
Modular Specifications and Implementations of
Random Samplers in Higher-Order Separation Logic

Virgil Marionneau

ENS Rennes

Rennes, France

virgil.marionneau@ens-rennes.fr

Félix Sassus Bourda

ENS Paris-Saclay

Gif-sur-Yvette, France

felix.sassus-bourda@ens-paris-saclay.fr

Alejandro Aguirre

Aarhus University

Aarhus, Denmark

alejandro@cs.au.dk

Lars Birkedal

Aarhus University

Aarhus, Denmark

birkedal@cs.au.dk

Abstract
Probabilistic programs have a myriad of applications, from

randomized algorithms to statistical modeling, and as such

have inspired a long tradition of probabilistic program logics

to verify their correctness. One essential use of probabilistic

programs is to program new samplers from more primi-

tive samplers, e.g., to generate samples from more complex

distributions only given a primitive uniform sampler. Such

samplers are an ideal case study for probabilistic program

logics, to ensure that they implement the target distributions

correctly. But proving correctness is often not enough, one

also wants to reason about clients of these samplers, which

require their specifications to be expressive and reusable.

In this work, we propose a methodology for giving speci-

fications to samplers that are detailed enough to prove that

they are correct, and expressive enough to reason about their

clients. We propose our methodology for Eris, a recent prob-

abilistic program logic based on the Iris separation logic. We

identify what makes the proof rules and reasoning principles

for primitive distributions in Eris work, and we distill them

into a distribution typeclass. This presents at an abstract

level the requirements that a concrete implementation of

a target distribution should satisfy, and provides reasoning

principles for clients of the interface. Working at this level

of abstraction allows us to prove correctness results, as well

as to derive additional reasoning principles for all implemen-

tations that adhere to the typeclass interface. We instantiate

this approach to a variety of samplers for classical distribu-

tions, such as binomials, geometrics and beta-binomials.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

CPP ’26, Rennes, France
© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2341-4/2026/01

https://doi.org/10.1145/3779031.3779109

CCS Concepts: • Theory of computation→ Separation
logic; Logic and verification; Probabilistic computation;
Program verification.

Keywords: Probabilistic Programming, Separation Logic,

Formal Verification

ACM Reference Format:
VirgilMarionneau, Félix Sassus Bourda, AlejandroAguirre, and Lars

Birkedal. 2026. Modular Specifications and Implementations of

Random Samplers in Higher-Order Separation Logic. In Proceedings
of the 15th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP ’26), January 12–13, 2026, Rennes, France.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3779031.
3779109

1 Introduction
Randomized sampling in programs is prevalent in many

areas of computer science. For example, randomized algo-

rithms [Motwani and Raghavan 1995] use sampling to tra-

verse large search spaces faster, leading to an improved per-

formance at the cost of a small probability of errors. Other

examples come from the fields of computer security and

cryptography, where randomization is crucial for having

strong security guarantees [Goldwasser and Micali 1982].

However, randomization leads to unintuitive behaviors in

programs that are hard to reason about.

This has led to a long tradition of developing principles

to reason about probabilistic programs, using a variety of

techniques such as predicate transformers [Batz et al. 2019;

McIver and Morgan 2005]; different kinds of unary and re-

lational program logics [Aguirre et al. 2024; Bao et al. 2025;

Barthe et al. 2018, 2015, 2016; Li et al. 2023; Zilberstein

et al. 2025]; or techniques inspired by model checking or

Markov chain analysis [Chakarov and Sankaranarayanan

2013]. These have different strengths and weaknesses in

terms of the base language they target, the ambient logic in

which they work on, and the classes of properties they can

express and reason about, we discuss them in more detail at

the end of the paper.

368

https://orcid.org/0009-0005-9568-4592
https://orcid.org/0009-0007-7559-1326
https://orcid.org/0000-0001-6746-2734
https://orcid.org/0000-0003-1320-0098
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779031.3779109
https://doi.org/10.1145/3779031.3779109
https://doi.org/10.1145/3779031.3779109
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CPP ’26, January 12–13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

In most of these approaches, one assumes that the target

language only comes equipped with some simple random

primitives (e.g. just a uniform bit sampling operation, or a

fair choice operator), which simplifies the presentation of

the logics. Since it is known that this suffices to represent

all distributions of interest [Dal Lago et al. 2014], then one

can argue that these primitives and the rules to reason about

them are sufficient, and that the approach can be extended

to support more distributions if one so wanted to.

This is analogous to the way in which random sampling

libraries are implemented in mainstream programming lan-

guages. From a primitive source of randomness provided,

e.g., by the operating system or the hardware, library de-

signers can then program samplers that implement more

complex distributions. When verifying such a library, we

have two objectives in mind: first, we want to make sure

that the samplers actually implement the target distribution

correctly. Second, we want to ensure that the specifications

that we prove for the samplers are expressive enough to

use them in proofs of larger programs that are clients of the

sampling library.

In this paper, we propose a methodology to realize these

objectives. We extend Eris [Aguirre et al. 2024], a recent sep-

aration logic for higher-order probabilistic programs, with a

new library for random samplers. These are implemented in

an expressive higher-order language with primitive support

for uniform sampling over a finite range of integers. We use

the facilities provided by Eris, and a novel proof technique,

to give and prove expressive specifications for our samplers,

that can be later used in other proofs as if they were prim-

itives. Moreover, we showcase that the abstract reasoning

principles that Eris provides for the primitive distributions

can also be extended to the distributions implemented in

the library. The entire development is mechanized using

Rocq [The Rocq Development Team 2025] and Iris [Jung

et al. 2015], and the accompanying artifact can be consulted

in [Marionneau et al. 2025].

2 Overview of the Approach
In this section we give an informal overview of our approach

to specifying and reasoning about random samplers. We

present more precise definitions and details in the coming

sections.

Eris [Aguirre et al. 2024] is a program logic designed to

prove upper bounds on the probability of events considered

over the final result and state after a program execution.

The logic is implemented as an extension of Iris [Jung et al.

2015]. The key reasoning tool in Eris is a so-called error

credit, a separation logic predicate (aka separation logic re-

source) that can be spent to avoid certain outcomes of prob-

abilistic choices during program execution. Ownership of

𝜀 ∈ [0, 1] error credits is denoted E(𝜀). This intuition is re-

alized through the adequacy theorem of Eris: if the triple

{E(𝜀)} 𝑒 {𝜙} is valid, then the probability that executing 𝑒

will result in a final result that does not satisfy 𝜙 is at most

𝜀. In particular, note that error credits have the property

E(1) ⊢ False, which corresponds to the fact that the proba-

bility of any event is bounded from above by 1.

Error credits are manipulated in proofs through the laws

dictated by their resource algebra representation (detailed

in Section 3.3) and a rule for sampling from a uniform distri-

bution over the integers {0, . . . , 𝑁 } :∑𝑁
𝑖=0

E2 (𝑖)
𝑁 + 1 = 𝜀1

⊢ {E(𝜀1)} rand𝑁 {𝑣 . E(E2 (𝑣))}
ht-rand-exp

Morally this rule says that if we own 𝜀1 error credits, we

can assume that we will sample some 𝑣 and own E2 (𝑣) error
credits afterwards as long as the expected value of E2 is 𝜀1.
Note that in some of the outcomes the amount of credits may

be larger than the initial 𝜀1. One can discard any outcome

with 1 error credit using the rule E(1) ⊢ False. From this, one

can derive the rule

0 ≤ 𝑛 ≤ 𝑁
⊢
{
E
(

1

𝑁+1
)}

rand𝑁 {𝑣 . 𝑣 ≠ 𝑛}
ht-rand-avoid

which allows us to spend E
(

1

𝑁+1
)
to avoid a concrete outcome

𝑛, recovering the primary intuition behind error credits.

In addition to the ht-rand-exp above, Eris also has so-

called presampling rules, shown in Figure 3. These allow

the user to generate randomness in advance at the logical

level, which will be used later physically by the program.

Presampling is a useful reasoning principle, e.g., in proofs

of almost sure termination. Presampling requires ownership

of a presampling tape, a separation logic resource that holds

random samples that will be used in the execution. The

separation logic predicate 𝜄 ↩→ (𝑁, ®𝑛) denotes ownership
of a tape with label 𝜄 containing a sequence ®𝑛 of samples

uniformly distributed in {0, . . . , 𝑁 }. Tapes can be allocated

using similar syntax as standard references, following the

rule alloc-tape. The rule presample-exp appends a fresh

uniform sample to a tape and, analogously to ht-rand-exp,

allows the user to distribute error credits across the outcomes.

Sampling instructions can then be annotated with a tape

label, and will deterministically read the first element of

the corresponding tape, as specified by load-tape. A more

involved, planner rule (presample-planner) allows users to
presample at once a large sequence of samples ending on a

particular suffix.

Now suppose we have implemented a sampler bern 𝑝 𝑞
which returns true with probability 𝑝/𝑞 and false with prob-

ability (𝑞 − 𝑝)/𝑞, for 0 < 𝑝 ≤ 𝑞, and we want to prove it is

correct. Following the intuition behind the meaning of the

triples, one could think of the following naïve specification:

∀𝑏 : B, {E(if 𝑏 then (𝑞 − 𝑝)/𝑞 else 𝑝/𝑞)} bern 𝑝 𝑞 {𝑣 . 𝑣 = 𝑏}

369

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic CPP ’26, January 12–13, 2026, Rennes, France

This specification allows us to spend E((𝑞 − 𝑝)/𝑞) to ensure

that the result of sampling is true, or to use E(𝑝/𝑞) to ensure
the result is false, which is precisely how a Bernoulli sampler

should behave. This specification does indeed prove correct-

ness of the sampler. However, we argue that this specification

is not strong enough to be used in clients of the sampler, as

shown by the example below:

Example 2.1. Consider the program below:

𝑒 ≜ if bern 2 3 then ()
else if bern 2 3 then () else fail

This program returns safely with probability 8/9, otherwise
it crashes. Therefore, we would hope to be able to show the

specification

{E(1/9)} 𝑒 {𝑣 . True}
However, the specification

∀𝑏 : B, {E(if 𝑏 then 1/3 else 2/3)} bern 2 3 {𝑣 . 𝑣 = 𝑏}

is not enough to prove this, becausewe need to supply E(1/3)
to resolve the first bern to true, but we only have E(1/9).

The key observation behind our approach is that the ht-

rand-exp rule captures the fact that rand𝑁 yields a uni-

formly distributed value by describing not how it consumes

error credits, but how it can transform them. To characterize

a sampler for another distribution 𝜇, we have to describe

how it can transform credits. We can do this by showing a

rule similar to ht-rand-exp, but where the expectation is

taken over 𝜇.

