 does not incur a data race. □

5.3.1 Semantic interpretation of locks. When proving the compatibility lemmas from Theorem 5.1,

it becomes necessary to consider the semantic interpretation of locks. Our locks act as operations

over syntactic contexts. These operations are easily lifted to semantic contexts, because they

examine just the “mode” information in the context and ignore the “type” information. Applying a

lock to a context filters out declarations with an incompatible locality, affinity or portability, and

weakens the uniqueness and contention of the remaining declarations. By exploiting the mode

weakening condition (Definition 5.1), one observes that this operation preserves the semantic

interpretation of a context.

lemma 5.4 (Semantic Lock preservation).

Mem(εmut, εro, 𝑞) −∗ G⟦Γ⟧εmut,εro,Δ (𝛾) −∗ ∃ε′mut .Mem(ε′mut, εro, 𝑞) ∗ G⟦�(l,o,p)Γ⟧ε
′
mut,εro,Δ (𝛾)

Note here that the application of a lock can change a binding from unique to aliased. In that

case, new fractional invariants must be allocated, which means extending εmut.

Our next observation is that once a lock operation has been applied, the context contains bindings

at certain modes only. For example, a portable lock guarantees that �(l,o,portable)Γ contains no

declarations at mode nonportable, uncontended, or shared. As a result, we can lift many of the

conditions from Definition 5.1 to the semantic interpretation of locked contexts. For example, the

following lemma lets us arbitrarily change εmut and εro in a semantic context with a portable lock:

lemma 5.5. G⟦Γ⟧εmut,εro,Δ (𝛾) −∗ G⟦�(l,o,portable)Γ⟧ε
′
mut,ε

′
ro,Δ (𝛾)

These lemmas are crucial for proving the compatibility lemmas for fork and arrow types.

6 Specifying and Verifying the Capsule API
The Capsule API is implemented using unsafe type casts (Obj.magic) between an inner type 'a at

various modes and ('a, 'k) Data.t. Hence our soundness proof in §5 does not per se yield soundness

of the Capsule API (§2.7), since there is no compatibility lemma for Obj.magic.

Fortunately, however, one of the major benefits of the semantic approach to type soundness is

that it is inherently extensible. Specifically, the proof of Theorem 5.1 does not rely on the assumption

that the syntax of types is fixed once and for all. For example, in the case of the aforementioned

compatibility lemma

Γ1 ⊨ 𝑒1 : 𝜏1 @𝑚 −∗ Γ2 ⊨ 𝑒2 : 𝜏2 @𝑚 −∗ Γ1 + Γ2 ⊨ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 @𝑚,

the proof does not depend on 𝜏1 and 𝜏2 being types drawn from the syntax given at the beginning of

§4. Rather, the proof merely depends on ⟦𝜏𝑖⟧ belonging to the class of so-called semantic types—i.e.,

predicates that satisfy the conditions from Definition 5.1. Consequently, if we want to extend our

language and soundness proof with new types like ('a, 'k) Data.t, we can do so as long as we can

(1) provide bespoke semantic interpretations of these types that are indeed “semantic types”, and

(2) prove compatibility rules establishing the semantic soundness of their associated typing rules.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:26 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

We now explain how we can apply this technique to verify that the Capsule API (§2.7) imple-

mentation is semantically sound.

Recall the introduction to capsules in §2.7. In broad terms, a capsule wraps data which can refer

to mutable state, and a key of some existential type is used to regulate thread-safe access to this data.

To model mutable state semantically, the value interpretation defined in §5 is parameterized by

the sets of accessible read-write and read-only references εmut, εro. In §5, we saw how the memory

interpretationMem(εmut, εro, 𝑞) grants access to these references. The key difficulty in proving

semantic soundness of the Capsule API is tracking and sharing this memory interpretation across

calls to the API from different threads. Concretely, when reasoning about the creation of a new

Data.t, the constructor function yields a fresh instance ofMem(εmut, ∅, 1), which is needed to

reason about subsequent calls to Data.map, Data.extract, etc. An important part of the proof is thus

to define the right Iris invariant (which we call keyInv) to track and store these propositions.

We now describe the semantic interpretations of the Capsule API (§2.7) types ('a, 'k) Data.t

and 'k Key.t, outline the proof of safety of map, and state our overall soundness theorem.

As explained at the beginning of this section, we define two bespoke semantic type interpretations

for the Data and Key types. The data interpretation ⟦('a, 'k) Data.t⟧−,−,−− (𝑣), where we denote

unused parameters by −, simply wraps an interpretation ⟦'a⟧εmut,−,−
legacy (𝑣) of the value at legacy mode,

as well as some auxiliary ghost resources to track which εmut set is required to interpret the value.

The key interpretation ⟦'k Key.t⟧−,−,Δ𝑚 (𝑤) where𝑚.𝑢 = unique gives full access to the contents

of the capsule. To be more precise, together with keyInv, it can be used to gain full access to a

memory interpretationMem(εmut,∅, 1) corresponding to the mutable state needed to interpret 'a.

Similarly, if𝑚.𝑢 = aliased, then it can be used to gain partial access to a memory interpretation

with read-only access to εmut, namelyMem(∅, εmut, 𝑞) at some fraction 𝑞. In either case, the key

interpretation can only be reestablished if the corresponding memory interpretation is relinquished.

To give an idea of how the Capsule API (§2.7) is verified, we outline the proof of Data.map, which

is implemented as follows:

let Data.map key f v = (key, Obj.magic (f (Obj.magic v)))

Given key @ unique : 'k Key.t, some data v @ . : ('a, 'k) Data.t protected by that key, and a func-

tion f, it first casts v to v @ . : 'a, and then executes f v. Our goal is to show:

∀'k 'a 'b. [] ⊨ Data.map : 𝜏map ('k, 'a, 'b) @ (global,many, aliased, portable, contended)

where 𝜏map ('k, 'a, 'b) is the type of Data.map.
We prove this goal by going step-by-step through the implementation. To verify the cast we need

to show thatwe can reproduce it semantically, i.e., as discussed above, from ⟦('a, 'k) Data.t⟧−,−,−− (v)
we obtain ⟦'a⟧εmut,−,−

legacy (v), for some εmut. To execute f v, however, we need a matching memory

interpretationMem(εmut,∅, 1). It is obtained by temporarily giving up ownership of the semantic

interpretation of the key k, which is restored by returning an updated view after the execution of

f v.

The verification of all Capsule API (§2.7) functions is similar, in spirit, to what we just explained,

although more complex interactions between keys, data, and memory interpretations need to be

handled for read-only access. We have also verified an implementation of the reader-writer lock.

Overall, we prove the following theorems:

Theorem 6.1. The Capsule API (Fig. 3) is semantically sound.

Theorem 6.2. The Reader-Writer Lock API (Fig. 4) is semantically sound.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:27

7 Related Work
There is a vast literature on using types to soundly (but conservatively) enforce absence of data

races, dating back at least to Abadi and Flanagan’s early and influential paper [12]. There are also

a number of well-known approaches to static race detection for Java and C [10, 23, 28], which rely

on whole-program call-graph information, sacrificing soundness for scalability and error detection

with fewer false positives. In the interest of space, we compare here with the most closely related

work on type-based approaches, focusing attention on the goals we set out in the introduction.

Capsules bear a close resemblance to the GhostCell API proposed for Rust by Yanovski et al. [31].

The two approaches tackle a similar problem, but come at it from opposite directions. Rust natively

supports thread-safe sharing of mutable data, but has only limited support for safely programming

mutable data types with internal aliasing. The aim of GhostCell is to overcome that limitation. OCaml

has the reverse challenge: safe mutable state with internal aliasing is no problem—thanks to garbage

collection—but the language does not guarantee data race freedom when state is shared across

threads. The aim of capsules is to overcome that limitation. Hence, a key design goal of capsules,

not met by GhostCell, is to allow existing sequential OCaml code to be easily made thread-safe,

even if that code constructs data structures with internal aliasing.

