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The simple persistent catenable deques invented by Kaplan, Okasaki, and
Tarjan (2000) support insertion and extraction at either end and concatenation.
They have mutable internal state and rely on a restricted form of mutation; yet
they are persistent, that is, they appear to be immutable. Using Iris, we verify
that they are correct in sequential and concurrent usage scenarios. Using Iris
with time credits, we verify that, provided concurrent accesses are forbidden,
every operation has amortized time complexity O(1). This requires repairing
a certain mysterious condition in Kaplan, Okasaki, and Tarjan’s description.

1 Introduction
The functional programmer sounds rather like a medieval monk,

denying himself the pleasures of life in the hope that it will make him virtuous.
— John Hughes

In this paper, we verify the correctness and the worst-case amortized time complexity of
the simple persistent catenable deques invented by Kaplan, Okasaki, and Tarjan [KOT00].
This data structure stores a sequence of elements. It supports inserting and extracting
an element at its left end and at its right end, hence the name deque, short for double-ended
queue. Furthermore, it supports an efficient concatenation operation.

This data structure is persistent [DSST89]: that is, apparently immutable. It is not
destroyed or invalidated by any of the operations that can be applied to it. Such a data
structure is also known as confluently persistent or fully persistent. We say just persistent.
This is consistent with the meaning of this word in the program logic Iris [JKJ+18]. There,
an assertion P is persistent when P ⊢ □P holds, that is, when “P implies forever P ”. Thus,
a data structure is persistent exactly if it can be described, in Iris, by a persistent assertion.

This data structure can be considered purely functional, provided this terminology is
understood in an unusual sense. Purely functional programming usually takes one of two
forms: strictly functional programming forbids the use of mutable state; lazy functional
programming [Hug89, Oka99] allows the use of thunks, a simple mutable data structure
that offers a memoization service. In contrast, Kaplan, Okasaki, and Tarjan introduce
an unusual third form of purely functional programming. They use references (mutable
heap-allocated objects) in a very restricted manner: every time a new value v′ is assigned to
a reference, overwriting a previous value v, the values v and v′ must be equivalent in a certain
sense—for example, they must be two concrete representations of the same abstract sequence
of elements. This restriction has a rather striking consequence: whether an assignment is
executed or skipped cannot affect the correctness of the code. That is, if every assignment
x := y was replaced with a non-deterministic conditional assignment if flip() thenx := y
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then the code would produce the same observable results. Only the time complexity of the
data structure is influenced by the assignments contained in the code.

We refer to references, used in this restricted way, as stable references. A stable reference
is equipped with an invariant ϕ, a property of values. When one wishes to write a value v
into the reference, one must guarantee that ϕ v holds. When one reads a value v out of the
reference, one can assume that ϕ v holds, and nothing more: one cannot assume that v is the
value that one has most recently written. Furthermore, in Separation Logic, ϕ v does not
have to be a proposition of type Prop, which encodes just knowledge; it can be an assertion
of type iProp, which expresses both knowledge and (exclusive or shared) ownership of certain
resources. We exploit this idea.

Kaplan, Okasaki, and Tarjan describe two data structures, namely noncatenable deques
and catenable deques. We have implemented both in OCaml (§2) and, using Monolith [Pot21],
submitted them to heavy random testing. In this paper, we focus on catenable deques,
and refer to them simply as deques. Our OCaml code is available online. The verified part
represents about 380 lines, excluding blank lines and comments.

Our OCaml code uses references that are intended to be stable. Yet, the OCaml type-
checker is not aware of this discipline, and cannot enforce it. Therefore, to verify this code,
we turn to Iris. We propose two incomparable Iris APIs for stable references (§3). The first
API, which we refer to as the concurrent stable reference API, is simpler. It ensures that
the invariant property ϕ v, where v is the current content of the reference, holds at all
times. Therefore, it allows the reference to be accessed at all times; in particular, it allows
concurrent accesses. This API requires ϕ to be persistent. The second API, which we refer to
as the sequential stable reference API, is slightly more complex. It does not require ϕ to be
persistent. It allows the invariant to be broken by a read instruction and later re-established
by a write instruction. (Yes, an invariant can be broken by reading ! cf. §3.2.) While its
invariant is broken, a reference must not be read. To enforce this discipline, references are
indexed with integer levels, and a ghost token, also indexed with an integer level, serves
as an access permission. This has the (necessary) effect of forbidding concurrent accesses.
In either API, a stable reference is described by a persistent assertion. As a result, Kaplan,
Okasaki, and Tarjan’s data structure, which is built out of stable references and immutable
memory blocks, is clearly persistent as well. We use Iris, as opposed to a simpler Separation
Logic such as CFML [Cha20], because CFML lacks persistent assertions, invariants, ghost
state, and support for concurrency.

We manually transcribe our OCaml code into HeapLang, a λ-calculus with mutable state
and concurrency, which is part of the implementation of the separation logic Iris [JKJ+18].
Then, for this code, we propose two specifications (§4, §6), and carry out two separate
proofs (§5, §7). The first specification and proof are expressed using plain Iris. They guarantee
that the data structure is correct under both sequential and concurrent usage scenarios.
The proof relies on our concurrent stable reference API. The second specification and proof
are expressed using Iris with time credits [MJP19]. They guarantee that, provided concurrent
accesses are forbidden, every operation has worst-case amortized time complexity O(1).
The proof exploits our sequential stable reference API. In the course of this proof, we find
that Kaplan, Okasaki, and Tarjan’s pseudo-code possibly does not have the desired worst-
case complexity: at least, there is one case where the proof does not go through. We repair
this problem by changing a certain mysterious condition in the code (§2.2, §5.2).

In a concurrent setting, our time complexity analysis breaks, and indeed, in that setting, we
believe that one cannot say that the data structure has worst-case amortized complexity O(1).
After n operations have taken place, the data structure can be in a high-potential state,
where Ω(n) time credits are virtually stored. In this state, an expensive operation, whose
real cost is Ω(n), may be possible. To achieve apparent cost O(1), this operation needs to
spend all of the saved credit. Now, if n threads start performing this expensive operation
at the same time then all of them may need to spend the same reserve of credits, which is
not permitted. Put another way, each thread may find the data structure exactly in the
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same state and perform the same expensive work, so the total work may be Ω(n2), even
though only 2n operations have taken place. So, one cannot claim that the worst-case
amortized complexity of an operation is O(1). This argument must be taken with some
caution, because we have not actually constructed such a scenario, and because there may
not be agreement as to the meaning of the concept of “worst-case amortized complexity”
in a concurrent setting. What is clear is that if in our formal specification (Figure 10) one
erases the tokens Eπ, which forbid concurrent accesses, then we are no longer able to prove
that the code satisfies the specification.

Both of our proofs are machine-checked by the Rocq proof assistant. They are available
online. They represent about 1000 lines of definitions and statements and 4000 lines of proof
scripts, excluding blank lines and comments.

As an auxiliary contribution, we draw attention to a possibly new or little-known way
of writing the specification of an iteration function (§5.3). Our style does not involve
a loop invariant; instead, it expresses the informal idea that applying iter f to a collection c
is like applying f to each element of the collection in turn. This specification, as well as
several other specifications in this paper, uses nested Separation Logic triples.