We propose then to give the following specification to the

Bernoulli sampler:

∀E2.

{(
𝑝

𝑞
· E2 (true) +

𝑞 − 𝑝
𝑞
· E2 (false)

)
= 𝜀1 ∗ E(𝜀1)

}
bern 𝑝 𝑞

{𝑏 . E(E2 (𝑏))}

This specification states that if we begin by owning 𝜀1 error

credits, then we will sample some 𝑏 and own E2 (𝑏) error
credits, as long as the expected value of E2 under the corre-
sponding Bernoulli distribution (i.e. (𝑝/𝑞) · E2 (true) + ((𝑞 −
𝑝)/𝑞) · E2 (false)) is equal to 𝜀1. In particular, the previous

naïve specification is derivable from this one.

Example 2.1 (continued). With this specification we can
now finish our proof. For the first sampling in 𝑒 we instantiate
the specification of bern 2 3 with

E2 (𝑏) ≜ if 𝑏 then 0 else 1/3

It is easy to check that the precondition is satisfied, since

(2/3) · 0 + (1/3) · (1/3) = (1/9)

Then we will either be in the then branch, owning E(0), and
conclude immediately, or in the else branch, owning E(1/3). In

the latter case, we use the specification of bern 2 3 again, this
time with

E2 (𝑏) ≜ if 𝑏 then 0 else 1

In the then branch, we conclude immediately. Otherwise, we
will own E(1), and since E(1) ⊢ False, we can also conclude.

The soundness of our approach is proven through a novel

distribution adequacy theorem, which is stated using total

correctness Hoare triples.
1

Theorem 2.2. Let 𝑒 be an expression, and 𝜇 a probability dis-
tribution over values. Suppose the statement below is derivable
in Eris:

⊢ ∀𝜀1, E2 .
[∑︁

𝑣

𝜇 (𝑣) · E2 (𝑣) = 𝜀1 ∗ E(𝜀1)
]
𝑒 [𝑣 . E(E2 (𝑣))]

Then, the final value of 𝑒 distributes as 𝜇.

Using the expressive program logic features of Eris (in-

herited from Iris), we further prove presampling rules for

the implemented samplers. For example, ownership of a

Bernoulli tape can be expressed in terms of ownership of a

standard (uniform) tape and a condition on its contents that

establishes how each Bernoulli sample is translated into a

uniform sample.

To provide a unified interface for the newly implemented

samplers, we introduce an abstract distribution typeclass,

which states that a program 𝑒 implements a meta-level dis-

tribution 𝜇. The interface imposes a series of Eris proof obli-

gations on the user, and provides a set of proof rules that

can be used to reason about clients of the samplers. Cru-

cially, we show that a generic planner rule can be derived

for any sampler as a consequence of the typeclass definition,

which allows us to develop expressive reasoning principles

for complex distributions from a single proof.

3 Preliminaries
3.1 Probability Theory
Definition 3.1 (Mass). For a countable set 𝐴 and a function
𝜇 : 𝐴→ [0, 1], we write |𝜇 | for the sum ∑

𝑎∈𝐴 𝜇 (𝑎) when it is
finite.

Definition 3.2 (Subdistribution). A subdistribution over a
countable set 𝐴 is a function 𝜇 : 𝐴→ [0, 1] such that |𝜇 | ≤ 1.
We let D(𝐴) denote the set of all subdistributions over 𝐴. We
call the set supp 𝜇 ≜ {𝑎 ∈ 𝐴 | 0 < 𝜇 (𝑎)} the support of 𝜇.

We need subdistributions instead of full distributions to

account for non-terminating programs. This does not come at

a high cost as much of the structure of interest whenworking

with distributions is still present for subdistributions.

Proposition 3.3. The operation 𝐴 ↦→ D(𝐴) admits monadic
structure.
1
We use curly brackets for partial correctness Hoare triples and square

brackets for total correctness Hoare triples as detailed in the next section.

370

CPP ’26, January 12–13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

Proof. Define the action ofD on 𝑓 : 𝐴→ 𝐵 asD(𝑓) (𝜇) (𝑏) ≜∑
𝑎∈𝐴 𝛿𝑏 (𝑓 (𝑎)) · 𝜇 (𝑎), where 𝛿𝑥 is the mass function of the

Dirac distribution, which maps 𝑥 to 1, and any 𝑥 ′ ≠ 𝑥 to 0;

and define the unit and bind operations as ret𝐴 (𝑎) (𝑏) = 𝛿𝑎𝑏
and (𝜇>>=𝑓) (𝑏) ≜ ∑

𝑎∈𝐴 𝜇 (𝑎) · 𝑓 (𝑎) (𝑏). Functoriality of D
and the monadic laws are easily checked. □

Remark 3.4. While D admits monadic operations, it is not
itself a monad, since, for a non-empty countable set 𝐴, D(𝐴)
is not itself countable. Thus D is not an endofunctor. Instead,
it is an example of a relative monad [Altenkirch et al. 2015].

Definition 3.5 (Restriction). For a subdistribution 𝜇, we write
𝜇 |𝑃 (𝑥) for the subdistribution defined by:

𝜇 |𝑃 (𝑥) =
{
𝜇 (𝑥) if 𝑃 (𝑥) holds
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We call it the restriction of 𝜇 to 𝑃 . The mass |𝜇 |𝑃 | of the restric-
tion of 𝜇 to 𝑃 is called the probability of 𝑃 with respect to 𝜇.
We write it as Pr𝜇 [𝑃].

3.2 Programming Language and Semantics
The language we consider is RandML [Gregersen et al. 2024],

a variant of sequential ML with higher-order dynamic store

and probabilistic sampling. Its syntax, detailed in Figure 1,

is mostly standard. However, we call attention to the rand
and tape constructs. RandML supports two kinds of primi-

tive sampling commands: unlabeled and labeled. The former

takes a single integer argument 𝑁 and evaluates to a uni-

formly distributed integer between 0 and 𝑁 , both included.

The second takes two arguments, an integer 𝑁 and a tape

label 𝜄, and is used to support the presampling rules. Tapes

are a piece of state and behave similarly to references: the

tape 𝑁 construct allocates an empty tape that will be used

to contain uniform samples between 0 and 𝑁 , and returns a

label. The command rand𝑁 𝜄 will then check that the tape

𝜄 is of the right type, return its first element deterministi-

cally, and remove it from the tape. Notice that there is no

language construct that adds values onto the tape, we will

later explain how they are populated at the logical level. The

interested reader can also consult [Gregersen et al. 2024] for

mode details on how tapes are used, and for a proof of why

it is sound to add them to the language.

The language is equipped with mostly standard probabilis-

tic small-step operational semantics. A single step of reduc-

tion will be modeled by a function step : Cfg → D(Cfg),
most of the expressions in the language reduce determin-

istically and so for those the reduction is simply a Dirac

distribution. Some of the more interesting cases are detailed

in Figure 2. In particular, note how the reduction for the

labeled sampling is deterministic, except in the case where

the corresponding tape is empty, where a fresh sample is

produced.

After defining single steps of computations, we define

exec𝑛 : Cfg → D(Val) to represent the subdistribution of

values reached after 𝑛 steps of execution:

exec𝑛 (𝑒, 𝜎) ≜

ret(𝑒) if 𝑒 ∈Val
step(𝑒, 𝜎)>>=exec𝑛−1 if 𝑒 ∉Val and 𝑛 > 0

0 otherwise

By taking the limit of exec𝑛 (𝜌) as 𝑛 goes to infinity, we ob-

tain the subdistribution representing the results of a full

execution of 𝜌 , which we denote by exec(𝜌). The probability
of termination of a full execution of 𝜌 is given by |exec(𝜌) |.
We call a configuration almost-surely terminating if its prob-

ability of termination is 1.

3.3 The Eris Program Logic
Eris is a probabilistic variant of Iris [Jung et al. 2015] and it

inherits most of its syntax and derivation rules from it. In

this paper, we focus on the main concepts of Eris required

to follow our contributions; we refer the interested reader

to Aguirre et al. [2024] for further details.

The syntax of propositions in Eris is outlined below. It

includes standard separation logic connectives, as well as

Iris-specific modalities such as persistently (�) and later (⊲).

Notably, it is a higher-order program logic, so Hoare triples

{𝑃} 𝑒 {𝑄} and [𝑃] 𝑒 [𝑄] are also propositions in Eris. The

former indicates partial correctness, while the latter indicates

total correctness.

𝑃,𝑄 ∈ iProp ::=

True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃
| 𝑃 ∗ 𝑄 | 𝑃 ∗ 𝑄 | � 𝑃 | ⊲ 𝑃 | ℓ ↦→ 𝑣

| E(𝜀) | 𝜄 ↩→ (𝑁, 𝑥𝑠) | {𝑃} 𝑒 {𝑄} | [𝑃] 𝑒 [𝑄] | . . .
The main novelty of Eris is the addition of a new resource

called “error credits”, whose rules are outlined below:

⊢ E(0) E(𝜀1) ∗ E(𝜀2) ⊣⊢ E(𝜀1 + 𝜀2) E(1) ⊢ False
Ownership of 𝜀 error credits (denoted E(𝜀)) can be seen as

an allowance to fail to prove the specification under scrutiny

with at most 𝜀 probability. Hence, owning E(1) allows us to
prove any conclusion. This is made precise by the following

theorem for partial correctness triples:

Theorem 3.6 (Adequacy). For any state 𝜎 , if ⊢ {E(𝜀)} 𝑒 {𝜙}
then Prexec(𝑒,𝜎) [¬𝜙] ≤ 𝜀. Moreover, the probability of 𝑒 getting
stuck is at most 𝜀.

Notice that exec(𝑒, 𝜎) is a subdistribution and as such this

theorem does not imply the stronger fact that Prexec(𝑒,𝜎) [𝜙] ≥
1−𝜀. In order to derive such an inequality, one needs to use to-
tal correctness triples instead. The difference between them

amounts to considering non-termination as a valid behavior

for partial correctness, but not for total correctness. Total

correctness triples can therefore be weakened to partial ones.

