A Recipe for Modular Verification
of Generic Tree Traversals

Laila Elbeheiry
MPI-SWS
Saarland Informatics Campus
Germany
lelbehei@mpi-sws.org

Derek Dreyer
MPI-SWS
Saarland Informatics Campus
Germany
dreyer@mpi-sws.org

Abstract

Data structures based on trees and tree traversals are ubiqui-
tous in computer systems. Many low-level programs, includ-
ing some implementations of critical systems like page tables
and the web browser DOM, rely on generic tree-traversal
functions that traverse tree nodes in a pre-determined order,
applying a client-provided operation to each visited node.
Developing a general approach to specifying and verifying
such traversals is tricky since the client-provided per-node
operation can be stateful and may potentially depend on or
modify the structure of the tree being traversed.

In this paper, we present a recipe for (semi-)automated ver-
ification of such generic, stateful tree traversals. Our recipe is
(a) general: it applies to a range of tree traversals, in particular,
pre-, post- and in-order depth-first traversals; (b) modular:
parts of a traversal’s proof can be reused in verifying other
similar traversals; (c) expressive: using the specification of a
tree traversal, we can verify clients that use the traversal in
a variety of different ways; and (d) automatable: many proof
obligations can be discharged automatically.

At the heart of our recipe is a novel use of tree zippers to
represent a logical abstraction of the tree traversal state, and
zipper transitions as an abstraction of traversal steps. We
realize our recipe in the RefinedC framework in Rocq, which
allows us to verify a number of different tree traversals and
their clients written in C.

CCS Concepts: « Theory of computation — Program
verification; Program specifications; - Software and its
engineering — Software verification.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

CPP 26, Rennes, France

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2341-4/2026/01
https://doi.org/10.1145/3779031.3779110

Michael Sammler
Institute of Science and Technology
Austria (ISTA)
Klosterneuburg, Austria
michael.sammler@ista.ac.at

339

Robbert Krebbers
Radboud University Nijmegen
Nijmegen, The Netherlands
mail@robbertkrebbers.nl

Deepak Garg
MPI-SWS
Saarland Informatics Campus
Germany
dg@mpi-sws.org

Keywords: Tree traversals, higher-order functions, software
verification, separation logic, Rocq

ACM Reference Format:

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer,
and Deepak Garg. 2026. A Recipe for Modular Verification of Generic
Tree Traversals. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs (CPP °26), January
12-13, 2026, Rennes, France. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3779031.3779110

1 Introduction

Trees are one of the most ubiquitous data structures in
computer systems. Compilers leverage abstract syntax trees
(ASTs) to represent the code structure; web browser engines
use Document Object Model (DOM) trees to represent the
hierarchical structure of web pages; database systems use B-
trees for efficient indexing and organization of data; hypervi-
sors manage guest memory spaces using tree data structures
known as page tables.

In these applications, tree data structures are typically
processed using tree traversals. Such tree traversals are often
straightforward in the sense that they traverse the tree ac-
cording to a standard (e.g., depth-first) traversal algorithm,
but they are generic in the sense that they are parameter-
ized over an operation to be performed on nodes of the tree
before, after, and/or between recursive traversals of their
children. Furthermore, the per-node operations over which
they are parameterized may be stateful, modifying not only
the contents of nodes but the structure of the tree itself.

In this paper, we explore the problem of how to modularly
specify and verify generic depth-first tree traversals, in such
a way that they can be instantiated with a range of different
stateful per-node (or per-subtree) operations.

Prior work has explored the closely related problem [2, 3,
7,18, 22] of abstracting a tree (or any iterable data structure)
into a sequence of elements, corresponding to the sequence
in which the elements have been traversed, and then to ver-
ify specifications that reason about how this sequence is

https://orcid.org/0009-0005-9514-1360
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0002-1185-5237
https://orcid.org/0000-0002-3884-6867
https://orcid.org/0000-0002-0888-3093
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779031.3779110
https://doi.org/10.1145/3779031.3779110
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CPP ’26, January 12-13, 2026, Rennes, France

1 struct tree { void *val; struct tree xleft, *right;};
2 typedef struct tree *tree_t;

3

4 void trav_post_struct(void f(void*, voidx),

5 tree_t *p, void *arg) {

6 tree_t tptr = *p;

7 if (tptr != NULL) {

8 trav_post_struct(f, &(tptr->left), arg);

9 trav_post_struct(f, &(tptr->right), arg);
10 f(p, arg);

1}

12 }

Figure 1. A higher-order depth-first tree traversal.

changed by the traversal. In essence, they view the tree tra-
versal as a kind of iterator, which can then be verified against
an iterator-style specification. This iterator view is sufficient
for many tree traversals, but does not account for traver-
sals that modify the structure of the tree or that perform
per-node operations that depend on the tree structure.

Motivating example. As a concrete example of the kind
of traversal we wish to be able to specify and verify, consider
the traversal trav_post_struct (written in C) that is shown in
Figure 1. To a first approximation, this is a simple post-order
traversal, albeit one that is parameterized by the operation
f that should be applied at each node. Note, however, that
f takes a pointer not just to the element stored in the node
(p->val) but rather to the entire subtree p being processed.
The operation f could thus potentially read and mutate not
only the contents of the node being processed (as well as
f’s own auxiliary state), but also the very structure of the
tree being traversed. Indeed, this type of functionality is
exhibited by traversals in real-world systems, such as the
page table walker in Google’s pKVM hypervisor! and Blitz’s
Rust-based web renderer.? (We will see an example of such a
client of trav_post_struct in §3.) It is not clear how one could
model the behavior of such traversals using the existing
sequence-based specification, since the behavior depends on
the tree structure, whereas in a sequence-based specification
the information about tree structure is abstracted away.

A verification recipe based on zippers. In this paper, we
propose a novel method for specifying and verifying generic
tree traversals. Unlike prior work, our approach supports
traversals that may depend on or mutate the tree structure.
To achieve this, we rely on a combination of higher-order
separation logic and zippers.

First of all, to account for the possibility that the per-node
operation over which a traversal is parameterized performs

https://android-kvm.googlesource.com/linux/+/
998ccc327b14c03861247540ff6f8135a5283621/arch/armé4/kvm/hyp/
pgtable.c#268

Zhttps://github.com/DioxusLabs/blitz/blob/
b8b88a5dabaac26efdad228d3db692521c0acc48/packages/blitz-
dom/src/traversal.rs#L124

340

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer, and Deepak Garg

unknown stateful operations, we rely on higher-order separa-
tion logic. Formally, we develop our higher-order separation
logic specs within the RefinedC framework [24]—an auto-
mated yet foundational refinement type system for C based
on Iris [12-14]—but conceptually our use of higher-order
separation logic is fairly standard, following prior work such
as Krishnaswami [15].

More interestingly, instead of specifying traversals using
the sequence of traversed elements, we specify them using
Huet’s zipper [11]. The zipper is a natural, convenient data
structure for representing the traversal state—i.e., the inter-
mediate state of the tree at any given point during the traver-
sal, together with information about how far the traversal
has progressed. With this traversal state in hand, we can
naturally express the specification of the traversal in terms
of preservation of a traversal invariant: a separation-logic
predicate that holds on the state of the tree combined with
the traversal operation’s auxiliary state. Concretely, the spec-
ification of the traversal assumes that the traversal invariant
holds of the initial tree state and that it is preserved (by the
given per-node operation) as the traversal state progresses
from one node to the next in a depth-first order. Under this
assumption, the traversal specification guarantees that the
traversal invariant will also hold of the final traversal state.

We show how to formalize and verify our zipper-based tra-
versal specifications using a multi-step recipe. In essence, the
recipe provides a logical template, with a variety of parame-
ters that must be instantiated in a systematic way in order
to specify and verify a generic traversal implementation, as
well as to verify a particular client of the traversal (i.e, a
particular choice of the per-node operation). Although the
idea of utilizing zippers in traversals is not new [5, 17], our
recipe provides (to our knowledge) the first formal account
of tree traversal verification in which zippers are employed
in the specifications of the traversals themselves.

Our recipe is (a) general: it applies to a range of tree tra-
versals, in particular, pre-, post- and in-order depth-first
traversals; (b) modular: parts of a traversal’s proof can be
reused in verifying other similar traversals; (c) expressive: us-
ing the specification of a tree traversal, we can verify clients
that use the traversal in a variety of different ways; and
(d) automatable: many proof obligations can be discharged
automatically.

To evaluate the effectiveness of our recipe, we integrate
it into the RefinedC framework for C verification [24], and
use it to specify and verify C-based generic traversals over
pointer-based binary trees, array-based binary trees, and
variadic arity trees,® as well as a range of different clients of
these traversals. Despite our focus on RefinedC, we believe
our recipe can be used in conjunction with other languages
and separation logic-based verification tools as well.