2 OCaml Implementation
Like knives, destructive updates can be dangerous when misused,

but tremendously effective when used properly.
— Chris Okasaki

The public API of this data structure appears in Figure 1a. The abstract type α deque
is parameterized with the type α of the deque’s elements. The empty deque, empty , is
a constant. The functions push and inject insert an element at the left and right ends of
a deque. pop and eject extract an element out of the left and right ends of a nonempty
deque. concat concatenates two deques.

Our implementation of deques is a functor: as a parameter, it requires an implementation B
of buffers, which are noncatenable deques of length at most 8. Buffers must provide the
operations empty , length, push, pop, inject , eject , fold left , fold right , and a few more,
which can be implemented in terms of these. Buffers can be implemented as an algebraic
data type or using immutable arrays.

2.1 Type Definitions
The structure of Kaplan, Okasaki, and Tarjan’s deques is given by the type definitions
in Figure 1b. These definitions can be described as follows. A deque is either empty or
a nonempty deque. A nonempty deque is a reference to a five-tuple. This is a stable reference:
whenever it is updated, its old value and its new value represent the same sequence of
elements. A five-tuple is composed of a prefix buffer, a left child deque, a middle buffer,
a right child deque, and a suffix buffer. The child deques do not store ordinary elements;
instead, they contain triples, where a triple is composed of a buffer, a child deque, and
another buffer. This is a typical example of a nested data type [BM98]. In a five-tuple and
in a triple, the size of the buffers is subject to constraints that we describe later on (§5).

Our OCaml implementation of deques follows the English presentation given by Kaplan,
Okasaki, and Tarjan. We found this presentation easy to understand: we noticed just one
place where the text was unclear. We found it to be functionally correct. However, we believe
that we found a flaw or a problem in their complexity analysis: there is one path where too
many time credits are spent. Fortunately, we are able to repair this problem by changing
a condition, which we refer to as “the mysterious condition”, in the auxiliary function
pop triple (§2.2). Furthermore, to make the code thread-safe, we represent a nonempty
deque as a mutable reference to an immutable five-tuple, whereas Kaplan, Okasaki, and
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type ’a deque
val empty : ’a deque
val push : ’a -> ’a deque -> ’a deque
val inject: ’a deque -> ’a -> ’a deque
val pop : ’a deque -> ’a * ’a deque
val eject : ’a deque -> ’a deque * ’a
val concat: ’a deque -> ’a deque -> ’a deque

(a) API

type ’a deque =
’a nonempty_deque option

and ’a nonempty_deque =
’a five_tuple ref

and ’a five_tuple = {
prefix : ’a buffer;
left : ’a triple deque;
middle : ’a buffer;
right : ’a triple deque;
suffix : ’a buffer;

}
and ’a triple = {
first : ’a buffer;
child : ’a triple deque;
last : ’a buffer;

}

(b) Type Definitions

Figure 1. Deques: OCaml API and Type Definitions

Tarjan use a five-tuple whose five fields are mutable. Our approach ensures that updates
are atomic: that is, the five fields of a five-tuple are updated at once.

Our code is not small, but is reasonably concise. push and inject , together with their
auxiliary functions, occupy about 100 lines of code. concat and its auxiliary functions take
up about 50 lines. pop, eject and their auxiliary functions represent about 230 lines.

2.2 On Pop and its Auxiliary Functions
Together with eject , pop is the most complex operation on deques. Its implementation
involves several auxiliary functions, some of which are shown in Figure 2. Determining
exactly what the specification(s) of each function should be, in our proofs of functional
correctness and time complexity, was quite challenging.

The main function in Figure 2 is pop nonempty , which pops an element out of a nonempty
deque. (Using pop nonempty , it is easy to implement pop.) pop nonempty works as follows.
By reading the reference r, it obtains a five-tuple f . Then, it tests whether it is safe to use
naive pop, a simple function, which (in constant time) extracts an element out of the prefix
or suffix buffer of the five-tuple f . If so, naive pop is used. Otherwise, the five-tuple f
is transformed by prepare pop into a new five-tuple (also named f in our code) to which
naive pop can safely be applied; the reference r is updated with this new five-tuple and
naive pop is invoked.

So far, so good. One might believe, at this point, that the condition that is tested by
naive pop safe—namely, in the five-tuple f , either the middle buffer must be empty or
the prefix buffer must have more than 3 elements—should be the precondition of naive pop.
Indeed it is the case that if the five-tuple f is safe (that is, naive pop safe f returns true)
then naive pop f produces a valid deque.

However, there is another place where naive pop is called, inside pop triple (Figure 2).
There, naive pop is not necessarily applied to a safe five-tuple, and in that case, it can
produce an invalid deque, that is, one whose invariant is superficially broken. Such a deque
can be repaired, Kaplan, Okasaki, and Tarjan explain, by pushing an element into it. Our
specifications of naive pop and push must also account for this scenario.

Let us say a few words about prepare pop. This function, whose code is omitted in
Figure 2, operates as follows. If both child deques of the five-tuple f are empty, then
it redistributes some elements among the prefix, middle and suffix buffers of f . Otherwise,
it applies pop triple to the leftmost nonempty child deque of f , say d. This yields a triple t.
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let naive_pop_safe (type a) (f : a five_tuple) : bool =
let { prefix; middle; _ } = f in
B.is_empty middle || B.length prefix > 3

let naive_pop (type a) (f : a five_tuple) : a * a deque =
(* omitted; just 7 lines *)

let inspect_first (type a) (f : a five_tuple) : a =
(* omitted; just 6 lines *)

let rec pop_nonempty : type a. a nonempty_deque -> a * a deque = fun r ->
let f = !r in
if naive_pop_safe f then
naive_pop f

else
let f = prepare_pop f in
r := f;
assert (naive_pop_safe f);
naive_pop f

and prepare_pop : type a. a five_tuple -> a five_tuple = fun f ->
(* omitted; about 100 lines; uses [pop_triple] *)

and pop_triple : type a. a triple nonempty_deque -> a triple * a triple deque = fun r ->
let f = !r in
let t = inspect_first f in
let { first; last; _ } = t in
(* The (repaired) mysterious condition: *)
if not (B.is_empty last) || B.has_length_3 first then
(* [naive_pop_safe f] is not necessarily true here! *)
naive_pop f

else
pop_nonempty r

Figure 2. Pop: Auxiliary Functions

The first buffer of this triple is used to pad the five-tuple f so as to make it safe. The child
deque and last buffer of the triple t are then concatenated and pushed back into d, if they
are nonempty. This push operation repairs the deque d if it was invalid.

The most surprising aspect of the function pop triple is the manner in which a choice
between naive pop and pop nonempty is made. It is worth remarking that if one chose to
always use pop nonempty then pop triple would be functionally correct. Therefore, Kaplan,
Okasaki, and Tarjan’s motivation for sometimes using naive pop instead is that naive pop
is cheaper than pop nonempty . Furthermore, the condition that governs this choice seems
rather mysterious (Figure 2). This condition bears on the triple t, which is the first triple
contained in the five-tuple f . As noted earlier, this condition does not guarantee that f is safe.
Therefore, naive pop f can produce an invalid deque, and so can pop triple. The mysterious
condition must ensure that this invalid deque will be repaired, inside prepare pop, by a push
operation. It is quite nonobvious that this is the case.

