Modular Specifications and Implementations of
Random Samplers in Higher-Order Separation Logic

Virgil Marionneau
ENS Rennes
Rennes, France
virgil.marionneau@ens-rennes.fr

Alejandro Aguirre
Aarhus University
Aarhus, Denmark

alejandro@cs.au.dk

Abstract

Probabilistic programs have a myriad of applications, from
randomized algorithms to statistical modeling, and as such
have inspired a long tradition of probabilistic program logics
to verify their correctness. One essential use of probabilistic
programs is to program new samplers from more primi-
tive samplers, e.g., to generate samples from more complex
distributions only given a primitive uniform sampler. Such
samplers are an ideal case study for probabilistic program
logics, to ensure that they implement the target distributions
correctly. But proving correctness is often not enough, one
also wants to reason about clients of these samplers, which
require their specifications to be expressive and reusable.
In this work, we propose a methodology for giving speci-
fications to samplers that are detailed enough to prove that
they are correct, and expressive enough to reason about their
clients. We propose our methodology for Eris, a recent prob-
abilistic program logic based on the Iris separation logic. We
identify what makes the proof rules and reasoning principles
for primitive distributions in Eris work, and we distill them
into a distribution typeclass. This presents at an abstract
level the requirements that a concrete implementation of
a target distribution should satisfy, and provides reasoning
principles for clients of the interface. Working at this level
of abstraction allows us to prove correctness results, as well
as to derive additional reasoning principles for all implemen-
tations that adhere to the typeclass interface. We instantiate
this approach to a variety of samplers for classical distribu-
tions, such as binomials, geometrics and beta-binomials.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CPP 26, Rennes, France

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2341-4/2026/01
https://doi.org/10.1145/3779031.3779109

368

Félix Sassus Bourda
ENS Paris-Saclay
Gif-sur-Yvette, France
felix.sassus-bourda@ens-paris-saclay.fr

Lars Birkedal
Aarhus University
Aarhus, Denmark

birkedal@cs.au.dk

CCS Concepts: « Theory of computation — Separation
logic; Logic and verification; Probabilistic computation;
Program verification.

Keywords: Probabilistic Programming, Separation Logic,
Formal Verification

ACM Reference Format:

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars
Birkedal. 2026. Modular Specifications and Implementations of
Random Samplers in Higher-Order Separation Logic. In Proceedings
of the 15th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP °26), January 12—13, 2026, Rennes, France.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3779031.
3779109

1 Introduction

Randomized sampling in programs is prevalent in many
areas of computer science. For example, randomized algo-
rithms [Motwani and Raghavan 1995] use sampling to tra-
verse large search spaces faster, leading to an improved per-
formance at the cost of a small probability of errors. Other
examples come from the fields of computer security and
cryptography, where randomization is crucial for having
strong security guarantees [Goldwasser and Micali 1982].
However, randomization leads to unintuitive behaviors in
programs that are hard to reason about.

This has led to a long tradition of developing principles
to reason about probabilistic programs, using a variety of
techniques such as predicate transformers [Batz et al. 2019;
Mclver and Morgan 2005]; different kinds of unary and re-
lational program logics [Aguirre et al. 2024; Bao et al. 2025;
Barthe et al. 2018, 2015, 2016; Li et al. 2023; Zilberstein
et al. 2025]; or techniques inspired by model checking or
Markov chain analysis [Chakarov and Sankaranarayanan
2013]. These have different strengths and weaknesses in
terms of the base language they target, the ambient logic in
which they work on, and the classes of properties they can
express and reason about, we discuss them in more detail at
the end of the paper.

https://orcid.org/0009-0005-9568-4592
https://orcid.org/0009-0007-7559-1326
https://orcid.org/0000-0001-6746-2734
https://orcid.org/0000-0003-1320-0098
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779031.3779109
https://doi.org/10.1145/3779031.3779109
https://doi.org/10.1145/3779031.3779109
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CPP ’26, January 12-13, 2026, Rennes, France

In most of these approaches, one assumes that the target
language only comes equipped with some simple random
primitives (e.g. just a uniform bit sampling operation, or a
fair choice operator), which simplifies the presentation of
the logics. Since it is known that this suffices to represent
all distributions of interest [Dal Lago et al. 2014], then one
can argue that these primitives and the rules to reason about
them are sufficient, and that the approach can be extended
to support more distributions if one so wanted to.

This is analogous to the way in which random sampling
libraries are implemented in mainstream programming lan-
guages. From a primitive source of randomness provided,
e.g., by the operating system or the hardware, library de-
signers can then program samplers that implement more
complex distributions. When verifying such a library, we
have two objectives in mind: first, we want to make sure
that the samplers actually implement the target distribution
correctly. Second, we want to ensure that the specifications
that we prove for the samplers are expressive enough to
use them in proofs of larger programs that are clients of the
sampling library.

In this paper, we propose a methodology to realize these
objectives. We extend Eris [Aguirre et al. 2024], a recent sep-
aration logic for higher-order probabilistic programs, with a
new library for random samplers. These are implemented in
an expressive higher-order language with primitive support
for uniform sampling over a finite range of integers. We use
the facilities provided by Eris, and a novel proof technique,
to give and prove expressive specifications for our samplers,
that can be later used in other proofs as if they were prim-
itives. Moreover, we showcase that the abstract reasoning
principles that Eris provides for the primitive distributions
can also be extended to the distributions implemented in
the library. The entire development is mechanized using
Rocq [The Rocq Development Team 2025] and Iris [Jung
et al. 2015], and the accompanying artifact can be consulted
in [Marionneau et al. 2025].

2 Overview of the Approach

In this section we give an informal overview of our approach
to specifying and reasoning about random samplers. We
present more precise definitions and details in the coming
sections.

Eris [Aguirre et al. 2024] is a program logic designed to
prove upper bounds on the probability of events considered
over the final result and state after a program execution.
The logic is implemented as an extension of Iris [Jung et al.
2015]. The key reasoning tool in Eris is a so-called error
credit, a separation logic predicate (aka separation logic re-
source) that can be spent to avoid certain outcomes of prob-
abilistic choices during program execution. Ownership of
¢ € [0,1] error credits is denoted #(¢). This intuition is re-
alized through the adequacy theorem of Eris: if the triple

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

369

{#(e)} e {¢} is valid, then the probability that executing e
will result in a final result that does not satisfy ¢ is at most
¢. In particular, note that error credits have the property
#(1) + False, which corresponds to the fact that the proba-
bility of any event is bounded from above by 1.

Error credits are manipulated in proofs through the laws
dictated by their resource algebra representation (detailed
in Section 3.3) and a rule for sampling from a uniform distri-
bution over the integers {0,...,N} :

E(i)
T N+1
F{f(e))} rand N {v . £(E2(0))}

&

HT-RAND-EXP

Morally this rule says that if we own ¢; error credits, we
can assume that we will sample some v and own &;(v) error
credits afterwards as long as the expected value of &; is ¢;.
Note that in some of the outcomes the amount of credits may
be larger than the initial &. One can discard any outcome
with 1 error credit using the rule £(1) + False. From this, one
can derive the rule

0<n<N
)} rand N {v . v # n}

HT-RAND-AVOID

{4 (wm

which allows us to spend # (x4) to avoid a concrete outcome
n, recovering the primary intuition behind error credits.

In addition to the HT-RAND-EXP above, Eris also has so-
called presampling rules, shown in Figure 3. These allow
the user to generate randomness in advance at the logical
level, which will be used later physically by the program.
Presampling is a useful reasoning principle, e.g., in proofs
of almost sure termination. Presampling requires ownership
of a presampling tape, a separation logic resource that holds
random samples that will be used in the execution. The
separation logic predicate : < (N, 1) denotes ownership
of a tape with label : containing a sequence 7 of samples
uniformly distributed in {0, ..., N}. Tapes can be allocated
using similar syntax as standard references, following the
rule ALLoc-TAPE. The rule PRESAMPLE-EXP appends a fresh
uniform sample to a tape and, analogously to HT-RAND-EXP,
allows the user to distribute error credits across the outcomes.
Sampling instructions can then be annotated with a tape
label, and will deterministically read the first element of
the corresponding tape, as specified by LoAD-TAPE. A more
involved, planner rule (PRESAMPLE-PLANNER) allows users to
presample at once a large sequence of samples ending on a
particular suffix.