3A variadic arity tree differs from an n-ary tree in that each node could
have a different number of children.

https://android-kvm.googlesource.com/linux/+/998ccc327b14c03861247540ff6f8135a5283621/arch/arm64/kvm/hyp/pgtable.c#268
https://android-kvm.googlesource.com/linux/+/998ccc327b14c03861247540ff6f8135a5283621/arch/arm64/kvm/hyp/pgtable.c#268
https://android-kvm.googlesource.com/linux/+/998ccc327b14c03861247540ff6f8135a5283621/arch/arm64/kvm/hyp/pgtable.c#268
https://github.com/DioxusLabs/blitz/blob/b8b88a5dabaac26efdad228d3db692521c0acc48/packages/blitz-dom/src/traversal.rs#L124
https://github.com/DioxusLabs/blitz/blob/b8b88a5dabaac26efdad228d3db692521c0acc48/packages/blitz-dom/src/traversal.rs#L124
https://github.com/DioxusLabs/blitz/blob/b8b88a5dabaac26efdad228d3db692521c0acc48/packages/blitz-dom/src/traversal.rs#L124

A Recipe for Modular Verification of Generic Tree Traversals

Contributions and outline. We introduce a novel recipe
for specifying and (semi-)automatically verifying stateful,
generic (i.e., parameterized by a per-node operation), depth-
first tree traversals that are commonly found in system ap-
plications. Concretely:

e In §2, we present our recipe step-by-step, using some
simple motivating examples.

e In §3, we showcase the flexibility of our recipe by
demonstrating how it supports a number of more com-
plex tree traversals and tree structures such as array-
based binary trees and variadic arity trees.

e In §4, we show how we support automated verification
of our traversal specifications in RefinedC.

In §5 we discuss related work, in §6 we discuss limita-
tions and future work, and in §7 we conclude. The Rocq
mechanization of our results can be found in our artifact [4].

2 Recipe Overview

This section outlines our step-by-step recipe for reasoning
about tree traversals. After introducing our running example,
we describe the steps needed to define the primitives that con-
stitute specification (§2.1-§2.4), present a formal specification
blueprint for traversals (§2.5), and show how to instantiate
the traversal invariant to verify different clients (§2.6).

Running example

For ease of illustration, in this section, we use the trav_pre
traversal from Figure 2 and the tree_inc and tree_is_sorted
clients to introduce the recipe. In §3, we show how the recipe
scales to more complex traversals and clients as well as tra-
versals on different tree-based data structures.

Figure 2a shows a pointer-based implementation of binary
trees where leaves are represented as NULL pointers and in-
ternal nodes are represented as pointers to a struct tree.*
The function trav_pre implements a higher-order traversal
over this tree: it first checks that a leaf has not been yet
reached, then it applies the operation f on the val field
of the node and recurses on the children. The first client,
tree_inc, increments every node in the tree by instantiating
trav_pre with the operation inc_f that increments the val
pointee, while the second client, tree_sorted, uses trav_pre to
check whether the pre-order listing of the tree elements is
sorted. It uses an argument d of type struct map_data to keep
track of the most-recently-traversed element of the tree and
whether the elements traversed so far are sorted. To achieve
its goal, tree_sorted instantiates trav_pre with the operation
is_sorted_f which, when called on a state d and node v, up-
dates the last_seen field in the state as well as the sorted flag
(lines 5-8 in Figure 2c). Our goal is to provide a specification
for trav_pre that enables us to verify these two clients.

“We instantiate trees with integers for clarity; the full formalization uses
polymorphic trees, implemented in our supplementary material.

341

CPP ’26, January 12-13, 2026, Rennes, France

1 struct tree { int *val; struct tree xleft, *right;};
2 typedef struct tree *tree_t;

3

4 void trav_pre(void f(int*, voidx), tree_t *p, void *arg) {
5 tree_t tptr = #*p;

6 if (tptr != NULL) {

7 f(t->val, arg);

8 trav_pre(f, &tptr->left, arg);

9 trav_pre(f, &tptr->right, arg);

10 3}

1 3}

(a) Traversal implementation in C.

1 void inc_f(int *val, void *arg) {
2 *val = *val + 1;

3}

4

5 void tree_inc(tree_t *p) {

6 trav_pre(inc_f, p, NULL);

73}

(b) A client that uses the traversal to increment the tree nodes.

struct map_data { int last_seen; bool sorted; };

1
2

3 void is_sorted_f(int *value, void *arg) {

4 struct map_data *d = (struct map_data *) arg;
5 if (xvalue < d->last_seen) {

6 d->sorted = false;

73

8 d->last_seen =
9}
10
11
12
13
14
15

16 }

(xvalue);

bool tree_is_sorted(tree_t *p) {
struct map_data d = { .last_seen = INT_MIN,
.sorted = true };
trav_pre(is_sorted_f, p, &d);
return d.sorted;

(c) A client that uses the traversal to check whether the elements
in the tree are sorted in a pre-order fashion.

Figure 2. A simple traversal and two clients.

A note on notation: throughout the paper, we use Rocq-
like syntax vs. mathematical notation to distinguish between
the formalisms that were done in Rocq vs. RefinedC in our
development. We choose mathematical notation for the lat-
ter since a detailed explanation of RefinedC annotations is
beyond the scope of this paper.

2.1 Step 1: Defining the Representation Predicate

The first step of our recipe is to define a representation predi-
cate that relates the state of the C data structure to a mathe-
matical model. Using such representation predicates is stan-
dard in separation-logic-based verification [20, 23]. We define

CPP ’26, January 12-13, 2026, Rennes, France

the tree model and representation predicate for our running
example as follows:’
(*x tree is polymorphic in our Rocq development *)
Inductive tree
| Leaf
| Node (tl

tree) (a : Z) (tr : tree).

is_tree p Leaf £ " p = NULL ~
is_tree p (Node tl a tr) £ 3 pl pr,

p — {a; pl; pr} = is_tree pl tl % is_tree pr tr

An additional benefit that we get from this approach is
that the specification becomes modular in the tree imple-
mentation. We show in §3 how verifying a traversal over
array-based trees, that are refined by the same logical tree
model as pointer-based trees, boils down to defining a suit-
able representation predicate—the formal specification that
relies on the logical model of the tree does not change.

Invariant-based specification. Given their iterative na-
ture, the behavior of traversals can be specified using an
invariant: for any predicate R that holds on an abstract state
refining the concrete initial program state and is preserved
by the traversal (i.e., is preserved by a transition function
that we define on the abstract traversal states), R is guaran-
teed to hold on the traversal state that refines the concrete
final state:

{ is_tree p t * R holds on the initial traversal state * R

preserved along progression }
trav_pre(f, p, arg)

{ 3 t’, is_tree p t’ % R holds on the final traversal state }

Specifying the behavior of traversals using invariants over
the traversal state is a common approach (e.g., [2, 7, 22, 26])
analogous to how the behavior of loops is specified using
loop invariants: assertions that hold on the program state
after each loop iteration. The next steps in the recipe describe
how to define traversal states and traversal progression.

2.2 Step 2: Defining the Traversal State

To illustrate the requirements that the traversal state needs
to fulfill, consider the tree_inc client in Figure 2b which we
assume has the following specification:
{ p — tptr = is_tree tptr t }
tree_inc(p)

{ p — tptr = is_tree tptr (tree_inc_pure t) }
where tree_inc_pure is defined inductively over the logical
tree. To verify tree_inc, the verifier needs to instantiate the
invariant R with a predicate over traversal states such that
trav_pre’s postcondition—that the predicate holds on the fi-
nal traversal state—implies that every node in the tree has
been incremented. This can be achieved by asserting in the
invariant that (a) the nodes that have been traversed are in-
cremented, (b) the nodes that are yet-to-be-traversed do not
exceed INT_MAX - 1, and (c) the tree structure has not changed.

SWe use Iris’s notation "¢ to embed a pure Rocq proposition ¢ : Prop into
separation logic.

342

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer, and Deepak Garg

From this invariant, we identify at least four aspects that the
traversal state ought to capture: (a) the old tree model, (b)
which nodes have been traversed, (c) which nodes remain to
be traversed, and (d) how to construct the full tree from the
current position.

To tackle this challenge, previous work defined traversal
states in terms of the sequence of elements enumerated so far
and a sequence (or predicate) for the upcoming elements [2,
7, 21, 22]. In this work, we take a different approach. We use
Huet’s zipper data structure to define traversal states [11].

Zippers represent a “pointer” into the tree using a pair
of a “focused” subtree paired with its surrounding context.
Zippers for binary trees can be defined in Rocq as follows:
(* path and zipper are polymorphic in our Rocq development *)
Inductive path

| Top

| Left (sibling :

| Right (sibling :

tree) (parent :
tree) (parent

path) (data :
. path) (data :

Z)
7.

