Endangered by the Language But Saved by the Compiler:
Robust Safety via Semantic Back-Translation

NIKLAS MUCK, MPI-SWS, Germany

AINA LINN GEORGES, MPI-SWS, Germany

DEREK DREYER, MPI-SWS, Germany

DEEPAK GARG, MPI-SWS, Germany

MICHAEL SAMMVLER, Institute of Science and Technology Austria (ISTA), Austria

It is common for programmers to assemble their programs from a combination of trusted and untrusted
components. In this context, a trusted program component is said to be robustly safe if it behaves safely when
linked against arbitrary untrusted code. Prior work has shown how various encapsulation mechanisms (in
both high- and low-level languages) can be used to protect code so that it is robustly safe, but none of the
existing work has explored how robust safety can be achieved in a patently unsafe language like C.

In this paper, we show how to bring robust safety to a simple yet representative C-like language we call Rec.
Although Rec (like C) is inherently “dangerous” and thus not robustly safe, we can “save” Rec programs via
compilation to Cap, a CHERI-like capability machine. To formalize the benefits of such a hardening compiler,
we develop Reckon, a separation logic for verifying robust safety of Rec programs. Reckon is not sound under
Rec’s unsafe, C-like semantics, but it is sound when Rec programs are hardened via compilation and linked
against untrusted code running on Cap. As a crucial step in proving soundness of Reckon, we introduce a
novel technique of semantic back-translation, which we formalize by building on the DimSum framework for
multi-language semantics. All our results are mechanized in the Rocq prover.

CCS Concepts: « Security and privacy — Logic and verification; « Theory of computation — Separation
logic.

Additional Key Words and Phrases: Secure Compilation, Hardening Compilation, Robust Safety, DimSum, Iris

ACM Reference Format:

Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler. 2026. Endangered by the
Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation. Proc. ACM Program. Lang.
10, POPL, Article 40 (January 2026), 30 pages. https://doi.org/10.1145/3776682

1 Introduction

It is common for programmers to assemble their programs from a combination of trusted and
untrusted components. When a trusted module T is linked against a module U from an untrusted
source, how can one ensure that U does not violate the invariants that T maintains on its internal
data representation, so that T continues to behave safely and correctly?

There are several, well-known approaches to answering this question, which employ a variety
of built-in encapsulation mechanisms present in different (high- and low-level) programming

Authors’ Contact Information: Niklas Miick, MPI-SWS, Saarland Informatics Campus, Germany, mueck@mpi-sws.org;
Aina Linn Georges, MPI-SWS, Saarland Informatics Campus, Germany, algeorges@mpi-sws.org; Derek Dreyer, MPI-SWS,
Saarland Informatics Campus, Germany, dreyer@mpi-sws.org; Deepak Garg, MPI-SWS, Saarland Informatics Campus,
Germany, dg@mpi-sws.org; Michael Sammler, Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria,
michael.sammler@ista.ac.at.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART40

https://doi.org/10.1145/3776682

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

https://orcid.org/0009-0006-9622-0762
https://orcid.org/0000-0002-5951-4642
https://orcid.org/0000-0002-3884-6867
https://orcid.org/0000-0002-0888-3093
https://orcid.org/0000-0003-4591-743X
https://doi.org/10.1145/3776682
https://orcid.org/0009-0006-9622-0762
https://orcid.org/0000-0002-5951-4642
https://orcid.org/0000-0002-3884-6867
https://orcid.org/0000-0002-0888-3093
https://orcid.org/0000-0003-4591-743X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776682
https://www.acm.org/publications/policies/artifact-review-and-badging-current

40:2 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

1 bool password_check() {

2 int pwd = 0; int usr = 0;
3 read_hash_from_db(&pwd) ;
¢+ let saved = pwd; m

5 adv_io(&usr);

¢ assert(pwd == saved); m

7 return hash(usr) == pwd;
8

}

Fig. 1. Password check example

languages. For example, when linking T against untrusted code in a safe, higher-level language,
one can use object capability patterns, which “wrap” all objects passed from T to untrusted code so
that the latter does not have direct access to T’s private state [29, 42, 64]. Alternatively, if one is
linking against low-level untrusted code, one can physically sandbox the untrusted code so that it
can only manipulate memory locations in its own “compartment” [68, 37, 73, 53], or one can use
capability machines to enforce fine-grained memory isolation at the hardware level [71].

Prior work has shown how the semantic benefits of all these various encapsulation mechanisms
can be understood in terms of the concept of robust safety [23, 22, 16, 64]. Given some notion
of “safety” that one is interested in—e.g., absence of undefined behavior—a module T is said to
be “robustly safe” if it remains safe when linked against arbitrary untrusted modules U. Object
capability patterns, sandboxes, and capability machines are all tools that enable one to take a
module T that is safe on its own, and encapsulate it so that it becomes robustly safe [64, 53, 18].

In all of the aforementioned prior work, since robust safety is enforced via built-in encapsulation
mechanisms of the (high- or low-level) language under consideration, it can be characterized as
a “contextual” syntactic property—i.e., a property that holds when a module in the language is
linked against any possible syntactic program context in the same language. By so reducing robust
safety to a contextual syntactic property on programs, one can then establish it using standard
proof methods for compositional program verification, such as logical relations and program logics.
Indeed, that is exactly what Swasey et al. [64], Sammler et al. [53], and Georges et al. [18] all do.

1.1 Robust Safety for an Unsafe, C-Like Language via Hardening Compilation

In this paper, we explore how robust safety can also be achieved in an unsafe, C-like language. Such
a language poses a fundamental challenge: we cannot simply formulate robust safety in this setting
as a contextual syntactic property because the syntactic program contexts of a C-like language can
incur undefined behavior and are thus too powerful. To illustrate the problem, consider the simple
password_check function shown in Fig. 1. (Technically, this is written in an idealized version of C
we call Rec; the formal semantics of Rec is given in §2.)

The function password_check first calls the trusted function read_hash_from_db to read the
correct password hash into pwd (line 3). (Ignore the two gray m lines, line 4 and line 6, for now.)
Then, it calls an untrusted I0 function (adv_io) to read some input from the user (line 5). Finally, it
computes the hash of the user input, compares it against the hash of the correct password from the
database, and returns a Boolean signalling whether they match (line 7).

We would like to be able to prove that password_check is robustly safe against an arbitrary
untrusted implementation of adv_io. By “safe” here, we mean that password_check should conduct
a bona fide password check, regardless of how adv_io is implemented. Towards that end, it is
essential that adv_io should not be able to modify pwd, since otherwise it could just store the hash
of the user input into pwd and force the subsequent check on line 7 to trivially succeed. To formalize

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:3

this safety condition, we save the value of pwd into the variable saved (line 4) and assert after the
call to adv_io that it did not change (line 6)." We would like to be able to prove that this assertion
holds for all possible implementations of adv_io.

Unfortunately, it doesn’t! Concretely, consider the following implementation:

9 void adv_io(int* usr) { *usr = 0; *(usr + 1) = hash(@); }

This function sets the input to 0, then guesses that pwd is located adjacent to usr in memory and
uses pointer arithmetic to override pwd with the hash of 0, making the password check succeed.
While it is not guaranteed how variables are laid out in memory, this attack in fact succeeds when
password_check and adv_io are compiled by GCC?.

Technically, this attack works since the out-of-bounds access to (usr + 1) in adv_io incurs
undefined behavior. Concretely, Rec (like C) does not give a defined semantics to out-of-bounds
memory accesses, but rather allows the program to behave arbitrarily when they occur. This
undefined behavior allows adv_io to modify the local variable pwd of password_check, even
though adv_io does not have direct access to it.

At first glance, it thus appears that in an unsafe, C-like language, we simply cannot write robustly
safe code due to the inherent insecurity of the language, which gives syntactic program contexts
(such as the naughty implementation of adv_io shown above) too much adversarial power. But in
fact we can recover robust safety—by leveraging a hardening compiler. A hardening compiler is one
that introduces security measures during compilation in order to make the target of compilation
more secure than the original source program.

There are many ways in which a compiler can harden code against an attacker [2, 36, 44, 68]; in
this paper, we focus on hardening via compilation to a capability machine. As mentioned above,
capability machines are a new type of hardware architecture providing fine-grained memory
protection. This protection is achieved by enriching pointers with capabilities that are used by
the hardware to dynamically control access to privileged code paths and regions of memory. In
particular, by compiling Rec to a capability machine in the right way (see §5), we can prevent the
attack of adv_io on password_check by ensuring that the capability to access pwd is never passed
to adv_io. Thus, if (as shown above) adv_io attempts to access pwd vicariously by offsetting from
the usr address that is passed to it, the capability machine will flag this as an illegal memory access
and halt the program safely. More generally, such a hardening compiler should allow us to prove
that the assertion on line 6 always succeeds when password_check is linked against any program
context.

At least, that is the intuition. But how can we formalize it?

1.2 How Our Goal Differs from Secure Compilation

A natural starting point is the growing body of work on secure compilation [1, 3, 48, 15, 62, 6, 47, 12,
46, 49, 50, 14, 4, 30, 5, 65, 8, 9]. Broadly speaking, the goal of secure compilation is to develop formal
foundations for compilers that preserve key security properties of the source program throughout
compilation, in particular when the resulting compiled code is linked with untrusted code in the
target language of the compiler. The key word here is “preserve”: secure compilation assumes that
some property of interest holds for source-language programs, and aims to show that it still holds
after compilation to the target language. Examples include full abstraction [1] and robust safety
preservation [4, 50].

INote that we use a let-binding for saved to make sure that it is not stored in memory and cannot be affected by the attacker.
Concretely, such let-bindings have a substitution-based semantics in Rec (§2).
2GCC 15.1 on Linux x86_64 with default options

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:4 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

On the one hand, our goal in this paper is closely related to that of secure compilation in that we,
too, aim to reason about the safety of compiled code linked with arbitrary untrusted target-language
code. On the other hand, our goal is fundamentally different in that:

e We are concerned with a C-like source language, Rec, that does not enjoy any useful robust
safety properties to begin with—it is inherently “dangerous”, for example incurring undefined
behavior at out-of-bounds memory accesses. So there is no useful property for the compiler
to preserve, and the basic assumption of secure compilation does not apply.

e We want to formalize how a hardening compiler for Rec can nevertheless “save” us by
guaranteeing robust safety for Rec modules under certain conditions. For example, we want
to be able to establish that password_check is robustly safe when compiled with such a
hardening compiler—even though it passes the address of a local variable (usr) to untrusted
code—because it never passes the address of the secret local variable pwd.

To sharpen this distinction, we briefly mention some important prior work on secure compilation,
and refer the reader to §8 for further details. In particular, the line of work on compartmentalizing
compilation [30, 5, 65] explores secure compilation for an unsafe, C-like source language. However,
in order to ensure that source-language programs enjoy a useful property to be preserved, their
approach relies crucially on extending the source language with compartments, which prevent
undefined behavior in an untrusted module from propagating to trusted modules. Furthermore,
they do not allow pointer-passing between trusted and untrusted code, and thus cannot account
for our password_check example. Other researchers [15, 14, 9] have developed secure compilation
frameworks that do permit pointers to be passed between trusted and untrusted code. However,
the source languages of their compilers are safe (i.e., do not have undefined behavior).

1.3 Our Contribution: Formalizing How Hardening Compilation Enables Robust Safety

In this paper, we present the first formal framework for establishing how hardening compilation
enables robustly safe reasoning in a C-like language that does not a priori support such reasoning.

The setup. Concretely, we consider a simple compiler, Rec2Cap: its source language is Rec,
an idealized, C-like language with a CompCert-style block-based memory model [39, 38], and its
target language is Cap, an idealized yet representative capability machine architecture based on
Cerise [18]. The Rec2Cap compiler hardens Rec programs by transforming the pointers of Rec
into capabilities: unforgeable fat pointers that enable dynamic tracking (by the Cap machine) of
which memory region the pointer is permitted to access. The details of how Rec2Cap achieves this
hardening are fairly straightforward (see §5) and are not a significant contribution of this paper.

High-level structure of our framework. We aim to prove that the Rec2Cap compiler enables a
form of robust safety for Rec modules. Moreover, we want to make it possible for Rec programmers
to reason about robust safety of their code at a high level of abstraction, without having to understand
the details of Rec2Cap or the Cap machine. Therefore, we present our framework in two stages:

(1) We first present Reckon, a separation logic based on Iris [33, 35, 32] and OCPL [64], which
provides a high-level method for verifying robust safety of Rec modules. Reasoning in Reckon
requires no knowledge of Rec2Cap or the Cap machine.