For total correctness triples, the following holds:

371

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic CPP ’26, January 12–13, 2026, Rennes, France

𝑣 ∈Val ≜ 𝑧 ∈ Z | 𝑏 ∈ B | () | ℓ ∈ Loc | 𝜄 ∈ Label | rec f x = 𝑒 | (𝑣,𝑤) | inl 𝑣 | inr 𝑣
𝑒 ∈ Expr ≜ 𝑣 | x | 𝑒1 𝑒2 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | . . . |

if 𝑒 then 𝑒1 else 𝑒2 | (𝑒1, 𝑒2) | fst 𝑒 | snd 𝑒 | inl(𝑒) | inr(𝑒) | match 𝑒 with inl 𝑣 ⇒ 𝑒1 | inr𝑤 ⇒ 𝑒2 end |
allocn 𝑒1 𝑒2 | ! 𝑒 | 𝑒1 ← 𝑒2 | rand 𝑒 | rand 𝑒1 𝑒2 | tape 𝑒

𝐾 ∈ Ectx ≜ − | 𝑒 𝐾 | 𝐾 𝑣 | allocn𝐾 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣 | rand𝐾 | . . .
𝑡 ∈ Tape ≜ {(𝑁, ®𝑛) | 𝑁 ∈ N ∧ ®𝑛 ∈ List N≤𝑁 }

𝜎 ∈ State ≜ (Loc fin−⇀Val) × (Label fin−⇀ Tape) 𝜌 ∈ Cfg ≜ Expr × State

Figure 1. Syntax of RandML

step(rand 𝑁, 𝜎) ≜
{
𝜇U({0,...,𝑁 }×{𝜎 }) if 𝑁 ∈ N
0 otherwise

step(tape𝑁, 𝜎) ≜
{
𝛿 (𝜄,𝜎 [𝜄 ↦→(𝑁,𝜖)]) if 𝑁 ∈ N, with 𝜄 fresh in 𝜎

0 otherwise

step(rand 𝜄 𝑁 , 𝜎) ≜

𝛿 (𝑛,𝜎 [𝜄 ↦→(𝑁,®𝑛)]) if 𝑁 ∈ N and 𝜄 ↦→ (𝑁,𝑛 :: ®𝑛) ∈ 𝜎
𝜇U({0,...,𝑁 }×{𝜎 }) if 𝑁 ∈ N and 𝜄 ↦→ (𝑁,𝑛 :: ®𝑛) ∉ 𝜎
0 otherwise

where 𝜇U(𝐴) is the mass function of the uniform distribution on a finite set 𝐴.

Figure 2. Selected reduction rules of RandML

Theorem 3.7 (Total Adequacy). If ⊢ [E(𝜀)] 𝑒 [𝜙] then
Prexec(𝑒,𝜎) [𝜙] ≥ 1 − 𝜀, for any state 𝜎 . In particular, the prob-
ability of termination of (𝑒, 𝜎) is at least 1 − 𝜀.
Partial or total correctness triples can be proven in the

logic using familiar derivation rules directed by the program

syntax, which we omit here to focus on the rules that manip-

ulate error credits. As mentioned in §2, one of the key proof

rules is the following sampling rule (here displayed for total

correctness triples):∑𝑁
𝑖=0

E2 (𝑖)
𝑁 + 1 = 𝜀1

⊢ [E(𝜀1)] rand𝑁 [𝑛 . E(E2 (𝑛))]
ht-rand-exp-t

Ownership of a tape is denoted by the predicate 𝜄 ↩→
(𝑁, ®𝑛), specifying that 𝜄 ↦→ (𝑁, ®𝑛) is in the current state of

the program. Rules governing tapes can be seen in Figure 3.

In particular, Eris provides the user with a ghost operation

presample-exp which allows to change the state of the tape

through a logical update.

Tapes provide a way to decouple reasoning about error

credits from program reduction, thus making for cleaner

proofs. For example, sometimes it is useful to pre-populate

the tape in advance and then reason about the program as if

it was deterministic. This does not lose expressivity, since

ht-rand-exp-t and presample-exp behave in the same way.

Furthermore, tapes allow for one more powerful principle.

As they are not tied to program execution, one can keep pre-

sampling until the tape ends in a predetermined suffix. This

is captured by the presample-planner rule, sometimes re-

ferred to as the “planner rule”. The rule states that, assuming

we own a tape 𝜄 with contents 𝑥𝑠 , we can keep presampling

randomness to the tape until it is of the form 𝑥𝑠 ·𝑦𝑠 ·𝑠 (𝑥𝑠 ·𝑦𝑠),
where𝑦𝑠 is some unknown sequence of samples and 𝑠 (𝑥𝑠 ·𝑦𝑠)
is a pre-chosen suffix that might depend on both 𝑥𝑠 · 𝑦𝑠 . We

refer interested readers to [Aguirre et al. 2024] for details on

why the rule is sound and for examples of how it can, e.g.,

be used to show almost-sure termination; we will also show

an example in §5. The intuition is that the valid suffixes have

finite length at most 𝐿, so with probability 1 the presampling

process will eventually terminate and produce a valid suffix.

4 Specifying and Implementing New
Samplers in Eris

The rules provided by Eris to reason about rand form a

powerful and modular framework to prove properties of

programs sampling from a uniform distribution. However

the uniform distribution is not the only distribution one

might wish to investigate. Indeed many algorithms rely on

Bernoulli sampling and many real life situations can be mod-

eled by more complex distributions such as the binomial dis-

tribution. Many of those distributions can be implemented

inside RandML. We want to prove that the samplers that

we implement are correct, that is, their output distributes as

the target probability distribution. But we also want to have

abstract reasoning principles for them that allow us to use

them in larger programs and reason about them.

To address this challenge, we leverage the expressivity

of the ambient logic (Rocq) and of Eris itself. We define a

distribution typeclass that implemented samplers should

372

CPP ’26, January 12–13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

⊢ [True] tape𝑁 [𝜄. 𝜄 ↩→ (𝑁, 𝜖)]
alloc-tape

⊢ [𝜄 ↩→ (𝑁,𝑛 :: ®𝑛)] rand𝑁 𝜄 [𝑥 . 𝑥 = 𝑛 ∗ 𝜄 ↩→ (𝑁, ®𝑛)]
load-tape

𝑒 ∉Val
∑𝑁

𝑖=0
E2 (𝑖)
𝑁+1 = 𝜀1

⊢ ∀𝑛. [𝜄 ↩→ (𝑁, ®𝑛 · [𝑛]) ∗ E(E2 (𝑛))] 𝑒 [𝑃]
⊢ [𝜄 ↩→ (𝑁, ®𝑛) ∗ E(𝜀1)] 𝑒 [𝑃]

presample-exp

∀𝑙 . |𝑠 (𝑙) | ≤ 𝐿
⊢ [∃𝑦𝑠. 𝜄 ↩→ (𝑁, 𝑥𝑠 · 𝑦𝑠 · 𝑠 (𝑥𝑠 · 𝑦𝑠))] 𝑒 [𝑃]

⊢ [𝜄 ↩→ (𝑁, 𝑥𝑠)] 𝑒 [𝑃]
presample-planner

Figure 3. Rules for presampling tapes

adhere to. To satisfy the typeclass constraints, implementers

have to prove that their sampler satisfies a series of reasoning

principles that can then be used abstractly by clients of the

sampler. The advantages of enforcing the typeclass interface

are multiple. First, it gives implementers a clear guideline

to follow. Second, one can derive reasoning principles for

all implemented samplers, independently of the distribution

that they implement. Finally, one can prove a correctness

result once and for all implemented samplers. This section

describes the distribution typeclass and the methodology

around it.

4.1 The Distribution Typeclass
The distribution typeclass is defined in Figure 4. The type-

class distrImpl (𝜇 : D(Val)) characterizes an implementation

of a sampler for a distribution 𝜇 over values. It consists of a

program that implements the distribution 𝜇, propositions to

denote ownership of abstract tapes for the implemented dis-

tribution, as well as proofs of propositions that characterize

how the sampling expression is used, and how it interacts

with tapes and credits. Note that these are actually abstract

versions of the rules for the primitive uniform distribution.

The program sample is meant to represent the main pro-

gram implementing the distribution. It takes as argument

the label of an abstract tape, which can be the null label

(unitLoc). The typeclass also provides a rule ht-distr-exp
that characterizes the sampler. This rule states that, when-

ever we sample from sample we can distribute E(𝜀1) error
credits, assigning E(E2 (𝑣)) to each outcome 𝑣 as long as the

expected value of E2 over 𝜇 is 𝜀1. It is this rule where the

concrete implementation sample is connected to the meta-

(Rocq-)level distribution 𝜇. Note how this generalizes the

ht-rand-exp-t rule for the uniform distribution, except that

now we take expected values over the target distribution 𝜇.

The typeclass also includes propositions to assert own-

ership of abstract tapes containing samples from 𝜇, as well

as rules to manipulate them. Notice that, operationally, the

language only supports tapes containing uniform samples.

However, one can implement abstract tapes for other distri-

butions in terms of uniform tapes, analogously to the way

one implements samplers for other distributions in terms of

the uniform sampler. Later in the paper we will see how this

is achieved for some example distributions.

Thus, the predicate ownTape 𝛼 𝑙 asserts ownership of

an abstract tape with an abstract label 𝛼 : absLoc, and con-

tents 𝑙 . Abstract tapes are allocated via a program allocTape,
which returns a label and an empty tape, as specified by

alloc-distr-tape. A labeled sampling instruction sample 𝛼
requires ownership of 𝛼 and reads its first element and re-

moves it, as specified by load-distr-tape. Finally, the rule

presample-distr-exp allows us to presample elements to

the abstract tape and distribute error credits across all possi-

ble outcomes, again requiring their expected value over 𝜇 to

be equal to the initial amount.