Definition zipper := path * tree.

path represents, in a bottom-up fashion, the choice (left vs.
right) that the traversal made at every step on its route from
the root to the focus plus all sibling subtrees that were not
on the route of the traversal.

Shadow zippers. Recall how the invariant of the tree_inc
client needs to state that the traversed nodes are incremented.
This is a common pattern in traversal clients: they typically
need to instantiate the invariant with an assertion that relates
the old and new node values. Stating such relation between
the current tree (represented as a zipper) and the original
tree (represented as a tree) would unavoidably have to “zoom
out” from the focused component in the zipper. To avoid this,
we incorporate into the traversal state a second zipper for
representing the initial tree. The added zipper shadows the
original zipper; they both progress the same way, but the
shadow one does not change the values in the nodes along
the progression.

The traversal state. We finally have all the components
needed to define the traversal state:

Inductive state_annot := before | after.
Definition trav_state B := state_annot * zipper * zipper * B.

We annotate the state with a state_annot to distinguish be-
tween the same zipper before and after traversing the focused
subtree. The additional component of type B encompasses
the values of any additional variables that the traversal uses.

Figure 3 shows how the traversal state evolves in a pre-
order traversal of a binary tree. The green arrow points to
the subtree that is “focused”, and nodes/subtrees labeled in
green are already traversed.

Advantages of using zippers. Defining traversal states
using zippers (together with the shadow zipper augmenta-
tion) offers the following benefits:

A Recipe for Modular Verification of Generic Tree Traversals

1. Zipper-based traversal states encode, in a single struc-
ture, all the information that the client invariant might
need: which nodes have been traversed? which nodes
remain to be traversed? how to construct the original
and the current trees (for relational invariants)?

2. Zipper-based traversal states can be used to specify
traversals that expose the tree structure to the abstract
operation f: a capability that sequence-based solutions
lack. We show two examples of such traversals in §3
(cf. abstract order and structure-changing traversals).
Because the structure of the tree gets exposed to the
client operation, the invariant may need to assert a
property about the tree; a sequence of enumerated
elements would not suffice.

3. Zippers, as we will show in the next section, allow
us to define traversal progression using the zipper
progression primitives, which depend on the struc-
ture of the tree but not the traversal implementation.
This helps minimize verification efforts; once the user
formalizes a traversal, they can reuse most of the spec-
ification components that they have defined to formal-
ize any other traversal implementation over the same
data structure.

2.3 Step 3: Formalizing Traversal Progression

In order to express the specification of trav_pre using an in-
variant that holds on traversal states after each step of the
traversal, we need to accurately define how to step the tra-
versal state to simulate a single step in the concrete traversal.
The key insight here is that trav_pre progresses in one
of two ways: either it is at a point where it will apply the
operation f, or it is silently moving up or down the tree
(via recursive calls and returns). To match this intuition,
we distinguish between these two kinds of progressions:
silent steps and action steps. Silent steps correspond to steps
that silently progress to the next node and action steps are
precisely those associated with applying the operation f.

Concretely, we define the functions silent_step and action_step

to perform a single step on the traversal state. We refer to
traversal states where the next step is an action step as action
points. The signatures of these functions are as follows:

trav_state B — trav_state B
Z — B — trav_state B — trav_state B

silent_step :
action_step :

We omit the full definitions of the stepping functions for
space limitations, but their definitions are typically a straight-
forward extension of the navigation primitives for moving up
and down the currently focused subtree in a zipper which can
be found in the original zipper paper [11]. Both silent_step
and action_step move the zipper such that it points to the
next node in the tree, but action_step additionally mutates the
zipper, inserting the new node value (of type z) and auxiliary
state (of type B) in the traversal state, before moving to the
next node.

343

CPP ’26, January 12-13, 2026, Rennes, France

The traversal states in Figure 3 are obtained by applica-
tion(s) of these silent_step and action_step functions. Note
that these functions advance both the actual tree zipper as
well as the shadow zipper in the traversal state—for the latter
action_step has the same effect as silent_step since the values
in the shadow zipper do not change.

2.4 Steps 4 & 5: Instantiating the Auxiliary State and
Defining Action Points

To define traversal progression in terms of the above prim-
itives, we need a predicate, action_point, to determine, on
each traversal state, which of the two stepping functions
should be applied next.

In some cases, this predicate does not just rely on “where
we are in the tree” (i.e., the zipper component of the state),
it also needs information from the auxiliary state (i.e., the
extra component of generic type B in the traversal state).

For example, if the traversal aborts early when an error
occurs, the auxiliary state needs to encompass this “error
flag”, and the action_point predicate should always evaluate
to None if this flag is raised. Hence, it would not be possible
to define the action_point predicate before instantiating the
traversal state’s type parameter B to include the error flag.
Therefore, before defining the action_point predicate, one
should instantiate the type parameter B in the traversal state
(if needed).

Note that we could also define the traversal state in one
shot by immediately instantiating the type parameter 8 when
defining trav_state in step 2. This, however, would make the
traversal state definition less modular (i.e., we might not
be able to reuse it when specifying another traversal), so
we choose to split it into a “general definition” followed by
“concretization” steps.

Action points. Once the auxiliary state has been properly
instantiated, we can define action_points. For our pre-order
traversal, the action points occur when the traversal is about
to traverse a new (non-leaf) subtree. This can be defined as:

(*x action_point for pre-order traversal x)
Definition action_point_pre (s : trav_state B) : option Z :=
match s with
| (before, (_, node tl a tr), _,_) => Some a
| _ => None
end.

If action_point evaluates to Some v on state s, then s is at a
point where the operation f should be applied on the value
v, in which case then the next state is obtained by applying
action_step on the state s together with the new values that
are obtained by calling f; otherwise, action_point evaluates
to None and the traversal progresses using a silent_step. For
instance, calling action_point_pre on the first state in Figure 3
evaluates to Some a, and so the next state is obtained by calling
action_step a' argl s, where s, is the first state and a' is the
result of applying the operation f on a.

CPP ’26, January 12-13, 2026, Rennes, France

as as*, ssx

/\

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer, and Deepak Garg

SSX,asx ss

/\

before after

(Top,node tl a tr) (Left tr Top a’, tl) (Left tr Top a’, tlI')

(Top,node tl a tr) (Left tr Top a, tl) (Left tr Top a, tl)
arg arg) argy

before

before after after
(Right tI’ Top a’, tr) | | (Right tI'" Top a’, tr’) || (Top, node tI’ a’ tr’)
(Right tl Top a, tr) (Right tl Top a, tr) (Top, node tl a tr)
argz args args

Figure 3. Evolution of traversal states in a pre-order traversal. The steps—denoted with the arrows at the top—are either silent
steps (ss) or action steps (as). The shadow zipper encompassing the original tree is omitted from the drawing (but included in

the text presentation) for brevity.

VY R tptr old_tree old_arg path shadow_z,

{ p — tptr = is_tree tptr old_tree % arg +— old_arg =

R (before, (path, old_tree), shadow_z, old_arg) =

O R_ss_invariant action_point_pre R x
f_preserves_invariant f action_point_pre R }
void trav_pre(void f(int*, voidx), tree_t *p, void xarg)
{ A _. 3 new_tree new_arg,

p — tptr % is_tree tptr new_tree % arg — new_arg

R (after, (path, new_tree), shadow_z, new_arg) }

Figure 4. Specification of trav_pre.

2.5 Step 6: Putting It All Together

Now that we have all the ingredients, we set out to write
a specification for our pre-order traversal example.

The specification of trav_pre, shown in Figure 4, states
that, given a predicate R over traversal states, if R holds on an
initial traversal state s where the tree old_tree is “focused” in
s (La,s := (before, (p, old_tree), shadow_z, old_arg)% and R
is preserved by traversal progression, then R is guaranteed
to hold on the state after traversing old_tree. The assertions
R_ss_invariant and f_preserves_invariant specify that R is pre-
served by the silent steps and the action steps respectively:

Definition R_ss_invariant action_point R :=
V s, R's = Taction_point s = None™ -« R (silent_step s).

f_preserves_invariant f action_point R =

V val arg s, {val_p + val *x arg_p +— arg *x Rs x "s.2 = arg”
* T action_point s = Some val 7 }

f(val_p, arg_p)

{_. 3 new_val new_arg, val_p — new_val * arg_p — new_arg *

R (action_step new_val new_arg s) }

In other words, if f is applied at a state where val is the next
mutant and arg is the current value of the abstract argument,
then R holds after taking an action_step on the traversal state
using the new element new_val and argument new_arg that
f computes.

Note that both R_ss_invariant and f_preserves_invariant are
parameterized by the action_point function, which we instan-
tiate using action_point_pre in our specification in Figure 4.
This modularity allows us to easily reuse the specification
blueprint for a number of different traversals.