Now suppose we have implemented a sampler bern p g
which returns true with probability p/q and false with prob-
ability (g — p)/q, for 0 < p < g, and we want to prove it is
correct. Following the intuition behind the meaning of the
triples, one could think of the following naive specification:

Vb: B, {/(if bthen (g — p)/qelse p/q)} bernp q{v .v =b}

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic

This specification allows us to spend #((g — p)/q) to ensure
that the result of sampling is true, or to use #(p/q) to ensure
the result is false, which is precisely how a Bernoulli sampler
should behave. This specification does indeed prove correct-
ness of the sampler. However, we argue that this specification
is not strong enough to be used in clients of the sampler, as
shown by the example below:

Example 2.1. Consider the program below:

e = if bern 2 3 then ()
else if bern 2 3 then () else fail

This program returns safely with probability 8/9, otherwise
it crashes. Therefore, we would hope to be able to show the
specification

{#(1/9)} e {v . True}

However, the specification
Vb: B, {#(if bthen1/3else 2/3)} bern 23 {v . v = b}

is not enough to prove this, because we need to supply #(1/3)
to resolve the first bern to true, but we only have £(1/9).

The key observation behind our approach is that the -
RAND-EXP rule captures the fact that rand N yields a uni-
formly distributed value by describing not how it consumes
error credits, but how it can transform them. To characterize
a sampler for another distribution g, we have to describe
how it can transform credits. We can do this by showing a
rule similar to HT-RAND-EXP, but where the expectation is
taken over p.

We propose then to give the following specification to the
Bernoulli sampler:

{(E - &y (true) +
q

bern p q
{b.2(E:(b))}

This specification states that if we begin by owning ¢; error
credits, then we will sample some b and own &E;(b) error
credits, as long as the expected value of &, under the corre-
sponding Bernoulli distribution (i.e. (p/q) - E2(true) + ((g —
p)/q) - Ez(false)) is equal to ;. In particular, the previous
naive specification is derivable from this one.

a-p -82(false)) - !(sl)}
VE,. 1

Example 2.1 (continued). With this specification we can
now finish our proof. For the first sampling in e we instantiate
the specification of bern 2 3 with

E,(b) £ if bthenOelse1/3
It is easy to check that the precondition is satisfied, since
(2/3) -0+ (1/3) - (1/3) = (1/9)

Then we will either be in the then branch, owning #(0), and
conclude immediately, or in the else branch, owning #(1/3). In

370

CPP ’26, January 12-13, 2026, Rennes, France

the latter case, we use the specification of bern 2 3 again, this
time with
E,(b) £ if bthenOelse 1

In the then branch, we conclude immediately. Otherwise, we
will own £(1), and since (1) + False, we can also conclude.

The soundness of our approach is proven through a novel
distribution adequacy theorem, which is stated using total
correctness Hoare triples.!

Theorem 2.2. Let e be an expression, and p a probability dis-
tribution over values. Suppose the statement below is derivable
in Eris:

F Ver, 8s. Zp(v) < Ey(v) = &1 % £(e1) | e [v. £(E2(0))]

Then, the final value of e distributes as p.

Using the expressive program logic features of Eris (in-
herited from Iris), we further prove presampling rules for
the implemented samplers. For example, ownership of a
Bernoulli tape can be expressed in terms of ownership of a
standard (uniform) tape and a condition on its contents that
establishes how each Bernoulli sample is translated into a
uniform sample.

To provide a unified interface for the newly implemented
samplers, we introduce an abstract distribution typeclass,
which states that a program e implements a meta-level dis-
tribution p. The interface imposes a series of Eris proof obli-
gations on the user, and provides a set of proof rules that
can be used to reason about clients of the samplers. Cru-
cially, we show that a generic planner rule can be derived
for any sampler as a consequence of the typeclass definition,
which allows us to develop expressive reasoning principles
for complex distributions from a single proof.

3 Preliminaries
3.1 Probability Theory

Definition 3.1 (Mass). For a countable set A and a function
A — [0,1], we write || for the sum Y, ,c 4 (a) when it is

finite.

Definition 3.2 (Subdistribution). A subdistribution over a
countable set A is a function y : A — [0,1] such that |p| < 1.
We let D(A) denote the set of all subdistributions over A. We
call the set suppu = {a € A| 0 < p(a)} the support of .

We need subdistributions instead of full distributions to
account for non-terminating programs. This does not come at
a high cost as much of the structure of interest when working
with distributions is still present for subdistributions.

Proposition 3.3. The operation A — D(A) admits monadic
structure.

We use curly brackets for partial correctness Hoare triples and square
brackets for total correctness Hoare triples as detailed in the next section.

CPP ’26, January 12-13, 2026, Rennes, France

Proof. Define the actionof D on f : A — BasD(f)(p)(b) £
Yaca Op(f(a)) - p(a), where &y is the mass function of the
Dirac distribution, which maps x to 1, and any x” # x to 0;
and define the unit and bind operations as retx(a) (b) = 6,0
and (p>>=f)(b) £ X 4ea t(a) - f(a)(b). Functoriality of D
and the monadic laws are easily checked. O

Remark 3.4. While D admits monadic operations, it is not
itself a monad, since, for a non-empty countable set A, D(A)
is not itself countable. Thus D is not an endofunctor. Instead,
it is an example of a relative monad [Altenkirch et al. 2015].

Definition 3.5 (Restriction). For a subdistribution y1, we write
pp(x) for the subdistribution defined by:

u(x) if P(x) holds
pp(x) =

0 otherwise

We call it the restriction of pi to P. The mass |pp| of the restric-
tion of it to P is called the probability of P with respect to p.
We write it as Pr, [P].

3.2 Programming Language and Semantics

The language we consider is RandML [Gregersen et al. 2024],
a variant of sequential ML with higher-order dynamic store
and probabilistic sampling. Its syntax, detailed in Figure 1,
is mostly standard. However, we call attention to the rand
and tape constructs. RandML supports two kinds of primi-
tive sampling commands: unlabeled and labeled. The former
takes a single integer argument N and evaluates to a uni-
formly distributed integer between 0 and N, both included.
The second takes two arguments, an integer N and a tape
label 1, and is used to support the presampling rules. Tapes
are a piece of state and behave similarly to references: the
tape N construct allocates an empty tape that will be used
to contain uniform samples between 0 and N, and returns a
label. The command rand N : will then check that the tape
1 is of the right type, return its first element deterministi-
cally, and remove it from the tape. Notice that there is no
language construct that adds values onto the tape, we will
later explain how they are populated at the logical level. The
interested reader can also consult [Gregersen et al. 2024] for
mode details on how tapes are used, and for a proof of why
it is sound to add them to the language.

The language is equipped with mostly standard probabilis-
tic small-step operational semantics. A single step of reduc-
tion will be modeled by a function step : Cfg — D(Cfg),
most of the expressions in the language reduce determin-
istically and so for those the reduction is simply a Dirac
distribution. Some of the more interesting cases are detailed
in Figure 2. In particular, note how the reduction for the
labeled sampling is deterministic, except in the case where
the corresponding tape is empty, where a fresh sample is
produced.

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

371

After defining single steps of computations, we define
exec, : Cfg — D(Val) to represent the subdistribution of
values reached after n steps of execution:

ret(e) if e € Val
execy(e,0) = {step(e, o)>>=exec,—; ife ¢Valandn > 0
0 otherwise

By taking the limit of exec,(p) as n goes to infinity, we ob-
tain the subdistribution representing the results of a full
execution of p, which we denote by exec(p). The probability
of termination of a full execution of p is given by |exec(p)]|.
We call a configuration almost-surely terminating if its prob-
ability of termination is 1.

3.3 The Eris Program Logic

Eris is a probabilistic variant of Iris [Jung et al. 2015] and it
inherits most of its syntax and derivation rules from it. In
this paper, we focus on the main concepts of Eris required
to follow our contributions; we refer the interested reader
to Aguirre et al. [2024] for further details.

The syntax of propositions in Eris is outlined below. It
includes standard separation logic connectives, as well as
Iris-specific modalities such as persistently () and later (>).
Notably, it is a higher-order program logic, so Hoare triples
{P} e {Q} and [P] e [Q] are also propositions in Eris. The
former indicates partial correctness, while the latter indicates
total correctness.

P,Q € iProp ==
True | False |PAQ|PVQ|P= Q|Vx.P|3x.P
|P+*Q|P— Q| OP|»P|t—0
| £(e) 11— (N,xs) | {P}e{Q} | [P]e[Q] | ...