4.2 Distribution Adequacy
The first application of the distribution typeclass is that

we can prove a single correctness result for all expressions

that implement it. Suppose that 𝑒 implements the typeclass

distrImpl 𝜇 for some 𝜇 : D(Val). This means, in particular,

that 𝑒 satisfies this rule:

∀𝑣 ∈Val . 0 ≤ E2 (𝑣) ≤ 1

∑︁
𝑣∈𝑉𝑎𝑙

𝜇 (𝑣) · E2 (𝑣) = 𝜀1

⊢ [E(𝜀1)] 𝑒 [𝑣 . E(E2 (𝑣))]

Under those assumptions, set

E𝑒𝑞𝑣 (𝑤) ≜
{
0 if𝑤 = 𝑣

1 otherwise

E𝑛𝑒𝑣 (𝑤) ≜
{
1 if𝑤 = 𝑣

0 otherwise

We can then easily check that both of those functions are

positive and bounded above by 1 and that their expected

values are as follows:∑︁
𝑤∈Val

𝜇 (𝑤) ·E𝑒𝑞𝑣 (𝑤) = |𝜇 | − 𝜇 (𝑣),
∑︁
𝑤∈Val

𝜇 (𝑤) ·E𝑛𝑒𝑣 (𝑤) = 𝜇 (𝑣)

Hence we can derive the following two rules:

⊢ [E(|𝜇 | − 𝜇 (𝑣))] 𝑒 [𝑤. 𝑤 = 𝑣]
ht-mu-eq

⊢ [E(𝜇 (𝑣))] 𝑒 [𝑤. 𝑤 ≠ 𝑣]
ht-mu-ne

from which we can prove the following result, which asserts

that the final result of evaluating 𝑒 distributes as 𝜇:

373

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic CPP ’26, January 12–13, 2026, Rennes, France

distrImpl (𝜇 : D(Val))

sample :Val; absLoc : Type; ownTape : absLoc→ ListVal→ iProp;

isAbsLoc : absLoc→Val→ iProp; allocTape :Val; unitLoc :Val;

∀𝑣 ∈Val . 0 ≤ E2 (𝑣) ≤ 1

∑︁
𝑣∈𝑉𝑎𝑙

𝜇 (𝑣) · E2 (𝑣) = 𝜀1

[E(𝜀1)] sample unitLoc [𝑣 . E(E2 (𝑣))]
ht-distr-exp

;

[True] allocTape () [(Δ : absLoc) (𝛼 :Val). isAbsLoc Δ 𝛼 ∗ ownTape 𝛼 []]
alloc-distr-tape

;

[isAbsLoc Δ 𝛼 ∗ ownTape 𝛼 (𝑤 · 𝑙)] sample 𝛼 [𝑣 . 𝑣 =𝑤 ∗ ownTape 𝛼 𝑙]
load-distr-tape

;

𝑒 ∉Val ∀𝑣 ∈Val . 0 ≤ E2 (𝑣) ≤ 1

∑︁
𝑣∈𝑉𝑎𝑙

𝜇 (𝑣) · E2 (𝑣) = 𝜀1

∀𝑣 . [ownTape 𝛼 (𝑙 · [𝑣]) ∗ E(E2 (𝑣))] 𝑒 [𝑃]
[ownTape 𝛼 𝑙 ∗ E(𝜀1)] 𝑒 [𝑃]

presample-distr-exp

Figure 4. Definition of the distribution typeclass. We use proof rule notation for propositions in iProp, where the separating
conjunction of all the premises implies (via separating implication) the conclusion

Theorem 4.1 (Distribution Adequacy). Under the conditions
for 𝑒 and 𝜇 outlined above, we have, for any 𝑣 ∈Val,

Prexec(𝑒) [𝜆𝑤,𝑤 = 𝑣] = 𝜇 (𝑣)

Proof. Applying Theorem 3.7 to ht-mu-eq and Theorem 3.6

to ht-mu-ne, and using the fact 0 ≤ |𝜇 | ≤ 1, we get the

following bounds on Prexec(𝑒) [𝜆𝑤,𝑤 = 𝑣]:
𝜇 (𝑣) ≤ 𝜇 (𝑣) + (1 − |𝜇 |) ≤ Prexec(𝑒) [𝜆𝑤,𝑤 = 𝑣] ≤ 𝜇 (𝑣)

Therefore Prexec(𝑒) [𝜆𝑤,𝑤 = 𝑣] = 𝜇 (𝑣). □

4.3 The Generic Planner Rule
In this section, we show that the rules in the distribution

interface suffice to derive a planner rule, analogous to the

presample-planner rule. Note that this means that the plan-

ner rule can be proven once, just from the abstract interface,

and then instantiated to all samplers that implement the

typeclass.

The statement of the rule is the following:

presample-distr-planner

𝑒 ∉Val 𝑅 finite ∀®𝑛. 𝑎 ∈ 𝑅 → 0 < 𝜇 𝑎

∀®𝑛. 𝑎 ∈ 𝑠 (®𝑛) → 𝑎 ∈ 𝑅 ∀®𝑛. |𝑠 (®𝑛) | ≤ 𝐿
⊢ ∀𝑣 .

[
ownTape 𝛼 (®𝑛 · ®𝑗 · 𝑠 (®𝑛 · ®𝑗))

]
𝑒 [𝑃]

⊢ [ownTape 𝛼 ®𝑛] 𝑒 [𝑃]
In order to support arbitrary distributions that might have

non-finite support, we require that all elements appearing

in suffixes must contained in some finite set 𝑅. However,

we believe that this restriction can be lifted by adding other

constraints on 𝑠 , for instance by implementing some form

of martingale-based termination condition [Majumdar and

Sathiyanarayana 2025].

The proof of this rule is a generalization of the proof of the

basic planner rule from [Aguirre et al. 2024]. At a high level,

the proof of the planner rule proceeds by repeatedly applying

the presample-exp rule and choosing the coefficients E2 (𝑖)
in the premise depending on the current state. By choosing

them appropriately, it is possible to ensure one out of two

eventual outcomes: either we sample the desired suffix, or we

increment our error credits until we reach E(1). Therefore it
is sound to assume the former.

To prove the general version of the rule for the interface,

we first prove an abstract planner rule which is phrased in

terms of abstract predicates about programs and resources (in

place of the Hoare triples and the tape ownership predicates)

and it allows us to isolate the complicated credit arithmetic.

We refer interested readers to the appendix for more details

about the proof.

5 Case Studies
Now armed with results allowing us to derive great amounts

of expressivity from simple prerequisites, we focus on show-

ing that meeting those prerequisites is feasible. We do this

by detailing various implementations of some probability

distributions in RandML and showing how they satisfy the

constraints of the distribution typeclass, in particular show-

ing how the ht-distr-exp and presample-distr-exp rules

374

CPP ’26, January 12–13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

are proven for concrete implementations, as well as how

the abstract tapes are defined for them. We first treat the

Bernoulli distribution in detail before focusing on some of

the core ideas of the subsequent distributions.

5.1 The Bernoulli Distribution
The Bernoulli distribution with parameter 𝜃 ∈ [0, 1] models

a weighted coin flip where the probability of the coin landing

on heads is 𝜃 and, conversely, the probability of it landing on

tails is 1−𝜃 . We denote its mass function by 𝜇B(𝜃) . We choose

to restrict our attention to rational parameters as RandML

does not support real numbers as a base type, and adding

them is orthogonal to our goals. We thus assume that every

parameter for the distribution is of the form 𝜃 =
𝑝

𝑞+1 with

𝑝, 𝑞 ∈ N and 𝑝 ≤ 𝑞+1. In turn this makes it easy to represent

the parameters of the distribution as pairs of natural numbers

(𝑝, 𝑞) with 𝑝 ≤ 𝑞 + 1. With this representation in mind, one

can see the Bernoulli distribution in another light — it is the

distribution of an urn model where one draws exactly one

ball from an urn containing 𝑞 + 1 balls, 𝑝 of which are red.

Here drawing a red ball is analogous to the coin landing on

heads. With this model laid out, an implementation arises

almost immediately as the following program:

bern 𝑝 𝑞 𝜄 ≜ let 𝑘 = rand𝑞 𝜄 in

if 𝑘 < 𝑝 then 1 else 0

We will write bern 𝑝 𝑞 for the same program where the rand
operation is unlabeled; fromnowonwewill always implicitly

follow this convention. The first thing we do after defining

this implementation is to prove that it admits a specification

that is an instance of ht-distr-exp. Given that the support of

this particular distribution is simply {0, 1}, we can formulate

it in the following way:

ht-bernoulli-exp

𝜀1, 𝜀2 ≥ 0 𝑝 ≤ 𝑞 + 1
𝜀1 · (1 −

𝑝

𝑞 + 1) + 𝜀2 ·
𝑝

𝑞 + 1 = 𝜀

⊢ [E(𝜀)] bern 𝑝 𝑞 [𝑣 . 𝑣 = 0 ∗ E(𝜀1) ∨ 𝑣 = 1 ∗ E(𝜀2)]

We remark that this specification (as well as the ones for

other distributions in this section) is proven internally in

Eris by reasoning over the code of bern 𝑝 𝑞. We first apply

ht-rand-exp-t to the rand𝑞 statement, setting

E2 (𝑖) ≜ if 𝑖 < 𝑝 then 𝜀2 else 𝜀1

This requires us to show

∑
𝑖∈{0,...,𝑞} E2 (𝑖) = 𝜀, which follows

from the assumptions. Then, we sample some 𝑘 and own

E(E2 (𝑘)). Finally, we do a case distinction on whether 𝑘 < 𝑝 ,

letting us conclude.

With this taken care of, we can immediately make use of

Theorem 4.1 to prove that this program indeed models the

Bernoulli distribution with parameter 𝜃 =
𝑝

𝑞+1 .

The next step is to define an abstract notion of tape 𝜄 ↩→B
(𝑝, 𝑞, ®𝑛) expressing ownership and knowledge of the next

𝜖
𝑞

U∼𝑝,𝑞

B 𝜖
bernoulli-tl-nil

𝑛 < 𝑝 ®𝑛 𝑞

U∼𝑝,𝑞

B ®𝑚
𝑛 :: ®𝑛 𝑞

U∼𝑝,𝑞

B 1 :: ®𝑚
bernoulli-tl-cons-lt

𝑛 ≥ 𝑝 ®𝑛 𝑞

U∼𝑝,𝑞

B ®𝑚
𝑛 :: ®𝑛 𝑞

U∼𝑝,𝑞

B 0 :: ®𝑚
bernoulli-tl-cons-ge

Figure 5. Translation predicate for the Bernoulli distribution

outcomes of running bern 𝑝 𝑞 𝜄 are described by ®𝑛. Since bern
is implemented using the primitive rand, we can implement a

tape for bern by owning a tape for rand, and then translating

the uniform samples into Bernoulli samples. We achieve

this through the use of the predicate ®𝑛 𝑞

U∼𝑝,𝑞

B ®𝑚 , where

®𝑛 ∈ List {0, . . . , 𝑞} and ®𝑚 ∈ List {0, 1}, inductively defined

in Figure 5. The tape predicate is then simply defined as:

𝜄 ↩→B (𝑝, 𝑞, ®𝑚) ≜ ∃®𝑛 ∈ List {0, ..., 𝑞}. ®𝑛 𝑞

U∼𝑝,𝑞

B ®𝑚 ∗ 𝜄 ↩→ (𝑞, ®𝑛)

Our next obligation is to define an expression that allocates

empty Bernoulli tapes. This is realized by the program:

allocB 𝑝 𝑞 ≜ tape𝑞

While the first parameter of allocB is ignored and could be

dispensed with, we choose to have it explicitly to make the

code clearer. We can prove the allocation rule for Bernoulli

tapes by combining alloc-tape and bernoulli-tl-nil:

⊢ [True] allocB 𝑝𝑞 [𝜄. 𝜄 ↩→B (𝑝, 𝑞, 𝜖)]
bernoulli-alloc-tape

The load rule for Bernoulli tapes follows by doing a case

distinction on whether the first element is 0 or 1, applying

either bernoulli-tl-cons-ge or bernoulli-tl-cons-lt to

translate it back to a uniform tape, and finally executing bern
symbolically. At the sampling point, we apply presample-

load to read the first element of the uniform tape, which

ensures we will go to the correct branch. The rule we then

obtain looks as follows:

load-bernoulli-tape

⊢ [𝜄 ↩→B (𝑝, 𝑞, 𝑏 :: ®𝑛)] bern 𝑝𝑞 𝜄 [𝑣 .𝑣 = 𝑏 ∗ 𝜄 ↩→B (𝑝, 𝑞, ®𝑛)]

To prove the presampling rule for this tape predicate, we

need the following two properties, which are easily shown

by induction on the derivation of ®𝑛 𝑞

U∼𝑝,𝑞

B ®𝑚:

𝑛 < 𝑝 ®𝑛 𝑞

U∼𝑝,𝑞

B ®𝑚
®𝑛 · [𝑛] 𝑞

U∼𝑝,𝑞

B ®𝑚 · [1]
bernoulli-tl-snoc-lt

𝑛 ≥ 𝑝 ®𝑛 𝑞

U∼𝑝,𝑞

B ®𝑚
®𝑛 · [𝑛] 𝑞

U∼𝑝,𝑞

B ®𝑚 · [0]
bernoulli-tl-snoc-ge

375

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic CPP ’26, January 12–13, 2026, Rennes, France

We can then show the following rule by first unpacking the

uniform tape predicate from the definition of 𝜄 ↩→B (𝑝, 𝑞, ®𝑛),
and then using presample-exp (with E2 defined identically

as for the proof of ht-bernoulli-exp) to sample a new value

at the end of the tape, before using bernoulli-tl-snoc-lt or

bernoulli-tl-snoc-ge to update the translation predicate

and repackage everything into an abstract tape predicate:

presample-bernoulli-exp

𝑒 ∉Val 𝜀1 ≥ 0 𝜀2 ≥ 0 𝑝 ≤ 𝑞 + 1
𝜀1 · (1 −

𝑝

𝑞 + 1) + 𝜀2 ·
𝑝

𝑞 + 1 = 𝜀

⊢ ∀𝑖 ∈ {0, 1}[𝜄 ↩→B (𝑝, 𝑞, ®𝑛 · [𝑖]) ∗ E(𝜀𝑖)] 𝑒 [𝑃]
⊢ [𝜄 ↩→B (𝑝, 𝑞, ®𝑛) ∗ E(𝜀)] 𝑒 [𝑃]

All these results together form an instance of the typeclass

distrImpl(𝜇B(𝑝

𝑞+1)
). In particular, this means that we imme-

diately obtain a correctness result for the implementation

through Theorem 4.1, as well as the instance of the planner

rule for the Bernoulli sampler below:

presample-bernoulli-planner

𝑒 ∉Val 𝑝 ≤ 𝑞 + 1 ∀ ®𝑚 . |𝑠 (®𝑚) | ≤ 𝐿
∀ ®𝑚 . 𝑚 ∈ 𝑠 (®𝑚) → 𝜇B(𝑝/(𝑞+1)) (𝑚) > 0

⊢
[
∃®𝑗 . 𝜄 ↩→B (𝑝, 𝑞, ®𝑛 · ®𝑗 · 𝑠 (®𝑛 · ®𝑗))

]
𝑒 [𝑃]

⊢ [𝜄 ↩→B (𝑝, 𝑞, ®𝑛)] 𝑒 [𝑃]

Application: Martingale betting on a biased coin. To
illustrate how the sampler can be used in practice, we con-

sider an example of a martingale gambling strategy. Consider

a game in which, on every round, we can place a bet 𝑏 on the

result of a coin flip. If it is heads, we receive a total amount

of 2𝑏, otherwise we lose our bet. The martingale strategy

consists in starting with an initial bet 𝑏, and doubling it ev-

ery round until the first time we observe heads. Assuming

an unbounded pool for betting and unbounded number of

rounds, this guarantees to terminate with probability 1, with

a profit of 𝑏. The strategy works even if the coin is biased,

as long as the probability of heads is non-zero.

We model this process as the program below, where we

model the possibly biased coin as a Bernoulli distribution:

martingale𝑤 𝑏 𝜄 ≜

let 𝑏 = bern 𝑝 𝑞 𝜄 in

if 𝑏 = 0 then martingale (𝑤 − 𝑏) (2 ∗ 𝑏) 𝜄 else 𝑤 + 𝑏

The parameter𝑤 represents the current earnings (possibly

negative), while the parameter 𝑏 represents the current bet.

We can prove the following specification:

∀𝑤 ∈ Z, 𝑏 ∈ N.
[𝜄 ↩→B (𝑝, 𝑞, 𝜖)] martingale𝑤 𝑏 [𝑣 .𝑣 = 𝑏 +𝑤]

While this program seems quite simple, note that in order

for this specification to be valid, we also have to prove that

the program is almost-surely terminating, so induction on

the recursive call is not sound.

Our proof instead uses presample-bernoulli-planner,

which allows us to presample a list of Bernoulli samples that

ends in 1, and then we can proceed to prove by induction on

the list ®𝑛 that

∀®𝑛 ∈ List {0, 1},𝑤 ∈ Z, 𝑏 ∈ N.
[𝜄 ↩→B (𝑝, 𝑞, ®𝑛 · [1])] martingale𝑤 𝑏 [𝑣 .𝑣 = 𝑏 +𝑤]

In the base case, ®𝑛 = 𝜖 , so bern 𝑝 𝑞 𝜄 will read 1 off 𝜄 and

the program terminates immediately returning𝑤 + 𝑏. In the

inductive case, we do a case distinction on the first element

of the tape. If it is 1, we are in the same situation as before.

Otherwise, we will consume the first element of the tape and

make the recursive call, but now we will have an inductive

hypothesis available, which we can use to conclude.

5.2 The Binomial Distribution
Using the Bernoulli distribution as a base, we can then con-

struct the binomial distribution B𝑖𝑛(𝜃, 𝑛) with 0 ≤ 𝜃 ≤ 1 and

0 ≤ 𝑛, which is the distribution of the number of successes

in a sequence of 𝑛 samples from B(𝜃). Recall that its mass

function is given by the expression

B𝑖𝑛(𝜃, 𝑛) ≜ 𝜆𝑘.

(
𝑛

𝑘

)
· 𝜃𝑘 · (1 − 𝜃)𝑛−𝑘

where

(
𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘)! is the binomial coefficient (by conven-

tion, if 𝑛 < 𝑘 or 𝑘 < 0 then

(
𝑛
𝑘

)
= 0). The description of the

binomial process can be turned into the following RandML

program, where again we assume that the 𝜃 parameter is a

rational number 𝑝/(𝑞 + 1) with 𝑝 ≤ 𝑞 + 1.

binom 𝑝 𝑞 𝑛 𝜄 ≜ if 𝑛 = 0 then 1

else bern𝑝 𝑞 𝜄 + binom 𝑝 𝑞 (𝑛 − 1) 𝜄

We can prove that the program satisfies the appropriate

instantiation of the ht-distr-exp rule. The proof exploits

the modularity of our approach by using the specification ht-

bernoulli-exp of the Bernoulli distribution, which allows

to distribute the error credits appropriately. In particular, the

proof does not need to inspect the concrete implementation

of the Bernoulli sampler, and relies only on the fact that it

implements the distribution typeclass for 𝜇B(𝑝

𝑞+1)
.

In order to implement the typeclass interface we also need

to define a notion of tape for the binomial distribution. While

the Bernoulli tapes can be encoded one-to-one into primitive

uniform tapes, each binomial sample consists of multiple, but

always the same fixed amount of Bernoulli samples. We can

therefore encode the abstract binomial tapes in terms of ab-

stract Bernoulli tapes. The translation predicate
®𝑏 𝑝,𝑞

B∼𝑝,𝑞,𝑛

B𝑖𝑛
®𝑘

is defined in Figure 6 and the predicate denoting ownership

of an abstract binomial tape is defined below:

𝜄 ↩→B𝑖𝑛 (𝑝, 𝑞, 𝑛, ®𝑘) ≜

∃ ®𝑏 ∈ List {0, 1} . ®𝑏 𝑝,𝑞

B∼𝑝,𝑞,𝑛

B𝑖𝑛
®𝑘 ∗ 𝜄 ↩→B (𝑝, 𝑞, ®𝑏)

376

CPP ’26, January 12–13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

𝜖
𝑝,𝑞

B∼𝑝,𝑞,𝑛

B𝑖𝑛 𝜖
binom-tl-nil

®𝑏2 𝑝,𝑞

B∼𝑝,𝑞,𝑛

B𝑖𝑛
®𝑘2

length(®𝑏1) = 𝑛 sum(®𝑏1) = 𝑘
®𝑏1 · ®𝑏2 𝑝,𝑞

B∼𝑝,𝑞,𝑛

B𝑖𝑛 𝑘 ::
®𝑘2

binom-tl-cons

Figure 6. Translation predicate for the Binomial distribution

Without showing the details, we prove that these tapes sat-

isfy all the appropriate rules to implement the interface

distrImpl(B𝑖𝑛(𝑝

𝑞+1 , 𝑛)).

5.3 The Geometric Distribution
The next distribution we consider is the geometric distri-

bution. The distribution G(𝜃) counts the number of failed

B(𝜃) trials before the first success. Its mass function is thus

given by G(𝜃) ≜ 𝜆𝑘.(1 − 𝜃)𝑘 · 𝜃 . We note that as opposed

to the distributions we have seen so far, including the prim-

itive uniform distribution, the geometric distribution does

not have finite support. The implementation again considers

only rational parameters. The program that describes the

geometric process is:

geo 𝑝 𝑞 𝜄 ≜ let 𝑏 = bern𝑝 𝑞 𝜄 in

if 𝑏 = 1 then 0

else 1 + geo 𝑝 𝑞 𝜄

This program is almost surely terminating, assuming 0 < 𝑝 ,

but it may have arbitrarily long executions. The proof of

the instance of ht-distr-exp for the geometric distribution

relies on a principle known as error induction [Aguirre et al.