2.6 Step 7: Verifying Traversal Clients

We can now use this traversal specification to verify the
tree_inc and tree_sorted clients. Note that we are assuming
that this recipe is being applied in an automated program
verifier setting, so the verification is mostly handled auto-
matically by the verifier. We, nevertheless, show the steps
that the programmer needs to take and highlight the proof
obligations that arise thereof.

At a high level, to verify the client the user needs to: 1)
verify the per-node operation, 2) instantiate the invariant R,
3) prove that R is indeed a traversal invariant, and 4) show
that if R holds on the final traversal state then the client’s
postcondition is satisfied. Let’s first consider the tree_inc
client.

Tree increment client. Figure 2b implements a tree_inc
function by instantiating trav_pre’s per-node operation with
the function inc_f.

We start by verifying that inc_f has the following spec-
ification: {val ~ n}inc_f(val,arg) {A _. val — n + 1} . Pre-
sumably, this can be done automatically in state-of-the-art
verifiers with support for reasoning about state.

It remains to verify that tree_inc satisfies the following
specification:

{ p — tptr = is_tree tptr t }
tree_inc(p)
{ p — tptr = is_tree tptr (tree_inc_rocq t) }

To verify tree_inc, the verifier first needs to reason about
its call to trav_pre. The standard approach to modularly verify
function calls is to exhale the callee’s preconditions, and
then inhale its postconditions. Exhaling is a standard term
in separation logic verifiers that means relinquishing the
required resources from the spatial context and proving the
pure assertions, and inhaling has the dual meaning [10].

To exhale trav_pre’s preconditions, the verifier needs to in-
stantiate the parameters in trav_pre’s specification (Figure 4).
Some parameters can be automatically instantiated using
different heuristics (e.g., pattern-matching on the assertions
in the spatial context). The parameter R (i.e., the traversal in-
variant), however, is not one of those inferrable parameters.

344

A Recipe for Modular Verification of Generic Tree Traversals

Instead, the user needs to define an invariant of this client
and manually instantiate r. This limitation is not specific
to RefinedC; current state-of-the-art verifiers might have
limited support for loop invariant inference, but inferring
invariants that arise from user specifications is, as far as we
know, beyond their capabilities.

Intuitively, tree_inc’s invariant should state that the nodes
that have been traversed are equal to incrementing the cor-
responding nodes in the original tree, and the nodes that
have not been traversed remain unchanged. To define this,
we make use of a utility function forall_rel which takes a
predicate P relating tree elements as well as a traversal state,
and ensures that the elements that have been traversed are
related to the corresponding elements in the original zipper
by the relation P, and the ones that have not been traversed
are identical to their correspondents:

Definition R_inc s :=

forall_rel (A x shadow_x, x = shadow_x + 1) s

In addition to instantiating R, the verifier needs hints for
other parameters in trav_pre’s specification. In particular, the
verifier should initialize the path parameter p as Top, because
initially the whole tree is under focus and the context is
empty, and the shadow zipper shadow_z to match the original
zipper (Top, old_tree).

With all parameters finally instantiated, the verifier can
continue exhaling trav_pre’s preconditions. The first three
assertions can be directly relinquished from the verifier’s
context. We show below the remaining proof obligations:

R_inc holds on the initial state: This follows from a
trivial lemma stating that forall_rel always holds on initial
traversal states. RefinedC automatically proves this, but veri-
fiers with more conservative unfolding strategies might need
some hints.

R_inc is preserved by silent steps: Or, more formally:
R_inc s — action_point_pre s = None — R_inc (silent_step s).
Again, this fact follows from a lemma about forall_rel: that
it is always preserved by silent steps. This intuitively holds
because the subset of elements that forall_rel asserts to be
related by P does not change after making a silent step. Re-
finedC could not automatically discharge this goal, but ver-
ifiers with SMT-based automation have better chances at
automating this step.

R_inc is preserved by action steps: The last obligation
in trav_pre’s specifications asserts that incr_f satisfies the
f_preserves_invariant predicate.

However, recall that our specification for incr_f is agnostic
to the traversal: {val — n}inc_f(val,arg) {1 _. val ~n + 1}.
This is a common problem when verifying calls to higher-
order functions: the closure has a different specification
than that expected by the higher-order function. The typi-
cal way that program verifiers (including RefinedC) handle
this is by showing that the specification of the concrete
closure used to instantiate the higher-order function sub-
sumes the specification expected by the function. To prove

345

CPP ’26, January 12-13, 2026, Rennes, France

that inc_f’s specification subsumes f_preserves_invariant, we
need to show that if s satisfies R_inc, and the next mutant
insisn (i.e., action_point_pre s = Some n), then R_inc holds on
the state action_step (n + 1) () s (the second argument is
unit because this client does not use any auxiliary state so
arg has type unit). This proof is substantially simplified by
choosing to represent traversal states using zippers because
the element that gets mutated is exposed at the top-level
of the data structure. More precisely, the verifier needs to
prove:

R_inc (before, (p, node tl n tr), (p, node tl n tr), ()) =

R_inc (before, (Left tr p (n + 1), tl), (Left tr p n, tl),)

By unfolding R_inc and forall_rel, the proof boils down to
showing that the predicate (1 x shadow_x, x = shadow_x + 1)
holds on n + 1 and n. In RefinedC, this goal was proven auto-
matically without hints.

Once these three facts are established, the verifier finishes
reasoning about the call to trav_pre by inhaling its postcon-
ditions. The next statement in tree_inc’s body is return, so
the verifier must show that trav_pre’s postcondition that was
just inhaled (that R holds on the final traversal state) implies
that tree_inc’s postcondition is satisfied. This can be proven
via a simple induction over the tree data structure. Again, we
needed to provide some automation hints for RefinedC to dis-
charge this obligation, but we believe that even SMT-based
verifiers would similarly fall short.

Tree sorted client. To verify tree_is_sorted, we need to
take the same steps that were taken for the tree increment
client. We hence only show how to define the invariant for
this client.

tree_is_sorted checks that the tree is sorted by traversing
the tree and checking that each element is greater than or
equal to the previous one. It achieves this by using the state
argument arg to keep track of the most-recently-traversed
element of the tree as well as a boolean flag that accumulates
the results of the comparisons made so far. The invariant
that tree_is_sorted maintains thus needs to ensure that the
tuple that refines tree_is_sorted’s state variable arg has the
correct value—i.e., it stores the last seen element and the
accumulated result of the comparisons.

We define this invariant with a fold over the traversed
elements of the current zipper using the function f as the
aggregating function:

Definition f v (last_seen, b) := (v, (v <? last_seen) && b).

Definition R_sorted (b, z, shadow_z, arg) :=
z = shadow_z A arg = fold b z (min_int i32, true) f.

Another invariant that tree_is_sorted needs to maintain is
that the values of the tree are never mutated (recall that
the operation that is passed to trav_pre can mutate the tree
nodes). This is needed to prove the postcondition that the
input pointer points to the same tree when the function

CPP ’26, January 12-13, 2026, Rennes, France

returns. R_sorted asserts that z = shadow_z to ensure that this
invariant is preserved.

In these two clients we make use of utility functions
forall_rel and fold defined over zippers. In our experience,
most invariants can be defined using a small library of such
functions/relations, and so, we augment our development
with a library of these definitions and prove a number of
facts about them which we found to significantly cut down
the effort needed to verify new clients.

Verifying these clients shows that the choice of repre-
senting traversal states using zippers simplifies the proof
obligations on the client side. Even when the specification
given to the client operation is completely agnostic to the
fact that val comes from a tree node, the verifier was able
to prove that the operation preserves the invariant. More-
over, the extra shadow zipper enables clients to easily state
any relation between the nodes in the original tree and the
current tree.

2.7 Recap

Figure 5 summarizes the recipe presented in this section. Fol-
lowing these steps, users can write a specification of generic
tree traversals and verify clients of such traversals. The recipe
can be divided into: steps that are dependent on the concrete
implementation tree data structure, steps that are dependent
on the logical tree model, steps that are dependent on the
traversal implementation, and client steps.

This division minimizes verification efforts by maximizing
modularity. For example, steps that depend on the logical
model of the tree are modular in the concrete data structure
implementation (e.g., if one decides to change the imple-
mentation of trees to use arrays instead of pointers, only
step one (the representation predicate definition) needs to be
repeated). Similarly, to change the implementation of the tra-
versal, one only has to redefine the action_point (steps 4 and
5) and adjust the specification footprint if needed (step 6).

Note that this step-component dependence assumes that
the traversal moves in a depth-first manner, applying a node
operation at certain action points. As we show in §3.3, deviat-
ing from this assumption can break this dependence division.