In fact, our version of the mysterious condition differs from Kaplan, Okasaki, and Tarjan’s.
Their condition, which they give in Case 1 in the description of pop, is as follows: “either the
first nonempty middle buffer in t contains 3 elements or t contains a nonempty deque”. In our
code, their condition would be: not (is_empty t.child) || B.has_length_3 first. We find
that, with this condition, the time complexity analysis does not go through: there is a path
where one must pay for a call to pop nonempty (inside pop triple) and a call to push (inside
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prepare pop), yet not enough time credits are available to pay for both calls. By changing
the mysterious condition to not (B.is_empty last) || B.has_length_3 first, we find that
one must pay for either a call to pop nonempty or a call to push, never both on the same
path. This is a key argument in our proof of time complexity.

3 Stable References
Plus ça change et plus c’est la même chose.

— Alphonse Karr

In this section, we review two Iris APIs for stable references, which we refer to as concurrent
stable references (§3.1) and sequential stable references (§3.2). Although these APIs are fairly
simple, we believe that it is useful to identify and name the concept of a stable reference.
This helps understand the data structures that rely on this concept and simplify their proofs.

Our notation for specifications is standard in the Iris literature. The specification
{P} e (∃x⃗) v {Q} is a short-hand for the Separation Logic triple {P } e {λy.∃x⃗. ⌜y = v⌝ ∗Q}.
This specification means that (1) in a state where the assertion P holds, the expression e
can be safely executed; and (2) if it terminates then (for some values of the variables x⃗)
it must produce the value v and leave the machine in a state where the assertion Q holds.
We write once in front of such a specification to indicate that it can be exploited at most
once, that is, the expression e can be executed at most once. This is expressed in Iris by
a weakest-precondition modality wp that is not wrapped in a persistence modality.

3.1 Concurrent Stable References
Our concurrent stable reference API appears in Figure 3. The assertion ℓ Z⇒ ϕ means that
there exists a stable reference at address ℓ and that the invariant property ϕ : Val → iProp
has been associated with this reference. This notation is intentionally reminiscent of the
standard points-to assertion ℓ 7→ v. However, in a stable points-to assertion, only an invariant
property ϕ is known: the current content of the reference is not known.

The property ϕ is fixed when the reference is allocated and cannot be changed thereafter.
The initial content of the reference, a value v, must be chosen so that ϕ v holds. The
rule CSRef-Alloc states that, provided ϕ v holds, a memory allocation expression ref v
produces a stable reference ℓ, which is described by the assertion ℓ Z⇒ ϕ.

The rule CSRef-Persist states that the assertion ℓ Z⇒ ϕ is persistent. This reflects the
fact that a stable reference can be shared. This assertion can be shared across multiple
threads, thereby allowing a stable reference to be concurrently accessed, for reading and
writing, by several threads. This explains why the invariant property ϕ cannot be changed:
it is an agreement between all of the parties who have read and write access to this reference.

The predicate ϕ must be persistent. This requirement has to do with reading, and is made
explicit in the rule CSRef-Read. Indeed, a read expression !ℓ duplicates the value that is
stored at address ℓ. The rule states that if ℓ is a stable reference with invariant property ϕ
then reading ℓ yields some value v such that ϕ v holds.

The rule CSRef-Write states that if ℓ is a stable reference with invariant property ϕ
and if ϕ v holds then writing the value v at address ℓ is permitted.

In short, whereas a normal points-to assertion ℓ 7→ v guarantees that the value v is
currently stored at address ℓ, and guarantees that reading ℓ yields v, when one works with
a stable points-to assertion ℓ Z⇒ ϕ, one does not know what is the current content of the
reference, and one does not care. All that matters is that reading the reference produces
some value that was written to the reference in the past.

Each of the rules in Figure 3 is a lemma that we are able to prove, based on a concrete
definition of the assertion ℓ Z⇒ ϕ. This definition is very simple:

ℓ Z⇒ ϕ ≜ ∃v. (ℓ 7→ v ∗ ϕ v) N
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CSRef-Persist
persistent(ℓ Z⇒ ϕ)

CSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ Z⇒ ϕ}

CSRef-Read
persistent(ϕ) −∗
{ℓ Z⇒ ϕ} !ℓ (∃v) v {ϕ v}

CSRef-Write
{ℓ Z⇒ ϕ ∗ ϕ v} ℓ := v () {}

Figure 3. Concurrent stable references: reasoning rules

This definition involves an Iris invariant, denoted by a square box. The superscript N ,
a fixed namespace, can be ignored. Inside the invariant, the assertion ∃v. (ℓ 7→ v ∗ ϕ v)
means that, at all times, the reference ℓ contains some value v such that ϕ v holds.

Such a combination of an invariant, an existential quantification, and a points-to assertion
is not new. As they demonstrate how to interpret the types of a programming language
as Iris predicates, Timany et al. [TKDB24] use this combination in the interpretation of
ML’s type of shared references, the type ref. What is somewhat original here is that the
property ϕ v does not have to be a coarse property, such as “v is an integer value” or “v is
a deque”. It can be a much more precise statement, such as “v is a deque whose elements
form the sequence [v0; v1; v2]”. This choice of ϕ lets us express Kaplan, Okasaki, and Tarjan’s
idea: a reference described by this property can be updated with arbitrary deques that
represent the 3-element sequence [v0; v1; v2], and only with such deques.

3.2 Sequential Stable References
The stable reference API that we have presented is simple and in some ways very powerful:
in particular, it allows concurrent accesses. However, it is also quite restrictive: in particular,
it requires the parameter ϕ to be instantiated with a persistent property. Yet, in our
analysis of the time complexity of Kaplan, Okasaki, and Tarjan’s data structure, we need
to instantiate ϕ with an assertion that is not persistent. Indeed, with each reference, we
need to associate a number of time credits, which represent the potential of this reference.
A time credit assertion $n is an affine assertion: it is not persistent. Thus, our concurrent
stable reference API cannot explain why each reference can have a potential.

This leads us to look for an alternate API, where no persistence requirement bears on the
parameter ϕ. Of course, removing this requirement creates a difficulty in the reasoning rule
that governs reading. Suppose that, at a program point pc1, a read expression !ℓ returns
a value v. We want its postcondition to contain the assertion ϕ v, so that the continuation
of the code can exploit this assertion. In particular, if ϕ v contains time credits, we may
need to spend these time credits so as to cover the cost of the code that follows the read
expression. In other words, we need to temporarily violate the invariant that is associated
with the stable reference at address ℓ. We typically expect to restore the invariant at a later
program point, say pc2, where a new value v′ is written to address ℓ. At this point, we
intend to prove that ϕ v′ holds. This can be done if the time credits that were already
at hand at program point pc1 plus those contained in ϕ v are enough to cover the credits
consumed by the computation that is performed between the program points pc1 and pc2
plus those contained in ϕ v′.

In summary, it appears that we need a reasoning rule that allows the invariant of a stable
reference ℓ to be broken at a read instruction and later restored at a write instruction.
Between these instructions, we say that ℓ is invalidated.