The main novelty of Eris is the addition of a new resource
called “error credits”, whose rules are outlined below:

HZ£(0) Z(e1) x £(ey) F £ (&1 + £2) £(1) + False

Ownership of ¢ error credits (denoted £ (¢)) can be seen as
an allowance to fail to prove the specification under scrutiny
with at most ¢ probability. Hence, owning £ (1) allows us to
prove any conclusion. This is made precise by the following
theorem for partial correctness triples:

Theorem 3.6 (Adequacy). For any state o, if+ {4(¢)} e {¢}
then Pregec(e,o) [@] < . Moreover, the probability of e getting
stuck is at most .

Notice that exec(e, o) is a subdistribution and as such this
theorem does not imply the stronger fact that Preyec(e,0) [¢] >
1—e¢.In order to derive such an inequality, one needs to use to-
tal correctness triples instead. The difference between them
amounts to considering non-termination as a valid behavior
for partial correctness, but not for total correctness. Total
correctness triples can therefore be weakened to partial ones.
For total correctness triples, the following holds:

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic

CPP ’26, January 12-13, 2026, Rennes, France

veVal2zeZ|beB|()|€€Loc|teLabel|rectx=c¢e]| (v,w)]| inlo| inrov

intrw = ey end |

ecExpr=uv|x|ee|e+e|e—e|...|
if ethene;elsees | (er,e0) | fste| snde | inl(e) | inr(e) | match e with inlo = e;
allocne;e; | le| ey «— ez | rande | randes ey | tapee

KeEctx2 — |eK|Kv| allocnK|!K|e«— K|K «v| randK| ...

t € Tape2 {(N,n) | N e NA# € List Ny}

o € State = (Loc fin, Val) x (Label fin, Tape)

p € Cfg = Expr X State

Figure 1. Syntax of RandML

if NeN

step(rand N, o) = otherwise

{uﬂ({o,...,N}x{a})
0

step(tape N, o) =

S(nolis(Ni)])

step(rand ¢t N, o) =
0

Hu({o,...N}x{a})

if N € N, with (fresh in ¢

otherwise

5(1,0[1»—>(N,€)])
0

if NeNand:— (N,n:n)€o
ifNeNand:— (N,n:=n)¢o

otherwise

where iq/(4) is the mass function of the uniform distribution on a finite set A.

Figure 2. Selected reduction rules of RandML

Theorem 3.7 (Total Adequacy). If+ [£(¢)] e [§] then
Pregec(eo) [@] = 1 — ¢, for any state o. In particular, the prob-
ability of termination of (e, o) is at least 1 — ¢.

Partial or total correctness triples can be proven in the
logic using familiar derivation rules directed by the program
syntax, which we omit here to focus on the rules that manip-
ulate error credits. As mentioned in §2, one of the key proof
rules is the following sampling rule (here displayed for total
correctness triples):

N ()
Zi:() N+1
F[#(e1)] rand N [n . £(E2(n))]

Ownership of a tape is denoted by the predicate 1 —
(N, i), specifying that 1 — (N, 7i) is in the current state of
the program. Rules governing tapes can be seen in Figure 3.
In particular, Eris provides the user with a ghost operation
PRESAMPLE-EXP which allows to change the state of the tape
through a logical update.

Tapes provide a way to decouple reasoning about error
credits from program reduction, thus making for cleaner
proofs. For example, sometimes it is useful to pre-populate
the tape in advance and then reason about the program as if
it was deterministic. This does not lose expressivity, since
HT-RAND-EXP-T and PRESAMPLE-EXP behave in the same way.

Furthermore, tapes allow for one more powerful principle.
As they are not tied to program execution, one can keep pre-
sampling until the tape ends in a predetermined suffix. This
is captured by the PRESAMPLE-PLANNER rule, sometimes re-
ferred to as the “planner rule”. The rule states that, assuming

&

HT-RAND-EXP-T

372

we own a tape : with contents xs, we can keep presampling
randomness to the tape until it is of the form xs-ys-s(xs-ys),
where ys is some unknown sequence of samples and s(xs-ys)
is a pre-chosen suffix that might depend on both xs - ys. We
refer interested readers to [Aguirre et al. 2024] for details on
why the rule is sound and for examples of how it can, e.g.,
be used to show almost-sure termination; we will also show
an example in §5. The intuition is that the valid suffixes have
finite length at most L, so with probability 1 the presampling
process will eventually terminate and produce a valid suffix.

4 Specifying and Implementing New
Samplers in Eris

The rules provided by Eris to reason about rand form a
powerful and modular framework to prove properties of
programs sampling from a uniform distribution. However
the uniform distribution is not the only distribution one
might wish to investigate. Indeed many algorithms rely on
Bernoulli sampling and many real life situations can be mod-
eled by more complex distributions such as the binomial dis-
tribution. Many of those distributions can be implemented
inside RandML. We want to prove that the samplers that
we implement are correct, that is, their output distributes as
the target probability distribution. But we also want to have
abstract reasoning principles for them that allow us to use
them in larger programs and reason about them.

To address this challenge, we leverage the expressivity
of the ambient logic (Rocq) and of Eris itself. We define a
distribution typeclass that implemented samplers should

CPP ’26, January 12-13, 2026, Rennes, France Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

ALLOC-TAPE LOAD-TAPE
F [True] tape N [t.1 <> (N, ¢)] Flte— (N,n:n)] randNi[x.x =n* 1< (N,n)]
e ¢ Val N %J(rll) =g VI [s(D)| <L
FVn. [t (N,n-[n]) x £(E2(n))] e [P] F [Jys.t — (N,xs-ys - s(xs - ys))] e [P]
PRESAMPLE-EXP PRESAMPLE-PLANNER
F o> (N, i) * #(e1)] e [P] F [t (N,xs)] e[P]
Figure 3. Rules for presampling tapes
adhere to. To satisfy the typeclass constraints, implementers Thus, the predicate ownTape « [asserts ownership of
have to prove that their sampler satisfies a series of reasoning an abstract tape with an abstract label a: absLoc, and con-
principles that can then be used abstractly by clients of the tents I. Abstract tapes are allocated via a program allocTape,
sampler. The advantages of enforcing the typeclass interface which returns a label and an empty tape, as specified by
are multiple. First, it gives implementers a clear guideline ALLOC-DISTR-TAPE. A labeled sampling instruction sample a
to follow. Second, one can derive reasoning principles for requires ownership of @ and reads its first element and re-
all implemented samplers, independently of the distribution moves it, as specified by LoAD-DISTR-TAPE. Finally, the rule
that they implement. Finally, one can prove a correctness PRESAMPLE-DISTR-EXP allows us to presample elements to
result once and for all implemented samplers. This section the abstract tape and distribute error credits across all possi-
describes the distribution typeclass and the methodology ble outcomes, again requiring their expected value over y to
around it. be equal to the initial amount.
4.2 Distribution Adequacy
4.1 The Distribution Typeclass The first application of the distribution typeclass is that
The distribution typeclass is defined in Figure 4. The type- we can prove a single correctness result for all expressions
class distrlmpl (u: D (Val)) characterizes an implementation that implement it. Suppose that e implements the typeclass
of a sampler for a distribution y over values. It consists of a distrlmpl p for some p: D (Val). This means, in particular,
program that implements the distribution i, propositions to that e satisfies this rule:

denote ownership of abstract tapes for the implemented dis-
tribution, as well as proofs of propositions that characterize
how the sampling expression is used, and how it interacts
with tapes and credits. Note that these are actually abstract FlZ(e)] e [o. £(82(0))]
versions of the rules for the primitive uniform distribution.

The program sample is meant to represent the main pro-

VoeVal. 0 < E,(v) <1 Z (o) - E2(v) =&

veVal

Under those assumptions, set

gram implementing the distribution. It takes as argument eq Lo ifw=o e |1 ifw=o
the label of an abstract tape, which can be the null label &y (w) = 1 otherwise &y (w) = 0 otherwise
(unitLoc). The typeclass also provides a rule HT-DISTR-EXP
that characterizes the sampler. This rule states that, when- We can then easily check that both of those functions are
ever we sample from sample we can distribute (&) error positive and bounded above by 1 and that their expected
credits, assigning (&, (v)) to each outcome v as long as the values are as follows:
expected value of &; over y is ;. It is this rule where the .
concrete implementation sample is connected to the meta- Z p(w)-E51(w) = |ul = p(o), Z p(w)-E5°(w) = p(v)
(Rocg-)level distribution p. Note how this generalizes the weval weVal
HT-RAND-EXP-T rule for the uniform distribution, except that Hence we can derive the following two rules:
now we take expected values over the target distribution p.

