Iris: Higher-Order Concurrent Separation Logic

Lecture 9: Concurrency Intro and Invariants

Lars Birkedal

Aarhus University, Denmark

November 19, 2020
Overview

Earlier:

- Operational Semantics of $\lambda_{\text{ref,conc}}$
 - $e, (h, e) \leadsto (h, e')$, and $(h, \mathcal{E}) \rightarrow (h', \mathcal{E}')$
- Basic Logic of Resources
 - $l \leftrightarrow v, P \ast Q, P \not\ast Q, \Gamma \vdash P \vdash Q$
- Basic Separation Logic
 - $\{P\} e \{v. Q\} : \text{Prop}, \text{isList} \ l \ xs, \text{ADTs}, \text{foldr}$
- Later (\triangleright) and Persistent (\Box) Modalities.

Today:

- Concurrency Intro: $e_1 \parallel e_2$
- Invariants: $[P]^l$
- Key Points:
 - Thread-local reasoning.
 - Disjoint concurrency rule for $e_1 \parallel e_2$
 - Invariants for sharing of resources among threads e_1 and e_2 in $e_1 \parallel e_2$.

Parallel Composition

To start off with simpler proof rules, we first define a programming language construct for parallel execution of two expressions e_1 and e_2.

- $e_1 \parallel e_2$ runs e_1 and e_2 in parallel, waits until both finish, and then returns a pair consisting of the values to which e_1 and e_2 evaluated.
- Definable using fork. First we define spawn and join.
- Notation: write None for $\text{inj}_1()$ and Some x for $\text{inj}_2 x$.
Encoding of $e_1 \parallel e_2$

$$\text{spawn} := \lambda f. \text{let } c = \text{ref}(\text{None}) \text{ in } \text{fork } (c \leftarrow \text{Some}(f())); c$$

$$\text{join} := \text{rec } f(c) = \text{match } !c \text{ with}$$

$$\text{Some } x \Rightarrow x$$

$$\text{| None } \Rightarrow f(c)$$

$$\text{end}$$

$$\text{par} := \lambda f_1 f_2. \text{let } h = \text{spawn}f_1 \text{ in}$$

$$\text{let } v_2 = f_2(); \text{ in}$$

$$\text{let } v_1 = \text{join}(h) \text{ in}$$

$$(v_1, v_2)$$

$$e_1 \parallel e_2 := \text{par}(\lambda_.e_1)(\lambda_.e_2)$$
Thread-Local Reasoning

A Key Point of Concurrent Separation Logic:

▶ We do not reason about possible interleavings of threads (too many to reason about in a scalable way). See Hans Boehm: You Don't Know Jack About Shared Variables or Memory Models. CACM Vol. 55 No. 2, Pages 48-54.

▶ We reason about each thread in isolation – thread-local reasoning.

▶ Important for modular reasoning!
Thread-Local Reasoning

A Key Point of Concurrent Separation Logic:

- We do not reason about possible interleavings of threads (too many to reason about in a scalable way). See Hans Boehm: You Don't Know Jack About Shared Variables or Memory Models. CACM Vol. 55 No. 2, Pages 48-54.
- We reason about each thread in isolation – thread-local reasoning.
- Important for modular reasoning!
- How?
A Key Point of Concurrent Separation Logic:

▶ We do not reason about possible interleavings of threads (too many to reason about in a scalable way). See Hans Boehm: You Don't Know Jack About Shared Variables or Memory Models. CACM Vol. 55 No. 2, Pages 48-54.

▶ We reason about each thread in isolation – thread-local reasoning.

▶ Important for modular reasoning!

▶ How?
 ▶ We
 ▶ either ensure that there are no interesting interleavings among threads (disjoint concurrency),
 ▶ or we abstract over how threads may interfere with each other, so that it is still possible to reason thread-locally.