Naturally, such a rule must forbid reading the reference while it is invalidated. Therefore,
we must abandon the idea that a stable reference is accessible at all times. We must look
for an API where reading a reference requires a ghost access token. We must arrange for
this token to disappear when the invariant is broken and to re-appear once it is restored.
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SSRef-New-Pool
⇛ ∃π. Eπ.0

SSRef-Persist
persistent(ℓ

π.nZ=⇒ ϕ)
SSRef-Alloc
{ϕ v} ref v (∃ℓ) ℓ {ℓ π.nZ=⇒ ϕ}

SSRef-Read
(∀v. ϕ v −∗ ϕ v ∗ ψ v) −∗
{ℓ π.nZ=⇒ ϕ ∗ Eπ.n} !ℓ (∃v) v {ψ v ∗ Eπ.n}

SSRef-Read-Write
{ℓ π.nZ=⇒ ϕ ∗ Eπ.n} !ℓ (∃v) v {ϕ v ∗ Eπ.n+1 ∗ ∀v′. once {▷ ϕ v′ ∗ Eπ.n+1} ℓ := v′ () {Eπ.n}}

Figure 4. Sequential stable references: reasoning rules

The API that we have just sketched is sound, but it is not expressive enough for our
needs. If a single token governs access to all stable references, then as soon as we invalidate
one stable reference, we lose access to all stable references. Yet, in Kaplan, Okasaki, and
Tarjan’s data structure, between the point where ℓ is read and the point where ℓ is updated,
a computation takes place, which needs to access certain stable references. We must have
a way of arguing that ℓ is not among them, so as to retain permission to access these
references, even though we have lost permission to access ℓ. Fortunately, a stratification
argument can be made: the stable references that we need to access while ℓ is invalidated
are located at deeper levels in the data structure. By indexing references and access tokens
with integer levels, we can offer an API where access to references at levels greater than n is
permitted while a reference at level n is invalidated.

This new API appears in Figure 4. In this API, the stable reference assertion ℓ
π.nZ=⇒ ϕ

and the ghost access token Eπ.n are indexed with a pool π and with a natural integer level n.
The token Eπ.n represents a permission to access all stable references in the pool π at level n
and greater levels. A pool can be thought of as a region of memory, or a group of references.
Pools are a purely static concept: they do not exist at runtime.

The rule SSRef-New-Pool is a ghost update. It creates a fresh pool π and produces
an access token for all references in this pool. Initially, there are none.

The rule SSRef-Persist states that stable references are persistent; they can be shared.
In contrast, an access token is not persistent: it is affine (that is, unique).

SSRef-Alloc is analogous to CSRef-Alloc. The newly allocated reference can be
placed in an arbitrary pool and at an arbitrary level. No access token is required.

SSRef-Read allows reading a stable reference ℓ without invalidating it. This rule differs
from CSRef-Read in two ways. First, if the stable reference ℓ inhabits pool π at level n,
then the access token Eπ.n is required, and preserved. Second, because ϕ is not assumed to
be persistent, and because this rule does not invalidate ℓ, the postcondition cannot contain
the assertion ϕ v. Instead, it contains ψ v, where ψ v is a consequence of ϕ v that can be
obtained without consuming ϕ v.

Finally, SSRef-Read-Write invalidates a stable reference between a read !ℓ and
a write ℓ := v′. The read expression yields the assertion ϕ v and transforms the access
token Eπ.n into the weaker token Eπ.n+1. Bearing in mind that ϕ is not persistent, the fact
that ϕ v is produced implies that this assertion must be stolen from the reference. Therefore,
at the program point that follows the read, this reference must be considered invalid. This
explains why the access token must be weakened. The weakened token does not allow access
to ℓ yet grants access to stable references at deeper levels. The last part of the postcondition
of the read expression is the one-shot triple ∀v′. once {ϕ v′ ∗ Eπ.n+1} ℓ := v′ () {Eπ.n}. This
triple can be understood as a permission to update the reference ℓ with an arbitrary new
value v′ such that ϕ v′ holds. This write consumes the weakened token Eπ.n+1 and restores
the original token Eπ.n. Thus, the program point where this triple is used marks the end of
the area where ℓ is invalidated.
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Deque : Val → list Val → iProp
Deque-Persist
persistent(Deque d xs)

Deque-Empty
Deque empty []

Deque-Push
{Deque d xs}

push x d
(∃d′) d′ {Deque d′ ([x] ++ xs)}

Deque-Pop
{Deque d ([x] ++ xs)}

pop d
(∃d′) (x, d′) {Deque d′ xs}

Deque-Concat
{Deque d xs ∗ Deque d′ xs ′}

concat d d′

(∃d′′) d′′ {Deque d′′ (xs ++ xs ′)}

Figure 5. Specification of Functional Correctness

Each of the rules in Figure 4 is a lemma that we prove, based on concrete definitions of
the assertions. We follow the same pattern as earlier (§3.1): the concrete definition of the
assertion ℓ

π.nZ=⇒ ϕ involves the assertion ∃v. (ℓ 7→ v ∗ ϕ v), which this time is wrapped in
an Iris non-atomic invariant [Iri25]. Iris’s non-atomic invariant library provides the concept
of pool, the access tokens, and the access rules that we need.

4 Functional Correctness: Specification
We now present an Iris specification of deques, which appears in Figure 5. Whereas
the OCaml API shown in Figure 1a declares the existence of an abstract type of deques,
α deque, and lists the types of the six main operations on deques, this specification declares
the existence of an abstract predicate, Deque d xs, and provides a precise description of
the behavior of each operation, in the form of a Separation Logic triple.

The predicate Deque has type Val → list Val → iProp, where Val is the type of values
and iProp is the type of Iris assertions. The assertion Deque d xs means that the value d
is a valid deque and that the values stored in this deque form the sequence xs. Thus,
this assertion can be understood as a relation between the concrete data structure d and
the abstract object xs that this data structure is intended to represent.

At the mathematical level, we represent a sequence as a list. We write [] for the empty
sequence, [x] for a singleton sequence, and xs ++ xs ′ for the concatenation of two sequences.
If xss is a list of lists of elements, then we write join(xss) for its iterated concatenation,
a list of elements.

The rule Deque-Persist guarantees that Deque d xs is persistent [JKJ+18, §2.3; §5.3].
Technically, this means that if at a certain point Deque d xs can be established, then, from
this point on, this assertion holds forever. In other words, forever, the deque d will remain
valid and will represent the sequence xs. In other words, this rule guarantees that deques
are persistent data structures.

Deque-Empty states that empty is a valid deque and represents the empty sequence.
Deque-Push states that, provided d is valid deque, the function call push x d is permitted

and its result d′ is also a valid deque. Furthermore, if the deque d represents the sequence xs ,
then d′ represents the sequence [x] ++ xs . This specification implicitly guarantees that this
operation is non-destructive: indeed, since Deque d xs is a persistent assertion, it still holds
after push x d has returned. It need not be repeated in the postcondition of push.

Deque-Pop is symmetric with Deque-Push. The function call pop d requires the deque d
to be nonempty. Naturally, it is possible to test whether a deque is empty and to propose
a variant of pop that can be applied to a possibly-empty deque.
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The specifications of inject and eject are similar to those of push and pop. We omit them.
inject and eject are part of the code that we have verified.

