Iris: Higher-Order Concurrent Separation Logic

Lecture 14: Extended Case Study: stacks with helping

Lars Birkedal

Aarhus University, Denmark

December 5, 2017

Overview
Earlier:

>

>

>

Operational Semantics of Aref conc

> e, (he)~ (h,€), and (h,E) — (KW, &)
Basic Logic of Resources

» v, PxQ, Px*QT|PFQ
Basic Separation Logic

» {P}e{v.Q} : Prop, isList / xs, ADTs, foldr

Later (>) and Persistent (0O) Modalities.

Concurrency Intro, Invariants and Ghost State

CAS, Spin Locks, Concurrent Counter Modules.
Weakest preconditions and the fancy update modality

Today:

>

>

Extended Case Study
Key Points:
> You can now verify fairly advanced programs!

Concurrent Stacks with Helping

Goal for today:
» Implement, specify and verify a concurrent stack

» Implementation will use helping:

> programming pattern where a side-channel is used to reduce contention on the data
structure

» suppose there are two threads, one which wishes to push (the pusher), and one
which wishes to pop (the popper)

» then they can communicate directly, on a side-channel, and help each other
complete their respective operations, without touching the core data structure used
for the stack

» The pusher will offer the value it wishes to push on a side-channel, and a
concurrent popper may accept the offer.

> If no popper around is around, then the offer may be revoked, and the value
pushed onto the actual stack.

» Likewise, if the popper sees no offer, then it will try to pop from the actual stack.

Offers

> An offer can be created with an initial value.
> An offer can be accepted, marking the offer as taken and returning the underlying value.

> Once created, an offer can be revoked which will prevent anyone from accepting the offer
and return the underlying value to the thread.

mk_offer = fun v -> (v, ref 0)

revoke_offer =

fun v -> accept
if cas (snd v) 0 2
then Some (fst v)
else None

accept_offer =

fun v —>

if cas (snd v) 0 1
then Some (fst v) revoke
else None

Mailboxes for Offers

> The pattern of offering something, immediately revoking it, and returning the value if the
revoke was successful is common: we encapsulate it in an abstraction called a mailbox.

» A mailbox is built around an underlying cell containing an offer. It provides two functions
which, respectively, briefly put a new offer out and check for such an offer.

mailbox = fun () ->
let r = ref None in
(rec put v ->
let off = mk_offer v in
r := Some off;
revoke_offer off,
rec get n —>
let offopt = !r in
match offopt with
None -> None
| Some x -> accept_offer x
end)

Stack Implementation

stack = fun () ->
let mailbox = mailbox () in
let put
let get = snd mailbox in
let r = ref None in
(rec pop n —>
match get () with
None ->
(match !r with
None -> None
| Some hd =
if cas r (Some hd) (snd hd)
then Some (fst hd)
else pop n
end)
| Some x -> Some x
end,

fst mailbox in

Stack Implementation

rec push n ->
match put n with

None -> ()
| Some n ->
let r’ = !r in
let r’’ = Some (mn, r’) in
if cas r r’ r’’
then ()

else push n
end)

Stack Specification

> ldea: bag-like spec:

P(v) —xwpg push(v) {True}
wpg pop() {v.v = None V 3v'.v = Some(V') x P(V')}

» Formally,

» return push and pop functions, so need to use nested triples / weakest preconditions
» we give the spec in the same style as proof rules for wps, with arbitrary
postcondition (eases using the specification)

Vo.
(VAifa.wp fi() {v.v = None vV 3v'. v = Some(V') * P(V')}
—«Vv. P(v) = wp f(v) {True}
—=+«®(f1, f))
— wp stack() {$}

Outline of Specs and Proofs

Modularity:
» specs and proofs for

» offers
» mailboxes
» stacks

Verifying Offers

v

Encode the transition system using ghost state.

v

Only the thread which has made an offer may revoke the offer, so need token to
control that. Use the exclusive monoid on unit will as token.

v

Transition system represented by:

v

Representation predicate for offers:

is_offer,(v) £ 3v/, £.v = (V' £) = Ju. |stages. v/, () '

(each ghost variable ~ corresponds to an offer)

v

Specifying Offers

» mk_offer creates an offer and the right to revoke it:

¥, v.is_offer. (v) xiex(())" = wp revoke_ offer(v) {v. v = None V }
Av’. v = Some(v) * P(v')

» accept_offer

V7, v.is_offer,(v) — wp accept_offer(v) {v. v = None VV 3v'. v = Some(v) * P(v')}

Verifying Mailboxes

» Specifying put and get operations in the same style as before:

vo. (1)
(Vhf. (Yv. P(v) = wp fi(v) {v.v = None V 3v". v = Some(V') * P(V')})
—xwp () {v.v = None V 3v'. v = Some(V) * P(V')}
~®(f1, f2))
— wp mailbox() {$}

» Representation predicate (invariant governing the shared mutable cell that
contains potential offers):

is_mailbox(v) £ 3¢.v = £ % £ — None V 3v'y. | = Some(v') x is_offer., (V')

Verifying Stacks

» Recall desired spec:

V.
(VAifa.wp fi() {v.v = None vV 3v'. v = Some(v) * P(v)}
—«Vv. P(v) = wp fa(v) {True}
—=+®(f1, f))
— wp stack() {®}

> Representation predicate:
is_stack(v) £ uR.v = None V 3h, t.v = Some(h, t) * P(h) > R(t)

stack_inv(v) = 3¢, v/.v = £ % £ — v x is_stack(V)