(2) We then present RobustDimSum, a semantic framework for establishing the soundness of
Reckon. Crucially, RobustDimSum does not establish that Reckon is sound under the unsafe,
C-like semantics of Rec—rather, it establishes that Reckon is sound for Rec modules that are
compiled by Rec2Cap and linked against untrusted code running on the Cap machine.

Reckon: A program logic for robust safety of Rec modules. Reckon is directly inspired
by prior logics for robust safety, in particular OCPL [64]. As with OCPL, the most interesting

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:5

aspect of Reckon is how it supports safe interaction with untrusted code. In order to formalize this
interaction, Reckon (like OCPL) distinguishes between high and low values. High values are fully
controlled by the trusted module T we are verifying, whereas low values are those that may be (or
may have been) shared with untrusted code U we link against. In particular, for values that are
memory locations, high means that the location cannot be accessed by untrusted code (because it
has never been shared with U), whereas low means that the location may be accessed and written
to by U. Hence, during verification, we may impose custom Iris invariants on the contents of high
locations, but not on the contents of low locations.

Corresponding to the distinction between high and low memory locations, Reckon provides two
kinds of assertions: standard points-to assertions (# + v) for high locations, and a low predicate
(low(?)) for low locations. Note that the low(?) predicate does not specify the contents of /—this is
because the contents of a low location may not be preserved around a call to an untrusted function.
In order to support reasoning about the contents of a low location within trusted code, Reckon
thus provides rules to allow a low location to be temporarily borrowed as high so long as untrusted
code is not invoked during the borrow.

The most important rule of Reckon is the following one, which enables safe invocation of an
untrusted function f:3

SPEC-CALL-UN

* Iow(v)} f(v) {v. low(v)}

VEV
The rule states that we may safely invoke f so long as we only pass it low values, and in return the
value we get back from f is also low. While this rule clearly places a restriction on interaction with
untrusted code, it is still useful. For example, as we demonstrate in §2, we can easily use Reckon
to verify robust safety of the password_check example (i.e., that the assertion on line 6 always
succeeds regardless of how adv_io is implemented). In §2, we also present further details of the
Reckon logic, along with several other representative examples of its expressive power.

RobustDimSum: Proving soundness of Reckon via semantic back-translation. As ex-
plained above, Reckon is not sound under the C-like semantics of Rec—we already saw a counterex-
ample to the soundness of spec-cari-un with the adversarial implementation of adv_io in §1.1.
Nevertheless, we will prove that Reckon is sound for Rec modules that are compiled by Rec2Cap
and linked against untrusted Cap code. To establish this formally, we need to do two things:

e We need to prove that Rec2Cap correctly compiles Rec modules to Cap, so that specifications
proven in Reckon continue to hold when the compiled code runs on the Cap machine.

e We need to prove that the proof rule for invoking untrusted functions, spec-caLi-un, is in fact
validated by all possible Cap implementations of those functions.

The first of these goals is essentially a compiler correctness result: non-trivial, but also not
requiring fundamentally new technology. The second, however, poses a major challenge. To
understand why, let us consider a well-known proof strategy employed by prior work on robust
safety preservation. To validate spec-caLi-un against all possible Cap implementations of the
function f, we might hope to define a syntactic back-translation from Cap implementations to Rec
implementations of f. Defining such a syntactic back-translation (in a semantics-preserving way)
is notoriously painful, but in prior work, it was at least a sufficient technique for establishing
robust safety preservation because the source languages under consideration in such work were
safe. In contrast, in our setting, we would need to take an additional step of formally establishing

3This rule is a simplification. See §2.2 for the full rule.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:6 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

that all Rec implementations in the image of the syntactic back-translation actually validate the
spec-cALL-UN rule. Unfortunately, it is not at all clear how to do so.

To overcome this problem, we therefore move beyond syntax and develop a semantic character-
ization of how untrusted Cap code may behave. Towards that end, we build on DimSum [54], a
recently developed Rocq-based framework for multi-language semantics and compiler verification.
In DimSum, all modules of a program are modeled semantically as labeled state-transition systems,
where the labels represent events, and modules interact with one another (a la process calculi)
via matching sends and receives on these events. By building on DimSum, we are able to define
a universal contract, i.e., a semantic overapproximation of the possible behaviors of untrusted
Cap code. In fact, we define two universal contracts: UNIV, a universal contract for Cap modules
(interacting with other modules via Cap-level events), and SIM, a universal contract that simulates
the behavior of Cap modules but interacts with other modules via Rec-level events. We then prove
a novel semantic back-translation theorem* which relates the two universal contracts, ensuring
(intuitively) that SIM is a valid Rec-level simulation of UNIV. With this semantic back-translation
in hand, the soundness proof for Reckon reduces to a proof of compiler correctness for Rec2Cap,
which we formalize in Rocq following the style of prior work on DimSum.

We call the resulting semantic framework RobustDimSum. In §3, we describe the high-level
structure of RobustDimSum’s proof strategy. Then, after introducing Cap in §4 and our compiler
Rec2Cap and its correctness statement in §5, we get to the heart of RobustDimSum in §6 when we
introduce SIM, UNIV, and the semantic back-translation between them. Finally, we put everything
together to provide the soundness statement for Reckon in §7 and conclude with a discussion
of related work in §8. The accompanying Rocq development can be found in the supplementary
material [43].

Non-goals and limitations. The main contribution of this paper is the RobustDimSum approach
to bringing robust safety to an unsafe source language via semantic back-translation. In contrast, our
separation logic Reckon is intended merely as a proof of concept, with just enough features to verify
interesting examples (§2.3) that showcase what RobustDimSum can support. As a logic, Reckon
is deliberately derivative of prior work, and in fact there are technical reasons why it does not
support all the bells and whistles of state-of-the-art Iris-based logics. In particular, Reckon provides
only first-order ghost state and invariants, not higher-order ghost state [31] and impredicative
invariants [63], because DimSum is incompatible with the countable step-indexing used by Iris.
(We believe one could overcome this limitation by using transfinite step-indexing [60], but we leave
this to future work.) In addition, Rec and Reckon consider only sequential programs since DimSum
presently lacks support for concurrency. Finally, the capability language Cap assumes a somewhat
idealized calling convention. §8 discusses how this calling convention could be implemented
following recent literature.

2 Overview of Rec and Reckon

This section formally introduces the Rec language, as well as Reckon, our separation logic for it.

2.1 Rec: A Simple, Unsafe, C-Like Language

As our source language, we use the Rec language from the original DimSum paper [54]. The syntax
of Rec is shown in Fig. 2. Values in Rec can be integers z, Booleans b, or memory locations ¢. Rec
has a block-based memory model (following CompCert [39, 38]) whereby locations are a pair of
a block-identifier and an offset into the block. A Rec memory m is a finite map from locations to

4Although we do not literally back-translate Cap code (i.e., syntax) to Rec code, we do back-translate the observable
behaviors (i.e., semantics) of Cap modules (modeled by UNIV) to corresponding observable behaviors of the Rec-level SIM.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:7

Valsviu=z:Z | b:B | f:Loc BinOp3® =+ |<|==|<
Memory 3 m £ Loc fin, val Loc 3 ¢ == {id : Id, offset : Z}

Exproeus=v | x| e dey | letx:=ejine, | ife;theneselsee; | e(e;) | le | e «— e

Library 3 R == (fn f(x) = static y[n]; local y[n];e),R | O

Fig. 2. Grammar of Rec (based on Sammler et al. [54]).

{P}e{v.Q}y = P = wple{v.Q}

‘WP-LOAD WP-STORE
{tvitte{vov=vislm vy {t vl tevi{vv=vislim vty
‘WP-SHARE ‘WP-BORROW
Lid ¢ ps “HD*IOW(()}Q{Q}PS b=rtid {l">—>D* 3k E!v,l’,»—>v*low(v)}6{Q}
b ¢P3 ieD bips
> Dx %k 3y, velow(v)teQ : -
oS ps {0 D low(D)} < (Q
‘WP-RETURN WP-CALL-UN
b=rid {t> D}e{Q} UnFn(f, nf)
Cond
{t’ = Dxlow(l) * 3k Jv, 6 > v Iow(v)} e {Q} {|V| =ne* (% Iow(v))} (V) {v. Iow(v)}
ieD b::ps VEV

Fig. 3. Excerpt of the Reckon Separation Logic. ¢; is shorthand for {7.id, i}

values. A Rec expression e can either be a value, variable, binary operation, let binding, if-statement,
(recursive) function call, load, or store. While there are no primitive loops, Rec supports (mutual)
recursion. Rec functions are collected into libraries R. Each function has a name f, a list of arguments
X, a list of static and local variables and a body (given by an expression ¢). Local variables are
freshly allocated on each invocation of a function, whereas static variables are allocated at the
beginning of the execution and retain their values between invocations.’

As highlighted in the introduction, Rec is an unsafe language. In particular, like C’s semantics,
Rec’s semantics uses undefined behavior for various purposes, notably in response to memory-
safety violations. Furthermore, Rec provides no built-in sandboxing mechanism to constrain this
undefined behavior, nor any other way to safely interact with untrusted code. This makes Rec a
good vehicle for showcasing our approach to proving robust safety for unsafe languages.

2.2 Reckon: A Separation Logic for Proving Robust Safety of Rec Programs

In this section, we present Reckon, a proof-of-concept separation logic for reasoning about robust
safety of Rec programs.

At heart, Reckon is a simplified variant of Iris without step-indexing (for reasons discussed at
the end of §1). While the absence of step-indexing means that we lose Iris’s higher-order ghost
state and impredicative invariants, we retain a simpler first-order variant of Iris invariants [P|"
with the restriction that P itself may not contain invariant assertions. This is still sufficiently useful
to verify a number of interesting examples, as we will see in §2.3.

SStatic variables are a new addition compared to the original Rec of Sammler et al. [54]. We use them in the counter example
in §2.3.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:8 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

As explained in §1.3, a key concept in Reckon (following OCPL [64]) is the distinction between
high and low locations, with the former being private to trusted code and the latter being shareable
with untrusted code. (This is generalized trivially to a high/low distinction on values by asserting
that integer and Boolean values are vacuously low.) Reckon correspondingly includes different
forms of assertions (we refer to them as recProp-assertions) to describe ownership of high vs. low
locations.

/+> v The location ¢ points to the value v.
low(?) The block with identifier 7.id is shared with the untrusted code.
¢ > D The block with identifier 7.id has D as the domain of block offsets.

The high assertion ¢ — v expresses exclusive ownership of a high location ¢, whereas the low
assertion low(?) expresses the persistent knowledge that ¢ is low, meaning that the memory block
with identifier 7.id (i.e., the memory block to which the location ¢ belongs) has been or can be
shared with untrusted code. Note that in order for ¢ to be low, all values stored in #’s memory block
must also be low since they will be accessible to untrusted code. In order to enforce this property
(and more generally to track the scope of #’s memory block), we use the domain assertion # > D,
which expresses that the memory block to which ¢ belongs has domain D—i.e., D is the set of valid
offsets in that block.

Following Iris, the program logic of Reckon is based on a weakest precondition assertion
wp? e {Q}. Roughly, wp?® e {Q} states that the expression e is robustly safe, and if it terminates in
a value v, then Q(v) holds.® The parameter ps tracks the shared blocks that are currently “borrowed”
(see the discussion of borrowing below). We will use wp ¢ {Q} as a shorthand for wpl! ¢ {Q} (i.e.,
with empty ps), which we will call a closed weakest precondition.

Fig. 3 presents an excerpt of the program logic rules.

To share a block with untrusted code, Reckon provides the rule wr-suare. To apply the rule,
the user must give up exclusive ownership of each location k;.p 3v, £; = v in the memory block,
whose domain is determined by ¢ > D. Furthermore, a location can only be shared if its content is
safe to share, as expressed by requiring low(v) for each value in the block.

Given exclusive ownership of a location, the rules for load (wr-Loap) and store (wr-sTORE) are
standard from separation logic. These are, however, not always directly applicable, for as we have
seen, once a block is shared with untrusted code, exclusive ownership of its locations is given
up. Thus, to access a location after it has been shared, the program logic provides a borrowing
mechanism inspired by Simuliris [17], which allows the user to temporarily treat a low location as
a high location. we-Borrow grants temporarily exclusive access to the shared block b containing
a low location 7, and adds the block to the list of borrowed blocks (b :: ps). The list ps prevents
borrowing the same block twice via the sidecondition b ¢ ps. In addition, one learns that all values
v contained within the block b satisfy low(v). Once borrowed, a location can be returned using
wP-RETURN, by which ownership of b is given back and b is removed from ps.