Deque-Concat states that, provided d and d′ are valid deques, the function call
concat d d′ is safe, and its result d′′ is valid deque. Furthermore, if the deques d and d′

represent the sequences xs and xs ′, then d′′ represents the sequence xs ++ xs ′. In spite of
the separating conjunction that appears in the precondition, the deques d and d′ need not
be disjoint: they might be the same deque, or they might be two distinct deques that share
some subdeques. A conjunction of two persistent assertions allows these scenarios.

In summary, this specification is very simple. It is stateless: it involves persistent assertions
only. In other words, it is the specification of a purely functional data structure. It does not
betray the fact that mutable state is used in the implementation of this data structure.

Because a persistent assertion can be shared between two threads, this specification allows
concurrent usage. In other words, it guarantees that this data structure is thread-safe. The
intuitive reason why this data structure tolerates concurrent usage, even though it has
mutable internal state, is that all references involved are stable: thus, it does not matter
in what order two competing operations on a reference take place. In contrast, the time-
complexity-aware specification that we present later on (§6) involves affine (non-persistent)
access tokens and forbids concurrent accesses.

5 Functional Correctness: Proof
We have proved, using Iris, that our implementation of deques satisfies the specification
shown in the previous section (Figure 5). Naturally, this proof cannot be described in detail
in this paper. We present our concrete definition of the predicate Deque (§5.1), provide
formal descriptions of the safe and unsafe usage modes of naive pop (§5.2), and describe
an original way of writing specifications for fold functions in Separation Logic (§5.3).

5.1 Predicate Definitions
The concrete definition of the assertion Deque d xs provides a formal description of deques
in Iris. It conveys most of the insights needed to understand this data structure.

Because our code is parameterized over an implementation of buffers, our proof, too, must
be parameterized over a predicate buffer . We assume that the assertion buffer b xs means
that b is a buffer whose elements form the sequence xs. We assume that this assertion is
persistent: this reflects the idea that buffers are immutable.

The formal definition of the assertion Deque d xs appears in Figure 6. The main assertion,
Deque d xs , is defined in terms of four auxiliary predicates, which describe deques, five-tuples,
deques-whose-elements-are-triples, and triples.

Each of these auxiliary predicates is parameterized with an integer depth n. The outermost
level of the data structure corresponds to depth 0: therefore, Deque d xs is defined as
deque 0 d xs. Then, as one goes down into the data structure, the depth increases. For
example, a five-tuple at depth n contains (pointers to) two deques-of-triples at depth n+ 1.
At this stage, this depth parameter is in fact entirely unnecessary: its presence is not needed
for our definitions to be well-formed, and it is not exploited in our proof. We introduce it
in anticipation of the next stage, namely, our proof of functional correctness and time
complexity of the data structure (§6, §7). There, as noted earlier (§3.2), a stratification of
stable references using integer depths is needed.

The definitions of the four auxiliary predicates in Figure 6 are mutually recursive. This is
not structural recursion over the parameter n: indeed, this parameter does not decrease
along every edge. Instead, this is guarded recursion in the sense of Iris: every cycle must
go through a “contractive” connective. This is indeed the case here. One cycle, from
dequeOfTriples to triple and back, goes through a “later” modality, written ▷. This modality
is contractive. A second cycle, from deque through fiveTuple through dequeOfTriples back

JFLA 2026 – 37es Journées Francophones des Langages Applicatifs



Verified Persistent Catenable Deques Juliette Ponsonnet and François Pottier

Deque d xs ≜ deque 0 d xs

deque n d xs ≜ ⌜d = None ∧ xs = []⌝ ∨
∃ ℓ. ⌜d = Some(ℓ)⌝ ∗ ℓ Z⇒ (λft .fiveTuple n ft xs)

fiveTuple n ft xs ≜ ∃ p, l,m, r, s, xsp, xss l, xsm, xssr, xss.
⌜ft = (p, l,m, r, s)⌝ ∗
⌜config5(|xsp|, |xss l|, |xsm|, |xssr|, |xss|)⌝ ∗
⌜xs = xsp ++ join(xss l) ++ xsm ++ join(xssr) ++ xss⌝ ∗
buffer p xsp ∗
dequeOfTriples (n+ 1) l xss l ∗
buffer m xsm ∗
dequeOfTriples (n+ 1) r xssr ∗
buffer s xss

dequeOfTriples n d xss ≜ ∃ts. deque n d ts ∗ ∗
t, xs ∈ ts, xss

▷ triple n t xs

triple n t xs ≜ ∃ f, c, l, xsf , xssc, xs l.
⌜t = (f, c, l)⌝ ∗
⌜config3(|xsf |, |xssc|, |xs l|)⌝ ∗
⌜xs = xsf ++ join(xssc) ++ xs l⌝ ∗
buffer f xsf ∗
dequeOfTriples (n+ 1) c xssc ∗
buffer l xs l

Figure 6. Iris Assertions that Describe a Well-Formed Deque

to deque, goes through the “stable reference” connective, which is also contractive. Therefore,
this definition is accepted by Iris.

Let us now briefly describe the meaning of the auxiliary assertions in Figure 6.
• deque n d xs means that d is a deque at depth n that represents the sequence xs.
• fiveTuple n ft xs means that ft is a five-tuple at depth n that represents xs.
• dequeOfTriples n d xss means that d is a deque of triples at depth n,

which represents the sequence of sequences xss.1

• triple n t xs means that t is a triple at depth n that represents the sequence xs.
In the definition of deque n d xs, a concurrent stable reference is used: the assertion

ℓ Z⇒ (λft .fiveTuple n ft xs) means that, forever, the mutable reference ℓ must contain
a five-tuple that has depth n and that represents the sequence xs. It is permitted to write
a new five-tuple into this reference, provided it represents the same sequence, namely xs.

In the definition of fiveTuple n ft xs, the letters p, l,m, r, s are named after the fields
prefix, left, middle, right, suffix in the code (Figure 1b). Similarly, in the definition of
triple n t xs, the letters f, c, l are named after the fields first, child, last.

In the definition of dequeOfTriples , ts is a list of triples, and xss is the list of the sequences
that these triples represent. The iterated separating conjunction requires the lists ts and xss
to have the same length and iterates synchronously over them.

All of the assertions defined in Figure 6 are persistent. This is intuitively obvious: indeed,
the definition involves no non-persistent assertion, of which a typical example would be

1Because one triple represents a sequence of elements, a deque of triples represents a sequence of sequences
of elements. One might consider parameterizing dequeOfTriples with a sequence xs: then its definition
would begin with ∃xss. ⌜xs = join(xss)⌝ ∗ . . . However, we find it convenient to expose xss because this
lets us pass its length as an argument to config3 and config5.
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Triple-Left-Leaning
c = 0

f ∈ {2, 3} l ∈ {0, 2, 3}
config3(f, c, l)

Triple-Has-Child
c ̸= 0

f ∈ {2, 3} l ∈ {2, 3}
config3(f, c, l)

5Tuple-Suffix-Only
s ∈ {1 . . . 8}

config5(0, 0, 0, 0, s)

5Tuple-Has-Middle
p ∈ {3 . . . 6} s ∈ {3 . . . 6}

config5(p, l, 2, r, s)

Figure 7. Size Constraints on Buffers in a Well-Formed Deque

a points-to assertion. Instead, the definition of deque involves a stable points-to assertion,
which is persistent (§3).

