Iris: Higher-Order Concurrent Separation Logic

Lecture 3: Basic Separation Logic: Hoare Triples

Lars Birkedal

Aarhus University, Denmark

November 10, 2017



Overview

Earlier:
» Operational Semantics of Aief conc
» e, (he)~ (h,€), and (h,E) — (K, &)
» Basic Logic of Resources
» v, PxQ P=QT|PFQ
Today:
» Basic Separation Logic: Hoare Triples
» {P}e{v.Q} : Prop



Hoare Triples

=P : Prop N-e: Exp =& : Val — Prop
I {P}e{®d} : Prop

Intuition

» {P}e{®} holds if, when we run the program e in a heap h satisfying P, then the
computation does not get stuck and, moreover, if it terminates with a value v and
a heap K, then K satisfies ®(v).

» & has two purposes: describes the value v (e.g., v = 3) and the resources after
execution (e.g., x < 15).

» Note that ® is a function — we often write ® as v. Q instead of Av. Q.
Examples

{l =5}« 1+1{vw=()ANIl— 6}

{1 = vixly — w}swap b1 lr{v.v=()Al1 = v *xly— v}.



Hoare Triples

More intuition

>

Precondition P describes the resources necessary to run e safely (recall “does not
get stuck” in the intuitive reading above).

In our operational semantics, memory errors, e.g., trying to dereference a location
that has not been allocated, are modelled by the computation getting stuck.

So if e satisfies a Hoare triple, then its computation will not lead to any memory
errors.

Precondition P describes the resources needed for e to run safely: we sometimes
say that P includes the footprint of e.

(Later on, not all resources needed to execute e will need to be in the
precondition — resources shared among different threads will be in invariants, and
only resources owned by e's thread will in the precondition.)



Frame Rule

HT-FRAME
SE{P}e{v.Q}
SEF{PxR}e{v.Q*R}

v

Intuitively sound because of the footprint reading of triples

Note that the frame R is maintained unchanged from precondition to
postcondition.

v

We do not have to explicitly say that e does not modify other resources not in its
precondition!

v

v

Very important!
We will use this rule all the time.

v



Frame Rule

Example

» Consider the specification for swap:
{1 = vi xly — wa}swap b1 la{v.v=()ALl1 = vaxlyp — v},

» What if we want to apply this function somewhere, where we have more resources
around ? For instance ¢3 < 3. Then we use the frame rule, with frame
R = {3 — 3, to derive

{1 = v xly — vaxl3— 3}swap by ba{v.v = ()Aly = vox by — vp % 03 — 3},



Value Rule

HT-RET
w is a value

SE{True} w{v.v = w}



Rule for Binary Operators

Basic rules are given for values, e.g.,

Hr-BINOP
vi1 and v, are values

SE{True}vi ®@ vu{v.v=v; © v}

Here the latter @ is the mathematical operation corresponding to the syntactic
operator.



Bind Rule

To verify larger expressions we use the HT-BIND rule:

HT-BIND
E is an eval. context SE{P}e{v.Q} SFEVv.{Q} E[v]{w.R}

St {P} E[e] {w. R}

> Exercise: Use HT-BIND to show {True}3+4 +5{v.v = 12}.



Persistent Propositions

> Intuition: persistent propositions are propositions that do not rely on resources,
i.e., either they hold for all resources or none.

PAQFPxQ if P is persistent.

> Persistent propositions may be moved in and out of preconditions:

HT-EQ Hr-HT
SAt=,t'F{P}e{v.Q} SA{Pi}er{v.Qi} F {P} e {v.Qs}
SE{PAt=,t'}e{v.Q} SE{P2 A {Pi} e {v.Qi}} e {v.Q}

> For now it suffices to know that persistence is preserved by V and A — we will see
a general treatment later.



Example of HT-HT

{x = 5}incx{v.v =() Ax = 6} F {x = 5}incx{v.v = () A x — 6}

{x =5 A {x = 5}incx{v.v =()Ax = 6}}incx{v.v = () A x — 6}



Consequence Rule

Hr-csqQ
S persistent SEFP=P  SH{P}e{v.Q} SEVu. Qu/v] = Q[u/v]

SE{P}e{v.Q}

Remark: S is usually a conjunction of equalities and universally quantified Hoare triples, so is
usually persistent.



Load Rule

HT-LOAD

SE{{—=u} W{viv=uNl— u}

> Intuitively sound because ...



Alloc Rule

Hr-ALLOC

S {True}ref(u){v.3l.v =0 Nl — u}

> Intuitively sound because ...



Store Rule

HT-STORE

SF{{—= - l—w{vwv=()NLl— w}

» ¢ < — shorthand for Ju. ¢ < u

> Intuitively sound because ...



Rules for Conditionals

Hr-Ir-TRUE HT-Ir-FALSE
{Px v =true} e {u.Q} {P % v = false} e3 {u.Q}
{P % v = true}if vthen ey else e3 {u.Q} {P x v = false} if v then e; else e3 {u.Q}
Hr-IF

{P v =true} e {u.Q} {P v =false} e3{u.Q}
{P}ifvtheneyelsee; {u.Q}




Rules for Products and Sums

ProJ

St {True} m; (vi, v2) {v.v = v;}

MATCH

SE{P}ei[u/x] {v.Q}

S {P} matchinj; uwithx; = e, | xo = exend {v.Q}



Recursion Rule

Hr-REC
M,f:Val| SAVy. Vv.{P}fv{u.Q} FVy.Vv.{P}e[v/x]{u.Q}

[ SEVy. Yv.{P}(recf(x) = e)v{u.Q}

» Here y is a "logical” variable, which may be used in P and @ to relate pre and
postconditions. Example:
» Vy : NVx.{x = y}doublex{v.v =y 2 x y}
» When reasoning about the body, we get to assume that f satisfies the triple we
are about to prove.

> Intuitively sound by induction on reduction steps.



Exercise (jointly, on the board)

» Specify and prove a functional implementation of factorial.



Factorial

Implementation

» recfac(n) = if n = Othen lelse n* fac(n — 1)
Specification

» Vn: NA{True} facn{v.v =y n'}
Proof

» Use the recursion rule!



