
1

Iris: Higher-Order Concurrent Separation Logic

Lecture 3: Basic Separation Logic: Hoare Triples

Lars Birkedal

Aarhus University, Denmark

November 10, 2017



2

Overview

Earlier:
I Operational Semantics of λref,conc

I e, (h, e) (h, e′), and (h, E)→ (h′, E ′)
I Basic Logic of Resources

I l ↪→ v , P ∗ Q, P −∗ Q, Γ | P ` Q

Today:
I Basic Separation Logic: Hoare Triples

I {P} e {v .Q} : Prop



3

Hoare Triples

Γ ` P : Prop Γ ` e : Exp Γ ` Φ : Val→ Prop

Γ ` {P} e {Φ} : Prop

Intuition

I {P} e {Φ} holds if, when we run the program e in a heap h satisfying P, then the
computation does not get stuck and, moreover, if it terminates with a value v and
a heap h′, then h′ satisfies Φ(v).

I Φ has two purposes: describes the value v (e.g., v = 3) and the resources after
execution (e.g., x ↪→ 15).

I Note that Φ is a function – we often write Φ as v .Q instead of λv .Q.

Examples

{l ↪→ 5} l ← ! l + 1 {v .v = () ∧ l ↪→ 6}

{`1 ↪→ v1 ∗ `2 ↪→ v2} swap `1 `2 {v .v = () ∧ `1 ↪→ v2 ∗ `2 ↪→ v1}.



4

Hoare Triples

More intuition

I Precondition P describes the resources necessary to run e safely (recall “does not
get stuck” in the intuitive reading above).

I In our operational semantics, memory errors, e.g., trying to dereference a location
that has not been allocated, are modelled by the computation getting stuck.

I So if e satisfies a Hoare triple, then its computation will not lead to any memory
errors.

I Precondition P describes the resources needed for e to run safely: we sometimes
say that P includes the footprint of e.

I (Later on, not all resources needed to execute e will need to be in the
precondition — resources shared among different threads will be in invariants, and
only resources owned by e’s thread will in the precondition.)



5

Frame Rule

Ht-frame
S ` {P} e {v .Q}

S ` {P ∗ R} e {v .Q ∗ R}

I Intuitively sound because of the footprint reading of triples

I Note that the frame R is maintained unchanged from precondition to
postcondition.

I We do not have to explicitly say that e does not modify other resources not in its
precondition!

I Very important!

I We will use this rule all the time.



6

Frame Rule

Example

I Consider the specification for swap:

{`1 ↪→ v1 ∗ `2 ↪→ v2} swap `1 `2 {v .v = () ∧ `1 ↪→ v2 ∗ `2 ↪→ v1}.

I What if we want to apply this function somewhere, where we have more resources
around ? For instance `3 ↪→ 3. Then we use the frame rule, with frame
R = `3 ↪→ 3, to derive

{`1 ↪→ v1 ∗ `2 ↪→ v2 ∗ `3 ↪→ 3} swap `1 `2 {v .v = () ∧ `1 ↪→ v2 ∗ `2 ↪→ v1 ∗ `3 ↪→ 3}.



7

Value Rule

Ht-ret
w is a value

S ` {True}w {v .v = w}



8

Rule for Binary Operators

Basic rules are given for values, e.g.,

Ht-binop
v1 and v2 are values

S ` {True} v1 } v2 {v . v = v1 } v2}

Here the latter } is the mathematical operation corresponding to the syntactic
operator.



9

Bind Rule

To verify larger expressions we use the Ht-bind rule:

Ht-bind
E is an eval. context S ` {P} e {v .Q} S ` ∀v . {Q}E [v ] {w .R}

S ` {P}E [e] {w .R}

I Exercise: Use Ht-bind to show {True} 3 + 4 + 5 {v .v = 12}.



10

Persistent Propositions

I Intuition: persistent propositions are propositions that do not rely on resources,
i.e., either they hold for all resources or none.

P ∧ Q ` P ∗ Q if P is persistent.

I Persistent propositions may be moved in and out of preconditions:

Ht-Eq

S ∧ t =τ t ′ ` {P} e {v .Q}
S ` {P ∧ t =τ t ′} e {v .Q}

Ht-Ht
S ∧ {P1} e1 {v .Q1} ` {P2} e2 {v .Q2}
S ` {P2 ∧ {P1} e1 {v .Q1}} e2 {v .Q2}

I For now it suffices to know that persistence is preserved by ∀ and ∧ — we will see
a general treatment later.



11

Example of Ht-Ht

{x ↪→ 5} inc x {v .v = () ∧ x ↪→ 6} ` {x ↪→ 5} inc x {v .v = () ∧ x ↪→ 6}
{x ↪→ 5 ∧ {x ↪→ 5} inc x {v .v = () ∧ x ↪→ 6}} inc x {v .v = () ∧ x ↪→ 6}



12

Consequence Rule

Ht-csq

S persistent S ` P ⇒ P ′ S ` {P ′} e {v .Q ′} S ` ∀u.Q ′[u/v ]⇒ Q[u/v ]

S ` {P} e {v .Q}

Remark: S is usually a conjunction of equalities and universally quantified Hoare triples, so is
usually persistent.



13

Load Rule

Ht-load

S ` {` ↪→ u} ! ` {v .v = u ∧ ` ↪→ u}

I Intuitively sound because . . .



14

Alloc Rule

Ht-alloc

S ` {True} ref(u) {v .∃`. v = ` ∧ ` ↪→ u}

I Intuitively sound because . . .



15

Store Rule

Ht-store

S ` {` ↪→ −} `← w {v .v = () ∧ ` ↪→ w}

I ` ↪→ − shorthand for ∃u. ` ↪→ u

I Intuitively sound because . . .



16

Rules for Conditionals

Ht-If-True
{P ∗ v = true} e2 {u.Q}

{P ∗ v = true} if v then e2 else e3 {u.Q}

Ht-If-False
{P ∗ v = false} e3 {u.Q}

{P ∗ v = false} if v then e2 else e3 {u.Q}

Ht-If
{P ∗ v = true} e1 {u.Q} {P ∗ v = false} e3 {u.Q}

{P} if v then e2 else e3 {u.Q}



17

Rules for Products and Sums

Proj

S ` {True}πi (v1, v2) {v .v = vi}

Match
S ` {P} ei [u/xi ] {v .Q}

S ` {P}match inji u with x1 ⇒ e1 | x2 ⇒ e2 end {v .Q}



18

Recursion Rule

Ht-Rec
Γ, f : Val | S ∧ ∀y . ∀v . {P} f v {u.Q} ` ∀y . ∀v . {P} e[v/x ] {u.Q}

Γ | S ` ∀y . ∀v . {P} (rec f (x) = e)v {u.Q}

I Here y is a “logical” variable, which may be used in P and Q to relate pre and
postconditions. Example:

I ∀y : N.∀x .{x = y} double x {v . v =Val 2× y}
I When reasoning about the body, we get to assume that f satisfies the triple we

are about to prove.

I Intuitively sound by induction on reduction steps.



19

Exercise (jointly, on the board)

I Specify and prove a functional implementation of factorial.



20

Factorial

Implementation

I rec fac(n) = if n = 0 then 1 else n ∗ fac(n − 1)

Specification

I ∀n : N.{True} fac n {v . v =Val n!}
Proof

I Use the recursion rule!