The goals of the Capsule API also align closely with those of Haller and Loiko’s work on

LaCasa [16]. LaCasa extends Scala with aliasing control, guaranteeing thread safety in a backwards-

compatible way by separating data from the (affine) permission to access it. A box Box[T] in LaCasa

encapsulates some mutable data of type T, and roughly corresponds to ('k, ref 'a) Data.t in our

system. (One relatively minor difference is that Box[T] involves a pointer indirection, whereas Data.t

does not.) LaCasa’s CanAccess type plays a role similar to our keys, in that it provides the permission

necessary to access some box.

Box[T] only supports classes T that follow the object-capability discipline (ocap), which ensures

for example that T does not access global state. LaCasa adds an annotation to classes to track

whether they are ocap. This is similar to our restriction that the Capsule API callbacks can only call

portable functions, since those cannot access shared state either. The default portability mode is

nonportable, so as discussed in §2.8, we need to annotate portable functions explicitly in order

to allow them to be invoked on capsules.

There are, however, some major differences between LaCasa and DRFCaml. Firstly, although

LaCasa does provide simple locality and affinity tracking for the Box and CanAccess types, its approach

to affinity tracking relies on integration with its message-passing concurrency primitives. As such, it

is not clear if it can be generalized to handle unstructured concurrency. DRFCaml, on the other hand,

tracks locality and affinity of all types. Consequently, capsules are easier to integrate with other

APIs that use modes, like the reader-writer lock. Our system also supports sharing or borrowing

keys, which we use to allow shared read-only access to encapsulated data. Secondly, in LaCasa, an

access permission is tied to the unique box that it protects (and with which it was created). Thanks

to the combination of Scala’s path-dependent types and implicit parameters, the tracking of this

access permission is mostly automated. In contrast, the Capsule API allows multiple encapsulated

pieces of data to be protected by a single key, but these keys have to be passed around explicitly.

Capturing Types [5, 30] and Reachability Types [4, 29] attack a high-level problem that is very

similar to ours: to develop a mechanism that keeps track of aliasing, thereby allowing data races to

be statically forbidden, without imposing a priori restrictions on the shape of the heap.

The key idea behind capturing types is to decorate closures with sets of variables to keep track of

which capabilities each closure has access to. To make such a system tractable, Boruch-Gruszecki

et al. [5] define a subtyping discipline—similar to DRFCaml’s submoding discipline—and a new

boxing type to prevent the unnecessary propagation of annotations whenever a variable is not

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:28 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

directly used. They then define a pure closure as one that captures no capabilities, and an impure

function as one that can capture any capability, expressed using the universal capability cap (similar

to ⊤ in our locality, portability, and affinity axes). While DRFCaml does not express purity (portable

closures may still atomically mutate data), the overall methodology is similar: a closure marked as

portable may not mutate enclosed non-atomic data. Likewise, the mode of a function’s argument

does not determine the mode of the function—e.g., one can define a signature for map which is itself

portable, while taking a nonportable function as argument.

Xu et al. [30] go on to show how capturing types can be used to prevent data races. They

extend the capturing types design [5] with fork-join parallelism and static prevention of data

races. The calculus performs descriptive alias tracking (closures can capture arbitrary variables and

get adequately labeled), and imposes restrictions when closures are invoked in parallel: namely,

closures can run in parallel only if their capturing types are “separate”. Note that separation here

does not mean disjointness: to allow for multiple simultaneous readers, the calculus introduces

two new root capability types, ref for general mutation, and rdr for general reading, where rdr is
separate from itself, but not from ref. The calculus thus depends on a structured fork-join to regain

mutable access to some temporarily shared data structure. In contrast, DRFCaml prevents data

races even in the presence of unstructured concurrency, and is compatible with nondeterministic

concurrency mechanisms such as reader-writer locks.

Reachability types [4, 29] are similar to capturing types, but track the reachable set of a function’s

free variables rather than tracking the effect of using them. Their system allows one to express

a unique access restriction and a use-once policy, similar to DRFCaml’s uniqueness and affinity

axes. They also support programming patterns such as “non-escaping function arguments”, which

DRFCaml accounts for using local arguments. As with capturing types, reachability types can

be used to guarantee safe parallel computations, by asserting that reachable variables are either

disjoint or read-only on both sides. But also as with capturing types, Bao et al. [4] restrict attention

to structured parallelism.

Both reachability and capturing types guarantee data race freedom. However, it is unclear

whether a similar methodology can be applied to a language such as OCaml. Boruch-Gruszecki

et al. [5] describe various language requirements to make such systems usable, several of which

do not apply to OCaml. In particular, the language should have support for reference-dependent

typing (similar to path-dependent typing in DOT [2]) as well as subtyping. Furthermore, without

a language feature such as Scala’s implicits, capability parameters would need to be added to all

existing signatures in legacy code.

There have been a number of other type-based approaches to data race freedom which, like

DRFCaml, (a) use some form of (often region-based [27]) encapsulation to separate chunks of mutable

data from one another, and (b) annotate pointer types with capabilities [6] to track uniqueness and

aliasing and to ensure safe mutation [8, 15, 14, 24, 22]. We will focus here on the most recent such

approaches.

Milano et al. [22] use so-called isolated (iso) pointers, which “dominate” (i.e., control access

to) a region of the heap, in order to achieve “fearless concurrency”. The flexibility of their type

system comes from two key features: (1) the ability to type check programs with a minimal need for

user-level annotations beyond the iso keyword, and (2) a property called “tempered domination”,

which allows for domination to be locally broken, and eventually repaired, sometimes requiring a

dynamic disconnectedness test on regions. Thanks to tempered domination, it becomes trivial to

implement doubly-linked lists (notoriously difficult in languages such as Rust). The same flexibility

can be observed in DRFCaml, which allows for arbitrary legacy data structures to be encapsulated

in a capsule. The disconnectedness test also enables isolated regions to be dynamically separated, a

feature that is not supported by DRFCaml. Milano et al. [22] establish data race freedom by proving

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:29

a stronger global isolation property of the language. Unlike DRFCaml, they do not yet support

shared read-only access, and consider only a send primitive to share iso pointers across threads.

Finally, unlike DRFCaml, their primary goal is to design a new language with the same guarantees

as existing work but with more flexibility and minimal annotations, whereas the goal of DRFCaml

is to safely port an existing language (and its legacy code) to a concurrent setting.

Arvidsson et al. [3] present Reggio, a region-based type system design applied to the Verona

language, whose notion of reference capabilities and “view adaptations” bears resemblance to

DRFCaml’s modes and context locks �(l,o,p) . Regions in Reggio are isolated, and can only be

mutated while active. This is done using a lexically scoped construct, enter, which takes a unique

designated reference—called the “bridge object”—as its argument and activates the associated region.

The bridge object functions analogously to a key in a capsule, but offers a bit more flexibility. Notably,

bridge objects only need to be externally unique (a single incoming reference from another region),

and may be an arbitrary object from that region. To maintain region isolation, programs may only

mutate one region at a time: the so-called “window of mutability”. An active region is marked as

suspended (accessible, but immutable) whenever another region is entered, and closed (inaccessible

except for its unique bridge object) when its lexical scope ends. In general, no references may point

to non-bridge objects from other regions. An exception is made for temporary references, which

can point to the temporary objects of a suspended region. This functionality is not fully supported

by DRFCaml, for which the lifetime information of local is too coarse-grained. An interesting

direction for future work would be to generalize DRFCaml with similar techniques as in Reggio,

i.e., distinguishing between “local to current region” and “local to some parent region”.