2024], which allows us to prove total correctness triples for

recursive probabilistic functions.

Defining and encoding tapes for the geometric distribution

in terms of the underlying Bernoulli distribution is challeng-

ing as well. Notice that intuitively, a geometric sample should

correspond to a sequence of failed Bernoulli samples, ter-

minated by a single successful Bernoulli sample. However,

note that now not only are there multiple Bernoulli samples

corresponding to each single geometric sample but, in fact,

the amount varies, and potentially it can be unbounded.

With this in mind, we can define a predicate denoting

ownership of a geometric tape as follows:

𝜄 ↩→G (𝑝, 𝑞, ®𝑘) ≜ ∃®𝑏 ∈ List{0, 1}. ®𝑏 𝑝,𝑞

B∼𝑝,𝑞

G
®𝑘 ∗ 𝜄 ↩→B (𝑝, 𝑞, ®𝑏)

where the predicate
®𝑏 𝑝,𝑞

B∼𝑝,𝑞

G
®𝑘 , defined in Figure 7, captures

the encoding from a geometric tape
®𝑘 to a Bernoulli tape

®𝑏.
The proof of the presample-distr-exp for the geometric dis-

tribution below relies follows from applying the presample-

bernoulli-exp and using credit arithmetic to choose the

𝜖
𝑝,𝑞

B∼𝑝,𝑞

G 𝜖
geometric-tl-nil

®𝑏 𝑝,𝑞

B∼𝑝,𝑞

G
®𝑘

length(®𝑧) = 𝑛 ∀𝑖, ®𝑧𝑖 = 0

®𝑧 · (1 :: ®𝑏) 𝑝,𝑞

B∼𝑝,𝑞

G 𝑛 ::
®𝑘

geometric-tl-cons

Figure 7. Translation predicate for the Geometric distribu-

tion

appropriate way to distribute credits.

presample-geo-exp

∀𝑣 .E2 (𝑣) ≥ 0 𝑝 ≤ 𝑞 + 1
∞∑︁
𝑘=0

(
𝑝

𝑞 + 1

)
·
(
𝑞 − 𝑝 + 1
𝑞 + 1

)𝑘
· E2 (𝑘) = 𝜀1

∀𝑘 ∈ {0, . . . , 𝑛} ⊢
[
𝜄 ↩→G (𝑝, 𝑞, ®𝑛 · [𝑘]) ∗ E(E2 (𝑘))

]
𝑒 [𝑃]

⊢
[
𝜄 ↩→G (𝑝, 𝑞, ®𝑛) ∗ E(𝜀1)

]
𝑒 [𝑃]

5.4 The Negative Binomial Distribution
The negative binomial distribution NB(𝜃, 𝑛) can be under-

stood as the sum of 𝑛 independent geometric samples from

G(𝜃) or, equivalently, as the number of failed Bernoulli sam-

ples from B(𝜃) we observe before observing the 𝑛-th succes-

ful one. Its mass function is:

𝜇NB(𝜃,𝑛) ≜ 𝜆𝑘.

(
𝑘 + 𝑛 − 1

𝑘

)
· 𝜃𝑛 · (1 − 𝜃)𝑘

We use the process described above to implement a negative

binomial sampler assuming a rational parameter 𝑝/(𝑞 + 1):
nbin 𝑝 𝑞 𝑛 𝜄 ≜ if 𝑛 = 0 then 0

else let 𝑏 = bern 𝑝 𝑞 𝜄 in

if 𝑏 = 0 then 1 + nbin 𝑝 𝑞 𝑛

else nbin 𝑝 𝑞 (𝑛 − 1)
As was the case with the geometric distribution, the negative

binomial also has infinite support. Note that in the recur-

sive call the last argument decreases only with probability

B(𝑝/(𝑞 + 1)), which means that we may have arbitrarily

long executions. Nonetheless, the program is still almost

surely terminating and Eris is expressive enough to prove

the instantiation of ht-distr-exp.

By generalizing the ideas for the geometric distribution,

we can define a notion of tape 𝜄 ↩→NB (𝑝, 𝑞, 𝑟, ®𝑛) for the
negative binomial distribution, by a translation into Bernoulli

tapes, for which we can prove a presampling rule.

5.5 The Beta-Binomial Distribution
The beta-binomial distribution BB(𝑛, 𝑎, 𝑏) corresponds to a

sum of 𝑛 Bernoulli samples where the parameter at each sam-

ple is itself randomized and drawn from a beta distribution,

whose parameter depends on the previous samples.

377

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic CPP ’26, January 12–13, 2026, Rennes, France

It can also be understood through an urn model, due to

Pólya. Suppose we start with an urn containing 𝑎 red balls

and 𝑏 black balls, and we repeat the following process 𝑛

times: we draw a ball uniformly at random, we note its color,

and we put it back, together with a duplicate ball of the same

color. The total number of red balls observed at the end of

the process will then distribute according to BB(𝑛, 𝑎, 𝑏). Its
mass function is given by

𝜇BB(𝑛,𝑎,𝑏) ≜ 𝜆𝑘.

(
𝑛

𝑘

)
· B(𝑘 + 𝑎, 𝑛 − 𝑘 + 𝑏)

B(𝑎, 𝑏)
where 𝑁 ∈ N, 𝑎, 𝑏 ∈ R>0

and B(𝑥,𝑦) ≜ Γ(𝑥) · Γ(𝑦)/Γ(𝑥 +𝑦)
denotes the beta function, defined in terms of the gamma

function Γ. In our case, where 𝑎, 𝑏 are positive integers, we

can use the well-known identity Γ(𝑛 + 1) = 𝑛!, for 𝑛 ∈ N.
The urn model immediately suggests the following imple-

mentation of a beta-binomial sampler in RandML:

betabin 𝑁 𝑎 𝑏 ⟨?⟩ ≜

if 𝑁 = 0 then 0

else let 𝑥 = bern𝑎 (𝑎 + 𝑏 − 1) ⟨?⟩ in
if 𝑥 = 0 then

betabin (𝑁 − 1) 𝑎 (𝑏 + 1) ⟨?⟩
else 1 + betabin (𝑁 − 1) (𝑎 + 1) 𝑏 ⟨?⟩

The challenge here is to figure out what to put in the place

of the placeholders ⟨?⟩. In previous distributions we used

plain tape labels because ultimately there was a one-to-one

correspondence between the abstract tape of the target dis-

tribution, and a primitive uniform tape from which all ran-

domness came from. However, here we make successive

calls to Bernoulli distributions with changing parameters,

which are obtained from different underlying uniform distri-

butions. Furthermore, the parameters of those distributions

depend on previous values sampled during the current call

to betabin. Thus we need a more complex notion of location

if we are to develop a tape predicate for this distribution.

To make what we need clearer, we need to know what

parameters can appear in front of bern during a call to

betabin 𝑁 𝑎 𝑏. It is clear that the first Bernoulli trial is of

parameter 𝑝 = 𝑎
𝑎+𝑏 , then each subsequent trial is done after

incrementing either 𝑎 or 𝑏 and the total number of incre-

ments is 𝑁 (note that the values after the 𝑁 𝑡ℎ
increment

are not used for a trial). Thus we conclude that the set of

possible parameters is:{
𝑎 + 𝑖

(𝑎 + 𝑖) + (𝑏 + 𝑗)

���� 𝑖, 𝑗 ∈ N ∧ 0 ≤ 𝑖 + 𝑗 < 𝑁

}
We therefore need a location for each pair of natural numbers

𝑖, 𝑗 such that 𝑖 + 𝑗 < 𝑁 . If we think of them as coordinates

over a 2D plane, this describes a set of indices that arrange

themselves in the shape of a triangle. As such we need to

hold onto a tape with the proper parameter for each of these

indices. To better match the behavior of the program which

has as main decreasing argument the number of remaining

balls to be drawn, we choose to rearrange the indices as a pair

(𝑘, 𝑖) of the number 𝑘 of balls drawn so far and the number

𝑖 of those balls that were red under the the constraints that

0 ≤ 𝑖 ≤ 𝑘 < 𝑁 . To keep track of the values of the tapes in a

way that is more amenable to reasoning about them, we use

the data structure inductively generated by the following

constructors:

𝜖𝑡 : triangle 𝐴 0

trig-nil

𝜏 : triangle 𝐴 𝑁 𝑙 : vector 𝐴 (𝑁 + 1)
𝜏 ⊙ 𝑙 : triangle 𝐴 (𝑁 + 1)

trig-snoc

The elements of triangle 𝐴 𝑁 are discrete triangles of

elements of𝐴 of height 𝑁 . There is always an empty triangle

of height 0 for any set 𝐴 and one can get a triangle of height

𝑁 + 1 by gluing a column of height 𝑁 + 1 at then end of a

triangle of height 𝑁 . For 𝜏 : triangle 𝐴 𝑁 , we will use 𝜏𝑘,𝑖
to denote the 𝑖-th element of the 𝑘-th vector in 𝜏 , where

0 ≤ 𝑘 < 𝑁 and 0 ≤ 𝑖 < 𝑘 .
We will use a 𝜏 : triangle (List {0, 1}) 𝑁 to hold the values

contained in Bernoulli tapes for each pair of indices needed

for a beta-binomial distribution. We do this by taking a tri-

angle 𝜏 in which the list in 𝜏𝑘,𝑖 corresponds to a Bernoulli

tape of parameter 𝑝 =
𝑎 + 𝑖

𝑎 + 𝑏 + 𝑘 .
Besides the projections induced by the inductive definition,

we consider two other projection functions:

bottom-trig : triangle 𝐴 (𝑁 + 1) → triangle 𝐴 𝑁

right-trig : triangle 𝐴 (𝑁 + 1) → triangle 𝐴 𝑁

Intuitively, bottom-trig 𝜏 is the result of discarding the first

element from every vector in 𝜏 , and right-trig is the result of

discarding the last element from every vector in 𝜏 ; in both

cases we also discard the now empty first vector. This is

depicted in Figure 8.