The typeclass also includes propositions to assert own-

HT-MU-EQ

ership of abstract tapes containing samples from p, as well F A - p(0)] e [w. w =0]
as rules to manipulate them. Notice that, operationally, the
language only supports tapes containing uniform samples.

However, one can implement abstract tapes for other distri- HT-MU-NE
o : F ()] e[w. w# 0]
butions in terms of uniform tapes, analogously to the way
one implements samplers for other distributions in terms of from which we can prove the following result, which asserts
the uniform sampler. Later in the paper we will see how this that the final result of evaluating e distributes as p:

is achieved for some example distributions.

373

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic

CPP ’26, January 12-13, 2026, Rennes, France

distrlmpl (p: D (Val))

sample: Val; absLoc: Type;

isAbsLoc: absLoc — Val — iProp;

YoeVal. 0<8Ey(v) <1

[

ownTape: absLoc — ListVal — iProp;

allocTape: Val; unitLoc: Val;

D 1) - &) = &

eVal

HT-DISTR-EXP

[£(¢1)] sample unitLoc [v. £(E2(0v))] :

ALLOC-DISTR-TAPE

[True] allocTape () [(A: absLoc)(a: Val).isAbsLoc A @ * ownTape « []] ;

LOAD-DISTR-TAPE

[isAbsLoc A « * ownTape @ (w - I)] sample @ [v.v = w * ownTape « [] ;

e ¢Val Yo eVal. 0 <8Ey(v) <1

PINORCACES
veVal

Vo. [ownTape a (I - [v]) * £(E3(v))] e [P]

PRESAMPLE-DISTR-EXP

[ownTape a I * £(&1)] e [P]

Figure 4. Definition of the distribution typeclass. We use proof rule notation for propositions in iProp, where the separating
conjunction of all the premises implies (via separating implication) the conclusion

Theorem 4.1 (Distribution Adequacy). Under the conditions
for e and i1 outlined above, we have, for any v € Val,

Prexec(e) [Aw, w = 0] = p(0)

Proof. Applying Theorem 3.7 to HT-MU-EQ and Theorem 3.6
to HT-MU-NE, and using the fact 0 < |u| < 1, we get the
following bounds on Preec(e) [AW, w = 0]:

,U(U) < [l(l)) + (1 - |,u|) < PI'exec(e) [Aw,w=0] < IU(U)
Therefore Pregec(e) [AW, W = 0] = p(0).

4.3 The Generic Planner Rule

In this section, we show that the rules in the distribution
interface suffice to derive a planner rule, analogous to the
PRESAMPLE-PLANNER rule. Note that this means that the plan-
ner rule can be proven once, just from the abstract interface,
and then instantiated to all samplers that implement the
typeclass.

The statement of the rule is the following:

PRESAMPLE-DISTR-PLANNER
e¢Val Rfinite ViaeR—>0<pa

Vii,aes(i) > acR Vi. |s(R)| < L
F Vo. [ownTape a(f-j-si- 7))] e [P]

+ [ownTape « 7i] e [P]

In order to support arbitrary distributions that might have
non-finite support, we require that all elements appearing
in suffixes must contained in some finite set R. However,
we believe that this restriction can be lifted by adding other

374

constraints on s, for instance by implementing some form
of martingale-based termination condition [Majumdar and
Sathiyanarayana 2025].

The proof of this rule is a generalization of the proof of the
basic planner rule from [Aguirre et al. 2024]. At a high level,
the proof of the planner rule proceeds by repeatedly applying
the PRESAMPLE-EXP rule and choosing the coefficients E,(i)
in the premise depending on the current state. By choosing
them appropriately, it is possible to ensure one out of two
eventual outcomes: either we sample the desired suffix, or we
increment our error credits until we reach #(1). Therefore it
is sound to assume the former.

To prove the general version of the rule for the interface,
we first prove an abstract planner rule which is phrased in
terms of abstract predicates about programs and resources (in
place of the Hoare triples and the tape ownership predicates)
and it allows us to isolate the complicated credit arithmetic.
We refer interested readers to the appendix for more details
about the proof.

5 Case Studies

Now armed with results allowing us to derive great amounts
of expressivity from simple prerequisites, we focus on show-
ing that meeting those prerequisites is feasible. We do this
by detailing various implementations of some probability
distributions in RandML and showing how they satisfy the
constraints of the distribution typeclass, in particular show-
ing how the HT-DISTR-EXP and PRESAMPLE-DISTR-EXP rules

CPP ’26, January 12-13, 2026, Rennes, France

are proven for concrete implementations, as well as how
the abstract tapes are defined for them. We first treat the
Bernoulli distribution in detail before focusing on some of
the core ideas of the subsequent distributions.

5.1 The Bernoulli Distribution

The Bernoulli distribution with parameter 6 € [0, 1] models
a weighted coin flip where the probability of the coin landing
on heads is 0 and, conversely, the probability of it landing on
tails is 1—6. We denote its mass function by pg(g). We choose
to restrict our attention to rational parameters as RandML
does not support real numbers as a base type, and adding
them is orthogonal to our goals. We thus assume that every
parameter for the distribution is of the form 0 = # with
p,q € Nand p < g+ 1. In turn this makes it easy to represent
the parameters of the distribution as pairs of natural numbers
(p, q) with p < g + 1. With this representation in mind, one
can see the Bernoulli distribution in another light — it is the
distribution of an urn model where one draws exactly one
ball from an urn containing g + 1 balls, p of which are red.
Here drawing a red ball is analogous to the coin landing on
heads. With this model laid out, an implementation arises
almost immediately as the following program:

bernpgit 2 letk =randgtin
if k < pthenlelse0

We will write bern p g for the same program where the rand
operation is unlabeled; from now on we will always implicitly
follow this convention. The first thing we do after defining
this implementation is to prove that it admits a specification
that is an instance of HT-DISTR-EXP. Given that the support of
this particular distribution is simply {0, 1}, we can formulate
it in the following way:

HT-BERNOULLI-EXP

£,6 20 p<q+1
4 P
. 1__ + . =
&1 q+1) & q+1 ¢

F[£(e)] bern pglo. v =0 f(e) Vo =1% £(&)]

We remark that this specification (as well as the ones for
other distributions in this section) is proven internally in
Eris by reasoning over the code of bern p q. We first apply
HT-RAND-EXP-T to the rand g statement, setting

&Ey(i) = if i < pthenegyelse &

This requires us to show };c (o 4} 62(i) = &, which follows
from the assumptions. Then, we sample some k and own
#(&E,(k)). Finally, we do a case distinction on whether k < p,
letting us conclude.

With this taken care of, we can immediately make use of
Theorem 4.1 to prove that this program indeed models the
Bernoulli distribution with parameter 6 = %.

The next step is to define an abstract notion of tape 1 — g
(p, q, 1) expressing ownership and knowledge of the next

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

375

BERNOULLI-TL-NIL

q
€ y™~g €
n<p A~
—Y —— BERNOULLI-TL-CONS-LT
nin g ~g 1:m
nxp @~
Y —— BERNOULLI-TL-CONS-GE
.o ~ .
nin g ~g 0=m

Figure 5. Translation predicate for the Bernoulli distribution

outcomes of running bern p q 1 are described by 7. Since bern
is implemented using the primitive rand, we can implement a
tape for bern by owning a tape for rand, and then translating
the uniform samples into Bernoulli samples. We achieve
this through the use of the predicate 7 jj~7'm , where
i € List {0,...,q} and m € List {0, 1}, inductively defined
in Figure 5. The tape predicate is then simply defined as:

i 1 (,7)

t—>g (p,g.m) = Jni € List {0,..,q}.7
Our next obligation is to define an expression that allocates

empty Bernoulli tapes. This is realized by the program:
allocg p g = tapeq

While the first parameter of allocg is ignored and could be
dispensed with, we choose to have it explicitly to make the
code clearer. We can prove the allocation rule for Bernoulli
tapes by combining ALLOC-TAPE and BERNOULLI-TL-NIL:

BERNOULLI-ALLOC-TAPE

F [True] allocg pq [1. 1t =8 (p,q.€)]

The load rule for Bernoulli tapes follows by doing a case
distinction on whether the first element is 0 or 1, applying
either BERNOULLI-TL-CONS-GE or BERNOULLI-TL-CONS-LT to
translate it back to a uniform tape, and finally executing bern
symbolically. At the sampling point, we apply PRESAMPLE-
LOAD to read the first element of the uniform tape, which
ensures we will go to the correct branch. The rule we then
obtain looks as follows:

LOAD-BERNOULLI-TAPE

Fle—og (p,q,b=i)] bernpgioo=bx*1<g (p,q)]

To prove the presampling rule for this tape predicate, we
need the following two properties, which are easily shown

by induction on the derivation of i /5~ ri:

~Pa
B

m - [1]

m

BERNOULLI-TL-SNOC-LT

—_

BERNOULLI-TL-SNOC-GE

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic

We can then show the following rule by first unpacking the
uniform tape predicate from the definition of 1 < g (p, ¢, 1),
and then using PRESAMPLE-EXP (with &; defined identically
as for the proof of HT-BERNOULLI-EXP) to sample a new value
at the end of the tape, before using BERNOULLI-TL-SNOC-LT or
BERNOULLI-TL-SNOC-GE to update the translation predicate
and repackage everything into an abstract tape predicate:
PRESAMPLE-BERNOULLI-EXP
e ¢ Val 20

p
(11— ——)+¢&-
1+ (q+1) &2

£ 20 qu+1

p__,
q+1
FVie {01}t —g (p.g.ii-[i]) « £(e1)] e [P]
Flee=s (p.g. 1) * £(e)] e [P]
All these results together form an instance of the typeclass
distrimpl(pg _¢_). In particular, this means that we imme-
q+1

diately obtain a correctness result for the implementation
through Theorem 4.1, as well as the instance of the planner
rule for the Bernoulli sampler below:

PRESAMPLE-BERNOULLI-PLANNER
e ¢ Val p<q+1 Vm. |s(m)| <L
Vi . m € s(m) = pgp/(g+1))(m) >0
3 os (pgi - T s)] e[P]
Fli—>sg (p.g)] e[P]

Application: Martingale betting on a biased coin. To
illustrate how the sampler can be used in practice, we con-
sider an example of a martingale gambling strategy. Consider
a game in which, on every round, we can place a bet b on the
result of a coin flip. If it is heads, we receive a total amount
of 2b, otherwise we lose our bet. The martingale strategy
consists in starting with an initial bet b, and doubling it ev-
ery round until the first time we observe heads. Assuming
an unbounded pool for betting and unbounded number of
rounds, this guarantees to terminate with probability 1, with
a profit of b. The strategy works even if the coin is biased,
as long as the probability of heads is non-zero.

We model this process as the program below, where we
model the possibly biased coin as a Bernoulli distribution:

martingale w b 1 =
letb =bernp qtin
if b = 0 then martingale (w —b) (2% b) 1else w+b
The parameter w represents the current earnings (possibly

negative), while the parameter b represents the current bet.
We can prove the following specification:

VYweZbeN.
[t —>g (p, g, €)] martingale w b [v.0 =b + W]

While this program seems quite simple, note that in order
for this specification to be valid, we also have to prove that
the program is almost-surely terminating, so induction on
the recursive call is not sound.

376

CPP ’26, January 12-13, 2026, Rennes, France

Our proof instead uses PRESAMPLE-BERNOULLI-PLANNER,
which allows us to presample a list of Bernoulli samples that
ends in 1, and then we can proceed to prove by induction on
the list 7i that

Vi € List {0,1},w € Z,b € N.
[t —>g (p,q - [1])] martingale w b [v.0 = b + w]

In the base case, i = ¢, so bernp g 1 will read 1 off 1 and
the program terminates immediately returning w + b. In the
inductive case, we do a case distinction on the first element
of the tape. If it is 1, we are in the same situation as before.
Otherwise, we will consume the first element of the tape and
make the recursive call, but now we will have an inductive
hypothesis available, which we can use to conclude.

5.2 The Binomial Distribution

Using the Bernoulli distribution as a base, we can then con-
struct the binomial distribution Bin(0, n) with 0 < 0 < 1 and
0 < n, which is the distribution of the number of successes
in a sequence of n samples from B(6). Recall that its mass
function is given by the expression

Bin(6,n) £ Ak.(Z) k- (1)
where (Z) = #lk)' is the binomial coefficient (by conven-
tion, if n < k or k < 0 then () = 0). The description of the
binomial process can be turned into the following RandML
program, where again we assume that the 0 parameter is a
rational number p/(q+ 1) withp < g + 1.

binompgni 2 ifn=0then1
else bernp q 1+ binomp g (n—1) 1

We can prove that the program satisfies the appropriate
instantiation of the HT-DISTR-EXP rule. The proof exploits
the modularity of our approach by using the specification HT-
BERNOULLI-EXP of the Bernoulli distribution, which allows
to distribute the error credits appropriately. In particular, the
proof does not need to inspect the concrete implementation
of the Bernoulli sampler, and relies only on the fact that it
implements the distribution typeclass for g Lo

In order to implement the typeclass interface we also need
to define a notion of tape for the binomial distribution. While
the Bernoulli tapes can be encoded one-to-one into primitive
uniform tapes, each binomial sample consists of multiple, but
always the same fixed amount of Bernoulli samples. We can
therefore encode the abstract binomial tapes in terms of ab-

stract Bernoulli tapes. The translation predicate b* i k
is defined in Figure 6 and the predicate denoting ownership

of an abstract binomial tape is defined below:

L O 8in (P, q,n, E) =
3b e List {0,1} . b "I~ K« g (p,q,b)

CPP ’26, January 12-13, 2026, Rennes, France

———————— BINOM-TL-NIL
g pgn

€ 8™ Bin

g

length(by) =n sum(by) =k
pa, pan g ..]_C)z

by - by B8 Bin

BINOM-TL-CONS
Figure 6. Translation predicate for the Binomial distribution

Without showing the details, we prove that these tapes sat-
isfy all the appropriate rules to implement the interface
distrlmpl(Bin(#, n)).

5.3 The Geometric Distribution

The next distribution we consider is the geometric distri-
bution. The distribution G(6) counts the number of failed
B(0) trials before the first success. Its mass function is thus
given by G(0) 2 Ak.(1 - 0)F - 6. We note that as opposed
to the distributions we have seen so far, including the prim-
itive uniform distribution, the geometric distribution does
not have finite support. The implementation again considers
only rational parameters. The program that describes the
geometric process is:

geopqi=letb=bernpqrin
if b=1then0
elsel+geopqt

This program is almost surely terminating, assuming 0 < p,
but it may have arbitrarily long executions. The proof of
the instance of HT-DISTR-EXP for the geometric distribution
relies on a principle known as error induction [Aguirre et al.
2024], which allows us to prove total correctness triples for
recursive probabilistic functions.

Defining and encoding tapes for the geometric distribution
in terms of the underlying Bernoulli distribution is challeng-
ing as well. Notice that intuitively, a geometric sample should
correspond to a sequence of failed Bernoulli samples, ter-
minated by a single successful Bernoulli sample. However,
note that now not only are there multiple Bernoulli samples
corresponding to each single geometric sample but, in fact,
the amount varies, and potentially it can be unbounded.