Cheeseman et al. [7] build on the Reggio design [3], and outline exactly how regions (and their

bridge objects) can be synchronized across threads, akin to how access to capsules are shared

by wrapping keys in a synchronization primitive. Reggio’s guiding principle to achieve data race

freedom is similar to DRFCaml: programs that run in parallel may only mutate one isolated region

at a time. Regions, like capsules, can be nested and merged (capsules can be merged by destroying

a capsule in another capsule). However, Reggio’s “single window of mutability” means that only

a single region can be mutated at a time. Meanwhile, programs running in a capsule may still

atomically mutate data from a different capsule, e.g., if that data were an atomic reference. In

contrast, DRFCaml enables the extraction of data from a capsule so long as it is contended, thus
allowing for a more flexible notion of isolation.

DRFCaml is motivated in large part by the goal of ensuring data race freedom in a well-established

high-level language with a large legacy code base, namely OCaml. Consequently, we have designed

DRFCaml as an extension of the type-and-mode system proposed by Lorenzen et al. [21]. Their

design supports global type-and-mode inference in a Hindley-Milner style system with higher-order

functions—an important criterion for adoption in the functional programming community—and an

implementation of such an inference system has been successfully deployed at Jane Street. Since

DRFCaml’s typing rules are similar to Lorenzen et al.’s, we expect it to enjoy similar type-and-

mode inference, though that remains to be demonstrated and evaluated in future work. Moreover,

our design illustrates that, despite their coarse-grained simplicity, Lorenzen et al.’s locality and

uniqueness modes have uses above and beyond their original intended purposes. As we have shown,

locality is useful not only for stack allocation but also for implementing temporary borrowing of

shared resources (e.g., when acquiring a reader lock), and uniqueness is useful not only for memory

reuse but also for tracking ownership of capsule keys.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:30 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

References
[1] Javad Abdi, Gilead Posluns, Guozheng Zhang, Boxuan Wang, and Mark C. Jeffrey. 2024. When Is Parallelism Fearless

and Zero-Cost with Rust?. In Symposium on Parallelism in Algorithms and Architectures. 27–40. https://doi.org/10.

1145/3626183.3659966

[2] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The Essence of Dependent Object

Types. In A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler on the Occasion of His 60th

Birthday (Lecture Notes in Computer Science, Vol. 9600), Sam Lindley, Conor McBride, Philip W. Trinder, and Donald

Sannella (Eds.). Springer, 249–272. https://doi.org/10.1007/978-3-319-30936-1_14

[3] Ellen Arvidsson, Elias Castegren, Sylvan Clebsch, Sophia Drossopoulou, James Noble, Matthew J. Parkinson, and Tobias

Wrigstad. 2023. Reference Capabilities for Flexible Memory Management. Proceedings of the ACM on Programming

Languages 7, OOPSLA2 (2023), 1363–1393. https://doi.org/10.1145/3622846

[4] Yuyan Bao, Guannan Wei, Oliver Bracevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. 2021. Reachability types:

tracking aliasing and separation in higher-order functional programs. Proceedings of the ACM on Programming

Languages 5, OOPSLA (2021), 1–32. https://doi.org/10.1145/3485516

[5] Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondrej Lhoták, and Jonathan Immanuel Brachthäuser.

2023. Capturing Types. ACM Transactions on Programming Languages and Systems 45, 4 (2023), 21:1–21:52. https:

//doi.org/10.1145/3618003

[6] John Boyland, James Noble, and William Retert. 2001. Capabilities for Sharing: A Generalisation of Uniqueness and

Read-Only. In European Conference on Object-Oriented Programming (ECOOP) (Lecture Notes in Computer Science,

Vol. 2072). Springer, 2–27. https://doi.org/10.1007/3-540-45337-7_2

[7] Luke Cheeseman, Matthew J. Parkinson, Sylvan Clebsch, Marios Kogias, Sophia Drossopoulou, David Chisnall, Tobias

Wrigstad, and Paul Liétar. 2023. When Concurrency Matters: Behaviour-Oriented Concurrency. Proc. ACM Program.

Lang. 7, OOPSLA2 (2023), 1531–1560. https://doi.org/10.1145/3622852

[8] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang, Tobias Wrigstad, and Jan Vitek. 2017.

Orca: GC and type system co-design for actor languages. Proceedings of the ACM on Programming Languages 1,

OOPSLA (2017). https://doi.org/10.1145/3133896

[9] Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order state and control effects on local

relational reasoning. J. Funct. Program. 22, 4-5 (2012), 477–528. https://doi.org/10.1017/S095679681200024X

[10] Dawson Engler and Ken Ashcraft. 2003. RacerX: Effective, static detection of race conditions and deadlocks. In

Symposium on Operating Systems Principles (SOSP). 237–252. https://doi.org/10.1145/1165389.945468

[11] Kasra Ferdowsi. 2023. The Usability of Advanced Type Systems: Rust as a Case Study. CoRR abs/2301.02308 (2023).

https://doi.org/10.48550/arXiv.2301.02308

[12] Cormac Flanagan and Martín Abadi. 1999. Types for Safe Locking. In European Symposium on Programming (ESOP)

(Lecture Notes in Computer Science, Vol. 1576). Springer, 91–108. http://users.soe.ucsc.edu/~cormac/papers/esop99.pdf

[13] Aïna Linn Georges, Benjamin Peters, Laila Elbeheiry, LeoWhite, StephenDolan, Richard A. Eisenberg, Chris Casinghino,

François Pottier, and Derek Dreyer. 2024. Supplementary material for Data Race Freedom à la Mode. Appendix and

Rocq development: https://plv.mpi-sws.org/drfcaml/, Artifact on Zenodo: https://doi.org/10.5281/zenodo.13933463.

[14] Paola Giannini, Marco Servetto, and Elena Zucca. 2016. Types for Immutability and Aliasing Control. In Proceedings of

the 17th Italian Conference on Theoretical Computer Science, Lecce, Italy, September 7-9, 2016 (CEURWorkshop Proceedings,

Vol. 1720), Vittorio Bilò and Antonio Caruso (Eds.). CEUR-WS.org, 62–74. https://ceur-ws.org/Vol-1720/full5.pdf

[15] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. 2012. Uniqueness and reference

immutability for safe parallelism. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

21–40. https://www.cs.drexel.edu/~csg63/papers/oopsla12.pdf

[16] Philipp Haller and Alex Loiko. 2016. LaCasa: lightweight affinity and object capabilities in Scala. In Proceedings of the

2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA 2016. 272–291. https://doi.org/10.1145/2983990.2984042

[17] Ralf Jung. 2020. Understanding and evolving the Rust programming language. Ph. D. Dissertation. Saarland University,

Saarbrücken, Germany. https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647

[18] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: Securing the Foundations

of the Rust Programming Language. Proceedings of the ACM on Programming Languages 2, POPL (2018), 66:1–66:34.

https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf

[19] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28

(2018), e20. https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

[20] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak

Memory: Reasoning About Release-Acquire Consistency in Iris. In European Conference on Object-Oriented Programming

(ECOOP). 17:1–17:29. https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.

https://doi.org/10.1145/3626183.3659966
https://doi.org/10.1145/3626183.3659966
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/3622846
https://doi.org/10.1145/3485516
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3618003
https://doi.org/10.1007/3-540-45337-7_2
https://doi.org/10.1145/3622852
https://doi.org/10.1145/3133896
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1145/1165389.945468
https://doi.org/10.48550/arXiv.2301.02308
http://users.soe.ucsc.edu/~cormac/papers/esop99.pdf
https://plv.mpi-sws.org/drfcaml/
https://doi.org/10.5281/zenodo.13933463
https://ceur-ws.org/Vol-1720/full5.pdf
https://www.cs.drexel.edu/~csg63/papers/oopsla12.pdf
https://doi.org/10.1145/2983990.2984042
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf


Data Race Freedom à la Mode 23:31

[21] Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024. Oxidizing OCaml with

Modal Memory Management. Proc. ACM Program. Lang. 8, ICFP, 485–514. https://doi.org/10.1145/3674642

[22] Mae Milano, Joshua Turcotti, and Andrew C. Myers. 2022. A flexible type system for fearless concurrency. In

Programming Language Design and Implementation (PLDI). 458–473. https://doi.org/10.1145/3519939.3523443

[23] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Programming Language

Design and Implementation (PLDI). 308–319. https://doi.org/10.1145/1133981.1134018

[24] Marco Servetto, David J Pearce, Lindsay Groves, and Alex Potanin. 2013. Balloon types for safe parallelisation over

arbitrary object graphs. In Workshop on Determinism and Correctness in Parallel Programming (WoDet), Vol. 107.