To talk about locations we then take Δ : triangle Loc 𝑁
and we form the following predicate stating that each tape

in 𝜏 is owned at the corresponding location in Δ:

ownTrig(𝑎, 𝑏, 𝑁 ,Δ, 𝜏) ≜ ∗
0≤𝑖≤𝑘<𝑁

Δ𝑘,𝑖 ↩→B (𝑎+𝑖, 𝑎+𝑏+𝑘, 𝜏𝑘,𝑖)

Next, we need to define the translation relation between a

beta-binomial tape and a triangle of Bernoulli tapes. Note

that every call to betabin 𝑎 𝑏 𝑁 consumes a total of 𝑁

Bernoulli samples. We define an auxiliary function:

hsup : triangle (List {0, 1}) 𝑁 × vector {0, 1} 𝑁
→ triangle (List {0, 1}) 𝑁

Intuitively hsup(𝜏, 𝑙) starts at 𝜏0,0 and traverses 𝜏 depending

on the elements of 𝑙 . An example execution of hsup is dis-

played in Figure 9. At every step, the traversal will be at an

element 𝜏𝑘,𝑖 , and will consider the list 𝑏 ::
®𝑏. Then it appends

378

CPP ’26, January 12–13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

𝑛0,0 𝑛1,0 𝑛2,0 𝑛3,0 𝑛4,0

𝑛1,1 𝑛2,1 𝑛3,1 𝑛4,1

𝑛2,2 𝑛3,2 𝑛4,2

𝑛3,3 𝑛4,3

𝑛4,4

right-trig

b
o
t
t
o
m
-
t
r
ig

k

i

Figure 8. Graphic representation of an element of

triangle N 5 and its projections

0 :: 𝜏0,0 1 :: 𝜏1,0 𝜏2,0 𝜏3,0 𝜏4,0

𝜏1,1 0 :: 𝜏2,1 1 :: 𝜏3,1 𝜏4,1

𝜏2,2 𝜏3,2 1 :: 𝜏4,2

𝜏3,3 𝜏4,3

𝜏4,4

𝑘

𝑖

Figure 9. Graphic representation of hsup 𝜏 [0, 1, 0, 1, 1]

𝑏 to 𝜏𝑘,𝑖 , and continues the traversal with the list ®𝑏 from 𝜏𝑘+1,𝑖
if 𝑏 = 0, or from 𝜏𝑘+1,𝑖+1 if 𝑏 = 1. This mimics a run of 𝑏 in

which the sequence of colors drawn corresponds to 𝑙 , the 1s

representing red balls and the 0s black balls by placing the

corresponding draws on the correct tapes. Finally we define

encode : List (vector {0, 1} 𝑁) → triangle (List {0, 1}) 𝑁
where encode(𝑙) successively applies hsupwith the elements

of 𝑙 starting with a triangle containing only empty lists.

We can now define the translation predicate

𝜏 B∼𝑎,𝑏,𝑁

BB ®𝑛 ≜ ∃ ®𝑚 . 𝜏 = encode(®𝑚) ∗ ®𝑛 = (𝑙 ↦→
∑︁

𝑙) ⟨$⟩ ®𝑚

which states that 𝜏 is the encoding of a series of runs corre-

sponding to calls to betabin in such a way that they result

in the successive values in ®𝑛. Now, we can finally define the

tape predicate:

Δ ↩→BB (𝑎, 𝑏, 𝑁 , ®𝑛) ≜
∃ 𝜏 . ownTrig(𝑎, 𝑏, 𝑁 ,Δ, 𝜏) ∗ 𝜏 B∼𝑎,𝑏,𝑁

BB ®𝑛

Fromhere, induction over𝑁 allows us to prove the presample-

beta-exp rule in Figure 10.

Remark 5.1. While we omit the details about the planner rule
for this distribution, we call attention to the benefit we get from
§4.3 and the general derivation of the planner rule. In principle,
it would be possible to derive a planner rule individually for all
previous distributions through an intricate translation to and
from the planner rules for the underlying distributions used
to formulate them. However, in this case, this approach would
be overly complex because we would need to keep track of all
randomness presampled to multiple tapes and the interdepen-
dencies between them. Using the generic planner rule, we can
derive a planner rule for the beta-binomial directly from its
presampling rule and treating the tape predicates abstractly.

The last rulewewill prove is the load rule for beta-binomial

tapes. In this case, it is worth spelling out the concrete def-

inition of isAbsLoc, which ties an abstract location Δ with

an expression in RandML:

isAbsLoc(𝑎, 𝑏, 𝑁 ,Δ, 𝛿) ≜ [0 ≤ 𝑖 ≤ 𝑘 < 𝑁] 𝛿 𝑘 𝑖
[
𝜄 . 𝜄 = Δ𝑘,𝑖

]
which simply states that for valid indices the abstract location

𝛿 should always return the locations held in Δ. When reading

an element off a beta-binomial tape, we will read the head

element from a series of Bernoulli tapes in 𝜏 , starting at the

apex of the triangle, i.e., 𝜏0,0. Notice that depending on the

result of this Bernoulli trial, an entire set of parameters can

never be encountered in the rest of the call to betabin. If
the value sampled is a 1 then we can never again have only

𝑎 red balls and if it is a 0, we will never draw from a box

containing 𝑎 + 𝑛 − 1 red balls. These cases correspond to

the two projections bottom-trig and right-trig respectively,

which can be reflected into RandML as:

bottom-loc 𝛿 ≜ 𝜆 𝑘 𝑖 . 𝛿 (𝑘 + 1) 𝑖
right-loc 𝛿 ≜ 𝜆 𝑘 𝑖 . 𝛿 (𝑘 + 1) (𝑖 + 1)

These two programs are tied to bottom-trig and right-trig

by their specifications shown in Figure 10.

We can now finally complete our definition of betabin:

betabin 𝑁 𝑎 𝑏 𝛿 ≜

if 𝑁 = 0 then 0

else let 𝑥 = bern𝑎 (𝑎 + 𝑏 − 1) (𝛿 0 0) in
if 𝑥 = 0 then

betabin (𝑁 − 1) 𝑎 (𝑏 + 1) (right-loc 𝛿)
else 1 + betabin (𝑁 − 1) (𝑎 + 1) 𝑏 (bottom-loc 𝛿)

Finally, leveraging the machinery we have put into place, we

can prove the load-beta-tape rule in Figure 10 by induction

over 𝑁 . With this, we prove that the sampler adheres to the

distrImpl typeclass interface.

6 Related Work
There is a wide variety of techniques used to prove correct-

ness of probabilistic programs. Here we focus on program

379

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic CPP ’26, January 12–13, 2026, Rennes, France

𝑒 ∉Val 𝑎, 𝑏 > 0

∑︁
0≤𝑘≤𝑁

𝜇BB(𝑎,𝑏,𝑁) (𝑘) · E2 (𝑘) = 𝜀1

⊢ ∀𝑘 ∈ {0, . . . , 𝑁 }. [Δ ↩→BB (𝑎, 𝑏, 𝑁 , ®𝑛 · [𝑘]) ∗ E(E2 (𝑘))] 𝑒 [𝑃]
⊢ [Δ ↩→BB (𝑎, 𝑏, 𝑁 , ®𝑛) ∗ E(𝜀1)] 𝑒 [𝑃]

presample-beta-exp

⊢ [isAbsLoc(𝑎, 𝑏, 𝑁 + 1,Δ, 𝛿)] bottom-loc 𝛿 [𝛿 ′ . isAbsLoc(𝑎,𝑏 + 1, 𝑁 , bottom-trig(Δ), 𝛿 ′)]
bottom-trig-loc

⊢ [isAbsLoc(𝑎, 𝑏, 𝑁 + 1,Δ, 𝛿)] right-loc 𝛿 [𝛿 ′ . isAbsLoc(𝑎 + 1, 𝑏, 𝑁 , right-trig(Δ), 𝛿 ′)]
right-trig-loc

𝑎, 𝑏 > 0 isAbsLoc(𝑎,𝑏, 𝑁 ,Δ, 𝛿)
⊢ [Δ ↩→BB (𝑎, 𝑏, 𝑁 , 𝑛 :: ®𝑛)] betabin 𝑎 𝑏 𝑁 𝛿 [𝑘 . 𝑘 = 𝑛 ∗ Δ ↩→BB (𝑎, 𝑏, 𝑁 , ®𝑛)]

load-beta-tape

Figure 10. Specification of the beta-binomial sampler

logics, which can be further divided depending on the un-

derlying class of logical assertions that the logic considers.

We remark that our approach, to the best of our knowledge,

is the first which simultaneously (1) allows one to prove

correctness of implementations of complex samplers, (2) pro-

vides specifications that are usable by clients, and (3) can be

formalized within a mechanized program logic.

The work on expectation transformers [McIver and Mor-

gan 2005] originates from the idea of using as assertions

predicates whose truth value is a real number (known as

expectations). They can be used to reason about proper-

ties such as expected runtime [Kaminski et al. 2016] or cor-

rectness of pointer programs [Batz et al. 2019], and can be

semi-automated [Schröer et al. 2023], but they have not been

mechanized. Their work is closely related to Eris in the sense

that the rule for primitive sampling also requires the pre-

expectation to be the expected value of the post-expectations.

The logic is not higher-order, so quantification over expecta-

tions is not expressible in their logic, but we believe specifi-

cations similar to ours could be proven by exploiting quan-

tification at the meta-level.

Other logics consider assertions that represent sets of dis-

tributions over states or heaps. One example is Ellora [Barthe

et al. 2018], a Hoare-style logic for probabilistic programs

which has a prototype implementation in Easycrypt [Barthe

et al. 2014]. The class of assertions is presented from a seman-

tic point of view and the logic has a relative completeness

result, so in principle it could be used to prove correctness of

samplers. However, to our knowledge, no significant effort

in that direction has been carried out.

Probabilistic Concurrent Outcome Logic (PCOL) [Zilber-

stein et al. 2025] is an expressive logic to reason about concur-

rent probabilistic programs. Its assertion language includes

“distribute-as” assertions, which can express that a program

variable distributes as a concrete distribution (Bernoulli, geo-

metric, uniform). However, reasoning about general distri-

butions would require assertions that express that a variable

distributes as an arbitrary distribution with a user-chosen

pdf. or cdf. The authors mention future plans to mechanize

PCOL, but a mechanization does not currently exist.

Lilac [Li et al. 2023] is a program logic for probabilistic

programs inspired by separation logic, with the twist that

the separating conjunction is used to represent probabilis-

tic independence. As opposed to Eris, Lilac considers the

more complex setting of continuous sampling. Lilac sup-

ports “distribute-as” assertions for arbitrary distributions,

and as one of its case studies proves correctness of a weighted

sampling algorithm. Lilac supports only bounded loops, so

samplers for distributions such as the geometric or the nega-

tive binomial, as well as rejection samplers in general would

not be expressible in the system. The logic does not currently

have a mechanization.