Finally, we come to the piéce de résistance: the rule we-carr-un for calls to untrusted functions.
This rule states that we can call the function f with nf arguments, so long as all the arguments are
low, in which case the return value is guaranteed to be low as well. Note that we-carL-un uses a
well-bracketed Hoare triple {P} e {Q}Sond defined as follows:

{P} e {Q}5o" £ VO, {P % Cond(®) * @} e {v. Q(v) * @}

Intuitively, well-bracketed Hoare triples encode the property that the called function maintains
well-bracketed control-flow, i.e., calls and returns follow a stack-like discipline, and e.g., returns
cannot be reordered by untrusted code. They do so by taking a condition ® from the set Cond as a

®More details on the definition of wp e {Q} can be found in §7.1.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:9

precondition and returning the same . In §2.3, we will see how we can instantiate Cond to verify
the classic “very awkward” example [13], which relies on well-bracketed control flow.

Note that we-caLL-un requires that there be no outstanding borrowed blocks (i.e., the weakest-pre
is closed). This is important since the untrusted code may overwrite the contents of any shared
locations. The rule additionally depends on the predicate UnFn(f, n¢) stating that the untrusted
code provides the function f expecting n; arguments. For now, we will keep this predicate abstract,
and assume it as part of example specifications. §7.1 describes how we obtain it when applying the
soundness theorem of Reckon.

2.3 Examples

To show the expressiveness of Reckon, we use it to verify some interesting examples. The proofs
for all examples are mechanized in Rocq and included in our supplementary material [43].

The password-checking example. Let us prove a Reckon specification for our motivating
example: the password-checking example from Fig. 1 (§1.1).

LEMMA 2.1. Choose Cond(®) £ ® = T. Let read_hash_from_db and hash be two known functions
satisfying the following specifications:

Ve {3v, ¢ — v} read_hash_from_db(¢) {v. 3z, ¢ — z}

Vv. {low(v)} hash(v) {V'. 3z,v =z}
We then prove the following:
{UnFn(adv_io, 1)} password_check {v. 3b,v = b}

Since the example does not depend on well-bracketed control flow, we use a trivial invariant
condition for Cond. The precondition of password_check assumes UnFn(adv_io, 1) to reason
about the call to adv_io (since adv_io takes one argument). The specification for password_check
is otherwise quite simple: password_check returns some Boolean b. (We do not know whether
it will be true or false since the password is given by adv_io.) However, recall that the body of
password_check uses an assert statement to check that adv_io does not override pwd. We employ a
semantics for the assert whereby, if it fails, it emits a function call to the assert_failed subroutine,
which is unimplemented. The soundness theorem for Reckon ensures that such unimplemented
function calls never occur, so by proving this spec we guarantee that the assert always succeeds.

The proof is largely straightforward. Upon initialization, the proof begins with ownership of
two singleton blocks:

usr — 0 usr » {0}
pwd — 0 pwd > {0}

Next, the specification for read_hash_from_db is applied, and pwd is updated to point to some
integer z. We then arrive at the interesting part of the proof: the call to adv_io. Here we must
apply wr-carr-un. Since the call takes usr as argument, we must establish low(usr). We do this by
applying we-sHARE, after which we have:

low(usr) = usr » {0}
pwd - z % pwd » {0}

We then frame ownership of pwd around the call to adv_io, so that afterwards we know that pwd
still points to z and we can prove the assert succeeds. Finally, we use wr-Borrow to borrow the
contents of usr, so that we can pass it to hash and conclude the proof.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:10 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

Monotone counter: Invariants. To illustrate invariant-based reasoning, we verify a simple
monotone counter corresponding to the following code.

1 void counter() { static int ¢ = 0; ¢ += 1; assert(@ <= c¢); } void main() { adv(); }
The counter function increments the static variable c and asserts that it is always positive.” The
main function invokes the untrusted code adv that can arbitrarily call counter. To prove that
counter is robustly safe, we use the invariant that c always remains positive [3z,c > z 2 > 0 \y.
Our program logic allows us to establish and maintain this invariant since c is never shared with
the untrusted code.

Very awkward example: Well-bracketed control flow. Well-bracketed control flow is a
safety property which guarantees that function calls return exactly to their call-site. By ensuring
well-bracketed control flow, we can prevent control-flow hijacking attacks that divert program
executions by replacing a return with some unwanted execution [2]. Thankfully, recent work
has shown how capability machines can be used to enforce well-bracketed control flow, thus
eliminating this family of attacks [55]. By supporting well-bracketed reasoning in Reckon, we show
furthermore how these safety measures can be soundly lifted to the Rec level.

To showcase well-bracketed reasoning, we verify the well-known “very awkward” example [13]:

1 void awk() { static int x; x = 0; adv(); x = 1; adv(); assert(x == 1); }
In this example, awk calls adv, and adv could call awk back, so x could be flip-flopped back and
forth between 0 and 1. However, well-bracketed control flow ensures that, since x is private to awk,
each (recursive) call to awk within adv can only have the end-to-end effect of setting x to 1. As a
result, after x is set to 1 in awk, the subsequent call to adv () can only have the end-to-end effect of
leaving x as it is (either it never calls awk, in which case x stays at 1, or it calls awk, in which case it
flip-flops x but returns with x still at 1). Hence, the assert must succeed.

Our approach to proving this follows Timany et al. [66] except that we use Cond to track the
stack of ghost names. Concretely, we pick Cond(®) = Jy. ® = ey . Here, ¥ represents a stack
of ghost names, each corresponding to a recursive invocation of awk. The fact that we-carr-un
provides the same @ in the postcondition as given in the argument allows us to reason that the
untrusted code maintains well-bracketed control flow (since the stack is the same after the call as
before). This allows us to prove robust safety of the very awkward example.

3 Overview of RobustDimSum

Background: DimSum. Our approach to proving soundness of Reckon builds on DimSum [54],
a semantic framework for modular, refinement-based reasoning about multi-language programs.
DimSum models program modules denotationally as semantic modules. A semantic module is a
labeled transition system, whose states are the possible internal states of the program module,
and whose transitions can be labeled with external interaction events, e.g., calls to and from other
modules. Each language (i.e., Rec and Cap in our case), comes with a fixed set of events. As an
example, for Rec, these events denote incoming (-?) and outgoing (-!) calls and returns, carrying
the arguments/return value and the full state of the memory:

Events 3 e == Call!(f,v,m) | Call?(f,v,m) | Return!(v,m) | Return?(v, m)

The DimSum module corresponding to a syntactic module P is written [P]. We annotate the
semantic brackets [-] with subscripts to distinguish the modules of different languages, e.g., [P]-
denotes a Rec module whereas [P]. denotes a Cap module.®

"Note that integers in Rec are unbounded, unlike C.
8We consistently use different colors to denote Rec and Cap entities.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:11

Two DimSum modules of the same language can be semantically linked through the operator @,
asin [P1]. ®. [P2]. (again, the subscript c indicates the language). Semantic linking produces a new
module that eliminates interactions that occur between the two modules, but leaves interactions
with other modules intact. Each language also comes with a syntactic linking operator U that
combines two syntactic modules. These syntactic and semantic linking operators coincide on
syntactic modules as in the following equations.

[[Pl Ue PZ]]C = [[P1]]c Dc [[Pzﬂc HP] Ur PZ—‘r = HPIHF DSr HPZTF (l)

To reason across languages, DimSum introduces the concept of wrappers. A wrapper converts a
module over one set of events to a module over a different set of events. It does this by translating
the events emitted by the converted module. This translation may be stateful, thus allowing for
nontrivial transformations of sequences of events. In our setup, we define a specific wrapper from
Rec to Cap, written [-],=. This wrapper converts Rec events (shown above) to Cap events.

Proofs in DimSum establish (termination-insensitive) refinement between two modules of the
same language, written [P1]. < [P2]c (“[P1]c refines [P2].”). This relationship should be understood
in terms of labeled transition systems as “every labeled execution trace of [P;]. is also a trace of
[P2].”. To relate the modules of two different languages, we combine refinement and wrappers. For
example, we may say [P1]c = [[P2]1reec.

We use the notation | P to denote the target-language program obtained by compiling the source
program P. Specifically, in this paper we use | - for the compiler Rec2Cap from Rec to Cap. In
DimSum, compositional compiler correctness is stated succinctly as the statement

[LPle = TIP]-Trae @)

which means that any semantic behavior of the compiled module | P can be simulated by the source
module P translated with the source-to-target wrapper.

Overview. Next, we provide an overview of RobustDimSum, our novel proof method for estab-
lishing robust safety for Rec programs compiled to Cap using Rec2Cap. Given a Rec module P, our
goal is to establish that | P U, un does not have failed asserts. (This implies also that the program
does not exhibit undefined behavior, since undefined behavior could result in failed asserts.) We
model a failed assert as a call to an undefined function assert_failed that would appear on the
trace as an undefined call event, and we prove that the trace does not contain any such undefined
call events.

To formalize this property in DimSum, we define a simple Cap semantic specification module,
safe., which does not make any undefined calls (see §7). Then, robust safety can be restated as the
following refinement:

Yun. [P U un]. < safe. (3)

Our goal is to obtain Refinement (3) from Reckon. However, we run into a key challenge: Reckon
is defined purely on Rec, but the soundness statement needs to reason about the untrusted Cap
module un. How can we bridge this gap?

As explained in §1, we would like to somehow “back-translate” un to a member of a class of Rec
modules that are “well-behaved” in the sense that they validate the rules of Reckon. But it is not at
all clear how to do so. This is where moving to a semantic domain like DimSum’s modules pays
off generously: Rather than characterize this class of Rec modules that behave like untrusted Cap
modules syntactically, we characterize the class semantically as a single Rec module in DimSum
that can simulate the behavior of all Cap modules. This Rec module, called SIM, is relatively easy
to define in DimSum, which is unconstrained by syntax. Specifically, we define SIM using logical
assertions that can be encoded into an operational semantics thanks to DimSum’s support for

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:12 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

‘ Soundness of Reckon w.r.t. SIM ‘

P verified using Reckon = [P, &, SIM &, primg,.. = safer (4)

’ Semantic refinements ‘

VYun. [|P U;un U, prim].

2 [LP]ec ®c [un]. &, [prim]. Semantic linking, Eq. (1) (5)
2 [P+ 1r=c ®c [un]. &, [prim]. Compiler Correctness, Theorem 5.1 (§5) (6)
2 [[P]+1rec ®c UNIV &, [prim]. Universal Contract, Theorem 6.1 (§6.2) (7)
2 [[P]rTree ®c [SIM]rzc @ [prim]. Simulation, Theorem 6.2 (§6.3) (8)
2 [[P]1rac ®c [SIMTrae ®c [primg,..|r—c Primitive 9)
< [[P]- ®r SIM & prim ;e 1rac Linking of Wrappers, Lemma 5.2 (§5) (10)
= [safe] = Soundness, Theorem 7.1 (§7.1) (11)
< safe. Theorem 7.2 (§7.2) (12)

Fig. 4. A summary of RobustDimSum

angelic nondeterminism. We show that SIM can simulate the behavior of any Cap context up to
the Rec-to-Cap wrapper. In DimSum’s notation,

Vun. Jun]. 2 [SIM] = (13)

Having defined SIM, we prove Reckon sound w.r.t. it, as expressed by Refinement (4) in Fig. 4.
Here, safe, is a straightforward Rec module in DimSum that does not make undefined function
calls. Consequently, Refinement (4) says that a verified module P, after being linked semantically
with SIM, will never make an undefined function call.

Proof outline. We now explain how all these pieces come together in RobustDimSum to establish
Refinement (3). The outline of the proof is given in Fig. 4. The gray parts about prim can be ignored
now; we will return to them later.

The first two proof steps are straightforward: Step (5) decomposes the syntactic Cap module into
semantic modules using Eq. (1). Step (6) applies the compiler correctness statement (Refinement (2)).

Next, we lift un to SIM by proving Refinement (13). We actually do this in two steps, labeled (7)
and (8) in Fig. 4. First, we introduce a DimSum Cap module UNIV that over-approximates all Cap
modules, i.e,, [un]. 2 UNIV for all Jun]. (Step (7)). Then, we perform semantic back-translation
to show that UNIV refines SIM, i.e,, UNIV < [SIM] =, (Step (8)). This two-step decomposition of
Refinement (13) breaks the proof into two manageable steps: Relating [un]. and UNIV requires
a large but straightforward case distinction over all instructions of Cap to show that UNIV can
simulate them, while the semantic back-translation, which lies at the heart of RobustDimSum, is
made significantly easier by the fact that it does not need to refer to any syntax (UNIV, SIM and
[]r=c are all defined semantically).

Finally, we apply DimSum structural rules to commute the wrapper with the linking operator
(Step (10)) and the soundness of Reckon w.r.t. SIM (Step (11)). The last step is a straightforward
refinement proof in DimSum that relates safe. and safe. (Step (12)).