[25] K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul

Dhiman, and Anil Madhavapeddy. 2020. Retrofitting Parallelism onto OCaml. Proceedings of the ACM on Programming

Languages 4, ICFP (Aug. 2020), 113:1–113:30. https://doi.org/10.1145/3408995

[26] Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A logical approach to type soundness. J.

ACM 71, 6, Article 40 (Nov. 2024). https://doi.org/10.1145/3676954

[27] Mads Tofte and Jean-Pierre Talpin. 1997. Region-based memory management. Information and Computation 132, 2

(1997), 109–176. http://www.irisa.fr/prive/talpin/papers/ic97.pdf

[28] Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. 2007. RELAY: static race detection on millions of lines of code. In

Foundations of Software Engineering (FSE). 205–214. https://doi.org/10.1145/1287624.1287654

[29] Guannan Wei, Oliver Bracevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. 2024. Polymorphic Reachability Types: Track-

ing Freshness, Aliasing, and Separation in Higher-Order Generic Programs. Proceedings of the ACM on Programming

Languages 8, POPL (2024), 393–424. https://doi.org/10.1145/3632856

[30] Yichen Xu, Aleksander Boruch-Gruszecki, and Martin Odersky. 2024. Degrees of Separation: A Flexible Type System

for Safe Concurrency. Proceedings of the ACM on Programming Languages 8, OOPSLA1 (2024), 1181–1207. https:

//doi.org/10.1145/3649853

[31] Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021. GhostCell: Separating permissions from data

in Rust. Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1–30. https://plv.mpi-sws.org/rustbelt/

ghostcell/paper.pdf

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.

https://doi.org/10.1145/3674642
https://doi.org/10.1145/3519939.3523443
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3676954
http://www.irisa.fr/prive/talpin/papers/ic97.pdf
https://doi.org/10.1145/1287624.1287654
https://doi.org/10.1145/3632856
https://doi.org/10.1145/3649853
https://doi.org/10.1145/3649853
https://plv.mpi-sws.org/rustbelt/ghostcell/paper.pdf
https://plv.mpi-sws.org/rustbelt/ghostcell/paper.pdf


23:32 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

A Operational Semantics

𝜋 ′ fresh in 𝑠

(ℎ, 𝑠, fs, fork(𝑒)) ⇝𝜋 (ℎ, 𝑠 [𝜋 ′ := []], (), [(𝜋 ′, 𝑒)])

𝑛 = |𝑠 [𝜋] | 𝜄 fresh in fs

(ℎ, 𝑠, fs, 𝜆local 𝑓 𝑥, 𝑒) ⇝𝜋 (ℎ, 𝑠 [𝜋] [𝑛 := 𝜄], fs ⊎ {𝜄}, (𝜆 ( (𝜋,𝑛),𝜄 ) 𝑓 𝑥, 𝑒), [])

ℓ fresh in ℎ 𝜄 fresh in fs

(ℎ, 𝑠, fs, 𝜆global 𝑓 𝑥, 𝑒) ⇝𝜋 (ℎ[ℓ := 𝜄], 𝑠, fs ⊎ {𝜄}, (𝜆 (ℓ,𝜄 ) 𝑓 𝑥, 𝑒), [])

𝑛 = |𝑠 [𝜋] | 𝑠′ = 𝑠 [𝜋] [𝑛 := (r0, 𝑣)]
(ℎ, 𝑠, fs, alloclocal (𝑣)) ⇝𝜋 (ℎ, 𝑠′, fs, (𝜋, 𝑛), [])

ℓ fresh in h ℎ′ = ℎ[ℓ := (r0, 𝑣)]
(ℎ, 𝑠, fs, allocglobal (𝑣)) ⇝𝜋 (ℎ′, 𝑠, fs, ℓ, [])

𝑛 = |𝑠 [𝜋] |
(ℎ, 𝑠, fs, region(𝑒)) ⇝𝜋 (ℎ, 𝑠, fs, end𝑛 (𝑒), [])

𝑠′ = 𝑠 [𝜋 := ⌊𝑠 [𝜋]⌋<𝑛]
(ℎ, 𝑠, fs, end𝑛 (𝑣)) ⇝𝜋 (ℎ, 𝑠′, 𝑣, [])

ℎ[ℓ] = (r𝑛, 𝑣) ℎ′ = ℎ[ℓ := (r𝑛+1, 𝑣)]
(ℎ, 𝑠, fs, !na1ℓ) ⇝𝜋 (ℎ′, 𝑠, fs, !na2ℓ, [])

ℎ[ℓ] = (r𝑛+1, 𝑣) ℎ′ = ℎ[ℓ := (r𝑛, 𝑣)]
(ℎ, 𝑠, fs, !na2ℓ) ⇝𝜋 (ℎ′, 𝑠, fs, 𝑣, [])

ℎ[ℓ] = (r0,𝑤) ℎ′ = ℎ[ℓ := (wr,𝑤)]
(ℎ, 𝑠, fs, ℓ ←na1 𝑣) ⇝𝜋 (ℎ′, 𝑠, ℓ ←na1 𝑣, [])

ℎ[ℓ] = (wr,𝑤) ℎ′ = ℎ[ℓ := (r0, 𝑣)]
(ℎ, 𝑠, fs, ℓ ←na2 𝑣) ⇝𝜋 (ℎ′, 𝑠, (), [])

ℎ[ℓ] = (r𝑛, 𝑣)
(ℎ, 𝑠, fs, !atℓ) ⇝𝜋 (ℎ, 𝑠, fs, 𝑣, [])

ℎ[ℓ] = (r0,𝑤) ℎ′ = ℎ[ℓ := (r0, 𝑣)]
(ℎ, 𝑠, fs, ℓ ←at 𝑣) ⇝𝜋 (ℎ′, 𝑠, (), [])

Fig. 9. Selected rules of the operational semantics.

A selection of the small-step reduction rules appears in Fig. 9.

How lock states are used. The first step of a non-atomic load (!
na1

) requires the lock state to be a

read state r𝑚 and increases the number of readers by one by changing the lock state to r𝑚+1. The
second step of a non-atomic load (!

na2
) decreases the number of readers back to r𝑚 . The first step

of a non-atomic store (←na1
) requires the lock state to be r0 — indicating that no other thread is

trying to read or write this address — and sets the lock state towr. The second step of a non-atomic

store (←na2
) releases this address by reverting the lock state to r0.

B Program Logic
In this appendix, we present a program logic for DRFCamlLang. The program logic depends on the

following three resource predicates, given here with their intuitive meanings:

𝜋 ↩→ 𝑛 stack of thread 𝜋 has size 𝑛

𝑛 �⇒𝜋 𝑤 stack of thread 𝜋 stores𝑤 at offset 𝑛

ℓ ↦→ 𝑤 heap location ℓ stores𝑤

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:33

Each of these predicates describes exclusive ownership over fragments of the global state. A step

that does not alter the global state does not require exclusive ownership; it requires just shared

knowledge about some fragment. To that end, we define 𝑛 �⇒𝑞
𝜋 𝑤 and ℓ ↦→𝑞 𝑤 , where 𝑞 is a fraction,

to describe fractional ownership over state fragments. The lock state is entirely abstracted away:

it is not explicit at the level of the program logic. Instead, the distinction between atomic and

non-atomic accesses is expressed in the logic through the rules for invariants, which we will return

to in §5.