3 Instantiations of the Recipe

To evaluate the scalability of our recipe and check that the
additional proof effort required after a change to the traversal
implementation is indeed as predicted by Figure 5, we modi-
fied the pre-order traversal of §2 in several different ways:
post-order, in-order and abstract-order traversals (§3.1), a
traversal with early abort (§3.2), a traversal that changes the
tree’s structure (§3.3), a traversal on trees implemented using
arrays instead of pointers (§3.4), and variadic trees (§3.5). All
the examples presented in this section are available in our
Rocq code in the supplementary material.

346

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer, and Deepak Garg

Dependent
on

Step Description Section

Define the representation
predicate that relates the
physical layout of the tree
with the logical model

Define a trav_state data type
2 |based on the zipper derivation
of the abstract tree model.
Define the progression

3 | primitives—silent_step,
action_step

Instantiate the type argument
B in trav_state to represent
any additional state that the
traversal relies on

Define the function
action_point

Write a traversal-state-based
6 |specification using Figure 4 as
a blueprint.

Define a suitable invariant R
that the traversal needs to .
7 . Client
preserve for a particular
client.

Concrete
tree imple-
mentation

§2.1

Logical
model of
the tree

§2.2

§2.3

§2.4

Traversal
implementation

§2.4

§2.5

§2.6

Figure 5. The steps of the recipe and the component that
each step depends on.

The results of our evaluation are summarized in Figure 6.
In addition to these numbers, we have implemented and
verified in Rocq a library of utility functions that are useful
for verifying clients of binary tree traversals, which amount
to 284 lines of Rocq code (LoC). The one-time specification
blueprint of Figure 4 needed 21 lines of RefinedC annotations.

3.1 Traversals With Different Order of Operations

Post-order and in-order traversals. We modified the
pre-order traversal of Figure 2a to a post-order traversal
by swapping line 7 and line 9, and similarly to an in-order
traversal by swapping line 7 and line 8. Since the tree data
structure did not change, we only had to change the defini-
tion of the action_point in our recipe (step 5 of Figure 5) to
match the implementations of the post-order and in-order
traversals. The Rocq changes are minimal, totalling 11 LoC
in each case.

Abstracting the order of the traversal. We created an
abstract-order traversal function that determines when to
apply the function f based on an argument. This function, in-
spired by a similar function for walking page tables in pKVM
and shown in Figure 7, uses the argument traverse_flags to in-
voke the function f on the current node at any client-chosen

A Recipe for Modular Verification of Generic Tree Traversals

Traversal Step Lines of Code (LoC)
Reuse | Spec | Hints | Pure
Pre-order, §2 - 178 81 0
LoC relative to Pre-order
Post-order, §3.1 1-4,6 7 4 0
In-order, §3.1 1-4,6 7 4 0
Abstract-order, §3.1 1-3 31 4 0
Early abort, §3.2 1-3 7 75 0
Struc.-changing, §3.3 | 1-2,4 | 31 9 0
Array-based, §3.4 2-5 38 65 404
Variadic trees, §3.5 | None | 136 171 85

Figure 6. Evaluation of the recipe. The first line covers the
pre-order traversal of §2: it shows the number of lines of
Rocq code needed for the specification (column Spec), hints
to our automation (Hints), and manual proofs to discharge
pure side conditions (Pure). The remaining lines cover all
other traversals from §3: they show the recipe steps reused
and the lines of Rocq code modified in or added to the pre-
order traversal.

subset of the following three points: before the recursive
calls to the two children, between them and after them.

For this example, we can reuse steps 1-3 from the recipe.
Step 4 needs a change to instantiate the traversal’s auxiliary
state type to include the three flags in traverse_flags that
trav_ao takes as an argument:

Let trav_state := trav_state (B * (bool * bool * bool)).

The action_point function (step 5), omitted here for brevity,
is redefined to select the right combination of the pre-, in-,
and post-order points based on traverse_flags. We also had
to adjust the blueprint specification slightly of the traversal
(step 6) to match the new type of trav_ao. Overall, the speci-
fication of this abstract-order traversal amounted to 31 LoC
modified or added relative to the pre-order traversal.

Illustrative client of trav_ao. We show below an illustra-
tive client of trav_ao that adds the size of the subtree rooted
at each node to a dedicated field, node->size. The client calls
trav_ao with the following function subtree_f for the argu-
ment f, and the flags call_between and call_after set to true.

void subtree_size_f(int *value, void *arg, unsigned int cf) {
tree_node_t node = (tree_node_t) value;
int *ctr = (int *) arg;
// in-order call
if (cf == IN) {
node->size = *ctr;
*ctr = 0;
3
// post-order call
if (cf == POST) {

347

CPP ’26, January 12-13, 2026, Rennes, France

1 struct traverse_flags {
bool call_before, call_between, call_after;

1

2
3
4
5 void trav_ao(void f(intx, void*, unsigned int),
6 tree_t *p, void *arg, struct traverse_flags *flags) {
7 tree_t t = *p;
s if (t != NULL) {
9 if (flags->call_before)

f(t->val, arg, PRE);
trav_ao(f, &(t->left), arg, flags);
if (flags->call_between)

f(t->val, arg, IN);
trav_ao(f, &(t->right), arg, flags);
if (flags->call_after)

f(t->val, arg, POST);

Figure 7. A traversal that abstracts over the traversal order.

*ctr = node->size + *ctr + 1;
node->size = *ctr;
}
}

The call to trav_ao with subtree_f for f has the following
invariants: (a) After the recursive call on a node’s left child
has ended, node->size equals the size of the subtree rooted at
the left child and xctr is 0, and (b) After the (recursive) call
on a node has ended, *ctr and the node’s size field are both
equal to the size of the subtree rooted at that node.

To see why these invariants hold, note that during the call
of trav_ao on a node, subtree_f is invoked twice: once after
the call to the node’s left subtree and then again after the call
to the right subtree. During the first of these calls, subtree_f
sets node->size to the size of the left subtree, and during the
second of these calls it sets both node->size and *ctr to the
size of the entire tree rooted at the node.

Thanks to the use of the tree zipper, we are able to specify
both these invariants easily in our framework, and verify
the client using a total of 52 additional LoC of Rocq and 12
LoC of RefinedC.

3.2 Traversal With Early Abort

Next, we implemented a pre-order traversal trav_pre_abort
that maintains an “error flag” in its auxiliary state and aborts
as soon as the flag is raised. The core logic of the recursive
case of this traversal is shown below.

// returns true if error flag has been raised

if f(t->val, arg) return true;

if (trav_pre_abort(f, &(t->left), arg)) return true;
if (trav_pre_abort(f, &(t->right), arg)) return true;

To verify this traversal, we: (a) instantiated the traver-
sal state (step 4) to include the “error flag”; (b) modified

action_point (step 5) to take this flag into account: if an error
occurred, action_point evaluates to None else it evaluates to

CPP ’26, January 12-13, 2026, Rennes, France

action_point_pre; and (c) modified the specification blueprint
(step 6) to account for trav_pre_abort’s boolean return value.

The bulk of the proof effort for this example (75 LoC) was
in hints for RefinedC’s proof automation. We explain this
effort further in §4.1.

More efficient sortedness checking. We use the early
abort traversal to write a client that checks for a tree’s sort-
edness more efficiently that the tree_is_sorted client of Fig-
ure 2c. The idea is to trigger the early abort as soon as a
violation of the sortedness property is found. The client no
longer needs a variable accumulating the result of the com-
parisons. We get rid of the sorted field in line 1 of Figure 2c,
and replace line 6 with return true (i.e., violation detected).

The traversal invariant is very similar to that of is_sorted
(§2.6). The main difference is that, now, last_seen does not
have to track the last seen element if a violation has already
been detected (line 6 below):

1 Definition f v (last_seen, b) := (v,
2 Definition R_sorted (b, z, shadow_z,
3z = shadow_z A

let (x, b) = fold b z (min_int i32, true) f in
err = negb b A 3 n, last_seen = n A

if err then T else n = x.

(last_seen, err)) :=

SRS RN

3.3 Traversal With Structure-Changing Operations

Our next example is the potentially structure-changing post-
order traversal, trav_post_struct, from Figure 1. This traver-
sal’s operation f takes a pointer to the current node as an
argument, allowing f to potentially change the entire sub-
tree rooted at the current node (cf. other traversals we have
discussed so far whose f takes only the value stored at the
current node as an argument).

The main change needed to verify trav_post_struct is in
step 3 of our recipe, specifically, in the definition of the func-
tion action_step, which must now take the new subtree rooted
at the current node as its first argument and update the zip-
per to match that subtree (cf. other traversals discussed so
far wherein action_step takes the new value stored at the
current node and just updates that value in the zipper). This
change is tedious but conceptually straightforward. The re-
vised action_step function is provided in our supplementary
material.