Exposing Cap primitives to Rec. Let us now turn to the gray parts of Fig. 4. They pertain to a
feature of RobustDimSum not discussed so far: the ability to expose primitives to Rec programs

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:13

that have been defined directly in Cap and verified manually. To illustrate this feature, consider
implementing the hash function used by password_check in Fig. 1. The challenge here is that we
need to compute the hash of a low value received from the untrusted code: we cannot implement
hash naively as usr % 1337, because, as it is common for untyped languages, in Rec, % is only
defined on integers. It would lead to undefined behavior if adv_io returns a pointer! Thus, we
need an operation that distinguishes integers from pointers. However, Rec does not provide such
an operation since not all targets to which Rec may be compiled would support the operation. This
is where DimSum saves the day: we define to_int as a syntactic Cap program (code shown below)
and back-translate it to a Rec semantic module, which can then be linked semantically against Rec
programs.

1 isptr R1, RO # store 1 to R1 if RO stores a capability

2 beq2, R1, 0 # increase pc by 2 if R1 =0 (skip next instruction if not a capability)

3 mov RO, 0 # store @ as default value to RO

4 ret # return current value in RO
This function uses the isptr instruction of Cap (§4) to check if the argument (stored in R0) is a
capability and returns 0 in this case. Otherwise, it is the identity function. Using to_int, we can
implement a safe hash function Rec:

1 int hash(int usr) { return to_int(usr) % 1337; }

To reason about a program that uses hash and to_int, we first need to back-translate the latter
to Rec. This is where DimSum comes in: While we cannot back-translate to_int to a syntactic Rec
program, we can represent it as a semantic module in a special DimSum language, Spec, which is a
mathematical specification language inspired by interaction trees [72]. In this language, we can
specify to_int by directly matching on the structure of the argument. Note that Rec functions can
pass Booleans as arguments, that are compiled to 0 and 1, which needs to be reflected accordingly:’

to_intgpec(v) = if vis zthenzelseif v is true then 1 else 0

Next, we prove [to_int]. < [to_intspec] =c. This step is integrated in Step (9) in Fig. 4, where
prim = to_int and prim_,.. = to_intspec. The module prim is also exposed to Reckon as seen
in Refinement (4), which allows us to verify hash.

spec

4 Cap: Target Capability Language
In this section we present our target language Cap, which will provide the necessary security
primitives to implement a hardening compiler in §5. Cap is a simplified capability machine language
in the style of Cerise [19]. To simplify matters, we assume an abstract calling convention based
on an idealized stack that ensures well-bracketed control flow and temporal safety similar to the
overlay semantics defined and verified in prior work [56, 21].

We can divide the security primitives provided by Cap into three distinct safety features. First is
fine-grained memory protection, second is encapsulation of a closure (a function and its private
state), and third is well-bracketed control flow.

Fine-grained memory protection. Capabilities are first and foremost a primitive for memory
protection. Unlike pointers on typical hardware, a capability is unforgeable and may only access
specific memory regions. We represent capabilities as tuples defining their authority and their
current pointer value.

Fig. 5 shows the full syntax of capabilities. We define two kinds of capabilities: heap capabilities
and stack capabilities. A heap capability has the form (p, b, e, a) where p is a permission, b is the
lower bound of authority, e is the upper bound of authority, and a is the current address. The

“We omit the call and return events around this implementation for simplicity of presentation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:14 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

HeapCap 5 ¢ = {(p,bea)|beacZ} RWX
StackCap sc = {Stk(d,p,b,e,a) | b,e,a € Z,d € N} RW/ N RX
Word 5> w £ HeapCapU StackCap UZ N o
Memory 5> m % Z— Word RO E
StkFrame 5> f £ B XxMemoryx Word X HeapCap I~
Stack 5> s % L (StkFrame) 0
Registers > r = RegisterName — Word
ExecutionState > 1 == Wait|Run(r,m,s) Permissions > p
defines the < order
Operand > o == x:RegisterName |i:Z
Instr 3 i u=

mov x, o | add x1, x2, o | mul x1, x2, o | seqx1, x2, o | sle x1, x2, o | sltx1, x2, o |
beq o, 01, 0, | beq x1, x2, o | restrict x1, x2, o | subreg x1, x2, 01, 0, | isptr x1, x2 |
getp x1, x2 | getb x1, x2 | gete x1, x2 | geta x1, x2 | getl x1, x2 | getd x1, x2 |

ldr x1, [x2 +i] | str [x+i], o] call x [x1;...;xn] | ret | allocStack z

Fig. 5. Capability Language Syntax

decode : Z I Instr Library 35A C Z

. | decode(m(a)) ifr(pc) =(p.be,a)Ab<a<eAnpe{RX,RWX}Aae€A
[r(po)]a = .
undef. otherwise

ASM-CALL-EXTERNAL
[r(pc)]a = call x [x1;..;xn] r(x) = (E,b,e,a) r(pc) = (pa,ba,ea,as) last(s).1 =true a¢A
' =[pc— (RX,b,e,a),x1...9 — r(x1...9)] s =s+ [(false, 0, r(sp), (pa, ba, ea, as + 1))]

Jump! (r’,m,s")

(Run(r,m,s),A) ——— {(Wait,A)}

ASM-RET-EXTERNAL
’

[r(pc)]a =ret 1’ =[pc > cont,x0 — r(x0),sp > sp] s =s+ [(b,m,sp,cont)] conta¢A

Jump! (r’,m,s)

(Run(r,m,s’),A) ———— {(Wait,A)}

ASM-ALLOCSTACK
[r(pc)]a = allocStack z s =s" + [(false, 0, sp, cont)] r(pc) = (pa,ba,ea,as)
t’ =r[pc o (pa,ba,ea,aa + 1)][sp — Stk(|s'|,RW,0,2,0)] s” =s" + [(true, [0...z > 0], sp, cont)]

(Run(r,m, s), A) 5 (Run(r’,m,s”),A)

Fig. 6. Excerpt of the Capability Language Operation Semantics

permission p ranges over a lattice described in Fig. 5, where the top of the lattice RWX describes the
permission to read r, write w, and execute x a capability (the program counter capability must have
the permission to execute), while the bottom of the lattice O describes zero authority. Meanwhile,
a stack capability Stk(d, p, b, e, a) additionally points to a specific stack frame index d.

The bounds and permission of a capability are dynamically checked whenever a load 1dr or
store str instruction is executed. If the check fails, the machine halts safely.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:15

All capability instructions are listed in Fig. 5. Some (such as str and 1dr) are standard assembly
instructions, while others are specific to capability machines: restrict (resp. subseg) lowers the
permission (resp. range of authority) of a capability, isptr determines whether a word is an integer
or a capability, and get instructions read a field from the capability tuple.

Encapsulation of function pointers. To keep capabilities encapsulated from other compart-
ments, capability architectures like CHERI [70] offer a range of special capability permissions and
seals to enable fast and secure context switches. These special capabilities describe the authority
to jump to a specific target, without being able to access that target’s internal state. We follow
Cerise [18] and model one such capability, namely the so-called sentry capability, also called enter
capability. Enter capabilities are capabilities with a special permission E (short for enter), which
may be jumped to, but may not be changed, nor used to read from or write to memory. In §5, we will
see how a compiled program has both a program part and a data part, and how enter capabilities
can be used to encapsulate them together into an opaque entry point. The E permission will both
prevent callers from skipping over program instructions, and will prevent them from reading the
data part of a compiled program. If it is jumped to, the permission is changed to RX, and the callee
gets full access to their private state.

Well-bracketed control flow. Finally, Cap ensures well-bracketed control flow to prevent
any control-flow hijack attack. Enforcing well-bracketed control flow on a capability machine is
notoriously difficult, and not in the scope of this work. Instead, we assume an abstract stack and
a secure calling convention, implemented over three instructions that manipulate the stack: call,
return and stack frame allocation, described in Fig. 6.

Before presenting these instruction, let us first describe the anatomy of the stack. We represent
the stack as a list of stack frames, denoted (b : B, m : Memory, sp : Word, cont : HeapCap), which
are made up of a boolean b (indicating whether the frame has been allocated), a state m, a back link
sp (pointing to the previous frame), and a continuation cont (the capability to jump to the return
address).

Let us next describe the three stack manipulating instructions. Calls call x [x1;...;xn] jump to
the capability in register x (by loading it into the PC and changing E to RX) with parameters from
registers x1 to xn. This instruction pushes a new empty frame onto the stack, with the caller’s
stack pointer as the back link and the next instruction as the continuation. Calls that go outside the
address space of the module emit a jump event Jump!(r, m, s) with the current machine state.

Returns ret pop the topmost stack frame, reinstate the back link, and jump to the program
continuation. Crucially, ret is the only instruction that accesses the return address or the stack
pointer fields of a stack frame. Since it is always the topmost frame that is popped, calls are
inherently well-bracketed. We here present a simplified version of the rule, omitting additional
constraints on the return value to prevent dangling stack pointers and enforce temporal safety.

Since the caller may not know the stack size needed by the callee, newly pushed frames start
out as empty. Cap thus offers a third instruction allocStack z used by the callee to allocate the
memory of a stack frame. This instruction can only be invoked once per frame, as enforced by the
boolean flag b.

5 Compiler Correctness

This section describes our hardening compiler Rec2Cap from Rec to Cap. Fig. 7 outlines the passes
of our compiler. SSA renames variables such that each variable name is used once, Linearize puts
the program into A-normal form (LinearRec is a subset of Rec where all programs are in A-normal
form), and Codegen takes a LinearRec and generates Cap machine code.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:16 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

[R]r = [Rssalr [Rssalr = [Riin]r [MRiin]rTr=c = [LR]e

Linearize Riin Codegen

(LinearRec)

Fig. 7. Structure of the Rec to Cap Compiler

E__ .]
(***) ¢ hi RW,
RX SCloc,y, { local,, \

instrs

RW SCloc, local,
. <« pcC
staticy } (_I_ Cbl P RV\</ pilled > «i sp : Stk(d, RW, 0,z,0)

.............. S
registers
.............. RW [ITIDTIEIS
staticy } (—'T - register save)
o
(a) Memory Layout of a Generated Cap Function (b) Stack Layout During Execution

Fig. 8. Static and Dynamic Memory Layout. Addresses increase upwards.

This structure follows the Rec to Asm compiler by Sammler et al. [54] with the main difference
being that the code generation pass of Rec2Cap targets the capability language Cap instead of the
more traditional assembly language Asm. Additionally, Rec2Cap needs to take the addition of
static variables to Rec into account and it omits the Mem2Reg optimization pass.

For the remainder of this section, we will focus on the Codegen pass, which compiles LinearRec
programs into Cap code. This pass must enforce robust safety against arbitrary Cap programs. It
does so by following the “pointers as capabilities” (PAC) principle [70, 15]. In order to fully take
advantage of this principle, the compiler must additionally follow the principle of least privilege—
meaning each capability only grants the exact authority needed to access a single variable.

Let us now look at the memory and stack layout used by the compiler to see these principles in
action. Fig. 8a describes the static memory layout of a generated Cap program. Simply put, a Cap
program is a RX capability which points to capability machine instructions and some local state. At
the top of this capability, we have the instructions of the program. Next, we have a RO capability
pointing to a linking table, which contains enter capabilities for each entry point of the fully linked
program. Finally, we have heap capabilities pointing to the static variables of the program, each
with a RW permission. Following the principle of least privilege, each of the static variables has its
own capability. This means that giving the untrusted code access to one of the static variables does
not give it access to other static variables.

During execution, the compiled program uses the stack to manage control flow and local state.
Fig. 8b describes the stack frame layout during execution. The top of the frame is used to store local
variables. Following the principle of least privilege, the compiler derives a distinct stack capability
for each local variable. Next, the compiler uses the frame for spilled registers. Finally, stack space is
reserved to store local state during a potential call (referred to in Fig. 8b as the register save). This
is important for security: To prevent leaking capabilities to the untrusted code via registers, all
non-argument registers must be cleared upon call and their values saved on the stack.

Compiler correctness. A crucial step in the proof methodology outlined in § 3 is to prove
compiler correctness. Roughly, compiler correctness states that a compiled program | P refines the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:17

source program P. The full statement is slightly more involved: the compiled program must be
laid out in memory, and the initial memory layout is constructed according to the program’s static
memory and linking table, leading to the following theorem:

THEOREM 5.1 (COMPILER CORRECTNESS). Let m be the initial memory layout as outlined in Fig. 8a,
storing | P as the program instructions. Let A refer to the domain of the program counter range. Let f
be the name of program P. Let tbl refer to a mapping from function names to entry points (i.e., enter
capabilities) in the linking table.