Bluebell [Bao et al. 2025] is a recent logic for probabilistic

programs that combines ideas from different sources, includ-

ing separations logics for independence and coupling-based

logics, through the use of a joint conditioning modality. By

properly instantiating this modality, one can recover the

reasoning principles of many of the previously mentioned

logics, which equips Bluebell with a lot of expressivity. How-

ever, Bluebell has a complex semantic model, and does not

support unbounded loops, and has not been mechanized.

Other logics consider plain assertions (i.e., sets of states)

and instead introduce quantitative aspects into the logic

through other means. Closely related to Eris, approximate

Hoare logic (aHL) [Barthe et al. 2016] has as judgments Hoare

triples indexed with a real number which corresponds to the

probability that the postcondition will fail to hold. Error

credits can be understood as an resourceful representation

of these annotations. However, aHL does not support making

these indices dependent on the input or output state. One can

380

CPP ’26, January 12–13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

prove correctness of a sampler by quantifying at the meta

level over the outputs, and proving an analogous statement

to our naïve specification in §2, but this will not be usable

for clients for the same reasons as ours was not.

Logics based on probabilistic couplings [Barthe et al. 2009,

2012; Gregersen et al. 2024] adapt techniques from theMarkov

chain literature to reason about relational properties of prob-

abilistic programs, in particular equivalence, statistical dom-

inance or differential privacy. It is possible to express cor-

rectness of a sampler as a relational judgment, e.g. by stating

equivalence of an implemented sampler for a target distribu-

tion and a primitive sampler for the same distribution. For

example, rejection samplers can be proven correct in this

manner [Avanzini et al. 2025; Haselwarter et al. 2025]. How-

ever, proving these specifications would in general require

adding primitive samplers for complex distributions to the

language, and ad-hoc rules to the logic to reason about them.

Staton et al. [2018] propose a semantic method to verify

a sampler for a beta-bernoulli distribution. They define an

abstract module for the sampler operations, and then propos-

ing two implementations: one relying on a Polya urn model,

and one directly sampling from a beta distributions. The two

can be proven contextually equivalent using an equational

theory for probabilistic programs.

7 Conclusions
In this work we have shown a general methodology to im-

plement and specify samplers for probability distributions

starting from only a uniform sampler. Through the use of a

common abstract distribution interface, we can separate the

proof of correctness for individual sampler, and then prove

properties about their clients that are independent from the

concrete implementation of the sampler. The abstract in-

terface also allows us to obtain correctness proofs for the

samplers as well as to derive novel reasoning principles for

all samplers at once. Although we only consider discrete

distributions in this paper, we believe that our methods can

be generalized to reasoning about correctness of samplers

that either draw randomness from a primitive distribution

that is continuous (e.g., a uniform over the unit interval), or

that themselves implement continuous distributions.

Acknowledgments
This work was supported in part by a Villum Investigator

grant, no. 25804, Center for Basic Research in Program Veri-

fication (CPV), from the VILLUM Foundation, and the Euro-

pean Union (ERC, CHORDS, 101096090). Views and opinions

expressed are however those of the author(s) only and do

not necessarily reflect those of the European Union or the

European Research Council. Neither the European Union

nor the granting authority can be held responsible for them.

References
Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei

Li, Simon Oddershede Gregersen, Joseph Tassarotti, and Lars Birkedal.

2024. Error Credits: Resourceful Reasoning about Error Bounds for

Higher-Order Probabilistic Programs. Proc. ACM Program. Lang. 8, ICFP,
Article 246 (Aug 2024), 33 pages. doi:10.1145/3674635

Thosten Altenkirch, James Chapman, and Tarmo Uustalu. 2015. Monads

need not be endofunctors. Logical Methods in Computer Science Volume

11, Issue 1 (March 2015), 928. doi:10.2168/LMCS-11(1:3)2015
Martin Avanzini, Gilles Barthe, Davide Davoli, and Benjamin Grégoire.

2025. A Quantitative Probabilistic Relational Hoare Logic. Proceedings
of the ACM on Programming Languages 9, POPL (Jan. 2025), 1167–1195.

doi:10.1145/3704876
Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. 2025. Bluebell: An

Alliance of Relational Lifting and Independence for Probabilistic Reason-

ing. Proceedings of the ACM on Programming Languages 9, POPL (Jan.

2025), 1719–1749. doi:10.1145/3704894
Gilles Barthe, François Dupressoir, BenjaminGrégoire, César Kunz, Benedikt

Schmidt, and Pierre-Yves Strub. 2014. EasyCrypt: A Tutorial. Springer
International Publishing, Cham, 146–166. doi:10.1007/978-3-319-10082-
1_6

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin

Hsu, and Pierre-Yves Strub. 2018. An Assertion-Based Program Logic

for Probabilistic Programs. In Programming Languages and Systems,
Amal Ahmed (Ed.). Vol. 10801. Springer International Publishing, Cham,

117–144. doi:10.1007/978-3-319-89884-1_5 Series Title: Lecture Notes

in Computer Science.

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Ste-

fanesco, and Pierre-Yves Strub. 2015. Relational Reasoning via Proba-

bilistic Coupling. In Logic for Programming, Artificial Intelligence, and
Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, No-
vember 24-28, 2015, Proceedings. doi:10.1007/978-3-662-48899-7_27

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-

Yves Strub. 2016. A Program Logic for Union Bounds. In 43rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
2016) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 55),
Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Da-

vide Sangiorgi (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, 107:1–107:15. doi:10.4230/LIPIcs.ICALP.2016.107
Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009.

Formal certification of code-based cryptographic proofs. SIGPLAN Not.
44, 1 (Jan 2009), 90–101. doi:10.1145/1594834.1480894

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin.

2012. Probabilistic relational reasoning for differential privacy. SIGPLAN
Not. 47, 1 (Jan 2012), 97–110. doi:10.1145/2103621.2103670

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph

Matheja, and Thomas Noll. 2019. Quantitative separation logic: a logic

for reasoning about probabilistic pointer programs. Proc. ACM Program.
Lang. 3, POPL, Article 34 (Jan 2019), 29 pages. doi:10.1145/3290347

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic

Program Analysis with Martingales. In Computer Aided Verification,
Natasha Sharygina and Helmut Veith (Eds.). Springer, Berlin, Heidelberg,

511–526. doi:10.1007/978-3-642-39799-8_34
Ugo Dal Lago, Sara Zuppiroli, and Maurizio Gabbrielli. 2014. Probabilistic

Recursion Theory and Implicit Computational Complexity. Scientific
Annals of Computer Science 24, 2 (2014), 177–216. doi:10.7561/SACS.2014.
2.177

Shafi Goldwasser and Silvio Micali. 1982. Probabilistic encryption & how to

play mental poker keeping secret all partial information. In Proceedings
of the fourteenth annual ACM symposium on Theory of computing (STOC
’82). Association for Computing Machinery, New York, NY, USA, 365–377.

doi:10.1145/800070.802212
Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter,

Joseph Tassarotti, and Lars Birkedal. 2024. Asynchronous Probabilistic

381

https://doi.org/10.1145/3674635
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.1145/3704876
https://doi.org/10.1145/3704894
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1145/1594834.1480894
https://doi.org/10.1145/2103621.2103670
https://doi.org/10.1145/3290347
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.7561/SACS.2014.2.177
https://doi.org/10.7561/SACS.2014.2.177
https://doi.org/10.1145/800070.802212

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic CPP ’26, January 12–13, 2026, Rennes, France

Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang.
8, POPL (2024), 753–784. doi:10.1145/3632868

Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede

Gregersen, Joseph Tassarotti, and Lars Birkedal. 2025. Approximate Re-

lational Reasoning for Higher-Order Probabilistic Programs. Proceedings
of the ACM on Programming Languages 9, POPL (Jan. 2025), 1196–1226.

doi:10.1145/3704877
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,

Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an

Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 637–650.
doi:10.1145/2676726.2676980

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and

Federico Olmedo. 2016. Weakest Precondition Reasoning for Expected

Run–Times of Probabilistic Programs. In Programming Languages and
Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Hei-

delberg, 364–389.

John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Sep-

aration Logic for Conditional Probability. Proc. ACM Program. Lang. 7,
PLDI, Article 112 (Jun 2023), 24 pages. doi:10.1145/3591226

Rupak Majumdar and V.R. Sathiyanarayana. 2025. Sound and Complete

Proof Rules for Probabilistic Termination. Proceedings of the ACM on
Programming Languages 9, POPL (Jan. 2025), 1871–1902. doi:10.1145/
3704899

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars

Birkedal. 2025. Artifact for Modular Specifications and Implementa-

tions of Random Samplers in Higher-Order Separation Logic. doi:10.

5281/zenodo.17800602
Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and

Proof for Probabilistic Systems. Springer.
Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Al-

gorithms. Cambridge University Press, Cambridge. doi:10.1017/
CBO9780511814075

Philipp Schröer, Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,

and Christoph Matheja. 2023. A Deductive Verification Infrastructure

for Probabilistic Programs. Reproduction Package for Article ’A Deductive
Verification Infrastructure for Probabilistic Programs’ 7, OOPSLA2 (Oct.
2023), 294:2052–294:2082. doi:10.1145/3622870

Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman,

Cameron E. Freer, and Daniel M. Roy. 2018. The Beta-Bernoulli pro-

cess and algebraic effects. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 107), Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella (Eds.). Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 141:1–141:15.

doi:10.4230/LIPIcs.ICALP.2018.141 ISSN: 1868-8969.

The Rocq Development Team. 2025. The Rocq Prover. doi:10.5281/zenodo.
15149629

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2025. Probabilistic

Concurrent Reasoning in Outcome Logic: Independence, Conditioning,

and Invariants. doi:10.48550/arXiv.2411.11662 arXiv:2411.11662 [cs].

Received 2025-09-12; accepted 2025-11-13

382

https://doi.org/10.1145/3632868
https://doi.org/10.1145/3704877
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3704899
https://doi.org/10.1145/3704899
https://doi.org/10.5281/zenodo.17800602
https://doi.org/10.5281/zenodo.17800602
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1145/3622870
https://doi.org/10.4230/LIPIcs.ICALP.2018.141
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.48550/arXiv.2411.11662

	Abstract
	1 Introduction
	2 Overview of the Approach
	3 Preliminaries
	3.1 Probability Theory
	3.2 Programming Language and Semantics
	3.3 The Eris Program Logic

	4 Specifying and Implementing New Samplers in Eris
	4.1 The Distribution Typeclass
	4.2 Distribution Adequacy
	4.3 The Generic Planner Rule

	5 Case Studies
	5.1 The Bernoulli Distribution
	5.2 The Binomial Distribution
	5.3 The Geometric Distribution
	5.4 The Negative Binomial Distribution
	5.5 The Beta-Binomial Distribution

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