▶ Hence Hoare triples over individual expressions continue to be the basic entity of program proofs (rather than some kind of Hoare triple over thread pools).
Disjoint Concurrency Rule

\[\text{HT-PAR} \]

\[
\begin{align*}
S & \vdash \{P_1\} e_1 \{\nu. Q_1\} & S & \vdash \{P_2\} e_2 \{\nu. Q_2\} \\
\hline
S & \vdash \{P_1 \ast P_2\} e_1 \parallel e_2 \{\nu. \exists \nu_1 \nu_2. \nu = (\nu_1, \nu_2) \ast Q_1[\nu_1/\nu] \ast Q_2[\nu_2/\nu]\}
\end{align*}
\]

- The rule states that we can run \(e_1\) and \(e_2\) in parallel, if they have *disjoint* footprints and that in this case we can verify the two components separately.
- Thus this rule is sometimes also referred to as the *disjoint concurrency rule*.
Let e_i be $\ell_i \leftarrow !_\ell_i + 1$, for $i \in \{1, 2\}$. Then we can use HT-PAR to show:

$$\{\ell_1 \leftarrow n \ast \ell_2 \leftarrow m\} (e_1 || e_2); !_\ell_1 + !_\ell_2 \{v.v = n + m + 2\}$$
Disjoint Concurrency Example

Let e_i be $\ell_i \leftarrow !\ell_i + 1$, for $i \in \{1, 2\}$. Then we can use HT-PAR to show:

$$\{\ell_1 \leftarrow n \star \ell_2 \leftarrow m\} (e_1 || e_2); !\ell_1 + !\ell_2 \{v.v = n + m + 2\}$$

More realistic example: merge sort.
Non-disjoint Concurrency Example

▶ The \texttt{HT-PAR} rule does not suffice to verify a concurrent program which modifies a shared location.

▶ For instance, we cannot use it to prove

\[
\{\ell \rightarrow n\} (e \| e); !\ell \{v. v \geq n\}
\]

where \(e\) is the program \(\ell \leftarrow !\ell + 1\).

▶ Why?
Non-disjoint Concurrency Example

The \texttt{HT-PAR} rule does not suffice to verify a concurrent program which modifies a shared location.

For instance, we cannot use it to prove

\[
\{ \ell \leftrightarrow n \} (e \parallel e); ! \ell \{ v. v \geq n \}
\]

where \(e \) is the program \(\ell \leftarrow ! \ell + 1 \).

Why?

- We cannot split the \(\ell \leftrightarrow n \) predicate to give to the two subcomputations.
Non-disjoint Concurrency Example

- The HT-par rule does not suffice to verify a concurrent program which modifies a shared location.
- For instance, we cannot use it to prove

\[
\{ \ell \leftrightarrow n \} (e \mid\mid e); ! \ell \{ v.v \geq n \}
\]

where \(e \) is the program \(\ell \leftarrow ! \ell + 1 \).

- Why?
 - We cannot split the \(\ell \leftrightarrow n \) predicate to give to the two subcomputations.
 - We need the ability to share predicate \(\ell \leftrightarrow n \) among the two threads running in parallel.
 - That is what \textit{invariants} enable.
Non-disjoint Concurrency Example

- The **HT-par** rule does not suffice to verify a concurrent program which modifies a shared location.
- For instance, we cannot use it to prove
 \[
 \{\ell \mapsto n\} (e \parallel e); !\ell \{v. v \geq n\}
 \]
 where \(e\) is the program \(\ell \leftarrow !\ell + 1\).
- Why?
 - We cannot split the \(\ell \mapsto n\) predicate to give to the two subcomputations.
 - We need the ability to *share* predicate \(\ell \mapsto n\) among the two threads running in parallel.
- That is what *invariants* enable.
- Is this even the best spec we can show?
Non-disjoint Concurrency Example

- The HT-PAR rule does not suffice to verify a concurrent program which modifies a shared location.
- For instance, we cannot use it to prove

$$\{\ell \leftrightarrow n\} (e \mid\mid e); ! \ell \{v. v \geq n\}$$

where e is the program $\ell \leftarrow ! \ell + 1$.
- Why?
 - We cannot split the $\ell \leftrightarrow n$ predicate to give to the two subcomputations.
- We need the ability to *share* predicate $\ell \leftrightarrow n$ among the two threads running in parallel.
- That is what *invariants* enable.
- Is this even the best spec we can show?
 - The best we can hope to prove is:

$$\{\ell \leftrightarrow n\} (e \mid\mid e); ! \ell \{v. v = n + 1 \lor v = n + 2\}$$

but that is considerably harder, so won’t do that for now.
Invariants

- Add a type of invariant names InvName to the logic.
- Add new term \mathbf{P}_ι, to be read as “invariant P named ι”.
- Typing rule:

$$\Gamma \vdash P : \text{Prop} \quad \Gamma \vdash \iota : \text{InvName} \quad \frac{}{\Gamma \vdash \mathbf{P}_\iota : \text{Prop}}$$

