Iris: Higher-Order Concurrent Separation Logic

Lecture 3: Basic Separation Logic: Hoare Triples

Lars Birkedal

Aarhus University, Denmark

September 26, 2020
Overview

Earlier:
- Operational Semantics of $\lambda_{\text{ref,conc}}$
 - $e, (h, e) \leadsto (h, e'),$ and $(h, \mathcal{E}) \rightarrow (h', \mathcal{E}')$
- Basic Logic of Resources
 - $l \hookrightarrow v, P \ast Q, P \rightarrow Q, \Gamma \vdash P \vdash Q$

Today:
- Basic Separation Logic: Hoare Triples
 - $\{P\} e \{v. Q\} : \text{Prop}$
Hoare Triples

\[\Gamma \vdash P : \text{Prop} \quad \Gamma \vdash e : \text{Exp} \quad \Gamma \vdash \Phi : \text{Val} \rightarrow \text{Prop} \]
\[\Gamma \vdash \{P\} e \{\Phi\} : \text{Prop} \]

Intuition

- \(\{P\} e \{\Phi\} \) holds if, when we run the program \(e \) in a heap \(h \) satisfying \(P \), then the computation does not get stuck and, moreover, if it terminates with a value \(v \) and a heap \(h' \), then \(h' \) satisfies \(\Phi(v) \).

- \(\Phi \) has two purposes: describes the value \(v \) (e.g., \(v = 3 \)) and the resources after execution (e.g., \(x \leftarrow 15 \)).

- Note that \(\Phi \) is a function – we often write \(\Phi \) as \(v. Q \) instead of \(\lambda v. Q \).

Examples

\[\{l \leftarrow 5\} l \leftarrow !l + 1 \{v.v = () \land l \leftarrow 6\} \]
\[\{l_1 \leftarrow v_1 \ast l_2 \leftarrow v_2\} \text{swap} \ l_1 \ l_2 \ \{v.v = () \land l_1 \leftarrow v_2 \ast l_2 \leftarrow v_1\}. \]
More intuition

- Precondition P describes the resources necessary to run e safely (recall “does not get stuck” in the intuitive reading above).
- In our operational semantics, memory errors, e.g., trying to dereference a location that has not been allocated, are modelled by the computation getting stuck.
- So if e satisfies a Hoare triple, then its computation will not lead to any memory errors.
- Precondition P describes the resources needed for e to run safely: we sometimes say that P includes the footprint of e.
- (Later on, not all resources needed to execute e will need to be in the precondition — resources shared among different threads will be in invariants, and only resources owned by e’s thread will in the precondition.)
Frame Rule

\[
\text{HT-FRAME} \\
S \vdash \{P\} e \{v.Q\} \\
\hline
S \vdash \{P \ast R\} e \{v.Q \ast R\}
\]

- Intuitively sound because of the footprint reading of triples
- Note that the frame R is maintained unchanged from precondition to postcondition.
- We do not have to explicitly say that e does not modify other resources not in its precondition!
- Very important!
- We will use this rule all the time.
Frame Rule

Example

Consider the specification for swap:

\[
\{\ell_1 \leftarrow v_1 \land \ell_2 \leftarrow v_2\} \text{swap } \ell_1 \ell_2 \{v \cdot v = () \land \ell_1 \leftarrow v_2 \land \ell_2 \leftarrow v_1\}.
\]

What if we want to apply this function somewhere, where we have more resources around? For instance \(\ell_3 \leftarrow 3\). Then we use the frame rule, with frame \(R = \ell_3 \leftarrow 3\), to derive

\[
\{\ell_1 \leftarrow v_1 \land \ell_2 \leftarrow v_2 \land \ell_3 \leftarrow 3\} \text{swap } \ell_1 \ell_2 \{v \cdot v = () \land \ell_1 \leftarrow v_2 \land \ell_2 \leftarrow v_1 \land \ell_3 \leftarrow 3\}.
\]
Value Rule

\[
\text{HT-RET} \quad \begin{array}{c}
v \text{ is a value} \\
S \vdash \{\text{True}\} \ w \ \{v. v = w\}
\end{array}
\]
Rule for Binary Operators

Basic rules are given for values, e.g.,

HT-BINOP

v_1 and v_2 are values

$S \vdash \{\text{True}\} v_1 \odot v_2 \{v. \, v = v_1 \odot v_2\}$

Here the latter \odot is the mathematical operation corresponding to the syntactic operator.
To verify larger expressions we use the \(\text{HT-BIND} \) rule:

\[
\begin{align*}
\text{HT-BIND} & \quad E \text{ is an eval. context} \\
S \vdash \{ P \} e \{ v. Q \} & \quad S \vdash \forall v. \{ Q \} E[v] \{ w. R \} \\
\hline
S \vdash \{ P \} E[e] \{ w. R \}
\end{align*}
\]

Exercise: Use \(\text{HT-BIND} \) to show \(\{ \text{True} \} 3 + 4 + 5 \{ v. v = 12 \} \).
Persistent Propositions