Tree compression client. We used trav_post_struct to im-
plement a compression operation that is used in binary tries
[8]. A binary trie is a tree representation of a finite subset
of {0, 1}*. The left and right children of a node are implic-
itly labeled ¢ and 1, and a node’s value is true if the binary
string represented by the labels on the (unique) path from
the tree’s root to that node is in the set being represented,
else the node’s value is false. A natural space optimization is
the elimination of subtrees that consist only of false-labeled
nodes. We call this operation compress.

For example, the tree on the left below represents the set
{1, 10} (true-labeled nodes are black and the rest are white)

(v <? last_seen) && b).

348

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer, and Deepak Garg

but it has three redundant nodes. The function compress re-
moves these redundant nodes to yield the equally informa-
tive but smaller tree on the right.

__ compress —» %

To implement compress, we instantiated trav_post_struct
with an operation f that changes a node’s left pointer to NULL
if its left grandchildren are nuLL and the left child’s label is
false (and similarly for the right pointer). End-to-end, this
compresses the tree by eliminating subtrees that contain
false-labeled nodes only.

The invariant of this client uses the shadow zipper: it
asserts that subtrees that have already been traversed are
equal to the compressions of their original counterparts, and
the yet-to-be-traversed subtrees are unchanged. To verify
this client, we needed 30 lines to specify the invariant, 60
lines of automation hints, and 47 lines of (pure) lemmas to
reason about tree compression. (Technical note: to simplify
reasoning, our implementation of compress assumes that the
entire tree is stack-allocated.)

3.4 Traversal on a Different Tree Implementation

Next, we evaluate the proof effort needed to adapt our recipe
to a different tree implementation. Specifically, we adapt the
pre-order traversal of Figure 2a to operate on trees imple-
mented as overlays on arrays, using array indices in place
of pointers as in the prior work of Zhao et al. [27]. The
tree implementation and the traversal function are shown
in Figure 8. The node fields par, 1ft and rgt are the respective
indexes of the node’s parent, left child and right child in the
underlying array.

We apply our recipe to verify this implementation of
trav_pre_array. The logical tree model does not change so
we can reuse our earlier definitions for steps 1-3. In step 4,
we define a new representation predicate to relate the array-
based implementation to the logical model. We do this in
several steps. First, we define the following Payload datatype
that abstracts a single node, capturing the value stored at the
node and the indexes of the node’s parent and two children.

(*x payload's data is polymorphic in our development *)
Record Payload := { a : Z; par : Z; 1ft : Z; rgt : Z }.

Next, we define a predicate that relates the physical tree,
i.e., the array of struct nodes, to a list of payloads. Finally,
we define a predicate to relate a list of payloads to our log-
ical trees. We refer the interested reader to the predicate
tree_rep, . in Zhao et al. [27], or our Rocq development
for the full definition of these predicates.

We insert additional pre- and postconditions to the spec-
ification in Figure 4, largely because the array-based rep-
resentation does not enjoy the framing properties that the

A Recipe for Modular Verification of Generic Tree Traversals

1 struct node { int *val; int par, 1ft, rgt; 3};

2 typedef struct node xtree_t;

3

4 void trav_pre_array(void f(intx, void*), tree_t t,
5 void *arg, unsigned int x) {

6 if (x -1) return;

7 f(tlx].val, arg);

8 trav_pre_array(f, t, arg, t[x].1ft);

9

0

trav_pre_array(f, t, arg, t[x].rgt);
3

1

Figure 8. A traversal over array-based labeled binary trees.

pointer-based representation has. For example, when verify-
ing the traversal in Figure 2a, we can frame any assumptions
about tptr->right around the recursive call to the left subtree
on line 8, but this is not possible in the implementation of Fig-
ure 8 because the entire tree is accessible to the callee. This
is also the primary source of the overhead of pure lemmas
(404 LoC) reported in Figure 6.

3.5 Traversal on Variadic Trees

Our last example is a traversal over variadic trees, where the
number of children may differ from node to node.

struct ntree { intx val; struct ntree *xkids; int numKids; };

The main challenge in the verification of a traversal over
variadic trees is the need for a loop to traverse the children,
as in the following post-order traversal function:
void trav_post_variadic(void f(int*, voidx),
ntree_t *p, void xarg) {
ntree_t tptr = *p;
if (tptr != NULL) {
for (size_t i = 0; i < tptr->numKids; i++) {
trav_post_variadic(f, &(tptr->kids[i]), arg);
i(tptr—>va1, arg);
}
}

To verify trav_post_variadic, we had to apply all the steps
of our recipe from scratch, which also makes this example
a good test case for the recipe. First, we defined the logical
tree model, the traversal state and the progression primitives
as natural extensions of the corresponding definitions for
binary trees that we presented in earlier sections (steps 1-
3). We used variadic-tree zippers as presented by Huet [11].
Next, we defined the representation predicate (step 4) as
follows:
is_ntree p Leaf £ " p = NULL ™
is_ntree p (Node a chldrn) = 3 arr,

p = {a; arr} = *Kgcicichidrn| is_ntree (arr + i) (chldrn[il)

After this, steps 5-7 of the recipe were straightforward.

Verifying trav_post_variadic. Unlike our previous exam-
ples, verifying trav_post_variadic required us to provide a
loop invariant to handle the loop that traverses a node’s
children. This invariant’s core assertion is that, at iteration
i, the traversal invariant R holds on the traversal state which
reflects updates to the first i children but not the rest.

349

CPP ’26, January 12-13, 2026, Rennes, France

We also had to add assertions to the loop invariant to
track the ownership of variables that are used inside the
loop and after the loop ends.® In total, we added 171 lines
of proof-related annotations including 14 lines of RefinedC
annotations for defining the loop invariant.

4 Automating the Verification of the
Traversal

So far, the recipe presented in §2 shows how to formally
specify generic tree traversals. This section focuses on how
we can automate the verification of traversals against these
specifications.

The main challenge for automating the verification is up-
dating the invariant R during the verification of the traversal.
For action steps, this happens automatically when recur-
sively calling the traversal: The postcondition of the call
automatically updates the invariant to the state after the ac-
tion step. However, handling silent steps is more challenging.
They do not correspond to a step in the execution or function
call and thus there is no obvious guidance for when these
silent steps should be performed.

Consider, for example, the case when the verifier is verify-
ing line 9 in Figure 2a. At this point, the traversal has just re-
turned from the recursive call on the left subtree, guarantee-

ing R holds on the state (after, (Left tr parent a, tl), ...).
To show that the precondition of the call on the right subtree
holds, the verifier needs to prove R (before, (?path, tr), ...).

This mismatch between traversal states in the context and
conclusion arises because the traversal, intuitively, makes a
silent step between the two recursive calls, but the verifier
has not updated its ghost state to reflect this progress. In
other words, the verifier needs to be supplied with a heuristic
that guides the automation on when to make “silent steps”
on the traversal state.

Figure 9 shows the heuristic for silent steps that we pro-
pose. Intuitively, this verifier should delay making silent
steps until it is at a point were it needs to re-establish the
invariant (hence, the pattern-matching on the goal in line 1).
At that point, if the state in the conclusion is unifiable with
the one in the context, then the invariant can be immedi-
ately consumed from the context without any ghost state
updates (lines 3-5). Otherwise, in case there is a mismatch,
we perform a silent step. Concretely, the verifier updates the
traversal state in its context by making a silent step and try
proving the goal again (lines 7-9). It is critical that progress-
ing the traversal state via silent steps only happens after
failing to unify the goal with the current state; otherwise,
the verifier could make too many silent steps overshooting
the goal state. Note that it is sound to perform these silent
steps since R is preserved by silent steps, as discussed in §2.6.

®Ownership of variables used after the loop must be asserted in the invariant
because RefinedC’s verifier does not perform frame inference around loops.

CPP ’26, January 12-13, 2026, Rennes, France

1 when proving (R s2 % G):
2 find s1 such that R s1 is in context;
3 if (unifiable s1 s2):

4 remove (R s1) from context

5 continue with proving G

6 else

7 remove (R s1) from context

8 add (R (silent_step s1)) to context
9 continue with proving (R s2 * G)

Figure 9. Heuristic for automating silent steps.

We have implemented—and proven sound—this heuristic
as hints in the RefinedC verifier, and, with the exception
of the trav_pre_abort example in §3.2 (explained below), the
hints are sufficient for automatically verifying all traversals
we considered.

4.1 The Case of trav_pre_abort

One thing that is common among traversals is that the num-
ber of ghost silent steps that the traversal needs to make
is always bounded (usually only one step is needed). For a
traversal that aborts early, this is no longer the case. If the
traversal aborts due to an error, then the number of silent
steps taken to transform the current traversal state to the
final state is unknown statically ahead of time.