With this in mind, we can define a predicate denoting
ownership of a geometric tape as follows:

L >g (p,q,E) L 3pe List{O,l}.E"gfvng *x1<>g (p,q, l_;)

where the predicate b? P ~g’ k, defined in Figure 7, captures

the encoding from a geometric tape k to a Bernoulli tape b.
The proof of the PRESAMPLE-DISTR-EXP for the geometric dis-
tribution below relies follows from applying the PRESAMPLE-
BERNOULLI-EXP and using credit arithmetic to choose the

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

377

GEOMETRIC-TL-NIL

= o pat
b~k
length(Z) = n Vi,Zi =0

z-(1= l_;) p}g"*gqn ::]:

GEOMETRIC-TL-CONS

Figure 7. Translation predicate for the Geometric distribu-
tion

appropriate way to distribute credits.
PRESAMPLE-GEO-EXP

Vo.E,(v) >0 p<qg+1
oo k

P q-pt1 _
Z(qﬂ) (g1) G

k=0
Vk € {0.....n) k[t g (pg.ii- [K]) * £(E2(K))] e [P]
Fle>g (pg.7) * £(e1)] e [P]

5.4 The Negative Binomial Distribution

The negative binomial distribution N8B(6, n) can be under-

stood as the sum of n independent geometric samples from

G (0) or, equivalently, as the number of failed Bernoulli sam-

ples from B(6) we observe before observing the n-th succes-

ful one. Its mass function is:

k+n-1
k

We use the process described above to implement a negative
binomial sampler assuming a rational parameter p/(q + 1):

UNB(On) = ﬂ/ﬂ() " (1-0)F

nbin pgnit £ ifn=0then0
elseletb =bernp qtin
if b =0then 1+ nbin pgn
else nbin pg(n—1)

As was the case with the geometric distribution, the negative
binomial also has infinite support. Note that in the recur-
sive call the last argument decreases only with probability
B(p/(q + 1)), which means that we may have arbitrarily
long executions. Nonetheless, the program is still almost
surely terminating and Eris is expressive enough to prove
the instantiation of HT-DISTR-EXP.

By generalizing the ideas for the geometric distribution,
we can define a notion of tape 1 <> ng (p,q,r, 1) for the
negative binomial distribution, by a translation into Bernoulli
tapes, for which we can prove a presampling rule.

5.5 The Beta-Binomial Distribution

The beta-binomial distribution 88 (n, a, b) corresponds to a
sum of n Bernoulli samples where the parameter at each sam-
ple is itself randomized and drawn from a beta distribution,
whose parameter depends on the previous samples.

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic

It can also be understood through an urn model, due to
Pélya. Suppose we start with an urn containing a red balls
and b black balls, and we repeat the following process n
times: we draw a ball uniformly at random, we note its color,
and we put it back, together with a duplicate ball of the same
color. The total number of red balls observed at the end of
the process will then distribute according to BB(n, a, b). Its
mass function is given by

B(k+an—k+b)

A n
UBB(nab) = Ak'(k) B(a.D)

where N € N,a,b € R*? and B(x,y) £ T'(x) - T'(y)/T(x +)
denotes the beta function, defined in terms of the gamma
function T'. In our case, where a, b are positive integers, we
can use the well-known identity I'(n + 1) = n!, forn € N.
The urn model immediately suggests the following imple-
mentation of a beta-binomial sampler in RandML:
betabin Nab (?) =
if N =0then0
elseletx =berna (a+b—1) (?)in
if x = 0then
betabin (N—-1)a (b+1) (?)
else 1 + betabin (N —1) (a+ 1) b (?)

The challenge here is to figure out what to put in the place
of the placeholders (?). In previous distributions we used
plain tape labels because ultimately there was a one-to-one
correspondence between the abstract tape of the target dis-
tribution, and a primitive uniform tape from which all ran-
domness came from. However, here we make successive
calls to Bernoulli distributions with changing parameters,
which are obtained from different underlying uniform distri-
butions. Furthermore, the parameters of those distributions
depend on previous values sampled during the current call
to betabin. Thus we need a more complex notion of location
if we are to develop a tape predicate for this distribution.

To make what we need clearer, we need to know what
parameters can appear in front of bern during a call to
betabin N a b. It is clear that the first Bernoulli trial is of
parameter p = —%, then each subsequent trial is done after
incrementing either a or b and the total number of incre-
ments is N (note that the values after the N increment
are not used for a trial). Thus we conclude that the set of
possible parameters is:

{#-F(lb_i_]) i,jEN/\OSi+j<N}

We therefore need a location for each pair of natural numbers
i, j such that i + j < N. If we think of them as coordinates
over a 2D plane, this describes a set of indices that arrange
themselves in the shape of a triangle. As such we need to
hold onto a tape with the proper parameter for each of these
indices. To better match the behavior of the program which

378

CPP ’26, January 12-13, 2026, Rennes, France

has as main decreasing argument the number of remaining
balls to be drawn, we choose to rearrange the indices as a pair
(k, i) of the number k of balls drawn so far and the number
i of those balls that were red under the the constraints that
0 <i <k < N.Tokeep track of the values of the tapes in a
way that is more amenable to reasoning about them, we use
the data structure inductively generated by the following
constructors:

———————— TRIG-NIL
€ : triangle A0

T : triangle AN I:vectorA(N+1)
7 O [:triangle A (N +1)

TRIG-SNOC

The elements of triangle A N are discrete triangles of
elements of A of height N. There is always an empty triangle
of height 0 for any set A and one can get a triangle of height
N + 1 by gluing a column of height N + 1 at then end of a
triangle of height N. For 7 : triangle A N, we will use 7 ;
to denote the i-th element of the k-th vector in 7, where
0<k<Nand0<i<k.

We will use a 7 : triangle (List {0, 1}) N to hold the values
contained in Bernoulli tapes for each pair of indices needed
for a beta-binomial distribution. We do this by taking a tri-

angle 7 in which the list in 74 ; corresponds to a Bernoulli

a+i
tape of parameter p =

Besides the projections induced by the inductive definition,
we consider two other projection functions:

bottom-trig: triangle A (N + 1) — triangle AN
right-trig: triangle A (N + 1) — triangle AN

Intuitively, bottom-trig 7 is the result of discarding the first
element from every vector in 7, and right-trig is the result of
discarding the last element from every vector in 7; in both
cases we also discard the now empty first vector. This is
depicted in Figure 8.

To talk about locations we then take A : triangle Loc N
and we form the following predicate stating that each tape
in 7 is owned at the corresponding location in A:

* Axi —s (a+i, a+b+k, Tk,i)
0<i<k<N

ownTrig(a, b, N,A, 1) =

Next, we need to define the translation relation between a
beta-binomial tape and a triangle of Bernoulli tapes. Note
that every call to betabin a b N consumes a total of N
Bernoulli samples. We define an auxiliary function:

hsup : triangle (List {0,1}) N X vector {0,1} N
— triangle (List {0,1}) N
Intuitively hsup(r, I) starts at 79 and traverses r depending

on the elements of I. An example execution of hsup is dis-
played in Figure 9. At every step, the traversal will be at an

element 74 ;, and will consider the list b :: b. Then it appends

CPP ’26, January 12-13, 2026, Rennes, France

k

L 2

right-trig

Figure 8. Graphic representation of an element of
triangle N 5 and its projections

0 2

0o 1711 72,0 73,0 T4,0

71,1 0ty 113y T41

72,2 73,2 1140
i 73,3 T4,3
T4,4

L 4

Figure 9. Graphic representation of hsup 7 [0,1,0, 1, 1]

b to 7 ;, and continues the traversal with the list b from Tht1i
if b =0, or from 7411441 if b = 1. This mimics a run of b in
which the sequence of colors drawn corresponds to I, the 1s
representing red balls and the 0s black balls by placing the
corresponding draws on the correct tapes. Finally we define
encode : List (vector {0,1} N) — triangle (List {0,1}) N
where encode(l) successively applies hsup with the elements
of [starting with a triangle containing only empty lists.
We can now define the translation predicate

T g~N G £ 3 7 = encode(i) *ﬁz(lHZl) ($)
which states that 7 is the encoding of a series of runs corre-
sponding to calls to betabin in such a way that they result
in the successive values in 7. Now, we can finally define the
tape predicate:

A — g8 (a, b,N, ﬁ) =

d7.ownTrig(a,b,N,A, 1) x T g~

a,b,N =
B8

From here, induction over N allows us to prove the PRESAMPLE-
BETA-EXP rule in Figure 10.

379

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

Remark 5.1. While we omit the details about the planner rule
for this distribution, we call attention to the benefit we get from
§4.3 and the general derivation of the planner rule. In principle,
it would be possible to derive a planner rule individually for all
previous distributions through an intricate translation to and
from the planner rules for the underlying distributions used
to formulate them. However, in this case, this approach would
be overly complex because we would need to keep track of all
randomness presampled to multiple tapes and the interdepen-
dencies between them. Using the generic planner rule, we can
derive a planner rule for the beta-binomial directly from its
presampling rule and treating the tape predicates abstractly.