The last aspect that remains to be mentioned is the use of the predicates config3 and config5.
These predicates are defined in Figure 7 following Kaplan et al.’s indications [KOT00]. They
impose size constraints on buffers and child deques, as follows:

• In a triple, if the child deque is nonempty, then the two buffers must have size 2 or 3;
if the child deque is empty then the last buffer can have size 0.

• In a five-tuple, the middle buffer must have size 0 or 2. If it has size 0 then the first four
components of the five-tuple must be empty and the suffix buffer must be nonempty.
If it has size 2 then the prefix and suffix buffers must have size between 3 and 6.

5.2 On Naive-Pop
Our earlier informal discussion of naive pop can now be made more precise. We establish
two distinct specifications of this function, which appear in Figure 8. They describe the
behavior of naive pop when applied to a safe five-tuple (§2.2) and to an arbitrary five-tuple,
respectively.

The specification NaivePop-Safe states that when it is applied to a safe five-tuple that
represents the sequence [x] ++ xs, naive pop returns a pair (x, d) where d is a valid deque
that represents the sequence xs. We omit the definition of safeFiveTuple.

The specification NaivePop-Unsafe is more unusual and interesting. It states that
when naive pop is applied to an arbitrary five-tuple that represents the sequence [x] ++ xs ,
it returns a pair (x, d), where d is not necessarily a valid deque, but can be turned into one
by a push operation. Indeed, the postcondition of naive pop in this case is a one-shot triple:
∀y, once {} push y d (∃d′) d′ {deque n d′ ([y] ++ xs)}. In other words, about the value d
that is returned by naive pop, we know nothing, except that pushing an arbitrary element y
into it is safe and will produce a valid deque d′, which represents the sequence [y] ++ xs.
In other words, d is broken in a way that push can repair.

In short, the explanation of this little miracle is that the broken deque d returned by
naive pop has a specific shape that hits a base case in the function push. In this specific case,

NaivePop-Safe
{safeFiveTuple n ft ([x] ++ xs)}

naive pop ft
(∃d) (x, d) {deque n d xs}

NaivePop-Unsafe
{fiveTuple n ft ([x] ++ xs)}

naive pop ft

(∃d) (x, d)

∀y,
once {}
push y d

(∃d′) d′ {deque n d′ ([y] ++ xs)}


Figure 8. Two Distinct Specifications of naive pop
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push pushes an element into the same buffer out of which naive pop just took an element.
Therefore this buffer, and the entire deque, are repaired.

We find this use of nested Separation Logic triples a somewhat unusual but particularly
pleasant and readable way of conveying this idea. Proving the lemma NaivePop-Unsafe
is also particularly pleasant: at the point where naive pop returns the broken deque d,
one jumps straight to the proof that push will repair this deque. Even though the time when
naive pop returns and the time when push is called are somewhat far apart, Separation
Logic lets us reason as if these two events took place in immediate succession.

This understanding of naive pop suffices to prove that the code is functionally correct.
The proof requires checking that if NaivePop-Unsafe is used (that is, if the mysterious
condition in pop triple is true) then the broken deque returned by pop triple to prepare pop
will be repaired inside prepare pop by a push operation.

5.3 A New Specification Style for Fold Functions
In the concatenation of two deques, one must sometimes iterate on a buffer. Two symmetric
situations arise: either one iterates from left to right over the buffer, injecting its elements
one by one into a deque; or one iterates from right to left over the buffer, pushing its elements
one by one into a deque. For this purpose, we have assumed that buffers are equipped with
two functions fold left and fold right . We must express the specifications of these functions
in Separation Logic. How should this be done?

Because a fold function is essentially a loop, it may seem natural to take inspiration from
Hoare’s reasoning rule for loops. This leads to a specification that begins with a universal
quantification over a loop invariant. This loop invariant, a Separation Logic assertion, is
typically parameterized with the sequence of the elements produced so far and with the
current state. An example appears in a paper by the second author [Pot17, Figure 10].

Yet, the informal specification of the function fold in OCaml’s Set library is written in
a different style, which arguably is more accessible to non-experts in program verification.
It does not mention a loop invariant. Instead, it states that the function call fold f c s
(where c is a collection, in this case a set, and s is an initial state) behaves like the sequence
of function calls

let s = f x1 s in
let s = f x2 s in
. . .
let s = f xn s in
s

where x1, x2, . . . , xn is the sequence of the elements of the set c, listed in increasing order.
We remark that this style can be emulated in Separation Logic. The rough idea is as follows:
the specification of fold should take the form: “if a sequence of calls to f is safe, then a call
to fold is safe”.

Our first step is to define an assertion safe-fold call f s xs ϕ which means that a sequence
of calls to f is safe. More precisely, this assertion means that, starting with the initial
state s, it is safe to apply the function f in succession to each element of the sequence xs,
and the final state s′ will satisfy ϕ s′. (For now, ignore the parameter call .) In other words,
this is a generalized weakest-precondition (wp) assertion, which concerns a sequence of
function calls. The predicate safe-fold is inductively defined by the rules Fold-Safe-Nil
and Fold-Safe-Cons in Figure 9. In Fold-Safe-Nil, the sequence of elements is empty:
the final state is the initial state s, so the postcondition ϕ must be true of s. In Fold-Safe-
Cons, the sequence of elements is x :: xs , so the function call f s x must be permitted, and
thereafter, it must be safe to fold f on the sequence xs . This is expressed by a nested triple:
the assertion safe-fold call f s′ xs ϕ appears in the postcondition of the triple that allows
applying f to s and x.
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Fold-Safe-Nil
ϕ s

safe-fold call f s [] ϕ

Fold-Safe-Cons
once {} call f s x (∃s′) s′ {safe-fold call f s′ xs ϕ}

safe-fold call f s (x :: xs) ϕ

Fold-Left
{safe-fold straight f s xs ϕ ∗ coll c xs}

fold left f s c
(∃s′) s′ {ϕ s′ ∗ coll c xs}

Fold-Right
{safe-fold flipped f s (rev xs) ϕ ∗ coll c xs}

fold right f c s
(∃s′) s′ {ϕ s′ ∗ coll c xs}

Figure 9. Inductive Definition of safe-fold and Two Specifications of Fold Functions

Then, the predicate safe-fold can be exploited to write down simple specifications for fold
functions. Two typical specifications appear in the lower half of Figure 9. We assume that
the assertion coll xs c means that the collection c is valid and represents the sequence of
elements xs. Both of these specifications are of the form announced above: “if a sequence
of calls to f is safe, then calling fold is safe”. We find these specifications easy to use on
the provider side and on the client side. On the provider side, when verifying a specific
fold function, one receives a permission to perform a succession of calls to f , and the proof
amounts to checking that fold performs precisely this sequence of calls, in the correct order
and until the end. On the client side, when reasoning about a call to fold , one must prove
that a sequence of calls to f is permitted, just as if this invocation of fold had been magically
expanded away and replaced with a sequence of calls to f . This can require inventing a loop
invariant and setting up a proof by induction. So, the concept of a client-side loop invariant
has not disappeared, but is not visible in our specification of fold .