To circumvent this, we needed to add a new hint that,
instead of taking a single silent step as in line 7, tries to
prove that s2 can be reached by making 0 or more silent
steps on s1. Concretely, the new heuristic can be described
by inserting the following lines before line 3 in Figure 9:

if the error flag in s1 is set to true:
remove (R s1) from context
prove (ss_rel* s1 s2):
continue with proving G

ss_rel s1 s2 £ s2 = silent_step s1

Here, ss_rel* is the reflexive transitive closure of ss_rel.

4.2 Verification Using RefinedC

With the hints described in the previous sections, the verifi-
cation of traversals and clients becomes a standard RefinedC
verification. In this section, we briefly describe our experi-
ence using RefinedC to verify the traversals and clients.

The main benefit of RefinedC is that its type system au-
tomatically discharges the separation logic reasoning (in-
cluding for the traversal verification after the extensions
described in the previous sections). There are two main tasks
that require manual effort: First, proving pure side conditions
and, second, instantiating existential quantifiers.

Proving pure side conditions. When the RefinedC proof
automation discharges the separation logic reasoning, it gen-
erates a set of pure side conditions. RefinedC then attempts
to prove the sideconditions using a default strategy (based
on Rocq’s lia tactic). When this default strategy fails (which

350

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer, and Deepak Garg

often happens when custom definitions are involved), the
side conditions are provided to the user to interactively prove
them in Rocq. In our case studies, a non-trivial fraction of
proof effort (for example, 404 LoC for the array-based traver-
sal in Figure 6) went into manually proving such pure goals.
In the future, it would be useful to see if one can further min-
imize this manual proof effort, for example by integrating
SMT solvers into Rocq.

Instantiating existentials. As described by Sammler
et al. [24], RefinedC instantiates existential quantifiers based
on a set of heuristics. However, these heuristics are incom-
plete and RefinedC can get stuck on instantiating complex
existential quantifiers. In these cases—which appeared mul-
tiple times during the verification of our case studies—one
has to investigate the RefinedC proof and extend RefinedC’s
heuristics (e.g., with new simplification rules) to enable Re-
finedC to successfully instantiate the quantifiers. In the fu-
ture, it would be interesting to investigate if one can find
a design of existential quantifiers in RefinedC that ensures
that the quantifiers can always be successfully instantiated.

Debugging failed verification. If the verification fails
(e.g., for one of the reasons above), RefinedC emits an er-
ror message. This error message contains (sometimes more,
sometimes less accurate) information about the problematic
line of the program and a list of branching choices that the
verification took to reach that line. For unsolvable side con-
ditions, the error message provides the side condition. For
other failures (e.g., quantifier instantiation failures or miss-
ing separation logic ownership), the error show the proof
context of the verification and the goal where the verifica-
tion got stuck. While this error message itself can give useful
hints what the problem is, we often found it useful to use
RefinedC’s ability to interactively step backwards and for-
wards through the verification leading up to the error to see
precisely what steps RefinedC took and why it got stuck.

5 Related Work

Modular reasoning about higher-order iteration. Prior
work [2, 3, 7, 18, 22] provides an approach to formally speci-
fying iterations using the sequence of enumerated elements.
This approach is limited to traversals where the per-node op-
eration does not depend on the tree structure. This limitation
is exhibited by either preventing the client operation from
having any side-effects on the data structure being traversed
[7, 18, 22], or focusing on higher-order lazy iterators where
the per-element operation can have a side-effect on a single
element and not the entire data structure [2, 3]. In §3.1 and
§3.3, we presented two examples—drawn from real-world
systems code—in which the specification must expose the
structure of the tree to traversal clients.

There are also several mechanically-verified implementa-
tions of higher-order iterations in different proof assistants

A Recipe for Modular Verification of Generic Tree Traversals

and verifiers. Lammich and Lochbihler [16] verify a higher-
order eager iterator over set data structures in Isabelle/HOL.
Milizia [19] verifies common higher-order functions (e.g.,
all and map) over slices in Gobra (a verifier for Go). Why3’s
standard library includes a generic iterator interface called
cursor , which has been instantiated and verified for lists and
arrays [6]. These implementations all adopt the sequence-
based specifications (following Fillidtre and Pereira [7]), and
thus inherit the same fundamental limitations.

To the best of our knowledge, this is the first work to
provide a systematic recipe for verifying eager higher-order
tree traversals with stateful operations. Beyond supporting
stateful operations, our recipe uniquely enables significant
reuse of verification effort across different traversals, clients,
and tree implementations—a dimension largely unexplored
in prior work.

Using zippers. Filliatre [5] observed that zippers provide
a systematic approach for implementing lazy iterators over
binary trees. As a proof of concept, they implemented pre-
order, in-order, and post-order iterators using zippers. As in
our work, the rationale for using zippers lies in the fact that
the small-step semantics of tree traversals can be captured by
a sequence of applications of zipper navigation functions on
a zipper that is initially pointing to the root of the tree. Our
work, however, focuses on verifying higher-order, stateful,
eager traversals implemented in C or other low-level pro-
gramming languages; whereas he focuses on implementing,
in a functional programming language, lazy iterators that
are first-order and stateless.

Lorenzen et al. [17] use zippers to implement functional
versions of insertion algorithms that restructure binary search
trees. The authors verify their implementations in the Iris
separation logic framework (the same logic that underlies
the RefinedC verifier). Their focus on verifying algorithms
that change the tree structure aligns with our goal of sup-
porting tree traversals with potentially-structure-changing
operations. However, their work deals with verifying tree
insertion implementations (rather than generic traversals)
for bespoke tree data structures, namely, move-to-root, splay,
and zip trees. Their specifications are thus too complex to
generalize to the class of traversals that our work targets.
Additionally, in their work, they use zippers to achieve tail
recursion: the zipper argument serves to accumulate the con-
text of unvisited subtrees. This differs fundamentally from
how we use zippers to formalize the traversal state in a way
that exposes all relevant information to the traversal clients.

Verifying tree algorithms using separation logic. A
substantial body of work has focused on verifying tree-based
algorithms using separation logic [1, 9, 17, 18, 25, 27]. This
includes verifying a number of algorithms (e.g., insert, remove,
lookup, merge, and rotate) for red-black binary trees [1, 25],
intrusive binary trees [9], array-based trees [27], move-to-
root, splay and zip trees [17]. Our recipe, on the other hand,

351

CPP ’26, January 12-13, 2026, Rennes, France

focuses on generic tree traversals that are simpler algorith-
mically but highly configurable—as demonstrated by the
variation of case studies presented. This flexibility neces-
sitates that the specifications we provide are generic and
configurable and, at the same time, adequately expressive to
allow modular verification of a range of traversal clients.

6 Limitations and Future Work

Breadth-first traversals. Our work focuses exclusively
on depth-first traversals. Extending the recipe to breadth-
first traversals presents an interesting but non-trivial chal-
lenge. The key difficulty is that traversal states for breadth-
first traversals cannot naturally be represented using zippers,
which are designed to expose a single focused position and a
context of unvisited nodes arranged hierarchically. Breadth-
first traversals, by contrast, maintain a queue of nodes to
visit, making the notion of “focused position” less natural.
Defining action points and silent steps for this setting would
be significantly more involved, which would likely hurt the
automation and render the resulting proofs less reusable.
We could instead consider alternative representations for
the traversal state for breadth-first traversals; however, this
might come at the cost of losing the advantages that zippers
provided, e.g., the fine-grained access to the tree structure
that zippers provided.

Application to real-world traversals. In this paper, we
have verified several case studies inspired by real-world sys-
tems code. A next step is to apply the recipe to traversals
in practice. The pKVM page table walker is a compelling
verification target, seeing as our recipe can handle several
of its key traversal features, including (a) early termination,
(b) user-defined traversal orders, (c) structure-changing op-
erations, (d) simultaneous use of loops and recursion, and
(e) range-delimited traversals. (The last two features were
not explicitly studied in this paper, but we believe they are
perfectly feasible within our recipe framework.)

Applying the recipe to pKVM presents two primary chal-
lenges: defining the representation predicate that abstracts
the Arm page table architecture as mathematical trees, and
automating the verification. More broadly, verifying pro-
duction systems such as pKVM is challenging because, in
addition to the verification effort itself, we need to ensure
that RefinedC (or any verifier of choice) can handle all fea-
tures of the code (e.g., pPKVM enums that are currently not
supported by RefinedC) and that it is scalable enough (e.g.,
the page table representation predicate includes non-trivial
bitvector arithmetic that severely degrades performance).

Abstracting over the constructors. Our recipe does not
try to exhaustively address all features that can be found
in tree traversals in real-world systems. For example, one
feature that we do not address in this work is abstracting
over the constructors of the tree data structure. This is quite

CPP ’26, January 12-13, 2026, Rennes, France

common (e.g., compiler developers utilize this feature to
modularly extend the AST with new constructors without
changing the traversal).