Additionally, assume the following:

o A valid entry point to f is stored in tbl, pointing to the first instruction of the program and
ranging over [lo, hi) as depicted in m.
e Each other entry point in tbl is disjoint from A.
e Each static has a non-empty range.
e Each function name of entry points in tbl is unique.
We then have:)
[H, Rﬂc < a rHRﬂ r-|A’{t }tblm,mg, Aq,E

r=c

Wrapper. Let us now introduce the wrapper [-]-=. used in this theorem. Intuitively, the wrapper
takes a module emitting Rec events (i.e., Call and Return) and transforms it into a module emitting
Cap events (i.e., Jump). §6 describes how this transformation works in more detail—for now one can
think of the wrapper as a semantic representation of the compiler that describes the compilation as
a (separation-logic) relation that describes how incoming Jump events can be translated to Call
and Return events and vice versa.

For the wrapper to work, it requires a bunch of arguments Y [?;\;tbl’m""“"’ﬂ?’&: A describes the
instruction range that the compiled Cap program occupies, A describes the set of function names
of the wrapped library, tbl describes a map from Rec function names to Cap entry points (i.e., enter
capabilities), while m(and m describe the layout of the initial Cap heap and Rec memory. A> is
the address space of the untrusted code and & is the set of enter capabilities that the untrusted
code can have access to. (The last two are explained in more detail in §6.2.)

The &/ parameter of the wrapper is necessary to deal with a tension between the two use-cases of
the wrapper: On the one hand, it is used in the compiler correctness statement [| R]. < &[[R]], <.
(Theorem 5.1) Here the wrapper should express the hardening properties of the compiler, in
particular that it clears all non-argument registers (see the discussion of register save from Fig. 8b
above). However, the wrapper is also used in the semantic back-translation statement UNIV <
%'[SIM7], . Crucially, UNIV is a universal specification of all capability machine programs, and not
just those emitted by the compiler. Thus, in this case, the wrapper should not include the hardening
properties of our compiler. The wrapper distinguish these two cases with the 84 parameter: @ means
that the wrapped code is hardened, while & translates the events without enforcing hardening.

One important property of [-].=. is how it interacts with linking: After applying the compiler
correctness and semantic back-translation, we have “H[Pﬂ rlr=c and o [SIM] = linked by @&, (see
Step (9) in Fig. 4). To convert this to Rec, we need to turn the Cap linking @, into the Rec linking

@, . For this, we use the following lemma:

LEMMA 5.2 (LINKING OF WRAPPERS).

(1) a|—/\/\l-| rec Oc B|-/\/‘2-|r#c = n|—N\l Dr Mz]r#c

(2) B|—M1-| rec D¢ ‘ll—MZ-lr‘——‘c = ‘TMI Dr M2-| rec

For the aforementioned case of linking P and SIM we use case (2) of the lemma: Since SIM is not

hardened, the combined program is also not hardened. Case (1) is used for linking two hardened
programs, for example two functions that were separately compiled by the hardening compiler.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:18 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

(m) £ Slgec(m) * 3L. LowAuth(L) * sk 3D.(b,0) >, D *if b € L: 3k Av. £, > v low(v)

SW\ bem\ps ieD
prez;\\ 2 Jv,m. (3f € Fr.e = Call?(f,v,m) Ans =|v]) V (e = Return?(v, m))
x 3% low(v) xinv? (m) init.|, £k v
VEV o (t,v)emg
pOStsm 2 Jv,m. (3f € F.e = Calll(f,v,m) A ns =1|v]) V (e = Return!(v, m))

% 3% low(v) xinv? (m)

VEV
Fi 7-7 mo
ig. 9. Definition of SIM

names SIM can call, and the initial memory m, for static variables. ¢ >, D is the complementary fraction to
> D, ie,wehave />, Dx{>> D' +D=D".

parameterized over a set #; of function names SIM listens to, a set ¥y of function

Proof of Theorem 5.1. With this wrapper definition, the proof of compiler correctness is mostly
straightforward. For each pass inherited from DimSum, we apply the existing correctness theorem.
For Codegen, we prove correctness from scratch. To do this, we must show that the events emitted
by the target program are emitted by the source program. We prove this by stepping through
the compiled code (assuming it was called by an arbitrary module), while maintaining various
invariants over memory, both local and shared, between calls. Note that by the definition of ar) .,
part of the proof involves showing that the compiler indeed hardens the source program by clearing
non-argument and non-return registers.

6 Simulator and Universal Contract

This section introduces the two semantic characterizations of the untrusted code un we use: First,
the simulator SIM (§6.1) that represents un at the Rec level. Then, the universal contract UNIV
(§6.2), a semantic Cap module that over-approximates arbitrary Cap code. Finally, §6.3 presents
the semantic back-translation establishing that SIM (wrapped in [-],=.) simulates UNIV.

6.1 Simulator for Rec

As discussed in §3, the simulator SIM is a semantic, Rec-level description of the Cap-level untrusted
code. Concretely, we use the fact that DimSum’s semantic linking operator @, can link not just
syntactic Rec modules, but arbitrary modules (i.e., labeled transition systems) that interact using
the Rec events Call and Return. This allows us to construct SIM semantically without building a
syntactic Rec program (which, as noted in §1.3, would be impossible).

Concretely, we define SIM using DimSum’s ability to encode separation logic pre- and post-
conditions into labeled transition systems (by leveraging angelic non-determinism, inspired by
CCR [58]). Intuitively, the idea is to define a semantic module that assumes an incoming event
fulfilling the precondition and non-deterministically picks an outgoing event fulfilling the post-
condition. DimSum uses this technique to encode wrappers like [-].=.. We observe that we can
also use it to define stand-alone modules like SIM (and UNIV). As we will see in this section, this
technique allows us to define SIM as basically a direct encoding of the wr-carr-un rule of Reckon.

To define a semantic module like SIM, we follow a three-part recipe: First, we pick a separation
logic assertion language to define SIM with. Luckily, we already have the perfect assertion language
for this purpose: recProp, the assertion language of our program logic Reckon (§2.2), providing the
¢ — v and low(v) assertions, among other. Second, we define the invariant and initial ownership

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:19

lowshd(z) £ True IOWShd((E, b, e, a)) 2 ifa ¢ ﬂ? then (E’ b’ e, a) € 8! else IOWShd((RX, b, e, a))
low*™((p,b,e,a)) = 30" <be<e' . (b.e') > ? A (RX<p— [be) CA)
low*™(Stk(d, p, b,e,a)) £ p< RW « Jr.shd[d] =1+ 3’ <be<e’. (Lb,e') — ?

sb == (b,e) | (1,b,e) sb = ? % LowAuth(L) + sb € L sbt=?+sbos ?xsb—?

Fig. 10. Definition of low*™ (implicitly parametrized over & and A>)

of SIM. And finally, we define the pre- and postcondition (pres,,, and posts,,) of SIM using the
invariant and recProp.

So let us introduce the invariant invglsM(m) of SIM shown in Fig. 9. It consists of three parts:
First, SIgec (M) links the points-to and domain predicates / +— v and # >, D to the current memory
m. Second, LowAuth(L) tracks the authoritative set L of all shared blocks. Concretely, it gives rise
to the b — ? predicate that states that the block id b is low. b + ? is used to define low(¢):

low() £ tid+—? b+ ?+LowAuth(L)rbel b ?+rbr?2xb?

Finally, inv ';SM (m) contains the points-to predicates for all low blocks (i.e., , all blocks in L) and
ensures that all low locations contain low values. The initial ownership init; |, is parameterized by
an initial memory m, and contains the points-to predicates for all locations in mj.

Now all that is left to define SIM is to provide its pre- and postcondition as recProp relations,
7* 2 states the property one has to prove when calling (or

SIM
returning to) the simulator with the event e. Dually, the postcondition postgtllMi describes the

property one obtains from the simulator when it performs a call or returns with event e.

Let us first focus on preg),,. There are two cases to consider: Either, one can call SIM by invoking
one of the functions in >—i.e., e is Call?. Then the number of arguments |v| must match the
expected number of arguments n¢. Or, one can return to SIM after a previous call from SIM—i.e.,
e is Return?. In both cases, all values (i.e., arguments or return value) must be low, matching the
precondition of wp-carr-un, and the invariant invgi\‘ (m) must hold for the memory m. postg,, is
analogous to preg,, except that the simulator can only call functions in 7. postg,,, also ensures
that all values provided by SIM are low, again following wr-carr-un.

shown in Fig. 9: The precondition pre

my

In summary, we end up with the definition of SIM;?’ " that is parameterized by the functions %

where SIM?"“” accepts calls, the functions # that SI[\/\;?"“‘J can call, and the initial memory mj.

6.2 Universal Contract for Cap

This section defines UNIV, a semantic Cap module that gives a universal contract satisfied by
arbitrary untrusted Cap code. The intuition for UNIV is similar to SIM, except that it is for Cap
instead of Rec. This has three main consequences: First, instead of recProp, UNIV is based on the
separation logic capProp with points-to predicates for the Cap heap and stack. Second, we need to
provide a definition for low (w) that works on Cap words w (instead of low(v) used by SIM). Third,
we cannot base UNIV on wr-caLL-un, but instead take inspiration for similar call rules for capability
machines in prior work [55, 56, 20, 21]. Let us now expand on the second and third points.

Defining low. The low predicate, describing when a Cap word is safe to share with the untrusted
code, is analogous to low of Rec. The definition of low is given in Fig. 10. Since there are four

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:20 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

different kinds of words including different kinds of capabilities, we need to distinguish four cases:
integers (z), enter capabilities (E), heap capabilities (p), and stack capabilities (Stk).

First, integers are trivially low, as in Rec.

The second case concerns enter capabilities E (introduced in §4). They do not exist in Rec, but it
is crucial to limit the E-capabilities that untrusted code has access because it should only be able to
jump to the correct entry points of trusted functions. We therefore (implicitly) parameterize the
definition over a set & of E-capabilities that untrusted code is allowed to have access to (playing
a similar role to #y in the definition of SIM). If the address a of the enter capability is outside of
UNIV’s instruction region A, it must be in the set &,. If the address a is in A, it is treated like a
RX capability (discussed in the next paragraph).

The third case is for other capabilities that give read or write access to the heap. These are
modeled similarly to low locations in SIM: We introduce a resource sb + ? in capProp that tracks
what memory ranges'’ sb have been shared with UNIV. LowAuth(L) is the authoritative view that
the set of all shared memory ranges is L. We then define that a capability is low if an enclosing
memory range is shared with UNIV. One interesting special case are R(W)X-capabilities: The
untrusted code can derive arbitrary E-capabilities from the RX and RWX-capabilities it has (since
E is below RX in the permission order in Fig. 5). Thus, low must ensure that the ranges for these
permissions are always A-. This prevents the untrusted code from creating new E-capabilities that
point outside of its instruction addresses.

The fourth and last case are stack capabilities Stk(d, p, b, e, a), which are a little more subtle
because they give access to some memory range [b, e) on the dth stack frame while it is alive. Since
the dth stack frame might get popped and reused later, we cannot give UNIV persistent access to
the dth stack frame. We therefore give stack frames unique shadow ids that are mapped to the
physical stack frame number d by a shadow stack shd. A stack capability is low*" if an enclosing
memory range tagged with the current shadow id : of the stack frame d is shared with UNIV.

Defining UNIV. To see how we define UNIV, let us take a step back: Recall that the definition
of SIM very closely mirrors the we-carr-un rule for calling untrusted code at the Rec level. Unfortu-
nately, we cannot directly use we-carr-un for UNIV since UNIV is defined at the Cap level instead
of Rec. But we are in luck: there is a growing body of prior work on program logics for capability
machines that provide rules for calling untrusted code analogous to we-carr-un [55, 56, 20, 21].
These rules follow the same high-level structure as wre-cari-un: low values in and low values
out. However, the details are significantly more involved due to the handling of the stack and
well-bracketed control flow (in particular, requiring subtle future world relations to control how
the stack may evolve). Our UNIV takes these ideas and encodes them into a semantic DimSum
module. For this, we define an invariant inv yniv analogous to inv s that integrates LowAuth(L)
analogous to LowAuth(L), in particular ensuring that low memory regions only contain low values.
preyny and postyyy follow the structure of preg,,, and postg),,, but include a future world relation
for enforcing well-bracketedness of the stack. The full definition is given in the appendix [43] and
formalized in the Rocq development—we omit the details here since they are not important for the
rest of the discussion and follow prior work.