The specifications Fold-Left and Fold-Right in Figure 9 differ in two ways. First,
whereas fold left iterates from left to right over the collection, fold right iterates from right
to left. This is expressed by passing xs versus rev xs as an argument to safe-fold . Second,
by convention in the OCaml world, in fold left , the state s is the first parameter of f ,
whereas in fold right it is the second parameter. We use the parameter call , which can be
instantiated with either straight or flipped , to abstract this away. In short, the meta-level
function application straight f s x expands to the object-level function application f s x,
whereas flipped f s x expands to f x s.

6 Time Complexity: Specification
We now show a second Iris specification of deques, which appears in Figure 10. (To save
space, the specifications of inject and eject are omitted.) Whereas the specification of
Figure 5 is concerned just with functional correctness, and is expressed and established using
plain Iris, this specification is concerned with functional correctness and time complexity,
and is expressed and established using Iris with time credits [MJP19]. This variant of Iris
is extended with a new assertion, $n, which represents n time credits; furthermore, every
function call consumes one time credit. Time credits cannot be duplicated or forged. Thus,
the credits that a program fragment needs must be passed to it as part of its precondition. If
some credits are in excess, then they can be returned as part of the postcondition. It should
be noted that, in a precondition or postcondition, not all credits are plainly visible: some time
credits can be hidden inside the definition of an abstract assertion, such as Deque$ π d xs
in Figure 10. As a result, a program fragment sometimes spends fewer or more credits
than its precondition visibly requires. In summary, a Separation Logic triple can be read as
a statement of worst-case amortized time complexity about a program fragment.

The two specifications that we present have incomparable expressive power. One might
think that the earlier one (Figure 5) can be obtained from the new one (Figure 10) by erasing
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Deque$-Persist
persistent(Deque$ π d xs)

Deque$-Empty
Deque$ π empty []

Deque$-Push{
Deque$ π d xs ∗ Eπ ∗ $7

}
push x d

(∃d′) d′
{
Deque$ π d

′ ([x] ++ xs) ∗ Eπ
}

Deque$-Pop{
Deque$ π d ([x] ++ xs) ∗ Eπ ∗ $171

}
pop d

(∃d′) (x, d′)
{
Deque$ π d

′ xs ∗ Eπ
}

Deque$-Concat{
Deque$ π d xs ∗ Deque$ π d

′ xs ′ ∗ Eπ ∗ $57
}

concat d d′

(∃d′′) d′′
{
Deque$ π d

′′ (xs ++ xs ′) ∗ Eπ
}

Figure 10. Specification of Functional Correctness and Time Complexity

all time credits. This is not the case: whereas our earlier specification allows concurrent use
of deques, our new specification forbids it.

In this new specification, a deque is described by the abstract assertion Deque$ π d xs.
The parameter π is a pool. It can be thought of as the name of a family of deques. Pools
offer a form of alias analysis: two deques that inhabit a common pool may share part of
their internal representation, whereas two deques that inhabit distinct pools definitely share
nothing. For this reason, pools also serve as the basis of our static concurrency control
discipline: while a deque in pool π is being accessed, concurrent accesses to all deques in
pool π are forbidden, but concurrent accesses to deques in other pools remain permitted.
In Iris, this is expressed by creating a unique access permission, or “token”, for each pool π.
We re-use the pools and tokens of our sequential stable reference API (§3.2). The rule
SSRef-New-Pool, a ghost update, creates a new pool and an access token Eπ for this pool.
As explained in §3.2, tokens are indexed with integer levels, and Eπ is sugar for Eπ.0. We set
things up so that the token Eπ.n allows access to all deques at depth n or greater in pool π.

The specifications in Figure 10 are very similar to those in Figure 5. There are two main
differences, which are highlighted in color. First, an operation that affects a deque (or several
deques) in pool π requires and returns the token Eπ. This prevents concurrent accesses to
this pool. Second, each operation requires a constant number of time credits: for example,
a push operation requires 7 time credits; a concatenation operation requires 57 time credits.
Naturally, because time credits count function calls, these numbers are rather arbitrary:
they reflect the internal organization of our code. Nevertheless, up to a constant factor,
they reflect its time complexity. Here, following Kaplan, Okasaki, and Tarjan, we claim that
every operation has worst-case amortized time complexity O(1).

7 Time Complexity: Proof
We have proved, using Iris with time credits, that our implementation of deques satisfies the
specification shown in the previous section (Figure 10). We discuss the concrete definition of
the predicate Deque$ (§7.1) and the specification of the auxiliary function pop triple (§7.2).

7.1 Predicate Definitions
An excerpt of the definition of Deque$ π d xs appears in Figure 11. It is a simple variant of
the definitions shown earlier (§5.1 and Figure 6). The reason why it is well-formed is the
same as earlier, namely, contractiveness. The main differences are as follows:
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Deque$ π d xs ≜ deque$ π 0 d xs

deque$ π n d xs ≜ ⌜d = None ∧ xs = []⌝ ∨
∃ ℓ. ⌜d = Some(ℓ)⌝ ∗ ℓ

π.nZ=⇒ (λft .fiveTuple$ π n ft xs)

fiveTuple$ π n ft xs ≜ ∃ p, l,m, r, s, xsp, xss l, xsm, xssr, xss.
$potential(|xsp|, |xss|) ∗
. . .

Figure 11. Iris Assertions that Describe a Well-Formed Deque and its Potential

potential( , 8 ) = 3 — red/red
potential( 0 , ) = 0 — green/green
potential((3 | 6), (3 | 6)) = 3 — red/red
potential((3 | 6), ) = 1 — red/green
potential( , (3 | 6)) = 1 — green/red
potential( , ) = 0 — green/green

Figure 12. Potential of a Five-Tuple, based on the Sizes of its Prefix and Suffix Buffers

• Every predicate is parameterized with a pool π.
• In the definition of deque$ π n d xs, instead of a concurrent stable reference (§3.1),

a sequential stable reference (§3.2) is used. We place this stable reference in pool π
and at level n, where n is the current depth. Thus, the index n, which in Figure 6
was useless, is now exploited.

• In the definition of fiveTuple$ π n ft xs, we add the assertion $potential(|xsp|, |xss|).
This assertion represents a number of time credits, which is computed based on the sizes
|xsp| and |xss| of the prefix and suffix buffers of the five-tuple ft . Due to the presence
of these time credits, the assertion fiveTuple$ π n ft xs is not persistent. Fortunately,
this is acceptable: the reasoning rules for sequential stable references (Figure 4) do
not require the property ϕ to be persistent.

Whereas Kaplan, Okasaki, and Tarjan define “the potential of a collection of deques” as
the sum of the potentials of the five-tuples that appear in this collection [KOT00, §4.3],
in our proof, this step is not needed. We define just the potential of a five-tuple and reason
locally about one five-tuple at a time.