7 Conclusion

We presented in this paper a novel recipe for specifying and
verifying generic, stateful, depth-first tree traversals with
features that are commonly found in real-world systems.
The recipe decomposes the verification task into a num-
ber of steps, designed in a way that enables both modular
reasoning and reuse of verification effort across different
traversals and clients. By leveraging zipper-based traversal
states rather than flattened sequences, we enable clients to
express properties that depend on the tree structure. We in-
stantiated the recipe within the RefinedC verifier and demon-
strated its effectiveness on a range of case studies, including
traversals with different orders (pre-, post-, in-, abstract-
order), early termination, structure-changing operations, and
diverse tree implementations (pointer-based, array-based,
variadic-arity).

Acknowledgments

We thank the anonymous reviewers for their insightful sug-
gestions. This research is supported in part by generous
awards from Android Security’s ASPIRE program and from
Google Research. The third author is supported, in part, by
ERC grant COCONUT (grant no. 101171349), funded by the
European Union. Views and opinions expressed are how-
ever those of the author(s) only and do not necessarily re-
flect those of the European Union or the European Research
Council Executive Agency. Neither the European Union nor
the granting authority can be held responsible for them.

References

[1] Lukas Armborst and Marieke Huisman. 2021. Permission-Based Veri-

fication of Red-Black Trees and Their Merging. In FormaliSE@ICSE.

111-123. d0i:10.1109/FORMALISE52586.2021.00017

Aurel Bily, Jonas Hansen, Peter Miiller, and Alexander J. Summers.

2023. Compositional Reasoning about Advanced Iterator Patterns in

Rust. In IWACO 2023.

[3] Xavier Denis and Jacques-Henri Jourdan. 2023. Specifying and Ver-

ifying Higher-order Rust Iterators. In TACAS (2) (LNCS, Vol. 13994).

93-110. doi:10.1007/978-3-031-30820-8_9

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer,

and Deepak Garg. 2025. Artifact for A Recipe for Modular Verification

of Generic Tree Traversals. https://doi.org/10.5281/zenodo.17799204

[5] Jean-Christophe Filliatre. 2006. Backtracking iterators. In ML. 55-62.
do0i:10.1145/1159876.1159885

[6] Jean-Christophe Fillidtre and Andrei Paskevich. 2013. Why3 - Where
Programs Meet Provers. In ESOP (Lecture Notes in Computer Science,
Vol. 7792). Springer, 125-128. https://doi.org/10.1007/978-3-642-37036-
6_8

[7] Jean-Christophe Fillidtre and Mario Pereira. 2016. A Modular Way to

Reason About Iteration. In NFM (LNCS, Vol. 9690). 322-336. doi:10.

1007/978-3-319-40648-0_24

Edward Fredkin. 1960. Trie memory. CACM 3, 9 (1960), 490-499.

d0i:10.1145/367390.367400

(2]

352

Laila Elbeheiry, Michael Sammler, Robbert Krebbers, Derek Dreyer, and Deepak Garg

[9] Marc Hermes and Robbert Krebbers. 2024. Modular Verification of
Intrusive List and Tree Data Structures in Separation Logic. In ITP
(LIPIcs, Vol. 309). 19:1-19:18. doi:10.4230/LIPICS.ITP.2024.19

Stefan Heule, Ioannis T. Kassios, Peter Miiller, and Alexander J. Sum-
mers. 2013. Verification Condition Generation for Permission Logics
with Abstract Predicates and Abstraction Functions. In ECOOP (LNCS,
Vol. 7920). 451-476. doi:10.1007/978-3-642-39038-8_19

Gérard P. Huet. 1997. The Zipper. JFP 7, 5 (1997), 549-554. doi:10.
1017/50956796897002864

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. JFP 28 (2018),
€20. doi:10.1017/50956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and
Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL.
637-650. doi:10.1145/2676726.2676980

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive
proofs in higher-order concurrent separation logic. In POPL. 205-217.
doi:10.1145/3009837.3009855

Neelakantan R. Krishnaswami. 2012. Verifying Higher-Order Imperative
Programs with Higher-Order Separation Logic. Ph.D. Dissertation.
Carnegie Mellon University, USA. doi:10.1184/R1/6724235.V1

Peter Lammich and Andreas Lochbihler. 2010. The Isabelle Collec-
tions Framework. In ITP (Lecture Notes in Computer Science, Vol. 6172).
Springer, 339-354. https://doi.org/10.1007/978-3-642-14052-5_24
Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley.
2024. The Functional Essence of Imperative Binary Search Trees.
PACMPL 8, PLDI (2024), 518-542. doi:10.1145/3656398

Hannes Mehnert, Filip Sieczkowski, Lars Birkedal, and Peter Sestoft.
2012. Formalized Verification of Snapshotable Trees: Separation and
Sharing. In VSTTE (LNCS, Vol. 7152). 179-195. do0i:10.1007/978-3-642-
27705-4_15

Stefano Milizia. 2022. Verification of closures for Go programs. Master’s
thesis. ETH Zurich, Ziirich, Switzerland. https://doi.org/10.1007/978-
3-642-14052-5_24

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local
Reasoning about Programs that Alter Data Structures. In CSL (LNCS,
Vol. 2142). 1-19. doi:10.1007/3-540-44802-0_1

Mario José Parreira Pereira. 2018. Tools and Techniques for the Verifica-
tion of Modular Stateful Code. (Outils et techniques pour la vérification
de programmes impératives modulaires). Ph. D. Dissertation. University
of Paris-Saclay, France. https://tel.archives-ouvertes.fr/tel-01980343
Francois Pottier. 2017. Verifying a hash table and its iterators in higher-
order separation logic. In CPP. 3-16. doi:10.1145/3018610.3018624
[23] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable
Data Structures. In LICS. 55-74. doi:10.1109/LICS.2002.1029817
Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan
Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC: automat-
ing the foundational verification of C code with refined ownership
types. In PLDI. 158-174. doi:10.1145/3453483.3454036

Gerhard Schellhorn, Stefan Bodenmiiller, Martin Bitterlich, and Wolf-
gang Reif. 2022. Separating Separation Logic - Modular Verifi-
cation of Red-Black Trees. In VSTTE (LNCS, Vol. 13800). 129-147.
doi:10.1007/978-3-031-25803-9_8

Fabian Wolff, Aurel Bily, Christoph Matheja, Peter Miiller, and Alexan-
der J. Summers. 2021. Modular specification and verification of closures
in Rust. PACMPL 5, OOPSLA (2021), 1-29. doi:10.1145/3485522
Qiyuan Zhao, George Pirlea, Zhendong Ang, Umang Mathur, and Ilya
Sergey. 2024. Rooting for Efficiency: Mechanised Reasoning about
Array-Based Trees in Separation Logic. In CPP. 45-59. doi:10.1145/
3636501.3636944

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

https://doi.org/10.1109/FORMALISE52586.2021.00017
https://doi.org/10.1007/978-3-031-30820-8_9
https://doi.org/10.5281/zenodo.17799204
https://doi.org/10.1145/1159876.1159885
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-40648-0_24
https://doi.org/10.1007/978-3-319-40648-0_24
https://doi.org/10.1145/367390.367400
https://doi.org/10.4230/LIPICS.ITP.2024.19
https://doi.org/10.1007/978-3-642-39038-8_19
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1184/R1/6724235.V1
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1145/3656398
https://doi.org/10.1007/978-3-642-27705-4_15
https://doi.org/10.1007/978-3-642-27705-4_15
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1007/3-540-44802-0_1
https://tel.archives-ouvertes.fr/tel-01980343
https://doi.org/10.1145/3018610.3018624
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1007/978-3-031-25803-9_8
https://doi.org/10.1145/3485522
https://doi.org/10.1145/3636501.3636944
https://doi.org/10.1145/3636501.3636944

	Abstract
	1 Introduction
	2 Recipe Overview
	2.1 Step 1: Defining the Representation Predicate
	2.2 Step 2: Defining the Traversal State
	2.3 Step 3: Formalizing Traversal Progression
	2.4 Steps 4 & 5: Instantiating the Auxiliary State and Defining Action Points
	2.5 Step 6: Putting It All Together
	2.6 Step 7: Verifying Traversal Clients
	2.7 Recap

	3 Instantiations of the Recipe
	3.1 Traversals With Different Order of Operations
	3.2 Traversal With Early Abort
	3.3 Traversal With Structure-Changing Operations
	3.4 Traversal on a Different Tree Implementation
	3.5 Traversal on Variadic Trees

	4 Automating the Verification of the Traversal
	4.1 The Case of trav_pre_abort
	4.2 Verification Using RefinedC

	5 Related Work
	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