We define the program logic in terms of Iris’s weakest preconditions [19], adjusted to work

on languages where the thread-id’s are visible at the level of the operational semantics (similar

adjustments have been made in e.g., [20], where thread-id’s were paired with expressions; we

pair them with steps in the operational semantics instead). Weakest precondition propositions

are denoted by wp 𝑒 {Φ}𝜋 , and intuitively express that expression 𝑒 may execute in thread 𝜋 and

does not get stuck, and if it reduces to a value 𝑣 then Φ(𝑣) holds. Hoare triples have a similar

interpretation, and are derived from weakest preconditions. Finally, some of the rules use the

so-called later modality, denoted ⊲, to indicate that a step has been taken. Intuitively, ⊲ 𝑃 means

that 𝑃 holds one step later.

In the remainder of this appendix, we present a selection of program logic rules for DRFCamlLang.

First, we present the rules that allocate new state fragments, namely fork, stack allocation, and

heap allocation.

⊲(∀𝜋. 𝜋 ↩→ 0 −∗ wp 𝑒 {⊤}𝜋 ) ⊲Φ(())
wp fork(𝑒) {Φ}𝜋 ′

{𝜋 ↩→ 𝑛} alloclocal (𝑣)
{
𝑤. 𝑤 = (𝜋, 𝑛) ∗ 𝑛 �⇒𝜋 𝑣 ∗ 𝜋 ↩→ 𝑛 + 1

}
𝜋

{⊤} allocglobal (𝑣) {𝑤. ∃ℓ,𝑤 = ℓ ∗ ℓ ↦→ 𝑣}𝜋

Fork spawns a new thread of some thread-id 𝜋 , and allocates an empty stack. The proof obligation

of the spawned thread is a new weakest precondition — now parameterized by 𝜋 — which may

depend on the newly allocated stack size predicate 𝜋 ↩→ 0. The stack size predicate is then used

for subsequent stack allocations. Stack allocation uses 𝜋 ↩→ 𝑛 to allocate a new stack fragment

predicate 𝑛 �⇒𝜋 𝑣 , increasing the stack size to 𝜋 ↩→ 𝑛 + 1. Finally, heap allocation does not depend

on any resources, and returns a freshly allocated ℓ ↦→ 𝑣 .

Once allocated, resource fragments are used to reason about load and store operations. Below we

show rules for non-atomic load and store over heap locations. Note that since the load operation

does not alter state (insofar as it does not alter the value pointed to by the location), it suffices to

assume fractional ownership over the location ℓ .

{ℓ ↦→𝑞 𝑣} !na1ℓ {𝑤. 𝑤 = 𝑣 ∗ ℓ ↦→𝑞 𝑣}𝜋 {ℓ ↦→ 𝑣} ℓ ←na1 𝑤 {𝑤 ′ . 𝑤 ′ = () ∗ ℓ ↦→ 𝑤}𝜋

Finally, we describe the rules for region(𝑒) and end𝑛 (𝑣). Starting a region only requires knowledge
of the current stack size, as expressed by 𝜋 ↩→ 𝑛 (note that the thread-id of the stack size predicate

matches that of the weakest precondition). Ending a region, on the other hand, requires more

resources. Since end𝑛 (𝑣) deallocates all stack locations at and above the cutoff 𝑛, the proof rule

requires every stack fragment predicate from 𝑛 to the top of the stack, namely𝑚 − 1. Each of these

are consumed by the proof rule, and the stack size predicate is returned with the new size 𝑛.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:34 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

𝜋 ↩→ 𝑛 ⊲(𝜋 ↩→ 𝑛 −∗ wp end𝑛 (𝑒) {Φ}𝜋 )
wp region(𝑒) {Φ}𝜋

𝑛 ≤𝑚{
𝜋 ↩→𝑚 ∗∗𝑘∈[𝑛,𝑚)

𝑘 �⇒𝜋 −
}
end𝑛 (𝑣) {𝑤. 𝑤 = 𝑣 ∗ 𝜋 ↩→ 𝑛}𝜋

Each proof rule is derived from the definition of weakest preconditions, which itself is proved

sound by the following adequacy theorem.

Theorem B.1 (Adeqacy of the Weakest Precondition). Let Φ be a first-order predicate. If

⊢ wp 𝑒 {Φ}𝜋 and (𝜎, 𝑒) ⇝∗
𝜋 (𝜎 ′, 𝑒′, [(𝜋1, 𝑒1), · · · , (𝜋𝑛, 𝑒𝑛)]), then:

(1) ∀𝑖 ∈ [1, 𝑛] . 𝑒𝑖 is a value ∨ (𝜎 ′, 𝑒𝑖 ) ⇝𝜋𝑖 -

(2) if 𝑒′ is a value, then Φ(𝑒′) holds

Proof. Follows the proof of adequacy of Iris’s weakest preconditions, now with thread-ids. □

The adequacy statement gives rise to the following corollary, stating that if one can prove a

weakest precondition statement for some expression 𝑒 , then executing that expression does not

cause a data race.

Corollary B.1. If ⊢ wp 𝑒 {Φ}𝜋 then executing the closed program 𝑒 (with an initially empty heap

and stack, and with thread identifier 𝜋 ) cannot cause a data race.

Proof. Apply Theorem 3.1 followed by Theorem B.1. □

C Typing Rules
Figures 10 and 11 contain all typing rules of DRFCaml.

D Fractional Invariants
We use fractional invariants to model shared access to non-atomic references. Fractional invariants

are a variant of fractured borrows from RustBelt [18], but without the lifetime logic. As with

fractured borrows, fractional invariants grant concurrent and non-atomic access to some resource.

Crucially, if access to the invariant is shared, access to its contents might only be partial.

Fractional invariants use fractional resource tokens to get partial access to the resources in 𝑃 .

Let 𝜆𝑣 𝑞. 𝑃 (𝑣, 𝑞) be a predicate over some 𝑣 of parameterized typed𝑊 — which we will refer to as a

view — and some fraction 𝑞, and let [FrTok : 𝛾 : 𝑣]𝑞 denote the access token of name 𝛾 , at fraction

𝑞 and view 𝑣 . We write FrInvN,𝛾 (𝑃) to denote a fractional invariant, under the namespace N and

with name 𝛾 . The following lemma let’s us open the fractional invariant:

N ↑ ⊆ E → FrInvN,𝛾 (𝑃) −∗ [FrTok : 𝛾 : 𝑣]𝑞 ≡−∗E E ⊲ 𝑃 (𝑣, 𝑞) ∗ (⊲ 𝑃 (𝑣, 𝑞) ≡−∗E E [FrTok : 𝛾 : 𝑣]𝑞)
Here, ≡−∗E1 E2 denotes the so-called fancy update modality, which allows us to open invariants

included in the mask E1, and restricting further accesses to E2. Note however, that in the above

lemma, the mask does not change! Instead, the access token of fraction 𝑞 is lost, and can only be

regained by relinquishing 𝑃 (𝑣, 𝑞), thus preventing 𝑃 (𝑣, 𝑞) from being extracted twice. In fact, it is

precisely because the mask does not change that the resources can be accessed non-atomically.