Our definition of the potential of a five-tuple follows Kaplan, Okasaki, and Tarjan. Whereas
they use a concept of “color”, we prefer to give a direct definition based on the sizes p and s
of the prefix and suffix buffers. (Let us recall that these sizes are subject to the constraints
shown in the lower half of Figure 7.) Our definition of potential(p, s) appears in Figure 12.
It is a definition by cases, which must be read in order. The comments on the right-hand
side are intended to help see the correspondence with Kaplan et al.’s notion of color.

7.2 On Pop-Triple and the Mysterious Condition
While the correctness of Kaplan, Okasaki, and Tarjan’s data structure is relatively easy
to prove, its time complexity analysis requires more care. This difficulty stems from the
mysterious condition in pop triple (Figure 2) and its impact on the verification of prepare pop.
Once pop triple has returned a triple t and a possibly invalid deque d′, prepare pop extracts
some elements out of t and inserts the remaining elements into d′ by using push and possibly
concat . Sometimes there are no remaining elements, so no elements are pushed into d′.
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PopTriple
{dequeOfTriples$ π n d ([t] ++ ts) ∗ Eπ.n ∗ $171}

pop triple d

(∃d′) (t, d′)

Eπ.n ∗


nonSpecialTriple π n t xs ∗ deque$ π n d

′ ts∨
specialTriple π n t xs ∗ $(171− 4) ∗

∀t′, once {} push t′ d′ (∃d′′) d′′ {deque$ π n d′′ ([t′] ++ ts)}




Figure 13. Specification of pop triple

Let us say that a triple is special if it satisfies the mysterious condition, that is, its last
buffer is nonempty or its first buffer has size 3. We have explained and proved (§5) that
if the triple t is special then prepare pop must push at least one element into d′, thereby
producing a valid deque, even though d′ in this case is not necessarily a valid deque.

Both of our proofs require analyzing prepare pop twice: once in the case where t is special,
once in the case where it is not. To this end, we place a disjunction in the postcondition of
pop triple, whose specification appears in Figure 13. The precondition requires the argument
to be a deque whose first element is the triple t that we wish to extract. It also requires
an access token and enough time credits to perform a pop operation. In all cases, pop triple
returns a pair of the triple t and a value d′. The ghost access token is also always returned.
At this point in the postcondition, the disjunction appears.

In the case where t is not special, pop triple has used pop nonempty , which has consumed
all of the time credits. In this case, d′ is a valid deque. No credits remain, but, fortunately,
in this case, prepare pop does not need to call push or concat .

In the case where t is special, pop triple has used naive pop, so d′ is not necessarily valid,
but can be repaired by push. Furthermore, only 4 credits have been consumed, so many
remain, which can be used by prepare pop to pay for its calls to push and perhaps concat .

In summary, the proof goes through because there is no scenario where both pop nonempty
and push are called. This is essential, as there is not enough credit to cover both calls.
To successfully complete this proof, though, we had to change the mysterious condition.
If one uses Kaplan, Okasaki, and Tarjan’s condition then there is a scenario where both
calls take place. We have confirmed via testing that this scenario is feasible. Our repaired
version does not have this problem. We believe that this is what was originally intended.

8 Conclusion
We have presented two machine-checked proofs of Kaplan, Okasaki, and Tarjan’s simple
catenable deques [KOT00]. One proof establishes functional correctness in sequential and
concurrent usage scenarios. The other proof establishes functional correctness and a constant
time worst-case amortized time complexity bound in sequential scenarios. The two results
are incomparable: one is not a consequence of the other. Nevertheless, the two proofs have
a common structure. At present, we have duplicated this common structure; it might be
possible to share it, but is unclear whether such an effort would be worthwhile.

Kaplan, Okasaki, and Tarjan offer only a brief sketch of a complexity analysis (Section 4.3).
We find this sketch to be correct provided the mysterious condition in the function pop triple
is repaired (§2.2, §5.2, §7.2).

Kaplan et al. do not remark that their time complexity analysis requires proving the
absence of a certain kind of circularity: while the invariant of a reference at depth n is
broken, the code still accesses references at depths greater than n, and the proof depends
on the fact that the invariants of these deeper references hold. This is made explicit in our
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proof by assigning an integer depth to each reference and by using an access permission Eπ.n

that grants access to all references at depth n and beyond.
Kaplan et al. do not remark that the data structure can safely be used in a concurrent

setting. We prove that it can, provided that one uses a single reference to an immutable
5-tuple, as opposed to a tuple whose five fields are mutable. This is rather remarkable, as
the code does not contain any synchronization instructions. However, we note that this
invalidates its complexity analysis. In practice, assuming that its performance in sequential
code is satisfactory, it might be an interesting candidate for use in possibly-concurrent code,
as there is no extra cost to be paid just to ensure safety under concurrent use.

Our proof of safety and functional correctness is carried out under the assumption of
a sequentially consistent memory (SC). Yet, because it relies solely on stable references, this
data structure should be safe and correct also under much more relaxed memory models.
Indeed, all of the values that are ever written to a stable reference satisfy the same property ϕ.
So, when the reference is read, it does not matter which (past, present, or future) value is
read; all values are safe to use. To port our proof to a variant of Iris that supports a relaxed
memory model, it should suffice to prove that our concurrent stable reference API is still
valid with respect to this model. The rest of our proof should be unaffected.

Although Separation Logic is renowned for its ability to reason about unique ownership
and disjointness of references [ORY01, Rey02], we make rather little use of this ability.
Indeed, a stable reference is always shared, never uniquely owned. In our concurrent stable
reference API, two references are never known to be disjoint. In our sequential stable
reference API, two references are known to be disjoint only if they are indexed with distinct
integer levels. In spite of these remarks, we view Iris as a highly suitable tool in this program
verification effort. Our proof does involve a uniquely-owned reference in the situation where
naive pop produces an invalid deque, which is later repaired by push (§2.2). This reference
does not satisfy the data structure’s invariant, so it is important to check that it is used
locally and never allowed (by mistake) to masquerade as a stable reference and participate
in the data structure. Furthermore, our proof involves several kinds of uniquely-owned ghost
permissions. These include time credits, which are permissions to spend one unit of time,
and the ghost tokens that serve as access permissions in our sequential stable reference API.

Our paper illustrates several independent uses of nested Separation Logic triples, an idiom
which we believe deserves to be better known. In our sequential stable reference API (SSRef-
Read-Write), a nested triple expresses the idea that a reference is invalidated by a read and
repaired by a later write. In our specification of naive pop (NaivePop-Unsafe), a nested
triple expresses the idea that naive pop returns an invalid deque, which nevertheless can
be passed as an argument to push. In our new specification style for fold functions, nested
triples are used to define safe-fold , which represents a permission to perform a sequence
of calls to a function f with a specific sequence of arguments.

At present, our proofs rely on a manual transcription of our OCaml code into HeapLang.
In future work, it would be desirable to use an automated translation, such as those offered
by Zoo [All26] or Osiris [SYMP25].

We have encountered serious performance problems with the current implementation of
Iris on top of Rocq. Iris’s tactics can be very slow and can fail to terminate for unknown
reasons; sometimes a change causes divergence in a seemingly unrelated part of the proof.
Although we have eventually worked around or tolerated these problems, they have made
our progress much slower and more painful than expected. We plan to report these problems
to the implementors of Iris, in the hope of informing future implementation efforts.
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