We show that our definition of UNIV is indeed refined by arbitrary untrusted code un:

THEOREM 6.1 (UNIVERSAL CONTRACT). For any set of entry points & allowed to be shared, we have

d
Vun. [un]. X UNIVE™

10We track this on the level of memory ranges instead of individual addresses to be closer to Rec which has memory blocks
and to simplify the semantic back-translation proof.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:21

zeiztz=i f<(E, b,e,a) = ifae A, then[b,e) C A, else (E, b,e,a) € &
to(p,be,a) =AY <be<e . lide(b,e)«(RX<p— [be) CA)
{ © Stk(d,p,b,e,a) 2 p<RW x Ai.shd[d] =1+ 3Tb" < be <e'.l.id (1, b, €)

Fig. 11. Value relation of [-].=. parameterized over A, &, and shd also used in the definition of UNIV
where id < sb is a resource to persistently track which source memory blocks are translated to which target
memory ranges.

Proor. The proof considers all instructions of Cap and proves that they maintain the invariant
inv ynv, only generate low outputs from low inputs and maintain well-bracketed control flow. O

6.3 Semantic Back-Translation

We now turn to the core of RobustDimSum: the semantic back-translation UNIV <X [SIM],=. It
allows us to lift the reasoning about the untrusted code from Cap to Rec. It is also where all the
work from the prior sections pays off: Since UNIV and SIM are defined purely semantically based
on separation logic, we do not need to manipulate any program syntax in this proof!

Let us now state the semantic back-translation theorem. Although it contains several precon-
ditions, none of them should be that surprising. Importantly, the statement restricts the initial
memory of untrusted Cap code to not contain any capability that it should not have access to.

THEOREM 6.2 (SEMANTIC BACK-TRANSLATION). Let A- be a contiguous non-empty address space.
Let F correspond to A; and Fy corresponded to &, according to the linking table tbl. Let my be an
arbitrary initial memory with dom(my) = A, that only contains E-capabilities within E, and all
other capabilities within A,. Let m(contain values corresponding to the words in my. Then we have:

UNIV?v < vyl |-S | M;?,I11()-| ;ﬂ\;,cﬁ,tbl,mo,m“,ﬂy,&

More about [-],=.. To discuss Theorem 6.2 and its proof in more detail, we first need to
give some more details about the wrapper [-].=.: It is defined using separation logic pre- and
postconditions prer.; _ /post;. _ , similar to SIM and UNIV. These are defined in the separation
logic r2cProp that features the points-to predicates from both recProp and capProp. The key
predicate of r2cProp is the value relation v & w shown in Fig. 11, which relates Rec values v that
are passed across the wrapper to Cap words w and vice versa. We will discuss the value relation
more in a moment when we talk about relating low to low.

Relating Theorem 6.2 to logical relations. As discussed in §6.1 and §6.2, SIM and UNIV can
be seen as encodings of (unary) logical relations for reasoning about untrusted code into DimSum
modules. Also [-]-=. can be seen as a DimSum version of a binary logical relation for relating Rec
and Cap with value relation v & w. However, usually logical relations cannot be related to each
other—e.g., it is unclear how one would relate the logical relation from OCPL [64] that SIM is based
on to the logical relation of Cerise [18] that UNIV is based on. By encoding everything in DimSum,
we can in fact state and prove Theorem 6.2 and thus lift the reasoning from Cap to Rec.

Proving Theorem 6.2. Let us now give an intuition for the proof of Theorem 6.2. At the
high-level, we need to show two things: On the one hand, given an incoming Rec-event and a
corresponding Cap-event we can assume preg),, and pre.; _ and need to show prey;;y. On the
other hand, for an outgoing Cap-event we can assume posty;;y and need to back-translate the
event to a Rec-event and show post, and post;.; _ .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:22 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

The main challenge of these proofs is handling arbitrary dynamic pointer sharing. Concretely,
this challenge shows up when we need to convert the low of SIM to the low of UNIV and vice
versa for the arguments and return values (and all shared values in memory). Intuitively, we need a
lemma like the following:!!

Av. low(v) * v w - low (w) (14)

When reasoning about the preconditions, Eq. (14) allows us to convert the low(v) we obtain from
pres;,, and the v & w we obtain from pre;.; _ to the low(w) we need for prey;y;y. For the other
direction, we obtain low (w) from posty;;y and use Eq. (14) to split it into v & w for post;.; _ and
low(v) for postg,,,. (Recall that we have UNIV on one side of the refinement vs. SIM and [-],=¢ on
the other.) To see why Eq. (14) holds, it is instructive to compare the definition of v & w (Fig. 11)
with the definition of low(v) (§6.1) and low (w) (Fig. 10): The structure of v & w and low (w) match
exactly, with the main difference being that low (w) uses sb +— ? to track shared memory ranges
while v & w uses a bijection b «<» sb that maps a shared memory range sb to a Rec block identifier
b. Thus, proving Eq. (14) reduces to maintaining the following invariant:

Ab.b+> ?xbe>sb 4 sb — ? (15)

The proof of Theorem 6.2 is thus based around maintaining Eq. (15). Toward this end, whenever
one of UNIV, SIM, or [-]-=. shares a new location or capability, the ghost state of the others must be
updated to share it as well. The full proof can be found in the accompanying Rocq development [43].
It is worth noting that, although there were clearly many subtle details that had to be worked out
in order to formalize our semantic back-translation result, the proof itself (once all definitions had
been set up) was completed within under two person weeks.

7 Putting It All Together

We now have all the pieces we need to obtain our desired robust safety result, and in this section
we finally show how to put them together. First, §7.1 presents the soundness statement of Reckon
w.r.t. SIM. Then, finally, §7.2 presents the final robust safety result about the compiled code.

7.1 Soundness of Reckon w.r.t. SIM

We prove the following soundness theorem for our program logic Reckon (§2.2) w.r.t. SIM:!2

THEOREM 7.1 (SOUNDNESS OF RECKON W.R.T. SIM). Given a program P that we want to prove
robustly safe, primitives primg,e. (e.g., to_intspec from §3), preconditions pre; and postconditions
post; for the functions in P and primg,e., a set of predicates Cond, a set of functions ¥ that belong
to the untrusted code, a subset of functions ¥\ C P that the untrusted code can call, and an initial
memory my of the untrusted code, satisfying the following constraints:

(1) For all fn f(X) 2 e € P, assuming the triple V. {preﬁ (V)} f1(v) {post“ }Cond for all functions

f,in P and PriMgpec, and assuming UnFn(fy, ng,) for all functions f, with n¢, arguments in >, one

has proven the triple'
_ _ = ond
Vv. {pre[r(v)} e[v/x] {postir}c

(2) For all functions f in prim one has proven the triple

spec’
Yv. {pref(V)} f(v) {postf}

Thijs statement serves as an intuition, the actual lemma is more involved. Among other, we need to embed recProp,
capProp, and r2cProp into a unified separation logic such that we can talk about low(v), v & w, and low (w) in the same
separation logic.

12WWe omit disjointness constraints on function names.

13We omit the handling of local and static variables for simplicity.

Cond

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:23

(3) For all functions f with n; arguments in 7, we have

VYv. [V| = ng = >x< low(v) + pre,(v) and Vv.post;(v) + low(v)
VEV
(49)main € P with pre,,; (V) = (V= []) and post,,;,(v) = (v =0)
(5)+ 3®. Cond(®) = @
Then we have

[P]- &®r primg,.. ®r Sl/\/\;?’m” < safe]™

spec

Theorem 7.1 proves that P, primg, . and SI/\/\;?’mu form a safe, closed program. This is represented

4

spec
by a refinement to the following Spec program:'

my a

safe/’ = 3f,v, m;vis(Call?(f,v, m));assume(f = mainAv = [JAmy € m); Im’;vis(Return!(0,m"));

mo

safe, " states that if the main function is called without arguments in an initial heap containing my,
it will return 0. Implicit in this spec is the property that main will not perform any calls to undefined
functions as those would result in unresolved call events. In particular, this implies main does not
execute any failed assertions since they would invoke an undefined assert_failed function.

To apply Theorem 7.1, we need to verify the functions in P using Reckon (1). We can assume
Hoare triples for all functions in P, primg,,. and SIM, allowing arbitrary (mutual) recursion. We
also need to prove the Hoare triples for primgp,. (2), which can be done by unfolding the definition
of Hoare triples. Additionally, we need to show that all functions exposed to the untrusted code
(i.e., the functions in), are safe to call when passed low arguments and then return a low result
(3). Also, P needs to contain a main function with trivial precondition and a postcondition that
ensures that it returns 0 (4). Finally, we need to provide the initial ® that fulfills Cond(®) to kick
off the well-bracketedness reasoning described in §2.2 (5).

Proving Theorem 7.1. To prove Theorem 7.1, we essentially need an adequate model of Reckon’s
weakest-pre assertions wp?® e {®}. This is slightly challenging in that the behavior of Rec programs
depends integrally on their environment, so the standard “context-free” model of weakest-pre in Iris
does not apply. Instead, we apply the standard technique of T T-closure (aka biorthogonality) [13].
Concretely, we first define wp?® e, a version of wp?® e {®} without the postcondition:'

wpPe £ ¥m. inv‘glsM(m) = (%k 3D.b »,D) - wsat -

beps

H(e> m) @ Pﬂr ®Dr prlm D Sl/\/\;?’m“ < Safef’jﬂl

spec

That is, given a memory m satisfying inv’gfM (m) and the world-satisfaction wsat [32] that tracks
ownership of the invariants, we have the refinement at the conclusion of Theorem 7.1, except that
we currently execute the expression e with memory m in P. (This is denoted by (e, m) @ P.) Using
TT-closure, we then define wp?* e {®} to mean that e behaves safely under all safely-behaving
evaluation contexts K:

wpP® e {®} £ VK. (Vv. B(v) = wpl! K[v]) = wp?* K[e]

It is straightforward to prove all the rules in §2.2 under this definition—most rules just execute e
according to its Rec operational semantics and do not require any reasoning about DimSum linking.
The only exception is wr-carL-un where control switches to SIM. However, proving this rule is also
straightforward since SIM was defined to directly match we-cari-un.

14yis means that the program emits a visible event. Here, first for receiving an incoming call, then an outgoing return.
For technical reasons pertaining to how DimSum encodes SIM into a state transition system, the refinement does not
use the usual embedding of pure propositions into separation logic, but instead sat#f(P), which is the right adjoint of the
satisfiable relation sat(Q) [59, p. 108], i.e, (Q F satff(P)) is equivalent to (sat(Q) — P).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:24 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

The rest of the proof of Theorem 7.1 is straightforward. We define UnFn(f, n¢) as the Hoare
triple in the conclusion of wr-carr-un. Then we prove two nested inductions: one to resolve mutual
recursion between functions in P, and another to resolve mutual recursion between P and SIM.

7.2 Robust Safety

Before we can compose all the refinements (as shown in Fig. 4 from §3), we need to prove one last
missing refinement: lifting the safety result safe, from Rec to Cap. For this, we define safe], as a
specification for safe, closed Cap programs, analogous to safe,, assuming a fixed entry capability

mo

main for the main function. Like safe ", safel is parameterized by the initial memory my.

safel’® £3r, m, s; vis(Jump?(r, m, s)); assume(LangInv(r, m, s) A r(pc) = main A mg C m);
3r’,m’,s";assert(r’ (pc) = s.cont A r’ (x0) = 0); vis(Jump!(r’, m’,s"));

The predicate Langlnv(r, m, s) encodes that the registers r, heap m, and stack s in the initial
state satisfy the well-formedness invariants of Cap: there are no dangling pointers, the stack is
directed (i.e., stack capabilities point to itself or lower stack frames), and the heap contains no stack
capabilities. It is straightforward to prove that safe; refines safel’. (In the rest of this section, we
fix a mapping from function names to entry points tbl, the domain of the untrusted code A-, and

the enter capabilities shared with the untrusted code &;. We omit these parameters from [-],=..)
THEOREM 7.2. Assuming tbl maps main to main, we have
& [safel0A0MmeM < safelo
Now we can sketch the final robust safety result:

THEOREM 7.3 (ROBUST SAFETY). Assume
(1) P has been verified using the program logic and we have the result of Theorem 7.1, i.e.,

[Plr & primgpe. &r Sl/v\;?"”” < safe"

spec
(2) a correct implementation prim of the primitives in primg,.. with instruction range Ay and
function names A, encoded in my, i.e.,

'|AXsAxszs0
spec lr=c

[prim]. < ®[prim
(3) arbitrary untrusted code un represented in an arbitrary initial memory m, with dom(m,) = A,
that only contains E-capabilities within &, and all other capabilities within As,
(4) and a bunch of disjointness conditions on address spaces, memory ranges and function names.
We define the initial memory my = my, ¥ m, W m, where my, is the initial memory of the compiled
code (§5). Then we have
[LP Uc prim U, un], < safel

Proor. The theorem follows from the theorems of the previous sections, following the outline
in Fig. 4 from §3. m|

Applying Theorem 7.3 to password_check. We can apply Theorem 7.3 to the password_check
example from §1 by combining it with the hash function from §3 and a simple implementation of
main and read_hash_from_db.