Note that if one owns the full fraction [FrTok : 𝛾 : 𝑣]
1
, the invariant behaves like a non-atomic,

cancellable invariant. Furthermore, full ownership enables the change of the view 𝑣 as follows:

N ↑ ⊆ E → FrInvN,𝛾 (𝑃) −∗ [FrTok : 𝛾 : 𝑣]
1
≡−∗E E ⊲ 𝑃 (𝑣, 1)∗(∀𝑣 ′ . ⊲ 𝑃 (𝑣 ′, 1) ≡−∗E E [FrTok : 𝛾 : 𝑣 ′]

1
)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:35

Γ ⊢ () : 1@𝑚
Unit

Γ ⊢ 𝑏 : B@𝑚
Bool

Γ ⊢ 𝑧 : Z@𝑚
Int

Γ, 𝑥 : 𝜏 @𝑚, Γ′ ⊢ 𝑥 : 𝜏 @𝑚
Var

Γ,�(l,o,p) , 𝑥 : 𝜏1 @𝑚1 ⊢ 𝑒 : 𝜏2 @𝑚2

Γ ⊢ 𝜆𝑙𝑥, 𝑒 : (𝜏1 @𝑚1 → 𝜏2 @𝑚2) @ (𝑙, 𝑜,𝑢, 𝑝, 𝑐)
NonRecLam

Γ,�(l,many,p) , 𝑥 : 𝜏1 @𝑚1, 𝑓 : (𝜏1 @𝑚1 → 𝜏2 @𝑚2) @ (𝑙,many, 𝑢, 𝑝, 𝑐) ⊢ 𝑒 : 𝜏2 @𝑚2

Γ ⊢ 𝜆𝑙 𝑓 𝑥, 𝑒 : (𝜏1 @𝑚1 → 𝜏2 @𝑚2) @ (𝑙,many, 𝑢, 𝑝, 𝑐)
RecLam

Γ1 ⊢ 𝑒1 : (𝜏1 @𝑚1 → 𝜏2 @𝑚2) @𝑚3 Γ2 ⊢ 𝑒2 : 𝜏1 @𝑚1

Γ1 + Γ2 ⊢ 𝑒1 (𝑒2) : 𝜏2 @𝑚2

App

Γ1 ⊢ 𝑒1 : 1@𝑚1 Γ2 ⊢ 𝑒2 : 𝜏 @𝑚2

Γ1 + Γ2 ⊢ (𝑒1; 𝑒2) : 𝜏 @𝑚2

Seq

Γ1 ⊢ 𝑒1 : 𝜏1 @𝑚1 Γ2, 𝑥 : 𝜏1 @𝑚1 ⊢ 𝑒2 : 𝜏2 @𝑚2

Γ1 + Γ2 ⊢ let 𝑥 := 𝑒1 in 𝑒2 : 𝜏2 @𝑚2

Let

Γ1 ⊢ 𝑒1 : 𝜏1 @ (𝑙,many, 𝑢′, 𝑝′, 𝑐′) Γ2, 𝑥 : 𝜏1 @ (local,many, aliased, 𝑝′, 𝑐′) ⊢ 𝑒2 : 𝜏2 @ (global, 𝑜,𝑢, 𝑝, 𝑐)
Γ3, 𝑥 : 𝜏1 @ (𝑙,many, 𝑢′, 𝑝′, 𝑐′), 𝑦 : 𝜏2 @ (global, 𝑜,𝑢, 𝑝, 𝑐) ⊢ 𝑒3 : 𝜏3 @𝑚

Γ1 + Γ2 + Γ3 ⊢ borrow 𝑥 := 𝑒1 for 𝑦 := 𝑒2 in 𝑒3 : 𝜏3 @𝑚
Borrow

Γ,�(global,𝑜,portable) ⊢ 𝑒 : 𝜏1 @𝑚1

Γ ⊢ fork(𝑒) : 1@𝑚2

Fork

Γ1 ⊢ 𝑒1 : 𝜏1 @𝑚 Γ2 ⊢ 𝑒2 : 𝜏2 @𝑚

Γ1 + Γ2 ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 @𝑚
Pair

Γ1 ⊢ 𝑒1 : 𝜏1 × 𝜏2 @𝑚1 Γ2, 𝑦 : 𝜏2 @𝑚1, 𝑥 : 𝜏1 @𝑚1 ⊢ 𝑒2 : 𝜏3 @𝑚2

Γ1 + Γ2 ⊢ unpair 𝑒1 as (𝑥,𝑦) in 𝑒2 : 𝜏3 @𝑚2

Unpair

Γ ⊢ 𝑒 : 𝜏1 @𝑚

Γ ⊢ inl(𝑒) : 𝜏1 + 𝜏2 @𝑚
Inl

Γ ⊢ 𝑒 : 𝜏2 @𝑚

Γ ⊢ inr(𝑒) : 𝜏1 + 𝜏2 @𝑚
Inr

Γ1 ⊢ 𝑒 : 𝜏1 + 𝜏2 @𝑚1

Γ2, 𝑥 : 𝜏1 @𝑚1 ⊢ 𝑒1 : 𝜏3 @𝑚2

Γ2, 𝑥 : 𝜏2 @𝑚1 ⊢ 𝑒2 : 𝜏3 @𝑚2

Γ1 + Γ2 ⊢ case 𝑒 {inl 𝑥 → 𝑒1; inr 𝑥 → 𝑒2} : 𝜏3 @𝑚2

Case

Γ1 ⊢ 𝑒 : B@𝑚1

Γ2 ⊢ 𝑒1 : 𝜏 @𝑚2

Γ2 ⊢ 𝑒2 : 𝜏 @𝑚2

Γ1 + Γ2 ⊢ if 𝑒 then 𝑒1 else 𝑒2 : 𝜏 @𝑚2

If

Γ ⊢ 𝑒 : 𝜏 @ (global, 𝑜,𝑢, 𝑝, 𝑐)
Γ ⊢ 𝑒 : region(𝑒) @ (global, 𝑜,𝑢, 𝑝, 𝑐)

Region

Γ1 ⊢ 𝑒1 : 𝜏1 @𝑚 Γ2 ⊢ 𝑒2 : 𝜏2 @𝑚

binopTyped (⊕, 𝜏1, 𝜏2, 𝜏3)
Γ1 + Γ2 ⊢ 𝑒1 ⊕ 𝑒2 : 𝜏3 @𝑚

BinOp

UnOp

Γ ⊢ 𝑒 : 𝜏1 @𝑚

unopTyped (⊕, 𝜏1, 𝜏2)
Γ ⊢ ⊕(𝑒) : 𝜏2 @𝑚

Γ1 ≥ Γ2
𝑚1 ≤𝑚2

Γ1 ⊢ 𝑒 : 𝜏 @𝑚1

Γ2 ⊢ 𝑒 : 𝜏 @𝑚2

Sub

Box

Γ ⊢ 𝑒 : 𝜏 @ 𝜂 (𝑚)
Γ ⊢ box(𝑒) : □𝜂𝜏 @𝑚

Unbox

Γ ⊢ 𝑒 : □𝜂𝜏 @𝑚

Γ ⊢ unbox(𝑒) : 𝜏 @ 𝜂 (𝑚)

Fig. 10. Typing rules.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:36 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

NaAlloc

Γ ⊢ 𝑒 : 𝜏 @ (𝑙,many, 𝑢, 𝑝,uncontended)
Γ ⊢ alloc𝑙 (𝑒) : ref𝑝 (𝜏) @ (𝑙, 𝑜,𝑢′, 𝑝, 𝑐)

NaLoad

Γ ⊢ 𝑒 : ref𝑝 (𝜏) @ (𝑙, 𝑜 ′, 𝑢′, 𝑝′, 𝑐) 𝑐 ≠ contended

Γ ⊢ !NA𝑒 : 𝜏 @ (𝑙, 𝑜, aliased, 𝑝, 𝑐)

Γ1 ⊢ 𝑒1 : ref𝑝 (𝜏) @ (𝑙 ′, 𝑜 ′, 𝑢′, 𝑝′,uncontended)
Γ2 ⊢ 𝑒2 : 𝜏 @ (global,many, 𝑢, 𝑝,uncontended)

Γ1 + Γ2 ⊢ 𝑒1 ←NA 𝑒2 : 1@𝑚2

NaStore

AtAlloc

Γ ⊢ 𝑒 : 𝜏 @ (global,many, 𝑢, portable, 𝑐)
Γ ⊢ allocglobal (𝑒) : atomic(𝜏) @ (𝑙, 𝑜,𝑢′, 𝑝, 𝑐′)

AtLoad

Γ ⊢ 𝑒 : atomic(𝜏) @𝑚

Γ ⊢ !AT𝑒 : 𝜏 @ (𝑙, 𝑜, aliased, 𝑝, contended)