The last rule we will prove is the load rule for beta-binomial
tapes. In this case, it is worth spelling out the concrete def-
inition of isAbsLoc, which ties an abstract location A with
an expression in RandML:

isAbsLoc(a,b,N,A,0) =2 [0<i<k<N]|dki [l. 1= Ak,i]

which simply states that for valid indices the abstract location
& should always return the locations held in A. When reading
an element off a beta-binomial tape, we will read the head
element from a series of Bernoulli tapes in 7, starting at the
apex of the triangle, i.e., 79,0. Notice that depending on the
result of this Bernoulli trial, an entire set of parameters can
never be encountered in the rest of the call to betabin. If
the value sampled is a 1 then we can never again have only
a red balls and if it is a 0, we will never draw from a box
containing a + n — 1 red balls. These cases correspond to
the two projections bottom-trig and right-trig respectively,
which can be reflected into RandML as:

bottom-loc § = Aki. 6 (k+1)i
right-loc § = Aki. s (k+1)(i+1)
These two programs are tied to bottom-trig and right-trig
by their specifications shown in Figure 10.
We can now finally complete our definition of betabin:
betabin Nabd =
if N =0then0
elseletx =berna (a+b—-1) (600)in
if x =0then
betabin (N —1) a (b + 1) (right-loc)
else 1 + betabin (N — 1) (a + 1) b (bottom-loc §)
Finally, leveraging the machinery we have put into place, we
can prove the LOAD-BETA-TAPE rule in Figure 10 by induction

over N. With this, we prove that the sampler adheres to the
distrlmpl typeclass interface.

6 Related Work

There is a wide variety of techniques used to prove correct-
ness of probabilistic programs. Here we focus on program

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic

e ¢Val a,b>0

0<k<N

CPP ’26, January 12-13, 2026, Rennes, France

Z HBB(abN) (k) - E(k) = ¢

FVke€{0,...,N}. [A —gg (a,b N,i-[k]) = £#(Ex(k))] e [P]

PRESAMPLE-BETA-EXP

H[A —gg (a,b,N,7i) » £(e1)] e [P]

+ [isAbsLoc(a, b, N + 1, A,)] bottom-loc & [§” .

BOTTOM-TRIG-LOC

isAbsLoc(a, b + 1, N, bottom-trig(A), §”)]

RIGHT-TRIG-LOC

F [isAbsLoc(a, b, N + 1,A,8)] right-loc § [§ . isAbsLoc(a + 1, b, N, right-trig(A), §”)]

a,b>0

isAbsLoc(a, b, N, A, §)

LOAD-BETA-TAPE

F[A —gg (a,b,N,n:: i)] betabin abNS§[k. k=nx*A —>gg (a,b,N,1)]

Figure 10. Specification of the beta-binomial sampler

logics, which can be further divided depending on the un-
derlying class of logical assertions that the logic considers.
We remark that our approach, to the best of our knowledge,
is the first which simultaneously (1) allows one to prove
correctness of implementations of complex samplers, (2) pro-
vides specifications that are usable by clients, and (3) can be
formalized within a mechanized program logic.

The work on expectation transformers [Mclver and Mor-
gan 2005] originates from the idea of using as assertions
predicates whose truth value is a real number (known as
expectations). They can be used to reason about proper-
ties such as expected runtime [Kaminski et al. 2016] or cor-
rectness of pointer programs [Batz et al. 2019], and can be
semi-automated [Schréer et al. 2023], but they have not been
mechanized. Their work is closely related to Eris in the sense
that the rule for primitive sampling also requires the pre-
expectation to be the expected value of the post-expectations.
The logic is not higher-order, so quantification over expecta-
tions is not expressible in their logic, but we believe specifi-
cations similar to ours could be proven by exploiting quan-
tification at the meta-level.

Other logics consider assertions that represent sets of dis-
tributions over states or heaps. One example is Ellora [Barthe
et al. 2018], a Hoare-style logic for probabilistic programs
which has a prototype implementation in Easycrypt [Barthe
et al. 2014]. The class of assertions is presented from a seman-
tic point of view and the logic has a relative completeness
result, so in principle it could be used to prove correctness of
samplers. However, to our knowledge, no significant effort
in that direction has been carried out.

Probabilistic Concurrent Outcome Logic (PCOL) [Zilber-
stein et al. 2025] is an expressive logic to reason about concur-
rent probabilistic programs. Its assertion language includes
“distribute-as” assertions, which can express that a program

380

variable distributes as a concrete distribution (Bernoulli, geo-
metric, uniform). However, reasoning about general distri-
butions would require assertions that express that a variable
distributes as an arbitrary distribution with a user-chosen
pdf. or cdf. The authors mention future plans to mechanize
PCOL, but a mechanization does not currently exist.

Lilac [Li et al. 2023] is a program logic for probabilistic
programs inspired by separation logic, with the twist that
the separating conjunction is used to represent probabilis-
tic independence. As opposed to Eris, Lilac considers the
more complex setting of continuous sampling. Lilac sup-
ports “distribute-as” assertions for arbitrary distributions,
and as one of its case studies proves correctness of a weighted
sampling algorithm. Lilac supports only bounded loops, so
samplers for distributions such as the geometric or the nega-
tive binomial, as well as rejection samplers in general would
not be expressible in the system. The logic does not currently
have a mechanization.

Bluebell [Bao et al. 2025] is a recent logic for probabilistic
programs that combines ideas from different sources, includ-
ing separations logics for independence and coupling-based
logics, through the use of a joint conditioning modality. By
properly instantiating this modality, one can recover the
reasoning principles of many of the previously mentioned
logics, which equips Bluebell with a lot of expressivity. How-
ever, Bluebell has a complex semantic model, and does not
support unbounded loops, and has not been mechanized.

Other logics consider plain assertions (i.e., sets of states)
and instead introduce quantitative aspects into the logic
through other means. Closely related to Eris, approximate
Hoare logic (aHL) [Barthe et al. 2016] has as judgments Hoare
triples indexed with a real number which corresponds to the
probability that the postcondition will fail to hold. Error
credits can be understood as an resourceful representation
of these annotations. However, aHL does not support making
these indices dependent on the input or output state. One can

CPP ’26, January 12-13, 2026, Rennes, France

prove correctness of a sampler by quantifying at the meta
level over the outputs, and proving an analogous statement
to our naive specification in §2, but this will not be usable
for clients for the same reasons as ours was not.

Logics based on probabilistic couplings [Barthe et al. 2009,
2012; Gregersen et al. 2024] adapt techniques from the Markov
chain literature to reason about relational properties of prob-
abilistic programs, in particular equivalence, statistical dom-
inance or differential privacy. It is possible to express cor-
rectness of a sampler as a relational judgment, e.g. by stating
equivalence of an implemented sampler for a target distribu-
tion and a primitive sampler for the same distribution. For
example, rejection samplers can be proven correct in this
manner [Avanzini et al. 2025; Haselwarter et al. 2025]. How-
ever, proving these specifications would in general require
adding primitive samplers for complex distributions to the
language, and ad-hoc rules to the logic to reason about them.

Staton et al. [2018] propose a semantic method to verify
a sampler for a beta-bernoulli distribution. They define an
abstract module for the sampler operations, and then propos-
ing two implementations: one relying on a Polya urn model,
and one directly sampling from a beta distributions. The two
can be proven contextually equivalent using an equational
theory for probabilistic programs.

7 Conclusions

In this work we have shown a general methodology to im-
plement and specify samplers for probability distributions
starting from only a uniform sampler. Through the use of a
common abstract distribution interface, we can separate the
proof of correctness for individual sampler, and then prove
properties about their clients that are independent from the
concrete implementation of the sampler. The abstract in-
terface also allows us to obtain correctness proofs for the
samplers as well as to derive novel reasoning principles for
all samplers at once. Although we only consider discrete
distributions in this paper, we believe that our methods can
be generalized to reasoning about correctness of samplers
that either draw randomness from a primitive distribution
that is continuous (e.g., a uniform over the unit interval), or
that themselves implement continuous distributions.

Acknowledgments

This work was supported in part by a Villum Investigator
grant, no. 25804, Center for Basic Research in Program Veri-
fication (CPV), from the VILLUM Foundation, and the Euro-
pean Union (ERC, CHORDS, 101096090). Views and opinions
expressed are however those of the author(s) only and do
not necessarily reflect those of the European Union or the
European Research Council. Neither the European Union
nor the granting authority can be held responsible for them.