- Note that there are no restrictions on P. In particular, we are also allowed to form nested invariants, e.g., terms of the form $\mathbf{P}_{\iota \iota'}$.
Intuition of memory

- $\ell_1 \leftarrow !\ell_1 + \ell \parallel \ell_2 \leftarrow !\ell_2 + \ell$.
- ℓ_1 owned by the first expression, ℓ_2 by the second, ℓ shared.
Invariant Names on Hoare Triples

- There will be rules allowing us to temporarily \textit{open} invariants, and, conceptually, get local ownership over the resources described by the invariant, so that we may operate on those resources.
- Of course, it does not make sense to get local ownership of some resource twice (if we "\textasteriskcentered on" a resource \(\ell \leftrightarrow - \) twice, then we get \textit{false}).
- Hence we need to ensure that we do not open invariants more than once.
- Hence we index Hoare triples with infinite set of invariant names \(\mathcal{E} \):
 \[
 S \vdash \{P\} e \{v.Q\}_{\mathcal{E}}
 \]
 - This set identifies the invariants we are allowed to use.
- If there is no annotation on the Hoare triple then \(\mathcal{E} = \text{InvName} \), the set of all invariant names. With this convention all the previous rules are still valid.
Just one new rule for relating Hoare triples with different sets of invariant names:

\[
\text{HT-MASK-WEAKEN} \\
S \vdash \{P\} e \{v.Q\}_{\mathcal{E}_1} \quad \mathcal{E}_1 \subseteq \mathcal{E}_2 \\
S \vdash \{P\} e \{v.Q\}_{\mathcal{E}_2}
\]

Intuitively sound: if we can show the triple while being allowed to open \mathcal{E}_1 invariants, then we can, of course, also show the triple if we are allowed to open more invariants.
A key point of invariants is that they can be shared. Hence invariants are persistent:

\[\text{Inv-persistent} \]

\[P^t \vdash \square P^t \]

Invariant allocation rule:

\[\text{HT-inv-alloc} \]

\[\begin{align*}
\mathcal{E} & \text{ infinite} \\
S & \land \exists t \in \mathcal{E}. P^t \vdash \{ Q \} e \{ v.R \}_\mathcal{E} \\
S & \vdash \{ \triangleright P \ast Q \} e \{ v.R \}_\mathcal{E}
\end{align*} \]
Rules for Invariants: Invariant Opening Rule

- The invariant opening rule

\[
\text{HT-INV-OPEN} \\
\begin{align*}
S \land \mathbf{P}^t &\vdash \{ \triangleright P \ast Q \} e \{ v. \triangleright P \ast R \} \varepsilon \\
S \land \mathbf{P}^t &\vdash \{ Q \} e \{ v. R \} \varepsilon \cup \{ t \}
\end{align*}
\]

is the only way to get access to the resources governed by an invariant.
Rules for Invariants: Invariant Opening Rule

- The invariant opening rule

\[
\text{HT-INV-OPEN} \\
\text{\[e \text{ is an atomic expression} \]} \quad S \wedge \overline{P}^t \vdash \{\triangleright P \ast Q\} \ e \ \{v.\triangleright P \ast R\} \mathcal{E} \\
S \wedge \overline{P}^t \vdash \{Q\} \ e \ \{v.R\} \mathcal{E} \cup \{\ell\}
\]

is the only way to get access to the resources governed by an invariant.

- Thus if we know an invariant \overline{P}^t exists, we can temporarily, for one atomic step, get access to the resources.
 - An expression is atomic if it reduces to a value in one reduction step.
Rules for Invariants: Invariant Opening Rule

- The invariant opening rule

\[
\text{HT-INV-OPEN}
\begin{align*}
& \text{e is an atomic expression} \\
\Rightarrow & \quad S \land \lbrack P \rbrack^t \vdash \{ \triangleright P \ast Q \} \ e \ \{ v. \triangleright P \ast R \} \mathcal{E} \\
\Rightarrow & \quad S \land \lbrack P \rbrack^t \vdash \{ Q \} \ e \ \{ v.R \} \mathcal{E} \cup \{ t \}
\end{align*}
\]

is the only way to get access to the resources governed by an invariant.

