
1

Iris: Higher-Order Concurrent Separation Logic

Lecture 14: Extended Case Study: stacks with helping

Lars Birkedal

Aarhus University, Denmark

December 5, 2017



2

Overview
Earlier:
I Operational Semantics of λref,conc

I e, (h, e) (h, e′), and (h, E)→ (h′, E ′)
I Basic Logic of Resources

I l ↪→ v , P ∗ Q, P −∗ Q, Γ | P ` Q

I Basic Separation Logic
I {P} e {v .Q} : Prop, isList l xs, ADTs, foldr

I Later (.) and Persistent (2) Modalities.

I Concurrency Intro, Invariants and Ghost State

I CAS, Spin Locks, Concurrent Counter Modules.

I Weakest preconditions and the fancy update modality

Today:

I Extended Case Study
I Key Points:

I You can now verify fairly advanced programs!



3

Concurrent Stacks with Helping

Goal for today:

I Implement, specify and verify a concurrent stack
I Implementation will use helping:

I programming pattern where a side-channel is used to reduce contention on the data
structure

I suppose there are two threads, one which wishes to push (the pusher), and one
which wishes to pop (the popper)

I then they can communicate directly, on a side-channel, and help each other
complete their respective operations, without touching the core data structure used
for the stack

I The pusher will offer the value it wishes to push on a side-channel, and a
concurrent popper may accept the offer.

I If no popper around is around, then the offer may be revoked, and the value
pushed onto the actual stack.

I Likewise, if the popper sees no offer, then it will try to pop from the actual stack.



4

Offers

I An offer can be created with an initial value.

I An offer can be accepted, marking the offer as taken and returning the underlying value.

I Once created, an offer can be revoked which will prevent anyone from accepting the offer
and return the underlying value to the thread.

mk offer = fun v -> (v, ref 0)

revoke offer =

fun v ->

if cas (snd v) 0 2

then Some (fst v)

else None

accept offer =

fun v ->

if cas (snd v) 0 1

then Some (fst v)

else None

(-, 0)

(-, 1)

(-, 2)

accept

revoke



5

Mailboxes for Offers

I The pattern of offering something, immediately revoking it, and returning the value if the
revoke was successful is common: we encapsulate it in an abstraction called a mailbox.

I A mailbox is built around an underlying cell containing an offer. It provides two functions
which, respectively, briefly put a new offer out and check for such an offer.

mailbox = fun () ->

let r = ref None in

(rec put v ->

let off = mk offer v in

r := Some off;

revoke offer off,

rec get n ->

let offopt = !r in

match offopt with

None -> None

| Some x -> accept offer x

end)



6

Stack Implementation

stack = fun () ->

let mailbox = mailbox () in

let put = fst mailbox in

let get = snd mailbox in

let r = ref None in

(rec pop n ->

match get () with

None ->

(match !r with

None -> None

| Some hd ⇒
if cas r (Some hd) (snd hd)

then Some (fst hd)

else pop n

end)

| Some x -> Some x

end,



7

Stack Implementation

rec push n ->

match put n with

None -> ()

| Some n ->

let r’ = !r in

let r’’ = Some (n, r’) in

if cas r r’ r’’

then ()

else push n

end)



8

Stack Specification

I Idea: bag-like spec:

P(v) −∗wpE push(v) {True}
wpE pop() {v .v = None ∨ ∃v ′. v = Some(v ′) ∗ P(v ′)}

I Formally,
I return push and pop functions, so need to use nested triples / weakest preconditions
I we give the spec in the same style as proof rules for wps, with arbitrary

postcondition (eases using the specification)

∀Φ.

(∀f1f2.wp f1() {v .v = None ∨ ∃v ′. v = Some(v ′) ∗ P(v ′)}
−∗∀v .P(v) −∗ wp f2(v) {True}
−∗Φ(f1, f2))

−∗ wp stack() {Φ}



9

Outline of Specs and Proofs

Modularity:
I specs and proofs for

I offers
I mailboxes
I stacks



10

Verifying Offers

I Encode the transition system using ghost state.

I Only the thread which has made an offer may revoke the offer, so need token to
control that. Use the exclusive monoid on unit will as token.

I Transition system represented by:

stagesγ(v , `) , (P(v) ∗ ` ↪→ 0) ∨ ` ↪→ 1 ∨ (` ↪→ 2 ∗ ex(())
γ

)

I Representation predicate for offers:

is offerγ(v) , ∃v ′, `. v = (v ′, `) ∗ ∃ι. stagesγ(v ′, `)
ι

I (each ghost variable γ corresponds to an offer)



11

Specifying Offers

I mk offer creates an offer and the right to revoke it:

∀v .P(v) −∗ wp mk offer(v) {v . ∃γ. ex(())
γ ∗ is offerγ(v)}

I revoke offer needs the token:

∀γ, v . is offerγ(v) ∗ ex(())
γ −∗ wp revoke offer(v) {v . v = None ∨

∃v ′. v = Some(v) ∗ P(v ′)

}

I accept offer

∀γ, v . is offerγ(v) −∗ wp accept offer(v) {v . v = None ∨ ∃v ′. v = Some(v) ∗ P(v ′)}



12

Verifying Mailboxes

I Specifying put and get operations in the same style as before:

∀Φ. (1)

(∀f1f2. (∀v .P(v) −∗ wp f1(v) {v .v = None ∨ ∃v ′. v = Some(v ′) ∗ P(v ′)})
−∗wp f2() {v .v = None ∨ ∃v ′. v = Some(v ′) ∗ P(v ′)}
−∗Φ(f1, f2))

−∗ wp mailbox() {Φ}

I Representation predicate (invariant governing the shared mutable cell that
contains potential offers):

is mailbox(v) , ∃`. v = ` ∗ ` ↪→ None ∨ ∃v ′γ. l ↪→ Some(v ′) ∗ is offerγ(v ′)



13

Verifying Stacks

I Recall desired spec:

∀Φ.

(∀f1f2.wp f1() {v .v = None ∨ ∃v ′. v = Some(v) ∗ P(v)}
−∗∀v .P(v) −∗ wp f2(v) {True}
−∗Φ(f1, f2))

−∗ wp stack() {Φ}

I Representation predicate:

is stack(v) , µR. v = None ∨ ∃h, t. v = Some(h, t) ∗ P(h) ∗ .R(t)

stack inv(v) , ∃`, v ′. v = ` ∗ ` ↪→ v ′ ∗ is stack(v ′)