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars Birkedal

381

References

Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei
Li, Simon Oddershede Gregersen, Joseph Tassarotti, and Lars Birkedal.
2024. Error Credits: Resourceful Reasoning about Error Bounds for
Higher-Order Probabilistic Programs. Proc. ACM Program. Lang. 8, ICFP,
Article 246 (Aug 2024), 33 pages. doi:10.1145/3674635

Thosten Altenkirch, James Chapman, and Tarmo Uustalu. 2015. Monads
need not be endofunctors. Logical Methods in Computer Science Volume
11, Issue 1 (March 2015), 928. do0i:10.2168/LMCS-11(1:3)2015

Martin Avanzini, Gilles Barthe, Davide Davoli, and Benjamin Grégoire.
2025. A Quantitative Probabilistic Relational Hoare Logic. Proceedings
of the ACM on Programming Languages 9, POPL (Jan. 2025), 1167-1195.
doi:10.1145/3704876

Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. 2025. Bluebell: An
Alliance of Relational Lifting and Independence for Probabilistic Reason-
ing. Proceedings of the ACM on Programming Languages 9, POPL (Jan.
2025), 1719-1749. doi:10.1145/3704894

Gilles Barthe, Francois Dupressoir, Benjamin Grégoire, César Kunz, Benedikt
Schmidt, and Pierre-Yves Strub. 2014. EasyCrypt: A Tutorial. Springer
International Publishing, Cham, 146-166. doi:10.1007/978-3-319-10082-
1.6

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin
Hsu, and Pierre-Yves Strub. 2018. An Assertion-Based Program Logic
for Probabilistic Programs. In Programming Languages and Systems,
Amal Ahmed (Ed.). Vol. 10801. Springer International Publishing, Cham,
117-144. doi:10.1007/978-3-319-89884-1_5 Series Title: Lecture Notes
in Computer Science.

Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, Léo Ste-
fanesco, and Pierre-Yves Strub. 2015. Relational Reasoning via Proba-
bilistic Coupling. In Logic for Programming, Artificial Intelligence, and
Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, No-
vember 24-28, 2015, Proceedings. doi:10.1007/978-3-662-48899-7_27

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-
Yves Strub. 2016. A Program Logic for Union Bounds. In 43rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP
2016) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 55),
Toannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Da-
vide Sangiorgi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 107:1-107:15. doi:10.4230/LIPlcs.ICALP.2016.107

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009.
Formal certification of code-based cryptographic proofs. SIGPLAN Not.
44,1 (Jan 2009), 90-101. doi:10.1145/1594834.1480894

Gilles Barthe, Boris Kopf, Federico Olmedo, and Santiago Zanella Béguelin.
2012. Probabilistic relational reasoning for differential privacy. SIGPLAN
Not. 47,1 (Jan 2012), 97-110. doi:10.1145/2103621.2103670

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Thomas Noll. 2019. Quantitative separation logic: a logic
for reasoning about probabilistic pointer programs. Proc. ACM Program.
Lang. 3, POPL, Article 34 (Jan 2019), 29 pages. doi:10.1145/3290347

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic
Program Analysis with Martingales. In Computer Aided Verification,
Natasha Sharygina and Helmut Veith (Eds.). Springer, Berlin, Heidelberg,
511-526. doi:10.1007/978-3-642-39799-8_34

Ugo Dal Lago, Sara Zuppiroli, and Maurizio Gabbrielli. 2014. Probabilistic
Recursion Theory and Implicit Computational Complexity. Scientific
Annals of Computer Science 24, 2 (2014), 177-216. doi:10.7561/SACS.2014.
2177

Shafi Goldwasser and Silvio Micali. 1982. Probabilistic encryption & how to
play mental poker keeping secret all partial information. In Proceedings
of the fourteenth annual ACM symposium on Theory of computing (STOC
’82). Association for Computing Machinery, New York, NY, USA, 365-377.
doi:10.1145/800070.802212

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter,
Joseph Tassarotti, and Lars Birkedal. 2024. Asynchronous Probabilistic

https://doi.org/10.1145/3674635
https://doi.org/10.2168/LMCS-11(1:3)2015
https://doi.org/10.1145/3704876
https://doi.org/10.1145/3704894
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.4230/LIPIcs.ICALP.2016.107
https://doi.org/10.1145/1594834.1480894
https://doi.org/10.1145/2103621.2103670
https://doi.org/10.1145/3290347
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.7561/SACS.2014.2.177
https://doi.org/10.7561/SACS.2014.2.177
https://doi.org/10.1145/800070.802212

Modular Specifications and Implementations of Random Samplers in Higher-Order Separation Logic

Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang.
8, POPL (2024), 753-784. doi:10.1145/3632868

Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede
Gregersen, Joseph Tassarotti, and Lars Birkedal. 2025. Approximate Re-
lational Reasoning for Higher-Order Probabilistic Programs. Proceedings
of the ACM on Programming Languages 9, POPL (Jan. 2025), 1196-1226.
doi:10.1145/3704877

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an
Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 637-650.
doi:10.1145/2676726.2676980

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and
Federico Olmedo. 2016. Weakest Precondition Reasoning for Expected
Run-Times of Probabilistic Programs. In Programming Languages and
Systems, Peter Thiemann (Ed.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 364-389.

John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Sep-
aration Logic for Conditional Probability. Proc. ACM Program. Lang. 7,
PLDI, Article 112 (Jun 2023), 24 pages. doi:10.1145/3591226

Rupak Majumdar and V.R. Sathiyanarayana. 2025. Sound and Complete
Proof Rules for Probabilistic Termination. Proceedings of the ACM on
Programming Languages 9, POPL (Jan. 2025), 1871-1902. doi:10.1145/
3704899

Virgil Marionneau, Félix Sassus Bourda, Alejandro Aguirre, and Lars
Birkedal. 2025. Artifact for Modular Specifications and Implementa-
tions of Random Samplers in Higher-Order Separation Logic. doi:10.

382

CPP ’26, January 12-13, 2026, Rennes, France

5281/zenodo.17800602

Annabelle Mclver and Carroll Morgan. 2005. Abstraction, Refinement and
Proof for Probabilistic Systems. Springer.

Rajeev Motwani and Prabhakar Raghavan. 1995.
gorithms. Cambridge University Press, Cambridge.
CB0O9780511814075

Philipp Schréer, Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen,
and Christoph Matheja. 2023. A Deductive Verification Infrastructure
for Probabilistic Programs. Reproduction Package for Article 'A Deductive
Verification Infrastructure for Probabilistic Programs’ 7, OOPSLA2 (Oct.
2023), 294:2052-294:2082. doi:10.1145/3622870

Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman,
Cameron E. Freer, and Daniel M. Roy. 2018. The Beta-Bernoulli pro-
cess and algebraic effects. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018) (Leibniz International Proceed-
ings in Informatics (LIPIcs), Vol. 107), Ioannis Chatzigiannakis, Christos
Kaklamanis, Daniel Marx, and Donald Sannella (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum fir Informatik, Dagstuhl, Germany, 141:1-141:15.
do0i:10.4230/LIPlcs.ICALP.2018.141 ISSN: 1868-8969.

The Rocq Development Team. 2025. The Rocq Prover. doi:10.5281/zenodo.
15149629

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2025. Probabilistic
Concurrent Reasoning in Outcome Logic: Independence, Conditioning,
and Invariants. doi:10.48550/arXiv.2411.11662 arXiv:2411.11662 [cs].

Randomized Al-
doi:10.1017/

Received 2025-09-12; accepted 2025-11-13

https://doi.org/10.1145/3632868
https://doi.org/10.1145/3704877
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3704899
https://doi.org/10.1145/3704899
https://doi.org/10.5281/zenodo.17800602
https://doi.org/10.5281/zenodo.17800602
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1145/3622870
https://doi.org/10.4230/LIPIcs.ICALP.2018.141
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.5281/zenodo.15149629
https://doi.org/10.48550/arXiv.2411.11662

	Abstract
	1 Introduction
	2 Overview of the Approach
	3 Preliminaries
	3.1 Probability Theory
	3.2 Programming Language and Semantics
	3.3 The Eris Program Logic

	4 Specifying and Implementing New Samplers in Eris
	4.1 The Distribution Typeclass
	4.2 Distribution Adequacy
	4.3 The Generic Planner Rule

	5 Case Studies
	5.1 The Bernoulli Distribution
	5.2 The Binomial Distribution
	5.3 The Geometric Distribution
	5.4 The Negative Binomial Distribution
	5.5 The Beta-Binomial Distribution

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