Pwd £ main U, password_check U, hash U, read_hash_from_db
We obtain the following final robust safety result:
Yun. [| Pwd U, to_int U, un]. < safe;*

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:25

8 Related Work

Compartmentalizing compilation. Prior work on compartmentalizing compilation studies the
compilation and security of C-like unsafe source languages that have built-in compartments, with
the scope of undefined behavior restricted to individual compartments [30, 5, 65]. The compilers
they consider preserve the compartment abstraction using hardware features like capabilities, and
the compiler property they prove—a variant of robust safety preservation called RSCC—states
that if a compiled program linked to an untrusted target context incurs a sequence of safe and
(compartment-specific) unsafe observable events, then the corresponding source program linked to
some source context exhibits the same sequence.

Both our work and compartmentalizing compilation are frameworks for proving the security of
programs compiled from unsafe languages. However, the two differ in fundamental ways. First,
we work with vanilla unsafe languages and do not assume the existence of compartments in the
source language. To define robust safety in the source, we introduce a different abstraction—the
semantic source context, SIM—which can simulate the behavior of all target-language contexts.
Second, compartmentalizing compilation uses syntactic back-translation for proofs, which works
only if source contexts can express all target-language behavior in syntax, while we use semantic
back-translation, which does not have this limitation as long as the source semantic domain can
express all target-language behavior (our Rec—Cap instance demonstrates this). Third, work on
compartmentalizing compilation does not support pointer passing, while we do. Finally, we are
not aware of any program logic that leverages RSCC for proving robust safety of source programs,
whereas we provide the program logic Reckon to establish robust safety of compiled Rec programs.

Full abstraction and robust property preservation. A large body of work studies compiler
security using full abstraction [1, 3, 48, 15, 62, 6, 47, 12, 46] or the preservation of a class of robust
properties (e.g., robust safety or robust hypersafety) [49, 50, 14, 4, 30, 5, 65, 8, 9] as compiler
properties. With the exception of RSCC above, none of this work considers unsafe source languages
or hardening compilers. We believe that this choice is largely due to limitations of the proof methods
that have been used thus far, namely, strong types and syntactic back-translations. We avoid these
limitations by moving to a semantic proof technique based on DimSum. An interesting line of
future work is to extend RobustDimSum to establish a wider variety of compiler properties that
have been considered in the literature.

Robust safety and universal contracts. Our program logic Reckon (§2.2) is inspired by prior
program logics for proving robust safety [64, 53, 18, 25]. Unlike Reckon, these prior logics apply to
safe languages, which precludes the need for a hardening compiler to obtain robust safety. On the
other hand, prior logics build directly on Iris and support Iris features like higher-order ghost state
and nested invariants, which Reckon does not support as DimSum lacks step-indexing.

Program logics establish robust safety against some form of universal contract that overapproxi-
mates untrusted code behavior. Our universal contract, UNIV (§6.2), is inspired by prior work on
universal contracts for capability machines [11, 28, 55]. The difference is that prior work defined
these contracts as logical relations, whereas we define them as a semantic module in DimSum.

Capability machines as a target for verified compilers. Since the introduction of the CHERI
architecture [71], capability machines have been used extensively as targets of verified compilers in
prior work. Capabilities have been used for enforcing fine-grained memory safety (as we have done
here) [15, 14], implementing specific calling conventions including well-bracketed control-flow
(see below), and implementing compartments as in RSCC.

Our work assumes an idealized calling convention for Cap. Numerous authors have shown
how such a calling convention can be realized using hardware capabilities. Skorstengaard et al.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

40:26 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

[55] show how CHERI’s local capabilities [70] can be used to enforce well-bracketed control flow
and local state encapsulation by clearing the call stack before and after function calls. While this
particular strategy is expensive when the stack is large, it is feasible on embedded devices with
limited memory space, and has thus been adapted to the CHERIoT switcher [7]. Various extensions
of capabilities—linear capabilities [56], temporal capabilities [67], uninitialized capabilities [20] and
directed capabilities [21]—have been proposed to support secure and efficient calling conventions
on general-purpose architectures. Each design comes with formal proofs that the enabled calling
convention enforces local state encapsulation and well-bracketed control flow. Notably, some work
relies on so-called overlay semantics—where the machine operational semantics is augmented with
an idealized and well-behaved call-stack—which is then proven to be fully abstract with respect to
the machine semantics. The idealized semantics we use in this work is closely related to the overlay
semantics presented in [21]. An interesting line of future work is to implement the idealized stack
of Cap using one of these techniques, and prove it correct within RobustDimSum.

Real-world compilers to capability machines. Existing compilers from C to CHERI imple-
ment varying degrees of safety. CHERI C/C++ [69] is a dialect of C which compiles all pointers to
capabilities with tight bounds. However, as far as we know, the CHERI C/C++ compiler does not
clear non-argument registers, nor does it implement a secure call-stack. As such it is not a hardening
compiler in the way that Rec2Cap is. Rec2Cap resembles the Clang compiler implemented on top
of CherloT [7] more closely. CherloT is an adaptation of CHERI for embedded systems, whose
goal is to provide “full inter-compartment memory safety” [7] for embedded systems. It does so
by implementing a secure calling convention between compartments called the switcher (which
can be used to implement compilers that target CherloT). The switcher adheres to the principle
of least privilege (a core design principle of CherloT) by clearing non-argument registers, and by
clearing the call-stack upon function calls and returns. While verifying a full Clang compiler is still
out of reach, we believe that adding a more elaborate backend targeting the CherloT switcher to a
compiler like Rec2Cap could be an interesting, real-world application of the ideas presented in this

paper.

Multi-language semantics. Our work builds on DimSum [54]. Our additions to DimSum are
the encodings of UNIV and SIM, the semantic back-translation proof, and the hardening Rec-to-
Cap compiler Rec2Cap. While there is a large body of work on multi-language semantics, it is
unclear whether one could base RobustDimSum on any of the other approaches. Work by Hur and
others [10, 26, 27, 45] requires all target language programs to be representable as syntactic source
programs, which rules out our Rec—Cap setup. Work on syntactic multi-languages [41, 52, 51, 40]
focuses on safe, typed languages, and also cannot be applied to Rec and Cap, which are unsafe and
untyped. Specifically, it seems infeasible to represent SIM syntactically. Compositional variants of
the CompCert compiler [61, 24, 57, 34] require the source, target and intermediate languages to
share the same memory model, but the memory models of Rec and Cap differ significantly.

Data Availability Statement

The Rocq development and appendix can be found in the supplementary material [43].

References

[1] Martin Abadi. 1999. Protection in Programming-Language Translations. In Secure Internet Programming (LNCS,
Vol. 1603). Springer, 19-34. doi:10.1007/3-540-48749-2_2

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. A Theory of Secure Control Flow. In ICFEM (LNCS,
Vol. 3785). Springer, 111-124. do0i:10.1007/11576280_9

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

https://doi.org/10.1007/3-540-48749-2_2
https://doi.org/10.1007/11576280_9

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:27

(3]

(9]

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]

[23]

Martin Abadi, Cédric Fournet, and Georges Gonthier. 2000. Authentication Primitives and Their Compilation. In
POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Boston, Massachusetts, USA, January 19-21, 2000, Mark N. Wegman and Thomas W. Reps (Eds.). ACM, 302-315.
doi:10.1145/325694.325734

Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and Jérémy Thibault. 2019. Journey
Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation. In CSF. IEEE, 256-271.
doi:10.1109/CSF.2019.00025

Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans, Guglielmo Fachini, Cétélin Hritcu,
Théo Laurent, Benjamin C. Pierce, Marco Stronati, and Andrew Tolmach. 2018. When Good Components Go Bad:
Formally Secure Compilation Despite Dynamic Compromise. In CCS. ACM, 1351-1368. doi:10.1145/3243734.3243745
Amal Ahmed and Matthias Blume. 2011. An equivalence-preserving CPS translation via multi-language semantics. In
ICFP. ACM, 431-444. d0i:10.1145/2034773.2034830

Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben Laurie, Kunyan Liu, Robert M. Norton, Simon W.
Moore, Yucong Tao, Robert N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety for Embedded
Devices. In MICRO. ACM, 641-653. doi:10.1145/3613424.3614266

Cezar-Constantin Andrici, Stefan Ciobacd, Catilin Hritcu, Guido Martinez, Exequiel Rivas, Eric Tanter, and Théo
Winterhalter. 2024. Securing Verified IO Programs Against Unverified Code in F*. Proc. ACM Program. Lang. 8, POPL
(2024), 2226—-2259. doi:10.1145/3632916

Cezar-Constantin Andrici, Danel Ahman, Catalin Hritcu, Ruxandra Icleanu, Guido Martinez, Exequiel Rivas, and Théo
Winterhalter. 2025. SecRef*: Securely Sharing Mutable References Between Verified and Unverified Code in F*. Proc.
ACM Program. Lang. 9, ICFP (2025). To appear.

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, step-indexing and compiler correctness. In ICFP. ACM, 97-108.
doi:10.1145/1596550.1596567

Dominique Devriese, Lars Birkedal, and Frank Piessens. 2016. Reasoning about Object Capabilities with Logical
Relations and Effect Parametricity. In EuroS&P. IEEE, 147-162. doi:10.1109/EUROSP.2016.22

Dominique Devriese, Marco Patrignani, Frank Piessens, and Steven Keuchel. 2017. Modular, Fully-abstract Compilation
by Approximate Back-translation. Log. Methods Comput. Sci. 13, 4 (2017). doi:10.23638/LMCS-13(4:2)2017

Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of higher-order state and control effects on local
relational reasoning. J. Funct. Program. 22, 4&5 (2012), 477-528.

Akram El-Korashy, Roberto Blanco, Jérémy Thibault, Adrien Durier, Deepak Garg, and Cétalin Hritcu. 2022. SecurePtrs:
Proving Secure Compilation with Data-Flow Back-Translation and Turn-Taking Simulation. In CSF. IEEE, 64-79.
doi:10.1109/CSF54842.2022.9919680

Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese, Deepak Garg, and Frank Piessens. 2021.
CapablePtrs: Securely Compiling Partial Programs Using the Pointers-as-Capabilities Principle. In CSF. IEEE, 1-16.
doi:10.1109/CSF51468.2021.00036

Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. 2007. A type discipline for authorization policies. ACM Trans.
Program. Lang. Syst. 29, 5 (2007), 25. doi:10.1145/1275497.1275500

Lennard Géher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and
Derek Dreyer. 2022. Simuliris: a separation logic framework for verifying concurrent program optimizations. Proc.
ACM Program. Lang. 6, POPL (2022), 1-31. doi:10.1145/3498689

Aina Linn Georges, Armaél Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Dominique Devriese, and
Lars Birkedal. 2024. Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code. . ACM
71, 1 (2024), 3:1-3:59. doi:10.1145/3623510

Aina Linn Georges, Armaél Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Dominique Devriese, and
Lars Birkedal. 2024. Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code. . ACM
71, 1 (2024), 3:1-3:59. doi:10.1145/3623510

Aina Linn Georges, Armaél Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Do-
minique Devriese, and Lars Birkedal. 2021. Efficient and provable local capability revocation using uninitialized
capabilities. Proc. ACM Program. Lang. 5, POPL (2021), 1-30. doi:10.1145/3434287

Aina Linn Georges, Alix Trieu, and Lars Birkedal. 2022. Le temps des cerises: efficient temporal stack safety on
capability machines using directed capabilities. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1-30.