- Thus if we know an invariant \(\lbrack P \rbrack^t \) exists, we can \textit{temporarily}, for one atomic step, get access to the resources.
 - An expression is \textit{atomic} if it reduces to a value in \textit{one} reduction step.

- This rule is the reason we need to annotate the Hoare triples with sets of invariant names \(\mathcal{E} \).
Regarding \triangleright in the Invariant Opening Rule

- Note: we only get access to the resources \emph{later} (\triangleright).
- This is essential, logic would be inconsistent otherwise; proof not covered in this course, see https://iris-project.org/pdfs/2016-icfp-iris2-final.pdf
- There is a wide class of \textit{timeless} propositions for which it does not matter.
- Timeless propositions include most ordinary propositions, but not those involving a later modality, an update modality, or a general predicate variable.
- Many concrete examples will thus not need the general rule with later above.
- We therefore did consider leaving it out of this course.
- But it is a key feature of Iris that invariants can contain general predicates (not just timeless ones), in particular predicate variables.
- This is important for giving modular specs, see, e.g., the specification for a lock next week.
- And for other advanced applications: models of type systems.
Stronger Frame Rule

▶ Stronger frame rule which allows to remove \triangleright from frame:

\[
\frac{\text{HT-FRAME-ATOMIC}}{
\begin{array}{c}
e \text{ is an atomic expression} \\
S \vdash \{P\} e \{v.Q\}
\end{array}
}{
S \vdash \{P \triangleright R\} e \{v.Q \triangleright R\}
}\]

▶ (We will see an example application of this rule later.)
Remark: Footprint Reading of Hoare Triples

- Earlier “minimal footpring” reading must be refined now.
- Given triple \(\{P\} e \{v.Q\} \), the resources required for running \(e \) can
 - either be in the precondition \(P \),
 - or be governed by one or more invariants.
- For example, may prove triples of the form \(\{\text{True}\} e \{v.Q\} \), for some \(Q \), where \(e \) accesses shared state governed by an invariant.
Example

Recall the example we cannot prove with disjoint concurrency rule:

$$\{\ell \leftarrow n\} (e \mid\mid e);!\ell \{v.v \geq n\}$$

where e is the program $\ell \leftarrow !\ell + 1$.

Let’s prove it now!

We start by allocating invariant

$$l = \exists m. m \geq n \land \ell \leftarrow m$$

using HT-INV-ALLOC rule. This is possible by rule of consequence, since $\ell \leftarrow n$ implies l and hence $\triangleright l$.

Example proof

Thus we have to prove

\[I \vdash \{ \text{True} \} (e || e); ! \ell \{ v \cdot v \geq n \} \]

for some \(\ell \).

Using the derived sequencing rule HT-SEQ SFTS the following two triples

\[I \vdash \{ \text{True} \} (e || e) \{ _\cdot \text{True} \}. \]

\[I \vdash \{ \text{True} \} ! \ell \{ v \cdot v \geq n \}. \]

We show the first one; during the proof of that we will need to show the second triple as well.

Using HT-PAR, SFTS

\[I \vdash \{ \text{True} \} e \{ _\cdot \text{True} \} \]

(Note that we cannot open the invariant now since the expression \(e \) is not atomic.)
Example proof

Using the bind rule we first show

$$\exists I^\ell \vdash \{\text{True}\} ! \ell \{v. v \geq n\}. \]

Note that this is exactly the second premise of the sequencing rule mentioned above.

By invariant opening rule HT-INV-OPEN $SFTS$

$$\{\triangleright I\} ! \ell \{v. v \geq n \land \triangleright I\}_{\text{InvName}\{\iota\}}. \]

Using rule HT-FRAME-ATOMIC together with HT-LOAD and structural rules we have

$$\{\triangleright I\} ! \ell \{v. v = m \land m \geq n \land \ell \hookrightarrow m\}_{\text{InvName}\{\iota\}}. \]

From this we easily derive the needed triple.
Example proof

- To show the second premise of the bind rule, SFTS

\[\{ \ell \} \vdash \forall m. \{ m \geq n \} \ell \leftrightarrow (m + 1) \{ _ . True \} . \]

- To show this we again use the invariant opening rule and \texttt{HT-FRAME-ATOMIC} (exercise!).