- Intuition: persistent propositions are propositions that do not rely on resources, \(i.e., \) either they hold for all resources or none.

\[P \land Q \vdash P \ast Q \quad \text{if } P \text{ is persistent.} \]

- Persistent propositions may be moved in and out of preconditions:

\[
\frac{\text{HT-EQ}}{S \land t =_\tau t' \vdash \{P\} e \{v.Q\} \quad \text{HT-HT}}{S \vdash \{P \land t =_\tau t'\} e \{v.Q\}}
\]

\[
\frac{S \land \{P_1\} e_1 \{v.Q_1\} \vdash \{P_2\} e_2 \{v.Q_2\}}{S \vdash \{P_2 \land \{P_1\} e_1 \{v.Q_1\}\} e_2 \{v.Q_2\}}
\]

- For now it suffices to know that persistence is preserved by \(\forall \) and \(\land \) — we will see a general treatment later.
Example of HT-HT

$$\{x \leftrightarrow 5\} \text{inc} x \{v.v = () \land x \leftrightarrow 6\} \vdash \{x \leftrightarrow 5\} \text{inc} x \{v.v = () \land x \leftrightarrow 6\}$$

$$\{x \leftrightarrow 5 \land \{x \leftrightarrow 5\} \text{inc} x \{v.v = () \land x \leftrightarrow 6\}\} \text{inc} x \{v.v = () \land x \leftrightarrow 6\}$$
Consequence Rule

\[
\text{HT-CSQ} \quad \begin{array}{c}
S \text{ persistent} \\
S \vdash P \Rightarrow P' \\
S \vdash \{P'\} e \{v. Q'\} \\
S \vdash \forall u. Q'[u/v] \Rightarrow Q[u/v]
\end{array}
\]

\[
S \vdash \{P\} e \{v. Q\}
\]

Remark: \(S \) is usually a conjunction of equalities and universally quantified Hoare triples, so is usually persistent.
Load Rule

\[\text{HT-load} \]

\[S \vdash \{ \ell \leftrightarrow u \} \mid \ell \{ v.v = u \land \ell \leftrightarrow u \} \]

- Intuitively sound because ...
Alloc Rule

HT-ALLOC

\[S \vdash \{\text{True}\} \text{ref}(u) \{v. \exists \ell. v = \ell \land \ell \leftrightarrow u\} \]

- Intuitively sound because ...
Store Rule

\(\text{HT-STORE}\)

\[S \vdash \{ \ell \mapsto - \}\ \ell \leftarrow w \{ v.v = () \land \ell \mapsto w \}\]

- \(\ell \mapsto -\) shorthand for \(\exists u. \ell \mapsto u\)
- Intuitively sound because \ldots
Rules for Conditionals

\[
\text{HT-If-True} \quad \frac{P \ast v = \text{true}}{\{P \ast v = \text{true}\} \text{ if } v \text{ then } e_2 \text{ else } e_3 \{u.Q\}}
\]

\[
\text{HT-If-False} \quad \frac{P \ast v = \text{false}}{\{P \ast v = \text{false}\} \text{ if } v \text{ then } e_2 \text{ else } e_3 \{u.Q\}}
\]

\[
\text{HT-If} \quad \frac{\{P \ast v = \text{true}\} \ e_2 \{u.Q\}}{\{P\} \text{ if } v \text{ then } e_2 \text{ else } e_3 \{u.Q\}}
\]
Rules for Products and Sums

\[\text{PROJ} \]
\[
S \vdash \{ \text{True} \} \pi_i (v_1, v_2) \{ v \cdot v = v_i \}
\]

\[\text{MATCH} \]
\[
S \vdash \{ P \} e_i [u/x_i] \{ v \cdot Q \}
\]
\[
S \vdash \{ P \} \text{match inj;} \ u \text{ with } \ x_1 \Rightarrow e_1 \mid x_2 \Rightarrow e_2 \text{ end} \{ v \cdot Q \} \]
Recursion Rule

\[\text{H}_{\text{T-Rec}} \]
\[
\Gamma, f : \text{Val} \mid S \land \forall y. \forall v. \{P\} f v \{u. Q\} \vdash \forall y. \forall v. \{P\} e[v/x] \{u. Q\} \]

\[
\Gamma \mid S \vdash \forall y. \forall v. \{P\} (\text{rec } f(x) = e) v \{u. Q\} \]

- Here \(y \) is a “logical” variable, which may be used in \(P \) and \(Q \) to relate pre and postconditions. Example:
 - \(\forall y : \mathbb{N}. \forall x. \{x = y\} \text{double } x \{v. v =_{\text{Val}} 2 \times y\} \)

- When reasoning about the body, we get to assume that \(f \) satisfies the triple we are about to prove.

- Intuitively sound by induction on reduction steps.
Exercise (jointly, on the board)

- Specify and prove a functional implementation of factorial.
Implementation

- \text{rec } \text{fac}(n) = \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fac}(n - 1)

Specification

- \forall n : \mathbb{N}. \{ \text{True} \} \text{ fac } n \{ \nu. \nu = \text{Val } n! \}

Proof

- Use the recursion rule!