Andrew D. Gordon and Alan Jeffrey. 2003. Authenticity by Typing for Security Protocols. J. Comput. Secur. 11, 4 (2003),
451-520. doi:10.3233/JCS-2003-11402

Orna Grumberg and David E. Long. 1994. Model Checking and Modular Verification. ACM Trans. Program. Lang. Syst.
16, 3 (1994), 843-871. doi:10.1145/177492.177725

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

https://doi.org/10.1145/325694.325734
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/3243734.3243745
https://doi.org/10.1145/2034773.2034830
https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/3632916
https://doi.org/10.1145/1596550.1596567
https://doi.org/10.1109/EUROSP.2016.22
https://doi.org/10.23638/LMCS-13(4:2)2017
https://doi.org/10.1109/CSF54842.2022.9919680
https://doi.org/10.1109/CSF51468.2021.00036
https://doi.org/10.1145/1275497.1275500
https://doi.org/10.1145/3498689
https://doi.org/10.1145/3623510
https://doi.org/10.1145/3623510
https://doi.org/10.1145/3434287
https://doi.org/10.3233/JCS-2003-11402
https://doi.org/10.1145/177492.177725

40:28 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

[24] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (Newman) Wu, Shu-Chun Weng,
Haozhong Zhang, and Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In POPL. ACM, 595-
608. doi:10.1145/2676726.2676975

[25] Angus Hammond, Ricardo Almeida, Thomas Bauereiss, Brian Campbell, Ian Stark, and Peter Sewell. 2025. Morello-
Cerise: A Proof of Strong Encapsulation for the Arm Morello Capability Hardware Architecture. Proc. ACM Program.
Lang. 9, PLDI, Article 226 (June 2025), 23 pages. doi:10.1145/3729329

[26] Chung-Kil Hur and Derek Dreyer. 2011. A Kripke logical relation between ML and assembly. In POPL. ACM, 133-146.
doi:10.1145/1926385.1926402

[27] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis. 2012. The marriage of bisimulations and Kripke
logical relations. In POPL. ACM, 59-72. doi:10.1145/2103656.2103666

[28] Sander Huyghebaert, Steven Keuchel, Coen De Roover, and Dominique Devriese. 2023. Formalizing, Verifying and
Applying ISA Security Guarantees as Universal Contracts. In CCS. ACM, 2083-2097. doi:10.1145/3576915.3616602

[29] James H. Morris Jr. 1973. Protection in Programming Languages. Commun. ACM 16, 1 (1973), 15-21. doi:10.1145/
361932.361937

[30] Yannis Juglaret, Catalin Hritcu, Arthur Azevedo de Amorim, Boris Eng, and Benjamin C. Pierce. 2016. Beyond Good
and Evil: Formalizing the Security Guarantees of Compartmentalizing Compilation. In CSF. IEEE Computer Society,
45-60. doi:10.1109/CSF.2016.11

[31] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. 256-269.
doi:10.1145/2951913.2951943

[32] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from
the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

[33] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.
Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637-650. https:
//doi.org/10.1145/2676726.2676980

[34] Jérémie Koenig and Zhong Shao. 2021. CompCertO: compiling certified open C components. In PLDI. ACM, 1095-1109.
doi:10.1145/3453483.3454097

[35] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017. The Essence of
Higher-Order Concurrent Separation Logic. In ESOP (LNCS, Vol. 10201). Springer, 696-723. https://doi.org/10.1007/978-
3-662-54434-1_26

[36] Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn Song. 2014. Code-Pointer
Integrity. In 11th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA,
October 6-8, 2014, Jason Flinn and Hank Levy (Eds.). USENIX Association, 147-163.

[37] Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann Hartig. 2017. Sandcrust: Automatic
Sandboxing of Unsafe Components in Rust. In PLOS@SOSP. ACM, 51-57. doi:10.1145/3144555.3144562

[38] Xavier Leroy, Andrew Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert memory model, version 2.
Technical Report RR-7987. Inria.

[39] Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like memory model and its uses for verifying
program transformations. JAR 41, 1 (2008), 1-31. doi:10.1007/s10817-008-9099-0

[40] Phillip Mates, Jamie Perconti, and Amal Ahmed. 2019. Under Control: Compositionally Correct Closure Conversion
with Mutable State. In PPDP. ACM, 16:1-16:15. do0i:10.1145/3354166.3354181

[41] Jacob Matthews and Robert Bruce Findler. 2007. Operational semantics for multi-language programs. In POPL. ACM,
3-10. doi:10.1145/1190216.1190220

[42] Mark S. Miller, Chip Morningstar, and Bill Frantz. 2000. Capability-Based Financial Instruments. In Financial Cryptog-
raphy (LNCS, Vol. 1962). Springer, 349-378. doi:10.1007/3-540-45472-1_24

[43] Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler. 2025. Artifact of "Endangered by
the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation". Zenodo. doi:10.5281/zenodo.
17285727 Also available on GitLab: https://gitlab.mpi-sws.org/FP/robustdimsum/-/tree/POPL26.

[44] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. 2009. SoftBound: highly compatible and
complete spatial memory safety for c. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM,
245-258. doi:10.1145/1542476.1542504

[45] Georg Neis, Chung-Kil Hur, Jan-Oliver Kaiser, Craig McLaughlin, Derek Dreyer, and Viktor Vafeiadis. 2015. Pilsner: a
compositionally verified compiler for a higher-order imperative language. In ICFP. ACM, 166-178. doi:10.1145/2784731.
2784764

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

https://doi.org/10.1145/2676726.2676975
https://doi.org/10.1145/3729329
https://doi.org/10.1145/1926385.1926402
https://doi.org/10.1145/2103656.2103666
https://doi.org/10.1145/3576915.3616602
https://doi.org/10.1145/361932.361937
https://doi.org/10.1145/361932.361937
https://doi.org/10.1109/CSF.2016.11
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3453483.3454097
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3354166.3354181
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1007/3-540-45472-1_24
https://doi.org/10.5281/zenodo.17285727
https://doi.org/10.5281/zenodo.17285727
https://gitlab.mpi-sws.org/FP/robustdimsum/-/tree/POPL26
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/2784731.2784764
https://doi.org/10.1145/2784731.2784764

Endangered by the Language But Saved by the Compiler: Robust Safety via Semantic Back-Translation 40:29

[46]

[47]
[48]

[49]

[50]
[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]
[62]
[63]
[64]

[65]

[66]
[67]

[68]

Max S. New, William J. Bowman, and Amal Ahmed. 2016. Fully abstract compilation via universal embedding. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.). ACM, 103-116. do0i:10.1145/2951913.
2951941

Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens. 2015. Secure Compilation
to Protected Module Architectures. ACM Trans. Program. Lang. Syst. 37, 2 (2015), 6:1-6:50. doi:10.1145/2699503
Marco Patrignani, Amal Ahmed, and Dave Clarke. 2019. Formal Approaches to Secure Compilation: A Survey of Fully
Abstract Compilation and Related Work. ACM Comput. Surv. 51, 6 (2019), 125:1-125:36. doi:10.1145/3280984

Marco Patrignani and Deepak Garg. 2017. Secure Compilation and Hyperproperty Preservation. In 30th IEEE Computer
Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017. IEEE Computer Society, 392-404.
doi:10.1109/CSF.2017.13

Marco Patrignani and Deepak Garg. 2021. Robustly Safe Compilation, an Efficient Form of Secure Compilation. ACM
Trans. Program. Lang. Syst. 43, 1 (2021), 1:1-1:41. doi:10.1145/3436809

Daniel Patterson, Jamie Perconti, Christos Dimoulas, and Amal Ahmed. 2017. FunTAL: reasonably mixing a functional
language with assembly. In PLDL. ACM, 495-509. doi:10.1145/3062341.3062347

James T. Perconti and Amal Ahmed. 2014. Verifying an Open Compiler Using Multi-language Semantics. In ESOP
(LNCS, Vol. 8410). Springer, 128-148. https://doi.org/10.1007/978-3-642-54833-8_8

Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020. The high-level benefits of low-level sandboxing.
Proc. ACM Program. Lang. 4, POPL (2020), 32:1-32:32. doi:10.1145/3371100

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek
Dreyer. 2023. DimSum: A Decentralized Approach to Multi-language Semantics and Verification. Proc. ACM Program.
Lang. 7, POPL (2023), 775-805. doi:10.1145/3571220

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2020. Reasoning about a Machine with Local Capabilities:
Provably Safe Stack and Return Pointer Management. ACM Trans. Program. Lang. Syst. 42, 1 (2020), 5:1-5:53. doi:10.
1145/3363519

Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2021. StkTokens: Enforcing well-bracketed control flow
and stack encapsulation using linear capabilities. J. Funct. Program. 31 (2021), e9. doi:10.1017/S095679682100006X
Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2020. CompCertM:
CompCert with C-assembly linking and lightweight modular verification. Proc. ACM Program. Lang. 4, POPL (2020),
23:1-23:31. doi:10.1145/3371091

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional
Contextual Refinement. In POPL. ACM. https://doi.org/10.1145/3571232

Simon Spies. 2025. Shaking up the foundations of modern separation logic. Ph. D. Dissertation. Saarland University,
Germany. doi:10.22028/D291-46080

Simon Spies, Lennard Géher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal.
2021. Transfinite Iris: resolving an existential dilemma of step-indexed separation logic. In PLDI. ACM, 80-95.
doi:10.1145/3453483.3454031

Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In POPL.
ACM, 275-287. doi:10.1145/2676726.2676985

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. 2021. Linear capabilities for fully abstract compilation
of separation-logic-verified code. J. Funct. Program. 31 (2021), e6. doi:10.1017/50956796821000022

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In ESOP (LNCS, Vol. 8410).
149-168. doi:10.1007/978-3-642-54833-8_9

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and compositional verification of object capability
patterns. Proc. ACM Program. Lang. 1, OOPSLA (2017), 89:1-89:26. doi:10.1145/3133913

Jérémy Thibault, Roberto Blanco, Dongjae Lee, Sven Argo, Arthur Azevedo de Amorim, Aina Linn Georges, Catalin
Hritcu, and Andrew Tolmach. 2024. SECOMP: Formally Secure Compilation of Compartmentalized C Programs. In
CCS. ACM, 1061-1075. doi:10.1145/3658644.3670288

Amin Timany, Armaél Guéneau, and Lars Birkedal. 2024. The Logical Essence of Well-Bracketed Control Flow. Proc.
ACM Program. Lang. 8, POPL (2024), 575-603. do0i:10.1145/3632862

Stelios Tsampas, Dominique Devriese, and Frank Piessens. 2019. Temporal Safety for Stack Allocated Memory on
Capability Machines. In CSF. IEEE, 243-255. do0i:10.1109/CSF.2019.00024

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993. Efficient Software-Based Fault Isolation.
In Proceedings of the Fourteenth ACM Symposium on Operating System Principles, SOSP 1993, The Grove Park Inn and
Country Club, Asheville, North Carolina, USA, December 5-8, 1993, Andrew P. Black and Barbara Liskov (Eds.). ACM,
203-216. doi:10.1145/168619.168635

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2951913.2951941
https://doi.org/10.1145/2699503
https://doi.org/10.1145/3280984
https://doi.org/10.1109/CSF.2017.13
https://doi.org/10.1145/3436809
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1145/3371100
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3363519
https://doi.org/10.1145/3363519
https://doi.org/10.1017/S095679682100006X
https://doi.org/10.1145/3371091
https://doi.org/10.1145/3571232
https://doi.org/10.22028/D291-46080
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/2676726.2676985
https://doi.org/10.1017/S0956796821000022
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3658644.3670288
https://doi.org/10.1145/3632862
https://doi.org/10.1109/CSF.2019.00024
https://doi.org/10.1145/168619.168635

40:30 Niklas Miick, Aina Linn Georges, Derek Dreyer, Deepak Garg, and Michael Sammler

[69] Robert N. M. Watson, Alexander Richardson, Brooks Davis, John Baldwin, David Chisnall, Jessica Clarke, Nathaniel
Filardo, Simon W. Moore, Edward Napierala, Peter Sewell, and Peter G. Neumann. 2020. CHERI C/C++ Programming
Guide. Technical Report UCAM-CL-TR-947. University of Cambridge, Computer Laboratory. doi:10.48456/tr-947

[70] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall,
Nirav H. Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert M. Norton, Michael Roe, Stacey D.
Son, and Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmen-
talization. In IEEE Symposium on Security and Privacy. IEEE Computer Society, 20-37. doi:10.1109/SP.2015.9

[71] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben
Laurie, Peter G. Neumann, Robert M. Norton, and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in
an age of risk. In ISCA. IEEE Computer Society, 457-468. doi:10.1109/ISCA.2014.6853201

[72] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.
2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),
51:1-51:32. doi:10.1145/3371119

[73] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula,
and Nicholas Fullagar. 2009. Native Client: A Sandbox for Portable, Untrusted x86 Native Code. In SP. IEEE Computer
Society, 79-93. doi:10.1109/SP.2009.25

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 40. Publication date: January 2026.

https://doi.org/10.48456/tr-947
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1145/3371119
https://doi.org/10.1109/SP.2009.25

	Abstract
	1 Introduction
	1.1 Robust Safety for an Unsafe, C-Like Language via Hardening Compilation
	1.2 How Our Goal Differs from Secure Compilation
	1.3 Our Contribution: Formalizing How Hardening Compilation Enables Robust Safety

	2 Overview of Rec and Reckon
	2.1 Rec: A Simple, Unsafe, C-Like Language
	2.2 Reckon: A Separation Logic for Proving Robust Safety of Rec Programs
	2.3 Examples

	3 Overview of RobustDimSum
	4 Cap: Target Capability Language
	5 Compiler Correctness
	6 Simulator and Universal Contract
	6.1 Simulator for Rec
	6.2 Universal Contract for Cap
	6.3 Semantic Back-Translation

	7 Putting It All Together
	7.1 Soundness of Reckon w.r.t. SIM
	7.2 Robust Safety

	8 Related Work
	References