Γ1 ⊢ 𝑒1 : atomic(𝜏) @𝑚1 Γ2 ⊢ 𝑒2 : 𝜏 @ (global,many, 𝑢, portable, 𝑐)
Γ1 + Γ2 ⊢ 𝑒1 ←AT 𝑒2 : 1@𝑚2

AtStore

Γ1 ⊢ 𝑒1 : atomic(𝜏) @𝑚1

Γ2 ⊢ 𝑒2 : 𝜏 @𝑚2 Γ3 ⊢ 𝑒3 : 𝜏 @ (global,many, 𝑢, portable, 𝑐) typeCmpSafe(𝜏)
Γ1 + Γ2 + Γ3 ⊢ cmpXchg(𝑒1, 𝑒2, 𝑒3) : 𝜏 ×B@ (𝑙, 𝑜, aliased, 𝑝, contended)

CmpXchg

Γ1 ⊢ 𝑒1 : atomic(𝜏) @𝑚 Γ2 ⊢ 𝑒2 : 𝜏 @ (global,many, 𝑢, portable, 𝑐)
Γ1 + Γ2 ⊢ xchg(𝑒1, 𝑒2) : 𝜏 @ (𝑙, 𝑜, aliased, 𝑝,uncontended)

Xchg

Γ1 ⊢ 𝑒1 : atomic(Z) @𝑚1 Γ2 ⊢ 𝑒2 : Z@𝑚2

Γ1 + Γ2 ⊢ faa(𝑒1, 𝑒2) : Z@𝑚3

Faa

Fig. 11. Typing rules for references.

With fractional invariants in mind, we can now more precisely specify the type of εmut and εro:
rather than tracking references directly, we track the set of fractional token names that are currently

available, together with the portability mode of the associated reference. As such, εmut and εro are
sets of portability mode and token name pairs (𝑝,𝛾). Similarly, Δ will in part contain the fractional

token names of temporarily owned references, together with an abstract notion of non-reference

locals.

E Logical Relation
Figures 12 and 13 (almost) contain the full definition of the logical relation. The full list of Core

Conditions of the Logical Relation, i.e., the conditions on semantic types, is as follows:

Definition E.1 (Core Conditions of the Logical Relation).

(1) Δ′ ⊇ Δ =⇒ ⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣) −∗ ⟦𝜏⟧εmut,εro,Δ

′
𝑚 (𝑣)

(2) if𝑚.𝑙 = global then ⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣) −∗ ⟦𝜏⟧εmut,εro,Δ

′
𝑚 (𝑣)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:37

⟦𝜏⟧εmut,εro,Δ
𝑚 : Value→ iProp

⟦1⟧−,−,−− (𝑣) ≜ 𝑣 = ()
⟦B⟧−,−,−− (𝑣) ≜ ∃𝑏. 𝑣 = 𝑏

⟦Z⟧−,−,−− (𝑣) ≜ ∃𝑧. 𝑣 = 𝑧

⟦𝜏1 + 𝜏2⟧εmut,εro,Δ
𝑚 (𝑣) ≜ (∃𝑣1. 𝑣 = inl(𝑣1) ∗ ⟦𝜏1⟧εmut,εro,Δ

𝑚 (𝑣1)) ∨
(∃𝑣2. 𝑣 = inr(𝑣2) ∗ ⟦𝜏2⟧εmut,εro,Δ

𝑚 (𝑣2))
⟦𝜏1 × 𝜏2⟧εmut,εro,Δ

𝑚 (𝑣) ≜ ∃𝑣1 𝑣2. 𝑣 = (𝑣1, 𝑣2) ∗ ⟦𝜏1⟧εmut,εro,Δ
𝑚 (𝑣1) ∗ ⟦𝜏2⟧εmut,εro,Δ

𝑚 (𝑣2)
⟦□𝜂𝜏⟧εmut,εro,Δ

𝑚 (𝑣) ≜ ⟦𝜏⟧εmut,εro,Δ
𝜂 (𝑚) (𝑣)

⟦𝜏1 @𝑚1 → 𝜏2 @𝑚2⟧εmut,εro,Δ
𝑚 (𝑣) ≜

𝑣 = 𝜆... ∗ ∀𝜋 ε′mut ε
′
ro Δ

′ 𝑞. (ε′mut, ε
′
ro) ⊒𝑚.𝑝 (εmut, εro) → Δ′ ⊒𝑚.𝑙,𝑚.𝑝 Δ→ □𝑚.𝑜 ∀𝑛 𝑣1.

(⟦𝜏1⟧
ε′mut,ε

′
ro,Δ

′

𝑚1
(𝑣1) ∗ L(𝜋, 𝑛, ε′mut, ε

′
ro,Δ

′) ∗Mem(ε′mut, ε
′
ro, 𝑞)) −∗ E⟦𝜏2⟧

ε′mut,ε
′
ro,Δ

′

𝜋,𝑛,𝑞,𝑚2
(𝑣 (𝑣1))

⟦ref𝑝 (𝜏)⟧εmut,εro,Δ
𝑚 (𝑣) ≜ ∃𝑎. 𝑣 = 𝑎 ∗ 𝑝 ≤𝑚.𝑝 ∗

⊤ 𝑚.𝑐 = contended

𝜙H (𝑝, ℓ) (filter(𝑝, εmut, εro), 1) 𝑚.𝑐 = uncontended ∧ 𝑎 = ℓ ∧
𝑚.𝑢 = unique

∃𝛾 . (𝑝,𝛾) ∈ εmut ∗ FrInvNlog .ℓ,𝛾 (𝜙H (𝑝, ℓ)) 𝑚.𝑐 = uncontended ∧ 𝑎 = ℓ ∧
𝑚.𝑢 = aliased ∧𝑚.𝑙 = global

∃𝛾 . (𝑝,𝛾) ∈ εmut ∪ Δ ∗ 𝑚.𝑐 = uncontended ∧ 𝑎 = ℓ ∧
FrInvNlog .ℓ,𝛾 (𝜙H (𝑝, ℓ)) 𝑚.𝑢 = aliased ∧𝑚.𝑙 = local

∃𝛾 . (portable, 𝛾) ∈ εmut ∪ Δ ∪ εro ∗ 𝑚.𝑐 = shared ∧ 𝑎 = ℓ ∧
FrInvNlog .ℓ,𝛾 (𝜙H (portable, ℓ)) ∗ 𝑚.𝑢 = aliased

∃Δ′ 𝛾 . Δ′ ⊆ Δ ∗ (𝑝,𝛾) ∈ Δ ∗ 𝑚.𝑐 ≠ contended ∧ 𝑎 = (𝜋, 𝑛)
FrInvNlog .(𝜋,𝑛),𝛾 (𝜙S (Δ′, 𝑝, 𝜋, 𝑛)) 𝑚.𝑙 = local

⟦atomic(𝜏)⟧εmut,εro,Δ
𝑚 (𝑣) ≜ ∃ℓ . 𝑣 = ℓ ∗

𝜙At (ℓ) 𝑚.𝑢 = unique
𝜙At (ℓ)

Nat .ℓ
𝑚.𝑢 = aliased ∧𝑚.𝑙 = global

𝜙At (ℓ)
Nat .ℓ ∨ ∃𝛾 . (portable, 𝛾) ∈ Δ ∗

CInvNat .ℓ,𝛾 (𝜙At (ℓ))
𝑚.𝑢 = aliased ∧𝑚.𝑙 = local

where

𝜙H (𝑝, ℓ) ≜ 𝜆(εmut, εro) 𝑞. ∃𝑣 . ℓ ↦→𝑞 𝑣 ∗ ⟦𝜏⟧εmut,εro,∅
(global,many,aliased,𝑝,uncontended) (𝑣)

𝜙S (Δ, 𝑝, 𝜋, 𝑛) ≜ 𝜆(εmut, εro) 𝑞. ∃𝑣 . 𝑛 �⇒𝑞
𝜋 𝑣 ∗ ⟦𝜏⟧εmut,εro,Δ

(local,many,aliased,𝑝,uncontended) (𝑣)
𝜙At (ℓ) ≜ ∃𝑣 . ℓ ↦→ 𝑣 ∗ ⟦𝜏⟧∅,∅,∅(global,many,aliased,portable,contended) (𝑣)

filter(𝑝, εmut) ≜

{
(filterp (εmut), ∅) 𝑝 = portable
(εmut, εro) 𝑝 = nonportable

Fig. 12. Value relation.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



23:38 A. L. Georges, B. Peters, L. Elbeheiry, L. White, S. Dolan, R. A. Eisenberg, C. Casinghino, F. Pottier, and D. Dreyer

E⟦𝜏⟧εmut,εro,Δ
𝜋,𝑛,𝑞,𝑚 : Expression→ iProp

E⟦𝜏⟧εmut,εro,Δ
𝜋,𝑛,𝑞,𝑚 (𝑒) ≜ wp 𝑒


𝑣 .

∃𝑛′ Δ′ ε′mut. 𝑛 ≤ 𝑛′ ∧ Δ ⊆ Δ′ ∧ εmut ⊆ ε′mut

∗ ⟦𝜏⟧ε
′
mut,εro,Δ

′

𝑚 (𝑣)
∗ L(𝜋, 𝑛′, ε′mut, εro,Δ

′)
∗ Mem(ε′mut, εro, 𝑞)
∗ collectFrames(𝑛, 𝑛′, 𝜋,Δ,Δ′)

𝜋

L(𝜋, 𝑛, εmut, εro,Δ) ≜ 𝜋 ↩→ 𝑛 ∗ ∗𝑥∈Δ [FrTok : 𝑥 .𝛾 : (εmut, εro)]1 ∗ view resource based on x

Mem(εmut, εro, 𝑞) ≜ (∗(𝑝,𝛾 ) ∈εmut
∃ε′mut ε

′
ro . (εmut, εro) ⊒ (ε′mut, ε

′
ro)∗

[FrTok : 𝛾 : (ε′mut, ε
′
ro)]1 ∗ · · · )∗∗(𝑝,𝛾 ) ∈εro ∃ε′mut ε

′
ro. εmut ∪ εro ⊇ ε′mutε

′
ro∗

[FrTok : 𝛾 : (ε′mut, ε
′
ro)]𝑞 ∗ · · ·

where

collectFrames(𝑛, 𝑛′, 𝜋,Δ,Δ′) ≜ ∗𝑚∈[𝑛,𝑛′ ) ∃𝑥 . (𝑥 ∈ Δ′ ∗ 𝑥 ∉ Δ ∨ [FrTok : 𝑥 .𝛾 : −]
1
) ∗

([FrTok : 𝑥 .𝛾 : −]
1
⇛ 𝑚 �⇒𝜋 −)

Fig. 13. Expression relation and auxiliary definitions.

(3) if𝑚.𝑝 = portable and𝑚.𝑐 = contended then

Δ′ ⊇ atomics(Δ) =⇒ ⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣) −∗ ⟦𝜏⟧εmut,εro,Δ

′
𝑚 (𝑣)

where atomics(Δ′) is an operation which extracts all those elements of Δ′ associated to

atomically accessible values.

(4) (ε′mut, ε
′
ro) ⊒ (εmut, εro) =⇒ ⟦𝜏⟧εmut,εro,Δ

𝑚 (𝑣) −∗ ⟦𝜏⟧ε
′
mut,ε

′
ro,Δ

𝑚 (𝑣)
where (ε′mut, ε

′
ro) ⊒ (εmut, εro) ≜ ε′mut ⊇ εmut ∧ ε′mut ∪ ε′ro ⊇ εro

(5) if𝑚.𝑝 = portable and𝑚.𝑐 = uncontended then

⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣) −∗ ⟦𝜏⟧filterp (εmut ),filterp (ε′ro ),Δ

𝑚 (𝑣) where filterp is an operation which extracts all

those elements of εmut and εro associated to portable references

(6) if𝑚.𝑝 = portable and𝑚.𝑐 = contended then

⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣) −∗ ⟦𝜏⟧ε

′
mut,ε

′
ro,Δ

𝑚 (𝑣)
(7) if 𝑐 ≤ shared then

⟦𝜏⟧εmut,εro,Δ
(global,many,aliased,portable,𝑐 ) (𝑣) −∗ ⟦𝜏⟧

∅,εmut∪εro,Δ
(global,many,aliased,portable,shared) (𝑣)

(8) if𝑚.𝑜 =many and𝑚.𝑢 = aliased then Persistent(⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣))

(9) The borrow condition, which is here omitted, states that validity can temporarily be turned local
and aliased by extending Δ

(10) if𝑚 ≤𝑚′ then · · · ∗ ⟦𝜏⟧εmut,εro,Δ
𝑚 (𝑣) ≡−∗⊤ ∃ε′mut . εmut ⊆ ε′mut ∗ · · · ∗ ⟦𝜏⟧

ε′mut,εro,Δ
𝑚′ (𝑣)

To help explain these conditions, we restate them in words:

(1) The set of locals can always grow.

(2) If the mode is global, validity does not depend on any locals.

(3) If the mode is portable and contended, validity does not depend on non-atomic locals. Here,

atomics(Δ) is an operation which extracts all those elements of Δ associated to atomically

accessible values.

(4) Enlarging the sets of accessible mutable and immutable references, or allowing mutable

access to previously immutable references, does not invalidate any existing values.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.



Data Race Freedom à la Mode 23:39

(5) If the mode is portable and uncontended, validity does not depend on nonportable
references. Here, filterp is an operation which extracts all those elements of εmut associated

to portable references.

(6) If the mode is portable and contended, validity does not depend on any references.

(7) An uncontended mode can be turned shared by moving all mutable accessible references

to the immutable set of accessible references.

(8) If the mode is many and aliased, validity is persistent, which means it can be freely dupli-

cated.

(9) A condition used for turning unique values aliased, and then back to unique.
(10) Validity is preserved across mode weakening. Here, we omit some of the auxiliary ghost

resources allocated by the lemma.

F Capsule API
The Capsule API is implemented as follows:

module Key = struct

type 'k t = unit

end

let create _ = ()

module Data = struct

type ('a, 'k) t = 'a

let create f = Obj.magic (f ())

let map key f v = (key, Obj.magic (f (Obj.magic v)))

let extract key f v = (key, f (Obj.magic v))

let both v w = Obj.magic (v, w)

let map_shared key f v = Obj.magic (f (Obj.magic v))

let extract_shared key f v = f (Obj.magic v)

let destroy key v = Obj.magic v

end

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 23. Publication date: January 2025.


	Abstract
	1 Introduction
	1.1 DRFCaml
	1.2 Modal APIs with Interior Mutability: Capsules and Reader-Writer Locks
	1.3 Contributions

	2 A Tour of Modal Programming in DRFCaml
	2.1 Locality Axis
	2.2 Uniqueness and Affinity Axes
	2.3 Deep Modes and Modalities
	2.4 Contention and Portability Axes
	2.5 Summary of Modes and the Legacy Mode
	2.6 Modes and References
	2.7 The Capsule API
	2.8 The Reader-Writer Lock API
	2.9 Limitations of the Capsule API

	3 DRFCamlLang
	4 Modal Type System
	4.1 Context Joining
	4.2 Closures, Locks, and Fork
	4.3 Boxes and Modalities
	4.4 References

	5 Semantic Type Soundness
	5.1 Overview of the Model
	5.2 The Logical Relation
	5.3 Semantic Typing

	6 Specifying and Verifying the Capsule API
	7 Related Work
	References
	A Operational Semantics
	B Program Logic
	C Typing Rules
	D Fractional Invariants
	E Logical Relation
	F Capsule API

